JP2004083933A - Crystalline sulfide thin film and its manufacturing method - Google Patents

Crystalline sulfide thin film and its manufacturing method Download PDF

Info

Publication number
JP2004083933A
JP2004083933A JP2002242735A JP2002242735A JP2004083933A JP 2004083933 A JP2004083933 A JP 2004083933A JP 2002242735 A JP2002242735 A JP 2002242735A JP 2002242735 A JP2002242735 A JP 2002242735A JP 2004083933 A JP2004083933 A JP 2004083933A
Authority
JP
Japan
Prior art keywords
thin film
crystalline
sulfide
lanthanoid
phase transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002242735A
Other languages
Japanese (ja)
Inventor
Hiromichi Takebe
武部 博倫
Kenji Morinaga
森永 健次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002242735A priority Critical patent/JP2004083933A/en
Publication of JP2004083933A publication Critical patent/JP2004083933A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystalline sulfide thin film in which proper characteristics affected by chemical bonding properties is held and film thickness after photo-induced structural phase transition (PSPT) is made extremely small. <P>SOLUTION: A crystalline thin film composed of the sulfides of lanthanoid series or the sulfides of transition metals is irradiated with a laser beam to form a crystal structure in which structural phase transition is brought about. By this procedure, physical properties intermediate between those of oxides and those of selenides can be provided, the various characteristics of optical components, recording media, circuit components, sensors, etc., can be improved and working for making film thickness extremely thin after PSPT can be made highly precise and simplified. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ光を照射することにより化学結合性に影響を受ける物性が変化する結晶性硫化物薄膜に関し、特に光学特性及び導電特性等が変化する結晶質を有する結晶性硫化物薄膜に関する。
【0002】
【従来の技術】
一般に、硫化物薄膜は、大気中で安定なものが多く、可視から近赤外域での短パルスレーザに対しての顕著な光感受性(フォトセンシティビティ)を特徴とし、必要に応じて既存のガラスファイバ及びスライドガラス等と組合わせることで、光記録、マイクロ・ナノレンズ、波長変換チップ等の光エレクトロニクスデバイスへの応用性を持つ材料である。
【0003】
従来、この種のカルコゲン化物等のガラス又は結晶については特開平5−119362号公報(カルコゲナイド化合物微粒子を分散させたSiO2ガラスに関するもの)、特開平6−299330号公報(ペロブスカイト酸化物結晶誘電体薄膜に関するもの)、特開平10−261291号公報、特開平11−232706号公報及び特開2001−216649号公報等があり、これらはいずれも酸化物ガラス又はフッ化物ガラスに関するものである。また、特開平6−56264号公報があり、これは非酸化ガラスに関するものである。
【0004】
【発明が解決しようとする課題】
前記各従来の技術は、酸化物を基材とするガラス又は結晶に対してレーザ光を照射するものであり、光誘起構造相転移後の化学結合性に関する適切な特性が得られないという課題を有していた。また、前記特開平6−56264号公報には、非酸化物ガラスに対してレーザ光を照射するものであるが、非酸化物中の硫化物が含まれておらず、且つ非晶質のガラスを対象としていることから、化学結合性としての適切な特性が得られないという課題を有する。
特に、前記いずれの従来の技術も、光誘起構造相転移を結晶性薄膜について実施した場合に、この相転移した膜厚を容易に制御できず、膜厚が厚くなり、製造又は加工性が悪いという課題を有していた。
【0005】
本発明は、前記課題を解消するためになされたもので、化学結合性に影響を受ける適切な特性を保持し、光誘起構造相転移の膜厚を極めて薄く生成した結晶性硫化物薄膜を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係る結晶性硫化物薄膜は、基板に対してYを含むランタノイド硫化物又は遷移金属硫化物を堆積して結晶性薄膜を形成し、当該結晶性薄膜へのレーザ光の照射により光誘起に基づく構造相転移が生じた結晶構造とするものである。このように本発明においては、ランタノイド硫化物又は遷移金属硫化物で構成される結晶性薄膜にレーザ光を照射して構造相転移が生じた結晶構造とすることにより、酸化物とセレン化物との中庸の物性を有することとなり、光部品・記録媒体・回路素子・センサー等について各特性を向上させると共に、光誘起構造相転移の膜厚を極めて薄くする加工を高精度且つ簡略化できる。
【0007】
本発明に係る結晶性硫化物薄膜は必要に応じて、ランタノイド硫化物のランタノイド元素がLa、Ce、Sm、Eu、Tm、Yb、の一の単体又は複数の元素で少なくとも構成されるものである。このように本発明においては、LaS、CeS、SmS、EuS、TmS、YbSの単体又は化合物を少なくとも含んでランタノイド硫化物を構成しているので、応用される箇所の特性をより向上させると共に、より光誘起構造相転移の膜厚を極めて薄くする加工を簡略化・迅速化できる。
【0008】
本発明に係る結晶性硫化物薄膜は必要に応じて、結晶性薄膜がランタノイド硫化物又は遷移金属硫化物の微粒子をガラスマトリックス若しくは高分子等のマトリックスに分散させて構成されるものである。このように本発明においては、ランタノイド硫化物又は遷移金属硫化物の微粒子をガラスマトリックス若しくは高分子等のマトリックスに分散させて結晶性薄膜を構成しているので、応用される箇所の特性をより向上させると共に、より加工を簡略化且つ迅速化できる。
【0009】
本発明に係る結晶性硫化物薄膜は必要に応じて、結晶性薄膜がNaCl型の結晶構造で構成されるものである。このように本発明においては、NaCl型の結晶構造で結晶性薄膜を構成しているので、薄膜の結晶性を確実且つ精密にできると共に薄膜の結晶構造を容易に生成できる。特に、結晶構造の変化なしに構成する陽性元素について電子構造相転移の発現が効率よく可能となる。
【0010】
本発明に係る結晶性硫化物薄膜は必要に応じて、構造相転移により生じた結晶構造がレーザ光の照射強度により構造相転移の程度を異ならせるものである。このように本発明においては、照射するレーザ光の光強度により結晶構造における構造相転移の程度を異ならせるようにしているので、応用される箇所の特性をより向上させると共に、より加工を簡略化且つ迅速化できる。特に、光学素子における薄膜導波路のグレーティング形成、非球面レンズの形成、積層膜の形成、その他各種微細加工が可能となる。
【0011】
本発明に係る結晶性硫化物薄膜の製造方法は、基板に対してランタノイド硫化物又は遷移金属硫化物を堆積して結晶性薄膜を形成し、当該結晶性薄膜へレーザ光を照射し、当該レーザ光の照射で前記結晶性薄膜が光誘起に基づく構造相転移を生じさせるものである。このように本発明においては、ランタノイド硫化物又は遷移金属硫化物で構成される結晶性薄膜にレーザ光を照射して構造相転移が生じた結晶構造とすることにより、酸化物とセレン化物との中庸の物性を有することとなり、光部品・記録媒体・回路素子・センサー等について各特性を向上させると共に、光誘起構造相転移の膜厚を極めて薄くする加工を高精度且つ簡略化できる。
【0012】
【発明の実施の形態】
以下、本発明の実施形態に係る結晶性硫化物薄膜をその製造方法と共に説明する。本実施形態に係る結晶性硫化物薄膜は、遷移元素の硫化物をSmS(一硫化サマリウム)とし、このSmSの単相微結晶からなる薄膜とし、この薄膜に対してフェムト秒(fs)レーザによるレーザ光の照射による光誘起に基づく構造相転移が生じた結晶構造を有する構成である。
前記SmSの薄膜は、スパッタリング法により生成されるものであり、結晶子径約10nmの微結晶であり、NaCl型の結晶構造のみから形成される。このようにナノオーダーの微結晶とすることにより、表面積と体積との比が大きくなり、相転移での表面積増大に伴う歪エネルギーとの関係で、金属相が安定して存在していることとなる。
【0013】
前記fsレーザ光の照射は、繰り返し周波数を10Hzとし、光学素子で集光させて局所的に数百TW/cm程度の高強度光とされる。このような周波数の1パルス毎に対応してアブレーションなしに前記薄膜の表面のみでSm(サマリウム)の電子構造が高速下で変化することにより、薄膜表面のみの極めて浅い領域で反射率を顕著に反射率ついて変化させることができる。
前記遷移元素となるランタノイドをSm単体としたが、他のランタノイド単体、ランタノイド化合物又はこのランタノイド単体とランタノイド化合物とを混合したものとすることもできる。
【0014】
次に、前記構成に基づく本実施形態に係る結晶性硫化物薄膜の製造方法について説明する。まず、不活性の雰囲気下でSmSのランタノイド化合物を調整する。なお、このランタノイド化合物(SmS)以外に、ランタノイド化合物(好ましくはSm)、ランタノイド単体(好ましくはSm)の各原料を所定のモル比で混合した混合物とすることもできる。
続いて、図示を省略する成膜装置内を真空とし、この真空中にアルゴン(Ar)を注入して希ガス雰囲気状態とする。また、必要に応じて硫化水素ガスを加えた希ガス雰囲気とすることもでき、硫化物の成膜過程におけるS(イオウ)欠乏層等の欠陥が生じることを抑制し、硫化をより促進できる。
【0015】
この希ガス雰囲気を所定の圧力に保った状態で、前記SmSからなる薄膜を得るための化合物(SmS)又は混合物(SmとSmとの混合物)を蒸着源又はターゲット材料として適温に保持したガラスやSi単結晶などの清浄な基板上に成膜速度を調整しつつ薄膜を形成する。この成膜の際、ガス圧が低くなるほど成膜速度は遅くなるものの、その分品質の良い膜が得られる傾向にある。ガス圧は、0.5〜50×10−3Torrとし好ましくは2〜5×10−3Torrの範囲とする。
なお、前記硫化物の薄膜について説明したが、ランタノイド化合物又はランタノイド単体の微粒子をガラスマトリックスに分散させて形成することもできる。この場合には、溶融法、ゾルゲル法等の作製方法を採ることもできる。
【0016】
また、遷移元素の硫化物系としてSmSについて説明したが、他のランタノイド系(LaS、CeS、SmS,、EuS、TmS等)と、遷移金属系(TiS, TiS, VS, VS, VS,CrS, Cr, CrS, MnS, FeS, Fe, FeS, CuFeS, CoS, Co, CoS, NiS,Ni, CuS, CuS, CuS, ZnS, CdS, ZrS, NbS, Nb,NbS, TaS, TaS, TaS, Mo, MoS, WS, Sc, CdCr, CuCr, CuRh, MMo (M=Fe, Co, Ni, Cu; 0<x<2), FeNi, MTiS (M=Mn, Fe, Ni)等)と、典型元素系(GaS, Ga, InS, In, PbS, SnS, Sn, SnS, PbSnS, As, Sb, Bi,GeS, GeS, BaSnS, NaBiS, KBiS, ABS (A=Ca, Sr, Ba; B=Si, Ge, Sn)等)と、ランタノイド−遷移金属系(LaCrS, MCuS (M=La, Nd)等)と、遷移金属−典型元素系(CuXS, CuXS, CuXS, Cu1213 (X=P, As, Sb, Bi), FeBS(B−Si, Ge), FeXS2 (X=P, As, Sb, Bi), PbMo (0<x<2),RR’S (R=Li, Na;R’=Cr, V, In), ABS (A=Ag, Cu; B=Al, Ga, In, Fe), GaZnS, Ga, InZnS, In16Sn32, CuTaS, BaVS, BaR’’S (R’’=Zn, Fe, Mn), KFeS, Cu(Ir, Pt), ACu (A=Tl, K, Rb), MTS (M=Pb, Sn; T=Ti, V, Nb, Ta, Cr), BaZrS, BaTiS, BaUS等)とのいずれも選択することができる。例えば、これらの希土類硫化系はいずれもNaCl型の結晶構造を有し、外部刺激により結晶構造が変化することなく2価と3価との間での価数変化による金属及び半導体の相転移が起り得る。また、例えば半導体としてのSmSは常磁性体であり、金属としてのSmSは非磁性体であることから、相転移過程で磁気特性の変化も見込まれることとなる。
【0017】
さらに、薄膜での微結晶サイズ、配向性、Ga或いはSiO等の非晶質形成化合物との複合化による体積率等を制御し、ナノレベルの微細構造と光誘起構造相転移状態とを任意に調整できる。また、外部刺激例えば、照射するレーザ光の光強度調整、磁界又は電界を加える等による相転移可逆性についても可能である。
【0018】
前記実施形態における薄膜作製方法は、スパッタリング法を採用したが、このスパッタリング法以外の薄膜作製方法は次のことも採用できる。この他の薄膜作製方法は、ランタノイド化合物(好ましくはSm)とランタノイド単体を独立に蒸着源としたり、ランタノイド化合物(好ましくはSmS)のみを蒸着源としたものや硫化水素ガス(HS)雰囲気中でランタノイド単体(好ましくはSm)を蒸着源とした、真空蒸着法やMBE法、イオンプレーティング法により作製することが可能である。
【0019】
また、ランタノイド化合物(好ましくはSmS)やランタノイド化合物(好ましくはSm)とランタノイド単体(好ましくはSm)の混合物を成形し、焼結させて焼結体を作製し、これをターゲットとしたり、硫化水素ガス雰囲気中でランタノイド単体(好ましくはSm)をターゲットとして、パルスレーザーを照射させて蒸着を行うPLD法による製膜も可能である。
【0020】
また、遷移金属のハロゲン化物(例えばSmCl)と反応ガスに硫化水素ガス(HS)を用い、熱分解反応と水素還元を組み合わせたCVD法による製膜や、有機遷移金属および水素化物を原料としたMOCVD法による製膜も可能である。その他、スプレー熱分解法や気相成長法以外として液層エピタキシー(LPE)法やゾル−ゲル法などの液相成長法を用いてもかまわない。
【0021】
本実施形態における結晶性硫化物薄膜における光誘起に基づく構造相転移の可逆性については、本実施例ではM−SmS薄膜を主に示すが、S−SmS薄膜を作製することも可能であり、この場合は基板温度を室温以上の高温とすればよい。
例えば、M(Metallic:金属性の意味)−SmSとS(Semiconductor:半導体の意味)−SmSとの間での光誘起相転移については、S−SmSの状態に遷移することとなる。
さらに具体的には、まず磁性について、非磁性体と常磁性体との相転移は磁場を加えながら光を照射することが逆反応に作用することが考えられる。次に、導電性については、金属性と半導体との相転移は電気抵抗で一桁異なる状態に移行し、電場を加えながら(ジュール熱を発生させながら)光を照射することが考えられる。
【0022】
また、高圧相と低圧相との相転移は、局所的に温度を上げて光を照射することにより基板との熱膨張差に基づいて記録層に圧縮応力がかかるようにすれば、高圧相(M−SmS)の方への変化へ向うことが考えられる。
さらにまた、格子定数については、小さな格子定数と大きな格子定数との相転移については前記高圧相と低圧相とに関連して、金属相の方が格子定数が小さくことから密度が高いこととなる。即ち、M−SmSからS−SmSへの変化の際には体積の膨張を伴う(100%M→100%Sで13%)。逆に、S−SmSからM−SmSへの変化の際には体積の収縮を伴う。S−SmSにより近づいた照射部の周囲近傍にレーザを照射し、加熱冷却する過程で、最初の照射部に圧縮力がかかるようにする。例えば、シリカ(SiO)などのマトリックス内にSmSを分散させた膜を作製し、SmSナノ微粒子周囲のシリカ等マトリックスをレーザー照射することで、マトリックスの収縮によりSmS微粒子へ圧縮力が作用するようにする。
【0023】
以上のように、相転移後の特徴として反射率の差が大きいことから、レーザー波長を変えることで同時に多波長での記録(画像など)を行える可能性があると考えられる。
このように生成された本実施形態に係る結晶性硫化物薄膜は化学結合性に影響を受ける特性として酸化物とセレン化物の中庸の性質を有する。この性質を有する理由は以下の通りである。
【0024】
まず、イオン半径については、O(1.40Å)<S(1.84Å)<Se(1.98Å)<Te(2.21Å)の順で大きくなる傾向にある。原子核と価電子の親和力の程度を表す電気陰性度については、O(3.44)>S(2.58)>Se(2.55)>Te(2.10)の順になる。これらはいずれも陰性元素と呼ばれる。陰性元素と比較して電気陰性度の小さな陽性元素との結合対を形成した際に、電気陰性度が大きい陰性元素ほどより強い力で陽性元素からの電子を引き付けることになる。
【0025】
これらの化学結合性の特徴により、複数の原子価が存在し得る遷移元素(遷移金属、ランタノイド、p−ブロック元素など)との結合対を考えた場合、酸化物では他のカルコゲン化物と比較して高原子価が安定な傾向にある(陽性元素からより強い力で電子を奪うため)。例えば、ランタノイド元素の化合物を考えた場合、酸化物ではCeO(4+)、Sm, Tm, Ybなどが安定であるのに対し(例外的にEuについてはEu以外にEuOも存在するが)、他のカルコゲン化物ではCe、CeS、SmS、EuS、TmS、YbSなどの比較的低原子価のランタノイドカルコゲン化物も安定に存在する傾向にある。そのような中で、硫化物では例えば、SmS(2+)以外にSm(2+/3+)、Sm(3+)が存在するなど、原子価の異なるランタノイド化合物が存在し得る。
【0026】
また、陰性元素と陽性元素間での電気陰性度の差は両者の結合対のイオン性/共有結合性の程度を表し、この値が小さいほど(同一陽性元素との結合対の場合は陰性元素の電気陰性度が小さいほど)共有結合性が強くなる。従って、セレン化物、テルル化物では共有結合性が増大する傾向にあり、電子は陰性元素の方に強く引き付けられずに、陰性元素−陽性元素間での共有性で存在し、電子構造はバンド構造的な構造に推移していく。
この様な中でSmSについては、結晶構造はNaCl型で変化なしに、圧力に依存してSmの価数が変化し(高圧相で3価)、これに伴い半導体→金属的性質を示す相転移が起こることが知られている。このような相転移はセレン化物、テルル化物でも起こりうることが知られているが、セレン化物、テルル化物となるにつれて、相転移の起こる圧力は高くなる傾向にある。これは先の電気陰性度の大小の序列と対応しており、電気陰性度が小さな陰性元素との結合対において、陽性元素の低原子価がより安定な傾向にあることと対応している。
【0027】
また光吸収端については、酸化物<硫化物<セレン化物<テルル化物の順で長波長側にシフトする傾向にある。この傾向は、これらの化合物において、吸収端が陰性元素の軌道が作る価電子帯と陽性元素が作る伝導帯間の電子遷移或いはそれに付随した励起子に起因することと対応している。
さらに、本実施形態に係る結晶性硫化物薄膜は以下の通りの応用例がある。光部品(素子)としては、ミラー、レンズ、グレーティング、偏光子、エタロン、フィルタ、フォトニック結晶、光メモリ、光スイッチ、ホログラム、コーティング等がある。電気部品(素子)としては、半導体素子、センサー、スイッチ、集積回路、メモリ等がある。加工技術としては、電極及び電極への微細配線・加工があり、また反射膜コーティング加工等がある。この微細配線・加工を応用して太陽電池、燃料電池、熱電素子等エネルギー関連素子の形成に利用することもできる。
特に、金属性SmS膜作製に応用した場合には、膜厚を容易に変化させることができることから、他の半導体膜や絶縁体膜との積層膜形成に有効となり量子井戸デバイス、スピントロニクスデバイスなどへの応用が可能である。また、超伝導性を有する素子又は機器への応用も可能となる。
【0028】
【実施例】
本実施形態に係る結晶性硫化物薄膜についての製造実験及びこの製造実験により得られた結晶性硫化物薄膜の特性試験を行った。まず、製造実験は、水蒸気分圧と酸素分圧を1ppm以下に制御下N雰囲気のグローブボックス内でSmとSmの粉末原料をモル比率で1:1の割合で秤量、混合した後、成形体を作製した。
【0029】
次に、成膜装置として高周波マグネトロンスパッタ装置を用いて、前記成形体をターゲット材料として、スライドガラス又はSi単結晶基板上にスパッタリングを行ってSmS膜を作製した。具体的には、上記基板温度を20℃に保持したまま、高周波マグネトロンスパッタ装置内を真空に排気した後、アルゴン(Ar)ガスを導入して3.5×10−3Torr(0.466Pa)に保ち、成膜速度を調整しつつ膜厚を0.01〜2μmとするように成膜した。
このようにして得た薄膜に対する結晶相の同定は、薄膜X線回折を用いて行った。この薄膜X線回折は、X線源としてCuKα線(波長0.154nm)を用いて、入射角1.5°、回折角度(2θ)=10〜70°の条件で測定した。薄膜X線の結果を図1に示す。
【0030】
薄膜X線回折の結果、薄膜はNaCl型構造を持つ結晶相単相から構成されており、既知のSmS(2価)(半導体)の回折パターン(JCPDS  26−1479)と比較して高角度側にシフトしており、2θ=31.10°に(200)の強い配向性が認められた。また、算出した格子定数は5.76(Å)であり、これより得られた薄膜はSmS(2価/3価)(金属性)であることが確認された。
得られた薄膜の膜厚は10nmから2μmまでであり、適切なスパッタリング条件でスパッタリング粒子を安定させてスパッタリングを行うことによりSmS(2価/3価)を均一に堆積させることが可能である。
【0031】
図2はチタンサファイアフェムト秒レーザーを照射した前と後のSmS薄膜の反射スペクトルである。照射前は可視(480〜700nm)で反射率の高い金色の膜であるのに対し、照射後は反射率が顕著に減少した黒色の膜になる。この反射率の変化と対応して、Smの価数変化や電気抵抗の変化を確認している。このように広い可視光の周波数帯域でSmの価数変化や電気抵抗の変化に基づいて、光素子、半導体素子、電子素子等の加工形成に広く対応して用いることができる。
さらに、硫化サマリウム薄膜(サンプル1ないし5)に対するfsレーザを照射する実験により得られる結果を表1に示す。
【0032】
【表1】

Figure 2004083933
【0033】
サンプル1は基板温度20℃で作製した、膜厚150nm、格子定数5.73ÅのM−SmS薄膜である。単位面積当たりのパルスエネルギー0.52J・cm−2のチタンサファイアレーザーを照射することで 反射率変化が確認された。
また、サンプル2は基板温度20℃で作製した、膜厚1520nm、格子定数5.71ÅのM−SmS薄膜である。サンプル1と同じパルスエネルギーで照射することで反射率変化が確認された。
また、サンプル3は基板温度20℃で作製し、Ar雰囲気中400℃、2hで熱処理を行った、膜厚960nm、格子定数5.83ÅのM+S−SmS薄膜である。サンプル1、2と同じパルスエネルギーで照射しても変化はなく、パルスエネルギーを上げて照射していくと2.22J・cm−2でアブレーションが生じた。
【0034】
また、サンプル4は基板温度20℃で作製し、Ar雰囲気中500℃、2hで熱処理を行った、膜厚960nm、格子定数6.03ÅのS−SmS薄膜である。サンプル1、2と同じパルスエネルギーで照射しても変化はなく、パルスエネルギーを上げて照射していくと2.22J・cm−2でアブレーションが生じた。
さらに、サンプル5は基板温度20℃で作製した、膜厚1700nmのSmとSmの混相状態の薄膜である。サンプル3,4と同様、0.52J・cm−2の照射では変化はなく、2.22J・cm−2でアブレーションが生じた。
【0035】
【発明の効果】
本発明においては、ランタノイド硫化物又は遷移金属硫化物で構成される結晶性薄膜にレーザ光を照射して構造相転移が生じた結晶構造とすることにより、酸化物とセレン化物との中庸の物性を有することとなり、光部品・記録媒体・回路素子・センサー等について各特性を向上させると共に、光誘起構造相転移の膜厚を極めて薄くする加工を高精度且つ簡略化できるという効果を奏する。
【0036】
また、本発明においては、LaS、Ces、SmS、EuS、TmS、YbSの単体又は化合物を少なくとも含んでランタノイド硫化物を構成しているので、応用される箇所の特性をより向上させると共に、より光誘起構造相転移の膜厚を極めて薄くする加工を簡略化・迅速化できるという効果を有する。
【0037】
また、本発明においては、ランタノイド硫化物又は遷移金属硫化物の微粒子をガラスマトリックス若しくは高分子等のマトリックスに分散させて結晶性薄膜を構成しているので、応用される箇所の特性をより向上させると共に、より加工を簡略化且つ迅速化できるという効果を有する。
【0038】
また、本発明においては、NaCl型の結晶構造で結晶性薄膜を構成しているので、薄膜の結晶性を確実且つ精密にできると共に薄膜の結晶構造を容易に生成できる。特に、結晶構造の変化なしに構成する陽性元素について電子構造相転移の発現が効率よく可能となるという効果を有する。
【0039】
さらに、本発明においては、照射するレーザ光の光強度により結晶構造における構造相転移の程度を異ならせるようにしているので、応用される箇所の特性をより向上させると共に、より加工を簡略化且つ迅速化できる。特に、光学素子における薄膜導波路のグレーティング形成、非球面レンズの形成、積層膜の形成、その他各種微細加工が可能となるという効果を有する。
【図面の簡単な説明】
【図1】本発明の実施形態に係る結晶性硫化物薄膜の薄膜X線回折パターン図である。
【図2】本発明の実施形態に係る結晶性硫化物薄膜の特性試験におけるSmS薄膜の反射スペクトル図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a crystalline sulfide thin film in which physical properties affected by chemical bonding change when irradiated with laser light, and more particularly to a crystalline sulfide thin film having a crystalline property in which optical properties, conductive properties, and the like change.
[0002]
[Prior art]
In general, sulfide thin films are often stable in the atmosphere, are characterized by remarkable photosensitivity to short-pulse lasers in the visible to near-infrared region. It is a material that has application to optoelectronic devices such as optical recording, micro / nano lenses, and wavelength conversion chips when combined with fibers and slide glass.
[0003]
Conventionally, glass or crystals of this kind such as chalcogenides are disclosed in JP-A-5-119362 (related to SiO2 glass in which chalcogenide compound fine particles are dispersed) and JP-A-6-299330 (perovskite oxide crystalline dielectric thin film) And JP-A-10-261291, JP-A-11-232706 and JP-A-2001-216649, all of which relate to oxide glass or fluoride glass. Also, there is JP-A-6-56264, which relates to non-oxide glass.
[0004]
[Problems to be solved by the invention]
Each of the above-mentioned conventional techniques irradiates a laser beam to glass or a crystal having an oxide as a base material, and has a problem that appropriate characteristics regarding chemical bonding properties after light-induced structural phase transition cannot be obtained. Had. Japanese Patent Application Laid-Open No. 6-56264 discloses a method of irradiating a non-oxide glass with a laser beam. However, the non-oxide glass contains no sulfide and is made of an amorphous glass. Therefore, there is a problem that appropriate properties as chemical bonding properties cannot be obtained.
In particular, any of the above-mentioned conventional techniques, when the photo-induced structural phase transition is performed on a crystalline thin film, the thickness of the phase-transformed film cannot be easily controlled, the film thickness becomes large, and the manufacturing or workability is poor. There was a problem that.
[0005]
The present invention has been made in order to solve the above-mentioned problems, and provides a crystalline sulfide thin film which has appropriate characteristics affected by chemical bonding and has a very small thickness of a light-induced structural phase transition. The purpose is to do.
[0006]
[Means for Solving the Problems]
The crystalline sulfide thin film according to the present invention forms a crystalline thin film by depositing a lanthanoid sulfide or a transition metal sulfide containing Y on a substrate, and is photo-induced by irradiating the crystalline thin film with a laser beam. And a crystal structure in which a structural phase transition based on the crystal structure has occurred. As described above, in the present invention, a crystalline thin film composed of a lanthanoid sulfide or a transition metal sulfide is irradiated with a laser beam to have a crystal structure in which a structural phase transition occurs, whereby the oxide and the selenide can be separated from each other. Since it has moderate physical properties, it is possible to improve each characteristic of the optical component, the recording medium, the circuit element, the sensor, and the like, and to perform the processing for making the film thickness of the photo-induced structural phase transition extremely thin with high precision and simplicity.
[0007]
The crystalline sulfide thin film according to the present invention is one in which the lanthanoid element of the lanthanoid sulfide is at least one of La, Ce, Sm, Eu, Tm, and Yb, if necessary. . As described above, in the present invention, the lanthanoid sulfide is constituted by containing at least a simple substance or a compound of LaS, CeS, SmS, EuS, TmS, and YbS. Processing for making the film thickness of the photoinduced structural phase transition extremely thin can be simplified and speeded up.
[0008]
The crystalline sulfide thin film according to the present invention is formed by dispersing fine particles of lanthanoid sulfide or transition metal sulfide in a matrix such as a glass matrix or a polymer, if necessary. As described above, in the present invention, fine particles of a lanthanoid sulfide or a transition metal sulfide are dispersed in a matrix such as a glass matrix or a polymer to constitute a crystalline thin film, so that the properties of the applied portions are further improved. In addition, the processing can be simplified and speeded up.
[0009]
The crystalline sulfide thin film according to the present invention has a crystalline thin film having a NaCl-type crystal structure, if necessary. As described above, in the present invention, since the crystalline thin film is constituted by the NaCl-type crystal structure, the crystallinity of the thin film can be surely and precisely made, and the crystal structure of the thin film can be easily generated. In particular, it is possible to efficiently develop an electronic structure phase transition for a positive element that is formed without changing the crystal structure.
[0010]
In the crystalline sulfide thin film according to the present invention, the degree of the structural phase transition varies depending on the irradiation intensity of the laser beam in the crystal structure generated by the structural phase transition as necessary. As described above, in the present invention, the degree of the structural phase transition in the crystal structure is made different depending on the light intensity of the laser beam to be irradiated, so that the characteristics of the applied parts are further improved and the processing is further simplified. And it can be speeded up. In particular, it is possible to form a grating of a thin film waveguide in an optical element, form an aspheric lens, form a laminated film, and perform various other types of fine processing.
[0011]
The method for producing a crystalline sulfide thin film according to the present invention comprises the steps of: depositing a lanthanoid sulfide or a transition metal sulfide on a substrate to form a crystalline thin film; irradiating the crystalline thin film with laser light; The crystalline thin film causes a structural phase transition based on light induction by light irradiation. As described above, in the present invention, a crystalline thin film composed of a lanthanoid sulfide or a transition metal sulfide is irradiated with a laser beam to have a crystal structure in which a structural phase transition occurs, whereby the oxide and the selenide can be separated from each other. Since it has moderate physical properties, it is possible to improve each characteristic of the optical component, the recording medium, the circuit element, the sensor, and the like, and to perform the processing for making the film thickness of the photo-induced structural phase transition extremely thin with high precision and simplicity.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a crystalline sulfide thin film according to an embodiment of the present invention will be described together with a method for producing the same. In the crystalline sulfide thin film according to the present embodiment, the sulfide of the transition element is SmS (samarium monosulfide), the thin film is made of a single-phase microcrystal of SmS, and this thin film is irradiated with a femtosecond (fs) laser. It has a crystal structure in which a structural phase transition based on light induction by laser light irradiation has occurred.
The SmS thin film is formed by a sputtering method, is a fine crystal having a crystallite diameter of about 10 nm, and is formed only from a NaCl-type crystal structure. As described above, the ratio between the surface area and the volume is increased by forming nano-order microcrystals, and the metal phase is stably present in relation to the strain energy due to the increase in the surface area due to the phase transition. Become.
[0013]
Irradiation of the fs laser light has a repetition frequency of 10 Hz, and is condensed by an optical element to locally produce high intensity light of about several hundred TW / cm 2 . The electronic structure of Sm (samarium) changes at high speed only on the surface of the thin film without ablation corresponding to each pulse of such a frequency, so that the reflectivity is remarkably increased in an extremely shallow region only on the thin film surface. The reflectivity can be varied.
Although the lanthanoid serving as the transition element is Sm alone, another lanthanoid alone, a lanthanoid compound, or a mixture of this lanthanoid alone and a lanthanoid compound may be used.
[0014]
Next, a method for manufacturing the crystalline sulfide thin film according to the present embodiment based on the above configuration will be described. First, a lanthanoid compound of SmS is prepared under an inert atmosphere. In addition, in addition to the lanthanoid compound (SmS), a mixture in which respective materials of the lanthanoid compound (preferably Sm 2 S 3 ) and the lanthanoid simple substance (preferably Sm) are mixed at a predetermined molar ratio may be used.
Subsequently, the inside of a film forming apparatus (not shown) is evacuated, and argon (Ar) is injected into the vacuum to establish a rare gas atmosphere. In addition, a rare gas atmosphere to which hydrogen sulfide gas is added can be used as necessary, and the generation of defects such as an S (sulfur) deficient layer in the process of forming a sulfide can be suppressed, and sulfuration can be further promoted.
[0015]
While maintaining the rare gas atmosphere at a predetermined pressure, a compound (SmS) or a mixture (a mixture of Sm and Sm 2 S 3 ) for obtaining a thin film made of SmS is kept at an appropriate temperature as a deposition source or a target material. A thin film is formed on a clean substrate such as glass or Si single crystal while adjusting the film forming rate. At the time of this film formation, although the film formation speed becomes slower as the gas pressure becomes lower, a film having good quality tends to be obtained. The gas pressure is set to 0.5 to 50 × 10 −3 Torr, preferably to 2 to 5 × 10 −3 Torr.
Although the sulfide thin film has been described, the sulfide may be formed by dispersing fine particles of a lanthanoid compound or a single lanthanoid in a glass matrix. In this case, a production method such as a melting method and a sol-gel method can be adopted.
[0016]
Although SmS has been described as a sulfide system of transition elements, other lanthanoid systems (LaS, CeS, SmS, EuS, TmS, etc.) and transition metal systems (TiS, TiS 2 , V 3 S, VS, VS) 2, CrS, Cr 2 S 3 , CrS 2, MnS, FeS, Fe 7 S 8, FeS 2, CuFeS 2, CoS, Co 3 S 4, CoS 2, NiS, Ni 3 S 4, Cu 2 S, CuS, CuS 2, ZnS, CdS, ZrS 2, NbS, Nb 2 S 3, NbS 2, Ta 2 S, Ta 6 S, TaS 2, Mo 3 S 4, MoS 2, WS 2, Sc 2 S 3, CdCr 2 S 4, CuCr 2 S 4, CuRh 2 S 4, M x Mo 3 S 4 (M = Fe, Co, Ni, Cu; 0 <x <2), FeNi 2 S 4, M x TiS 2 (M = Mn , Fe, Ni) and the like), typical element system (GaS, Ga 2 S 3, InS, In 2 S 3, PbS, SnS, Sn 2 S 3, SnS 2, PbSnS 2, As 2 S 3 , Sb 2 S 3 , Bi 2 S 3 , GeS, GeS 2 , BaSnS 2 , NaBiS 2 , KBiS 2 , A 2 BS 4 (A = Ca, Sr, Ba; B = Si, Ge, S, Ge) and etc.), lanthanide - transition metal system and (LaCrS 2, MCuS 2 (M = La, Nd) , etc.), transition metal - typical element system (CuXS 2, Cu 3 XS 3 , Cu 3 XS 4, Cu 12 X 4 S 13 (X = P, As , Sb, Bi), Fe 2 BS 4 (B-Si, Ge), FeXS 2 (X = P, As, Sb, Bi), Pb x Mo 3 S 4 (0 <x < 2), RR ′S 2 (R = Li, Na; R ′ = Cr, V, In), ABS 2 (A = Ag, Cu; B = Al, Ga, In, Fe), Ga 2 ZnS 4 , Ga 2 V 2 S 4 , In 2 ZnS 4 , In 16 Sn 4 S 32 , CuTaS 3 , BaVS 3 , Ba 2 R ″ S 3 (R ″ = Zn, Fe, Mn), KFeS 2 , Cu (Ir, Pt) 2 S 4 , ACu 7 S 4 (A = Tl, K, Rb), MTS 3 (M = Pb, Sn; T = Ti, V, Nb, Ta, Cr), Ba 2 ZrS 4 , BaTiS 3 , BaUS 3 ) can be selected. For example, each of these rare earth sulfide systems has a NaCl-type crystal structure, and the metal and semiconductor phase transitions due to a change in valence between divalent and trivalent states without changing the crystal structure due to external stimuli. It can happen. Further, for example, SmS as a semiconductor is a paramagnetic substance, and SmS as a metal is a non-magnetic substance, so that a change in magnetic properties is expected during the phase transition process.
[0017]
Furthermore, by controlling the crystallite size and orientation in the thin film, and the volume ratio by complexing with an amorphous compound such as Ga 2 S 3 or SiO 2 , the nano-level fine structure and the light-induced structural phase transition state And can be arbitrarily adjusted. In addition, phase transition reversibility by external stimulus, for example, adjustment of light intensity of an irradiated laser beam, application of a magnetic field or an electric field, and the like are also possible.
[0018]
Although the sputtering method is used as the thin film manufacturing method in the above-described embodiment, the following methods can be used as a thin film manufacturing method other than the sputtering method. Other thin film forming methods include a method using a lanthanoid compound (preferably Sm 2 S 3 ) and a lanthanoid alone as an evaporation source, a method using only a lanthanoid compound (preferably SmS) as an evaporation source, and a method using hydrogen sulfide gas (H 2 S) It can be manufactured by a vacuum evaporation method, MBE method, or ion plating method using a lanthanoid alone (preferably Sm) as an evaporation source in an atmosphere.
[0019]
Further, a lanthanoid compound (preferably SmS) or a mixture of a lanthanoid compound (preferably Sm 2 S 3 ) and a lanthanoid simple substance (preferably Sm) is molded and sintered to produce a sintered body, which is used as a target. Alternatively, a film can be formed by a PLD method in which a lanthanoid alone (preferably Sm) is used as a target in a hydrogen sulfide gas atmosphere to perform deposition by irradiating a pulse laser.
[0020]
Further, using a transition metal halide (for example, SmCl 2 ) and hydrogen sulfide gas (H 2 S) as a reaction gas, a film formation by a CVD method combining a thermal decomposition reaction and hydrogen reduction, or an organic transition metal and a hydride are formed. It is also possible to form a film by MOCVD using the raw material. In addition, other than the spray pyrolysis method and the vapor phase growth method, a liquid phase growth method such as a liquid layer epitaxy (LPE) method or a sol-gel method may be used.
[0021]
Regarding the reversibility of the structural phase transition based on light induction in the crystalline sulfide thin film in the present embodiment, the present embodiment mainly shows an M-SmS thin film, but it is also possible to produce an S-SmS thin film, In this case, the substrate temperature may be higher than room temperature.
For example, with respect to a light-induced phase transition between M (Metallic: meaning of metallicity) -SmS and S (Semiconductor: meaning of semiconductor) -SmS, the state transitions to the state of S-SmS.
More specifically, regarding the phase transition between the non-magnetic substance and the paramagnetic substance, irradiation with light while applying a magnetic field may have a reverse reaction. Next, with regard to conductivity, it is conceivable that the phase transition between metallicity and semiconductor changes to an order of magnitude different by electric resistance, and light is applied while applying an electric field (while generating Joule heat).
[0022]
The phase transition between the high-pressure phase and the low-pressure phase can be performed by locally increasing the temperature and irradiating light to apply a compressive stress to the recording layer based on the difference in thermal expansion from the substrate. M-SmS).
Furthermore, regarding the lattice constant, the phase transition between the small lattice constant and the large lattice constant is related to the high-pressure phase and the low-pressure phase, and the density is high because the metal phase has a smaller lattice constant. . That is, the change from M-SmS to S-SmS is accompanied by volume expansion (13% from 100% M to 100% S). Conversely, the change from S-SmS to M-SmS is accompanied by volume shrinkage. In the process of irradiating a laser near the periphery of the irradiation unit approached by S-SmS and heating and cooling, a compressive force is applied to the first irradiation unit. For example, by forming a film in which SmS is dispersed in a matrix such as silica (SiO 2 ) and irradiating the matrix such as silica around the SmS nanoparticles with a laser, a compressive force acts on the SmS fine particles by contraction of the matrix. To
[0023]
As described above, since the difference in reflectance is large as a feature after the phase transition, it is considered that recording (images and the like) at multiple wavelengths can be simultaneously performed by changing the laser wavelength.
The crystalline sulfide thin film according to the present embodiment thus generated has a moderate property of an oxide and a selenide as a property affected by chemical bonding. The reason for having this property is as follows.
[0024]
First, the ion radius tends to increase in the order of O (1.40 °) <S (1.84 °) <Se (1.98 °) <Te (2.21 °). The electronegativity indicating the degree of affinity between the nucleus and the valence electrons is in the order of O (3.44)> S (2.58)> Se (2.55)> Te (2.10). These are all called negative elements. When forming a binding pair with a positive element having a smaller electronegativity than a negative element, a negative element having a higher electronegativity attracts electrons from the positive element with a stronger force.
[0025]
Owing to these characteristics of chemical bonding, when considering a bond pair with a transition element (such as a transition metal, a lanthanoid, or a p-block element) that can have multiple valences, an oxide is compared with other chalcogenides. High valence tends to be stable (to steal electrons from the positive element with more force). For example, when considering a compound of a lanthanoid element, CeO 2 (4+), Sm 2 O 3 , Tm 2 O 3 , Yb 2 O 3, and the like are stable in an oxide (except Eu for Eu). Although EuO exists in addition to 2 O 3 ), among other chalcogenides, relatively low-valent lanthanoid chalcogenides such as Ce 2 S 3 , CeS, SmS, EuS, TmS, and YbS also tend to exist stably. . Under such circumstances, in sulfides, for example, lanthanoid compounds having different valences such as Sm 3 S 4 (2 + / 3 +) and Sm 2 S 3 (3+) other than SmS (2+) may be present.
[0026]
The difference in the electronegativity between the negative element and the positive element indicates the degree of ionicity / covalent bonding of the two bonding pairs. The smaller this value is (the lower the negative element is in the case of a bonding pair with the same positive element). The smaller the electronegativity of the compound, the stronger the covalent bond. Therefore, selenide and telluride tend to have an increased covalent bond, electrons are not strongly attracted to the negative element, but exist in a covalent manner between the negative element and the positive element, and the electronic structure has a band structure. It changes to a typical structure.
Under such circumstances, the crystal structure of SmS is NaCl type, and the valence of Sm changes depending on the pressure without change (trivalent in the high pressure phase). Metastases are known to occur. It is known that such a phase transition can also occur in selenides and tellurides, but the pressure at which the phase transition occurs tends to increase as selenides and tellurides are formed. This corresponds to the above-described order of magnitude of electronegativity, and corresponds to the fact that the low valence of the positive element tends to be more stable in the binding pair with the negative element having the small electronegativity.
[0027]
The light absorption edge tends to shift to longer wavelengths in the order of oxide <sulfide <selenium <telluride. This tendency corresponds to the fact that, in these compounds, the absorption edge is caused by an electron transition between the valence band created by the orbit of the negative element and the conduction band created by the positive element, or an exciton accompanying the electron transition.
Further, the crystalline sulfide thin film according to the present embodiment has the following application examples. Optical components (elements) include mirrors, lenses, gratings, polarizers, etalons, filters, photonic crystals, optical memories, optical switches, holograms, coatings, and the like. Examples of the electric component (element) include a semiconductor element, a sensor, a switch, an integrated circuit, and a memory. Processing techniques include fine wiring and processing of electrodes and electrodes, and coating of reflective films. By applying this fine wiring and processing, it can also be used for forming energy-related elements such as solar cells, fuel cells, and thermoelectric elements.
In particular, when applied to the preparation of a metallic SmS film, the film thickness can be easily changed, so that it is effective for forming a laminated film with other semiconductor films and insulator films, and is applied to quantum well devices, spintronics devices, and the like. Is applicable. Further, application to a superconductive element or device is also possible.
[0028]
【Example】
A production experiment on the crystalline sulfide thin film according to the present embodiment and a characteristic test of the crystalline sulfide thin film obtained by the production experiment were performed. First, in a production experiment, powder materials of Sm 2 S 3 and Sm were weighed and mixed at a molar ratio of 1: 1 in a glove box in an N 2 atmosphere while controlling the partial pressure of steam and the partial pressure of oxygen to 1 ppm or less. Thereafter, a molded body was produced.
[0029]
Next, using a high-frequency magnetron sputtering apparatus as a film forming apparatus, sputtering was performed on a slide glass or a Si single crystal substrate using the molded body as a target material to form an SmS film. Specifically, after the inside of the high-frequency magnetron sputtering apparatus is evacuated to a vacuum while maintaining the substrate temperature at 20 ° C., 3.5 × 10 −3 Torr (0.466 Pa) is introduced by introducing argon (Ar) gas. , And the film thickness was adjusted to 0.01 to 2 μm while adjusting the film formation rate.
The crystal phase of the thin film thus obtained was identified using thin film X-ray diffraction. This thin film X-ray diffraction was measured using CuKα rays (wavelength 0.154 nm) as an X-ray source under the conditions of an incident angle of 1.5 ° and a diffraction angle (2θ) of 10 to 70 °. FIG. 1 shows the results of the thin film X-ray.
[0030]
As a result of the thin film X-ray diffraction, the thin film is composed of a single crystal phase having a NaCl type structure, and has a higher angle side than the known SmS (divalent) (semiconductor) diffraction pattern (JCPDS 26-1479). And a strong orientation of (200) was observed at 2θ = 31.10 °. The calculated lattice constant was 5.76 (Å), and it was confirmed that the obtained thin film was SmS (divalent / trivalent) (metallic).
The thickness of the obtained thin film is from 10 nm to 2 μm, and SmS (divalent / trivalent) can be uniformly deposited by performing sputtering while stabilizing sputtered particles under appropriate sputtering conditions.
[0031]
FIG. 2 is a reflection spectrum of the SmS thin film before and after the irradiation of the titanium sapphire femtosecond laser. Before irradiation, the film is a gold film that is visible (480 to 700 nm) and has a high reflectance, whereas after irradiation, the film is a black film whose reflectance is significantly reduced. The change in the valence of Sm and the change in the electrical resistance are confirmed in correspondence with the change in the reflectance. Based on such a change in the valence of Sm and a change in electrical resistance in such a wide visible light frequency band, it can be widely used for processing and forming optical elements, semiconductor elements, electronic elements, and the like.
Further, Table 1 shows the results obtained by the experiment of irradiating the samarium sulfide thin film (samples 1 to 5) with the fs laser.
[0032]
[Table 1]
Figure 2004083933
[0033]
Sample 1 is an M-SmS thin film manufactured at a substrate temperature of 20 ° C. and having a thickness of 150 nm and a lattice constant of 5.73 °. Irradiation with a titanium sapphire laser having a pulse energy of 0.52 J · cm −2 per unit area confirmed a change in reflectance.
Sample 2 is an M-SmS thin film having a thickness of 1520 nm and a lattice constant of 5.71 ° manufactured at a substrate temperature of 20 ° C. Irradiation with the same pulse energy as sample 1 confirmed a change in reflectance.
Sample 3 is an M + S-SmS thin film having a thickness of 960 nm and a lattice constant of 5.83 °, which was produced at a substrate temperature of 20 ° C. and heat-treated at 400 ° C. for 2 hours in an Ar atmosphere. Irradiation with the same pulse energy as Samples 1 and 2 produced no change, and ablation occurred at 2.22 J · cm −2 with increasing pulse energy.
[0034]
Sample 4 is an S-SmS thin film having a thickness of 960 nm and a lattice constant of 6.03%, which was produced at a substrate temperature of 20 ° C. and heat-treated at 500 ° C. for 2 hours in an Ar atmosphere. Irradiation with the same pulse energy as Samples 1 and 2 produced no change, and ablation occurred at 2.22 J · cm −2 with increasing pulse energy.
Sample 5 is a thin film of Sm 3 S 4 and Sm 2 S 3 in a mixed phase having a film thickness of 1700 nm and manufactured at a substrate temperature of 20 ° C. Similar to sample 3 and 4, no change in the irradiation of 0.52J · cm -2, the ablation occurs in 2.22J · cm -2.
[0035]
【The invention's effect】
In the present invention, a crystalline thin film composed of a lanthanoid sulfide or a transition metal sulfide is irradiated with a laser beam to have a crystal structure in which a structural phase transition occurs, so that a medium property of an oxide and a selenide is obtained. This has the effect of improving the characteristics of optical components, recording media, circuit elements, sensors, and the like, and at the same time, highly accurately and simplifying the process of making the thickness of the photoinduced structural phase transition extremely thin.
[0036]
Further, in the present invention, the lanthanoid sulfide is constituted by containing at least a simple substance or a compound of LaS, Ces, SmS, EuS, TmS, and YbS. This has the effect of simplifying and speeding up the process of making the thickness of the induced structural phase transition extremely thin.
[0037]
Further, in the present invention, fine particles of a lanthanoid sulfide or a transition metal sulfide are dispersed in a matrix such as a glass matrix or a polymer to constitute a crystalline thin film, so that the properties of the applied portions are further improved. In addition, there is an effect that processing can be further simplified and speeded up.
[0038]
Further, in the present invention, since the crystalline thin film is constituted by the NaCl-type crystal structure, the crystallinity of the thin film can be surely and precisely made, and the crystal structure of the thin film can be easily generated. In particular, the present invention has an effect that an electronic structure phase transition can be efficiently developed for a positive element that is formed without a change in crystal structure.
[0039]
Furthermore, in the present invention, the degree of the structural phase transition in the crystal structure is varied depending on the light intensity of the laser light to be irradiated, so that the characteristics of the applied portion are further improved, and the processing is simplified and Can be faster. In particular, there is an effect that the formation of the grating of the thin film waveguide in the optical element, the formation of the aspherical lens, the formation of the laminated film, and various other types of fine processing become possible.
[Brief description of the drawings]
FIG. 1 is a thin film X-ray diffraction pattern diagram of a crystalline sulfide thin film according to an embodiment of the present invention.
FIG. 2 is a reflection spectrum diagram of an SmS thin film in a characteristic test of a crystalline sulfide thin film according to an embodiment of the present invention.

Claims (6)

基板に対してYを含むランタノイド硫化物又は遷移金属硫化物を堆積して結晶性薄膜を形成し、当該結晶性薄膜へのレーザ光の照射により光誘起に基づく構造相転移が生じた結晶構造とすることを
特徴とする結晶性硫化物薄膜。
A crystalline thin film is formed by depositing a lanthanoid sulfide or a transition metal sulfide containing Y on a substrate, and a crystalline phase in which a structural phase transition based on light induction is generated by irradiating the crystalline thin film with laser light. A crystalline sulfide thin film characterized in that:
前記請求項1に記載の結晶性硫化物薄膜において、
前記ランタノイド硫化物のランタノイド元素がLa、Ce、Sm、Eu、Tm、Ybの一の単体又は複数の元素で少なくとも構成されることを
特徴とする結晶性硫化物薄膜。
The crystalline sulfide thin film according to claim 1,
A crystalline sulfide thin film, wherein the lanthanoid element of the lanthanoid sulfide is at least one of La, Ce, Sm, Eu, Tm, and Yb or a plurality of elements.
前記請求項1又は2に記載の結晶性硫化物薄膜において、
前記結晶性薄膜がランタノイド硫化物又は遷移金属硫化物の微粒子をガラスマトリックス若しくは高分子等のマトリックスに分散させて構成されることを
特徴とする結晶性硫化物薄膜。
The crystalline sulfide thin film according to claim 1 or 2,
A crystalline sulfide thin film, wherein the crystalline thin film is formed by dispersing lanthanoid sulfide or transition metal sulfide fine particles in a matrix such as a glass matrix or a polymer.
前記請求項1又は2に記載の結晶性硫化物薄膜において、
前記結晶性薄膜がNaCl型の結晶構造で構成されることを
特徴とする結晶性硫化物薄膜。
The crystalline sulfide thin film according to claim 1 or 2,
A crystalline sulfide thin film, wherein the crystalline thin film has a NaCl-type crystal structure.
前記請求項1ないし4のいずれかに記載の結晶性硫化物薄膜において、
前記構造相転移により生じた結晶構造がレーザ光の照射強度により構造相転移の程度を異ならせることを
特徴とする結晶性硫化物薄膜。
The crystalline sulfide thin film according to any one of claims 1 to 4,
A crystalline sulfide thin film, wherein a crystal structure generated by the structural phase transition varies the degree of the structural phase transition depending on the irradiation intensity of a laser beam.
基板に対してランタノイド硫化物又は遷移金属硫化物を堆積して結晶性薄膜を形成し、当該結晶性薄膜へレーザ光を照射し、当該レーザ光の照射で前記結晶性薄膜が光誘起に基づく構造相転移を生じさせることを
特徴とする結晶性硫化物薄膜の製造方法。
A crystalline thin film is formed by depositing a lanthanoid sulfide or a transition metal sulfide on a substrate, irradiating the crystalline thin film with laser light, and irradiating the laser light so that the crystalline thin film is based on light induction. A method for producing a crystalline sulfide thin film, characterized by causing a phase transition.
JP2002242735A 2002-08-22 2002-08-22 Crystalline sulfide thin film and its manufacturing method Withdrawn JP2004083933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242735A JP2004083933A (en) 2002-08-22 2002-08-22 Crystalline sulfide thin film and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242735A JP2004083933A (en) 2002-08-22 2002-08-22 Crystalline sulfide thin film and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004083933A true JP2004083933A (en) 2004-03-18

Family

ID=32051688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242735A Withdrawn JP2004083933A (en) 2002-08-22 2002-08-22 Crystalline sulfide thin film and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004083933A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359340C (en) * 2006-03-09 2008-01-02 陕西科技大学 Production of optical thin-membrane with samarium sulfide holographic recording
JP2011138769A (en) * 2009-12-30 2011-07-14 Korea Inst Of Scinence & Technology Negative electrode active material for self-supporting metal sulfide-based two-dimensional nanostructure, and method for manufacturing the same
CN104894530A (en) * 2015-06-09 2015-09-09 国家纳米科学中心 Two-dimensional transition metal sulfur compound film and preparation method and application thereof
EP2949778A1 (en) * 2014-05-27 2015-12-02 Samsung Electronics Co., Ltd Electrically conductive thin films
WO2017170598A1 (en) * 2016-04-01 2017-10-05 住友金属鉱山株式会社 Infrared-absorbing material, liquid dispersion of infrared-absorbing material, object including dispersed infrared-absorbing material, transparent base laminated with object including dispersed infrared-absorbing material, and infrared-absorbing transparent base
WO2018025866A1 (en) * 2016-08-04 2018-02-08 国立大学法人名古屋大学 Method for producing samarium monosulfide, volume change material, volume control member, negative thermal expansion material, and compound material
RU2674346C1 (en) * 2017-09-12 2018-12-07 федеральное государственное автономное образовательное учреждение высшего образования "Тюменский государственный университет" Method of the technical ceramics production from samarium mono-sulfide
CN115074667A (en) * 2022-07-01 2022-09-20 郑州大学 High-mobility p-type SrHfS 3 Film and preparation method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359340C (en) * 2006-03-09 2008-01-02 陕西科技大学 Production of optical thin-membrane with samarium sulfide holographic recording
JP2011138769A (en) * 2009-12-30 2011-07-14 Korea Inst Of Scinence & Technology Negative electrode active material for self-supporting metal sulfide-based two-dimensional nanostructure, and method for manufacturing the same
CN105304158B (en) * 2014-05-27 2018-11-06 三星电子株式会社 Conductive film and electronic device including it
EP2949778A1 (en) * 2014-05-27 2015-12-02 Samsung Electronics Co., Ltd Electrically conductive thin films
KR20150136427A (en) * 2014-05-27 2015-12-07 삼성전자주식회사 Electrically conductive thin films
CN105304158A (en) * 2014-05-27 2016-02-03 三星电子株式会社 ELECTRICALLY CONDUCTIVE THIN FILMS and device incorporating the same
KR102200502B1 (en) * 2014-05-27 2021-01-07 삼성전자주식회사 Electrically conductive thin films
US10266407B2 (en) 2014-05-27 2019-04-23 Samsung Electronics Co., Ltd. Electrically conductive thin films
CN104894530A (en) * 2015-06-09 2015-09-09 国家纳米科学中心 Two-dimensional transition metal sulfur compound film and preparation method and application thereof
WO2017170598A1 (en) * 2016-04-01 2017-10-05 住友金属鉱山株式会社 Infrared-absorbing material, liquid dispersion of infrared-absorbing material, object including dispersed infrared-absorbing material, transparent base laminated with object including dispersed infrared-absorbing material, and infrared-absorbing transparent base
US10823891B2 (en) 2016-04-01 2020-11-03 Sumitomo Metal Mining Co., Ltd. Infrared-absorbing material, liquid dispersion of infrared-absorbing material, object including dispersed infrared-absorbing material, transparent base laminated with object including dispersed infrared-absorbing material, and infrared-absorbing transparent base
JPWO2017170598A1 (en) * 2016-04-01 2019-02-28 住友金属鉱山株式会社 Infrared absorbing material, Infrared absorbing material dispersion, Infrared absorbing material dispersion, Infrared absorbing material dispersion combined transparent base material, Infrared absorbing transparent base material
JPWO2018025866A1 (en) * 2016-08-04 2019-06-06 国立大学法人名古屋大学 Method for producing samarium monosulfide, volume change material, volume control member, negative thermal expansion material, and compound material
WO2018025866A1 (en) * 2016-08-04 2018-02-08 国立大学法人名古屋大学 Method for producing samarium monosulfide, volume change material, volume control member, negative thermal expansion material, and compound material
RU2674346C1 (en) * 2017-09-12 2018-12-07 федеральное государственное автономное образовательное учреждение высшего образования "Тюменский государственный университет" Method of the technical ceramics production from samarium mono-sulfide
CN115074667A (en) * 2022-07-01 2022-09-20 郑州大学 High-mobility p-type SrHfS 3 Film and preparation method thereof
CN115074667B (en) * 2022-07-01 2023-06-23 郑州大学 High-mobility p-type SrHfS 3 Film and method for producing the same

Similar Documents

Publication Publication Date Title
Kawaguchi et al. Optical, electrical, and structural properties of amorphous Ag–Ge–S and Ag–Ge–Se films and comparison of photoinduced and thermally induced phenomena of both systems
JP2000026119A (en) Article having transparent electrically conductive oxide thin film and its manufacture
JP2004523773A (en) Transparent conductive oxide magnetic film and method of manufacturing the same
JP2004083933A (en) Crystalline sulfide thin film and its manufacturing method
US20040040837A1 (en) Method of forming chalcogenide sputter target
Elyamny et al. Preparation and characterization of the nanostructured bismuth telluride thin films deposited by thermal evaporation technique
Simya et al. Formation of a phase pure kesterite CZTSe thin films using multisource hybrid physical vapour deposition
Ibrahim et al. AgSbTe2 semi-nanocrystalline thin films as a multifunctional platform for optoelectronic and diode applications
Baby et al. Fabrication and phase characterization study of SnS thin films under controlled sulfur deposition temperature
Adam et al. Impacts of thickness reduction and heat treatment on the optical properties of thin chalcogenide films
Anwar et al. Structural investigations and colour centres in MoO3 films deposited by vacuum evaporation
JP3032827B1 (en) Manufacturing method of semiconductor thin film
Hassanien et al. Comparative studies for determining the optical Band-gap energy of the novel polycrystalline thin Znga2s4 films sprayed at different film thicknesses
Khudayer et al. Investigation of the Structural, Optical and Electrical Properties of AgInSe2 Thin Films
Kogai et al. Deposition of stoichiometric Bi 2 Se 3 film by vacuum-thermal treatment of Se/Bi heterostructure
Abd El-Wahabb Effect of Heat Treatment on the ac Conductivity and Dielectric Properties of Ag _33 Sb _31 Se _36 Thin Films
CN113969395B (en) Preparation method of phase-change film based on pulse laser deposition
Lavanya et al. Ti Doped Cu2O Thin Films: DC Magnetron Sputtering and Structural and Optical Studies
Bodnar’ et al. Investigation of the properties of CuGaTe 2 thin films
JP5846632B2 (en) Oxide superconducting thin film
Soliman et al. Heat-treatment effect on the structural and optical properties of flash evaporated Sb2Te3 thin films
Yimam Phase-change thin films growth and functionality: towards phase-change memory and reconfigurable nanophotonics
Nesa Characterization of zinc doped copper oxide thin films synthesized by spray pyrolysis technique
Chandel et al. Effect of laser-irradiation on some significant physical properties of SeTeIn glass-ceramic
GEORGE J. GEORGE, KS JOSEPH, B. PRADEEP, and TI PALSON

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829