JP5061282B2 - Naringenin derivative, glucose uptake promoter and blood sugar level increase inhibitor containing the same - Google Patents

Naringenin derivative, glucose uptake promoter and blood sugar level increase inhibitor containing the same Download PDF

Info

Publication number
JP5061282B2
JP5061282B2 JP2006188931A JP2006188931A JP5061282B2 JP 5061282 B2 JP5061282 B2 JP 5061282B2 JP 2006188931 A JP2006188931 A JP 2006188931A JP 2006188931 A JP2006188931 A JP 2006188931A JP 5061282 B2 JP5061282 B2 JP 5061282B2
Authority
JP
Japan
Prior art keywords
naringenin
derivative
uptake
glucose
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006188931A
Other languages
Japanese (ja)
Other versions
JP2008013525A (en
Inventor
均 芦田
健一 吉田
伊津子 福田
巌 坂根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Priority to JP2006188931A priority Critical patent/JP5061282B2/en
Publication of JP2008013525A publication Critical patent/JP2008013525A/en
Application granted granted Critical
Publication of JP5061282B2 publication Critical patent/JP5061282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、新規ナリンゲニン誘導体、それを含有するグルコース取込み促進剤及び血糖値上昇抑制剤に関する。 The present invention relates to a novel naringenin derivative, a glucose uptake promoter and a blood glucose level increase inhibitor containing the same.

食生活が豊かになるにつれ、「肥満」は現代人が抱える最も深刻な悩みの一つとなっている。肥満は、美容的に好ましくないばかりか、糖尿病、動脈硬化、高トリアシルグリセロール血症、高コレステロール血症、血栓症等疾患などの様々な疾病を引き起こすことが知られている。 As the diet becomes richer, "obesity" has become one of the most serious concerns of modern people. Obesity is not only cosmetically unfavorable, but is also known to cause various diseases such as diabetes, arteriosclerosis, hypertriacylglycerolemia, hypercholesterolemia, thrombosis and the like.

肥満は、脂肪細胞の分化・肥大、或いは脂肪細胞数そのものの増加により生じるが、いずれの場合にも“グルコースの取込み”が深く関与している。グルコースは極性物質であるため、血中から各細胞にグルコースが取り込まれるには輸送担体(glucose transporter:GLUT)が必要である。現在9種類以上のGLUTがクローニングされており、その中で生体内の糖・脂質代謝に大きく関与する脂肪細胞には主にGLUT1及びGLUT4が発現している。その中でも特にGLUT4は脂肪細胞の膜上におけるグルコースの取込み活性に主要な役割を果たしていることが知られている。 Obesity is caused by adipocyte differentiation / hypertrophy or an increase in the number of fat cells itself, and in either case, “glucose uptake” is deeply involved. Since glucose is a polar substance, a glucose transporter (GLUT) is required for glucose to be taken into each cell from the blood. Currently, 9 or more types of GLUTs have been cloned, and among them, GLUT1 and GLUT4 are mainly expressed in adipocytes that are greatly involved in sugar and lipid metabolism in vivo. Among them, GLUT4 is known to play a major role in glucose uptake activity on the adipocyte membrane.

GLUT4は、インスリン感受型GLUTと呼ばれ、通常は脂肪細胞及び筋肉細胞における細胞内小胞に存在し、インスリンの刺激を受けると細胞膜上に移行(トランスロケーション)し、グルコースを取り込める状態とする。GLUT4のトランスロケーションは、インスリンが受容体に結合し、受容体のβサブユニットが自己リン酸化することが情報伝達の開始となり、その後インスリン受容体基質(IRS)のリン酸化、ホスファチジルイノシトール3キナーゼ(phosphoinositide 3-kinase, PI3K)の活性化、Akt/Protein Kinase Bの活性化という経路を介して細胞内の小胞体から細胞膜へのエキソサイトーシスにより、移行が完了する。また、GLUT4は、筋肉細胞内により多くのグルコースを移動させる働きを為し、運動選手は一般の人よりもGLUT4が多いことなども報告されている(「炭水化物ローディングの最新知見」慶応義塾大学スポーツ医学研究センター紀要
1996)。
GLUT4 is called insulin-sensitive GLUT and is usually present in intracellular vesicles in adipocytes and muscle cells. When stimulated by insulin, GLUT4 moves (translocates) onto the cell membrane and makes glucose available. The translocation of GLUT4 is triggered by the binding of insulin to the receptor and the phosphorylation of the β subunit of the receptor, followed by phosphorylation of the insulin receptor substrate (IRS), phosphatidylinositol 3 kinase ( The phosphoinositide 3-kinase (PI3K) activation and Akt / Protein Kinase B activation pathway complete the translocation from the intracellular endoplasmic reticulum to the cell membrane. In addition, GLUT4 works to move more glucose into muscle cells, and it has been reported that athletes have more GLUT4 than ordinary people ("Latest carbohydrate loading knowledge" Keio University Sports) Medical Research Center Bulletin 1996).

肥満の増加を反映して、糖尿病患者数が増える傾向にある。糖尿病は、いったん発症するとなかなか完治しづらいばかりか、合併症を発症し易いやっかいな疾病である。 Reflecting the increase in obesity, the number of diabetic patients tends to increase. Diabetes is a troublesome disease that not only is difficult to cure once it develops, but is also likely to develop complications.

糖尿病患者に特異的に発症する合併症として、糖尿病性網膜症、糖尿病性腎症、糖尿病性神経障害などあり、糖尿病三大合併症とも呼ばれている。これらの合併症は、細かい血管の病変に基づく細小血管障害に因ると考えられている。具体的には、プロテインキナーゼC等の酵素の働きが異常に亢進して細胞機能が低下したり、高血糖の持続により酵素などの蛋白質にグルコースが化学結合して酵素機能が低下したり、高血糖による代謝障害のためにソルビトール(糖アルコール)が細胞内に蓄積して細胞障害を起こしたりして、これが原因で細小血管の細胞や血液細胞に異常が生じ合併症を発症すると考えられている。 As complications that specifically develop in diabetic patients, there are diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, etc., which are also called the three major complications of diabetes. These complications are thought to be due to microangiopathy based on fine vascular lesions. Specifically, the function of an enzyme such as protein kinase C is abnormally enhanced and cell function is decreased, or glucose is chemically bound to a protein such as enzyme due to the persistence of hyperglycemia, and the enzyme function is decreased. It is thought that sorbitol (sugar alcohol) accumulates in cells due to metabolic disorders due to blood sugar and causes cell damage, which causes abnormalities in small blood vessels and blood cells, causing complications .

例えば、特許文献1には、ナリンゲニンを有効成分とする脂質代謝改善剤が記載されており、さらにナリンゲニンを有効成分とする高脂血症治療又は予防剤、高コレステロール血症治療又は予防剤、動脈硬化症治療又は予防剤、心筋梗塞症治療又は予防剤が記載されている。また、特許文献2には、ナリニンゲンを配合した脂質代謝改善に有効な食品について記載されている。   For example, Patent Document 1 describes a lipid metabolism improving agent containing naringenin as an active ingredient, and further treating or preventing hyperlipidemia, treating or preventing hypercholesterolemia containing naringenin as an active ingredient, arterial A sclerosis treatment or prevention agent and a myocardial infarction treatment or prevention agent are described. Patent Document 2 describes a food effective for improving lipid metabolism, which contains nariningen.

さらに、非特許文献1には、ナリンゲニンが、GLUT4トランスロケーションの主要調節物質であるホスファチジルイノシトール3キナーゼ(phosphoinositide 3-kinase, PI3K)の阻害作用を有することや、グレープフルーツ由来のナリンゲニンが投与量依存的に3T3−L1脂肪細胞におけるグルコース取込み活性を阻害することが記載されている。また、非特許文献2(Breast
Cancer Research and Treatment, 85, 2, 103-110, 2004)には、ナリンゲニンがマイトジェン活性化プロテインキナーゼ(MAPK)のリン酸化を阻害し、乳癌細胞におけるグルコース取込み阻害活性阻害に深く関与していると思われる。
Furthermore, Non-Patent Document 1 shows that naringenin has an inhibitory action on phosphatidylinositol 3-kinase (PI3K), a main regulator of GLUT4 translocation, and that grapefruit-derived naringenin is dose-dependent. Describes inhibition of glucose uptake activity in 3T3-L1 adipocytes. Non-Patent Document 2 (Breast
Cancer Research and Treatment, 85, 2, 103-110, 2004) states that naringenin inhibits mitogen-activated protein kinase (MAPK) phosphorylation and is deeply involved in inhibiting glucose uptake inhibitory activity in breast cancer cells. Seem.

しかし、特定の配糖体を有するナリンゲニンが筋肉細胞へのグルコース取込み活性を促進することや、かかるナリンゲニンが血糖上昇抑制効果を有することや、脂肪増加抑制を有することはこれまで知られていなかった。   However, it has not been known so far that naringenin having a specific glycoside promotes glucose uptake activity into muscle cells, such naringenin has an effect of suppressing blood sugar increase, and has an increase in fat increase. .

特開平8−283154JP-A-8-283154 特開平8−280358JP-A-8-280358 Biochenical and Biophysical ResearchCommunications35, 2, 229-234, 2003Biochenical and Biophysical Research Communications 35, 2, 229-234, 2003 Breast Cancer Research and Treatment, 85,2, 103-110, 2004Breast Cancer Research and Treatment, 85,2, 103-110, 2004

本発明の目的は、筋肉細胞への糖取込み活性を促進させることにより、血糖上昇抑制効果や脂肪増加抑制効果を有する治療又は予防剤やかかる治療剤を含有する飲食品を提供することにある。 An object of the present invention is to provide a therapeutic or prophylactic agent having an effect of suppressing an increase in blood sugar and an effect of suppressing an increase in fat by promoting sugar uptake activity into muscle cells, and a food and drink containing such a therapeutic agent.

本発明者らは、鋭意研究の結果、次の化学式[1]で表されるナリンゲニンに筋肉細胞へのグルコース取込み作用や血糖上昇抑制作用があることを見出し、本発明を完成するに至った。   As a result of diligent research, the present inventors have found that naringenin represented by the following chemical formula [1] has an action of taking up glucose into muscle cells and an action of suppressing an increase in blood sugar, and completed the present invention.

Figure 0005061282
Figure 0005061282

すなわち本発明は、
(1) 下記の一般式〔I〕

Figure 0005061282
(式中、R1は6単糖−n分子数(n≠0)と5単糖−m分子数(m≠0)を示し、R2は水素原子を示す。*は異性体であることを示す。)で表されるナリンゲニン誘導体、
(2) 5単糖の分子数が1である(m=1)ことを特徴とする上記(1)記載のナリンゲニン誘導体、
(3) 6単糖の分子数が3である(n=3)ことを特徴とする上記(1)又は(2)記載のナリンゲニン誘導体。
(4) 発酵茶由来であることを特徴とする上記(1)〜(3)のいずれか記載のナリンゲン誘導体。
(5) 上記(1)〜(3)のいずれか記載のナリンゲン誘導体を含有する植物由来抽出物。
(6) 抽出物が熱水抽出物又は水溶性抽出物であることを特徴とする上記(5)記載の植物由来抽出物。
(7) 発酵茶由来であることを特徴とする上記(5)又は(6)記載の植物由来抽出物。
(8) 上記(1)〜(4)のいずれか記載のナリンゲン誘導体及び/又は上記(5)〜(7)のいずれか記載の植物由来抽出物を有効成分として含有するグルコース取込み促進剤。
(9) 上記(1)〜(4)のいずれか記載のナリンゲン誘導体及び/又は上記(5)〜(7)のいずれか記載の植物由来抽出物を有効成分として含有する血糖値上昇抑制剤に関する。 That is, the present invention
(1) The following general formula [I]
Figure 0005061282
(In the formula, R1 represents 6 monosaccharides-n molecules (n ≠ 0) and 5 monosaccharides-m molecules (m ≠ 0), R2 represents a hydrogen atom, and * represents an isomer. .) Naringenin derivatives represented by
(2) The naringenin derivative according to (1) above, wherein the number of molecules of five monosaccharides is 1 (m = 1),
(3) The naringenin derivative according to (1) or (2) above, wherein the number of molecules of 6 monosaccharides is 3 (n = 3).
(4) The naringen derivative according to any one of (1) to (3) above, which is derived from fermented tea.
(5) A plant-derived extract containing the naringen derivative according to any one of (1) to (3) above.
(6) The plant-derived extract as described in (5) above, wherein the extract is a hot water extract or a water-soluble extract.
(7) The plant-derived extract according to (5) or (6) above, which is derived from fermented tea.
(8) A glucose uptake promoter containing the naringen derivative according to any one of (1) to (4) and / or the plant-derived extract according to any one of (5) to (7) as an active ingredient.
(9) The present invention relates to a blood sugar level increase inhibitor comprising as an active ingredient the naringen derivative according to any one of (1) to (4) and / or the plant-derived extract according to any one of (5) to (7). .

本発明によれば、グルコース取込み活性化合物やグルコース取込み活性化促進剤や血糖上昇抑制剤や、これらを含む飲食品を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, a glucose uptake | capture active compound, a glucose uptake activation promoter, a blood glucose rise inhibitor, and food / beverage products containing these can be provided.

ナリンゲニンとは、一般的に4’,5,7−トリヒドロキシフラバノン(4’, 5,
7-trihydroxyflavanone)を指すものであり、フラバノン類の代表的な化合物である。本発明におけるナリニンゲン誘導体は、7位の糖鎖に特徴的な構成を有するものであり、関与する糖種はグルコースとラムノースの6単糖とキシロースなどの5単糖で構成されている。さらに2位の部分で異性体を構成することもわかっており、本発明のナリニンゲン誘導体に含まれる。本発明のナリンゲニン誘導体の構造式を以下に示す。
Naringenin is generally 4 ', 5,7-trihydroxyflavanone (4', 5,
7-trihydroxyflavanone), a typical compound of flavanones. The narinning derivative in the present invention has a characteristic structure in the 7-position sugar chain, and the sugar species involved are composed of 6 monosaccharides of glucose and rhamnose and 5 monosaccharides such as xylose. Furthermore, it is also known that an isomer is formed at the 2-position, and is included in the narinning derivative of the present invention. The structural formula of the naringenin derivative of the present invention is shown below.

Figure 0005061282
Figure 0005061282

本発明におけるナリンゲニン誘導体には、グルコース2分子とラムノース1分子に5単糖が1分子で構成された構造を有するものも含まれる。かかる構成を有するナリンゲニン誘導体にも、2位の位置(*の部分)で異性体が認められる。(以下、化合物1、2と呼ぶことがある。)化合物1の化学構造を以下に示す。 The naringenin derivatives in the present invention include those having a structure in which 5 monosaccharides are composed of 2 molecules of glucose and 1 molecule of rhamnose. Also in the naringenin derivative having such a configuration, an isomer is observed at the 2-position (part of *). (Hereinafter, it may be called the compounds 1 and 2.) The chemical structure of the compound 1 is shown below.

Figure 0005061282
Figure 0005061282

また、本発明におけるナリンゲニン誘導体には、母核の7位の糖鎖が6単糖2分子と5単糖1分子で構成されたものも含まれる。上記の化合物と同じく2位で部分構造の差が認められる。(以下、化合物3,4と呼ぶことがある。)化合物2の化学構造を以下に示す。 In addition, the naringenin derivatives in the present invention include those in which the sugar chain at the 7-position of the mother nucleus is composed of 2 molecules of 6 monosaccharides and 1 molecule of 5 monosaccharides. Similar to the above compound, a difference in partial structure is observed at the 2-position. (Hereinafter, it may be called the compounds 3 and 4.) The chemical structure of the compound 2 is shown below.

Figure 0005061282
Figure 0005061282

なお、ナリニンゲン誘導体には、6単糖2分子で構成されグルコース1分子とラムノース1分子で構成され5単糖を持たないものもあることがわかっている。上記化合物と同様に、2位で部分構造の差が認められる。(以下、化合物5、6と呼ぶことがある。)実施例中に記載されているように、化合物6のグルコース取込み活性は、化合物1及び2のグルコース取込み活性と比較して弱いものであった。化合物6の化学構造を以下に示す。   It is known that some nariningen derivatives are composed of 2 molecules of 6 monosaccharides and 1 molecule of glucose and 1 molecule of rhamnose and do not have 5 monosaccharides. Similar to the above compound, a difference in partial structure is observed at the 2-position. (Hereinafter, it may be called the compounds 5 and 6.) As described in Examples, the glucose uptake activity of the compound 6 was weak compared with the glucose uptake activities of the compounds 1 and 2. . The chemical structure of Compound 6 is shown below.

Figure 0005061282
Figure 0005061282

ちなみに、同じ紅茶抽出物であるテアフラビンが、筋肉細胞へのグルコース取込み促進作用、脂肪細胞へのグルコース取込み阻害作用、血糖値上昇抑制作用等を有することは公知である(特開2006−1929)。しかし、本発明者らは構造を解析した結果、本発明の作用効果に関与する化合物がテアフラビン類でなく、新規ナリンゲニン誘導体であることを明らかにした。参考までにテアフラビン類の構造を以下に示すが、テアフラビン類には、(1)7員環部分があること、(2)ガレートが構成に存在する化合物があること、(3)糖鎖がないことから、本発明におけるナリンゲニン誘導体と構造的に明らかに異なる。   Incidentally, it is well known that the same black tea extract, theaflavin, has an action of promoting glucose uptake into muscle cells, an action of inhibiting glucose uptake into fat cells, an action of suppressing an increase in blood glucose level, and the like (Japanese Patent Laid-Open No. 2006-1929). However, as a result of analyzing the structure, the present inventors have clarified that the compound involved in the action and effect of the present invention is not a theaflavin but a novel naringenin derivative. For reference, the structure of theaflavins is shown below. Theaflavins have (1) a 7-membered ring moiety, (2) a compound in which gallate is present, and (3) no sugar chain. This clearly differs structurally from the naringenin derivative in the present invention.

Figure 0005061282
Figure 0005061282

なお、テアフラビン類は酢酸エチル層に移行しやすく、本発明の化合物は分配後の水相を合成吸着樹脂で処理し、単離したため極性がかなり高かったが、これはOH基の数に起因しているようである。すなわち、テアフラビン類と本発明のナリンゲニン誘導体とは極性が異なるといえる。 Theaflavins easily migrate to the ethyl acetate layer, and the compound of the present invention was quite polar because the aqueous phase after distribution was treated with a synthetic adsorption resin and isolated, but this was due to the number of OH groups. It seems to be. That is, it can be said that theaflavins and the naringenin derivative of the present invention have different polarities.

本発明におけるナリンゲニン誘導体は、筋肉細胞へのグルコース取込み活性を有する。上述のように、ナリンゲニンが脂肪細胞へのグルコース取込み阻害活性や、癌細胞へのグルコース取込み阻害活性を有し、よってナリンゲニンが肥満防止作用や癌細胞増殖抑制作用を有することは公知である。しかし、特定のナリンゲニン誘導体が筋肉細胞へのグルコース取込み促進活性を有することは知られていなかった。本発明のナリンゲニン誘導体は、活力増強、持久力向上、滋養強壮、抗疲労、血糖値上昇抑制について効果を有する。   The naringenin derivative in the present invention has an activity of taking up glucose into muscle cells. As described above, it is known that naringenin has an activity of inhibiting glucose uptake into fat cells and an activity of inhibiting glucose uptake into cancer cells, and thus naringenin has an anti-obesity effect and an anti-cancer cell growth inhibitory activity. However, it has not been known that a specific naringenin derivative has an activity of promoting glucose uptake into muscle cells. The naringenin derivative of the present invention has effects on enhancing vitality, improving endurance, nourishing tonic, anti-fatigue, and suppressing increase in blood glucose level.

本発明におけるナリンゲニン誘導体は、天然由来、生合成、化学合成のいずれの方法により得られたものでもよいが、入手容易性や工業的コスト等を考慮すると植物から抽出により得られたものが好ましい。対象となる植物は、本発明のナリンゲニン誘導体を抽出できるものであれば特に限定されないが、茶類、特に紅茶等の発酵茶が好ましい。   The naringenin derivative in the present invention may be obtained by any method of natural origin, biosynthesis, and chemical synthesis, but is preferably obtained by extraction from a plant in consideration of availability and industrial cost. The target plant is not particularly limited as long as it can extract the naringenin derivative of the present invention, but tea, particularly fermented tea such as black tea, is preferable.

本発明のナリンゲニン誘導体の抽出方法は、本発明のナリンゲニン誘導体を抽出できるものであれば何ら限定されないが、熱水抽出、エタノール等のアルコール抽出等が簡便性の観点から好ましい。該ナリンゲニン誘導体は、抽出後に1又は2回以上の精製工程を経た、高純度のものを使用することができるのは当然であるが、本発明における活性が失われない限りにおいて該ナリンゲニン誘導体を含有する抽出物や画分を代わりに用いることができる。 The method for extracting the naringenin derivative of the present invention is not limited as long as it can extract the naringenin derivative of the present invention, but hot water extraction, alcohol extraction such as ethanol and the like are preferable from the viewpoint of simplicity. The naringenin derivative can be used as a high-purity product that has undergone one or more purification steps after extraction, but contains the naringenin derivative as long as the activity in the present invention is not lost. Extracts and fractions to be used can be used instead.

本発明のナリンゲニン誘導体又は該誘導体を含有する抽出物や画分は、これらを有効成分とする薬剤や飲食品に配合することができる。   The naringenin derivative of the present invention or an extract or fraction containing the derivative can be blended in a drug or food or drink containing these as active ingredients.

本発明におけるナリンゲニン誘導体の食品中の総含有量は、適用する食品や個体差(個人差、人種差、動物種差など)等によって異なるが、0.001〜99.9w/w%が適当であり、好ましくは0.01w/w%、さらに好ましくは0.1〜5w/w%である。0.001w/w%より少ないと本発明における十分な活性が期待できないおそれがある。   The total content of the naringenin derivative in the present invention in the food varies depending on the food to be applied and individual differences (individual differences, racial differences, animal species differences, etc.), but 0.001 to 99.9 w / w% is appropriate. , Preferably 0.01 w / w%, more preferably 0.1 to 5 w / w%. If the amount is less than 0.001 w / w%, sufficient activity in the present invention may not be expected.

本発明における飲食物は、飲食物を製造する工程中に適当な段階でナリンゲニン誘導体そのもの、抽出物や画分、又はこれらを含有する混合物を添加し常法に従って混合し、その他は当該飲食物の通常の製造方法によって製造することができる。また、ナリンゲニン誘導体を含有する混合物を一旦製造された飲食品に添加し、常法により混合することにより製造することもできる。   The food and drink in the present invention are mixed in accordance with a conventional method by adding the naringenin derivative itself, an extract or a fraction, or a mixture containing these at an appropriate stage during the process of producing the food and drink. It can be manufactured by a normal manufacturing method. Moreover, it can also manufacture by adding the mixture containing a naringenin derivative to the food / beverage products once manufactured, and mixing by a conventional method.

添加するナリンゲニン誘導体の形態は、ナリンゲニン誘導体の結晶や粉末であってもよいし、適当な賦形剤や飲食物中の原料の一部とナリンゲニン誘導体を混合させたものでもよい。また、ナリンゲニン誘導体をエタノールやその水溶液等に溶解されたものであってもよい。適当な賦形剤としては、澱粉、乳糖、セルロース、デキストリン、糖アルコール、増粘多糖類などを挙げることができる。   The form of the naringenin derivative to be added may be a crystal or powder of the naringenin derivative, or may be a mixture of an appropriate excipient or a part of the raw material in food and drink with the naringenin derivative. A naringenin derivative may be dissolved in ethanol or an aqueous solution thereof. Suitable excipients include starch, lactose, cellulose, dextrin, sugar alcohol, thickening polysaccharide and the like.

本発明における飲食物の投与対象は特に限定されない。人間が摂取する飲食物はもちろんのこと、犬、猫、ウサギ、ラット、マウスなどの人間以外の哺乳動物用の飼料をも含むものである。また、飲食物の添加物には嗜好品などもふくまれる。具体的には、パン、麺、ビスケット等の小麦加工品や、ビスケット、ケーキ、キャンディー、ゼリー、チョコレート等の菓子類や、みそ等の発酵食品や、かまぼこ、ちくわ等の水産練製品や、ハム、ソーセージ、チーズ等の畜産食品や、たれ、ドレッシング、ソース等の調味食品や、コーヒー飲料、茶類飲料、穀物抽出飲料(麦茶、豆茶、トウモロコシ茶など)、野菜飲料、果実飲料、乳酸菌飲料、炭酸飲料、天然水、スポーツ用飲料、各種機能性飲料等の飲料や、サプリメント等の健康食品などを挙げることができるが、各種飲料に配合することが摂取簡便性の観点から特に好ましい。また本発明におけるナリンゲニン誘導体は、茶類、特に発酵茶、とりわけ紅茶に含まれることが明らかになったことから、天然由来のナリンゲニン誘導体にその機能性を期待することもできる。   The administration target of food and drink in the present invention is not particularly limited. In addition to food and drink consumed by humans, it also includes feed for mammals other than humans such as dogs, cats, rabbits, rats, and mice. In addition, food and drink additives include luxury items. Specifically, processed wheat products such as bread, noodles, biscuits, confectionery such as biscuits, cakes, candy, jelly, chocolate, fermented foods such as miso, marine products such as kamaboko and chikuwa, ham , Livestock foods such as sausages, cheese, seasoning foods such as sauce, dressing, sauce, coffee drinks, tea drinks, grain extract drinks (eg barley tea, bean tea, corn tea), vegetable drinks, fruit drinks, lactic acid bacteria drinks , Carbonated beverages, natural waters, sports beverages, various functional beverages, health foods such as supplements, etc. can be mentioned, but blending into various beverages is particularly preferred from the viewpoint of ease of ingestion. Moreover, since it became clear that the naringenin derivative in this invention is contained in teas, especially fermented tea, especially black tea, the functionality can also be expected from the naturally derived naringenin derivative.

本発明のナリンゲニン誘導体は、ナリンゲニンを通常の製造方法で製造してからナリンゲニン誘導体を製造することができる。ナリンゲニンは、発酵茶葉を熱水やリン酸塩溶液等を用いて抽出し、放置後、沈殿する部分を分離する。必要に応じてこれを水や氷酢酸で再結晶することができる。これを酢又は酵素で加水分解し、常法により分離精製することによって製造することができる。   The naringenin derivative of the present invention can be produced after the naringenin is produced by an ordinary production method. Naringenin extracts fermented tea leaves using hot water, phosphate solution or the like, and after standing, separates the precipitated portion. If necessary, it can be recrystallized with water or glacial acetic acid. It can be produced by hydrolyzing it with vinegar or an enzyme and separating and purifying it by a conventional method.

なお、上記の各方法において、必要に応じて常法により脱色、濾過、再結晶することができる。なお、上記の加水分解の条件は絶対的なものでなく、加熱温度、時間及び使用する試薬の濃度、量等に依存して適宜変更されうる。   In each of the above methods, if necessary, decolorization, filtration, and recrystallization can be performed by a conventional method. The above hydrolysis conditions are not absolute, and can be appropriately changed depending on the heating temperature, time, concentration and amount of reagent used, and the like.

本発明のナリンゲニン誘導体は、筋肉細胞へのグルコース取込み活性化作用や血糖上昇抑制作用を有することから、活力増強、持久力向上、滋養強壮、抗疲労、血糖値上昇抑制について効果を有する。また、本発明のナリンゲニン誘導体は、例えば茶葉等から抽出できるため安全性にも優れている。さらに、本発明におけるナリンゲニン誘導体を飲食品に添加することにより、長期間で定期的な摂取も容易になる。   Since the naringenin derivative of the present invention has an action of activating glucose uptake into muscle cells and an action of suppressing the increase in blood sugar, it has effects on enhancing vitality, improving endurance, nutrition and toughness, anti-fatigue, and suppressing an increase in blood sugar level. Moreover, since the naringenin derivative of the present invention can be extracted from, for example, tea leaves, it is excellent in safety. Furthermore, by adding the naringenin derivative in the present invention to foods and drinks, regular intake is facilitated over a long period of time.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明は実施例に何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to an Example at all.

実施例1:紅茶熱水抽出物とその水溶性画分の糖の取込み亢進効果
筋肉細胞へのグルコース(糖)の取込みを亢進させる有効成分が、紅茶中に含まれるか調べた。紅茶熱水抽出物及びその水溶性画分を被検物質としてグルコースの取込み活性を測定した。
Example 1: Effect of enhancing sugar uptake of black tea hot water extract and its water-soluble fraction It was examined whether black tea contains an active ingredient that enhances uptake of glucose (sugar) into muscle cells. Glucose uptake activity was measured using black tea hot water extract and its water-soluble fraction as test substances.

ラット骨格筋由来L6筋管細胞を、10%ウシ胎児血清(FBS)を含むMEM培地を用いて37℃、5%CO−95%空気中で培養した。24穴プレートでサブコンフルエント状態までL6細胞を増殖させた後、2%FBSを含むMEM培地で2日毎に培地交換し、10日間培養することにより筋管細胞へと分化させた。分化させたL6筋管細胞を0.2%BSAを含むMEM培地で18時間脱感作した後、培地を除去し、クレブス‐リンガーHEPES緩衝液(KRH; 50 mM HEPES、pH 7.4、137 mM NaCl、4.8 mM KCl、1.85 mM CaCl2、1.3 mM MgSO4) 300μlに置き換えた。KRH中での終濃度が100nMとなるようにインスリンを、または50μg/mlとなるよう被検物質を15分間処理した後、[H]標識された2−デオキシグルコース(2−DG)を最終濃度として6.5mM(18.5μCi)となるように5分間作用させた。その後、細胞を氷冷したKRHで4回洗浄し、細胞内に取り込まれなかった2−DGを除去した。 Rat skeletal muscle-derived L6 myotube cells were cultured in MEM medium containing 10% fetal bovine serum (FBS) at 37 ° C., 5% CO 2 -95% air. After L6 cells were grown to a subconfluent state in a 24-well plate, the medium was changed every 2 days in a MEM medium containing 2% FBS, and differentiated into myotube cells by culturing for 10 days. Differentiated L6 myotube cells were desensitized with MEM medium containing 0.2% BSA for 18 hours, and then the medium was removed and Krebs-Ringer HEPES buffer (KRH; 50 mM HEPES, pH 7.4, 137). (Mm NaCl, 4.8 mM KCl, 1.85 mM CaCl 2, 1.3 mM MgSO 4) 300 μl. After treatment with insulin to a final concentration of 100 nM in KRH or a test substance to 50 μg / ml for 15 minutes, [ 3 H] -labeled 2-deoxyglucose (2-DG) is finally It was allowed to act for 5 minutes so that the concentration was 6.5 mM (18.5 μCi). Thereafter, the cells were washed four times with ice-cooled KRH to remove 2-DG that was not taken up into the cells.

完全にKRHを取り除いた後、0.05 N NaOH 250μlで可溶化した細胞を回収した。さらにプレートの各ウェルを200μlのKRHで2回洗浄して、この洗液も合わせて回収した。液体シンチレーションシステムLSC−5000シリーズ(アロカ社製)を用い、回収した可溶化細胞の[H]の放射活性を測定することにより、細胞内に取り込まれた2−DGの取込み活性とした。非特異的な取込量は、グルコース輸送の阻害剤であるサイトカラシンBを20μMで15分間処理し、上記と同様の方法で2−DGの取込み活性を測定した。 After complete removal of KRH, cells solubilized with 250 μl of 0.05 N NaOH were collected. Further, each well of the plate was washed twice with 200 μl of KRH, and this washing solution was also collected. Using the liquid scintillation system LSC-5000 series (manufactured by Aloka), the [ 3 H] radioactivity of the recovered solubilized cells was measured to determine the uptake activity of 2-DG incorporated into the cells. The non-specific uptake amount was obtained by treating cytochalasin B, an inhibitor of glucose transport, with 20 μM for 15 minutes and measuring 2-DG uptake activity in the same manner as described above.

その結果、熱水抽出物は50μg/mlの濃度で2−DGの取込み活性にある程度の影響を与えるに留まったものの、水溶性画分は同じ濃度で取込み活性を有意に上昇させ、陽性対照である100nMインスリンと同等の効果を示した(図1)。このことから、紅茶水溶性画分にグルコースの取込み活性を上昇させる化合物が存在することがわかった。 As a result, although the hot water extract only had a certain effect on the 2-DG uptake activity at a concentration of 50 μg / ml, the water-soluble fraction significantly increased uptake activity at the same concentration, It showed the same effect as a certain 100 nM insulin (FIG. 1). From this, it was found that there is a compound that increases the glucose uptake activity in the black tea water-soluble fraction.

実施例2:紅茶水溶性画分の糖の取込み活性に対する濃度依存性
実施例1で2−DGの取込み活性を上昇させることが分かった水溶性画分について、その作用濃度によって取込み活性が変化するか調べた。実施例1と同様に、分化させたL6筋管細胞にさまざまな濃度で被検物質である水溶性分画物を作用させた後に2−DGの取込み活性を測定したところ、水溶性画分は0.5μg/mlで有意に、また濃度依存的に取込み活性を上昇させ、5μg/mlで活性は最大となった(図2)。
Example 2: Dependence of concentration on sugar uptake activity of black tea water-soluble fraction For the water-soluble fraction found to increase 2-DG uptake activity in Example 1, uptake activity varies depending on the concentration of action. I investigated. In the same manner as in Example 1, when 2-DG uptake activity was measured after allowing a water-soluble fraction as a test substance to act on differentiated L6 myotube cells at various concentrations, the water-soluble fraction was The uptake activity was increased significantly and concentration-dependently at 0.5 μg / ml, and the activity was maximized at 5 μg / ml (FIG. 2).

実施例3:紅茶水溶性画分中の化合物の糖の取込み亢進効果
実施例1と2で、紅茶水溶性画分中に有効成分が含まれることが示唆されたことから、水溶性画分から単離した化合物1から6について、糖の取込み活性に及ぼす影響を調べた。実施例1と同様に50μg/mlとなるよう被検物質を作用させた後、2−DGの取込み活性を測定したところ、化合物1と2は陽性対照である100nMのインスリンと同等のレベルまで有意に取込み活性を上昇させることがわかった(図3)。
Example 3: Effect of enhancing the sugar uptake of compounds in the black tea water-soluble fraction In Examples 1 and 2, it was suggested that the black tea water-soluble fraction contains an active ingredient. The separated compounds 1 to 6 were examined for effects on sugar uptake activity. When the test substance was allowed to act to 50 μg / ml as in Example 1, the 2-DG uptake activity was measured. As a result, compounds 1 and 2 were significantly increased to a level equivalent to 100 nM insulin as a positive control. Was found to increase the uptake activity (FIG. 3).

実施例4:紅茶水溶性画分中の化合物1と2の糖の取込み活性に対する濃度依存性
実施例3で糖の取込み活性を上昇させることを確認した化合物1と2について、その濃度依存性を実施例2と同様の方法で確認した。その結果、化合物1と2は5μg/ml以上で有意に、また濃度依存的に取込み活性を上昇させることが明らかとなった(図4)。
Example 4: Concentration dependence on sugar uptake activity of compounds 1 and 2 in black tea water-soluble fractions Concentration dependence of compounds 1 and 2 confirmed to increase sugar uptake activity in Example 3 It confirmed by the method similar to Example 2. FIG. As a result, it was revealed that compounds 1 and 2 significantly increased the uptake activity in a concentration-dependent manner at 5 μg / ml or more (FIG. 4).

紅茶熱水抽出物及びその水溶性画分の糖の取込み亢進効果を調べた結果を示す図である。分化させたL6筋管細胞に紅茶熱水抽出物または水溶性画分を50μg/mlとなるよう15分間作用させた後、[H]標識された2−DGを最終濃度が6.5mM(18.5Ci)となるよう5分間作用させた。細胞はNaOHで可溶化させて回収し、[H]の放射活性を測定することで2−DGの取り込み活性とした。陽性対照として100nMインスリン(図中破線)、陰性対照として同量の溶媒(図中実線)、また非特異的取り込み量として20μMサイトカラシンBをそれぞれ作用させた場合の取り込み量を測定した。図は陰性対照の取り込み活性を1とした場合の比率を平均値±標準誤差で示し、アステリスクは危険率5%未満で陰性対照と比較して有意差があることを表している。It is a figure which shows the result of having investigated the uptake | capture effect of the sugar intake of black tea hot water extract and its water-soluble fraction. The differentiated L6 myotube cells were allowed to act for 15 minutes with hot black water extract or water-soluble fraction at 50 μg / ml, and then [ 3 H] -labeled 2-DG was added to a final concentration of 6.5 mM ( 18.5 Ci) was allowed to act for 5 minutes. The cells were solubilized with NaOH and collected, and the radioactivity of [ 3 H] was measured to determine 2-DG uptake activity. The uptake amount when 100 nM insulin (dotted line in the figure) was used as a positive control, the same amount of solvent (solid line in the figure) as a negative control, and 20 μM cytochalasin B as a nonspecific uptake amount was measured. The figure shows the ratio when the uptake activity of the negative control is 1 as an average value ± standard error, and the asterisk has a risk rate of less than 5% and is significantly different from the negative control. 紅茶水溶性画分の糖の取込み活性に対する濃度依存性を調べた結果を示す図である。分化させたL6筋管細胞に水溶性画分を0.5、2、5、50μg/mlとなるよう15分間作用させた後、図1と同様にして2−DGの取込み活性を測定した。陽性対照として100nMインスリン(図中破線)、陰性対照として同量の溶媒(図中実線)を作用させた。図は陰性対照の取込み活性を1とした場合の比率を平均値±標準誤差で示し、アステリスクは危険率5%未満で陰性対照と比較して有意差があることを表している。It is a figure which shows the result of having investigated the density | concentration dependence with respect to the sugar uptake | capture activity of the black tea water-soluble fraction. After allowing the water-soluble fraction to act on the differentiated L6 myotube cells for 15 minutes to be 0.5, 2, 5, 50 μg / ml, the 2-DG uptake activity was measured in the same manner as in FIG. 100 nM insulin (broken line in the figure) was used as a positive control, and the same amount of solvent (solid line in the figure) was applied as a negative control. The figure shows the ratio when the uptake activity of the negative control is 1 as an average value ± standard error, and indicates that the asterisk is less than 5% risk and has a significant difference compared to the negative control. 水溶性画分中の化合物の糖の取込み亢進効果を調べた結果を示す図である。分化させたL6筋管細胞に水溶性画分に含まれる化合物1から6を50μg/mlとなるよう15分間作用させた後、図1と同様にして2−DGの取込み活性を測定した。陽性対照として100nMインスリン(図中破線)、陰性対照として同量の溶媒(図中実線)を作用させた。図は陰性対照の取込み活性を1とした場合の比率を平均値±標準誤差で示し、アステリスクは危険率5%未満で陰性対照と比較して有意差があることを表している。It is a figure which shows the result of having investigated the sugar uptake | capture enhancement effect of the compound in a water-soluble fraction. The compound 1 to 6 contained in the water-soluble fraction was allowed to act on the differentiated L6 myotube cells for 15 minutes to 50 μg / ml, and then 2-DG uptake activity was measured in the same manner as in FIG. 100 nM insulin (broken line in the figure) was used as a positive control, and the same amount of solvent (solid line in the figure) was applied as a negative control. The figure shows the ratio when the uptake activity of the negative control is 1 as an average value ± standard error, and indicates that the asterisk is less than 5% risk and has a significant difference compared to the negative control. 紅茶水溶性画分中の化合物1と2の糖の取込み活性に対する濃度依存性を調べた結果を示す図である。分化させたL6筋管細胞に水溶性画分中の化合物1と2を0.5、5、50μg/mlとなるよう15分間作用させた後、図1と同様にして2−DGの取込み活性を測定した。陽性対照として100nMインスリン(図中破線)、陰性対照として同量の溶媒(図中実線)を作用させた。図は陰性対照の取込み活性を1とした場合の比率を平均値±標準誤差で示し、アステリスクは危険率5%未満で陰性対照と比較して有意差があることを表している。It is a figure which shows the result of having investigated the density | concentration dependence with respect to the sugar uptake | capture activity of the compounds 1 and 2 in the black tea water-soluble fraction. After allowing compound 1 and 2 in the water-soluble fraction to act on differentiated L6 myotube cells for 15 minutes to be 0.5, 5, and 50 μg / ml, 2-DG uptake activity as in FIG. Was measured. 100 nM insulin (broken line in the figure) was used as a positive control, and the same amount of solvent (solid line in the figure) was applied as a negative control. The figure shows the ratio when the uptake activity of the negative control is 1 as an average value ± standard error, and indicates that the asterisk is less than 5% risk and has a significant difference compared to the negative control.

Claims (4)

下記の式〔I〕又は式〔II〕で表されるナリンゲニン誘導体。
Figure 0005061282
又は
Figure 0005061282
Naringenin derivative represented by the following formula [I] or formula [II].
Figure 0005061282
Or
Figure 0005061282
発酵茶由来であることを特徴とする請求項1に記載のナリンゲン誘導体。 The naringen derivative according to claim 1, wherein the naringen derivative is derived from fermented tea. 請求項1又は2に記載のナリンゲン誘導体を有効成分して含有するグルコース取込み促進剤。 A glucose uptake promoter containing the naringen derivative according to claim 1 as an active ingredient. 請求項1又は2に記載のナリンゲン誘導体を有効成分して含有する血糖値上昇抑制剤。 A blood sugar level increase inhibitor comprising the naringen derivative according to claim 1 as an active ingredient.
JP2006188931A 2006-07-10 2006-07-10 Naringenin derivative, glucose uptake promoter and blood sugar level increase inhibitor containing the same Active JP5061282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006188931A JP5061282B2 (en) 2006-07-10 2006-07-10 Naringenin derivative, glucose uptake promoter and blood sugar level increase inhibitor containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006188931A JP5061282B2 (en) 2006-07-10 2006-07-10 Naringenin derivative, glucose uptake promoter and blood sugar level increase inhibitor containing the same

Publications (2)

Publication Number Publication Date
JP2008013525A JP2008013525A (en) 2008-01-24
JP5061282B2 true JP5061282B2 (en) 2012-10-31

Family

ID=39070898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006188931A Active JP5061282B2 (en) 2006-07-10 2006-07-10 Naringenin derivative, glucose uptake promoter and blood sugar level increase inhibitor containing the same

Country Status (1)

Country Link
JP (1) JP5061282B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2893931A1 (en) * 2011-03-04 2015-07-15 Lion Corporation Growth hormone secretagogue
WO2019043846A1 (en) * 2017-08-30 2019-03-07 大塚製薬株式会社 Kaempferol analog-containing composition
JP2020115816A (en) * 2019-01-25 2020-08-06 株式会社東洋新薬 Sugar uptake promoting composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242885B2 (en) * 2004-05-20 2013-07-24 株式会社 伊藤園 Intramuscular AMPK activator

Also Published As

Publication number Publication date
JP2008013525A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
CA2648653C (en) Fat accumulation inhibitor
US8828955B2 (en) Glutathione production enhancer, prophylactic/therapeutic agent for diseases caused by glutathione deficiency, and food, beverage and feed
WO2013005836A1 (en) Fructose absorption inhibitor
KR102038810B1 (en) Growth hormone secretion promoter
KR101999916B1 (en) Composition for enhancement of muscular strength and preventing or treating of sarcopenia comprising Colpomenia bullosa extract
US20130102554A1 (en) Composition for treatment of obesity using wheat bran extract or active ingredient isolated therefrom
JP5061282B2 (en) Naringenin derivative, glucose uptake promoter and blood sugar level increase inhibitor containing the same
JPWO2004112817A1 (en) Celery family-derived extract and method for producing the same
KR20160141027A (en) Phamaceutical composition or healthy food comprising water extracts from Pleurotus eryngii var. ferulea (Pf.). for treating or preventing metabolic disorder
JP7229513B2 (en) Brain function improving agent and food and drink for improving brain function
EP2351559B1 (en) Novel use of panduratin derivative or boesenbergia pandurata extract
KR20130081929A (en) Composition comprising dieckol compound for treating insulin resistance or hyperinsulinemia
JP7271158B2 (en) TRPA1 Activating Composition
AU2013367872B2 (en) Igf-1 production-promoting agent
KR101257329B1 (en) Composition for treating or preventing obesity containing stichpus japonicus extract
JP2003026584A (en) Therapeutic agent for liver disease
KR101963439B1 (en) Composition for prevention or treatment of metabolic disease containing arazyme as an active ingredient
KR20150091770A (en) Composition for treating or preventing obesity containing caulerpa okamurai
KR101576269B1 (en) Composition for treating or preventing obesity containing gracilaria chorda
JP6982642B2 (en) Advanced glycation end product decomposition agent and advanced glycation end product precursor decomposition agent
JP6003018B2 (en) Hepatoprotective agent, pharmaceutical composition, and composition for protecting cells, etc.
KR20200128299A (en) Jeogok fermentation having anti-obesity or anti-diabetic activity and use of stachydrine compound form the jeogok fermentation
KR20220119230A (en) A composition for preventing or improving muscular disorders comprising extracts of undaria pinnatifida, pomelo, and wheat germ
KR20140031080A (en) Composition of anti-metabolic syndrome effects containing extract of unripened rubus coreanus miquel
JP2021187791A (en) Diacylglycerol kinase α activator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Ref document number: 5061282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250