KR101964167B1 - 여자 돌입 전류 억제 장치 - Google Patents
여자 돌입 전류 억제 장치 Download PDFInfo
- Publication number
- KR101964167B1 KR101964167B1 KR1020127031539A KR20127031539A KR101964167B1 KR 101964167 B1 KR101964167 B1 KR 101964167B1 KR 1020127031539 A KR1020127031539 A KR 1020127031539A KR 20127031539 A KR20127031539 A KR 20127031539A KR 101964167 B1 KR101964167 B1 KR 101964167B1
- Authority
- KR
- South Korea
- Prior art keywords
- phase
- magnetic flux
- effective
- open1
- phase angle
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/59—Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/04—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
- H02H7/045—Differential protection of transformers
- H02H7/0455—Differential protection of transformers taking into account saturation of current transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/04—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/001—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
- H02H9/002—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off limiting inrush current on switching on of inductive loads subjected to remanence, e.g. transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/54—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
- H01H9/56—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
- H01H9/563—Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle for multipolar switches, e.g. different timing for different phases, selecting phase with first zero-crossing
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Protection Of Transformers (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
본 발명은, 3상(相) 변압기의 잔류 자속(磁束)을 양호한 정밀도로 산출할 수 있어, 여자(勵磁) 돌입(突入) 전류를 억제할 수 있는 여자 돌입 전류 억제 장치를 제공하는 것이다.
여자 돌입 전류 억제 장치(10)는, 변압기(23)의 각 상 전압 및 각 상의 계통 전압을 계측하는 전압 계측부(1)와, 각 상 전압의 3상의 모든 순간값이 제로값으로 수렴한 실효 차단 타이밍을 산출하는 실효 차단 타이밍 산출부(2)와, 각 상 전압을 각각 적분하여 변압기(23)의 철심의 각 상의 자속을 산출하는 철심 자속 산출부(3)와, 각 상의 자속 중 실효 차단 타이밍에서의 각 상의 자속을 실효 잔류 자속으로서 상기 각 상의 실효 잔류 자속을 산출하는 실효 잔류 자속 산출부(4)와, 각 상의 실효 잔류 자속에 기초하여, 계통측 차단기(21)에 대한 투입 위상각을 산출하는 투입 위상각 산출부(5)와, 각 상의 계통 전압과 투입 위상각에 기초하여, 계통측 차단기(21)를 투입하는 투입 위상각 제어부(6)를 구비한다.
여자 돌입 전류 억제 장치(10)는, 변압기(23)의 각 상 전압 및 각 상의 계통 전압을 계측하는 전압 계측부(1)와, 각 상 전압의 3상의 모든 순간값이 제로값으로 수렴한 실효 차단 타이밍을 산출하는 실효 차단 타이밍 산출부(2)와, 각 상 전압을 각각 적분하여 변압기(23)의 철심의 각 상의 자속을 산출하는 철심 자속 산출부(3)와, 각 상의 자속 중 실효 차단 타이밍에서의 각 상의 자속을 실효 잔류 자속으로서 상기 각 상의 실효 잔류 자속을 산출하는 실효 잔류 자속 산출부(4)와, 각 상의 실효 잔류 자속에 기초하여, 계통측 차단기(21)에 대한 투입 위상각을 산출하는 투입 위상각 산출부(5)와, 각 상의 계통 전압과 투입 위상각에 기초하여, 계통측 차단기(21)를 투입하는 투입 위상각 제어부(6)를 구비한다.
Description
본 발명은, 3상(相) 변압기 및 전력 계통의 전원(이하, 계통 전원이라고 함) 간에 접속된 차단기(이하, 계통측 차단기라고 함)를 제어하는 여자(勵磁) 돌입(突入) 전류 억제 장치에 관한 것이며, 특히, 3상 변압기를 전력 계통에 병입(倂入)하는 조작 시에 생기는 여자 돌입 전류를 억제할 목적으로, 계통측 차단기의 효과적인 투입 제어를 행하는 여자 돌입 전류 억제 장치에 관한 것이다.
전력 계통으로부터 분리된 상태의 3상 변압기는, 계통측 차단기의 투입 조작에 의해, 전력 계통에 접속되는 순간에, 과대한 여자 돌입 전류가 흘러, 그 주변의 회로에 전압 저하나 파형 불균일 등의 악영향을 미치는 것이 알려져 있다.
또한, 여자 돌입 전류는, 3상 변압기를 전력 계통에 병입할 때에 있어서의 계통 전원의 계통 전압의 위상과 3상 변압기의 철심에 남는 잔류 자속(磁束)에 크게 영향을 주는 것도, 공지의 사실이며, 여자 돌입 전류를 억제하기 위해서는, 3상 변압기의 잔류 자속을 정확하게 산출하는 것이 중요하다.
이에 대하여, 3상 변압기의 잔류 자속에 관한 안이(安易)한 설명으로서는, 「무부하 여자 상태로 운전 중인 3상 변압기가 해열(解列)된 경우, 차단 순간에 있어서의 여자 자속의 순간값이 그대로 철심에 잔류 자속으로서 남는다」라고 설명되는 경우가 많다. 그리고, 무부하 여자 상태란, 3상 변압기의 2차측(저압측, 부하측)의 차단기(이하, 부하측 차단기라고 함)를 개방한 상태(무부하 상태)이며, 3상 변압기의 1차측(고압측, 전력 계통측)의 계통측 차단기를 투입한 상태(여자 상태)이다.
예를 들면, 종래의 변압기 보호 제어 장치는, 변압기 각각의 단자 전류의 차이에 따라 변압기 각각의 단자에 설치된 차단기를 개방하는 보호 장치를 설치하고, 또한 차단기가 개방된 시점(時点)에서의 변압기 단자 전압 위상을 기억하고, 상기 차단기의 재투입을 전원 전압 위상이 상기 기억된 전압 위상과 일치하도록 제어한다(예를 들면, 특허 문헌 1 참조).
또한, 종래의 3상 변압기의 여자 돌입 전류 억제 장치는, 변압기 코일의 전압 및 변압기에 투입하는 전원 전압을 계측하는 전압 계측 수단과, 상기 전압 계측 수단에 의한 변압기 코일의 계측 전압을 적분하여 변압기 철심의 자속을 산출하는 잔류 자속 산출 수단과, 상기 전압 계측 수단에 의한 전원 전압을 입력하여 차단기를 목표 위상으로 투입하기 위해 투입 지령의 출력 시기를 제어하는 투입 위상 제어 수단을 포함하고, 상기 잔류 자속 산출 수단은, 차단기를 개방하여 변압기를 전원으로부터 분리할 때, 계측 전압에 따라 변압기 각 상(相)의 잔류 자속의 극성 및 크기를 산출하고, 상기 투입 위상 제어 수단은, 차단기를 투입하여 변압기를 여자할 때, 상기 변압기에 3상 교류 전압이 정상 상태로 인가된 경우의 각 상의 정상 자속의 극성과, 상기 잔류 자속 산출 수단에 의해 산출된 변압기 각 상의 잔류 자속의 극성이 동일해지는 위상 범위가 3상 모두 중첩되는 위상 범위를 목표 투입 위상으로 하여, 차단기의 전체 상을 동시에 투입시킨다(예를 들면, 특허 문헌 2 참조).
그러나, 종래의 변압기 보호 제어 장치나 종래의 3상 변압기의 여자 돌입 전류 억제 장치는, 전술한 「무부하 여자 상태로 운전 중인 3상 변압기가 해열된 경우, 차단 순간에 있어서의 여자 자속의 순간값이 그대로 철심에 잔류 자속으로서 남는다」 것을 전제로 하여, 차단기의 투입 위상을 제어하고 있다.
이에 대하여, 본 발명자는, 3상 변압기에서의 각 상의 철심 내의 자속이, 무부하 여자 상태로 운전 중인 3상 변압기를 해열한 순간 이후에도 과도적 변화를 거쳐 약간 지연된 타이밍에서 일정값으로 수렴하는 것을 현지 시험의 결과로 확인하고, 잔류 자속의 과도 현상을 이론적으로 분명히 했다. 특히, 잔류 자속의 과도 현상은, 3상 변압기의 저압측에 있는 서지 흡수 장치나 부유(浮游) 커패시턴스 등의 영향에 의해, 과도적 변화가 커진다.
즉, 종래의 변압기 보호 제어 장치나 종래의 3상 변압기의 여자 돌입 전류 억제 장치는, 변압기의 잔류 자속으로서 변압기가 해열한 순간에서의 변압기의 자속을 사용하고, 변압기 각각의 단자에 설치된 차단기가 개방된 시점에서의 변압기 단자 전압 위상과 전원 전압 위상이 일치하도록 차단기를 제어하고 있으므로, 여자 돌입 전류를 억제하는 데 불충분한 문제점이 있다.
본 발명은, 전술한 바와 같은 문제점을 해결하기 위해 이루어진 것이며, 무부하 여자 상태로 운전 중인 3상 변압기를 해열한 순간의 자속을 가지고 잔류 자속으로 되는 것으로 하는 안이한 이론이나, 그 이론에 기초한 제어 장치는 잘못된 것이라는 전제를 하고, 진짜의 잔류 자속으로서 새로운 기술 개념을 도입하여 여자 돌입 전류를 억제할 수 있는 여자 돌입 전류 억제 장치를 제공하는 것이다.
본 발명에 관한 여자 돌입 전류 억제 장치에 있어서는, 3상 변압기의 각 상 전압 및 계통 전원의 각 상의 계통 전압을 계측하는 전압 계측부와, 전압 계측부에 의해 계측된 각 상 전압의 3상의 모든 순간값이 제로값으로 수렴한 타이밍을 실효 차단 타이밍으로서 산출하는 실효 차단 타이밍 산출부와, 전압 계측부에 의해 계측된 각 상 전압을 각각 적분하여 3상 변압기의 철심의 각 상의 자속을 산출하는 철심 자속 산출부와, 철심 자속 산출부에 의해 산출한 각 상의 자속 중 실효 차단 타이밍에서의 각 상의 자속을 실효 잔류 자속으로서 상기 각 상의 실효 잔류 자속을 산출하는 실효 잔류 자속 산출부와, 실효 잔류 자속 산출부에 의해 산출된 각 상의 실효 잔류 자속에 기초하여, 차단기에 대한 투입 위상각을 산출하는 투입 위상각 산출부와, 전압 계측부에 의해 계측된 각 상의 계통 전압과 투입 위상각 산출부에 의해 산출된 투입 위상각에 기초하여, 차단기를 투입하는 투입 위상각 제어부를 구비한다.
본 발명에 관한 여자 돌입 전류 억제 장치에 있어서는, 3상 변압기의 잔류 자속을 양호한 정밀도로 산출할 수 있어, 여자 돌입 전류를 억제할 수 있는 여자 돌입 전류 억제 장치에 관한 것이다.
도 1은 제1 실시예에 관한 여자 돌입 전류 억제 장치의 개략적인 구성 및 여자 돌입 전류 억제 장치 및 변압기의 접속 관계를 나타낸 개략적인 구성도이다.
도 2의 (a)는 무부하 여자 상태의 변압기가 전력 계통으로부터 해열되기 직전과 해열된 직후의 변압기의 3상 전압과 그 3상 전압을 시간 적분하여 산출한 변압기의 철심 내의 자속의 상황을 시간과 함께 나타낸 파형도(波形圖)이며, (b)는 무부하 여자 상태의 변압기가 전력 계통으로부터 해열되기 직전과 해열된 직후의 변압기의 3상 전압과 그 3상 전압을 시간 적분하여 산출한 변압기의 철심 내의 자속의 상황을 시간과 함께 나타낸 벡터도이며, (c)는 같은 위상각으로 과전(課電)하는 경우의 실효 잔류 자속 및 초기 여자 자속의 관계를 나타낸 벡터도이며, (d)는 역위상각으로 과전하는 경우의 실효 잔류 자속 및 초기 여자 자속의 관계를 나타낸 벡터도이다.
도 3의 (a)는 도 1에 나타낸 투입 위상각 산출부의 개략적인 구성을 나타낸 블록도이며, (b)는 도 1에 나타낸 바와 같이, 여자 돌입 전류 억제 장치의 처리 동작을 나타낸 플로우차트이다.
도 4의 (a)는 실효 잔류 자속 및 초기 여자 자속의 벡터 정삼각형의 위상 관계가 일치하는 타이밍에서 변압기를 병입한 경우의 초기 여자 자속의 파형도이며, (b)는 실효 잔류 자속 및 초기 여자 자속의 벡터 정삼각형의 위상 관계를 일치시키는 방법을 설명하기 위한 설명도이다.
도 5의 (a)는 제2 실시예에 관한 투입 위상각 산출부의 개략적인 구성을 나타낸 블록도이며, (b)는 도 5의 (a)에 나타낸 투입 위상각 산출부에 의한 도 3에 나타낸 스텝 S7의 상세한 처리를 나타낸 플로우차트이다.
도 6의 (a)는 제3 실시예에 관한 투입 위상각 산출부의 개략적인 구성을 나타낸 블록도이며, (b)는 제4 실시예에 관한 투입 위상각 산출부의 개략적인 구성을 나타낸 블록도이다.
도 7은 투입 위상각을 0°~ 360°로 변화시킨 경우의 초기 여자 자속과 실효 잔류 자속과의 관계를 나타낸 설명도이다.
도 2의 (a)는 무부하 여자 상태의 변압기가 전력 계통으로부터 해열되기 직전과 해열된 직후의 변압기의 3상 전압과 그 3상 전압을 시간 적분하여 산출한 변압기의 철심 내의 자속의 상황을 시간과 함께 나타낸 파형도(波形圖)이며, (b)는 무부하 여자 상태의 변압기가 전력 계통으로부터 해열되기 직전과 해열된 직후의 변압기의 3상 전압과 그 3상 전압을 시간 적분하여 산출한 변압기의 철심 내의 자속의 상황을 시간과 함께 나타낸 벡터도이며, (c)는 같은 위상각으로 과전(課電)하는 경우의 실효 잔류 자속 및 초기 여자 자속의 관계를 나타낸 벡터도이며, (d)는 역위상각으로 과전하는 경우의 실효 잔류 자속 및 초기 여자 자속의 관계를 나타낸 벡터도이다.
도 3의 (a)는 도 1에 나타낸 투입 위상각 산출부의 개략적인 구성을 나타낸 블록도이며, (b)는 도 1에 나타낸 바와 같이, 여자 돌입 전류 억제 장치의 처리 동작을 나타낸 플로우차트이다.
도 4의 (a)는 실효 잔류 자속 및 초기 여자 자속의 벡터 정삼각형의 위상 관계가 일치하는 타이밍에서 변압기를 병입한 경우의 초기 여자 자속의 파형도이며, (b)는 실효 잔류 자속 및 초기 여자 자속의 벡터 정삼각형의 위상 관계를 일치시키는 방법을 설명하기 위한 설명도이다.
도 5의 (a)는 제2 실시예에 관한 투입 위상각 산출부의 개략적인 구성을 나타낸 블록도이며, (b)는 도 5의 (a)에 나타낸 투입 위상각 산출부에 의한 도 3에 나타낸 스텝 S7의 상세한 처리를 나타낸 플로우차트이다.
도 6의 (a)는 제3 실시예에 관한 투입 위상각 산출부의 개략적인 구성을 나타낸 블록도이며, (b)는 제4 실시예에 관한 투입 위상각 산출부의 개략적인 구성을 나타낸 블록도이다.
도 7은 투입 위상각을 0°~ 360°로 변화시킨 경우의 초기 여자 자속과 실효 잔류 자속과의 관계를 나타낸 설명도이다.
(본 발명의 제1 실시예)
본 실시예에 관한 여자 돌입 전류 억제 장치(10)를 설명하는 데 있어서, 계통측 차단기(21)가 개방되어, 무부하 여자 상태[부하측 차단기(22): 개방 상태, 계통측 차단기(21): 투입 상태]로 운전 중인 3상 변압기[이하, 변압기(23)라고 함]가 전력 계통으로부터 해열된 경우에, 변압기(23)의 철심 내에 남겨지는 잔류 자속에 대하여, 도 1 및 도 2를 참조하여 설명한다.
그리고, 이하의 설명에 있어서는, 전압 v, 전류 i 및 자속 φ의 첨자 a, b, c는, a상, b상, c상의 값인 것을 나타낸다.
운전 중인 변압기(23)를 전력 계통으로부터 해열하는 경우에는, 처음에, 변압기(23)의 2차측(저압측, 부하측)의 부하측 차단기(22)가 개방되어, 변압기(23)가 무부하 여자 상태로 된다.
이 단계(무부하 여자 상태)에서는, 변압기(23)의 1차 코일(고압측 코일)에는, 여자 전압인 1차 전압[vHa(t)、vHb(t)、vHc(t)]이 인가되어 있고, 여자 전류인 1차 전류[iHa(t)、iHb(t)、iHc(t)]가 흐르고 있다.
또한, 변압기(23)의 2차 코일(저압측 코일)에는, 2차 전압[vLa(t)、vLb(t)、vLc(t)]이 생기고 있지만, 2차 전류[iLa(t)、iLb(t)、iLc(t)]는 흐르고 있지 않다(제로이다).
또한, 변압기(23)의 철심 내에는, 자속[φa(t)、φb(t)、φc(t)]이 존재한다.
여기서, 계통 전압[va(t)、vb(t)、vc(t)] 또는 변압기(23)의 1차 전압 또는 2차 전압과, 변압기(23)의 철심 내의 자속[φa(t)、φb(t)、φc(t)]은, 다음 식(1)의 관계가 있어, 정상 상태 및 과도 상태의 구별없이 성립한다.
[수식 1]
φa(t)=∫va(t)dt
φb(t)=∫vb(t)dt ···(1)
φc(t)=∫vc(t)dt
또한, 계통 전압[va(t)、vb(t)、vc(t)] 및 변압기(23)의 1차 전압 및 2차 전압은, 3상 평형 상태의 정현파(正弦波)의 정상 상태이므로, 무부하 여자 상태의 계통 전압(1차 전압, 2차 전압)은 다음 식(2)로 표현할 수 있고, 식(1) 및 식(2)에 기초하여, 무부하 여자 상태에서의 변압기(23)의 철심 내의 자속은 다음 식(3)으로 표현할 수 있다.
[수식 2]
va(t)=Vcos(t)
vb(t)=Vcos(t-2π/3) ···(2)
vc(t)=Vcos(t+2π/3)
[수식 3]
φa(t)=Φcos(t-π/2)=Φsin(t)
φb(t)=Φcos(t-2π/3-π/2)=Φsin(t-2π/3)
φc(t)=Φcos(t+2π/3-π/2)=Φsin(t+2π/3)
···(3)
이와 같이, 정상 상태에서의 변압기(23)의 철심 내의 자속은, 3상 평형 상태의 정현파이며, 동상(同相)의 전압(계통 전압, 1차 전압, 2차 전압)에 대하여 90°의 위상차각이 있는 것으로 표현할 수 있고, 예를 들면, 도 2의 (a)의 상부에 나타낸 2차 전압[vLa(t)、vLb(t)、vLc(t)]의 파형에 대하여, 도 2의 (a)의 하부에 나타낸 자속[φa(t)、φb(t)、φc(t)]의 파형을 얻을 수 있다.
그리고, 변압기(23)의 1차 전압의 각 상의 전압 파형과 변압기(23)의 2차 전압의 각 상의 전압 파형은, 계기용 변압기(Voltage Transformer: VT)를 사용하여, 직접적 관측(실측)이 가능하지만, 변압기(23)의 철심 내의 자속[φa(t)、φb(t)、φc(t)]의 파형은, 직접적 관측은 불가능하다(실측한 전압의 적분값에 의한다).
여기서, 도 2의 (a) 및 도 2의 (b)에 나타낸 시간 topen0는, 계통측 차단기(21)가 개방되어 무부하 여자 상태의 변압기(23)가 전력 계통으로부터 해열되는 경우에, 계통측 차단기(21)의 차단 동작 시간이나 계통측 차단기(21)의 고정 접촉자 및 가동 접촉자 사이에 생기는 발호(發弧)의 시간을 거쳐, 변압기(23)의 1차 코일에 대한 여자 전류의 공급이 실제로 차단된 순간(이하, 차단 시간 topen0라고 함)이다.
또한, 변압기(23)의 2차측에는, 도 1에 나타낸 바와 같이, 도시하지 않은 피뢰기를 구비한 서지 흡수 장치(24)나 저압측 계기용 변압기(25a) 등이 설치되고, 미소(微小) 부하 회로로서 변압기(23)의 2차 코일에 접속되어, 폐회로를 구성하고 있다. 또한, 변압기(23)와 부하측 차단기(22)를 접속하는 가공 도체나 케이블의 누출 커패시턴스 등도 이 폐회로의 구성 요소로 된다.
그러므로, 차단 시간 topen0 이후에 있어서, 변압기(23)의 1차 코일에는, 전류가 흐르지 않는 것이지만(제로이지만), 변압기(23)의 2차 코일에는, 변압기(23)의 2차측의 폐회로를 통하여, 과도 전류가 흐르게 된다.
그리고, 이 과도 전류는, 암페어·턴으로 상쇄(相殺)되는 형태이며, 국소적인 전류가 변압기(23)의 철심 내에 와전류(渦電流)로서 흘러, 열로서 소비되게 되므로, 단시간에 감쇠(減衰)하고, 소정 시간(이하, 실효 차단 시간 topen1이라고 함)에서, 전류값이 제로값으로 수렴된다.
또한, 변압기(23)의 2차 전압도 마찬가지로, 각 상의 전압 파형은, 도 2의 (a)의 상부에 나타낸 바와 같이, 차단 시간 topen0의 직후에도, 과도 전류에 따라 과도 전압으로서 자유 진동적으로 감쇠하고, 변압기(23) 내에 있어서, 수 ms ~ 수십 ms 정도의 과도 현상이 계속된 후, 실효 차단 시간 topen1에서, 각 상의 전압값이 제로값으로 수렴된다.
또한, 변압기(23)의 철심 내의 자속도 마찬가지로, 각 상의 자속 파형은, 도 2의 (a)의 하부에 나타낸 바와 같이, 과도적으로 변화되고, 과도 시간대에서의 각 상의 과도 전압의 적분값으로서 연속적으로 연산되는 각 상의 철심 내의 자속[φa(t)、φb(t)、φc(t)]의 과도값(순간 파형)은, 과도 전압 및 과도 전류의 과도 현상이 수렴하는 실효 차단 시간 topen1에서, 각 상의 자속값이 동시에 일정값으로 수렴된다.
이와 같이, 실효 차단 시간 topen1에서의 변압기(23)의 철심 내의 자속[φa(topen1)、φb(topen1)、φc(topen1)]은, 전력 계통으로부터 변압기(23)를 해열한 경우에, 변압기(23)의 철심 내에 직류적으로 잔존하는 진짜의 잔류 자속(φra、φrb、φrc)이며, 다음 식(4)로 표현할 수 있다. 그리고, 이하의 설명에 있어서는, 변압기(23)의 철심 내에 남겨지는 진짜의 잔류 자속을 「실효 잔류 자속」이라고 하여 설명한다.
[수식 4]
φra=φa(topen1)
φrb=φb(topen1) ···(4)
φrc=φc(topen1)
그런데, 전력 계통으로부터 변압기(23)의 각 상이 해열[계통측 차단기(21)의 각 상이 개방]되어 변압기(23)에 대한 여자 전류의 공급이 차단되는 타이밍은, 각 상 사이에서 어긋나지 않고, 각 상 모두 동시의 차단 시간 topen0이며, 이하의 이유에 의한 것이다.
차단기는, 일반적으로, 교류 통전 전류가 그 「전류 제로점」이 되는 타이밍에서 차단 소호(消弧)되고, 3상 평형 회로의 3상 차단하는 경우에는, 각 상의 전류 위상(전류 제로점으로 되는 타이밍)이 상이하므로, 3상 중, 계통측 차단기(21)의 최초에 전류 제로점으로 되는 상이 차단되고, 이어서, 다른 상이 전류 제로점으로 되는 타이밍에서 각각 차단된다. 즉, 부하 전류나 고장 전류에 의한 차단 현상에서는, 일반적으로, 각 상 전류의 차단 타이밍에 시간차가 발생하게 된다.
그러나, 본 발명이 여자 돌입 전류의 억제 대상으로 하고 있는, 무부하 여자 상태의 변압기(23)에 대한 여자 전류의 공급을 차단하는 경우에는, 이 여자 전류가 1A 정도의 극단적인 미소 전류이므로, 계통측 차단기(21)의 고정 접촉자와 가동 접촉자가 기계적으로 개리(開離)하는 순간에(전류 제로점이 아니라도), 계통측 차단기(21)가 개방된다[전류 재단(裁斷), 쵸핑(chopping) 현상].
또한, 계통측 차단기(21)의 각 고정 접촉자와 각 가동 접촉자와의 기계적 개리의 타이밍은, 사실상, 동시의 타이밍이다.
즉, 변압기(23)의 각 상에 대한 여자 전류의 공급을 차단할 때(타이밍)는, 사실상, 동시의 차단 시간 topen0에서 행해진다고 할 수 있다.
다른 한편, 전술한 과도 현상이 생기게 하는 변압기(23)와 변압기(23)의 2차측의 폐회로와의 미소 부하 회로는, 일반적으로, 3상 평형 회로이다. 또한, 전력 계통으로부터의 계통 전압에 의한 변압기(23)에 대한 과전 전압(여자 전압)에 대해서는, 계통측 차단기(21)의 개방 직전까지 3상 평형 상태이다.
따라서, 차단 시간 topen0로부터 시작되는 과도 현상의 회로 조건은, 모두 3상 평형 조건에 있다고 이론적으로 판단할 수 있다. 즉, 각 상의 과도 현상이 생기는 과도 시간대(차단 시간 topen0로부터 실효 차단 시간 topen1까지의 시간대)에서는, 변압기(23)에서의 모든 전기량 및 자기량(磁氣量)이, 과도 시간대의 처음(차단 시간 topen0)부터 마지막(실효 차단 시간 topen1)까지, 3상 평형 상태의 과도 현상으로서 추이할 수 있다.
여기서, 도 2의 (a)의 상부에 나타낸 2차 전압의 파형은, 예를 들면, 도 2의 (b)의 상부에 나타낸 벡터도로 나타낼 수 있고, 도 2의 (a)의 하부에 나타낸 자속의 파형은, 예를 들면, 도 2의 (b)의 하부에 나타낸 벡터도로 나타내는 것이 가능하다.
변압기(23)의 각 상의 2차 전압은, 도 2의 (b)의 상부에 나타낸 바와 같이, 과도 시간대(차단 시간 topen0로부터 실효 차단 시간 topen1까지의 시간대)를 통해서 3상 평형 상태의 과도 현상으로서 작용하고, 이윽고 소멸한다. 그리고, 2차 전압의 벡터로서는, 이 과도 시간대에, 3상 평형의 벡터 정삼각형을 유지한 채로 위상 회전[슬립(slip)]을 수반하면서 축소하여 가고, 이윽고 실효 차단 시간 to pe n1에서 제로값에 도달하여 소멸한다.
마찬가지로, 변압기(23)의 철심 내의 각 상의 자속은, 도 2의 (b)의 하부에 나타낸 바와 같이, 과도 현상(차단 시간 topen0로부터 실효 차단 시간 topen1까지의 시간대)을 통해서 3상 평형의 과도 현상으로서 작용한다. 그리고, 철심 내의 자속의 벡터로서는, 이 과도 시간대에, 3상 평형의 벡터 정삼각형을 유지하면서 위상 회전을 수반하지만, 그 회전 속도를 서서히 완만하게 하여, 이윽고 실효 차단 시간 topen1에서 위상 회전을 정지한다.
이 정지 시점에서 일정값으로 된 변압기(23)의 각 상의 철심 내의 자속이, 진짜의 잔류 자속(실효 잔류 자속)으로서, 변압기(23)의 정지 시간 중에도 유지되게 된다. 그리고, 이 과도 시간대에 있어서, 자속 에너지의 일부는 변압기(23)의 철심 등에 의해 열 소비되므로, 3상 자속 벡터는 정삼각형인 채로 그 크기는 약간 축소되는 것으로 생각된다.
단, 과도 현상 중에서의 자속의 변화는, 각 상의 잔류 자속의 절대값이 반드시 축소되는 것을 의미하지 않는다. 또한, 실효 차단 시간 topen1에서의 임의의 상(예를 들면, a상)의 실효 잔류 자속 φra[=φa(topen1)])가, 차단 시간 to pe n0에서의 자속 φa(topen0)에 대하여 극성이 변화되는 경우나, 실효 차단 시간 topen1에서의 변압기(23)의 철심 내의 자속의 절대값이, 차단 시간 topen0에서의 변압기(23)의 철심 내의 자속의 절대값보다 증대하는 경우가 있을 수 있는 것을 이론적으로 나타내고 있다.
다음에, 여자 돌입 전류를 억제하는 기본적인 컨셉에 대하여 설명한다.
계통 전압 또는 변압기(23)의 각 상 전압의 순간값을, 적절히, 샘플하여 실측하고, 필요에 따라, 실측값을 전압 파형으로서 나타내는 것이 가능하다.
또한, 이 전압의 실측값을 시시각각 적분하면, 각 상의 자속값을 시시각각의 순간값으로서 산출할 수 있고, 필요에 따라, 적분값을 자속 파형으로서 나타내는 것도 가능하다.
그리고, 변압기(23)에 대한 여자 전류의 공급을 차단하는 경우에는, 차단 시간 topen0의 전후를 연속적으로, 자속의 순간값의 연산(적분)을 계속하면, 적분값이 일정값으로서 수렴된 값이, 실효 잔류 자속(φra、φrb、φrc)이다.
또한, 이 각 상의 실효 잔류 자속(φra、φrb、φrc)은, 플러스 또는 마이너스의 값의 절대값으로서 얻어지는 것, 그 자속값이 벡터적으로 정삼각형을 구성하는 것으로 된다. 또한, 실효 차단 시간 topen1은 과도 현상이 계속된 후, 자속의 순간값이 일정값으로 수렴되는 타이밍으로 하여 연산적으로 알 수 있다.
여기서, 실효 잔류 자속(φra、φrb、φrc)의 벡터로서의 모습은, 3상 평형이며, 그 3상 평형의 위상 각도도 자속 연산의 결과로서 판명되어 있다.
한편, 계통측 차단기(21)를 재투입하여 변압기(23)를 병입(재여자)하는 경우에는, 계통 전압에 의한 여자 자속의 초기값도 당연히 벡터적으로 3상 평형이다. 그러므로, 계통측 차단기(21)를 재투입하여 변압기(23)를 병입(재여자)하는 위상각(이하, 투입 위상각 θclose라고 함) 또는 시간(이하, 투입 시간 tclose라고 함)에서의, 변압기(23)의 철심의 각 상의 여자 자속(이하, 초기 여자 자속이라고 함){[(φa(θclose)、φb(θclose)、φc(θclose)] 또는 [φa(tclose)、φb(tclose)、φc(tclose)]}은, 3상 평형이다.
그래서, 잔류 자속(φra、φrb、φrc)의 3상 평형과 초기 여자 자속[φa(θclose)、φb(θc lo se)、φc(θclose)]의 3상 평형이, 동일 위상각으로 중첩되는 관계로 되도록 투입 위상각 θclose를 제어하면{투입 위상각 θclose를 실효 차단 위상각 θopen1[실효 차단 시간 topen1를 라디안(radian) 표시로 환산한 위상각]과 일치하도록 제어하면}, 각 상의 여자 돌입 전류를 이상적(理想的)으로 억제할 수 있는 것이다.
예를 들면, 도 2의 (c)에 있어서는, 잔류 자속(φra、φrb、φrc)과 초기 여자 자속[φa(tclose)、φb(tclose)、φc(tclose)]을 나타내는 벡터의 각 상의 위상 관계가 비교적 합치하고 있는 경우이며, 특히, 양자의 위상 각도(크기, 극성)를 완전히 일치시킬 수 있으면, 3상의 모든 여자 돌입 전류를, 사실상, 거의 제로에 가까운 값까지 극한(極限)시키게 된다.
반대로, 잔류 자속의 3상 평형과 초기 여자 자속의 3상 평형과의 위상 관계가 어긋나면, 각 상의 초기 여자 자속과 잔류 자속의 절대값적인 차이가 커져, 변압기(23)의 자속 밀도가 높아지므로, 여자 돌입 전류가 생기기 쉬운 상황으로 된다.
예를 들면, 도 2의 (d)에 있어서는, 잔류 자속(φra、φrb、φrc)과 초기 여자 자속[φa(tclose)、φb(tclose)、φc(tclose)]를 나타내는 벡터의 각 상의 위상 관계가 같은 상끼리 역위상에 가까운 상태의 경우이며, 특히, 양자의 각 상이 역위상으로 되면, 최대급의 여자 돌입 전류를 발생시키게 된다. 그리고, 도 2의 (c) 및 도 2의 (d)의 벡터도의 우측에 나타낸 양방향 화살표는, 잔류 자속(φra、φrb、φrc)과 초기 여자 자속[φa(tclose)、φb(tclose)、φc(tclose)]과의 어긋남의 크기를 나타내고 있다.
특히, 도 2의 (c)에 나타낸 경우에는, 각 상의 초기 여자 자속 및 실효 잔류 자속이 이론적으로 거의 완전히 일치하는 이상적인 투입 위상각으로 되지만, 도 2의 (d)에 나타낸 경우에는, a상의 초기 여자 자속 φa(tclose) 및 실효 잔류 자속 φa(topen1)는 일치하지만, b상의 초기 여자 자속 φb(tclose)및 실효 잔류 자속 φb(topen1)및 c상의 초기 여자 자속 φc(tclose)및 실효 잔류 자속 φc(topen1)이 극단적인 불일치로 되어, 변압기(23)의 철심이 극도로 포화(飽和)하는 최악의 투입 위상각으로 된다.
다음에, 본 실시예에 관한 여자 돌입 전류 억제 장치(10)에 대하여, 도 1 및 도 3의 (a)를 참조하여 설명한다.
여자 돌입 전류 억제 장치(10)는, 크게 나누면, 전압 계측부(1)와, 실효 차단 타이밍 산출부(2)와, 철심 자속 산출부(3)와, 실효 잔류 자속 산출부(4)와, 투입 위상각 산출부(5)와, 투입 위상각 제어부(6)를 구비한다. 또한, 여자 돌입 전류 억제 장치(10)는, 필요에 따라, 차단 시간 산출부(2b)와, 외관 잔류 자속 산출부(4a)와, 투입 동작 시간 산출부(7)와, 투입 위상각 실적값 산출부(8)와, 순간 전압 저하량 산출부(9)를 구비한다.
전압 계측부(1)는, 변압기(23)의 각 상 전압 및 계통 전원의 각 상의 계통 전압을 계측한다. 즉, 전압 계측부(1)는, 계통측 계기용 변압기(25b) 및 저압측 계기용 변압기(25a)로부터 얻어지는 각 상 전압의 순간값을 시시각각 샘플링 실측하여, 그 순간값의 크기, 극성 및 파형을 실측하는 기능을 가진다.
또한, 전압 계측부(1)는, 변압기(23)의 2차측과 부하측 차단기(22)와의 사이에 접속된 저압측 계기용 변압기(25a)를 통하여 변압기(23)의 각 상 전압[vLa(t)、vLb(t)、vLc(t)]을 계측하는 제1 전압 계측부(1a)와, 계통 전원과 계통측 차단기(21)와의 사이에 접속된 계통측 계기용 변압기(25b)를 통하여 계통 전원의 각 상의 계통 전압[va(t)、vb(t)、vc(t)]을 계측하는 제2 전압 계측부(1b)를 구비한다.
그리고, 본 실시예에 관한 제1 전압 계측부(1a)는, 변압기(23)의 2차측의 각 상 전압[vLa(t)、vLb(t)、vLc(t)]을 계측하는 구성이지만, 변압기(23)의 1차측과 계통측 차단기(21)와의 사이에 고압측 계기용 변압기를 접속하고, 이 고압측 계기용 변압기를 통하여 변압기(23)의 1차측의 각 상 전압[vHa(t)、vHb(t)、vHc(t)]를 계측하는 구성이라도 된다.
실효 차단 타이밍 산출부(2)는, 전압 계측부(1)[제1 전압 계측부(1a)]에 의해 계측된 각 상 전압[vLa(t)、vLb(t)、vLc(t)]의 3상의 모든 순간값이 제로값으로 수렴한 타이밍을 실효 차단 타이밍(실효 차단 시간 topen1 또는 실효 차단 위상각 θopen1)으로서 산출한다. 그리고, 라디안 표시 환산부(2a)는, 실효 차단 시간 topen1을 라디안 표시(실효 차단 위상각 θopen1)로 환산한다.
차단 시간 산출부(2b)는, 전압 계측부(1)[제1 전압 계측부(1a)]에 의해 계측된 각 상 전압[vLa(t)、vLb(t)、vLc(t)]에 기초하여, 각 상 전압의 정현파의 파형이 흐트러진 순간, 즉 사전에 흐르고 있었던 여자 전류가 각 상 동시에 제로에 소멸한 순간을 차단 시간 topen0로서 산출한다.
철심 자속 산출부(3)는, 전압 계측부(1)[제1 전압 계측부(1a)]에 의해 계측된 각 상 전압[vLa(t)、vLb(t)、vLc(t)]을 각각 적분하여 변압기(23)의 철심의 각 상의 자속[φa(t)、φb(t)、φc(t)]을 산출한다. 즉, 철심 자속 산출부(3)는, 실측한 각 상 전압[vLa(t)、vLb(t)、vLc(t)]의 순간값을 시시각각 적분하고, 변압기(23)의 철심의 각 상의 자속의 시간 파형값[φa(t)、φb(t)、φc(t)]으로서 산출하는 기능을 가진다. 그리고, 철심 자속 산출부(3)는, 계통측 차단기(21)에 의해 각 상 동시에 여자 전류가 차단되는 차단 시간 topen0의 전후에 있어서도, 계속적으로 연산을 행하는 것으로 한다.
실효 잔류 자속 산출부(4)는, 철심 자속 산출부(3)에 의해 산출한 각 상의 자속[φa(t)、φb(t)、φc(t)] 중 실효 차단 타이밍(실효 차단 시간 topen1 또는 실효 차단 위상각 θopen1)에서의 각 상의 자속{[φa(topen1)、φb(topen1)、φc(topen1)] 또는 [φa(θopen1)、φb(θopen1)、φc(θopen1)]}을 실효 잔류 자속(φra、φrb、φrc)으로서 상기 각 상의 실효 잔류 자속을 산출한다.
외관 잔류 자속 산출부(4a)는, 철심 자속 산출부(3)에 의해 산출한 각 상의 자속[φa(t)、φb(t)、φc(t)] 중 차단 시간 topen0에서의 각 상의 자속을 외관상(가짜)의 잔류 자속[φa(topen0)、φb(topen0)、φc(topen0)]으로서 산출한다. 그리고, 외관 잔류 자속 산출부(4a)는, 외관상의 잔류 자속[φa(topen0)、φb(topen0)、φc(topen0)을 출력부(표시 장치, 인쇄 장치, 기억 매체 등)에 출력하여, 여자 돌입 전류 억제 장치(10)의 조작자가 확인할 수 있다.
투입 위상각 산출부(5)는, 실효 잔류 자속 산출부(4)에 의해 산출된 각 상의 실효 잔류 자속(φra、φrb、φrc)에 기초하여, 계통측 차단기(21)에 대한 투입 위상각 θclose를 산출한다.
특히, 본 실시예에 관한 투입 위상각 산출부(5)는, 도 3의 (a)에 나타낸 바와 같이, 페이서(facer)값 산출부(5a) 및 투입 위상각 특정부(5b)를 구비한다.
페이서값 산출부(5a)는, 실효 잔류 자속 산출부(4)에 의해 산출된 각 상의 실효 잔류 자속[φa(θo pe n1)、φb(θopen1)、φc(θopen1)] 및 다음 식(5)에 기초하여, 실효 잔류 자속의 벡터 정삼각형의 중심(重心)과 각각의 정점(頂点)을 연결하는 선분의 크기(이하, 페이서값이라고 함) Φr을 산출한다.
[수식 5]
Φr=√{(2/3)×({φa(θopen1)}2+{φb(θopen1)}2+{φc(θopen1)}2)} ···(5)
투입 위상각 특정부(5b)는, 실효 잔류 자속 산출부(4)에 의해 산출된 각 상의 실효 잔류 자속[φa(θopen1)、φb(θopen1)、φc(θopen1)], 페이서값 산출부(5a)에 의해 산출된 페이서값 Φr, 및 다음 식(6)에 기초하여, 투입 위상각 θc lo se(θa、θb、θc)를 특정한다.
[수식 6]
θa=sin-1[φa(θopen1)/Φr)
θb=sin-1[φb(θopen1)/Φr) ··· (6)
θc=sin-1[φc(θopen1)/Φr)
투입 위상각 제어부(6)는, 전압 계측부(1)[제2 전압 계측부(1b)]에 의해 계측된 각 상의 계통 전압[va(t)、vb(t)、vc(t)]과 투입 위상각 산출부(5)에 의해 산출된 투입 위상각 θclose을 따라, 계통측 차단기(21)를 투입한다.
투입 동작 시간 산출부(7)는, 전압 계측부(1)[제1 전압 계측부(1a)]에 의해 계측된 각 상 전압[vLa(t)、vLb(t)、vLc(t)]에 기초하여, 각 상 전압이 제로값으로부터 변화된 실시간을 산출한다. 또한, 투입 동작 시간 산출부(7)는, 투입 위상각 제어부(6)로부터 계통측 차단기(21)로의 투입 신호를 출력한 지령 시간에 관한 정보를 투입 위상각 제어부(6)로부터 수신하여, 지령 시간으로부터 실시간까지의 계통측 차단기(21)의 투입 동작 시간을 산출하고, 투입 위상각 제어부(6)로 피드백한다.
투입 위상각 실적값 산출부(8)는, 전압 계측부(1)[제1 전압 계측부(1a)]에 의해 계측된 각 상 전압[vLa(t)、vLb(t)、vLc(t)]에 기초하여, 각 상 전압이 제로값으로부터 변화된 시간에 있어서의 전압 계측부(1)[제2 전압 계측부(1b)]에 의해 계측된 각 상 전압의 위상각의 실적값을 산출한다. 그리고, 투입 위상각 실적값 산출부(8)는, 각 상 전압의 위상각의 실적값을 출력부(표시 장치, 인쇄 장치, 기억 매체 등)에 출력하고, 여자 돌입 전류 억제 장치(10)의 조작자가 확인할 수 있다.
순간 전압 저하량 산출부(9)는, 전압 계측부(1)[제2 전압 계측부(1b)]에 의해 계측된 각 상의 계통 전압[va(t)、vb(t)、vc(t)]의 전압 파형에 기초하여, 계통측 차단기(21)를 투입하기 전의 계통 전압의 실효값과 계통측 차단기(21)를 투입한 후의 계통 전압의 실효값을 산출하여, 순간 전압 저하량을 산출한다. 그리고, 순간 전압 저하량 산출부(9)는, 순간 전압 저하량을 출력부(표시 장치, 인쇄 장치, 기억 매체 등)에 출력하여, 여자 돌입 전류 억제 장치(10)의 조작자가 확인할 수 있다.
다음에, 본 실시예에 관한 여자 돌입 전류 억제 장치(10)의 처리 동작에 대하여, 도 3의 (b)를 참조하여 설명한다.
먼저, 무부하 여자 상태의 변압기(23)를 전력 계통으로부터 해열하는 경우에 대하여 설명한다.
여자 돌입 전류 억제 장치(10)는, 조작자에 의한 계통측 차단기(21)의 「오프」지령을 수신하면(스텝 S1), 제1 전압 계측부(1a)가, 변압기(23)의 2차측에서의 각 상 전압의 순간값[vLa(t)、vLb(t)、vLc(t)]의 계측을 개시하고, 계측값을 시시각각 기록한다(스텝 S2).
계통측 차단기(21)는, 계통측 차단기(21)의 「오프」지령을 검출하면, 고정 접촉자와 가동 접촉자를 기계적으로 개리하여 차단을 완료한다. 이 순간에, 변압기(23)는, 운전 기능을 정지하여, 전력 계통으로부터 해열된다(스텝 S3).
실효 차단 타이밍 산출부(2)는, 제1 전압 계측부(1a)에서 측정된 각 상 전압의 시시각각의 순간값[vLa(t)、vLb(t)、vLc(t)]에 기초하여, 실효 차단 시간 topen1을 산출하여 기록한다(스텝 S4). 또한, 실효 차단 타이밍 산출부(2)의 라디안 표시 환산부(2a)는, 실효 차단 시간 topen1을 라디안 표시(실효 차단 위상각 θopen1)로 환산한다. 즉, 실효 차단 타이밍 산출부(2)(라디안 표시 환산부(2a)는, 제1 전압 계측부(1a)에서 측정된 각 상 전압의 시시각각의 순간값[vLa(t)、vLb(t)、vLc(t)]에 기초하여, 실효 차단 타이밍(실효 차단 시간 topen1, 실효 차단 위상각 θopen1)을 산출한다(스텝 S4).
그리고, 차단 시간 산출부(2b)는, 제1 전압 계측부(1a)에서 측정된 각 상 전압의 시시각각의 순간값[vLa(t)、vLb(t)、vLc(t)]에 기초하여, 계통측 차단기(21)가 개방한 순간의 차단 시간 topen0를 산출하여 기록하지만, 본 발명에 필수적인 스텝은 아니다.
철심 자속 산출부(3)는, 제1 전압 계측부(1a)에 의해 측정된 각 상 전압의 시시각각의 순간값[vLa(t)、vLb(t)、vLc(t)]를 적분하고, 자속값을 시시각각의 순간값[φa(t)、φb(t)、φc(t)]으로서 산출한다(스텝 S5).
실효 잔류 자속 산출부(4)는, 철심 자속 산출부(3)에서 산출한 자속값[φa(t)、φb(t)、φc(t)]에 기초하여, 실효 차단 타이밍(실효 차단 시간 topen1, 실효 차단 위상각 θopen1)에서의 자속값을 실효 잔류 자속(φra、φrb、φrc)으로서 산출한다(스텝 S6).
그리고, 외관 잔류 자속 산출부(4a)는, 철심 자속 산출부(3)에서 산출한 자속값[φa(t)、φb(t)、φc(t)]에 기초하여, 차단 시간 topen0에서의 자속값을 외관 잔류 자속[φa(topen0)、φb(topen0)、φc(topen0)]으로서 산출하지만, 본 발명에 필수적인 스텝은 아니다.
투입 위상각 산출부(5)는, 전력 계통에 변압기(23)를 병입하여 변압기(23)를 재여자하는 경우에, 투입 위상각 θclose(또는 투입 시간 tclose)에서의 투입 각 상의 초기 여자 자속{[φa(θclose)、φb(θclose)、φc(θclose)] 또는 [φa(tclose)、φb(tclose)、φc(tclose)]}의 위상 관계가, 실효 잔류 자속 산출부(4)에서 산출한 실효 잔류 자속{[φa(θopen1)、φb(θopen1)、φc(θopen1)] 또는 、[φa(topen1)、φb(topen1)、φc(topen1)]}의 위상 관계와 3상 모두 대략 일치하도록, 이상적인 투입 위상각 θclose를 결정한다(스텝 S7).
즉, 투입 위상각 산출부(5)는, 실효 잔류 자속 산출부(4)에서 산출한 실효 잔류 자속의 3상 벡터 정삼각형과 변압기(23)의 병입(재여자)에 의한 초기 여자 자속의 3상 벡터 정삼각형의 위상 관계가 일치하도록 한 투입 위상각 θclose를 1사이클{1주기: 0°~ 360°(0[rad] ~ 2π[rad])} 중에서 추출한다.
그리고, 투입 위상각 θclose를 결정하는 스텝 S7은, 이하에 나타내는 스텝 S7a 및 스텝 S7b로 이루어진다.
투입 위상각 산출부(5)의 페이서값 산출부(5a)는, 실효 잔류 자속 산출부(4)에 의해 산출된 각 상의 실효 잔류 자속[φa(θopen1)、φb(θopen1)、φc(θopen1)] 및 상기 식(5)에 기초하여, 실효 잔류 자속의 페이서값 Φr을 산출한다(스텝 S7a).
그리고, 투입 위상각 산출부(5)의 투입 위상각 특정부(5b)는, 실효 잔류 자속 산출부(4)에 의해 산출된 각 상의 실효 잔류 자속[φa(θopen1)、φb(θopen1)、φc(θopen1)], 페이서값 산출부(5a)에 의해 산출된 페이서값 Φr, 및 상기 식(6)에 기초하여, 투입 위상각 θclose(θa、θb、θc)을 특정한다(스텝 S7b).
다음에, 정지 중의 변압기(23)를 전력 계통에 병입하는 경우에 대하여 설명한다.
여자 돌입 전류 억제 장치(10)는, 조작자에 의한 계통측 차단기(21)의 「온」지령을 수신하면(스텝 S8), 제2 전압 계측부(1b)가, 계통 전압의 각 상 전압의 순간값[va(t)、vb(t)、vc(t)]의 계측을 개시하고, 계측값을 시시각각 기록한다(스텝 S9).
투입 위상각 제어부(6)는, 조작자에 의한 계통측 차단기(21)의 「온」지령을 검출하면, 제2 전압 계측부(1b)가 측정한 계통 전압의 각 상 전압의 순간값[va(t)、vb(t)、vc(t)]에 기초하여, 현재의 계통 전압의 각 상 전압의 위상각을 판단한다(스텝 S10).
그리고, 투입 위상각 제어부(6)는, 투입 동작 시간 산출부(7)로부터 입력되는 계통측 차단기(21)의 투입 동작 시간을 고려하여, 계통 전압이 투입 위상각 θclose로 변압기(23)에 인가하도록, 계통측 차단기(21)에 「온」지령을 출력한다(스텝 S11).
계통측 차단기(21)는, 투입 위상각 제어부(6)로부터의 「온」지령을 수신하면, 고정 접촉자와 가동 접촉자를 기계적으로 접촉시켜, 투입 위상각 θclose로 계통 전압을 변압기(23)에 인가시켜, 변압기(23)를 무부하 여자 상태로 한다(스텝 S12).
특히, 본 실시예에 있어서는, 도 4의 (a)에 나타낸 바와 같이, 실효 잔류 자속의 벡터 정삼각형(페이서값 Φr)과 초기 여자 자속의 벡터 정삼각형(페이서값 Φ)과의 3상의 위상 관계가 일치하는 위상각 타이밍을, 목표로 하는 이상적인 투입 위상각 θclose로 하여, 계통측 차단기(21)의 투입을 제어한다.
즉, 투입 위상각 제어부(6)는, 실효 차단 위상각 θopen1(예를 들면, a상의 실효 차단 위상각 θopen1)에 투입 위상각 θclose(여기서는, a상의 투입 위상각 θclose)를 일치시키도록 한 제어를 행함으로써, 실효 잔류 자속의 벡터 정삼각형과 초기 여자 자속의 벡터 정삼각형의 위상 관계를 일치시킬 수 있다.
그리고, 실효 잔류 자속[예를 들면, φa(θopen1)]과 초기 여자 자속[예를 들면, φa(θclose)]과의 위상 관계를 일치시키는 제어로서는, 도 4의 (b)에 나타낸 바와 같이, 이하의 방법도 고려할 수 있다.
제1 방법으로서는, 실효 잔류 자속 φa(θopen1)과 초기 여자 자속 φa(θclose)과의 스칼라(scalar) 곱 「φa(θopen1)φa(θclose)=|φa(θopen1)||φa(θclose)|cosδ」를 제로(0)로 한다. 그리고, δ는 φa(θopen1)및 φa(θc lo se)의 벡터끼리가 이루는 각이다.
제2 방법으로서는, 실효 잔류 자속 φa(θopen1) 및 초기 여자 자속 φa(θclose)를 2변으로 하는 삼각형의 변 중 나머지 한 변의 길이를 제로(0)로 한다.
제3 방법으로서는, 실효 잔류 자속 φa(θopen1) 및 초기 여자 자속 φa(θclose)를 2변으로 하는 삼각형의 면적 Sa(또는, 벡터 곱 「φa(θopen1)×φa(θclose)=|φa(θopen1)||φa(θclose)|sinδ」)를 제로(0)로 한다.
제4 방법으로서는, 각 상의 실효 잔류 자속[φa(θopen1)、φb(θopen1)、φc(θopen1)]과 각 상의 초기 여자 자속[φa(θclose)、φb(θclose)、φc(θc lo se)]과의 차이 벡터 또는 스칼라 값을 일치시킨다[|φa(θopen1)-φa(θclose)|=|φb(θopen1)-φb(θclose)|=|φc(θopen1)-φc(θclose)|].
그리고, 스텝 S12의 후에 이하의 각각의 처리를 필요에 따라 추가해도 된다.
투입 동작 시간 산출부(7)는, 제1 전압 계측부(1a)에 의해 계측된 각 상 전압[vLa(t)、vLb(t)、vLc(t)]에 기초하여, 각 상 전압이 제로값으로부터 변화된 실시간을 산출한다. 또한, 투입 동작 시간 산출부(7)는, 투입 위상각 제어부(6)로부터 계통측 차단기(21)로의 투입 신호를 출력한 지령 시간에 관한 정보를 투입 위상각 제어부(6)로부터 수신하여, 지령 시간으로부터 실시간까지의 계통측 차단기(21)의 투입 동작 시간을 산출하고, 투입 위상각 제어부(6)에 투입 동작 시간을 출력한다. 이 처리에 의해, 투입 위상각 제어부(6)는, 투입 동작 시간 산출부(7)로부터 입력되는 투입 동작 시간을 고려하여, 다음 회의 투입 조작 시에 반영할 수 있다.
투입 위상각 실적값 산출부(8)는, 제1 전압 계측부(1a)에 의해 계측된 각 상 전압[vLa(t)、vLb(t)、vLc(t)]에 기초하여, 각 상 전압이 제로값으로부터 변화된 시간에 있어서의 제2 전압 계측부(1b)에 의해 계측된 각 상 전압의 위상각의 실적값을 산출한다.
순간 전압 저하량 산출부(9)는, 제2 전압 계측부(1b)에 의해 계측된 각 상의 계통 전압[va(t)、vb(t)、vc(t)]의 전압 파형에 기초하여, 계통측 차단기(21)를 투입하기 전의 계통 전압의 실효값과 계통측 차단기(21)를 투입한 후의 계통 전압의 실효값을 산출하여, 순간 전압 저하량을 산출한다.
이상과 같이, 본 실시예에 관한 여자 돌입 전류 억제 장치(10)는, 변압기(23)의 철심 내의 잔류 자속의 과도 현상을 고려하여, 진짜의 잔류 자속(실효 잔류 자속)을 산출하고, 이 실효 잔류 자속에 기초하여, 변압기(23)의 투입 위상각을 산출한다. 그리고, 본 실시예에 관한 여자 돌입 전류 억제 장치(10)는, 산출한 투입 위상각에 기초하여, 계통측 차단기(21)를 제어함으로써, 여자 돌입 전류를 억제할 수 있는 작용 효과를 얻을 수 있다.
(본 발명의 제2 실시예)
도 5의 (a)는 제2 실시예에 관한 투입 위상각 산출부의 개략적인 구성을 나타낸 블록도이며, 도 5의 (b)는 도 5의 (a)에 나타낸 투입 위상각 산출부에 의한 도 3에 나타낸 스텝 S7의 상세한 처리를 나타낸 플로우차트이다. 도 5에 있어서, 도 1 내지 도 4와 같은 부호는, 동일 또는 상당 부분을 나타내고, 그 설명을 생략한다.
본 실시예에 관한 투입 위상각 산출부(5)는, 실효 잔류 자속 산출부(4)에 의해 산출된 각 상의 실효 잔류 자속(φra、φrb、φrc)의 크기(절대값) 및 극성에 기초하여, 계통측 차단기(21)에 대한 투입 위상각 θclose를 산출한다.
그리고, 투입 위상각 θclose는, 계통 전압[va(t)、vb(t)、vc(t)]가 정상 상태로 변압기(23)에 인가된 경우에서의 상기 변압기(23)의 철심의 각 상의 초기 여자 자속[φa(θclose)、φb(θclose)、φc(θclose)]의 극성과 상기 각 상의 초기 여자 자속에 각각 대응하는 각 상의 실효 잔류 자속(φra、φrb、φrc)의 극성이 각각 동일하며, 각 상의 초기 여자 자속 중 임의의 1상인 제1 상의 초기 여자 자속의 자속값과 상기 제1 상의 초기 여자 자속에 대응하는 제1 상의 실효 잔류 자속의 자속값이 동일하게 되는 위상 각도이다.
특히, 본 실시예에 관한 투입 위상각 산출부(5)는, 도 5의 (a)에 나타낸 바와 같이, 투입 위상각 후보 산출부(11) 및 투입 위상각 결정부(12)를 구비한다.
투입 위상각 후보 산출부(11)는, 각 상의 실효 잔류 자속 중 임의의 1상인 제1 상의 실효 잔류 자속의 자속값 및 극성이 각각 동일하게 되는 2개의 위상각 θα,θβ을 상기 제1 상의 투입 위상각 θc lo se의 후보로서 산출한다.
투입 위상각 결정부(12)는, 2개의 투입 위상각 후보 θα,θβ에 대하여 2π/3라디안 또는 ―2π/3라디안의 위상이 어긋난 위상각을 각각 산출하고, 상기 위상이 어긋난 한쪽의 위상각에서의 제2 상의 여자 자속의 자속값과 상기 제2 상의 여자 자속에 대응하는 제2 상의 실효 잔류 자속의 자속값과의 차이의 절대값이, 위상이 어긋난 다른 쪽의 위상각에서의 제2 상의 여자 자속의 자속값과 상기 제2 상의 여자 자속에 대응하는 제2 상의 실효 잔류 자속의 자속값과의 차이의 절대값보다 클 경우에, 다른 쪽의 위상각에 대응하는 제1 상의 투입 위상각 후보를 상기 제1 상의 투입 위상각으로서 결정한다.
또한, 투입 위상각 결정부(12)는, 여자 자속 연산부(12a), 기준상 결정부(12b) 및 비기준상 비교부(12c)를 구비한다.
여자 자속 연산부(12a)는, 전압 계측부(1)[제2 전압 계측부(1b)]에 의해 계측된 계통 전압의 각 상 전압[va(t)、vb(t)、vc(t)]을 각각 적분하여 정상 상태의 각 상의 여자 자속[Φa(t)、Φb(t)、Φc(t)]을 산출하고, 라디안 표시[Φa(θ)、Φb(θ)、Φc(θ)]로 환산한 후, 한 변의 길이를 1.0으로 하는 여자 자속[Φa(θ)、Φb(θ)、Φc(θ)]의 벡터 정삼각형을 산출한다.
기준상 결정부(12b)는, 여자 자속 연산부(12a)에 의해 산출된 여자 자속과 실효 잔류 자속을 비교하기 위한 기준상을 결정한다.
비기준상 비교부(12c)는, 기준상 결정부(12b)에 의해 결정된 기준상 이외의 상이며, 투입 위상각 후보에서의 여자 자속과 실효 잔류 자속을 비교하여, 투입 위상각 θclose를 결정한다.
다음에, 본 실시예에 관한 투입 위상각 산출부(5)에 의한 투입 위상각 θclose를 결정하는 스텝 S7에 대하여, 도 5의 (b)를 사용하여 상세하게 설명한다.
먼저, 투입 위상각 후보 산출부(11)는, 실효 잔류 자속 산출부(4)에서 산출한 실효 잔류 자속[φa(θopen1)、φb(θopen1)、φc(θopen1)]에 기초하여, 실효 잔류 자속의 크기가 벡터 정삼각형의 중심(重心)과 각각의 정점(頂点)을 연결하는 선분(페이서값)을 이루는 위상 각도 θα,θβ(0[rad]∼2π[rad]중의 2값), 즉 각 상의 실효 잔류 자속 중 임의의 1상인 제1 상의 실효 잔류 자속의 자속값 및 극성이 각각 동일하게 되는 2개의 위상각 θα,θβ을, 상기 상기 제1 상의 투입 위상각 θclose의 후보로서 산출하고, 투입 위상각의 후보로서 결정한다(스텝 S7a).
투입 위상각 결정부(12)의 여자 자속 연산부(12a)는, 제2 전압 계측부(1b)에 의해 계측된 계통 전압의 각 상 전압[va(t)、vb(t)、vc(t)]을 각각 적분하여 정상 상태의 각 상의 여자 자속[Φa(t)、Φb(t)、Φc(t)]을 산출하고, 라디안 표시[Φa(θ)、Φb(θ)、Φc(θ)]로 환산한다. 그리고, 여자 자속 연산부(12a)는, 다음 식(7)에 의해, 한 변의 길이를 1.0으로 하는 여자 자속[Φa(θ)、Φb(θ)、Φc(θ)]의 벡터 정삼각형을 산출한다(스텝 S7b).
[수식 7]
Φa=Φcos(θ)
Φb=Φcos(θ-2π/3) ···(7)
Φc=Φcos(θ+2π/3)
또한, 여자 자속 연산부(12a)는, 다음 식(8)에 의해 투입 위상각 후보 θα에서의 여자 자속의 벡터 정삼각형, 또는 다음 식(9)에 의해 투입 위상각 후보 θβ에서의 여자 자속의 벡터 정삼각형을 계산한다(스텝 S7c).
[수식 8]
Φa(θα)=Φcos(θα)
Φb(θα)=Φcos(θα-2π/3) ···(8)
Φc(θα)=Φcos(θα+2π/3)
[수식 9]
Φa(θβ)=Φcos(θβ)
Φb(θβ)=Φcos(θβ-2π/3) ···(9)
Φc(θβ)=Φcos(θβ+2π/3)
그리고, 투입 위상각 결정부(12)의 기준상 결정부(12b)는, 여자 자속 연산부(12a)에 의해 산출된 여자 자속과 실효 잔류 자속을 비교하기 위한 기준상을 결정한다(스텝 S7d).
구체적으로는, 기준상 결정부(12b)는,|Φa(θα)-φa(θopen1)|、|Φb(θα)-φb(θopen1)| 및 |Φc(θα)-φc(θopen1)| 중 최소값으로 되는 상을 기준상으로 결정한다. 또는, 기준상 결정부(12b)는, |Φa(θβ)-φa(θopen1)|、|Φb(θβ)-φb(θopen1)| 및 |Φc(θβ)-φc(θopen1)| 중 최소값으로 되는 상을 기준상으로 결정한다.
그리고, 본 실시예에 관한 기준상 결정부(12b)는, 최소값으로 되는 상을 기준상으로서 결정했지만, 「최대값으로 되는 상」, 「중간값으로 되는 상」 또는 「미리 정한 임의의 1상」을 기준상으로서 결정해도 된다. 그러나, 최소값으로 되는 상을 기준상으로 하는 것은, 기준상 이외의 상에서의, 최악의 투입 위상각으로 되는 경우의 초기 여자 자속 및 실효 잔류 자속의 차이가 커져, 최선의 투입 위상각과 최악의 투입 위상각과의 판별이 용이해지기 때문에 바람직하다.
또한, 이하의 설명에 있어서는, 기준상 결정부(12b)에 의한 비교 결과가 최소값으로 되는 상이 a상인 것으로 하고, a상을 기준상으로서 결정한 경우에 대하여 설명한다.
투입 위상각 결정부(12)의 비(非)기준상 비교부(12c)는, 기준상 결정부(12b)에 의해 결정된 기준상 이외의 상이며, 투입 위상각 후보에서의 여자 자속과 실효 잔류 자속을 비교하여 투입 위상각 θclose를 결정한다(스텝 S7e).
구체적으로는, 비기준상 비교부(12c)는, 비교 1로서, |Φb(θα)-φb(θopen1)|<|Φb(θβ)-φb(θopen1)|이면 투입 위상각 후보 θα를 투입 위상각 θclose로서 결정하고, |Φb(θα)-φb(θopen1)|>|Φb(θβ)-φb(θopen1)|이면 투입 위상각 후보 θβ를 투입 위상각 θclose로서 결정한다. 또는, 비기준상 비교부(12c)는, 비교 2로서, |Φc(θα)-φc(θopen1)|<|Φc(θβ)-φc(θopen1)|이면 투입 위상각 후보 θα를 투입 위상각 θclose로서 결정하고, |Φc(θα)-φc(θopen1)|>|Φc(θβ)-φc(θopen1)|이면 투입 위상각 후보 θβ를 투입 위상각 θc lo se로서 결정한다. 그리고, 비교 1 또는 비교 2에 의한 투입 위상각 θclose의 결정은, 이론적으로 일치한다.
그리고, 투입 위상각 제어부(6)는, 투입 위상각 산출부(5)에 의해 산출된 투입 위상각 θclose를, 전력 계통에 변압기(23)를 병입할 때의 목표로 하는 투입 위상으로서 기록한다.
그리고, 이 제2 실시예에 있어서는, 투입 위상각 산출부(5)의 구성이 상이한 것만이 제1 실시예와 상이한 것이며, 제1 실시예와 마찬가지의 작용 효과를 얻을 수 있다.
(본 발명의 제3 실시예)
도 6의 (a)는 제3 실시예에 관한 투입 위상각 산출부의 개략적인 구성을 나타낸 블록도이다. 도 6의 (a)에 있어서, 도 1 내지 도 5와 같은 부호는, 동일 또는 상당 부분을 나타내고, 그 설명을 생략한다.
본 실시예에 관한 투입 위상각 산출부(5)는, 투입 위상각을 결정하는 데 기준이 되는 상을 결정하는 기준상 결정부(5c)와, 투입 위상각의 2개의 후보를 결정하는 투입 위상각 후보 산출부(5d)와, 투입 위상각 후보 중 최선의 위상각[예를 들면, 도 2의 (c)의 경우]를 선정하여 최악의 위상각[예를 들면, 도 2의 (d)의 경우]를 기각(棄却)하는 투입 위상각 결정부(5e)를 구비한다.
기준상 결정부(5c)는, 각 상의 실효 잔류 자속{[φa(topen1)、φb(topen1)、φc(topen1)] 또는 [φa(θopen1)、φb(θopen1)、φc(θopen1)]}의 절대값(크기, 스칼라 양)의 대소 관계를 비교하여, 그 절대값이 최소값으로 되는 상(예를 들면, a상)을 기준상으로서 결정한다.
그리고, 기준상 결정부(5c)는, 「실효 잔류 자속의 절대값이 최대값으로 되는 상」, 「실효 잔류 자속의 절대값이 중간값으로 되는 상」 또는 「미리 정한 임의의 1상」을 기준상으로서 결정해도 된다. 그러나, 실효 잔류 자속의 절대값이 최소값으로 되는 상을 기준상으로 하는 것은, 기준상 이외의 상에서의, 최악의 투입 위상각으로 되는 경우의 초기 여자 자속 및 실효 잔류 자속의 차이가 커져, 최선의 투입 위상각과 최악의 투입 위상각과의 판별이 용이해지기 때문에 바람직하다.
그리고, 투입 위상각 후보 산출부(5d)는, 기준상 결정부(5c)가 결정된 상(여기서는, a상)의 초기 여자 자속[φa(tclose)또는 φa(θclose)] 및 실효 잔류 자속[φa(topen1)또는 φa(θopen1)]의 크기 및 극성이 일치하는 위상각 타이밍[1사이클 중에서 2회 존재함]을 투입 위상각의 후보로서 결정한다.
그리고, 투입 위상각 결정부(5e)는, 투입 위상각 후보 산출부(5d)가 결정된 투입 위상각 후보 중, 기준상(예를 들면, a상) 이외의 하나의 상(예를 들면, b상)에서의 초기 여자 자속[φb(tclose)또는 φb(θclose)] 및 실효 잔류 자속[φb(topen1)또는 φb(θopen1)]의 극성이 일치하고, 다른 상(예를 들면, c상)에서의 초기 여자 자속[φc(tclose)또는 φc(θclose)] 및 실효 잔류 자속[φc(topen1)또는 φc(θopen1)]의 극성이 일치하는 경우를, 이상적인 투입 위상각의 경우로 하여 결정한다.
즉, 실효 잔류 자속{[(φa(topen1)、φb(topen1)、φc(topen1)] 또는 [φa(θopen1)、φb(θopen1)、φc(θopen1)]}의 벡터 정삼각형과 초기 여자 자속{[φa(tclose)、φb(tclose)、φc(tclose)] 또는 [φa(θclose)、φb(θclose)、φc(θclose)]}의 벡터 정삼각형에서의, a상, b상 또는 c상 중 어느 1상의 크기 및 극성이 일치하는 타이밍이 1사이클 중에 2회 존재하고, 그 2회의 타이밍 중 한쪽이, 실효 잔류 자속 및 초기 여자 자속의 벡터 정삼각형의 위상 각도를 거의 일치시키는 이상적인 타이밍으로 된다.
그러므로, 투입 위상각 결정부(5e)는, 투입 위상각 후보 산출부(5d)가 결정된 투입 위상각 후보 중, 최선의 투입 위상각과 최악의 투입 위상각의 분별을, 기준상 이외의 2상에서의 실효 잔류 자속 및 초기 여자 자속의 극성의 비교에 의해 행한다.
그리고, 이 제3 실시예에 있어서는, 투입 위상각 산출부(5)의 구성이 상이한 것만이 제1 실시예와 상이한 것이며, 제1 실시예와 마찬가지의 작용 효과를 얻을 수 있다.
(본 발명의 제4 실시예)
도 6의 (b)는 제4 실시예에 관한 투입 위상각 산출부의 개략적인 구성을 나타낸 블록도이다. 도 7은 투입 위상각을 0°~ 360°로 변화시킨 경우의 초기 여자 자속과 실효 잔류 자속과의 관계를 나타낸 설명도이다. 도 6의 (b)에 있어서, 도 1 내지 도 5와 같은 부호는, 동일 또는 상당 부분을 나타내고, 그 설명을 생략한다.
본 실시예에 관한 투입 위상각 산출부(5)는, 각 상의 여자 자속을 각도 0°~ 360°(0[rad]∼2π[rad])의 범위에서 파라미터로서 변경하는 파라미터 변경부(5f)와, 여자 자속 및 실효 잔류 자속의 대응하는 상에서의 상기 여자 자속의 자속값과 상기 실효 잔류 자속의 자속값과의 차이의 절대값을 각도마다 연산하는 자속 비교부(5g)와, 각 상의 상기 차이의 절대값을 각도마다 가산한 값 중 최소값으로 되는 각도를 투입 위상각으로서 결정하는 투입 위상각 결정부(5h)를 구비한다.
파라미터 변경부(5f)는, 도 7에 나타낸 바와 같이, 투입 시간 tclose(투입 위상각 θclose)를 0°~ 360°(0[rad]∼2π[rad])의 범위에서 파라미터로서 변경하여, 초기 여자 자속{[φa(tclose)、φb(tclose)、φc(tclose)] 또는 (φa(θclose)、φb(θclose)、φc(θclose)]}을 산출한다(환언하면, 여자 자속의 벡터 정삼각형을 회전하여 계산한다).
그리고, 자속 비교부(5g)는, 파라미터 변경부(5f)에 의해 산출한 초기 여자 자속{[φa(tclose)、φb(tclose)、φc(tclose)] 또는 [φa(θclose)、φb(θclose)、φc(θclose)]}과 실효 잔류 자속{[φa(topen1)、φb(topen1)、φc(topen1)] 또는 [φa(θopen1)、φb(θopen1)、φc(θopen1)]}을 각 상마다 비교하여, 초기 여자 자속과 실효 잔류 자속과의 차분{[φa(tclose)-φa(topen1)、φb(tclose)-φb(topen1)、φc(tclose)-φc(topen1)] 또는 [φa(θclose)-φa(θopen1)、φb(θclose)-φb(θopen1)、φc(θclose)-φc(θopen1)]}을 연산한다.
그리고, 투입 위상각 결정부(5h)는, 자속 비교부(5g)에 의한 연산 결과에 따라, 초기 여자 자속과 실효 잔류 자속과의 각 상의 차이의 절대값을 각도마다 가산한 값 중 최소값으로 되는 각도를 투입 위상각 θclose로서 결정한다.
그리고, 이 제4 실시예에 있어서는, 투입 위상각 산출부(5)의 구성이 상이한 것만이 제1 실시예와 상이한 것이며, 제1 실시예와 마찬가지의 작용 효과를 얻을 수 있다.
(본 발명의 그 외의 실시예)
투입 위상각 산출부(5)는, 실효 잔류 자속{[φa(topen1)、φb(topen1)、φc(topen1)] 또는 [φa(θopen1)、φb(θopen1)、φc(θopen1)]} 및 초기 여자 자속{[φa(tclose)、φb(tclose)、φc(tclose)] 또는 [φa(θclose)、φb(θclose)、φc(θclose)]}의 벡터 정삼각형을 구하고, 양자의 면적 차이가 최소에 있는 타이밍(투입 시간 tclose, 투입 위상각 θclose)을 투입 위상각 θclose로서 산출하는 구성이라도 된다.
또한, 투입 위상각 산출부(5)는, 실효 잔류 자속{[φa(topen1)、φb(to pe n1)、φc(topen1)] 또는 [φa(θopen1)、φb(θopen1)、φc(θopen1)]} 및 초기 여자 자속{[φa(tclose)、φb(tclose)、φc(tclose)] 또는 [φa(θclose)、φb(θclose)、φc(θclose)]}의 벡터 정삼각형을 구한다. 그리고, 투입 위상각 산출부(5)는, 벡터{[φa(topen1)-φa(tclose)] 또는 [φa(θopen1)-φa(θclose)]}가 최소로 되는 타이밍 위상 θaclose를 구하고, 마찬가지로, 다른 2상의 타이밍 위상 θbclose,θcclose을 구한다. 그리고, 투입 위상각 산출부(5)는, 타이밍 위상 θaclose,θbclose,θcclose의 서로 약 120°(2π/3[rad])의 위상차가 있는 것을 확인하고, 허용 정밀도 내의 위상을 투입 위상각 θclose로서 결정하는 구성이라도 된다.
1: 전압 계측부
1a: 제1 전압 계측부
1b: 제2 전압 계측부
2: 실효 차단 타이밍 산출부
2a: 라디안 표시 환산부
2b: 차단 시간 산출부
3: 철심 자속 산출부
4: 실효 잔류 자속 산출부
4a: 외관 잔류 자속 산출부
5: 투입 위상각 산출부
5a: 페이서값 산출부
5b: 투입 위상각 특정부
5c: 기준상 결정부
5d: 투입 위상각 후보 산출부
5e: 투입 위상각 결정부
5f: 파라미터 변경부
5g: 자속 비교부
5h: 투입 위상각 결정부
6: 투입 위상각 제어부
7: 투입 동작 시간 산출부
8: 투입 위상각 실적값 산출부
9: 순간 전압 저하량 산출부
10: 여자 돌입 전류 억제 장치
11: 투입 위상각 후보 산출부
12: 투입 위상각 결정부
12a: 여자 자속 연산부
12b: 기준상 결정부
12c: 비기준상 비교부
21: 계통측 차단기
22: 부하측 차단기
23: 변압기
24: 서지 흡수 장치
25a: 저압측 계기용 변압기
25b: 계통측 계기용 변압기
1a: 제1 전압 계측부
1b: 제2 전압 계측부
2: 실효 차단 타이밍 산출부
2a: 라디안 표시 환산부
2b: 차단 시간 산출부
3: 철심 자속 산출부
4: 실효 잔류 자속 산출부
4a: 외관 잔류 자속 산출부
5: 투입 위상각 산출부
5a: 페이서값 산출부
5b: 투입 위상각 특정부
5c: 기준상 결정부
5d: 투입 위상각 후보 산출부
5e: 투입 위상각 결정부
5f: 파라미터 변경부
5g: 자속 비교부
5h: 투입 위상각 결정부
6: 투입 위상각 제어부
7: 투입 동작 시간 산출부
8: 투입 위상각 실적값 산출부
9: 순간 전압 저하량 산출부
10: 여자 돌입 전류 억제 장치
11: 투입 위상각 후보 산출부
12: 투입 위상각 결정부
12a: 여자 자속 연산부
12b: 기준상 결정부
12c: 비기준상 비교부
21: 계통측 차단기
22: 부하측 차단기
23: 변압기
24: 서지 흡수 장치
25a: 저압측 계기용 변압기
25b: 계통측 계기용 변압기
Claims (5)
- 3상(相) 변압기 및 계통 전원 사이에 접속된 차단기를 제어하는 여자(勵磁) 돌입(突入) 전류 억제 장치에 있어서,
상기 3상 변압기의 각 상 전압 및 상기 계통 전원의 각 상의 계통 전압을 계측하는 전압 계측부;
상기 전압 계측부에 의해 계측된 각 상 전압을 각각 적분하여 상기 3상 변압기의 철심의 각 상의 자속(磁束)을 산출하는 철심 자속 산출부;
상기 전압 계측부에 의해 계측된 각 상 전압의 3상의 모든 순간값이 제로값으로 수렴한 타이밍 또는 상기 철심 자속 산출부에 의해 산출된 자속값이 각 상 모두 일정값에 도달하는 타이밍을 실효 차단 타이밍으로서 산출하는 실효 차단 타이밍 산출부;
상기 철심 자속 산출부에 의해 산출한 각 상의 자속 중 상기 실효 차단 타이밍에서의 각 상의 자속을 실효 잔류 자속으로서 상기 각 상의 실효 잔류 자속을 산출하는 실효 잔류 자속 산출부;
상기 실효 잔류 자속 산출부에 의해 산출된 상기 각 상의 실효 잔류 자속에 기초하여, 상기 차단기에 대한 투입 위상각을 산출하는 투입 위상각 산출부;
상기 전압 계측부에 의해 계측된 각 상의 계통 전압과 상기 투입 위상각 산출부에 의해 산출된 투입 위상각이 일치하는 타이밍에서 3상 동시에 상기 차단기를 투입하는 투입 위상각 제어부;
를 포함하고,
상기 투입 위상각은, 상기 계통 전압이 정상 상태에서 상기 3상 변압기에 인가되는 경우의 상기 3상 변압기의 각 상의 초기 여자 자속의 위상 관계가 각 상의 상기 실효 잔류 자속의 위상 관계와 3상 모두 일치하는 위상각인,
여자 돌입 전류 억제 장치. - 제1항에 있어서,
상기 투입 위상각 산출부는,
상기 실효 잔류 자속 산출부에 의해 산출된 상기 각 상의 실효 잔류 자속[φa(θopen1)、φb(θopen1)、φc(θopen1)] 및 하기 식(1)에 기초하여, 상기 실효 잔류 자속의 벡터 정삼각형의 페이서(facer)값 Φr을 산출하는 페이서값 산출부와,
상기 실효 잔류 자속 산출부에 의해 산출된 상기 각 상의 실효 잔류 자속[φa(θopen1)、φb(θopen1)、φc(θopen1)] 및 상기 페이서값 산출부에 의해 산출된 페이서값 Φr, 및 하기 식(2)에 기초하여, 상기 투입 위상각 θclose(θa、θb、θc)를 특정하는 투입 위상각 특정부를 구비하는, 여자 돌입 전류 억제 장치.
[식 (1)]
Φr=√{(2/3)×({φa(θopen1)}2+{φb(θopen1)}2+{φc(θopen1)}2)} ···(1)
[식 (2)]
θa=sin-1[φa(θopen1)/Φr)
θb=sin-1[φb(θopen1)/Φr) ···(2)
θc=sin-1[φc(θopen1)/Φr) - 제1항에 있어서,
상기 투입 위상각은, 상기 계통 전압이 정상 상태에서 상기 3상 변압기에 인가된 경우에서의 상기 3상 변압기의 철심의 각 상의 여자 자속의 극성과 상기 각 상의 여자 자속에 각각 대응하는 각 상의 상기 실효 잔류 자속의 극성이 각각 동일하며, 상기 각 상의 여자 자속 중 임의의 1상인 제1 상의 여자 자속의 자속값과 상기 제1 상의 여자 자속에 대응하는 제1 상의 상기 실효 잔류 자속의 자속값이 동일하게 되는 위상 각도인, 여자 돌입 전류 억제 장치. - 제1항 또는 제3항에 있어서,
상기 투입 위상각 산출부는,
상기 각 상의 실효 잔류 자속 중 임의의 1상인 제1 상의 실효 잔류 자속의 자속값 및 극성이 각각 동일하게 되는 2개의 위상각을 상기 제1 상의 투입 위상각의 후보로서 산출하는 투입 위상각 후보 산출부와,
상기 2개의 투입 위상각 후보에 대하여 2π/3라디안 또는 ―2π/3라디안의 위상이 어긋난 위상각을 각각 산출하고, 상기 위상이 어긋난 하나의 위상각에서의 제2 상의 여자 자속의 자속값과 상기 제2 상의 여자 자속에 대응하는 제2 상의 실효 잔류 자속의 자속값과의 차이의 절대값이, 상기 위상이 어긋난 다른 위상각에서의 상기 제2 상의 여자 자속의 자속값과 상기 제2 상의 여자 자속에 대응하는 상기 제2 상의 실효 잔류 자속의 자속값과의 차이의 절대값보다 클 경우에, 상기 다른 위상각에 대응하는 상기 제1 상의 투입 위상각 후보를 상기 제1 상의 투입 위상각으로서 결정하는 투입 위상각 결정부를 구비하는, 여자 돌입 전류 억제 장치. - 제1항 또는 제3항에 있어서,
상기 투입 위상각 산출부는, 상기 각 상의 여자 자속을 각도 0°~ 360°의 범위에서 파라미터로서 변경하여, 상기 여자 자속 및 실효 잔류 자속의 대응하는 상에서의 상기 여자 자속의 자속값과 상기 실효 잔류 자속의 자속값과의 차이의 절대값을 각도마다 연산하고, 각 상의 상기 차이의 절대값을 각도마다 가산한 값 중 최소값으로 되는 각도를 투입 위상각으로서 결정하는, 여자 돌입 전류 억제 장치.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2011-267543 | 2011-12-07 | ||
JP2011267543A JP5343118B2 (ja) | 2011-12-07 | 2011-12-07 | 励磁突入電流抑制装置 |
PCT/JP2012/067585 WO2013084531A1 (ja) | 2011-12-07 | 2012-07-10 | 励磁突入電流抑制装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140108742A KR20140108742A (ko) | 2014-09-15 |
KR101964167B1 true KR101964167B1 (ko) | 2019-04-01 |
Family
ID=48573916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020127031539A KR101964167B1 (ko) | 2011-12-07 | 2012-07-10 | 여자 돌입 전류 억제 장치 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9252589B2 (ko) |
EP (1) | EP2629314B1 (ko) |
JP (1) | JP5343118B2 (ko) |
KR (1) | KR101964167B1 (ko) |
CN (1) | CN103238197B (ko) |
WO (1) | WO2013084531A1 (ko) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5343118B2 (ja) * | 2011-12-07 | 2013-11-13 | 株式会社興電舎 | 励磁突入電流抑制装置 |
JP6054163B2 (ja) * | 2012-12-14 | 2016-12-27 | 株式会社東芝 | 励磁突入電流抑制システム |
WO2015085407A1 (en) * | 2013-12-13 | 2015-06-18 | Hydro-Quebec | Controlled switching system and method for tap changer power transformers |
WO2015189886A1 (ja) * | 2014-06-09 | 2015-12-17 | 三菱電機株式会社 | 位相制御装置 |
CA2922990C (en) * | 2014-07-02 | 2016-06-28 | Vizimax Inc. | Controlled switching devices and method of using the same |
CN104362920B (zh) * | 2014-10-22 | 2017-10-20 | 国网江苏省电力公司扬州供电公司 | 一种自适应的励磁涌流抑制装置及方法 |
FR3044186B1 (fr) * | 2015-11-23 | 2017-12-22 | General Electric Technology Gmbh | Procede et dispositif de mise sous tension d'un transformateur de puissance |
US11245254B2 (en) | 2016-08-23 | 2022-02-08 | Hitachi Energy Switzerland Ag | Method for phase controlled energizing of power transformer |
KR101853957B1 (ko) * | 2016-12-28 | 2018-05-02 | 주식회사 효성 | 삼상 개폐 제어 장치 및 방법 |
EP3358588A1 (en) | 2017-02-02 | 2018-08-08 | ABB Schweiz AG | Three-phase circuit breaker with phase specific switching |
CN106909088B (zh) * | 2017-04-28 | 2023-11-24 | 国家电网公司 | 输变电启动调试用的选相程序控制器 |
JP6362756B1 (ja) * | 2017-11-10 | 2018-07-25 | 株式会社興電舎 | 励磁突入電流抑制装置 |
US10819098B2 (en) | 2018-02-03 | 2020-10-27 | S&C Electric Company | Flux based utility disturbance detector |
WO2020136545A1 (en) * | 2018-12-27 | 2020-07-02 | Abb Schweiz Ag | Method and device for monitoring operation of a switching device for controlled switching applications |
US11233389B1 (en) * | 2020-10-30 | 2022-01-25 | Schweitzer Engineering Laboratories, Inc. | Controlled three-pole close for transformers |
CN112562965B (zh) * | 2020-12-15 | 2021-12-17 | 华中科技大学 | 一种海洋核动力平台串接小容量变压器预充磁方法 |
CN112803368B (zh) * | 2020-12-31 | 2023-03-14 | 南方电网科学研究院有限责任公司 | 三相变压器消磁后空载合闸励磁涌流的抑制方法及系统 |
CN113889972B (zh) * | 2021-09-18 | 2022-08-02 | 华中科技大学 | 一种三相变压器空载合闸励磁涌流的抑制方法及装置 |
JP7535834B1 (ja) | 2024-05-22 | 2024-08-19 | 株式会社興電舎 | 励磁突入電流抑制方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004208394A (ja) * | 2002-12-25 | 2004-07-22 | Mitsubishi Electric Corp | 変圧器励磁突入電流抑制装置 |
JP4549436B1 (ja) * | 2010-01-13 | 2010-09-22 | 三菱電機株式会社 | 突入電流抑制装置および突入電流抑制方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55100034A (en) | 1979-01-26 | 1980-07-30 | Hitachi Ltd | Transformer protector and controller |
JP4508759B2 (ja) * | 2004-07-22 | 2010-07-21 | 三菱電機株式会社 | 位相制御開閉装置 |
EP2091058A4 (en) * | 2006-11-29 | 2017-07-26 | Kabushiki Kaisha Toshiba | Apparatus and method for compressing exciting inrush current of transformer |
JP2008140580A (ja) | 2006-11-30 | 2008-06-19 | Toshiba Corp | 3相変圧器の励磁突入電流抑制装置 |
ATE550820T1 (de) * | 2007-04-20 | 2012-04-15 | Mitsubishi Electric Corp | Phasensteuerungsschalter und schaltpolsteuerverfahren in einem phasensteuerungsschalter |
JP4835870B2 (ja) * | 2007-10-16 | 2011-12-14 | 三菱電機株式会社 | 突入電流抑制装置 |
JP5208593B2 (ja) * | 2008-06-20 | 2013-06-12 | 株式会社東芝 | 変圧器の励磁突入電流抑制装置及びその制御方法 |
CN102165664B (zh) * | 2008-09-26 | 2013-10-02 | 三菱电机株式会社 | 变压器励磁冲击电流抑制装置 |
JP5459666B2 (ja) * | 2010-01-28 | 2014-04-02 | 株式会社東芝 | 励磁突入電流抑制装置 |
WO2011125210A1 (ja) * | 2010-04-08 | 2011-10-13 | 三菱電機株式会社 | 突入電流抑制装置および突入電流抑制方法 |
JP5646237B2 (ja) * | 2010-07-26 | 2014-12-24 | 株式会社東芝 | 変圧器の残留磁束推定方法及び残留磁束推定装置 |
JP5343118B2 (ja) * | 2011-12-07 | 2013-11-13 | 株式会社興電舎 | 励磁突入電流抑制装置 |
-
2011
- 2011-12-07 JP JP2011267543A patent/JP5343118B2/ja active Active
-
2012
- 2012-07-10 EP EP12815985.2A patent/EP2629314B1/en active Active
- 2012-07-10 WO PCT/JP2012/067585 patent/WO2013084531A1/ja active Application Filing
- 2012-07-10 CN CN201280001727.0A patent/CN103238197B/zh active Active
- 2012-07-10 KR KR1020127031539A patent/KR101964167B1/ko active IP Right Grant
-
2013
- 2013-02-06 US US13/760,704 patent/US9252589B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004208394A (ja) * | 2002-12-25 | 2004-07-22 | Mitsubishi Electric Corp | 変圧器励磁突入電流抑制装置 |
JP4549436B1 (ja) * | 2010-01-13 | 2010-09-22 | 三菱電機株式会社 | 突入電流抑制装置および突入電流抑制方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2629314A1 (en) | 2013-08-21 |
US9252589B2 (en) | 2016-02-02 |
EP2629314B1 (en) | 2016-12-14 |
US20130208386A1 (en) | 2013-08-15 |
JP2013120666A (ja) | 2013-06-17 |
CN103238197A (zh) | 2013-08-07 |
WO2013084531A1 (ja) | 2013-06-13 |
JP5343118B2 (ja) | 2013-11-13 |
KR20140108742A (ko) | 2014-09-15 |
EP2629314A4 (en) | 2015-05-06 |
CN103238197B (zh) | 2016-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101964167B1 (ko) | 여자 돌입 전류 억제 장치 | |
CA2670907C (en) | Magnetizing inrush current suppression device and method for transformer | |
JP5208593B2 (ja) | 変圧器の励磁突入電流抑制装置及びその制御方法 | |
JP4835870B2 (ja) | 突入電流抑制装置 | |
US8564159B2 (en) | Transformer inrush current suppression apparatus | |
JP4549436B1 (ja) | 突入電流抑制装置および突入電流抑制方法 | |
US20130155553A1 (en) | Magnetizing inrush current suppression apparatus | |
JP5148435B2 (ja) | 変圧器の励磁突入電流抑制装置及びその制御方法 | |
US9385525B2 (en) | Magnetizing inrush current suppression device | |
AU2013291046B2 (en) | Excitation inrush current suppressing apparatus and excitation inrush current suppressing method | |
JP5444162B2 (ja) | 励磁突入電流抑制装置 | |
JP5908336B2 (ja) | 励磁突入電流抑制装置及び励磁突入電流抑制方法 | |
JP2013037767A (ja) | 励磁突入電流抑制装置 | |
US9490627B2 (en) | Magnetizing inrush current suppressing device | |
JP2019091546A (ja) | 励磁突入電流抑制装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AMND | Amendment | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |