KR101942538B1 - Pharmaceutical composition and functional food containing the dipeptide Glu-phe to improve metabolic diseases - Google Patents

Pharmaceutical composition and functional food containing the dipeptide Glu-phe to improve metabolic diseases Download PDF

Info

Publication number
KR101942538B1
KR101942538B1 KR1020170036970A KR20170036970A KR101942538B1 KR 101942538 B1 KR101942538 B1 KR 101942538B1 KR 1020170036970 A KR1020170036970 A KR 1020170036970A KR 20170036970 A KR20170036970 A KR 20170036970A KR 101942538 B1 KR101942538 B1 KR 101942538B1
Authority
KR
South Korea
Prior art keywords
phe
glu
hepatocytes
present
onion
Prior art date
Application number
KR1020170036970A
Other languages
Korean (ko)
Other versions
KR20180107967A (en
Inventor
문제학
이유건
조정용
전태일
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020170036970A priority Critical patent/KR101942538B1/en
Publication of KR20180107967A publication Critical patent/KR20180107967A/en
Application granted granted Critical
Publication of KR101942538B1 publication Critical patent/KR101942538B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06104Dipeptides with the first amino acid being acidic
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/185Vegetable proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/896Liliaceae (Lily family), e.g. daylily, plantain lily, Hyacinth or narcissus
    • A61K36/8962Allium, e.g. garden onion, leek, garlic or chives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/05Dipeptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/328Foods, ingredients or supplements having a functional effect on health having effect on glycaemic control and diabetes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/332Promoters of weight control and weight loss
    • Y10S514/866
    • Y10S514/909

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Polymers & Plastics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

본 발명은 대사성질환을 개선할 수 있는 약학조성물에 관한 것으로, 보다 구체적으로는 간세포 지방축적 억제능을 갖는 다이펩타이드 Glu-Phe의 신규 용도를 이용한 대사성질환 개선용 약학조성물에 관한 것이다.The present invention relates to a pharmaceutical composition capable of improving metabolic diseases, and more particularly, to a pharmaceutical composition for improving metabolic diseases using a novel use of a dipeptide Glu-Phe having the ability to inhibit hepatic cell fat accumulation.

Description

다이펩타이드 Glu-Phe를 이용한 대사성질환 개선용 약학조성물 및 건강기능성식품{Pharmaceutical composition and functional food containing the dipeptide Glu-phe to improve metabolic diseases}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pharmaceutical composition for improving metabolic diseases using dipeptide Glu-Phe and a pharmaceutical composition and functional food containing the dipeptide Glu-phe to improve metabolic diseases.

본 발명은 대사성질환을 개선할 수 있는 약학조성물에 관한 것으로, 보다 구체적으로는 간세포 지방축적 억제능을 갖는 다이펩타이드 Glu-Phe의 신규 용도를 이용한 대사성질환 개선용 약학조성물에 관한 것이다.The present invention relates to a pharmaceutical composition capable of improving metabolic diseases, and more particularly, to a pharmaceutical composition for improving metabolic diseases using a novel use of a dipeptide Glu-Phe having the ability to inhibit hepatic cell fat accumulation.

최근 식습관의 서구화 및 운동부족 등에 따라 비만 및 당뇨와 같은 대사성질환(metabolic diseases)에 의한 사망률이 지속적으로 증가하고 있는 추세이다. 특히 비알콜성 지방간(nonalcoholic fatty liver disease, NAFLD)은 간대사장애로 인해 발병하며 비만, 당뇨 및 고지혈 등의 대사성질환을 동반한다. 비알콜성 지방간은 간세포 내에서 지방의 합성, 산화 및 분해의 상호연쇄작용이 원활하게 이루어지지 않음에 따라 과도한 지방이 간세포에 축적됨으로써 발병된다(Adam et al., Canadian Medical Assosication journal, 172, 899-905, 2005; Dixon et al., Gastroenterology, 121, 91-100, 2001). Recently, due to westernization of eating habits and lack of exercise, the mortality due to metabolic diseases such as obesity and diabetes is continuously increasing. In particular, nonalcoholic fatty liver disease (NAFLD) is caused by hepatic metabolic disorders and is accompanied by metabolic diseases such as obesity, diabetes and hyperlipidemia. Non-alcoholic fatty liver disease is caused by the accumulation of excessive fat in hepatocytes due to the inability of the hepatocytes to smoothly synthesize, oxidize and decompose the lipid bilayers (Adam et al., Canadian Medical Associa- tion Journal, 172, 899 -905, 2005; Dixon et al., Gastroenterology, 121, 91-100, 2001).

간세포에서의 과도한 지방축적은 과도한 지방합성이 주요한 원인으로 여겨지고 있으며, 다양한 유전자들의 발현과 활성에 의해 조절된다. 특히, 전사인자인 sterol regulatory element binding proteins (SREBPs)에 의해서 대부분이 조절된다고 알려져 있다. SREBPs는 SREBP-1a, -1c 및 -2의 세 가지의 아이소폼(isoform)으로 존재한다. 이중 SREBP-1a와 -1c는 지방산과 포도당(glucose) 대사에 관여하는 유전자들을 조절하며, SREBP-2는 콜레스테롤 대사에 주로 관여하는 것으로 알려져 있다. 소포체 막(Endoplasmic reticlum membrane)에 존재하는 SREBP는 대사신호(인슐린 및 콜레스테롤)에 의한 단백질가수분해반응을 통해 활성화되며, 지방합성대사에 관여하는 acetyl-CoA carboxylase (ACC1) 및 fatty acid synthase (FASN) 등과 같은 유전자들을 발현시킴에 따라 간세포 내에 지방산(fatty acid)과 트리아실글리세롤(triacylglycerol)의 양을 증가시키는 것으로 알려져 있다 (Jeon & Osborne. Trend in Endocrinology & Metabolism, 23, 65-72, 2012). Excessive fat accumulation in hepatocytes is thought to be a major cause of excessive lipid synthesis and is regulated by the expression and activity of various genes. In particular, it is known to be regulated by sterol regulatory element binding proteins (SREBPs), a transcription factor. SREBPs exist in three isoforms, SREBP-1a, -1c and -2. Both SREBP-1a and -1c regulate genes involved in fatty acid and glucose metabolism, and SREBP-2 is known to be involved mainly in the metabolism of cholesterol. SREBP, which is present in the endoplasmic reticulum membrane, is activated through protein hydrolysis by metabolic signals (insulin and cholesterol), and acetyl-CoA carboxylase (ACC1) and fatty acid synthase (FASN) (Jeon & Osborne, Trend in Endocrinology & Metabolism, 23, 65-72, 2012), which is known to increase the amount of fatty acid and triacylglycerol in hepatocytes by expressing genes such as hepatocytes.

이에 더하여, adenosine monophosphate activated protein kinase (AMPK)는 간세포 내에서 에너지상태를 조절하는 주요인자이며, 포도당이 결핍되었을 때 급격히 활성화된다고 알려져 있다. 이러한 AMPK가 원활히 제 역할을 하지 못할 경우 당뇨, 비만 및 비알콜성지방간 등과 같은 대사성 질환이 유발될 수 있다고 보고되어지고 있다(Zou et al., Journal of Clinical Investigation, 108, 1167-1174, 2001). 특히, 이러한 AMPK의 활성화는 SREBP-1c의 발현을 억제함으로써 간세포의 지방합성을 억제하는 것으로 보고된 바 있다(Zhang et al., Cell Metabolism, 9, 407-416, 2009).In addition, adenosine monophosphate activated protein kinase (AMPK) is a key regulator of energy status in hepatocytes and is known to be rapidly activated when glucose is deficient. It has been reported that metabolic diseases such as diabetes, obesity and non-alcoholic fatty liver can be induced when such AMPK does not function smoothly (Zou et al., Journal of Clinical Investigation, 108, 1167-1174, 2001) . In particular, such activation of AMPK has been reported to inhibit the lipid synthesis of hepatocytes by inhibiting the expression of SREBP-1c (Zhang et al., Cell Metabolism, 9, 407-416, 2009).

다이펩타이드는 이종의 아미노산이 펩타이드 결합형태로 연결된 화합물을 총칭하며, 식품 및 약학 산업시장에서 활용성이 높아 최근 그 기능성에 관한 연구가 활발히 진행되고 있다. 최근 연구보고에 따르면, Ile-Tyr, Ile-Trp, 그리고 Lys-Trp과 같은 다이펩타이드들이 고혈압 예방에 우수한 활성을 발현함이 보고(Santos et al., Peptide Science, 98, 288-293, 2012)된 바 있으며, Leu-Ile는 신경세포의 세포사멸을 억제함이 알려졌다(Nitta et al., Journal of Neuroscience Research, 78. 250-258, 2004). 그리고 글루타믹 산을 함유하고 있는 다이펩타이드 중의 하나인 Trp-Glu가 간세포 내의 콜레스테롤 및 트리글리세라이드 축적을 억제한다는 연구결과가 보고된 바 있다(Jia et al., Bioorganic & Medicinal Chemistry Letters, 24, 2957-2962, 2014). 하지만 다이펩타이드의 생리활성에 관한 연구는 아직 심도있게 이루어지지 못한 실정이며, 이를 위하여 향후 분자수준에서의 다양한 실험적 접근이 필요할 것으로 판단된다. Dipeptides are generically referred to as compounds in which two different amino acids are linked in the form of peptide bonds, and they have been actively studied for their functionality in the food and pharmaceutical industry market. Recent studies have reported that dipeptides such as Ile-Tyr, Ile-Trp, and Lys-Trp exhibit excellent activity in the prevention of hypertension (Santos et al., Peptide Science, 98, 288-293, 2012) Leu-Ile is known to inhibit neuronal apoptosis (Nitta et al., Journal of Neuroscience Research, 78. 250-258, 2004). It has been reported that Trp-Glu, one of the dipeptides containing glutamic acid, inhibits the accumulation of cholesterol and triglyceride in hepatocytes (Jia et al., Bioorganic & Medicinal Chemistry Letters, 24, 2957 -2962, 2014). However, studies on the physiological activities of di-peptides have not yet been conducted in depth, and various experimental approaches at the molecular level will be needed in the future.

양파는 전 세계적으로 가장 많이 섭취되고 있는 근채소류 중의 하나이며, 독특한 향과 풍미를 지니고 있어 다양한 식품에 주재료 및 양념채소로 이용되고 있다(Chang et al., Korean Journal of Food and Cookerry Science, 26, 649-654, 2010). 양파는 다량의 함황 및 페놀성 화합물을 함유하고 있어 우수한 항산화, 항균, 그리고 항염증 활성 등의 효능을 발현함이 잘 알려져 있다(Murota et al., Journal of Medical Investigation, 54, 2007; Nithyameenakshi et al., Asian Journal of Cell Biology, 1, 65-80, 2006; Takahashi & Shibamoto, Journal of Agricultural Food Chemistry, 56, 10462-40467, 2008). Onion is one of the most commonly consumed vegetables in the world and has unique flavors and flavors and is used as a main ingredient and seasoning for a variety of foods (Chang et al., Korean Journal of Food and Cookery Science, 26, 649-654, 2010). It is well known that onions contain a large amount of sulfur and phenolic compounds and thus exhibit excellent antioxidant, antibacterial and anti-inflammatory activities (Murota et al., Journal of Medical Investigation, 54, 2007; Nithyameenakshi et al , Asian Journal of Cell Biology, 1, 65-80, 2006; Takahashi & Shibamoto, Journal of Agricultural Food Chemistry, 56, 10462-40467, 2008).

최근 양파의 섭취는 항비만 및 항당뇨 등과 같은 대사성질환을 예방할 수 있다고 알려짐에 따라 소비자들의 관심이 지속적으로 증가하는 추세이다(Yoshinari et al., Nutrients, 4, 1518-1526, 2012; Jung et al., Nutrition & Metabolism, 8, 2011). 이러한 양파의 효능은 양파에 다량 함유되어진 페놀성 화합물에 기인된 것이라 여겨지고 있지만, 활성 원인물질에 대한 분자수준에서의 정확한 해명은 아직 이루어지지 못하였다. Recently, onion intake has been known to prevent metabolic diseases such as anti-obesity and anti-diabetic drugs, and thus the interest of consumers is continuously increasing (Yoshinari et al., Nutrients, 4, 1518-1526, 2012; Jung et al , Nutrition & Metabolism, 8, 2011). These onion effects are believed to be due to the phenolic compounds contained in the onion largely, but the precise elucidation at the molecular level of active substances has not yet been made.

본 발명자들은 당지질 대사장애의 개선에 효과를 나타내는 양파의 정확한 활성원인물질을 탐색하여 단리ㆍ구조 해석함으로써 본 발명을 완성하였다.The inventors of the present invention have completed the present invention by searching for and identifying the precursor of the active ingredient of the onion which is effective in improving the metabolism disorder of the glycolipid.

따라서, 본 발명의 목적은 당지질 대사 장애의 개선에 효과를 나타내는 양파의 정확한 활성원인물질을 확인하였을 뿐만 아니라, 특히 이전에 전혀 알려지지 않았던 다이펩타이드 Glu-Phe의 새로운 용도 즉 간세포 지방축적 억제활성에 대한 신규용도를 제공하는 것이다. Accordingly, it is an object of the present invention to provide a novel use of the dipeptide Glu-Phe, which has not yet been known before, as well as confirming the precise active substance of the onion which has an effect on the improvement of the glycolipid metabolic disorder, To provide a new use.

본 발명의 다른 목적은 양파로부터 다이펩타이드 Glu-Phe를 정제하는 정제방법을 제공하는 것이다. It is another object of the present invention to provide a purification method for purifying di-peptide Glu-Phe from onion.

본 발명의 또 다른 목적은 다이펩타이드 Glu-Phe를 유효성분으로 포함하는 간세포 지방축적 억제활성을 갖는 약학조성물 및 건강 기능성식품을 제공하는 것이다. Still another object of the present invention is to provide a pharmaceutical composition and a health functional food having an activity of inhibiting hepatic cell fat accumulation comprising di-peptide Glu-Phe as an active ingredient.

본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned can be clearly understood by those skilled in the art from the following description.

상술된 본 발명의 목적을 달성하기 위해, 본 발명은 양파추출액을 얻는 단계; 상기 양파추출액을 감압농축하는 단계; 상기 농축물의 용매분획을 거쳐 부탄올분획물을 얻는 단계; 및 상기 부탄올분획물을 ODS 컬럼 크로마토그라피 및 HPLC에 의해 하기 화학식 1을 갖는 다이펩타이드 Glu-Phe을 정제하는 단계를 포함하는 양파유래 다이펩타이드 Glu-Phe 정제방법을 제공한다.In order to achieve the object of the present invention described above, the present invention provides a method for producing an onion extract, Concentrating the onion extracts under reduced pressure; Obtaining a butanol fraction through the solvent fraction of the concentrate; And purifying the butanol fraction by digesting the di-peptide Glu-Phe having the following formula (1) by ODS column chromatography and HPLC.

[화학식 1][Chemical Formula 1]

바람직한 실시예에 있어서, 상기 양파추출액을 얻는 단계는 양파를 세절한 후 메탄올을 가하고 균질화하여 추출된다. In a preferred embodiment, the step of obtaining the onion extract is carried out by extracting onions by adding the methanol and homogenizing the onions.

바람직한 실시예에 있어서, 상기 부탄올분획물은 상기 농축물의 현탁액을 노르말-헥산, 클로로포름, 에틸아세테이트, 노르말-부탄올을 이용하여 순차적인 용매분획을 행하여 얻어지는 노르말-부탄올 층으로부터 분리하여 얻어진다. In a preferred embodiment, the butanol fraction is obtained by separating the suspension of the concentrate from a normal-butanol layer obtained by sequential solvent fractionation using normal-hexane, chloroform, ethyl acetate and n-butanol.

또한, 본 발명은 하기 화학식 1을 갖는 다이펩타이드 Glu-Phe 및 이의 약리학적으로 허용 가능한 염 중 하나 이상을 유효성분으로 포함하는 대사성질환 개선용 약학조성물을 제공한다.The present invention also provides a pharmaceutical composition for improving metabolic diseases, comprising as an active ingredient at least one of a di-peptide Glu-Phe having the following formula (1) and a pharmacologically acceptable salt thereof.

[화학식 1] [Chemical Formula 1]

Figure 112017028917122-pat00001
Figure 112017028917122-pat00001

바람직한 실시예에 있어서, 상기 다이펩타이드 Glu-Phe는 양파로부터 분리된것이다. In a preferred embodiment, the dipeptide Glu-Phe is separated from the onion.

바람직한 실시예에 있어서, 상기 다이펩타이드 Glu-Phe는 AMPK 활성화를 조절함으로써 SREBP-1c의 발현을 억제한다. In a preferred embodiment, the dipeptide Glu-Phe inhibits the expression of SREBP-1c by modulating AMPK activation.

바람직한 실시예에 있어서, 상기 다이펩타이드 Glu-Phe는 SCD-1, FASN, 및 ACC1을 합성하는 각 유전자 중 하나 이상의 발현을 억제한다. In a preferred embodiment, the dipeptide Glu-Phe inhibits expression of one or more of each gene that synthesizes SCD-1, FASN, and ACC1.

바람직한 실시예에 있어서, 상기 대사성질환은 간세포에서의 과도한 지방축적을 원인으로 하는 비만, 비알콜성 지방간, 당뇨 및 고지혈증 중 하나 이상이다. In a preferred embodiment, the metabolic disorder is one or more of obesity, non-alcoholic fatty liver, diabetes and hyperlipidemia due to excessive fat accumulation in hepatocytes.

또한, 본 발명은 하기 화학식 1을 갖는 다이펩타이드 Glu-Phe 및 이의 약리학적으로 허용 가능한 염 중 하나 이상을 유효성분으로 포함하는 대사성질환 개선용 건강기능성식품을 제공한다.The present invention also provides a health functional food for metabolic disease improvement comprising as an active ingredient at least one of a di-peptide Glu-Phe having the following formula (1) and a pharmacologically acceptable salt thereof.

[화학식 1] [Chemical Formula 1]

Figure 112017028917122-pat00002
Figure 112017028917122-pat00002

바람직한 실시예에 있어서, 상기 화합물은 양파로부터 분리된 것이다. In a preferred embodiment, the compound is isolated from an onion.

바람직한 실시예에 있어서, 분말, 과립, 정제, 캡슐 또는 음료이다. In a preferred embodiment, it is a powder, a granule, a tablet, a capsule or a drink.

바람직한 실시예에 있어서, 상기 대사성질환은 간세포에서의 과도한 지방축적을 원인으로 하는 비만, 비알콜성 지방간, 당뇨 및 고지혈증 중 하나 이상이다. In a preferred embodiment, the metabolic disorder is one or more of obesity, non-alcoholic fatty liver, diabetes and hyperlipidemia due to excessive fat accumulation in hepatocytes.

본 발명은 다음과 같은 우수한 효과를 갖는다.The present invention has the following excellent effects.

먼저, 본 발명의 다이펩타이드 Glu-Phe는 당지질 대사 장애의 개선에 효과를 나타내는 양파의 정확한 활성원인물질이며, 간세포 지방축적 억제활성을 갖는다. First, the dipeptide Glu-Phe of the present invention is an accurate active substance of onion which has an effect on the improvement of the glycolipid metabolic disorder, and has an activity of inhibiting hepatic cell fat accumulation.

또한, 본 발명의 약학조성물 및 건강 기능성식품은 양파로부터 분리ㆍ구조 결정된 다이펩타이드 Glu-Phe를 유효성분으로 포함하여 간세포 지방축적 억제활성을 가지므로 간세포에서의 과도한 지방축적을 원인으로 하는 비만, 비알콜성 지방간, 당뇨 및 고지형증 등 대사성질환을 개선시킬 수 있다. In addition, the pharmaceutical composition and the health functional food of the present invention contain the dipeptide Glu-Phe, which is separated and structurally determined from onion, as an active ingredient, and has hepatocyte fat accumulation inhibitory activity. Therefore, Alcoholic fatty liver disease, diabetes, and hyperlipemia.

도 1은 본 발명의 실시예에 따라 얻어지는 화합물 1 (Glu-Phe)의 분리ㆍ정제 과정도이다.
도 2는 본 발명의 실시예에서 얻어진 Glu-Phe [L-글루타민-L- 페닐알라닌]의 구조도 및 HMBC 상관관계(화살표)도이다.
도 3은 본 발명의 실시예에서 얻어진 Glu-Phe의 처리농도에 따른 간세포에 대한 독성평가결과 그래프이다.
도 4는 본 발명의 실시예에서 얻어진 Glu-Phe의 간세포 지방축적 억제정도를 나타낸 그래프(Oil Red O staining)이다[Turkey's test에 의한 유의차 검정(*P<0.05)].
도 5는 본 발명의 실시예에서 얻어진 Glu-Phe의 간세포 지방축적 억제효과를 관찰한 현미경 사진이다.
도 6은 본 발명의 실시예에서 얻어진 Glu-Phe의 간세포 지방합성 인자를 억제하는 정도를 나타낸 그래프 (mRNA 수준)이다[Turkey's test에 의한 유의차 검정(*P<0.05)].
도 7은 본 발명의 실시예에서 얻어진 Glu-Phe의 간세포 지방합성 인자를 억제하는 정도를 나타낸 사진(단백질 수준)이다.
Brief Description of the Drawings Fig. 1 is a process diagram of separation and purification of Compound 1 (Glu-Phe) obtained according to an embodiment of the present invention.
2 is a structural diagram and HMBC correlation (arrow) of Glu-Phe [L-glutamine-L-phenylalanine] obtained in the example of the present invention.
FIG. 3 is a graph showing a toxicity evaluation result for hepatocytes according to the treatment concentration of Glu-Phe obtained in the example of the present invention. FIG.
FIG. 4 is a graph showing the degree of inhibition of hepatic cell fat accumulation of Glu-Phe obtained in the example of the present invention (Oil Red O staining) (significant difference test by Turkey's test (* P <0.05)).
Fig. 5 is a micrograph showing the inhibitory effect of Glu-Phe on hepatocyte fat accumulation obtained in the example of the present invention. Fig.
FIG. 6 is a graph (mRNA level) showing the degree of suppression of hepatocyte lipid synthesis factor of Glu-Phe obtained in the example of the present invention (significant difference test by Turkey's test (* P <0.05)).
FIG. 7 is a photograph (protein level) showing the degree of suppression of hepatocyte lipid synthesis factor of Glu-Phe obtained in the example of the present invention.

본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데, 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.The term used in the present invention is a general term that is widely used at present. However, in some cases, there is a term arbitrarily selected by the applicant. In this case, the term used in the description of the invention, And the meaning should be grasped.

이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical structure of the present invention will be described in detail with reference to the accompanying drawings and preferred embodiments.

그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 명세서 전체에 걸쳐 본 발명을 설명하기 위해 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein but may be embodied in other forms. Like reference numerals used to describe the present invention throughout the specification denote like elements.

본 발명의 기술적 특징은 종래에 양파에 함유된 것으로 알려지지 않았던 성분으로 간세포지방축적 억제활성을 갖는 다이펩타이드 Glu-Phe를 양파로부터 분리하고, 그 구조를 확인하였을 뿐만 아니라 이의 정확한 활성을 확인한 것에 있다. The technical feature of the present invention is to isolate the dipeptide Glu-Phe having an inhibitory activity on hepatic cell fat accumulation from components not previously known to be contained in the onion, from the onion, to confirm its structure, and to confirm its precise activity.

즉, 본 발명은 이전에 전혀 알려지지 않았던 기능성을 갖는 다이펩타이드를 양파로부터 단리하고 그 활성을 확인하였을 뿐만 아니라, 본 화합물이 갖는 간세포지방축적 억제활성이라흔 새로운 용도를 활용하여 대상성질환 개선용 약학조성물 및 건강기능성식품으로 활용하였기 때문이다.That is, the present invention not only isolates di-peptides having previously unknown functionality from onions and confirm their activity but also inhibits the hepatic cell fat accumulation of the present compounds. Therefore, the present invention provides a pharmaceutical composition And health functional foods.

따라서, 본 발명의 대사성질환 개선용 약학조성물 및 건강기능성식품은 하기 화학식 1을 갖는 다이펩타이드 Glu-Phe 및 이의 약리학적으로 허용 가능한 염 중 하나 이상을 유효성분으로 포함한다. Accordingly, the pharmaceutical composition for improving metabolic diseases and the health-functional food of the present invention comprise at least one of dipeptide Glu-Phe having the following formula (1) and a pharmacologically acceptable salt thereof as an active ingredient.

[화학식 1][Chemical Formula 1]

Figure 112017028917122-pat00003
Figure 112017028917122-pat00003

여기서, 상기 화학식 1과 같은 구조를 갖는 다이펩타이드는 Glu-Phe로서 특히 L-글루타민-L-페닐알라닌 (Glu-Phe)일 수 있다. 다이펩타이드 Glu-Phe는 간세포지방축적 억제활성을 갖는 물질로서 본 발명에서 밝히기 전에는 그 기능성이 전혀 알려져 있지 않은 물질이며, 양파로부터는 그 존재가 최초로 확인되었다. Herein, the dipeptide having the structure of Formula 1 may be Glu-Phe, especially L-glutamine-L-phenylalanine (Glu-Phe). Dipeptide Glu-Phe is a substance having inhibitory activity on hepatic cell fat accumulation, which is a substance whose function is not known at all before being disclosed in the present invention, and its presence was first confirmed from onion.

즉, 다이펩타이드 Glu-Phe는 후술하는 실험예에서 확인된 바와 같이 간세포 내에서 AMPK 활성화를 조절함으로써 SREBP-1c 및 관련 지방합성 유전자 발현을 억제시켜 간세포지방축적 억제활성을 갖기 때문이다. 따라서, 다이펩타이드 Glu-Phe를 포함하는 본 발명의 약학조성물 을 통해 간세포에서의 과도한 지방축적으로 원인으로 하는 비만, 비알콜성 지방간, 당뇨 및 고지혈증 중 하나 이상의 대사성질환을 개선 및 치료가 가능하다.That is, the dipeptide Glu-Phe inhibits the expression of SREBP-1c and related lipid synthesis genes by regulating AMPK activation in hepatocytes, as shown in the following Experimental Examples, and has an activity of inhibiting hepatic cell fat accumulation. Thus, the pharmaceutical composition of the present invention comprising the di-peptide Glu-Phe can be used to treat and treat metabolic diseases of one or more of obesity, non-alcoholic fatty liver, diabetes and hyperlipidemia which are caused by excessive fat accumulation in hepatocytes.

상술된 본 발명의 화학식 1의 다이펩타이드 Glu-Phe는 화학적으로 합성된 것도 사용이 가능하지만, 식용가능한 양파로부터 분리된 천연물질인 Glu-Phe가 사용되면 독성에 대한 염려가 감소될 것으로 예측된다. Although the chemically synthesized dipeptide Glu-Phe of Formula 1 of the present invention can be used, it is expected that toxicity will be reduced when Glu-Phe, which is a natural substance separated from edible onion, is used.

본 발명의 대사성질환 개선용 약학조성물은 다이펩타이드 Glu-Phe 및 이의 약학적으로 허용되는 염 중 하나 이상을 단독으로 포함할 수 있으며, 이외 제형, 사용방법 및 사용목적에 따라 약리학적으로 허용가능한 담체 또는 부형제를 더 포함할 수 있다. 혼합물로 제공되는 경우, 유효성분인 다이펩타이드 Glu-Phe 및/또는 이의 약학적으로 허용되는 염은 약학조성물에 0.01 내지 99 중량%로 포함될 수 있다. The pharmaceutical composition for improving metabolic diseases according to the present invention may contain at least one of dipeptide Glu-Phe and pharmaceutically acceptable salts thereof, and may be used alone or in combination with a pharmacologically acceptable carrier Or an excipient. When provided as a mixture, the active ingredient dipeptide Glu-Phe and / or a pharmaceutically acceptable salt thereof may be included in the pharmaceutical composition in an amount of 0.01 to 99% by weight.

담체 또는 부형제로는 물, 덱스트린, 칼슘카보네이드, 락토스, 프로필렌글리콜, 리퀴드 파라핀, 생리식염수, 덱스트로스, 수크로즈, 솔비톨, 만니톨, 자이리톨, 에리스리톨, 말티톨, 전분, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리돈, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유가 있으며, 이들은 1종이상 사용될 수 있으나, 이에 한정되는 것은 아니며 통상의 담체 및 부형제는 모두 사용가능하다. Examples of the carrier or excipient include water, dextrin, calcium carbonate, lactose, propylene glycol, liquid paraffin, physiological saline, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gelatin, calcium phosphate, calcium silicate, Cellulose, methylcellulose, polyvinylpyrrolidone, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil. These may be used alone or in combination, but not limited thereto, All excipients are available.

또한 본 발명의 대사성질환 개선용 약학조성물을 약제화하는 경우, 통상의 충진제, 증량제, 결합제, 붕해제, 계면활성제, 항응집제, 윤활제, 습윤제, 향료, 유화제 또는 방부제 등을 더 포함할 수 있다.In addition, when the pharmaceutical composition for improving metabolic diseases of the present invention is formulated for pharmaceutical use, it may further contain conventional fillers, extenders, binders, disintegrators, surfactants, anti-coagulants, lubricants, wetting agents, flavors, emulsifiers or preservatives.

개별 투약 형태에서 이의 유효성분인 다이펩타이드 Glu-Phe 및/또는 이의 약학적으로 허용되는 염의 함량은 1회에 투여되는 양으로, 예컨대 통상 1일 투여량의 전부, 1/2, 1/3 또는 1/4배일 수 있다.The content of the active ingredient dipeptide Glu-Phe and / or its pharmaceutically acceptable salt in the form of the individual dosage forms may be in the amount administered in a single dose, for example, the total daily dose, It can be 1/4 times.

본 발명의 대사성질환 개선용 약학조성물의 투여량은 환자의 연령, 성별, 상태, 체내에서 활성 성분의 흡수도, 불활성율 및 병용되는 약물을 고려하여 결정하는 것이 좋으며, 예컨대 1회 유효성분을 기준으로 하였을 때 0.1 μM 내지 1 M로, 1일 1 내지 5회 투여할 수 있다. The dose of the pharmaceutical composition for metabolic disease improvement of the present invention is preferably determined in consideration of the age, sex, condition, absorption of the active ingredient, inactivity of the active ingredient, and the drug to be used in combination. For example, , The dose may be 0.1 to 1 M and administered 1 to 5 times a day.

다음으로, 본 발명의 대사성질환 개선용 건강기능성식품은 상술된 약학조성물에 포함되는 다이펩타이드 Glu-Phe 및/또는 이의 약학적으로 허용되는 염을 유효성분으로 포함함으로써 간세포 내 지방축적억제활성을 갖게 되므로 간세포에서의 과도한 지방축적으로 원인으로 하는 비만, 비알콜성 지방간, 당뇨 및 고지혈증 중 하나 이상의 대사성질환을 개선하는 목적으로 사용될 수 있다.Next, the health-functional food for improving metabolic diseases of the present invention contains the di-peptide Glu-Phe and / or a pharmaceutically acceptable salt thereof contained in the above-mentioned pharmaceutical composition as an active ingredient, Therefore, it can be used for the purpose of improving metabolic diseases of at least one of obesity, non-alcoholic fatty liver, diabetes and hyperlipidemia caused by excessive accumulation of fat in hepatocytes.

본 발명에서 '건강기능성식품'이란 영양소를 한 가지 또는 그 이상 함유하고 있는 천연물 또는 가공품을 의미하며, 바람직하게는 식품에 물리적, 생화학적, 생물공학적 수법 등을 이용하여 해당 식품의 기능을 특정 목적에 작용, 발현하도록 부가가치를 부여한 식품군이나 식품 조성이 갖는 생체방어리듬조절, 질병방지와 회복 등에 관한 체조절기능을 생체에 대하여 충분히 발현하도록 설계하여 가공한 식품을 의미한다. 건강기능성식품에는 식품학적으로 허용 가능한 식품 보조 첨가제를 포함할 수 있으며, 건강기능성 식품의 제조에 통상적으로 사용되는 적절한 담체, 부형제 및 희석제를 더욱 포함할 수 있다.In the present invention, the term 'health functional food' means a natural product or a processed product containing one or more nutrients. Preferably, the function of the food is determined by physical, biochemical, biotechnological, Means a food group that has been imparted with added value to function and express, and a food which is designed and manufactured so that the body control function related to regulation of bio-defense rhythm of food composition, prevention and recovery of disease, etc. is sufficiently expressed in living body. The health functional food may include a pharmaceutically acceptable food supplementary additive and may further comprise suitable carriers, excipients and diluents conventionally used in the manufacture of health functional foods.

본 발명의 다이펩타이드 Glu-Phe 및/또는 이의 약학적으로 허용되는 염을 첨가할 수 있는 건강 기능성 식품으로는 예를 들어, 각종 식품류, 음료, 껌, 차, 비타민 복합제 등이 있다. 추가로, 특수영양식품(예, 조제유류, 영ㆍ유아식 등), 건강보조식품, 과자류(예, 스넥류), 유가공품(예, 발효유, 치즈 등), 기타 가공식품, 음료(예, 과실, 채소류 음료, 두유류, 발효음료류 등) 등을 포함하나 이에 한정되지 않는다. 상술된 식품, 음료 또는 식품첨가제는 통상의 제조방법으로 제조될 수 있다.Examples of the health functional food to which the dipeptide Glu-Phe and / or the pharmaceutically acceptable salt thereof of the present invention can be added include various foods, beverages, gums, tea, and vitamin complexes. In addition, it is also possible to use special nutritional foods (eg crude oil, baby food, etc.), health supplements, confectionery (eg snacks), dairy products (eg fermented milk, cheese, etc.) Beverages, two-oil, fermented beverages, etc.), but are not limited thereto. The food, beverage or food additives described above can be produced by a conventional production method.

본 발명의 건강 기능성 식품은 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 물, 탄산 음료에 사용되는 탄산화제 등을 함유할 수 있다. 이러한 성분을 독립적으로 또는 조합하여 사용할 수 있다. The health functional food of the present invention can be used as a nutritional supplement, a vitamin, a mineral (electrolyte), a flavoring agent such as a synthetic flavor agent and a natural flavor agent, a colorant and an aging agent (cheese, chocolate etc.), a pectic acid and its salt, Salts, organic acids, protective colloid thickening agents, pH adjusting agents, stabilizers, preservatives, glycerin, water, carbonating agents used in carbonated beverages and the like. These components can be used independently or in combination.

이와 같이 본 발명의 건강기능성식품은 상술된 바와 같이 다양한 제형을 갖는데, 특히 분말, 과립, 정제, 캡슐 및 음료 중 어느 하나의 제형을 가질 수 있다.Thus, the health functional food of the present invention has various formulations as described above, and may have any one of powder, granule, tablet, capsule and beverage.

일 구현예로서, 본 발명의 건강기능성식품을 음료로 구현하는 경우 필수 성분으로서 본 발명의 다이펩타이드 Glu-Phe 및/또는 이의 약학적으로 허용되는 염을 함유하는 외에는 다른 성분에는 특별한 제한이 없으며 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 천연 탄수화물의 예는 모노사카라이드, 예를 들어 포도당, 과당 등 디사카라이드, 예를 들어 말토스, 수크로스 등 및 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당, 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 상기한 것 이외의 향미제로서 천연 향미제(타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진 등) 및 합성 향미제(사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. In one embodiment, when the health-functional food of the present invention is implemented as a beverage, there are no particular restrictions on other components other than those containing the dipeptide Glu-Phe and / or a pharmaceutically acceptable salt thereof of the present invention as an essential ingredient, And may contain various flavors or natural carbohydrates as an additional ingredient. Examples of natural carbohydrates include monosaccharides such as disaccharides such as glucose and fructose such as maltose, sucrose and the like and polysaccharides such as dextrins, cyclodextrins and the like, and xylitol, Sorbitol, and erythritol. Natural flavors (tau martin, stevia extract (e.g., rebaudioside A, glycyrrhizin, etc.) and synthetic flavors (saccharin, aspartame, etc.) can be advantageously used as flavors other than those described above .

또한, 대사성질환 개선을 위해 간세포내 지방축적억제를 목적으로 하는 건강기능성식품에서도 유효성분인 다이펩타이드 Glu-Phe 및/또는 이의 약학적으로 허용되는 염의 함량은 0.1 μM 내지 1 M의 비율로 포함될 수 있을 것이다.In addition, in the health functional food for the purpose of inhibiting the fat accumulation in hepatocytes for the improvement of metabolic diseases, the content of the active ingredient, the dipeptide Glu-Phe and / or its pharmaceutically acceptable salt may be included in a ratio of 0.1 μM to 1 M There will be.

다음으로, 본 발명세ㅓ 상술된 화학식 1과 같은 구조를 갖는 다이펩타이드는 Glu-Phe는 양파추출액을 얻는 단계; 상기 양파추출액을 감압농축하는 단계; 상기 농축물의 용매분획을 거쳐 부탄올분획물을 얻는 단계; 및 상기 부탄올분획물을 ODS 컬럼 크로마토그라피 및 HPLC에 의해 정제하는 단계를 포함하여 양파로부터 분리될 수 있다. 이 때 양파추출액을 얻는 단계는 양파를 세절한 후 메탄올을 가하고 균질화하여 추출된다. 또한 부탄올분획물은 농축물의 현탁액을 노르말-헥산, 클로로포름, 에틸아세테이트, 노르말-부탄올을 이용하여 순차적인 용매분획을 행하여 얻은 노르말-부탄올 층으로부터 분리하여 얻는다.Next, the dipeptide having the structure of the above-mentioned formula (1) of the present invention has the steps of: obtaining an onion extract solution of Glu-Phe; Concentrating the onion extracts under reduced pressure; Obtaining a butanol fraction through the solvent fraction of the concentrate; And purifying the butanol fraction by ODS column chromatography and HPLC. At this time, the step of obtaining the onion extract is performed by adding the methanol to the onion and extracting it by homogenizing. Also, the butanol fraction is obtained by separating the suspension of the concentrate from the normal-butanol layer obtained by sequential solvent fractionation using n-hexane, chloroform, ethyl acetate and n-butanol.

실시예 Example

1. 양파 추출 및 용매분획1. Onion extraction and solvent fraction

양파(Allium cepa L. Sunpower)는 전남 무안군에서 2013년 6월에 채취하였다. 양파는 1 x 1 cm 크기로 세절한 다음, 동결건조를 행하였다. 양파 동결건조 분말 100 g (양파 1.2 kg 신선중량)에 메탄올 4 L를 가하고 호모게나이져(T50 digital ULTRA-TURRAX, IKA, Staufen, Germany)로 균질화하여 상온ㆍ암조건 하에서 18시간 동안 추출하였다. 흡입여과(No. 2, Whatman)를 행한 후 얻어진 잔사에 메탄올 2.5 L를 가하여 동일 방법으로 다시 추출ㆍ여과하였다. 얻어진 추출 여액은 아스피레이터(CCA-1110, Eyela, Tokyo, Japan)가 장착된 진공농축기(A-3S, Eyela, Tokyo, Japan)를 사용하여 37℃에서 감압농축하였다. 얻어진 농축물(76.6 g)의 물 현탁액(300 mL)을 헥산, 에틸아세테이트 및 수포화 부탄올로 각각 300 mL씩 3회 반복하여 순차적으로 용매분획하였다.Onion ( Allium cepa L. Sunpower) was collected in June 2013 from Muan County, South Jeolla Province. The onions were cut into 1 x 1 cm size and then lyophilized. 4 L of methanol was added to 100 g of onion freeze-dried powder (onion 1.2 kg fresh weight), homogenized with a homogenizer (T50 digital ULTRA-TURRAX, IKA, Staufen, Germany) and extracted for 18 hours under room temperature and dark conditions. After suction filtration (No. 2, Whatman) was performed, 2.5 L of methanol was added to the obtained residue, followed by further extraction and filtration by the same method. The extracted filtrate was concentrated under reduced pressure at 37 ° C using a vacuum concentrator (A-3S, Eyela, Tokyo, Japan) equipped with an aspirator (CCA-1110, Eyela, Tokyo, Japan). A water suspension (300 mL) of the obtained concentrate (76.6 g) was repeatedly subjected to solvent fractionation by repeating three times with 300 mL each of hexane, ethyl acetate and water-saturated butanol.

2. 양파 메탄올 추출물의 부탄올층으로부터 Glu-Phe의 단리2. Isolation of Glu-Phe from the butanol layer of onion methanol extract

도 1에 도시된 바와 같이 양파 메탄올 추출물을 용매분획하여 얻어진 부탄올층 5.2 g (신선중량 1.2 kg 상당량)을 대상으로 octadecylsilane (ODS) column chromatography를 행하였다. 시료는 농축 후, 첫 용출용매를 이용하여 용해한 다음, 시료의 약 40배에 해당하는 ODS가 충진된 column (4.6 × 30 cm)에 charge하였다. 용출용매는 H2O/MeOH (0:0, 2:8, v/v, 300 mL)과 H2O/MeOH (6:4, 2:8, 3:7, 0:10, v/v, 450 mL) 혼합용액을 이용하였으며, 용출 후 총 5개의 획분(B1-B5)으로 그룹화하였다. 획분 B3 (312 mg)은 prep-ODS 컬럼[shim-pack-prep-ODS (H) Kit 20 × 250 mm]을 이용하여 trifluoroacetic acid로 pH 2.65가 되도록 조정한 10% 아세토나이트릴 용액과 50% 아세토나이트릴 간에 그래디언트 (gradient, 40분) 용출법(9.9 mL/min)을 적용하여 HPLC를 행하였다. 그 결과, 미지의 피크(t R 24.3 min, 3.1 mg, 순도 > 98%)를 갖는 화합물을 단리하였다.Octadecylsilane (ODS) column chromatography was performed on 5.2 g of the butanol layer obtained by solvent fractionation of an onion methanol extract as shown in Fig. 1 (equivalent to 1.2 kg of fresh weight). After concentration, the sample was dissolved using the first eluting solvent, and charged to a column (4.6 × 30 cm) filled with ODS corresponding to about 40 times of the sample. The elution solvent was H 2 O / MeOH (0: 0, 2: 8, v / v, 300 mL) and H 2 O / MeOH (6/4, 2/8, 3/7, 0:10, , 450 mL) were used. After elution, total 5 fractions (B1-B5) were grouped. The fraction B3 (312 mg) was dissolved in a 10% acetonitrile solution adjusted to pH 2.65 with trifluoroacetic acid using a prep-ODS column (shim-pack-prep-ODS (H) Kit 20 x 250 mm) The gradient was applied between the nitriles (40 min) and elution (9.9 mL / min). As a result, a compound having an unknown peak ( t R 24.3 min, 3.1 mg, purity > 98%) was isolated.

실험예 1Experimental Example 1

단리화합물의 구조해석.Structural analysis of isolated compounds.

실시예에서 단리된 화합물의 HR-ESI-MS (negative) spectrum으로부터 분자량 피크인 m/z 293.1137 [M-H]-이 관찰되었고, 이 화합물의 분자식이 C14H18N2O15 (m/z 294)임이 확인되었다. 그리고 비선광도 분석값은 [α]D 25 +44.2 (c 0.023, CH3OH)로 확인되었다. 또한 단리화합물의 1H- 및 13C-NMR 데이터를 표 1에 나타내었다. Example Compound HR-ESI-MS (negative) a m / z molecular weight peaks from the spectrum 293.1137 [MH] of isolated in - this was observed, the molecular formula for this compound is C 14 H 18 N 2 O 15 (m / z 294 ). The nonlinearity analysis was confirmed by [α] D 25 +44.2 (c 0.023, CH 3 OH). 1 H- and &lt; 13 &gt; C-NMR data of the isolated compound are shown in Table 1.

1H-NMR (500 MHz, CD3OD) 스펙트럼으로부터 mono-치환체 벤젠환에 귀속되는 proton signal들[δ 7.28 (1H, t, J = 8.5 Hz, H-3, 5), 7.23 (1H, br. d, J = 8.5 Hz, H-4), 그리고 7.22 (2H, t, J = 8.5 Hz, H-2, 6) (표 1)]이 관찰되었다. sp 3 Proton signal들의 분열 패턴 및 1H-1H correlation spectroscopy (COSY) 스펙트럼으로부터 1종의 ethane moiety [δ 4.67 (1H, dd, J = 9.0, 5.0 Hz, H-8) 3.23 (1H, dd, J = 14.0, 5.0 Hz, H-7a), 그리고 2.95 (1H, dd, J = 14.0, 9.0 Hz, H-7b)]와 propane moiety [δ 3.93 (1H, br. t, J = 8.0 Hz, H-2'), 2.45 (2H, t, J = 8.0, H-4'), 2.13 (1H, dd, J = 14.5, 8.0 Hz, H-3'a), 그리고 2.03 (1H, dd, J = 14.5, 8.0 Hz, H-3'b)]의 존재가 시사되었다. 그리고 13C-NMR (125 MHz, CD3OD) 스펙트럼으로부터 4종의 quaternary carbon signal들(δ 174.8-138.6)과 5종의 sp 3 carbon signal들(δ 55.3-27.3)을 포함한 총 14종의 carbon signal들이 관찰되어 1H-NMR data로부터 해석된 부분구조의 신뢰성을 뒷받침해 주었다. 1 H-NMR (500 MHz, CD 3 OD) of the proton signal assignable to a mono- substituted benzene ring, from the spectrum [δ 7.28 (1H, t, J = 8.5 Hz, H-3, 5), 7.23 (1H, br (d, J = 8.5 Hz, H-4) and 7.22 (2H, t, J = 8.5 Hz, H-2, 6). sp 3 Proton signal of the division pattern and the 1 H- 1 H correlation spectroscopy (COSY ) ethane moiety of one kind from the spectrum [δ 4.67 (1H, dd, J = 9.0, 5.0 Hz, H-8) 3.23 (1H, dd, J = 14.0, 5.0 Hz, H -7a), and 2.95 (1H, dd, J = 14.0, 9.0 Hz, H-7b)] and the propane moiety [δ 3.93 (1H, br. t, J = 8.0 Hz, H -2 '), 2.45 (2H, t, J = 8.0, H-4'), 2.13 (1H, dd, J = 14.5, 8.0 Hz, H-3'a), and 2.03 (1H, dd, J = 14.5, 8.0 Hz, H-3'b)]. From the 13 C-NMR (125 MHz, CD 3 OD) spectra, a total of 14 species of carbon, including four quaternary carbon signals (δ 174.8-138.6) and five sp 3 carbon signals (δ 55.3-27.3) Signals were observed to support the reliability of the analyzed partial structure from 1 H-NMR data.

PositionPosition δH(int., mult., J in Hz)δ H ( int. , mult. , J in Hz) δC δ C 1One -- 138.6138.6 2, 6 2, 6 7.22 (2H, t, 8.5)7.22 (2H, t, 8.5) 130.4130.4 3, 53, 5 7.28 (2H, t, 8.5)7.28 (2H, t, 8.5) 129.6129.6 44 7.23 (1H, br. d, 8.5)7.23 (1H, br.d, 8.5) 128.0128.0 7a
7b
7a
7b
3.23 (1H, dd, 14.0, 5.0)
2.95 (1H, dd, 14.0, 9.0)
3.23 (1H, dd, 14.0, 5.0)
2.95 (1H, dd, 14.0, 9.0)
38.438.4
88 4.67 (1H, dd, 9.0, 5.0)4.67 (1H, dd, 9.0, 5.0) 55.355.3 99 -- 174.8174.8 1'One' -- 171.7171.7 2'2' 3.93 (1H, br. t, 8.0)3.93 (1H, broad t, 8.0) 53.753.7 3'a
3'b
3'a
3'b
2.13 (1H, dd, 14.5, 8.0)
2.03 (1H, dd, 14.5, 8.0)
2.13 (1H, dd, 14.5, 8.0)
2.03 (1H, dd, 14.5, 8.0)
27.327.3
4'4' 2.45 (2H, t, 8.0)2.45 (2H, t, 8.0) 32.932.9 5'5 ' -- 174.3174.3

이상의 결과를 종합하였을 때, 단리 화합물은 3종의 carbonyl carbon들[δ 171.7 (C-1'), 174.3 (C-5'), 그리고 174.8 (C-9)]과 2종의 nitrogen-bearing carbon들[δ 55.3 (C-8) 및 53.7 (C-2')]을 포함하고 있는 것으로 판단되었으며, 특히 본 화합물은 8-아미노-페닐프로파노익 산(8-amino-phenylpropanoic acid, 페닐알라닌)과 2-아미노-펜타노익 산(2-amino-pentanedioic acid, 글루타믹 산)이 결합된 형태로 존재함이 시사되었다.The results show that the isolated compounds are composed of three kinds of carbonyl carbons [δ 171.7 (C-1 '), 174.3 (C-5'), and 174.8 ([Delta] 55.3 (C-8) and 53.7 (C-2 ')], and in particular the present compounds were found to contain 8-amino-phenylpropanoic acid It was suggested that 2-amino-pentanedioic acid, glutamic acid, is present in a combined form.

단리 화합물의 보다 정확한 구조해석을 위하여 heteronuclear single quantum correlation (HSQC) 및 heteronuclear multiple bond correlation (HMBC) 분석을 행하였다. 그 결과, 페닐알라닌과 글루타믹 산의 부분구조의 존재가 재차 확인되었다. 특히, HMBC 스펙트럼으로부터 단리 화합물의 proton-carbon 간의 상호연결성(H-8/C-1, H-8/C-1', H-7/C-9, H-2'/C-4', 그리고 H-3/C-5')이 확인됨에 따라 글루타믹 산의 C-1위의 카보닐기와 페닐알라닌의 C-8에 위치한 아민기가 아마이드 결합으로 연결되어 있음이 확인되었다. 본 화합물의 정확한 입체구조를 확인하기 위하여, L-글루타민-L-페닐알라닌의 합성품을 제작(펩트론, 대전, 한국)하여 그것의 1H- 및 13C-NMR 그리고 비선광도 분석을 행하여 그 결과들과 본 화합물의 그것들과 비교하였다. 그 결과, 두 화합물의 NMR 스펙트라 및 비선광도 값이 일치함이 확인되었다. 따라서, 단리 화합물의 구조는 L-글루타민-L-페닐알라닌(Glu-Phe)으로 해석되었으며, 본 화합물은 양파로부터 처음으로 단리되었다.Heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) analyzes were performed for more accurate structural analysis of isolated compounds. As a result, the presence of a partial structure of phenylalanine and glutamic acid was confirmed again. H-8 / C-1 ', H-7 / C-9, H-2' / C-4 ', and H- And H-3 / C-5 '), it was confirmed that the carbonyl group on C-1 of glutamic acid and the amine group on C-8 of phenylalanine were linked by an amide bond. In order to confirm the exact steric structure of the present compound, a synthesis product of L-glutamine-L-phenylalanine (Peptron, Daejeon, Korea) was subjected to 1 H- and 13 C- Were compared with those of the present compounds. As a result, it was confirmed that the NMR spectra and the nonlinearity values of the two compounds coincided with each other. Thus, the structure of the isolated compound was interpreted as L-glutamine-L-phenylalanine (Glu-Phe) and the compound was first isolated from the onion.

또한, Glu-Phe의 HMBC 상관관계 (화살표) 및 구조는 도 2에 도시된 바와 같다. In addition, the HMBC correlation (arrow) and structure of Glu-Phe are as shown in FIG.

실험예 2Experimental Example 2

세포배양 및 Glu-Phe가 간 세포주의 생존도에 미치는 영향 확인.Determination of the effect of cell culture and Glu-Phe on survival of liver cell lines.

실시예에서 얻어진 단리화합물인 Glu-Phe의 간세포 지방축적 억제능을 평가하기 위하여 엠티티(3-(4,5디메틸티아졸-2-일)-2,5디페닐테트라졸륨브로마이드[3-(4 ,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT] 분석법을 이용하였다. 실험을 위하여, 쥐 간세포인 AML-12 세포를 사용하였다. 배양세포는 DMEM/F-12배지에 10% fetal bovine serum (FBS) 및 1% 페니실린-스트렙토마이신 항생제 용액을 첨가하여 37℃ 및 5% 이산화탄소 조건에서 배양하였다. 이때, 간세포 지방축적 억제능이 있다고 알려진 페룰릭산(ferulic acid, FA)과 양파에 주요 플라보노이드인 퀘르세틴 4'-오-베타-디-글루코피라노사이드(quercetin 4'-O-β-D-glucopyranoside, Q4'G)를 비교군으로 사용하였다. (3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide [3- (4-tert-butylpyridazinone)] was used in order to evaluate the ability of Glu- , 5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide, MTT]. For the experiment, rat hepatocyte AML-12 cells were used. Ferritic acid (FA), which is known to inhibit hepatocellular fat accumulation, and onion (FBS), which are known to inhibit hepatic cell fat accumulation, were cultured at 37 ° C and 5% carbon dioxide supplemented with 10% fetal bovine serum (FBS) and 1% penicillin- Quercetin 4'- O- beta-D-glucopyranoside (Q4'G), a major flavonoid, was used as a comparative group.

간세포에 화합물들의 처리는 세포 접종 24시간 후에 이루어졌으며, 24시간 배양 후, glucose가 함유되지 않은 DMEM (0.5% FBS) 용액으로 교체한 다음 24시간 배양하였다. 그 후, 지방산 생합성을 유도하기 위하여 10 mM 포도당과 100 nM 인슐린을 간세포에 처리한 다음 6시간 동안 배양하였다.Treatment of the compounds in hepatocytes was performed 24 hours after inoculation. After 24 hours of incubation, the cells were replaced with glucose-free DMEM (0.5% FBS) solution and incubated for 24 hours. Then, 10 mM glucose and 100 nM insulin were treated with hepatocytes to induce fatty acid biosynthesis and then cultured for 6 hours.

보다 구체적으로 살펴보면, 먼저 AML-12 세포주를 96-웰 플레이트에 접종한 다음, 48시간 동안 비교군(Q4'G 및 FA)과 Glu-Phe를 0-60 μM 농도로 각각 처리하였다. 시료 처리 후 MTT를 0.5 mg/mL 농도가 되도록 첨가하였으며, 2시간 동안 37℃ 및 5% 이산화탄소 조건에서 배양하였다. 배양 종료 후, 상층액을 제거하고 인산완충용액(phosphate buffered saline, PBS)으로 세척을 행한 다음, 각 웰에 디메틸설폭사이드(dimethylsulfoxide, DMSO)를 100 μL 가한 후, 흡광도 분석기(Biotek, Wknooski, VT, USA)를 이용하여 540 nm의 파장에서 흡광도를 측정하였다. 세포 생존도는 화합물을 처리하지 않은 대조군의 세포주를 이용하여 백분율로 계산하였고, 그 결과를 도 3에 나타내었다.More specifically, the AML-12 cell line was first inoculated into a 96-well plate and treated with the comparative groups (Q4'G and FA) and Glu-Phe at a concentration of 0-60 μM for 48 hours, respectively. MTT was added at a concentration of 0.5 mg / mL after the sample treatment and incubated for 2 hours at 37 ° C and 5% carbon dioxide. After the completion of the incubation, the supernatant was removed and washed with phosphate buffered saline (PBS). Then, 100 μL of dimethylsulfoxide (DMSO) was added to each well, and the resultant was analyzed with an absorbance analyzer (Biotek, Wknooski, VT , USA) was used to measure the absorbance at a wavelength of 540 nm. The cell viability was calculated as a percentage using a control cell line in which the compound was not treated, and the results are shown in FIG.

도 3에 나타난 바와 같이, Glu-Phe 및 비교군(Q4'G 및 FA)은 각 처리농도에 따라서 간세포에 대해 어떠한 독성도 관찰되지 않았다As shown in Fig. 3, Glu-Phe and the comparative groups (Q4'G and FA) showed no toxicity to hepatocytes according to the respective treatment concentrations

실험예 3Experimental Example 3

Glu-Phe의 간 세포 내 지방축적 억제효과 확인.Identification of the inhibitory effect of Glu-Phe on liver fat accumulation in liver cells.

실시예에서 얻어진 Glu-Phe의 간 세포 내 지방축적 억제효과 확인을 위하여 간세포에 올레익산을 처리하여 간세포의 지방 과다축적을 유도하였다. 즉, AML-12 세포주를 6-웰 플레이트에 접종한 다음, Glu-Phe 및 비교군(Q4'G 및 FA)을 50 μM이 되도록 각각 처리하였다. 24시간 배양 후, 배양액을 제거하고 PBS로 세포주를 세척한 후, 4% 포말린(formalin)을 가하여 1시간 동안 세포를 고정시켰다. 그 후 오일 레드 오(Oil Red O, Sigma-Aldrich; 0.05 g in 60% 이소프로판올) 용액을 넣고 상온에서 1시간 동안 세포를 염색하였다. 염색된 cell은 현미경(inverted microscope)을 이용하여 세포내 지방 축적정도를 사진으로 기록하였으며, 사진 촬영 후 염색된 cell은 100% 이소프로판올로 추출하여 간세포 전체에 축적된 지방의 양을 500 nm 파장에서의 흡광도로 비교ㆍ평가하였고, 그 결과를 도 4 및 도 5에 도시하였다.To confirm the inhibitory effect of Glu-Phe on hepatic cell fat accumulation obtained in the examples, hepatic cells were treated with oleic acid to induce hepatic cell hyperfiltration. That is, the AML-12 cell line was inoculated into a 6-well plate, and treated with Glu-Phe and the comparative groups (Q4'G and FA) to 50 μM, respectively. After culturing for 24 hours, the culture solution was removed, the cell line was washed with PBS, and the cells were fixed with 4% formalin for 1 hour. Then, a solution of Oil Red O (Sigma-Aldrich; 0.05 g in 60% isopropanol) was added and the cells were stained at room temperature for 1 hour. The stained cells were photographed with a microscope (inverted microscope) and the degree of accumulation of fat in the cells was photographed. After staining, the stained cells were extracted with 100% isopropanol and the amount of fat accumulated in the whole hepatocytes was measured at 500 nm wavelength The absorbance was compared and evaluated, and the results are shown in Fig. 4 and Fig.

도 4 및 도 5로부터, 올레익산을 무처리한 대조군에 비하여 올레익산을 처리한 대조군에서 지방이 과다 축적되었음이 확인되었다. 반면 Glu-Phe를 처리한 간세포에서는 지방의 축적이 현저히 감소되어 있음이 현상학적으로 관찰되었다. 그리고 이 활성은 비교군인 Q4'G 및 FA와 비슷한 수준이었다. 이어 염색된 간세포를 이소프로판올로 추출한 다음, 간세포 전체의 지방축적을 확인한 결과, 도 4에 도시된 바와 같이 올레익산을 처리한 대조군을 100으로 하였을 때, Glu-Phe는 약 20% 정도의 간세포의 지방축적을 억제하는 것이 확인되었다. 4 and 5, it was confirmed that fat was excessively accumulated in the control group treated with oleic acid, compared with the control group treated with no oleic acid. On the other hand, in hepatocytes treated with Glu-Phe, the accumulation of fat was markedly decreased. These activities were similar to the comparative groups Q4'G and FA. Then, the stained hepatocytes were extracted with isopropanol, and the fat accumulation of the whole hepatocytes was examined. As shown in FIG. 4, when the control group treated with oleic acid was taken as 100, Glu-Phe showed about 20% It was confirmed that accumulation was suppressed.

실험예 4Experimental Example 4

mRNA 수준에서 Glu-Phe의 간세포 내 지방합성 조절 인자의 발현 및 활성에 미치는 효과 확인 실험.Effect of Glu-Phe on the Expression and Activity of Regulators of Lipid Synthesis in Hepatocytes at the mRNA Level.

실시예에서 얻어진 Glu-Phe가 간세포 내 지방합성 조절 인자의 발현 및 활성에 미치는 효과를 mRNA수준에서 다음과 같이 확인하여 그 결과를 도 6에 나타내었다. The effect of Glu-Phe obtained in the examples on the expression and activity of the lipogenesis regulatory factor in hepatocytes was confirmed at the mRNA level as follows, and the results are shown in FIG.

Total RNA는 간세포로부터 트라이졸(Trizol, Invitrogen Corp. Carlsbad, CA, USA)을 이용하여 분리하였으며, iscript cDNA synthesis kit (Bio-Rad)를 이용해 cDNA를 합성한 후, SYBR Green Master Mix와 유전자 특이적 primer를 이용해 real-time PCR을 행하였다. mRNA 발현양은 comparative threshold cycle 방법으로 계산하고, 이때 control 유전자인 ribosomal 단백질 Large, P0 (RPLP0) 값으로 normalization하여 보정하였다. 본 발명에서 사용된 primer sequence들은 아래 표 2에 제시한 바와 같다. Total RNA was isolated from hepatocytes using a triazole (Trizol, Invitrogen Corp., Carlsbad, CA, USA) and cDNA was synthesized using iscript cDNA synthesis kit (Bio-Rad) Real-time PCR was performed using primers. The amount of mRNA expression was calculated by a comparative threshold cycle method, and normalized by the control gene Large, P0 (RPLP0). The primer sequences used in the present invention are shown in Table 2 below.

GeneGene Real time quantitative polymerase chain reaction (RT-qPCR) primersReal time quantitative polymerase chain reaction (RT-qPCR) primers ForwardForward ReverseReverse SREBP-1cSREBP-1c TGGATTGCACATTTGAAGACATTGGATTGCACATTTGAAGACAT GCCAGAGAAGCAGAAGAGGCCAGAGAAGCAGAAGAG SCD1SCD1 CCGGAGACCCCTTAGATCGACCGGAGACCCCTTAGATCGA TAGCCTGTAAAAGATTTCTGCAAACC TAGCCTGTAAAAGATTTCTGCAAACC FASNFASN GCTGCGGAAACTTCAGGAAATGCTGCGGAAACTTCAGGAAAT AGAGACGTGTCACTCCTGGACTTAGAGACGTGTCACTCCTGGACTT ACC1ACC1 GACGTTCGCCATAACCAAGTGACGTTCGCCATAACCAAGT CTGTTTAGCGTGGGGATGTTCTGTTTAGCGTGGGGATGTT RPLP0RPLP0 GTGCTGATGGGCAAGAACGTGCTGATGGGCAAGAAC AGGTCCTCCTTGGTGAACAGGTCCTCCTTGGTGAAC

하기 표 2에서 사용된 약어에 대한 설명은 다음과 같다. ACC1, acetyl-CoA carboxylase 1; FASN, fatty acid synthase; RPLP0, ribosomal protein, Large, P0; SCD1, stearoyl-CoA desaturase-1; SREBP-1c, sterol regulatory element binding protein-1c. The abbreviations used in the following Table 2 are as follows. ACC1, acetyl-CoA carboxylase 1; FASN, fatty acid synthase; RPLPO, ribosomal protein, Large, P0; SCD1, stearoyl-CoA desaturase-1; SREBP-1c, sterol regulatory element binding protein-1c.

실험 결과, mRNA 수준에서 인슐린과 glucose를 처리한 대조군에서 SREBP-1c의 발현이 현저히 증가한 반면, Glu-Phe를 처리한 간세포에서는 SREBP-1c의 발현이 유의적으로 감소됨이 관찰되었다. 그리고 도 6에 나타낸 바와 같이 SREBP-1c에 의해 조절되는 지방합성효소인 SCD-1, FASN, 그리고 ACC1 모두 대조군에 비하여 유의적으로 감소됨이 확인되었다. As a result, the expression of SREBP-1c was significantly increased in the control group treated with insulin and glucose at the mRNA level, whereas the expression of SREBP-1c was significantly decreased in the hepatic cells treated with Glu-Phe. As shown in FIG. 6, it was confirmed that SCD-1, FASN, and ACC1, which are lipogenic enzymes regulated by SREBP-1c, were significantly reduced in comparison with the control group.

실험예 5Experimental Example 5

단백질 수준에서 Glu-Phe의 간세포 내 지방합성 조절 인자의 발현 및 활성에 미치는 효과 확인 실험.Effect of Glu-Phe on the Expression and Activity of Regulators of Fatty Synthesis in Hepatocytes at Protein Level.

실시예에서 얻어진 Glu-Phe가 간세포 내 지방합성 조절 인자의 발현 및 활성에 미치는 효과를 단백질수준에서 다음과 같이 확인하여 그 결과를 도 7에 나타내었다.The effect of Glu-Phe obtained in the examples on the expression and activity of the lipogenesis regulatory factor in hepatocytes was confirmed at the protein level as follows, and the results are shown in FIG.

간세포로부터 단백질을 추출하기 위하여 차가운 PBS로 두 차례 세척한 다음, 원심분리(1,000 × g, 4℃, 8 분)를 행하여 pellet을 분리하였다. Pellet은 extraction buffer (radioimmunoprecipitation assay buffer with protease and ptoteasome inhibitors)로 resuspend하고 4℃에서 15분간 반응하였다. 반응액은 원심분리(20,000 × g, 4℃, 10분)를 행한 후 얻어진 상층액(단백질)을 immunoblotting에 이용하였다. 단백질은 8% 또는 10% (v/v) sodiumdodecylsulfate polyacrylamide gell electrophoresis (SDS-PAGE)를 수행하여 분리하였으며, gel을 PVDF membrane에 transfer하였다. Transfer된 membrane은 1시간 동안 실온에서 blocking buffer (5% skim milk in TBS-T)에 의해 blocking되고, 그 후 membrane을 anti-SREBP-1c (2A4, Santa Cruz Biotechnology, Dallas, TX), anti-phospho AMPK (Cell Signaling Technology, Beverly, MA, USA), anti-AMPK (Cell Signalling Technology), anti-phospho ACC (Cell Signalling Technology), anti FASN (Cell Signalling Technology), 그리고 β-actin (Sigma Aldrich)의 primary antibody solution으로 4℃에서 12시간 이상 반응하였다. 이어 secondary antibody solution (Santa Cruz Biotechnology)으로 1시간 동안 실온에서 incubation한 후 ECL detection reagent로 반응시키고 단백질 발현을 확인하였다. To extract proteins from hepatocytes, the cells were washed twice with cold PBS and centrifuged (1,000 × g , 4 ° C, 8 minutes) to separate the pellet. The pellet was resuspended in extraction buffer (radioimmunoprecipitation assay buffer with protease and ptoteasome inhibitors) and reacted at 4 ° C for 15 minutes. The reaction solution was subjected to centrifugation (20,000 × g , 4 ° C., 10 minutes), and the obtained supernatant (protein) was used for immunoblotting. Proteins were separated by 8% or 10% (v / v) sodium dodecylsulfate polyacrylamide gell electrophoresis (SDS-PAGE) and gels were transferred to PVDF membrane. The membranes were blocked with blocking buffer (5% skim milk in TBS-T) for 1 h at room temperature, and then the membranes were incubated with anti-SREBP-1c (2A4, Santa Cruz Biotechnology, AMPK (Cell Signaling Technology, Beverly, MA, USA), anti-AMPK (Cell Signaling Technology), anti-phospho ACC (Cell Signaling Technology), anti FASN (Cell Signaling Technology), and β-actin antibody solution at 4 ° C for at least 12 hours. After incubation with secondary antibody solution (Santa Cruz Biotechnology) for 1 hour at room temperature, the protein was reacted with ECL detection reagent.

그 결과, 도 7에 나타난 바와 같이 단백질 수준에서도 Glu-Phe는 FASN과 SREBP1의 발현을 억제함이 관찰되었다. 이상의 결과들로부터 Glu-Phe는 SREBP-1c의 발현을 조절함으로써 간세포의 지방합성을 억제함이 확인되었다. As a result, it was observed that Glu-Phe suppresses the expression of FASN and SREBP1 even at the protein level as shown in Fig. From these results, it was confirmed that Glu-Phe inhibited the lipid synthesis of hepatocytes by regulating the expression of SREBP-1c.

또한 Glu-Phe가 어떠한 기전으로 SREBP-1c를 조절하는지에 대해 알아보고자 SREBP-1c의 상위 조절자로 알려진 AMPK에 대한 Glu-Phe의 활성을 검토하였다. 그 결과, 도 7에 나타낸 바와 같이 Glu-Phe가 유의적으로 AMPK를 활성화시킴이 확인되었다. 즉, AMPK는 SREBP-1c의 negative 조절자로써 알려져 있으므로, Glu-Phe는 AMPK의 활성화를 통하여 SREBP-1c를 조절함이 확인된 결과이다.In order to investigate the mechanism by which Glu-Phe regulates SREBP-1c, we examined the activity of Glu-Phe against AMPK, which is known to be an upstream regulator of SREBP-1c. As a result, it was confirmed that Glu-Phe significantly activated AMPK as shown in Fig. In other words, AMPK is known to be a negative regulator of SREBP-1c, thus confirming that Glu-Phe regulates SREBP-1c through activation of AMPK.

따라서, 본 발명의 화학식 1을 갖는 화합물 Glu-Phe가 간세포 내에서 AMPK 활성화를 조절함으로써 SREBP-1c 및 관련 지방합성 유전자 발현을 억제시켜 간세포지방축적 억제활성을 갖는 이상, 본 발명의 Glu-Phe 또는 이의 약리학적으로 허용되는 염을 유효성분으로 포함하도록 약품 또는 식품을 제조하게 되면 간세포지방축적 억제활성을 갖게 되므로, 간세포지방축적을 통해 발생되는 대사성 질환 개선용 약학조성물 및 기능성 식품을 제조할 수 있음을 알 수 있다.Thus, since the compound Glu-Phe having the formula 1 of the present invention suppresses the expression of SREBP-1c and related liposome synthesis genes by regulating the activation of AMPK in the hepatocyte and thus inhibits hepatocellular fat accumulation, the Glu- A pharmaceutical composition or a functional food for improving metabolic diseases caused by the accumulation of hepatocyte fat can be produced since the pharmaceutical or food preparation containing the pharmacologically acceptable salt thereof as an active ingredient has the hepatocyte fat accumulation inhibitory activity .

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, Various changes and modifications will be possible.

Claims (12)

삭제delete 삭제delete 삭제delete 하기 화학식 1을 갖는 다이펩타이드 Glu-Phe 및 이의 약리학적으로 허용 가능한 염 중 하나 이상을 유효성분으로 포함하는 간세포지방축적 억제용 약학조성물.
[화학식 1]
Figure 112018092934358-pat00005
A pharmaceutical composition for inhibiting hepatic cell fat accumulation comprising at least one of a di-peptide Glu-Phe having the following formula (1) and a pharmacologically acceptable salt thereof as an active ingredient.
[Chemical Formula 1]
Figure 112018092934358-pat00005
제 4 항에 있어서,
상기 다이펩타이드 Glu-Phe는 양파로부터 분리되는 것을 특징으로 하는 간세포지방축적 억제용 약학조성물.
5. The method of claim 4,
Wherein the di-peptide Glu-Phe is separated from an onion.
제 4 항에 있어서,
상기 다이펩타이드 Glu-Phe는 AMPK 활성화를 조절함으로써 SREBP-1c의 발현을 억제하는 것을 특징으로 하는 간세포지방축적 억제용 약학조성물.
5. The method of claim 4,
Wherein said di-peptide Glu-Phe inhibits the expression of SREBP-1c by modulating AMPK activation.
제 4 항에 있어서,
상기 다이펩타이드 Glu-Phe는 SCD-1, FASN, 및 ACC1을 합성하는 각 유전자 중 하나 이상의 발현을 억제하는 것을 특징으로 하는 간세포지방축적 억제용 약학조성물.
5. The method of claim 4,
Wherein said dipeptide Glu-Phe inhibits the expression of one or more of each of the genes synthesizing SCD-1, FASN, and ACC1.
제 4 항 내지 제 7 항 중 어느 한 항에 있어서,
상기 다이펩타이드 Glu-Phe는 간세포에서의 지방합성을 억제하여 상기 간세포에서의 과도한 지방축적을 원인으로 하는 비만, 비알콜성 지방간, 당뇨 및 고지혈증 중 하나 이상의 질환을 개선 하는 것을 특징으로 간세포지방축적 억제용 약학조성물.
8. The method according to any one of claims 4 to 7,
The di-peptide Glu-Phe inhibits lipid synthesis in hepatocytes, thereby improving at least one of obesity, non-alcoholic fatty liver, diabetes and hyperlipemia caused by excessive accumulation of fat in the hepatocyte. &Lt; / RTI &gt;
하기 화학식 1을 갖는 다이펩타이드 Glu-Phe 및 이의 약리학적으로 허용 가능한 염 중 하나 이상을 유효성분으로 포함하는 간세포지방축적 억제용 건강기능성식품.
[화학식 1]
Figure 112018092934358-pat00006
A health functional food for inhibiting hepatic cell fat accumulation comprising as an active ingredient at least one of a di-peptide Glu-Phe having the following formula (1) and a pharmacologically acceptable salt thereof.
[Chemical Formula 1]
Figure 112018092934358-pat00006
제 9 항에 있어서,
상기 다이펩타이드 Glu-Phe는 양파로부터 분리되는 것을 특징으로 하는 간세포지방축적 억제용 건강기능성식품.
10. The method of claim 9,
Wherein the di-peptide Glu-Phe is separated from an onion.
제 9 항에 있어서,
분말, 과립, 정제, 캡슐 또는 음료인 것을 특징으로 하는 간세포지방축적 억제용 건강기능성식품.
10. The method of claim 9,
Wherein the composition is a powder, a granule, a tablet, a capsule or a beverage.
제 9 항 내지 제 11항 중 어느 한 항에 있어서,
상기 다이펩타이드 Glu-Phe는 간세포에서의 지방합성을 억제하여 상기 간세포에서의 과도한 지방축적을 원인으로 하는 비만, 비알콜성 지방간, 당뇨 및 고지혈증 중 하나 이상의 질환을 개선 하는 것을 특징으로 하는 간세포지방축적 억제용 건강기능성식품.
12. The method according to any one of claims 9 to 11,
Wherein said di-peptide Glu-Phe inhibits lipid synthesis in hepatocytes and improves at least one of obesity, non-alcoholic fatty liver, diabetes and hyperlipidemia caused by excessive accumulation of fat in said hepatocytes. Suppressive health functional food.
KR1020170036970A 2017-03-23 2017-03-23 Pharmaceutical composition and functional food containing the dipeptide Glu-phe to improve metabolic diseases KR101942538B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170036970A KR101942538B1 (en) 2017-03-23 2017-03-23 Pharmaceutical composition and functional food containing the dipeptide Glu-phe to improve metabolic diseases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170036970A KR101942538B1 (en) 2017-03-23 2017-03-23 Pharmaceutical composition and functional food containing the dipeptide Glu-phe to improve metabolic diseases

Publications (2)

Publication Number Publication Date
KR20180107967A KR20180107967A (en) 2018-10-04
KR101942538B1 true KR101942538B1 (en) 2019-04-11

Family

ID=63863326

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170036970A KR101942538B1 (en) 2017-03-23 2017-03-23 Pharmaceutical composition and functional food containing the dipeptide Glu-phe to improve metabolic diseases

Country Status (1)

Country Link
KR (1) KR101942538B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5809136B2 (en) * 2010-06-18 2015-11-10 学校法人慶應義塾 Liver disease marker
KR101631315B1 (en) * 2014-04-14 2016-06-20 한국식품연구원 Method for Bioconversing Organosulfur Compounds from Garlic
KR101590255B1 (en) * 2014-06-26 2016-01-29 주식회사 나프로바이오텍 Cyclic Dipeptide purified from fermented liquor of Bacillus vallismortis BS07M and Method for producing the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CELL METABOLISM, 2009, VOL.9, P.407_416
J. AGRIC. FOOD CHEM. 2005, VOL.53, P.3408_3414
JOURNAL OF FOOD SCIENCE, (1978), VOL. 43, P.740_745*
TMIC [HTTP://WWW.HMDB.CA/METABOLITES/HMDB0029156]*

Also Published As

Publication number Publication date
KR20180107967A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6599592B2 (en) α-Glucosidase activity inhibitor
KR102296821B1 (en) Extract of Symbiodinium voratum and composition for preventing, improving or treating benign prostatic hyperplasia comprising the same as an effective ingredient
JP6910639B2 (en) Angiotensin converting enzyme inhibitor, composition and method for producing the same
JP5142311B2 (en) Geniposide acid derivatives
KR101942538B1 (en) Pharmaceutical composition and functional food containing the dipeptide Glu-phe to improve metabolic diseases
JP2004002231A (en) Composition comprising rubrofusarin glycoside
US20210177796A1 (en) Composition for preventing or treating inflammatory diseases, containing marine fungus penicillium sp. sf-5859-derived curvularin-type metabolites
KR101332074B1 (en) Composition Comprising Esculetin for Inhibition of Bone Loss
KR101862135B1 (en) Novel diynoic acid compound and pharmaceutical composition for preventing or treating bone diseases comprising the same
KR101793654B1 (en) Pharmaceutical composition or functional food containing malaxinic acid for improvement of lipid related metabolic diseases
KR20190036217A (en) Composition for Preventing or Treating Inflammatory Diseases Comprising Sparassis crispa Extract
JP5061282B2 (en) Naringenin derivative, glucose uptake promoter and blood sugar level increase inhibitor containing the same
JP6691889B2 (en) Novel tetrapeptide compound derived from shochu distillation residue
JP5392451B2 (en) Antitumor agent and immunostimulant
KR20210118274A (en) Composition for preventing or treating alzheimer&#39;s disease of sea cucumber enzyme extract
KR101854144B1 (en) Novel diynoic acid methyl ester compound and pharmaceutical composition for preventing or treating bone diseases comprising the same
KR101834550B1 (en) Composition for preventing, improving or treating vascular diseases comprising 3-caffeoyl-4-dihydrocaffeoylquinic acid as effective component
JP2015097511A (en) Production method of polyphenol derivative, and food and medicinal composition containing polyphenol derivative
KR101651100B1 (en) ISOLATED SINGLE COMPOUND FROM Mori Cortex Radicis ITS APPLICATION IN TREATING AND PREVENTING OBESITY
JP2018172296A5 (en)
KR101630820B1 (en) Pharmaceutical composition for blood vessel disease prevention or treatment comprising substance extracted from Hericium erinacium
KR102565433B1 (en) A composition for treating, preventing and improving bone associated diseases containing an ulmus extracts or an effective single compound isolated therefrom
JP7374687B2 (en) pentapeptide compound
KR102361719B1 (en) A compound having an ability to inhibit alpha-glucosidase and a composition for prevention, improvement and treatment of carbohydrate-mediated diseases
KR100630867B1 (en) Composition comprising Spicatoside A showing neuronal cell-protecting activity

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant