JP5846632B2 - Oxide superconducting thin film - Google Patents

Oxide superconducting thin film Download PDF

Info

Publication number
JP5846632B2
JP5846632B2 JP2011241738A JP2011241738A JP5846632B2 JP 5846632 B2 JP5846632 B2 JP 5846632B2 JP 2011241738 A JP2011241738 A JP 2011241738A JP 2011241738 A JP2011241738 A JP 2011241738A JP 5846632 B2 JP5846632 B2 JP 5846632B2
Authority
JP
Japan
Prior art keywords
thin film
single crystal
substrate
oxide superconducting
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011241738A
Other languages
Japanese (ja)
Other versions
JP2013095648A (en
Inventor
信一郎 木場
信一郎 木場
彰 伊豫
彰 伊豫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Institute of National Colleges of Technologies Japan
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Institute of National Colleges of Technologies Japan filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011241738A priority Critical patent/JP5846632B2/en
Publication of JP2013095648A publication Critical patent/JP2013095648A/en
Application granted granted Critical
Publication of JP5846632B2 publication Critical patent/JP5846632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、酸化物超伝導薄膜に関し、特にBa−Ca−Cu−O−F系酸化物超伝導薄膜及びその製造方法に関するものである。 The present invention relates to an oxide superconducting thin film, and more particularly to a Ba—Ca—Cu—O—F-based oxide superconducting thin film and a method for producing the same.

1986年に約30K程度の高い超伝導転移温度(以下「Tc」という。)を持つ高温超伝導体の報告がされて以降、さらに高いTcを有する高温超伝導体の報告が数多くなされてきた。この高温超伝導体の構造は、Tcが高くなるにつれて複雑になる傾向にある。 Since the report of a high-temperature superconductor having a high superconducting transition temperature (hereinafter referred to as “Tc”) of about 30 K in 1986, many high-temperature superconductors having a higher Tc have been reported. The structure of this high temperature superconductor tends to become more complex as Tc increases.

このような、複雑な構造の高温超伝導体の例として、例えばTl−Ba−Ca−Cu−O系酸化物超伝導体(以下「Tl系超伝導体」という。)、Hg−Ba−Ca−Cu−O系酸化物超伝導体(以下「Hg系超伝導体」という。)、Bi−Sr−Ca−Cu−O系酸化物超伝導体(以下「Bi−Sr系超伝導体」という。)等がこれまでも研究されており、これらの超伝導体の薄膜化も既になされている。 Examples of such a high-temperature superconductor having a complicated structure include, for example, a Tl-Ba-Ca-Cu-O-based oxide superconductor (hereinafter referred to as "Tl-based superconductor"), Hg-Ba-Ca. -Cu-O-based oxide superconductor (hereinafter referred to as "Hg-based superconductor"), Bi-Sr-Ca-Cu-O-based oxide superconductor (hereinafter referred to as "Bi-Sr-based superconductor"). Etc.) have been studied so far, and these superconductors have already been thinned.

しかしながら、Tl系超伝導体及びHg系超伝導体は有毒な重金属であるTlやHgを含んでいるという問題があった。また、Bi−Sr系超伝導体は、それぞれ2種類のレアメタル(Bi及びSr)を含むため、その入手の困難性が高いという問題があった。 However, Tl-based superconductors and Hg-based superconductors have a problem of containing toxic heavy metals such as Tl and Hg. In addition, Bi-Sr superconductors each contain two types of rare metals (Bi and Sr), and thus there is a problem that their availability is high.

これに対し、近年、上述したTl系超伝導体、Hg系超伝導体或いはBi−Sr系超伝導体と同等の高いTcを有する酸化物超導体としてBa−Ca−Cu−O−F系酸化物超伝導体の報告がなされた。このBa−Ca−Cu−O−F系酸化物超伝導体は、有毒な重金属を含まず、しかもレアメタルを一つ(Ba)しか含まない特徴を有する。そのため、元素戦略上の観点から、Tl系超伝導体、Hg系超伝導体或いはBi−Sr系超伝導体に替わる酸化物超伝導体として注目を集めている。 In contrast, in recent years, Tl-based superconductors mentioned above, Hg-based superconductor or a Ba-Ca-Cu-O- F -based as the oxide superconductor conductor having a Bi-Sr-based superconductor and same high Tc An oxide superconductor has been reported. This Ba—Ca—Cu—O—F-based oxide superconductor does not contain a toxic heavy metal and has only one rare metal (Ba). Therefore, from the viewpoint of element strategy, attention is attracted as an oxide superconductor that replaces a Tl-based superconductor, an Hg-based superconductor, or a Bi—Sr-based superconductor.

このBa−Ca−Cu−O−F系酸化物超伝導体に関して、これまでもさまざま提案や報告がなされている。(例えば非特許文献1参照)。 Various proposals and reports have been made so far regarding the Ba—Ca—Cu—O—F-based oxide superconductor. (For example, refer nonpatent literature 1).

彰 伊豫 他,“シンプレスト ノントシック ダブルーレイヤード Ba2CaCu2O4(O,F)2 スーパーコンダクター ウイズ ア トランジション テンプリチャー オブ 108K”,アプライド フィジクス レターズ,(米国), アメリカン インスティテュート オブ フィジクス,2008年,第92巻,222501−1〜222501−3頁(A.Iyo et al., “Simplest nontoxic double-layered cuprate Ba2CaCu2O4(O,F)2 superconductor with a transition temperature of 108K”, Applied Physics Letters, (US), American Institute of Physics, 2008, vol.92, p222501-1〜p222501-3)Akira Ito et al., “Sympressed Non-Toothic Double Ray Yard Ba2CaCu2O4 (O, F) 2 Superconductor with a Transition Temple of 108K”, Applied Physics Letters, (USA), American Institute of Physics, 2008, Vol. 92, 222501-1 to 222501-3 (A.Iyo et al., “Simplest nontoxic double-layered cuprate Ba2CaCu2O4 (O, F) 2 superconductor with a transition temperature of 108K”, Applied Physics Letters, (US), American Institute of Physics, 2008, vol.92, p222501-1 to p222501-3)

非特許文献1によれば、高圧法により合成されたBa−Ca−Cu−O−F系酸化物超伝導体のバルクについて開示されている。しかし、このBa−Ca−Cu−O−F系酸化物超伝導体を良好に薄膜化させたという研究結果は未だ報告されていない。この、Ba−Ca−Cu−O−F系酸化物超伝導体からなる薄膜を例えば薄い帯状の金属の上に成膜した形態の線材、或いは前記薄膜による超導素子等の応用範囲の拡大のために、Ba−Ca−Cu−O−F系酸化物超伝導体の薄膜は欠かせない。 Non-Patent Document 1 discloses a bulk of a Ba—Ca—Cu—O—F-based oxide superconductor synthesized by a high-pressure method. However, the research result that the Ba—Ca—Cu—O—F-based oxide superconductor has been successfully thinned has not been reported yet. Expansion of this, Ba-Ca-Cu-O -F -based oxide super consisting conductor film, for example, a thin band-like form wire rod was deposited on the metal, or the application range of the superconductive element or the like by the film Therefore, a thin film of a Ba—Ca—Cu—O—F-based oxide superconductor is indispensable.

そこで、本発明は、上記従来の問題に鑑みてなされたものであり、その目的は、Ba−Ca−Cu−O−F系酸化物超伝導体の薄膜及びその製造方法を提供することにある。 Then, this invention is made | formed in view of the said conventional problem, The objective is to provide the thin film of a Ba-Ca-Cu-O-F type oxide superconductor, and its manufacturing method. .

請求項1の発明は、BaCan−1Cu2n(O1−x(ただし、nは2≦n≦5の整数、xは0<x<1の数)からなる酸化物超伝導薄膜であって、SrTiO又はMgOからなる単結晶基板の(100)面、(010)面又は(001)面のうちのいずれかの面上に形成された、酸化物超伝導薄膜である。 The invention of claim 1, Ba 2 Ca n-1 Cu n O 2n (O 1-x F x) 2 ( where, n is an integer of 2 ≦ n ≦ 5, x is 0 <x <number 1) from An oxide superconducting thin film, which is formed on any one of the (100) plane, (010) plane, and (001) plane of a single crystal substrate made of SrTiO 3 or MgO. It is a conductive thin film.

請求項2の発明は、SrTiO 又はMgOの単結晶基板の(100)面、(010)面又は(001)面のうちのいずれかの面上にBa Ca n−1 Cu 2n (O 1−x (ただし、nは2≦n≦5の整数、xは0<x<1の数)からなる酸化物超伝導薄膜を、パルスレーザーデポジション法により成膜する酸化物超伝導薄膜の製造方法である。 According to the second aspect of the present invention, there is provided a Ba 2 Ca n-1 Cu n O 2n ( ScTiO 3 or MgO single crystal substrate on one of the (100), (010) and (001) planes). O 1-x F x ) 2 (where n is an integer satisfying 2 ≦ n ≦ 5 and x is a number satisfying 0 <x <1). Oxidation for forming a superconducting oxide thin film by a pulse laser deposition method This is a method for manufacturing a superconducting thin film.

請求項3の発明は、請求項2記載の酸化物超伝導薄膜の製造方法において、前記単結晶基板の基板温度が700℃〜770℃で成膜する成膜工程を含むことを特徴とするAccording to a third aspect of the present invention, in the method for manufacturing an oxide superconducting thin film according to the second aspect , the method further includes a film forming step of forming a film at a substrate temperature of 700 to 770 ° C. of the single crystal substrate .

削除Delete

本発明によれば、BaCan−1Cu2n(O1−x(ただし、nは2≦n≦5の整数、xは0<x<1の数)からなる酸化物超伝導薄膜であって、SrTiO又はMgOの単結晶基板の(100)面、(010)面又は(001)面のうちのいずれかの面上に形成された構成であるから、I4/mmmで表される体心正方格子の結晶構造を有し、優れた超伝導特性を有するBa−Ca−Cu−O−F系酸化物超伝導体の薄膜を提供できる。 According to the present invention, Ba 2 Ca n-1 Cu n O 2n (O 1-x F x) 2 ( where, n is an integer of 2 ≦ n ≦ 5, x is 0 <x <number 1) consisting of Since the oxide superconducting thin film is formed on any one of the (100) plane, (010) plane, and (001) plane of the single crystal substrate of SrTiO 3 or MgO, I It is possible to provide a Ba—Ca—Cu—O—F-based oxide superconductor thin film having a crystal structure of a body-centered tetragonal lattice expressed by 4 / mmm and having excellent superconducting properties.

また、パルスレーザーデポジション法により形成された構成であるから、優れた超伝導特性を有するBa−Ca−Cu−O−F系酸化物超伝導体の薄膜を容易に得ることができる。 Moreover, since it is the structure formed by the pulse laser deposition method, the thin film of the Ba-Ca-Cu-OF-type oxide superconductor which has the outstanding superconducting characteristic can be obtained easily.

また、前記パルスレーザーデポジション法による形成は、前記単結晶基板の基板温度が700℃〜770℃で行われた構成であるから、I4/mmmで表される体心正方格子の結晶構造を有するBa−Ca−Cu−O−F系酸化物超伝導体の薄膜を再現性高く得ることができる。 In addition, since the formation by the pulse laser deposition method is a configuration in which the substrate temperature of the single crystal substrate is 700 ° C. to 770 ° C., the crystal structure of the body-centered square lattice represented by I 4 / mmm is obtained. It is possible to obtain a thin film of the Ba—Ca—Cu—O—F-based oxide superconductor having high reproducibility.

また、SrTiO又はMgOの単結晶基板の(100)面、(010)面又は(001)面のうちのいずれかの面上にBaCan−1Cu2n(O1−x(ただし、nは2≦n≦5の整数、xは0<x<1の数)からなる酸化物超伝導薄膜を、パルスレーザーデポジション法により成膜する酸化物超伝導薄膜の製造方法であって、前記単結晶基板の基板温度が700℃〜770℃で成膜する成膜工程を含む構成であるから、I4/mmmで表される体心正方格子の結晶構造を有し、優れた超伝導特性を有するBa−Ca−Cu−O−F系酸化物超伝導体の薄膜の製造方法を提供できる。 Further, (100) plane of the single crystal substrate of SrTiO 3 or MgO, (010) Ba 2 Ca n-1 on either side of the plane or the (001) plane Cu n O 2n (O 1- x F x ) 2 (wherein n is an integer of 2 ≦ n ≦ 5 and x is a number of 0 <x <1), an oxide superconducting thin film is formed by a pulse laser deposition method. Since the manufacturing method includes a film forming process in which the single crystal substrate has a substrate temperature of 700 ° C. to 770 ° C., it has a body-centered square lattice crystal structure represented by I 4 / mmm. And the manufacturing method of the thin film of the Ba-Ca-Cu-OF-type oxide superconductor which has the outstanding superconducting characteristic can be provided.

本実施形態の酸化物超伝導体の結晶構造例を説明する概略図である。It is the schematic explaining the crystal structure example of the oxide superconductor of this embodiment. 本実施形態の薄膜製造装置の概略構成図である。It is a schematic block diagram of the thin film manufacturing apparatus of this embodiment. 本実施形態の酸化物超伝導薄膜例を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the example of the oxide superconducting thin film of this embodiment. 本実施形態における酸化物超伝導薄膜のXRD回折パターン例を示す図である。It is a figure which shows the XRD diffraction pattern example of the oxide superconducting thin film in this embodiment. 本実施形態における酸化物超伝導薄膜のXRD回折パターン例を示す図である。It is a figure which shows the XRD diffraction pattern example of the oxide superconducting thin film in this embodiment. 参考例における酸化物薄膜の磁気特性の温度依存性を示す図である。It is a figure which shows the temperature dependence of the magnetic characteristic of the oxide thin film in a reference example. 本実施形態における酸化物超伝導薄膜の磁気特性の温度依存性を示す図である。It is a figure which shows the temperature dependence of the magnetic characteristic of the oxide superconducting thin film in this embodiment.

以下、本発明の好適な実施形態の例について、図を用いて説明する。
まず、本実施形態の酸化物超伝導薄膜は、化学式がBaCan−1Cu2n(O1−xで表され、nが2≦n≦5の範囲の整数で、xが0<x<1の範囲の数からなる組成を有する酸化物超伝導体の薄膜で形成される。
この酸化物超伝導体1は、図1に示すように、I4/mmmで表される体心正方格子を組む結晶構造を有する。図1において、●はBa原子、ハッチングが施された○はCu原子、◎はCa原子、○はO(酸素)原子又はF原子をそれぞれ示す。また、鎖線が施された○は、後述するピラミッドの頂点位置の原子を示す。なお、図1において、符号a,符号b,符号cは、本実施形態の酸化物超伝導体1における結晶軸をそれぞれ示し、互いに直交する。
本実施形態の酸化物超伝導体の構造上の主な特徴は、図1において符号2で示すようにCu原子の周囲のO原子がピラミッド状に配位しており、このピラミッドの頂点位置のO原子3がF原子に置換されたものを含む点である。
Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to the drawings.
First, an oxide superconductor thin film of the present embodiment, the chemical formula represented by Ba 2 Ca n-1 Cu n O 2n (O 1-x F x) 2, n is an integer ranging from 2 ≦ n ≦ 5 , X is a thin film of an oxide superconductor having a composition having a number in the range of 0 <x <1.
As shown in FIG. 1, the oxide superconductor 1 has a crystal structure that forms a body-centered square lattice expressed by I 4 / mmm . In FIG. 1, ● represents a Ba atom, hatched ◯ represents a Cu atom, 、 represents a Ca atom, and ◯ represents an O (oxygen) atom or an F atom. A circle with a chain line indicates an atom at the apex position of a pyramid described later. In FIG. 1, reference symbols a, b, and c indicate crystal axes in the oxide superconductor 1 of the present embodiment, and are orthogonal to each other.
The main structural features of the oxide superconductor of this embodiment are as follows. As shown by reference numeral 2 in FIG. 1, O atoms around Cu atoms are coordinated in a pyramid shape. This includes points in which the O atom 3 is substituted with an F atom.

以下、説明の便宜のために上記化学式を簡略化し、n=2の場合を「Ba−0212」、n=3の場合を「Ba−0223」、n=4の場合を「Ba−0234」、n=5の場合を「Ba−0245」とそれぞれ表すことがある。 Hereinafter, for convenience of explanation, the above chemical formula is simplified, “Ba-0212” when n = 2, “Ba-0223” when n = 3, “Ba-0234” when n = 4, The case where n = 5 may be represented as “Ba-0245”.

本実施形態の酸化物超伝導薄膜10は、図3に示すように、例えばSrTiOの単結晶基板17の(100)面31上に成膜される。このように単結晶基板17をSrTiOの単結晶とし、しかもその(100)面31上に成膜するのは、SrTiOの単結晶の(100)面の格子定数が、本実施形態の酸化物超伝導体1の格子定数に近いからである。より詳しくは、本実施形態の酸化物超伝導薄膜10のa軸とb軸の格子定数がSrTiOの単結晶基板17のb軸及びc軸の格子定数に近いためである。
なお、本実施形態の単結晶基板17の形状は、例えば1辺の長さが10mmの略正方形の薄板状に形成される。
なお、単結晶基板は、本実施形態のSrTiOに限るものではなく、本実施形態の酸化物超伝導体1の格子定数に近い格子定数を有する結晶面を備えるMgOからなる単結晶基板であってもよい。また、酸化物超伝導薄膜は、本実施形態における(100)面上に形成された薄膜に限るものではなく、(010)面上或いは(001)面上であってもよい。SrTiO及びMgOの結晶構造が立方晶を有するからである。
As shown in FIG. 3, the oxide superconducting thin film 10 of the present embodiment is formed on the (100) surface 31 of the single crystal substrate 17 of SrTiO 3 , for example. The single crystal substrate 17 is made of SrTiO 3 single crystal and deposited on the (100) plane 31 because the lattice constant of the (100) plane of the single crystal of SrTiO 3 depends on the oxidation of this embodiment. This is because it is close to the lattice constant of the physical superconductor 1. More specifically, this is because the a-axis and b-axis lattice constants of the oxide superconducting thin film 10 of this embodiment are close to the b-axis and c-axis lattice constants of the SrTiO 3 single crystal substrate 17.
In addition, the shape of the single crystal substrate 17 of this embodiment is formed in the shape of a substantially square thin plate having a side length of 10 mm, for example.
Note that the single crystal substrate is not limited to SrTiO 3 of this embodiment, and is a single crystal substrate made of MgO having a crystal plane having a lattice constant close to that of the oxide superconductor 1 of this embodiment. May be. The oxide superconducting thin film is not limited to the thin film formed on the (100) plane in this embodiment, and may be on the (010) plane or the (001) plane. This is because the crystal structure of SrTiO 3 and MgO has cubic crystals.

本実施形態の酸化物超伝導薄膜10は、公知のパルスレーザーデポジション(Pulsed Laser Deposition)法(以下「PLD法」という。)により成膜される。
ここで、PLD法について図2を用いて簡単に説明する。図2は、後述する薄膜製造装置20の概略構成図である。
PLD法は、図2に示すように、集光されたパルスレーザーLを後述するターゲット16に照射することによりターゲット16表面を超高温化(例えば〜数千度)し、固体原料(ターゲット16)を気化させて基板上(本実施形態の場合は単結晶基板17)に薄膜として堆積させる方法である。なお図2において、符号Pは、高温化されたターゲット16の表面から気化して放出される粒子が、プルームPと呼ばれるプラズマ状の発光体となっている様子を示している。
The oxide superconducting thin film 10 of this embodiment is formed by a known pulsed laser deposition method (hereinafter referred to as “PLD method”).
Here, the PLD method will be briefly described with reference to FIG. FIG. 2 is a schematic configuration diagram of a thin film manufacturing apparatus 20 described later.
As shown in FIG. 2, the PLD method irradiates a focused pulse laser L onto a target 16 (to be described later) to raise the surface of the target 16 to an extremely high temperature (for example, up to several thousand degrees), thereby producing a solid material (target 16). Is vaporized and deposited as a thin film on the substrate (in the present embodiment, the single crystal substrate 17). In FIG. 2, reference symbol P indicates that particles emitted from the surface of the target 16 that has been heated to become a plasma-like light emitter called plume P.

次に、本実施形態で用いられる薄膜製造装置20について図2を用いて説明する。
薄膜製造装置20は、図2に示すように、真空チャンバー12、パルスレーザー照射部14、単結晶基板17を支持する基板支持部18、基板を加熱する基板加熱部21、酸素圧調整手段15、結晶解析手段(図示しない)等を備える。
真空チャンバー12は、図2に示すように、密閉状の容器からなり、その中に後述する単結晶基板17及びターゲット16等を収納する。そして、真空チャンバー12は、例えば公知のターボポンプ、ロータリーポンプや圧力調節弁等からなるチャンバー内圧力調整手段(それぞれ図示しない)に連結され、真空チャンバー12内の圧力が調整可能に構成される。
Next, the thin film manufacturing apparatus 20 used in this embodiment will be described with reference to FIG.
As shown in FIG. 2, the thin film manufacturing apparatus 20 includes a vacuum chamber 12, a pulse laser irradiation unit 14, a substrate support unit 18 that supports the single crystal substrate 17, a substrate heating unit 21 that heats the substrate, an oxygen pressure adjusting unit 15, Crystal analysis means (not shown) and the like are provided.
As shown in FIG. 2, the vacuum chamber 12 is formed of a hermetically sealed container, in which a single crystal substrate 17 and a target 16 described later are accommodated. The vacuum chamber 12 is connected to chamber pressure adjusting means (each not shown) including, for example, a known turbo pump, rotary pump, pressure control valve, and the like, so that the pressure in the vacuum chamber 12 can be adjusted.

次に、酸素圧調整手段15は、例えば酸素導入管やマスフローコントローラ等で構成され、真空チャンバー12の酸素圧を調整可能な構成となっている。なお、本実施形態において真空チャンバー12内に導入される酸素ガスは99.999%以上の純度を有する酸素ガスを用いた。 Next, the oxygen pressure adjusting means 15 is constituted by, for example, an oxygen introduction pipe, a mass flow controller, or the like, and can adjust the oxygen pressure of the vacuum chamber 12. In this embodiment, the oxygen gas introduced into the vacuum chamber 12 is an oxygen gas having a purity of 99.999% or more.

次に、基板支持部18は、単結晶基板17を保持する基板ホルダ25、熱吸収板23を備える。
この熱吸収板23は、例えば一辺が9mmの略正方形でインコネル製の薄板材からなり、図2に示すように、単結晶基板17の裏面に密着状に接触させて配置される。
次に、基板ホルダ25は、例えばインコネル製の枠部材を含み、図2に示すように、その枠内に単結晶基板17を例えば水平状態で保持する。
なお、本実施形態の薄膜製造装置20は、例えばステッピングモーター等の基板ホルダ25を回転させる回転機構を備え、単結晶基板17の中央部を垂直方向に貫通する軸を中心にして例えば矢印M(図2参照)の方向に単結晶基板17を回転させる。
Next, the substrate support portion 18 includes a substrate holder 25 that holds the single crystal substrate 17 and a heat absorption plate 23.
The heat absorption plate 23 is made of, for example, a thin plate material made of Inconel having a substantially square shape with a side of 9 mm, and is disposed in close contact with the back surface of the single crystal substrate 17 as shown in FIG.
Next, the substrate holder 25 includes an Inconel frame member, for example, and holds the single crystal substrate 17 in the frame in a horizontal state, for example, as shown in FIG.
The thin film manufacturing apparatus 20 of the present embodiment includes a rotation mechanism that rotates a substrate holder 25 such as a stepping motor, for example, and an arrow M (for example, centering on an axis penetrating the central portion of the single crystal substrate 17 in the vertical direction. The single crystal substrate 17 is rotated in the direction of FIG.

次に、基板加熱部21は、図2に示すように、公知のハロゲンランプヒータ22、ハロゲンランプヒータ22からの熱を反射させる反射板24やこのハロゲンランプヒータの温度を制御する温度制御手段(図示しない)を備える。
そして、図2に示すように、ハロゲンランプヒータ22及び反射板24は、熱吸収板23の裏面からやや離隔させた位置に配置され、熱吸収板23及び単結晶基板17を加熱する。このように、基板加熱部21は、熱吸収板23を介して単結晶基板17の温度、すなわち基板温度を制御可能な構成となっている。なお、本実施形態において前記基板温度は、熱吸収板23の裏面から垂直方向に略7〜8mm離隔した位置における温度を示し、以後、基板温度Tsと表わす。
Next, as shown in FIG. 2, the substrate heating unit 21 includes a known halogen lamp heater 22, a reflector 24 that reflects the heat from the halogen lamp heater 22, and a temperature control means that controls the temperature of the halogen lamp heater ( (Not shown).
As shown in FIG. 2, the halogen lamp heater 22 and the reflection plate 24 are arranged at a position slightly separated from the back surface of the heat absorption plate 23 to heat the heat absorption plate 23 and the single crystal substrate 17. Thus, the substrate heating unit 21 is configured to be able to control the temperature of the single crystal substrate 17, that is, the substrate temperature via the heat absorption plate 23. In the present embodiment, the substrate temperature is a temperature at a position approximately 7 to 8 mm apart from the back surface of the heat absorbing plate 23 in the vertical direction, and is hereinafter referred to as a substrate temperature Ts.

さらに、例えば円板状のターゲット16が、図2に示すように、単結晶基板17に対向する真空チャンバー12内の所定位置に配置されてターゲットホルダー26で保持される。
なお、薄膜製造装置20は、ターゲットホルダー26を回転させる例えばステッピングモーター等の回転手段を備え、この回転手段によりターゲット16の中央部を垂直方向に貫通する軸を中心にして例えば矢印Mと逆の方向N(図2参照)に単結晶基板17を回転させる。
Further, for example, a disk-shaped target 16 is disposed at a predetermined position in the vacuum chamber 12 facing the single crystal substrate 17 and held by a target holder 26 as shown in FIG.
The thin film manufacturing apparatus 20 includes a rotating means such as a stepping motor for rotating the target holder 26, and the rotating means is opposite to the arrow M, for example, about an axis that penetrates the center of the target 16 in the vertical direction. The single crystal substrate 17 is rotated in the direction N (see FIG. 2).

次に、パルスレーザー照射部14は、例えばNd・YAGレーザー光をパルス状に発するパルスレーザー光源を備える。そして、パルスレーザー照射部14は、図2に示すように、例えば真空チャンバー12の窓から、Nd・YAGレーザー光からなるパルスレーザーLをターゲット16に照射する。このパルスレーザーをターゲット16に照射することで上述したプルームPが放出される。なお、レーザー光は、本実施形態のNd・YAGレーザー光に限るものではなく、例えばフッ化クリプトンを用いたエキシマレーザであってもよい。 Next, the pulse laser irradiation unit 14 includes, for example, a pulse laser light source that emits Nd / YAG laser light in a pulse shape. Then, as shown in FIG. 2, the pulse laser irradiation unit 14 irradiates the target 16 with a pulse laser L made of Nd · YAG laser light, for example, from the window of the vacuum chamber 12. The plume P described above is emitted by irradiating the target 16 with this pulse laser. The laser beam is not limited to the Nd / YAG laser beam of the present embodiment, and may be an excimer laser using krypton fluoride, for example.

また、薄膜製造装置20は、プルームP中の粒子が単結晶基板17に到達することを遮蔽するシャッター(図示しない)を備え、当該シャッターを開くことによりエピタキシャル成長を開始できる構成となっている。 Further, the thin film manufacturing apparatus 20 includes a shutter (not shown) that blocks particles in the plume P from reaching the single crystal substrate 17 and is configured to start epitaxial growth by opening the shutter.

さらに、本実施形態の結晶解析手段はRHEED(Reflection High Energy Erectron Diffractio)よりなり、電子線を試料表面に浅い角度で入射させ、表面原子によって回折された電子線に基づいて結晶の状態を解析できる構成となっている。 Further, the crystal analysis means of the present embodiment is composed of RHEED (Reflection High Energy Electron Diffraction), which allows an electron beam to be incident on the sample surface at a shallow angle and analyze the crystal state based on the electron beam diffracted by surface atoms. It has a configuration.

本実施形態の薄膜製造装置20による成膜は、例えば真空チャンバー12内の真空度を調整し、次に基板加熱部21により基板温度Tsを調節し、次に酸素圧調整手段15により真空チャンバー12内の酸素圧を10〜20Pa(パスカル)に調整し、そしてパルスレーザーLをターゲット16に照射してプルームPを放出させ、単結晶基板17及びターゲット16を反対方向に回転させつつ単結晶基板17上にターゲット16成分を堆積させることにより行われる。 In the film formation by the thin film manufacturing apparatus 20 of the present embodiment, for example, the degree of vacuum in the vacuum chamber 12 is adjusted, then the substrate temperature Ts is adjusted by the substrate heating unit 21, and then the vacuum chamber 12 is adjusted by the oxygen pressure adjusting means 15. The internal oxygen pressure is adjusted to 10 to 20 Pa (Pascal), and the target 16 is irradiated with the pulse laser L to release the plume P, and the single crystal substrate 17 and the target 16 are rotated in the opposite directions while the single crystal substrate 17 is rotated. This is done by depositing a target 16 component thereon.

次に本実施形態のターゲット16は、直接法により作製され、例えば円盤状に成形される。
直接法によれば、例えばCaCOとCuOとを、Ca:Cu=2:1のモル比となるように混合し、酸素気流中で加熱(1000℃で12時間加熱し、もう一度粉砕してさらに1000℃で12時間加熱)しCaCuOを作製する。このCaCuO、CaF、BaF、CuO、BaOの粉末を、Ba:Ca:Cu:F=2:n−1:n:2x(整数nが2≦n≦5,xが0< x <1)のモル比となるように例えばグローブボックス内(BaとF、Oの化合物以外の化合物による不純物の生成を抑制可能な、例えば窒素ガス雰囲気内)で混合し、さらにこの混合粉を酸素雰囲気で仮焼きし(850〜880℃、12時間程度)、その仮焼きしたものを粉砕してプレス成型する。そして、そのプレス成型したものを焼結(880〜920℃で12時間程度保持し、その後徐冷)することにより形成できる。
Next, the target 16 of the present embodiment is produced by a direct method, and is formed into a disk shape, for example.
According to the direct method, for example, CaCO 3 and CuO are mixed at a molar ratio of Ca: Cu = 2: 1, heated in an oxygen stream (heated at 1000 ° C. for 12 hours, pulverized once more, and further Ca 2 CuO 3 is produced by heating at 1000 ° C. for 12 hours). The powders of Ca 2 CuO 3 , CaF 2 , BaF 2 , CuO, and BaO 2 are expressed as Ba: Ca: Cu: F = 2: n-1: n: 2x (integer n is 2 ≦ n ≦ 5, x is 0) <x <1) is mixed in a glove box (for example, in a nitrogen gas atmosphere that can suppress the generation of impurities by compounds other than Ba, F, and O, for example), and this mixed powder Is calcined in an oxygen atmosphere (850 to 880 ° C., about 12 hours), and the calcined product is pulverized and press-molded. And it can form by sintering (it hold | maintains at 880-920 degreeC for about 12 hours, and then gradually cools) the press-molded thing.

なお、ターゲットは直接法によるものに限らず、例えば前駆体法によって作製されてもよい。この前駆体法によれば、直接法と同様のCaCuOの粉末とBaO、CaCO、CuOをBa:Ca:Cu=2:2:3に混合して、酸素気流中で加熱しBaCaCuとした前駆体を、Ba:Ca:Cu:F=2:n−1:n:2x(整数nが2≦n≦5,xが0< x <1)のモル比となるように例えば上述したグローブボックス内で混合し、この混合粉をプレス成型し、酸素雰囲気で焼結(800〜925℃、24時間程度)することにより形成できる. Note that the target is not limited to the direct method, and may be prepared by a precursor method, for example. According to this precursor method, the same Ca 2 CuO 3 powder and BaO 2 , CaCO 3 and CuO as in the direct method are mixed in Ba: Ca: Cu = 2: 2: 3 and heated in an oxygen stream. The precursor Ba 2 Ca 2 Cu 3 O Y is Ba: Ca: Cu: F = 2: n-1: n: 2x (integer n is 2 ≦ n ≦ 5, x is 0 <x <1). It can be formed by mixing in the above-mentioned glove box so as to have a molar ratio, press-molding this mixed powder, and sintering (800 to 925 ° C., about 24 hours) in an oxygen atmosphere.

以下に、本実施形態の酸化物超伝導薄膜10の実施例、参考例及び比較例について説明する。
以下の実施例、参考例及び比較例において、まず、ターゲット16は、上述したように直接法により作製した。
その際、上述したCaCuO、CaF、BaF、CuO、BaOの粉末を、Ba:Ca:Cu:F=2:2:3:1.6のモル比となるように、すなわちBaCan−1Cu2n(O1−xの整数n=3、x=0.8となるように混合した。
Below, the Example of the oxide superconducting thin film 10 of this embodiment, a reference example, and a comparative example are demonstrated.
In the following examples, reference examples, and comparative examples, first, the target 16 was produced by a direct method as described above.
At that time, the above-mentioned Ca 2 CuO 3 , CaF 2 , BaF 2 , CuO, BaO 2 powders are made to have a molar ratio of Ba: Ca: Cu: F = 2: 2: 3: 1.6, that is, Ba 2 Ca n-1 Cu n O 2n (O 1-x F x) 2 integer n = 3, were mixed such that x = 0.8.

次に、以下の実施例、参考例及び比較例の成膜は、パスカル社製のスタンダードPLD装置を用いて行った。その際、ターゲット16に照射する照射レーザーは、上述したNd・YAGレーザー光で波長が266nm(Nd・YAG4倍波)のレーザー光を用いた。そして、パルスレーザーLの照射条件は、ビーム径を8mmφ、パルス幅2ns以下、ショット周波数10Hz及び下記フルエンスとした。
上記フルエンスは、真空チャンバー12のレーザー用ビューポートに入射する前に設置されたフォーカスレンズの直前の計測値で、59.68×10−3〜97.48×10−3J/cmの範囲のフルエンスとした。典型的には、59.68×10−3J/cmとした。前記フルエンスの範囲は、レーザー用ビューポートにおけるレーザー光の透過率を90%として、ターゲット16表面で換算した場合、略3.0〜6.0J/cmとなる。また、前記59.68×10−3J/cmは、同様にしてターゲット16表面で換算した場合、3.44J/cmとなる。
また、以下の実施例、参考例及び比較例において、パルスレーザーLをターゲット16に照射する時間を略30分とし、単結晶基板17上に略60nmの各成膜サンプルが得られた。
Next, film formation in the following examples, reference examples, and comparative examples was performed using a standard PLD apparatus manufactured by Pascal. At that time, the irradiation laser used to irradiate the target 16 was the above-described Nd / YAG laser light having a wavelength of 266 nm (Nd / YAG fourth harmonic). The irradiation conditions of the pulse laser L were such that the beam diameter was 8 mmφ, the pulse width was 2 ns or less, the shot frequency was 10 Hz, and the following fluence.
The fluence is a measurement value immediately before the focus lens installed before entering the laser viewport of the vacuum chamber 12, and ranges from 59.68 × 10 −3 to 97.48 × 10 −3 J / cm 2 . Of fluence. Typically, it was 59.68 × 10 −3 J / cm 2 . The range of the fluence is approximately 3.0 to 6.0 J / cm 2 when converted on the surface of the target 16 with the transmittance of the laser light in the laser viewport being 90%. The 59.68 × 10 −3 J / cm 2 is 3.44 J / cm 2 when converted in the same manner on the surface of the target 16.
Further, in the following examples, reference examples, and comparative examples, the time for irradiating the target 16 with the pulse laser L was about 30 minutes, and each film formation sample of about 60 nm was obtained on the single crystal substrate 17.

以下に実施例1〜4及び参考例について説明する。
[実施例1]
基板温度Tsを略770℃に調整し、真空チャンバー12内の酸素圧を10Paに調整して成膜サンプルを得た。
[実施例2]
基板温度Tsを略750℃に調整し、真空チャンバー12内の酸素圧を10Paに調整して成膜サンプルを得た。
[実施例3]
基板温度Tsを略700℃に調整し、真空チャンバー12内の酸素圧を10Paに調整して成膜サンプルを得た。
[実施例4]
基板温度Tsを略750℃に調整し、真空チャンバー12内の酸素圧を略17Paに調整して成膜サンプルを得た。以下、本成膜サンプルをP254という。
[参考例]
基板温度Tsを略750℃に調整し、真空チャンバー12内の酸素圧を略15Paに調整して成膜サンプルを得た。以下、本成膜サンプルをP253という。
Examples 1-4 and reference examples will be described below.
[Example 1]
The substrate temperature Ts was adjusted to approximately 770 ° C., and the oxygen pressure in the vacuum chamber 12 was adjusted to 10 Pa to obtain a film formation sample.
[Example 2]
The substrate temperature Ts was adjusted to approximately 750 ° C., and the oxygen pressure in the vacuum chamber 12 was adjusted to 10 Pa to obtain a film formation sample.
[Example 3]
The substrate temperature Ts was adjusted to about 700 ° C., and the oxygen pressure in the vacuum chamber 12 was adjusted to 10 Pa to obtain a film formation sample.
[Example 4]
The substrate temperature Ts was adjusted to approximately 750 ° C., and the oxygen pressure in the vacuum chamber 12 was adjusted to approximately 17 Pa to obtain a film formation sample. Hereinafter, this film formation sample is referred to as P254.
[Reference example]
The substrate temperature Ts was adjusted to approximately 750 ° C., and the oxygen pressure in the vacuum chamber 12 was adjusted to approximately 15 Pa to obtain a film formation sample. Hereinafter, this film formation sample is referred to as P253.

以下に比較例について説明する。
[比較例1]
基板温度Tsを略800℃に調整し、真空チャンバー12内の酸素圧を略10Paに調整して成膜サンプルを得た。
[比較例2]
基板温度Tsを略650℃に調整し、真空チャンバー12内の酸素圧を略10Paに調整して成膜サンプルを得た。
A comparative example will be described below.
[Comparative Example 1]
The substrate temperature Ts was adjusted to about 800 ° C., and the oxygen pressure in the vacuum chamber 12 was adjusted to about 10 Pa to obtain a film formation sample.
[Comparative Example 2]
The substrate temperature Ts was adjusted to approximately 650 ° C., and the oxygen pressure in the vacuum chamber 12 was adjusted to approximately 10 Pa to obtain a film formation sample.

〔評価結果〕
以上のように形成された実施例1〜4、参考例並びに比較例1及び2の結晶性評価結果について図4及び図5を用いて説明する。
図4は、実施例1〜3、並びに比較例1及び2のXRD測定の結果を示すグラフである。図中、グラフAは比較例1の成膜サンプル、グラフBは実施例1の成膜サンプル、グラフCは実施例2の成膜サンプル、グラフDは実施例3の成膜サンプル、グラフEは比較例2の成膜サンプルの測定結果にそれぞれ対応する。また、図5(a)は、サンプルP253のXRD測定の結果を示すグラフであり、図5(b)は、サンプルP254のXRD測定の結果を示すグラフである。なお、図4及び図5において、●はBa−0223の結晶構造、すなわちI4/mmmで表される体心正方格子において現われるピーク位置を示している。
〔Evaluation results〕
The crystallinity evaluation results of Examples 1 to 4, Reference Example and Comparative Examples 1 and 2 formed as described above will be described with reference to FIGS.
FIG. 4 is a graph showing the results of XRD measurement of Examples 1 to 3 and Comparative Examples 1 and 2. In the figure, graph A is a film formation sample of Comparative Example 1, graph B is a film formation sample of Example 1, graph C is a film formation sample of Example 2, graph D is a film formation sample of Example 3, graph E is Each corresponds to the measurement result of the film formation sample of Comparative Example 2. FIG. 5A is a graph showing the result of the XRD measurement of the sample P253, and FIG. 5B is a graph showing the result of the XRD measurement of the sample P254. In FIGS. 4 and 5, the black circles indicate the crystal structure of Ba-0223, that is, the peak positions appearing in the body-centered square lattice represented by I 4 / mmm .

図4によれば、実施例1〜3の成膜サンプルから得られる回折ピークは、Ba−0223の結晶構造において現われるピーク位置と極めてよく一致している。このように、Tsが700℃〜770℃の範囲で得られた成膜サンプルの結晶構造は、Ba−0223の結晶として良好な結晶構造を示していることが解かる。
ところが、比較例1及び2から得られる成膜サンプルの回折ピークは、Ba−0223の結晶構造において現われるピークと一致するピークがほとんどみられない。このように、Tsが770℃を越える温度例えば800℃や、700℃を下回る温度例えば650℃の場合は、Ba−0223の結晶として良好な結晶構造が得られていないことが解かる。
このように、本実施形態の酸化物超伝導薄膜の製造方法は、単結晶基板17の基板温度Tsが700℃〜770℃で成膜する成膜工程を含む構成となっているのである。
According to FIG. 4, the diffraction peaks obtained from the film formation samples of Examples 1 to 3 agree very well with the peak positions appearing in the crystal structure of Ba-0223. Thus, it can be understood that the crystal structure of the film formation sample obtained in the range of Ts of 700 ° C. to 770 ° C. shows a good crystal structure as a Ba-0223 crystal.
However, the diffraction peaks of the film formation samples obtained from Comparative Examples 1 and 2 hardly show a peak that matches the peak appearing in the crystal structure of Ba-0223. Thus, it can be seen that when Ts exceeds 770 ° C., for example, 800 ° C., or below 700 ° C., for example, 650 ° C., a good crystal structure is not obtained as a Ba-0223 crystal.
As described above, the manufacturing method of the oxide superconducting thin film according to the present embodiment includes a film forming process in which the film temperature Ts of the single crystal substrate 17 is 700 ° C. to 770 ° C.

次に、図5(a)及び図5(b)によれば、P253及びP254の双方ともBa−0223の回折ピーク位置に対応する位置にそれぞれの回折ピークを観測できており、双方ともBa−0223の結晶構造が良好に形成されていることがわかる。 Next, according to FIG. 5 (a) and FIG. 5 (b), both P253 and P254 have observed their respective diffraction peaks at positions corresponding to the diffraction peak positions of Ba-0223, both of which are Ba−. It can be seen that the crystal structure 0223 is well formed.

次に、図6及び図7を用いて、P253及びP254の磁気特性評価結果について説明する。この磁気特性の測定は、カンタムデザイン社製のPPMS(Phisical Property Measurement System)を用いて行った。
図6(a)は、上述したP253の磁化率(Magnetization)の特性であり、図6(b)は、P253の抵抗率(Resistivity)の特性である。また、図7(a)は、P254磁化率の特性であり、図7(b)は、P254の抵抗率の特性である。
図6(a)及び図7(a)において横軸は温度(K)を示し、縦軸は磁化率(emu)を示す。また、図6(b)及び図7(b)において横軸は温度(K)を示し、縦軸は抵抗率(mΩ―cm)を示す。
Next, the magnetic characteristic evaluation results of P253 and P254 will be described with reference to FIGS. This magnetic property was measured using PPMS (Physical Property Measurement System) manufactured by Quantum Design.
FIG. 6A shows the magnetic susceptibility (magnetization) characteristics of P253 described above, and FIG. 6B shows the resistivity (resistivity) characteristics of P253. FIG. 7A shows the characteristics of P254 magnetic susceptibility, and FIG. 7B shows the characteristics of resistivity of P254.
6A and 7A, the horizontal axis represents temperature (K), and the vertical axis represents magnetic susceptibility (emu). 6B and 7B, the horizontal axis represents temperature (K), and the vertical axis represents resistivity (mΩ-cm).

また、図6(a)及び図7(a)においてFC(Field cooled)と付された測定値は、約4mm角の成膜サンプルに垂直(すなわち前記(100)面に垂直)に5Oeの外部磁場を掛けて冷却した場合の測定結果である。また、前記図中においてZFC(Zero−Field cooled)と付された測定値は、約4mm角の成膜サンプルをゼロ磁場下で冷却後、当該成膜サンプルに垂直(すなわち前記(100)面に垂直)に5Oeの外部磁場を掛けた場合の測定結果である。
また、図6(b)及び図7(b)は、四探針法により略4mm角の成膜サンプルに0.0001mAの電流を流して得られた抵抗率の測定値である。
In addition, in FIG. 6 (a) and FIG. 7 (a), the measured value labeled FC (Field cooled) is 5Oe outside perpendicular to the film sample of about 4 mm square (that is, perpendicular to the (100) plane). It is a measurement result at the time of cooling by applying a magnetic field. In the figure, the measured value denoted as ZFC (Zero-Field cooled) is obtained by cooling an approximately 4 mm square film formation sample in a zero magnetic field and then perpendicular to the film formation sample (that is, on the (100) plane). This is a measurement result when an external magnetic field of 5 Oe is applied to (vertical).
FIGS. 6B and 7B are measured resistivity values obtained by applying a current of 0.0001 mA to a film sample of approximately 4 mm square by the four-probe method.

図7(b)によれば、P254の抵抗値が、90Kを境にして大きく低下していることがわかる。また、図7(a)によれば、P254の特にZFCにおける磁化率が、90Kを境に変化したことがわかる。このことから、P254は、常伝導から超伝導への臨界温度Tcが90Kである超伝導体であることがわかった。このように、P254によれば、バルクと同程度の高い臨界温度Tcを有するBa−Ca−Cu−O−F系酸化物超伝導体の薄膜を得ることができた。 According to FIG. 7B, it can be seen that the resistance value of P254 greatly decreases at 90K as a boundary. Further, according to FIG. 7A, it can be seen that the magnetic susceptibility of P254, particularly in ZFC, has changed from 90K. From this, it was found that P254 is a superconductor having a critical temperature Tc from normal to superconductivity of 90K. Thus, according to P254, a thin film of a Ba—Ca—Cu—O—F-based oxide superconductor having a critical temperature Tc as high as that of the bulk could be obtained.

次に、図6(a)によれば、P253のZFCにおける磁化率が、55Kを境に変化しているのがわかるが、図6(b)で明らかなように、抵抗率は温度の低下に伴って上昇している。このことから、P253は、超伝導特性を示さないことがわかった。
この理由は、酸素圧の差により、P253の方がP254に比べて上述した結晶構造における頂点位置のO原子のF原子への置換が不十分な事或いは、P253の方がP254よりも超伝導特性が劣化しやすい事等が考えられる。
Next, according to FIG. 6 (a), it can be seen that the magnetic susceptibility of P253 in ZFC changes at 55K as a boundary, but as shown in FIG. 6 (b), the resistivity decreases with temperature. It rises with. From this, it was found that P253 does not show superconducting properties.
The reason for this is that due to the difference in oxygen pressure, the substitution of O atom at the apex position in the crystal structure described above is insufficient in P253 compared to P254, or P253 is superconductive than P254. It is conceivable that the characteristics are likely to deteriorate.

これまで説明してきたように、本実施形態の酸化物超伝導薄膜10によればバルクと同程度の高い臨界温度Tcを有するBa−Ca−Cu−O−F系酸化物超伝導体の薄膜を提供できる。また、本実施形態の酸化物超伝導薄膜の製造方法によれば、バルクと同程度の高い臨界温度Tcを有するBa−Ca−Cu−O−F系酸化物超伝導体の薄膜の製造方法を提供できる。 As described so far, according to the oxide superconducting thin film 10 of the present embodiment, a Ba—Ca—Cu—O—F-based oxide superconductor thin film having a critical temperature Tc as high as that of the bulk is obtained. Can be provided. Moreover, according to the manufacturing method of the oxide superconducting thin film of this embodiment, the manufacturing method of the thin film of the Ba-Ca-Cu-OF-based oxide superconductor having a critical temperature Tc as high as that of the bulk is provided. Can be provided.

以上、本発明の実施形態のうちいくつかを図面に基づいて詳細に説明したが、これらはあくまでも例示であり、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。 As described above, some of the embodiments of the present invention have been described in detail with reference to the drawings. However, these are merely examples, and the present invention is variously modified and improved based on the knowledge of those skilled in the art. Can be implemented.

10 酸化物超伝導薄膜
17 単結晶基板
20 薄膜製造装置
31 (100)面
Ts 基板温度

10 Oxide Superconducting Thin Film 17 Single Crystal Substrate 20 Thin Film Manufacturing Device 31 (100) Plane Ts Substrate Temperature

Claims (3)

BaCan−1Cu2n(O1−x(ただし、nは2≦n≦5の整数、xは0<x<1の数)からなる酸化物超伝導薄膜であって、
SrTiO又はMgOの単結晶基板の(100)面、(010)面又は(001)面のうちのいずれかの面上に形成されたことを特徴とする酸化物超伝導薄膜。
An oxide superconducting thin film made of Ba 2 C n-1 C n O 2n (O 1-x F x ) 2 (where n is an integer of 2 ≦ n ≦ 5 and x is a number of 0 <x <1). There,
An oxide superconducting thin film formed on any one of a (100) plane, a (010) plane, and a (001) plane of a SrTiO 3 or MgO single crystal substrate.
SrTiOSrTiO 3 又はMgOの単結晶基板の(100)面、(010)面又は(001)面のうちのいずれかの面上にBaOr Ba on any one of the (100) plane, (010) plane, and (001) plane of the MgO single crystal substrate. 2 CaCa n−1n-1 CuCu n O 2n2n (O(O 1−x1-x F x ) 2 (ただし、nは2≦n≦5の整数、xは0<x<1の数)からなる酸化物超伝導薄膜を、パルスレーザーデポジション法により成膜する酸化物超伝導薄膜の製造方法。A method for producing an oxide superconducting thin film, wherein an oxide superconducting thin film is formed by a pulse laser deposition method (where n is an integer of 2 ≦ n ≦ 5 and x is a number of 0 <x <1). 前記単結晶基板の基板温度が700℃〜770℃で成膜する成膜工程を含むことを特徴とする請求項2記載の酸化物超伝導薄膜の製造方法。The method for producing an oxide superconducting thin film according to claim 2, further comprising a film forming step of forming a film at a substrate temperature of 700 to 770 ° C of the single crystal substrate.
JP2011241738A 2011-11-02 2011-11-02 Oxide superconducting thin film Active JP5846632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011241738A JP5846632B2 (en) 2011-11-02 2011-11-02 Oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011241738A JP5846632B2 (en) 2011-11-02 2011-11-02 Oxide superconducting thin film

Publications (2)

Publication Number Publication Date
JP2013095648A JP2013095648A (en) 2013-05-20
JP5846632B2 true JP5846632B2 (en) 2016-01-20

Family

ID=48617982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011241738A Active JP5846632B2 (en) 2011-11-02 2011-11-02 Oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JP5846632B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164732B2 (en) * 2013-07-16 2017-07-19 国立研究開発法人物質・材料研究機構 BaNiSn3-type crystal structure SrAuSi3

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195419A (en) * 1987-10-07 1989-04-13 Sumitomo Electric Ind Ltd Formation of superconducting thin film
JPH01188420A (en) * 1988-01-22 1989-07-27 Hitachi Ltd Production of oxide superconducting thin film
JP2817259B2 (en) * 1989-09-26 1998-10-30 東レ株式会社 Superconductor
JPH0781934A (en) * 1993-09-10 1995-03-28 Toray Ind Inc Superconductor and production thereof
JP5236542B2 (en) * 2009-03-18 2013-07-17 独立行政法人国立高等専門学校機構 Manufacturing method of oxide superconducting thin film

Also Published As

Publication number Publication date
JP2013095648A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP4083486B2 (en) Method for producing LnCuO (S, Se, Te) single crystal thin film
US7737087B2 (en) Enhanced pinning in YBCO films with BaZrO3 nanoparticles
Khamlich et al. Morphological and crystallographic properties of rare earth oxides coatings deposited by double dual beam-PLD
Ma et al. Pulsed laser deposition for complex oxide thin film and nanostructure
JPH04305016A (en) Alligned superconductive film and epitaxial method of growing said film
TWI811273B (en) Superconducting compounds and methods for making the same
JP5846632B2 (en) Oxide superconducting thin film
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JP2004083933A (en) Crystalline sulfide thin film and its manufacturing method
JP4465461B2 (en) Method for producing perovskite oxide epitaxial thin films
Subedi et al. Pulsed Laser Deposition of Thin Films
Lee et al. Crystallization kinetics of sputter-deposited LaNiO3 thin films on Si substrate
Gupta et al. Thin-film stabilization of metastable phases in the Sm1-xSrxCuOy system
JP4809700B2 (en) YBCO high temperature superconductor film-forming substrate and YBCO high temperature superconductor film production method
Hiramatsu et al. Heteroepitaxial growth of wide gap p-type semiconductors: LnCuOCh (Lr= La, Pr and Nd; Ch= S or Se) by reactive solid-phase epitaxy
Stepantsov et al. Growth of twin-free b-oriented YBa 2 Cu 3 O 7− x films
JP2013136815A (en) Target for laser abrasion, method for manufacturing oxide superconductive wire material using the same, and oxide superconductive wire material
CN111719121B (en) Preparation method of out-of-plane highly-oriented CuFeSb film
JP2979422B2 (en) Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film
JP6043487B2 (en) Method for producing target for superconducting thin film fabrication and method for producing oxide superconducting wire
JP3966068B2 (en) Manufacturing method of oxide-based thermoelectric conversion thin film by laser deposition
JPH05170448A (en) Production of thin ceramic film
TW202316689A (en) Method for producing a solid-state component, solid-state component, quantum component and apparatus for producing a solid-state component
JP4095222B2 (en) Superconducting element and manufacturing method thereof
JPWO2016072476A1 (en) Superconducting wire and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151119

R150 Certificate of patent or registration of utility model

Ref document number: 5846632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250