KR101947825B1 - 로봇, 및 로봇을 작동시키기 위한 방법 - Google Patents
로봇, 및 로봇을 작동시키기 위한 방법 Download PDFInfo
- Publication number
- KR101947825B1 KR101947825B1 KR1020120023489A KR20120023489A KR101947825B1 KR 101947825 B1 KR101947825 B1 KR 101947825B1 KR 1020120023489 A KR1020120023489 A KR 1020120023489A KR 20120023489 A KR20120023489 A KR 20120023489A KR 101947825 B1 KR101947825 B1 KR 101947825B1
- Authority
- KR
- South Korea
- Prior art keywords
- control
- adjustment
- control function
- robot
- function
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/414—Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/06—Programme-controlled manipulators characterised by multi-articulated arms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39233—Adaptive switching of multiple models, same model but different initial estimates, different robot model for different areas
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39244—Generic motion control operations, primitive skills each for special task
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39322—Force and position control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/40—Robotics, robotics mapping to robotics vision
- G05B2219/40395—Compose movement with primitive movement segments from database
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
- Numerical Control (AREA)
Abstract
본 발명은 로봇 (R) 을 작동시키기 위한 방법, 및 상응하여 셋업된 로봇 (R) 에 관한 것이다. 상기 로봇 (R) 은 잇달아 있는 다수의 부재 (1) 와, 말단장치 (4, 46) 를 고정시키기 위한 고정장치 (3) 와, 부재 (1) 를 움직이기 위한 드라이브를 구비한 로봇팔 (M), 및 상기 드라이브와 연결된 제어장치 (S) 를 구비한다. 상기 제어장치 (S) 안에는, 서로 달리 우선순위화된 다수의 조절/제어 기능을 가진 위계적 조절/제어 전략이 저장되어 있으며, 그리고 상기 방법은 다음의 방법단계를 구비한다: 상기 로봇팔 (M) 의 운동 동안, 보다 높이 우선순위화된 조절/제어 기능을 이용해 상기 로봇팔 (M) 의 안정적인 운동이 가능하자마자 그리고 상기 보다 높이 우선순위화된 조절/제어 기능과 무관한 실행조건이 충족되어 있자마자, 상기 보다 높이 우선순위화된 조절/제어 기능으로 전환하는 단계.
Description
본 발명은 로봇, 및 로봇을 작동시키기 위한 방법에 관한 것이다.
일반적으로 로봇은, 물체를 자동으로 핸들링하기 위해 목적에 부합하는 공구를 갖추고 있으며 그리고 다수의 운동축에 있어서 특히 방위 (orientation), 위치 및 작업진행과 관련하여 프로그래밍 가능한 핸들링 기계이다. 로봇은 일반적으로 다수의 부재를 가진 로봇팔 및 프로그래밍 가능한 제어기 (제어장치) 를 구비하며, 상기 제어장치는 작동 동안 로봇팔의 운동 진행을 제어 또는 조절한다. 드라이브는 예컨대 전기 드라이브이다.
Kroeger T, et. al. 은 “Manipulation Primitives - A Universal Interface Between Sensor-Based Motion Control and Robot Programming”, Robot Systems for Handling and Assembly, Springer tracts in advanced robotics Vol. 67, Springer 출판사, 2010, 293-313 페이지에 로봇을 작동시키기 위한 방법을 공개하고 있으며, 상기 방법에 있어서 로봇팔의 자동적인 운동 동안 서로 다른 제어/조절 기능 또는 전략 간에 전환된다.
본 발명의 목적은 로봇을 작동시키기 위한 개선된 방법, 및 이에 상응하여 셋업된 (set up) 로봇을 제공하는 것이다.
본 발명의 상기 목적은, 로봇을 작동시키기 위한 방법으로서, 상기 로봇은 잇달아 있는 다수의 부재와, 말단장치 (end effector) 를 고정시키기 위한 고정장치 (fastening device) 와, 상기 부재를 움직이기 위한 드라이브를 구비한 로봇팔, 및 상기 드라이브와 연결된 제어장치 (control device) 를 구비하며, 상기 제어장치 안에는, 서로 달리 우선순위화된 (prioritized) 다수의 조절/제어 기능을 가진 위계적 (hierarchical) 조절/제어 전략이 저장되어 있고, 상기 방법은 다음의 방법단계: 상기 로봇팔의 운동 동안, 보다 높이 우선순위화된 조절/제어 기능을 이용해 상기 로봇팔의 안정적인 운동이 가능하자마자 그리고 상기 보다 높이 우선순위화된 조절/제어 기능과 무관한 실행조건이 충족되어 있자마자, 상기 보다 높이 우선순위화된 조절/제어 기능으로 전환하는 단계를 구비한, 로봇을 작동시키기 위한 방법을 통해 달성된다.
본 발명의 그 밖의 양상은 로봇에 관한 것이며, 상기 로봇은
- 잇달아 있는 다수의 부재와, 말단장치를 고정시키기 위한 고정장치와, 상기 부재를 움직이기 위한 드라이브를 구비한 로봇팔, 및
- 상기 드라이브와 연결된 제어장치를 구비하며, 상기 제어장치 안에는, 서로 달리 우선순위화된 다수의 조절/제어 기능을 가진 위계적 조절/제어 전략이 저장되어 있고, 그리고 상기 제어장치는 본 발명에 따른 방법에 따라 상기 로봇팔을 움직이기 위해 셋업되어 있다.
본 발명에 따른 방법 또는 본 발명에 따른 로봇에 따르면, 로봇팔의 자동적인 (automatic) 운동은 위계적으로 구조화된 조절/제어 전략을 근거로 실행되며, 이때, 보다 높이 우선순위화된 조절/제어 기능이 로봇팔의 안정적인 운동을 허용하자마자, 상기 보다 높이 우선순위화된 조절/제어 기능으로 자동적으로 전환된다. 이는 예컨대 문제의 (in question) 조절/제어 기능을 위해 예컨대 상기 고정장치의, 또는 로봇에 할당된 Tool Center Point 의 특정한 위치, 방위 또는 자세 (위치 및 방위) 부터 비로소 가용 가능한 (available) 센서 데이터 또는 센서 신호가 필요하면 가능하다. 그러므로, 제어 또는 조절 기술적으로 가능하자마자, 로봇은 보다 높이 우선순위화된 조절/제어 기능으로 자동적으로 전환할 수 있다.
하지만, 이 이외에, 본 발명에 따르면, 상기 보다 높이 우선순위화된 조절/제어 기능과 무관한 실행조건이 충족되어 있을 때에만, 상기 보다 높이 우선순위화된 조절/제어 기능으로 전환된다. 이를 통해, 로봇의 조절/제어 전략을 보다 정확히 묘사하고, 그리고 동시에 전환과 관련된 로봇의 비교적 빠른 반응을 달성하는 것이 가능하다.
본 발명에 따른 방법의 실시형태에 따르면, 상기 방법은 추가적으로 다음의 방법단계를 구비한다: 상기 로봇팔의 운동 동안, 상기 보다 높이 우선순위화된 조절/제어 기능과 무관한 상기 실행조건이 더 이상 충족되어 있지 않자마자, 낮게 우선순위화된 조절/제어 기능으로 전환하는 단계. 이를 통해, 실행조건이 더 이상 존재하지 않으면, 낮은 우선순위를 가진 조절/제어 기능으로 자동적으로 전환되는 것이 달성되며, 상기 조절/제어 기능을 이용해 로봇팔의 자동적인 운동이 계속된다.
본 발명에 따른 방법의 그 밖의 실시형태에 따르면, 상기 방법은 추가적으로 다음의 방법단계를 구비한다: 상기 로봇팔의 운동 동안, 상기 보다 높이 우선순위화된 조절/제어 기능을 이용한 상기 로봇팔의 안정적인 운동이 불가능하자마자, 낮게 우선순위화된 조절/제어 기능으로 전환하는 단계. 이를 통해, 로봇의 불안정적인 상태가 생기는 위험이 감소한다.
본 발명에 따른 방법의 변형에 따르면, 상기 방법은 상기 로봇팔의 운동을 위해 제공되어 있는 적어도 2개의 자유도 (degree of freedom) 를 위해 서로 독립적인 우선순위화된 조절/제어 기능을 구비할 수 있다. 그러면, 서로 다른 조절/제어 기능 간의 전환이 자유도당 그리고 서로 독립적으로 수행될 수 있는 것이 가능하다.
상기 자유도 중 적어도 하나를 위해, 보다 높이 우선순위화된 조절/제어 기능으로의 전환은, 상기 상응하는 보다 높이 우선순위화된 조절/제어 기능을 이용해 상기 로봇팔의 안정적인 운동이 가능하자마자 그리고 적어도 이 자유도를 위해 상기 보다 높이 우선순위화된 조절/제어 기능과 무관한 실행조건이 충족되어 있자마자 수행될 수 있다. 특히, 문제의 (in question) 자유도의 각각을 위해 자기 자신의 실행조건이 제공되어 있을 수 있으며, 상기 실행조건은 상기 문제의 자유도에 할당된 상기 보다 높이 우선순위화된 조절/제어 기능과 무관하다.
바람직하게는, 상기 독립적인 (independent) 실행조건은 상기 문제의 (in question) 조절/제어 기능의 자유도와는 다른 자유도에 할당되어 있다. 이를 통해, 경우에 따라서는 응용을 위해 유리한 조절/제어 전략이 구현될 수 있다.
상기 실행조건은 상기 로봇의 안전조건에 할당되어 있을 수 있다. 이것은 예컨대 충돌 감시를 통해 실현될 수 있으며, 따라서 예컨대 특정한 조절/제어 기능은, 충돌 감시가 로봇팔을 이용해 움직여진 물체의 충돌을 인식하지 않을 때에만 실행된다. 상기 안전조건은 안전 제어기를 통해 검사될 수 있다. 상기 안전 제어기는 특히 외부 안전 제어기, 예컨대 SPS 이며, 상기 안전 제어기는 상기 로봇의 상기 제어장치와 연결되어 있다.
본 발명에 따른 방법은 경우에 따라서는 상기 로봇팔의 자동적인 운동 동안 다수의 조절/제어 기능 간의 비교적 융통성 있는 및/또는 동적 (dynamic) 전환을 제공한다.
주변조건에서, 예컨대 실행조건에서, 바람직하게는 상기 제어장치에게 가용 가능한 모든 신호가 처리된다. 신호 소스는 모듈 안에 캡슐화되어 있을 수 있다. 마찬가지로, 관련된 알고리즘 (그들 간에 전환된다) 은 모듈 안에 캡슐화되어 있을 수 있다.
서로 다른 조절/제어 기능이 여러 가지 자유도를 위해 특히 독립적으로 사용되면, 발생된 제어 및/또는 조절 변수가 이전의 사이클 (cycle) 에서 사용되었는 지의 여부가, 경우에 따라서는 존재하는 대안적인 (alternative) 모듈에게 통지될 수 있다. 즉, 그의 제어 또는 조절 행동이 성공적이었는 지의 여부를 결정하는 것이 가능해진다.
본 발명에 따른 방법을 근거로 경우에 따라서는, 대안적인 조절 또는 제어가 시스템을 항상 안정화시킬 수 있는 것이 보장될 수 있다.
예컨대 제어기의 애플리케이션 인터페이스에게 경우에 따라서는 문법 (grammar) 이 제공됨으로써 (상기 문법과 함께 전환 조건 및 관련된 모듈이 분명히 정의될 수 있다), 제어 및 조절 대안의 조합 가능성은 바람직하게는 분명히 명령 (command) 안에서 정의된다.
작동 명령에서의, 즉 운동 레코드 안의 로봇팔의 자동적인 운동 동안의 각각의 직각 자유도에게는, 바람직하게는 컨트롤 (control) 을 떠맡기 위한, 목표값 및 매개변수화 (parametrization) 를 포함한 적어도 하나의 책임지고 있는 (responsible) 모듈이 할당될 수 있다. 추가적으로, 하나 또는 다수의 대안적인 모듈은 상응하는 목표값 및 파라미터 세트를 갖고 정의될 수 있으며, 상기 대안적인 모듈은 서로 다른 조절/제어 기능에 할당되어 있다. 대안은 일련 번호가 매겨질 수 있다. 이때, 수여된 번호는 대안의, 즉 문제의 조절/제어 기능의 우선순위에 상응할 수 있다. 예컨대, 가장 높은 우선순위를 가진 오리지널 모듈 또는 조절/제어 기능은 번호 0 을 구비할 수 있다. 이것이 실행될 수 없으면, 첫 번째 대안이 선택된다. 그는 번호 1 을 가진다. 이것이 또한 컨트롤을 떠맡을 수 없는 경우에는, 경우에 따라서는 번호 2 를 가진 두 번째 대안이 시도적으로 활성화될 수 있다. 이는 임의로 계속될 수 있다.
각각의 선택 대안에게 실행조건이 넘겨질 수 있다. 이것은 특히 불 연산식 (Boolean expression) 이다. 그 안에서, 예컨대 시스템 또는 제어장치에게 알려져 있는 임의의 값이 처리될 수 있다. 상기 값은 시스템 안에 가용 가능한 모든 모듈로부터 유래할 수 있다.
예컨대, 직교 (Cartesian) 좌표계의 x 방향으로 접촉력 (상기 접촉력을 갖고 로봇팔은 예컨대 물체를 내려놓아야 한다), 그리고 예컨대 카메라 시스템의 도움으로 직교 좌표계의 y 방향으로 위치를 설정할 수 있다. 이 목적을 위해, x 방향을 위해, 비교적 정밀한 제 1 힘조절 모듈 (힘조절 기능) 이 선택될 수 있다. 상기 모듈은, 비교적 정확히 접촉력을 설정하기 위해 또는 의도된 접촉력이 로봇을 이용해 움직여진 물체에 비교적 정확히 작용하도록 로봇팔을 움직이기 위해 셋업되어 있을 수 있다. 하지만 상기 물체와 그의 환경과의 접촉이 이미 발생되는 것이 조건이다. 제곱 조절오차가 일정 (constant)ε 환경의 내에 있어야 하는 것이 실행조건으로서 제시될 수 있다. 그러하지 않은 동안은, 제 2 힘조절 모듈 (힘조절 기능) 이 로봇팔의 운동의 컨트롤을 떠맡을 수 있다. 상기 모듈은 예컨대 상기 물체와 표면과의 접촉 발생을 위해 최적화되어 있다. 하지만 그는 접촉력이 이미 측정 가능할 때에만 활성화된다. 이는 예컨대 실행조건 “힘 > 100N”과 함께 보장된다. 상기 실행조건이 충족되어 있지 않은 경우에는, 속도제어가 로봇팔의 운동의 컨트롤을 떠맡을 수 있다. 하지만 이는 예컨대 충돌 저지 모듈이 충돌 위험을 보고하지 않는다는 주변조건 (실행조건) 하에만 발생한다.
이 예를 위해, y 방향을 위해 카메라 시스템이 선택되고 그리고 상응하는 주변조건 (실행조건) 이 작성되어 있을 수 있다. 상기 주변조건 안에서, x 방향으로 이미 물체와 그의 환경과의 안정적인 접촉이 이루어졌으면 그리고 카메라 시스템이 예컨대 배치되어야 하는 영상 특징을 이미 인식했으면 카메라 시스템이 단지 로봇팔의 운동의 컨트롤을 떠맡는 것이 바람직하게 보장될 수 있다. 다른 경우에는, 영상 특징이 인식될 때까지, 사전 정의된 속도를 갖고 로봇팔이 이동될 수 있다.
각각의 관련된 조절/제어 모듈 또는 각각의 조절/제어 기능은 예컨대 특히 주기적으로 플래그 (flag) 를 함께 공급할 수 있다. 이것은 예컨대 할당된 조절/제어 기능이 원칙적으로 로봇팔의 운동의 컨트롤을 떠맡을 수 있는 능력이 있는 지의 여부를 신호로 알린다. 이는 예컨대 그것이“true”로 설정되어 있으면 그러하다. 이 플래그는 의무적으로 항상 실행조건“AND”와 결합되어 있을 수 있다. 이로써, 안정적인 제어변수만 활성화될 수 있는 것이 보장될 수 있다. 그러므로, 안정성 책임은 상응하는 모듈에 또는 상응하는 조절/제어 기능에 있다.
제어 사이클당 모든 관련된 모듈 신호가 내부에, 즉 제어장치 안에 수집될 수 있으며, 그리고 상응하여 상술한 바와 같이 평가될 수 있다. 결과로서 특히 각각의 자유도를 위해 제어변수가 생긴다. 이것은 그 후 하부 조절/제어층에게 전달된다.
제시되어 있는 대안적인 모듈 중 어느 것도 컨트롤을 떠맡을 수 없는 경우에는, Default-Backup 제어로 전환될 수 있다. 이 Backup 제어는 로봇팔의 운동을 안정화시키는 과제만 갖고 있다. 그는 현재의 애플리케이션 과제를 이행하는데 기여하지 않는다. 그러므로 애플리케이션에게 오류보고가 발생될 수 있으며, 상기 애플리케이션은 상응하여 이에 반응할 수 있다.
각각의 조절/제어 모듈 또는 각각의 조절/제어 기능은 다음 사이클에서 (다음의 제어 사이클에서), 그에 의해 발생된 제어변수가 이용되었는 지의 여부에 대해 알려줄 수 있다. 현재의 사이클을 위한 안정적인 제어변수를 발생시킬 수 있기 위해, 상응하는 조절/제어 모듈은 경우에 따라서는 이 정보를 필요로 한다. 이로써, 로봇이 실제로 뒤따르지 않으면서 경우에 따라서는 사용된 적분기가 오버런하고 그리고 보간기가 계속 작동되는 것이 저지된다.
본 발명의 실시예는 첨부된 개략적인 도면에 일례적으로 도시되어 있다.
도 1 은 로봇팔과 제어장치를 가진 로봇,
도 2 는 로봇팔의 고정장치에 고정되어 있으며 물체를 붙잡는 그립퍼로서 설계된 말단장치,
도 3 은 로봇의 작동을 도시하고 있는 표,
도 4 는 로봇팔의 고정장치에 고정되어 있으며 물체를 붙잡는 그립퍼로서 설계된 그 밖의 말단장치,
도 5 는 그 밖의 표이다.
도 1 은 로봇팔과 제어장치를 가진 로봇,
도 2 는 로봇팔의 고정장치에 고정되어 있으며 물체를 붙잡는 그립퍼로서 설계된 말단장치,
도 3 은 로봇의 작동을 도시하고 있는 표,
도 4 는 로봇팔의 고정장치에 고정되어 있으며 물체를 붙잡는 그립퍼로서 설계된 그 밖의 말단장치,
도 5 는 그 밖의 표이다.
도 1 은 로봇 (R) 을 보이고 있으며, 상기 로봇은 로봇팔 (M) 과 제어장치 (S) 를 구비한다. 로봇팔 (M) 은 본질적으로 로봇 (R) 의 이동식 부품이며, 잇달아 있는 다수의 부재 (1) 를 포함하고, 상기 부재는 관절 (2) 을 이용해 서로 연결되어 있다. 그의 단부 중 하나에, 로봇팔 (M) 은 예컨대 플랜지 형태의 고정장치 (3) 를 구비하며, 상기 플랜지에는 예컨대 그립퍼 (gripper, 4) 형태의 말단장치 (end effector) 가 고정될 수 있다. 그립퍼 (4) 는 예컨대 그립핑 조 (gripping jaw, 5) 를 구비하며, 상기 그립핑 조를 이용해 그립퍼 (4) 는 물체 (6) 를 붙잡을 수 있고, 따라서 상기 물체는 로봇 (R) 을 이용해 움직여질 수 있다. 붙잡힌 물체 (6) 를 가진 그립퍼 (4) 와, 고정장치 (3) 와, 로봇팔 (M) 의 부품은 도 2 에 보다 상세히 도시되어 있다.
이 이외에, 로봇팔 (M) 은 제어장치 (S) 와 연결된 상세히 도시되어 있지 않은 드라이브를 구비하며, 상기 드라이브를 이용해 부재 (1) 는 관절 (2) 에 할당된 축과 관련하여 서로 상대적으로 움직여질 수 있다. 본 실시예의 경우, 도면에는 축 (A) 중 단 하나만 도시되어 있으며, 상기 축과 관련하여 고정장치 (4) 는 직접적으로 움직여질 수 있고, 특히 회전될 수 있다.
상기 드라이브는 예컨대 전기 드라이브 (electric drive) 이며, 그리고 특히 로봇 (R) 의 자동운전 (automatic operation) 중 제어장치 (S) 에 의해 제어되고, 따라서 고정장치 (3) 또는 로봇 (R) 의 이른바 Tool Center Point 는 사전 결정된 운동을 자동적으로 실행한다. 이 목적을 위해, 제어장치 (S) 에는 상응하는 사용자 프로그램 (user program) 이 진행된다. 특히, 제어장치 (S) 는 자동운전 중 상기 드라이브를 조절하도록 설계되어 있을 수 있다. 그립퍼 (4) 도 제어장치 (S) 와 연결되어 있으며, 따라서 상기 제어장치는 물체 (6) 의 붙잡음 및 풀어놓음을 제어할 수 있다.
본 실시예의 경우, 그립퍼 (4) 는 힘/토크 센서 (7), 카메라 (8), 및 거리 센서 (9) 를 구비하며, 상기 힘/토크 센서와 상기 카메라와 상기 거리 센서는 마찬가지로 제어장치 (S) 와 연결되어 있고, 따라서 상기 제어장치에게는 상기 힘/토크 센서 (7) 에 의해, 상기 카메라 (8) 에 의해, 그리고 상기 거리 센서 (9) 에 의해 발생된 신호가 제공된다.
도 2 에 도시되어 있는 실시예에서, 카메라 (8) 는 특히 그립퍼 (4) 의 충격 방향 (direction of impact) 으로부터의 영상을 촬영하기 위해 셋업되어 있으며, 그리고 거리 센서 (9) 는 마찬가지로 그립퍼 (4) 의 충격 방향으로의 거리 (d) 를 검출하기 위해 셋업되어 있다. 예컨대 그립퍼 (4) 가, 그의 충격 방향이 직교 (Cartesian) 세계 좌표계 (10) 의 x 방향으로 정렬되어 있게 정렬되어 있다면, 본 실시예의 경우 카메라 (8) 와 거리 센서 (9) 는 마찬가지로 좌표계 (10) 의 x 방향으로 정렬되어 있다. 이는 도 2 에 도시되어 있다. 그립퍼 (4) 의 충격 방향은 특히 도 1 에 도시되어 있는 축 (A) 의 방향으로 정렬되어 있다.
도 2 에 도시되어 있는 실시예의 경우, 로봇 (R) 은 그립퍼 (4) 를 이용해 붙잡힌 물체 (6) 를 스톱 (stop, 12) 에 접한 바닥 (11) 위에 내려놓아야 한다. 이 목표위치에 내려놓여 있을 때의 물체 (6) 가 도 2 에 파선으로 도시되어 있다. 물체 (6) 를 그의 목표위치로 움직이기 위해, 그리고 그곳에 내려놓기 위해, 제어장치 (S) 안에는 조절 및/또는 제어 전략이 특히 사용자 프로그램의 부분으로서 저장되어 있고, 상기 조절 및/또는 제어 전략은 도 3 에 도시되어 있는 표에 요약되어 있다.
본 실시예의 경우, 상기 목표위치에서 물체 (6) 는 바닥 (11) 의 표면과, 그리고 스톱 (12) 의 표면과 접촉해 있다. 이를 위해, 제어장치 (S) 는, 힘/토크 센서 (7) 에 의해 발생된 신호를 근거로 한 힘조절, 카메라 (8) 에 의해 발생된 신호를 근거로 한 위치조절, 및 거리 센서 (9) 에 의해 발생된 신호를 근거로 한 거리조절을 실현하기 위해 형성되어 있다. 특히, 제어장치 (S) 는, 여러 가지 방향 및/또는 방위 또는 그립퍼 (4) 의 자유도에 있어서 여러 가지 조절 및/또는 제어 전략을 서로 독립적으로 실현하도록 셋업되어 있다. 이 이외에, 경우에 따라서는 상기 목표위치를 향한 경로에서, 미리 알려져 있지 않은 방해물 또는 장애물 (13) 과의 충돌이 저지되어야 한다.
본 실시예의 경우, 제어장치 (S) 에게는 카메라 (8), 거리 센서 (9) 및 힘/토크 센서 (7) 를 근거로 다음의 정보 또는 신호가 제공된다:
- 측정된 힘 (F), 상기 힘으로부터, 예컨대 목표힘과 관련하여 y 방향으로의 제곱오차 Fy - error 2 가 산출될 수 있다,
- 카메라 (8) 로부터 유래하는 신호를 근거로, 제어장치 (S) 는 장애물 (13), 그리고 그러므로 물체 (6) 의 운동 동안의 충돌 위험, 및 스톱 (12) 을 인식할 수 있다. 이는 예컨대 y 방향으로의 위치조절을 위해 사용될 수 있다.
마찬가지로 다음의 제어/조절 기능이 제공된다:
- 미리 정해져 있는 목표힘 (Fsoll) 을 달성하기 위한 (상기 목표힘을 갖고 물체 (6) 는 바닥 (11) 및 스톱 (12) 을 터치해야 한다), 힘/토크 센서 (7) 를 기초로 한 힘조절, 특히 직교 (Cartesian) 힘조절,
- 속도제어, 특히 직교 (Cartesian) 속도제어 (경로 계획장치 및 보간기), 상기 속도제어와 함께 물체 (6) 는 - 이 모드에서 작동되면 - 움직여야 한다,
- 거리 센서 (9) 를 기초로 한 거리조절.
본 실시예의 경우, 제어장치 (S) 는 도 3 의 표를 이용해 요약되어 있는 위계적 조절/제어 구조, 그리고 그러므로 한 조절 및/또는 제어 기능으로부터 다른 조절 및/또는 제어 기능으로의 상태전이 (state transition) 를 실현한다.
본 실시예의 경우, 제어장치 (S) 는 로봇팔 (M) 을 경로 계획 (path planning) 을 이용해 움직이며, 따라서 물체 (6) 는 적어도 상기 목표위치 근처로 움직여진다. 장애물 (13) 은 카메라 (8) 에 의해 발생된 신호를 근거로 인식된다.
물체 (6) 가 거의 상기 목표위치 안에 도달하면, 제어장치 (S) 는 힘/토크 센서 (7) 에 의해 발생된 신호를 근거로 x 방향으로뿐만 아니라 y 방향으로 예컨대 10 N 의 접촉력을 설정한다. 그러므로, x 및 y 방향을 위해 힘조절은 가장 높은 우선순위 (prioriy) 를 갖고 활성화된다. 하지만 이것은 힘조절이 조절준비 완료를 보고했을 때에만 (필요기준 (necessary criterion)) 그리고 실행조건 (충분기준 (sufficient criterion)) 이 충족되어 있을 때에만 활성적이다. 이는 x 방향을 위해 예컨대, 물체 (6) 가 이미 스톱 (12) 에 도달했고, 따라서 y 방향으로의 접촉력은 미리 정해져 있는 허용오차 범위 내에 이미 있다는 것을 의미한다. 이에 반해, y 방향으로는, 힘조절은 물체 (6) 가 이미 스톱 (12) 의 근처에 있어야만 활성화된다.
필요 또는 충분 기준이 충족되어 있지 않은 경우에는, 낮은 우선순위를 가진 다음 대안 (alternative) 이 검사된다: 여기에서는, 정의된 (defined) 속도를 갖고 상기 접촉부를 향해 이동하기 위해, 두 자유도에서, 즉 x 방향에서 및 y 방향에서, 속도제어로 전환하는 것이 시도된다. 이미 물체 (6) 가 스톱 (12) 에 접해 있으면, 즉 y 방향으로의 접촉력이 허용오차 범위 내에 있으면, 비교적 낮은 속도를 갖고 x 방향으로 이동된다. 마찬가지로, 카메라 (8) 에 의해 발생된 신호를 근거로 스톱 (12) 이 인식되었으면, 비교적 낮은 속도를 갖고 y 방향으로 이동된다.
스톱 (12) 이 아직 인식되지 않은 동안은, x 방향으로 거리조절이 활성화되며, 또는 그의 필요기준이 충족되어 있지 않으면 (거리 측정은 거리 센서 (9) 를 이용해 가능하지 않다) 속도제어가 활성화된다. 거리조절과 함께, 스톱 (12) 을 향한 주행시 바닥 (11) 에 대한 거리 (d) 가 유지되는 것이 보장된다. 이에 반해, y 방향으로, 충돌 위험이 인식되지 않는 동안은 비교적 높은 속도를 갖고 스톱 (12) 의 방향으로 이동된다.
충돌 위험이 인식되고, 그리고 보다 높이 우선순위화된 제어 또는 조절 대안이 상응하는 필요 및 충분 기준을 충족시키지 않는 경우에는, 속도는 영 (zero) 으로 감소한다.
그러므로, 제어장치 (S) 는, 한 제어/조절 기능으로부터 다른 제어/조절 기능으로의 비교적 복합적인 상태전이 (state transition) 를 실현하기 위해 셋업되어 있다.
요약하자면 다음과 같다: 각각의 제어/조절 기능은 우선순위를 갖는다. 특정한 제어/조절 기능이 활성화될 수 있도록, 필요기준이 충족되어야 한다. 이를 통해, 상응하는 제어/조절 기능의 안정성이 보장되며, 즉 상기 기능은 로봇 (R) 이 이 제어/조절 기능과 함께 안정적으로 제어 또는 조절될 수 있는 지의 여부를 결정한다. 추가적으로, 특히 자유로이 정의될 수 있는 충분기준이 충족되어 있어야 한다. 이를 통해, 예컨대, 제어/조절 기능이 응용의 정확한 컨텍스트 (context) 안에서 이용되는 것이 달성된다.
한 제어/조절 기능으로부터 다른 제어/조절 기능으로의 전환은 두 방향에서 수행될 수 있다 (예컨대 속도제어로부터 힘조절로, 그리고 정반대로). 상기 전환은 특히 제어장치 (S) 의 한 제어 사이클 내에서 수행되며, 이를 통해 사전 처리 대기 시간 또는 그 밖의 활성화 지연이 저지될 수 있다. 결정은 특히“반사 작용으로” 상기 제어 사이클 내에서 수행되며, 이로 인해, 보다 느린 애플리케이션/진행 제어가 필요해지지 않는다.
전환은 자유도당 서로 독립적으로 수행될 수 있다. 충분 실행조건 또는 충분기준의, 경우에 따라서는 사용된 불 연산식 (Boolean expresssion) 을 위해, 임의의 신호가 동원될 수 있다. 이것은 미처리된 또는 처리된 센서 신호, 제어/조절 기능의 중간 결과 및/또는 감시, 계획 및 추정 알고리즘의 결과일 수 있다.
도 4 는 대안적인 그립퍼 (44) 를 보이고 있으며, 이 그립퍼는 도 2 에 도시되어 있는 그립퍼 (4) 대신 로봇팔 (M) 의 고정장치 (3) 에 고정될 수 있다. 본 실시예의 경우, 그립퍼 (44) 는 마찬가지로 힘/토크 센서 (7), 카메라 (8), 및 거리 센서 (9) 를 구비하며, 상기 힘/토크 센서와 상기 카메라와 상기 거리 센서는 마찬가지로 제어장치 (S) 와 연결되어 있고, 따라서 상기 제어장치에게는 상기 힘/토크 센서 (7) 에 의해, 상기 카메라 (8) 에 의해, 그리고 상기 거리 센서 (9) 에 의해 발생된 신호가 제공된다.
도 4 에 도시되어 있는 실시예에서, 카메라 (8) 는 특히 그립퍼 (44) 의 충격 방향에 대해 수직인 평면으로부터의 2차원 영상을 촬영하기 위해 셋업되어 있다. 거리 센서 (9) 는 그립퍼 (44) 의 충격 방향에 대해 수직인 방향으로의 거리 (d) 를 검출하기 위해 셋업되어 있다. 예컨대 그립퍼 (44) 가, 그의 충격 방향이 직교 (Cartesian) 세계 좌표계 (40) 의 z 방향으로 정렬되어 있게 정렬되어 있으면, 본 실시예의 경우 카메라 (8) 는 좌표계 (40) 의 x-y 평면에서의 2차원 영상을 촬영하기 위해 셋업되어 있으며, 그리고 거리 센서 (9) 는 좌표계 (40) 의 y 방향으로 정렬되어 있다. 이는 도 4 에 도시되어 있다. 카메라 (8) 는 특히 위치 측정 시스템으로서 사용되며, 상기 위치 측정 시스템은 x 및 y 방향으로의 목표위치의 비교적 대략적인 위치를 결정한다. 이 정보는 x 및 y 방향으로의 위치조절을 위해 동원될 수 있다.
도 4 에 도시되어 있는 실시예의 경우, 로봇 (R) 은 그립퍼 (44) 를 이용해 붙잡힌 물체 (46) 를 바닥 (11) 위에, 측벽 (14) 으로부터 미리 정해져 있는 거리 (dsoll) 을 두고 내려놓아야 한다. 물체 (46) 를 그의 목표위치로 움직이기 위해, 그리고 그곳에 내려놓기 위해, 제어장치 (S) 안에는 조절 및/또는 제어 전략이 저장되어 있으며, 상기 조절 및/또는 제어 전략은 도 5 에 도시되어 있는 표에 요약되어 있다.
우선 제어장치 (S) 는, 물체 (46) 를 미리 정해져 있는 경로를 따라 적어도 거의 물체 (46) 의 목표위치를 향해 움직이도록 로봇팔 (M) 의 드라이브를 제어한다.
좌표계 (40) 의 x 방향으로의 자유도를 위해, 카메라를 기반으로 한 위치조절을 이용한 x 방향으로의 운동을 계속하는 것이 가능하자마자, 이 자유도를 위해 자동적으로 제어장치 (S) 는 위치조절로 전환된다. 제어장치 (S) 는 카메라 (8) 에 의해 발생된 신호를 근거로 한 x 방향으로의 위치조절의 가능성을 인식한다.
좌표계 (40) 의 y 방향으로의 자유도를 위해, 위치조절을 이용한 y 방향으로의 운동을 계속하는 것이 가능하자마자, 이 자유도를 위해 자동적으로 제어장치 (S) 는 마찬가지로 위치조절로 전환된다. 제어장치 (S) 는 마찬가지로 카메라 (8) 에 의해 발생된 신호를 근거로 한 y 방향으로의 위치조절의 가능성을 인식한다. 물체 (46) 가 측벽 (14) 에 충분히 가까이 데려와지고, 따라서 거리 센서 (9) 가 신뢰성 있게 거리 (d) 를 검출할 수 있으면, 자동적으로 제어장치 (S) 는 y 방향을 위한 거리조절로 전환된다.
좌표계 (40) 의 z 방향으로의 자유도를 위해, 힘조절을 이용한 z 방향으로의 운동을 계속하는 것이 가능하자마자, 이 자유도를 위해 자동적으로 제어장치 (S) 는 힘조절로 전환된다. 제어장치 (S) 는 예컨대 힘/토크 센서 (7) 에 의해 발생된 신호를 근거로 한 z 방향으로의 힘조절의 가능성을 인식하며, 상기 신호는 그립퍼 (44) 또는 물체 (46) 상에서 힘/토크 센서 (7) 를 이용해 검출된 최소힘에 할당되어 있다.
그립퍼 (46) 의 나머지 3 자유도 (방위 또는 회전) 와 관련된 자유도를 위해, 가능하자마자 본 실시예의 경우 마찬가지로 경로 계획으로부터 힘조절로 전환된다.
따라서, 특정한 보다 높이 우선순위화된 제어/조절 기능이 활성화될 수 있도록 또는 활성화되도록, 한 조절 및/또는 제어 전략으로부터 다음으로 보다 높이 우선순위화된 조절 및/또는 제어 전략으로의 상기 기술된 전환을 위해 각각 필요기준이 충족되어야 한다. 이를 통해, 상응하는 제어/조절 기능의 안정성이 보장되며, 즉 상기 기능은 로봇 (R) 이 이 제어/조절 기능과 함께 안정적으로 제어 또는 조절될 수 있는 지의 여부를 결정한다.
추가적으로, 보다 높이 우선순위화된 제어/조절 기능으로의 전환을 위해, 특히 자유로이 정의될 수 있는 충분기준이 또한 충족되어 있어야 한다. 이는 예컨대 환경의 감각적 (sensory) 검출을 통해 충족된다. 필요기준은 예컨대 다른 자유도의 현재 상태를 근거로 발생할 수 있거나 또는 안전기준 (safety criterion) 일 수도 있으며, 예컨대 보다 높이 우선순위화된 제어/조절 기능으로의 전환은 특정한 미리 정해져 있는 또는 미리 정해질 수 있는 안전 규정이 충족되어 있을 때에만 수행된다. 이렇게 하여 예컨대, 로봇 (R) 이 위치조절을 위해, 드문 위치에 너무 가까이 있으면 (왜냐하면 그러면 축속도를 초과하는 위험이 있을 수 있기 때문이다), 로봇 (R) 의 제어장치 (S) 와 연결되어 있는 외부 안전 제어기 (15) 가 예컨대 “거부하는 것이”가능하다. 마찬가지로, 안전 제어기 (15) 는, 안전 기술적인 이유로 인해 로봇 (R) 이 외부 센서에 기초를 둔 특정한 제어회로가 금지되어 있는 작동모드 (예컨대 가동 개시 모드) 에 있으면 제어회로의 활성화를 저지할 수도 있다. 동일한 방식으로, 안전 제어기 (15) 는, 로봇 (R) 이 작업공간의 가장자리에 너무 가까이 있거나 또는 사용자에게 위험할 수 있는 작업공간 안에 심지어 사람이 위치해 있으면 조절 및 제어 기능으로 전환되는 것을 저지할 수 있다.
본 발명에 따른 방법은 자동운전을 위해서뿐만 아니라 로봇팔 (M) 이 자동적으로 제어장치 (S) 의 도움으로 움직여지는 다른 로봇 작동모드 (예컨대 가동 개시 또는 수동 방법 (manual method)) 에서도 사용될 수 있다.
Claims (8)
- 로봇 (R) 을 작동시키기 위한 방법으로서, 상기 로봇은 잇달아 있는 다수의 부재 (1) 와, 말단장치 (4, 44) 를 고정시키기 위한 고정장치 (3) 와, 부재 (1) 를 움직이기 위한 드라이브를 구비한 로봇팔 (M), 및 상기 드라이브와 연결된 제어장치 (S) 를 구비하며, 상기 제어장치 안에는, 서로 달리 우선순위화된 다수의 조절/제어 기능을 가진 위계적 조절/제어 전략이 저장되어 있고, 상기 방법은 다음의 방법단계:
상기 로봇팔 (M) 이 제 1 조절/제어 기능을 수행하고, 제 1 조절/제어 기능보다 높이 우선순위화된 제 2 조절/제어 기능을 수행하는 것이 아닌 제 1 조절/제어 기능을 수행하는 단계;
상기 제 1 조절/제어 기능보다 높이 우선순위화된 제 2 조절/제어 기능과 무관한 실행조건이 충족되는지 판단하는 단계;
상기 로봇팔 (M) 의 운동 동안, 상기 제 1 조절/제어 기능 보다 높이 우선순위화된 제 2 조절/제어 기능을 이용해 상기 로봇팔 (M) 의 안정적인 운동이 가능하자마자 그리고 상기 제 1 조절/제어 기능 보다 높이 우선순위화된 제 2 조절/제어 기능과 무관한 실행조건이 충족되어 있자마자, 상기 제 1 조절/제어 기능으로부터 상기 제 1 조절/제어 기능 보다 높이 우선순위화된 제 2 조절/제어 기능으로 전환하는 단계; 를 포함하고,
상기 다수의 조절/제어 기능은 적어도 2 개의 자유도로 상기 로봇팔 (M) 을 움직이기 위한 조절/제어 기능을 구비하고, 상기 적어도 2 개의 자유도 중 하나로 상기 로봇팔 (M) 을 움직이기 위한 조절/제어 기능은 상기 적어도 2 개의 자유도 중 나머지 자유도로 상기 로봇팔 (M) 을 움직이기 위한 조절/제어 기능과 독립적이고,
상기 방법단계는 추가적으로,
상기 적어도 2 개의 자유도 중 하나에서 상기 로봇팔 (M) 을 움직이기 위한 조절/제어 기능 간의 전환이 나머지 자유도로 상기 로봇팔 (M) 을 움직이기 위한 조절/제어 기능 간의 전환과 독립적으로 일어나는 단계; 및
a) 상기 실행조건이 더 이상 충족되어 있지 않은 것 및/또는 b) 상기 보다 높이 우선순위화된 조절/제어 기능을 이용한 상기 로봇팔 (M) 의 안정적인 운동이 불가능한 것이 발생되는지 판단하고, a) 및 b) 중 적어도 어느 하나가 발생되면, 상기 제 1 조절/제어 기능 보다 높이 우선순위화된 제 2 조절/제어 기능에서 낮게 우선순위화된 조절/제어 기능으로 전환하는 단계를 구비한, 로봇 (R) 을 작동시키기 위한 방법. - 제 1 항에 있어서, 상기 자유도 중 적어도 하나를 위해, 보다 높이 우선순위화된 조절/제어 기능으로의 전환은, 상응하는 보다 높이 우선순위화된 조절/제어 기능을 이용해 상기 로봇팔 (M) 의 안정적인 운동이 가능하자마자 그리고 적어도 이 자유도를 위해 상기 보다 높이 우선순위화된 조절/제어 기능과 무관한 실행조건이 충족되어 있자마자 수행되는 방법.
- 제 1 항에 있어서, 독립적인 (independent) 상기 실행조건은 문제의 (in question) 조절/제어 기능의 자유도와는 다른 자유도에 할당되어 있는 방법.
- 제 1 항에 있어서, 상기 실행조건은 상기 로봇 (R) 의 안전조건에 할당되어 있는 방법.
- 제 4 항에 있어서, 안전 제어기 (15) 를 통한 상기 안전조건의 검사를 구비한 방법.
- 로봇으로서, 상기 로봇은
- 잇달아 있는 다수의 부재 (1) 와, 말단장치 (4, 46) 를 고정시키기 위한 고정장치 (3) 와, 부재 (1) 를 움직이기 위한 드라이브를 구비한 로봇팔 (M), 및
- 상기 드라이브와 연결된 제어장치 (S) 를 구비하며, 상기 제어장치 안에는, 서로 달리 우선순위화된 다수의 조절/제어 기능을 가진 위계적 조절/제어 전략이 저장되어 있고,
상기 다수의 조절/제어 기능은 적어도 2 개의 자유도로 상기 로봇팔 (M) 을 움직이기 위한 조절/제어 기능을 포함하고, 상기 적어도 2 개의 자유도 중 하나로 상기 로봇팔 (M) 을 움직이기 위한 조절/제어 기능은 상기 적어도 2 개의 자유도 중 나머지 자유도로 상기 로봇팔 (M) 을 움직이기 위한 조절/제어 기능과 독립적이고,
그리고 상기 제어장치는 상기 로봇팔 (M) 의 운동 동안, 보다 높이 우선순위화된 조절/제어 기능을 이용해 상기 로봇팔 (M) 의 안정적인 운동이 가능하자마자 그리고 상기 보다 높이 우선순위화된 조절/제어 기능과 무관한 실행조건이 충족되어 있자마자, 제 1 조절/제어 기능 보다 높이 우선순위화된 제 2 조절/제어 기능이 아닌 제 1 조절/제어 기능으로부터 상기 제 1 조절/제어 기능 보다 높이 우선순위화된 제 2 조절/제어 기능을 수행하도록 전환하고,
상기 제어장치는 상기 적어도 2 개의 자유도 중 하나에서 상기 로봇팔 (M) 을 움직이기 위한 조절/제어 기능 간의 전환이 상기 적어도 2 개의 자유도 중 나머지 자유도로 상기 로봇팔 (M) 을 움직이기 위한 조절/제어 기능 간의 전환과 독립적으로 일어나도록 하고,
상기 제어 장치는 추가적으로, a) 상기 실행조건이 더 이상 충족되어 있지 않은 것 및/또는 b) 상기 보다 높이 우선순위화된 조절/제어 기능을 이용한 상기 로봇팔 (M) 의 안정적인 운동이 불가능한 것이 발생하는지 판단하고, a) 및 b) 중 적어도 어느 하나가 발생하면, 상기 제 1 조절/제어 기능 보다 높이 우선순위화된 제 2 조절/제어 기능에서 낮게 우선순위화된 조절/제어 기능으로 전환하는 로봇. - 삭제
- 삭제
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011005513A DE102011005513A1 (de) | 2011-03-14 | 2011-03-14 | Roboter und Verfahren zum Betreiben eines Roboters |
DE102011005513.4 | 2011-03-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120104939A KR20120104939A (ko) | 2012-09-24 |
KR101947825B1 true KR101947825B1 (ko) | 2019-02-13 |
Family
ID=45939112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120023489A KR101947825B1 (ko) | 2011-03-14 | 2012-03-07 | 로봇, 및 로봇을 작동시키기 위한 방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9317032B2 (ko) |
EP (1) | EP2500789B1 (ko) |
KR (1) | KR101947825B1 (ko) |
CN (1) | CN102672711B (ko) |
DE (1) | DE102011005513A1 (ko) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2523831B (en) * | 2014-03-07 | 2020-09-30 | Cmr Surgical Ltd | Surgical arm |
JP6443837B2 (ja) * | 2014-09-29 | 2018-12-26 | セイコーエプソン株式会社 | ロボット、ロボットシステム、制御装置、及び制御方法 |
DE102014226239A1 (de) * | 2014-12-17 | 2016-06-23 | Kuka Roboter Gmbh | Verfahren zum sicheren Einkoppeln eines Eingabegerätes |
GB2538497B (en) * | 2015-05-14 | 2020-10-28 | Cmr Surgical Ltd | Torque sensing in a surgical robotic wrist |
CN106405368A (zh) * | 2015-07-31 | 2017-02-15 | 精工爱普生株式会社 | 电子部件搬送装置以及电子部件检查装置 |
DE102015011910A1 (de) * | 2015-09-11 | 2017-03-16 | Kuka Roboter Gmbh | Verfahren und System zum Steuern einer Roboteranordnung |
DE102017202195A1 (de) * | 2016-03-09 | 2017-09-14 | Heidelberger Druckmaschinen Ag | Mehrachs-Roboter mit Antrieben, einem Werkzeugkopf und einer Schleppkette zum Führen von flexiblen Leitungen |
CN106020024B (zh) * | 2016-05-23 | 2019-02-15 | 广东工业大学 | 一种机械臂末端运动补偿装置及其补偿方法 |
JP6444942B2 (ja) * | 2016-05-26 | 2018-12-26 | ファナック株式会社 | 衝撃緩和部材を有するツールを備えたロボット |
CN106372552B (zh) * | 2016-08-29 | 2019-03-26 | 北京理工大学 | 人体目标识别定位方法 |
FR3076239B1 (fr) * | 2017-12-29 | 2020-01-10 | Safran Nacelles | Dispositif pour la depose d'un cordon d'une substance plastique et son procede de mise en oeuvre |
KR102137615B1 (ko) * | 2018-11-07 | 2020-07-24 | 재단법인대구경북과학기술원 | 검사용 로봇 그리퍼 및 그 제어 방법 |
DE102020214231A1 (de) | 2020-11-12 | 2022-05-12 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum steuern einer robotervorrichtung und robotersteuereinrichtung |
DE102022208769B3 (de) | 2022-08-24 | 2023-11-09 | Kuka Deutschland Gmbh | Roboterbahnplanung und -steuerung |
WO2024177839A1 (en) * | 2023-02-11 | 2024-08-29 | Ghost Robotics Corporation | Decoupled wrist-agnostic control for modular robotic arm |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006343828A (ja) | 2005-06-07 | 2006-12-21 | Fanuc Ltd | ロボット制御装置及びロボット制御方法 |
WO2011001569A1 (ja) * | 2009-07-02 | 2011-01-06 | パナソニック株式会社 | ロボット、ロボットアームの制御装置、及びロボットアームの制御プログラム |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE453168B (sv) * | 1982-04-19 | 1988-01-18 | Lennart Palmer | Anordning for att utbytbart anordna verktyg pa en industrirobot |
DD242588A1 (de) * | 1985-11-14 | 1987-02-04 | Robotron Rationalisierung | Anordnung zur sensorsignalverarbeitung fuer industrieroboter |
US4999553A (en) * | 1989-12-28 | 1991-03-12 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method and apparatus for configuration control of redundant robots |
US5430643A (en) * | 1992-03-11 | 1995-07-04 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Configuration control of seven degree of freedom arms |
US5737500A (en) * | 1992-03-11 | 1998-04-07 | California Institute Of Technology | Mobile dexterous siren degree of freedom robot arm with real-time control system |
JP2925072B2 (ja) * | 1996-08-07 | 1999-07-26 | ファナック株式会社 | ロボットの位置教示のための移動制御方式 |
US8467904B2 (en) * | 2005-12-22 | 2013-06-18 | Honda Motor Co., Ltd. | Reconstruction, retargetting, tracking, and estimation of pose of articulated systems |
US8924021B2 (en) * | 2006-04-27 | 2014-12-30 | Honda Motor Co., Ltd. | Control of robots from human motion descriptors |
JP4235214B2 (ja) * | 2006-07-04 | 2009-03-11 | ファナック株式会社 | ロボットプログラムを作成するための装置、プログラム、記録媒体及び方法 |
EP1914044A1 (de) * | 2006-10-20 | 2008-04-23 | Abb Research Ltd. | System und Verfahren zur Steuerung einer Bewegungsvorrichtung |
-
2011
- 2011-03-14 DE DE102011005513A patent/DE102011005513A1/de not_active Ceased
-
2012
- 2012-03-07 EP EP12158367.8A patent/EP2500789B1/de active Active
- 2012-03-07 KR KR1020120023489A patent/KR101947825B1/ko active IP Right Grant
- 2012-03-13 US US13/418,548 patent/US9317032B2/en active Active
- 2012-03-14 CN CN201210068650.0A patent/CN102672711B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006343828A (ja) | 2005-06-07 | 2006-12-21 | Fanuc Ltd | ロボット制御装置及びロボット制御方法 |
WO2011001569A1 (ja) * | 2009-07-02 | 2011-01-06 | パナソニック株式会社 | ロボット、ロボットアームの制御装置、及びロボットアームの制御プログラム |
Also Published As
Publication number | Publication date |
---|---|
EP2500789A2 (de) | 2012-09-19 |
DE102011005513A1 (de) | 2012-09-20 |
US20120239190A1 (en) | 2012-09-20 |
CN102672711B (zh) | 2015-11-25 |
KR20120104939A (ko) | 2012-09-24 |
US9317032B2 (en) | 2016-04-19 |
EP2500789B1 (de) | 2020-04-22 |
EP2500789A3 (de) | 2017-08-30 |
CN102672711A (zh) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101947825B1 (ko) | 로봇, 및 로봇을 작동시키기 위한 방법 | |
US11241796B2 (en) | Robot system and method for controlling robot system | |
US11090814B2 (en) | Robot control method | |
CN108495738B (zh) | 用于提供动态机器人控制系统的系统和方法 | |
US10759051B2 (en) | Architecture and methods for robotic mobile manipulation system | |
US8498745B2 (en) | Robot apparatus and gripping method for use in robot apparatus | |
Cherubini et al. | Multimodal control for human-robot cooperation | |
JP2008302496A (ja) | ロボットアームの制御装置及び制御方法、ロボット、及びロボットアームの制御プログラム | |
JP5849451B2 (ja) | ロボットの故障検出方法、制御装置およびロボット | |
KR102400668B1 (ko) | 매니퓰레이터와 입력 툴을 이용하여 대상물을 핸들링하는 방법 | |
JP6696341B2 (ja) | 制御方法 | |
WO2017175340A1 (ja) | 最適化装置及びそれを備えた垂直型多関節ロボット | |
Leeper et al. | Methods for collision-free arm teleoperation in clutter using constraints from 3d sensor data | |
JP2015186834A (ja) | ロボット制御装置、把持部制御装置、ロボット、把持部、ロボット制御方法、及びプログラム | |
JP2017007010A (ja) | ロボット、制御装置およびロボットシステム | |
Sarić et al. | Robotic surface assembly via contact state transitions | |
US10317201B2 (en) | Safety monitoring for a serial kinematic system | |
WO2018153474A1 (en) | Robot system, method for programming a robot manipulator and control system | |
JP6668629B2 (ja) | ロボット制御装置およびロボットシステム | |
CN113771026A (zh) | 一种提升安全控制性能的工业机器人及其控制方法 | |
Shi et al. | Mobile robotic assembly on a moving vehicle | |
US11833666B2 (en) | Method for assembling an operating member and an adapting member by a robot, robot, and controller | |
WO2024105779A1 (ja) | 制御装置およびコンピュータ | |
JP7259487B2 (ja) | 制御方法およびロボットシステム | |
Leeper et al. | Arm teleoperation in clutter using virtual constraints from real sensor data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |