KR101939661B1 - 기판 처리 장치 및 기판 처리 방법 - Google Patents

기판 처리 장치 및 기판 처리 방법 Download PDF

Info

Publication number
KR101939661B1
KR101939661B1 KR1020170105827A KR20170105827A KR101939661B1 KR 101939661 B1 KR101939661 B1 KR 101939661B1 KR 1020170105827 A KR1020170105827 A KR 1020170105827A KR 20170105827 A KR20170105827 A KR 20170105827A KR 101939661 B1 KR101939661 B1 KR 101939661B1
Authority
KR
South Korea
Prior art keywords
antennas
plasma
substrate
variable capacitor
gas
Prior art date
Application number
KR1020170105827A
Other languages
English (en)
Inventor
원정민
이정환
김영빈
Original Assignee
세메스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세메스 주식회사 filed Critical 세메스 주식회사
Priority to KR1020170105827A priority Critical patent/KR101939661B1/ko
Application granted granted Critical
Publication of KR101939661B1 publication Critical patent/KR101939661B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)

Abstract

기판 처리 장치가 개시된다. 기판 처리 장치는, 내부에 처리 공간을 가지는 공정 챔버, 처리 공간 내에서 기판을 지지하는 지지 유닛, 처리 공간 내로 가스를 공급하는 가스 공급 유닛 및 처리 공간 내에서 사이 가스로부터 플라즈마를 발생시키는 플라즈마 발생 유닛을 포함하되, 플라즈마 발생 유닛은, 복수의 안테나, 복수의 안테나 중 적어도 하나와 연결되는 가변 커패시터 및 가변 커패시터를 제어하는 제어기를 포함하며, 제어기는 공정 진행 중에 안테나들 간의 전압차가 변경되도록 가변 커패시터를 제어한다.

Description

기판 처리 장치 및 기판 처리 방법{APPARATUS AND METHOD FOR TREATING SUBSTRATE}
본 발명은 기판 처리 장치 및 기판 처리 방법에 관한 것으로, 보다 상세하게는 복수의 안테나 간의 전압차를 제어하는 기판 처리 장치 및 기판 처리 방법에 관한 것이다.
반도체 제조 공정은 플라즈마를 이용하여 기판을 처리하는 공정을 포함할 수 있다. 예를 들어, 반도체 제조 공정 중 에칭 공정은 플라즈마를 이용하여 기판 상의 박막을 제거할 수 있다.
기판 처리 공정에 플라즈마를 이용하기 위해, 공정 챔버에 플라즈마를 발생시킬 수 있는 플라즈마 발생 유닛이 장착된다. 이 플라즈마 발생 유닛은 플라즈마 발생 방식에 따라 크게 CCP(Capacitively Coupled Plasma) 타입과 ICP(Inductively Coupled Plasma) 타입으로 나뉜다. CCP 타입의 소스는 챔버 내에 두 전극이 서로 마주보도록 배치되고, 두 전극 중 어느 하나 또는 둘 모두에 RF 신호를 인가하여 챔버 내에 전기장을 형성함으로써 플라즈마를 생성한다. 반면, ICP 타입의 소스는 챔버에 하나 또는 그 이상의 코일이 설치되고, 코일에 RF 신호를 인가하여 챔버 내에 전자장을 유도함으로써 플라즈마를 생성한다.
종래에는 챔버에 둘 이상의 안테나가 설치되는 경우, 플라즈마 점화(Ignition)시 안테나들 각각의 위상이 동일하여, 전자가 가속되는 힘이 적어서 플라즈마 안정화 시간이 오래 걸리는 문제가 있었다. 이에 따라, 매칭 시간이 길어지거나 안테나에 고전압이 오래 작용하여 안테나의 유전체부(Dielectric)에 스퍼터링 손상이 발생할 수 있었다.
본 발명의 목적은 공정 진행 중에 안테나들 간의 전압차를 변경하여 플라즈마 점화 시간을 줄일 수 있는 기판 처리 장치 및 기판 처리 방법에 관한 것이다.
본 발명이 해결하고자 하는 과제가 상술한 과제들로 한정되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명의 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술한 목적을 달성하기 위한 본 발명의 일 실시 예에 따른 기판 처리 장치는, 내부에 처리 공간을 가지는 공정 챔버, 상기 처리 공간 내에서 기판을 지지하는 지지 유닛, 상기 처리 공간 내로 가스를 공급하는 가스 공급 유닛 및 상기 처리 공간 내에서 사이 가스로부터 플라즈마를 발생시키는 플라즈마 발생 유닛을 포함하되, 상기 플라즈마 발생 유닛은, 복수의 안테나, 상기 복수의 안테나 중 적어도 하나와 연결되는 가변 커패시터 및 상기 가변 커패시터를 제어하는 제어기를 포함하되, 상기 제어기는 공정 진행 중에 상기 안테나들 간의 전압차가 변경되도록 상기 가변 커패시터를 제어한다.
여기서, 상기 제어기는, 초기에 플라즈마를 점화시킬 때의 상기 안테나들 간의 전압차가 점화 이후의 상기 안테나들 간의 전압차보다 더 크도록 상기 가변 커패시터를 제어할 수 있다.
여기서, 상기 플라즈마 발생 유닛은, 상기 복수의 안테나에 전력을 공급하는 고주파 전원을 더 포함하고, 상기 가변 커패시터는, 상기 안테나와 상기 고주파 전원 사이에 제공될 수 있다.
여기서, 상기 가변 커패시터는, 복수개 제공되며 상기 복수의 안테나 각각에 연결될 수 있다.
또한, 상기 제어기는, 플라즈마 점화시에 상기 안테나들 간의 위상 차이가 90도 이상이 되도록 상기 가변 커패시터를 제어할 수 있다.
또한, 상기 복수의 안테나는, 반경이 서로 상이하게 제공될 수 있다.
한편, 본 발명의 일 실시 예에 따른 기판 처리 방법은, 복수의 안테나에 고주파 전압을 인가하여 가스로부터 플라즈마를 여기시키고, 여기된 플라즈마를 기판에 공급하여 기판을 처리하되, 공정 진행 중에 상기 안테나들 간의 전압차가 변경되도록 상기 복수의 안테나 중 적어도 하나에 연결된 가변 커패시터를 제어한다.
여기서, 기판 처리 방법은, 상기 기판 처리 장치에서 초기에 플라즈마를 점화시킬 때의 상기 안테나들 간의 전압차가 점화 이후의 상기 안테나들 간의 전압차보다 더 크도록 상기 가변 커패시터를 제어할 수 있다.
여기서, 상기 가변 커패시터는, 상기 안테나와 상기 안테나에 전력을 공급하는 고주파 전원 사이에 제공될 수 있다.
여기서, 상기 가변 커패시터는, 복수개 제공되며 상기 복수의 안테나 각각에 연결될 수 있다.
또한, 기판 처리 방법은, 플라즈마 점화시에 상기 안테나들 간의 위상 차이가 90도 이상이 되도록 상기 가변 커패시터를 제어할 수 있다.
또한, 상기 복수의 안테나는, 반경이 서로 상이하게 제공될 수 있다.
이상과 같이 본 발명의 다양한 실시 예에 따르면 안테나들에 연결되는 가변 커패시터를 제어하여 플라즈마 점화시 소요되는 시간을 줄일 수 있으며, 이에 따라 매칭 시간을 줄이고 유전체부에 스퍼터링 현상이 발생하는 것을 방지할 수 있다.
도 1은 본 발명의 다양한 실시 예에 따른 기판 처리 장치를 예시적으로 나타내는 도면이다.
도 2는 본 발명의 일 실시 예에 따른 플라즈마 발생 유닛을 나타내는 도면이다.
도 3은 본 발명의 다른 실시 예에 따른 플라즈마 발생 유닛을 나타내는 도면이다.
도 4a 및 도 4b는 본 발명의 일 실시 예에 따른 기판 처리 장치의 플라즈마 점화시 소요되는 시간을 비교하는 도면이다.
도 5는 본 발명의 일 실시 예에 따른 플라즈마 생성 방법을 나타내는 흐름도이다.
본 발명의 실시 예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 서술하는 실시 예로 인해 한정되어지는 것으로 해석되어서는 안된다. 본 실시 예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서 도면에서의 구성 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장된 것이다.
본 발명의 실시 예에서는 플라즈마를 이용하여 기판을 식각하는 기판 처리 장치에 대해 설명한다. 그러나 본 발명은 이에 한정되지 않고, 그 상부에 놓여진 기판을 가열하는 다양한 종류의 장치에 적용 가능하다.
도 1은 본 발명의 일 실시 예에 따른 기판 처리 장치(10)를 예시적으로 나타내는 도면이다.
도 1을 참조하면, 기판 처리 장치(10)는 플라즈마를 이용하여 기판(W)을 처리한다. 예를 들어, 기판 처리 장치(10)는 기판(W)에 대하여 식각 공정을 수행할 수 있다. 기판 처리 장치(10)는 공정 챔버(100), 지지 유닛(200), 가스 공급 유닛(300), 플라즈마 발생 유닛(400) 및 배플 유닛(500)을 포함할 수 있다.
공정 챔버(100)는 기판 처리 공정이 수행되는 공간을 제공한다. 공정 챔버(100)는 하우징(110), 밀폐 커버(120) 및 라이너(130)를 포함한다.
하우징(110)은 내부에 상면이 개방된 공간을 갖는다. 하우징(110)의 내부 공간은 기판 처리 공정이 수행되는 처리 공간으로 제공된다. 하우징(110)은 금속 재질로 제공된다. 하우징(110)은 알루미늄 재질로 제공될 수 있다. 하우징(110)은 접지될 수 있다. 하우징(110)의 바닥면에는 배기홀(102)이 형성된다. 배기홀(102)은 배기 라인(151)과 연결된다. 공정 과정에서 발생한 반응 부산물 및 하우징의 내부 공간에 머무르는 가스는 배기 라인(151)을 통해 외부로 배출될 수 있다. 배기 과정에 의해 하우징(110) 내부는 소정의 압력으로 감압된다.
밀폐 커버(120)는 하우징(110)의 개방된 상면을 덮는다. 밀폐 커버(120)는 판 형상으로 제공되며, 하우징(110)의 내부 공간을 밀폐시킨다. 밀폐 커버(120)는 유전체(dielectric substance) 창을 포함할 수 있다.
라이너(130)는 하우징(110) 내부에 제공된다. 라이너(130)는 상면 및 하면이 개방된 공간의 내부에 형성된다. 라이너(130)는 원통 형상으로 제공될 수 있다. 라이너(130)는 하우징(110)의 내측면에 상응하는 반경을 가질 수 있다. 라이너(130)는 하우징(110)의 내측면을 따라 제공된다. 라이너(130)의 상단에는 지지 링(131)이 형성된다. 지지 링(131)은 링 형상의 판으로 제공되며, 라이너(130)의 둘레를 따라 라이너(130)의 외측으로 돌출된다. 지지 링(131)은 하우징(110)의 상단에 놓이며, 라이너(130)를 지지한다. 라이너(130)는 하우징(110)과 동일한 재질로 제공될 수 있다. 즉, 라이너(130)는 알루미늄 재질로 제공될 수 있다. 라이너(130)는 하우징(110) 내측면을 보호한다. 공정 가스가 여기되는 과정에서 챔버(100) 내부에는 아크(Arc) 방전이 발생될 수 있다. 아크 방전은 주변 장치들을 손상시킨다. 라이너(130)는 하우징(110)의 내측면을 보호하여 하우징(110)의 내측면이 아크 방전으로 손상되는 것을 방지한다. 또한, 기판 처리 공정 중에 발생한 불순물이 하우징(110)의 내측벽에 증착되는 것을 방지한다. 라이너(130)는 하우징(110)에 비하여 비용이 저렴하고, 교체가 용이하다. 따라서, 아크 방전으로 라이너(130)가 손상될 경우, 작업자는 새로운 라이너(130)로 교체할 수 있다.
하우징(110)의 내부에는 기판 지지 유닛(200)이 위치한다. 기판 지지 유닛(200)은 기판(W)을 지지한다. 기판 지지 유닛(200)은 정전기력을 이용하여 기판(W)을 흡착하는 정전 척(210)을 포함할 수 있다. 이와 달리, 기판 지지 유닛(200)은 기계적 클램핑과 같은 다양한 방식으로 기판(W)을 지지할 수도 있다. 이하에서는 정전 척(210)을 포함하는 지지 유닛(200)에 대하여 설명한다.
지지 유닛(200)은 정전 척(210), 절연 플레이트(250) 및 하부 커버(270)를 포함한다. 지지 유닛(200)은 챔버(100) 내부에서 하우징(110)의 바닥면으로부터 상부로 이격되어 위치될 수 있다.
정전 척(210)은 유전판(220), 전극(223), 히터(225), 지지판(230) 및 포커스 링(240)을 포함한다.
유전판(220)은 정전 척(210)의 상단부에 위치한다. 유전판(220)은 원판 형상의 유전체(dielectric substance)로 제공된다. 유전판(220)의 상면에는 기판(W)이 놓인다. 유전판(220)의 상면은 기판(W)보다 작은 반경을 갖는다. 때문에, 기판(W) 가장자리 영역은 유전판(220)의 외측에 위치한다. 유전판(220)에는 제1 공급 유로(221)가 형성된다. 제1 공급 유로(221)는 유전판(210)의 상면으로부터 저면으로 제공된다. 제1 공급 유로(221)는 서로 이격하여 복수 개 형성되며, 기판(W)의 저면으로 열전달 매체가 공급되는 통로로 제공된다.
유전판(220)의 내부에는 하부 전극(223)과 히터(225)가 매설된다. 하부 전극(223)은 히터(225)의 상부에 위치한다. 하부 전극(223)은 제1 하부 전원(223a)과 전기적으로 연결된다. 제1 하부 전원(223a)은 직류 전원을 포함한다. 하부 전극(223)과 제1 하부 전원(223a) 사이에는 스위치(223b)가 설치된다. 하부 전극(223)은 스위치(223b)의 온/오프에 의해 제1 하부 전원(223a)과 전기적으로 연결될 수 있다. 스위치(223b)가 온 되면, 하부 전극(223)에는 직류 전류가 인가된다. 하부 전극(223)에 인가된 전류에 의해 하부 전극(223)과 기판(W) 사이에는 정전기력이 작용하며, 정전기력에 의해 기판(W)은 유전판(220)에 흡착된다.
히터(225)는 제2 하부 전원(225a)과 전기적으로 연결된다. 히터(225)는 제2 하부 전원(225a)에서 인가된 전류에 저항함으로써 열을 발생시킨다. 발생된 열은 유전판(220)을 통해 기판(W)으로 전달된다. 히터(225)에서 발생된 열에 의해 기판(W)은 소정 온도로 유지된다. 히터(225)는 나선 형상의 코일을 포함한다.
유전판(220)의 하부에는 지지판(230)이 위치한다. 유전판(220)의 저면과 지지판(230)의 상면은 접착제(236)에 의해 접착될 수 있다. 지지판(230)은 알루미늄 재질로 제공될 수 있다. 지지판(230)의 상면은 중심 영역이 가장자리 영역보다 높게 위치되도록 단차질 수 있다. 지지판(230)의 상면 중심 영역은 유전판(220)의 저면에 상응하는 면적을 가지며, 유전판(220)의 저면과 접착된다. 지지판(230)에는 제1 순환 유로(231), 제2 순환 유로(232) 및 제2 공급 유로(233)가 형성된다.
제1 순환 유로(231)는 열전달 매체가 순환하는 통로로 제공된다. 제1 순환 유로(231)는 지지판(230) 내부에 나선 형상으로 형성될 수 있다. 또는, 제1 순환 유로(231)는 서로 상이한 반경을 갖는 링 형상의 유로들이 동일한 중심을 갖도록 배치될 수 있다. 각각의 제1 순환 유로(231)는 서로 연통될 수 있다. 제1 순환 유로(231)는 동일한 높이에 형성된다.
제2 순환 유로(232)는 냉각 유체가 순환하는 통로로 제공된다. 제2 순환 유로(232)는 지지판(230) 내부에 나선 형상으로 형성될 수 있다. 또한, 제2 순환 유로(232)는 서로 상이한 반경을 갖는 링 형상의 유로들이 동일한 중심을 갖도록 배치될 수 있다. 각각의 제2 순환 유로(232)는 서로 연통될 수 있다. 제2 순환 유로(232)는 제1 순환 유로(231)보다 큰 단면적을 가질 수 있다. 제2 순환 유로(232)는 동일한 높이에 형성된다. 제2 순환 유로(232)는 제1 순환 유로(231)의 하부에 위치될 수 있다.
제2 공급 유로(233)는 제1 순환 유로(231)부터 상부로 연장되며, 지지판(230)의 상면으로 제공된다. 제2 공급 유로(243)는 제1 공급 유로(221)에 대응하는 개수로 제공되며, 제1 순환 유로(231)와 제1 공급 유로(221)를 연결한다.
제1 순환 유로(231)는 열전달 매체 공급라인(231b)을 통해 열전달 매체 저장부(231a)와 연결된다. 열전달 매체 저장부(231a)에는 열전달 매체가 저장된다. 열전달 매체는 불활성 가스를 포함한다. 실시 예에 의하면, 열전달 매체는 헬륨(He) 가스를 포함한다. 헬륨 가스는 공급 라인(231b)을 통해 제1 순환 유로(231)에 공급되며, 제2 공급 유로(233)와 제1 공급 유로(221)를 순차적으로 거쳐 기판(W) 저면으로 공급된다. 헬륨 가스는 플라즈마에서 기판(W)으로 전달된 열이 정전 척(210)으로 전달되는 매개체 역할을 한다.
제2 순환 유로(232)는 냉각 유체 공급 라인(232c)을 통해 냉각 유체 저장부(232a)와 연결된다. 냉각 유체 저장부(232a)에는 냉각 유체가 저장된다. 냉각 유체 저장부(232a) 내에는 냉각기(232b)가 제공될 수 있다. 냉각기(232b)는 냉각 유체를 소정 온도로 냉각시킨다. 이와 달리, 냉각기(232b)는 냉각 유체 공급 라인(232c) 상에 설치될 수 있다. 냉각 유체 공급 라인(232c)을 통해 제2 순환 유로(232)에 공급된 냉각 유체는 제2 순환 유로(232)를 따라 순환하며 지지판(230)을 냉각한다. 지지판(230)은 냉각되면서 유전판(220)과 기판(W)을 함께 냉각시켜 기판(W)을 소정 온도로 유지시킨다.
포커스 링(240)은 정전 척(210)의 가장자리 영역에 배치된다. 포커스 링(240)은 링 형상을 가지며, 유전판(220)의 둘레를 따라 배치된다. 포커스 링(240)의 상면은 외측부(240a)가 내측부(240b)보다 높도록 단차질 수 있다. 포커스 링(240)의 상면 내측부(240b)는 유전판(220)의 상면과 동일 높이에 위치된다. 포커스 링(240)의 상면 내측부(240b)는 유전판(220)의 외측에 위치된 기판(W)의 가장자리 영역을 지지한다. 포커스 링(240)의 외측부(240a)는 기판(W)의 가장자리 영역을 둘러싸도록 제공된다. 포커스 링(240)은 챔버(100) 내에서 플라즈마가 기판(W)과 마주하는 영역으로 집중되도록 한다.
지지판(230)의 하부에는 절연 플레이트(250)가 위치한다. 절연 플레이트(250)는 지지판(230)에 상응하는 단면적으로 제공된다. 절연 플레이트(250)는 지지판(230)과 하부 커버(270) 사이에 위치한다. 절연 플레이트(250)는 절연 재질로 제공되며, 지지판(230)과 하부 커버(270)를 전기적으로 절연시킨다.
하부 커버(270)는 기판 지지 유닛(200)의 하단부에 위치한다. 하부 커버(270)는 하우징(110)의 바닥면에서 상부로 이격되어 위치한다. 하부 커버(270)는 상면이 개방된 공간이 내부에 형성된다. 하부 커버(270)의 상면은 절연 플레이트(250)에 의해 덮어진다. 따라서, 하부 커버(270)의 단면의 외부 반경은 절연 플레이트(250)의 외부 반경과 동일한 길이로 제공될 수 있다. 하부 커버(270)의 내부 공간에는 반송되는 기판(W)을 외부의 반송 부재로부터 정전 척(210)으로 이동시키는 리프트 핀 모듈(미도시) 등이 위치할 수 있다.
하부 커버(270)는 연결 부재(273)를 갖는다. 연결 부재(273)는 하부 커버(270)의 외측면과 하우징(110)의 내측벽을 연결한다. 연결 부재(273)는 하부 커버(270)의 외측면에 일정한 간격으로 복수 개 제공될 수 있다. 연결 부재(273)는 기판 지지 유닛(200)을 챔버(100) 내부에서 지지한다. 또한, 연결 부재(273)는 하우징(110)의 내측벽과 연결됨으로써 하부 커버(270)가 전기적으로 접지되도록 한다. 제1 하부 전원(223a)과 연결되는 제1 전원 라인(223c), 제2 하부 전원(225a)과 연결되는 제2 전원라인(225c), 열전달 매체 저장부(231a)와 연결된 열전달 매체 공급라인(231b), 및 냉각 유체 저장부(232a)와 연결된 냉각 유체 공급 라인(232c) 등은 연결 부재(273)의 내부 공간을 통해 하부 커버(270) 내부로 연장된다.
가스 공급 유닛(300)은 챔버(100) 내부에 공정 가스를 공급한다. 가스 공급 유닛(300)은 가스 공급 노즐(310), 가스 공급 라인(320) 및 가스 저장부(330)를 포함한다. 가스 공급 노즐(310)은 밀폐 커버(120)의 중앙부에 설치된다. 가스 공급 노즐(310)의 저면에는 분사구가 형성된다. 분사구는 밀폐 커버(120)의 하부에 위치하며, 챔버(100) 내부의 처리공간으로 공정 가스를 공급한다. 가스 공급 라인(320)은 가스 공급 노즐(310)과 가스 저장부(330)를 연결한다. 가스 공급 라인(320)은 가스 저장부(330)에 저장된 공정 가스를 가스 공급 노즐(310)에 공급한다. 가스 공급 라인(320)에는 밸브(321)가 설치된다. 밸브(321)는 가스 공급 라인(320)을 개폐하며, 가스 공급 라인(320)을 통해 공급되는 공정 가스의 유량을 조절한다.
플라즈마 발생 유닛(400)은 챔버(100) 내 공정 가스를 플라즈마 상태로 여기시킨다. 본 발명의 일 실시 예에 따르면, 플라즈마 발생 유닛(400)은 ICP 타입으로 구성될 수 있다.
플라즈마 발생 유닛(400)은 복수의 안테나(410), 고주파 전원(420), 가변 커패시터(430) 및 제어기(470)를 포함한다. 복수의 안테나(410)는 고주파 전원(420)으로부터 신호를 인가받아 전자장을 유도하여 플라즈마를 발생시킨다. 도 1에서 제1 안테나(411) 및 제2 안테나(413)로 구성되는 것으로 도시되어 있으나, 이에 한정되지 않고 3개 이상의 안테나로 구성될 수도 있다. 고주파 전원(420)은 고주파 신호를 공급한다. 일 예로, 고주파 전원(420)은 RF 전력을 공급하는 RF 전원일 수 있다. 가변 커패시터(430)는 복수의 안테나(410) 중 적어도 하나와 연결될 수 있다. 가변 커패시터(430)는 복수의 안테나(410) 중 어느 하나와 연결되거나 복수의 안테나(410) 각각에 연결될 수 있다. 제어기(470)는 공정 진행 중에 복수의 안테나(410) 간의 전압차가 변경되도록 가변 커패시터의 임피던스 값을 조절할 수 있다. 구체적으로, 제어기(470)는 플라즈마 발생 유닛(400)에서 초기에 플라즈마를 점화시킬 때의 복수의 안테나(410) 간의 전압차가 점화 이후의 복수의 안테나(410) 간의 전압차보다 더 크도록 가변 커패시터(430)를 제어할 수 있다. 이에 따라, 플라즈마 발생 유닛(400)에서 초기에 플라즈마를 점화시킬 때, 복수의 안테나(410) 간의 전압차에 의하여 전자가 가속되는 힘이 커져서, 플라즈마 점화 시간을 줄일 수 있다.
배플 유닛(500)은 하우징(110)의 내측벽과 기판 지지 유닛(200) 사이에 위치된다. 배플 유닛(500)은 관통홀이 형성된 배플을 포함한다. 배플은 환형의 링 형상으로 제공된다. 하우징(110) 내에 제공된 공정가스는 배플의 관통홀들을 통과하여 배기홀(102)로 배기된다. 배플의 형상 및 관통홀들의 형상에 따라 공정가스의 흐름이 제어될 수 있다.
도 2는 본 발명의 일 실시 예에 따른 플라즈마 발생 유닛을 나타내는 도면이다.
도 2를 참고하면, 플라즈마 발생 유닛(400)은 RF 전원(420), 제1 안테나(411), 제2 안테나(413), 제1 가변 커패시터(431) 및 제2 가변 커패시터(433)를 포함할 수 있다.
RF 전원(420)은 RF 신호를 생성할 수 있다. 일 예로, RF 전원(420)은 기 설정된 주파수를 갖는 정현파를 생성할 수 있다. 다만, 이에 제한되지 않고 RF 전원(420)은 톱니파, 삼각파 등 다양한 파형의 RF 신호를 생성할 수 있다.
제1 안테나(411) 및 제2 안테나(413)는 RF 전원(420)으로부터 RF 신호를 인가받아 전자장을 유도하여 플라즈마를 발생시킨다. 도 2에서는 플라즈마 발생 유닛(400)이 두 개의 안테나(411, 413)를 구비하는 것으로 도시되어 있으나, 이에 한정되지 않고, 세 개 이상의 안테나가 구비될 수도 있다.
또한, 제1 안테나(411) 및 제2 안테나(413)는 기판(W)에 대향하는 위치에 배치될 수 있으며, 제1 안테나(411) 및 제2 안테나(413)는 링 형상으로 제공될 수 있다. 제1 안테나(411) 및 제2 안테나(413)는 반경이 서로 상이하게 제공될 수 있으며, 일 예로, 제1 안테나(411)의 반경이 제2 안테나(413)의 반경보다 작게 제공될 수 있다.
제1 가변 커패시터(431)는 제1 안테나(411)와 RF 전원(420) 사이에 제공될 수 있으며, 제2 가변 커패시터(433)는 제2 안테나(413)와 RF 전원(420) 사이에 제공될 수 있다.
제어기(470)는 제1 가변 커패시터(431) 및 제2 가변 커패시터(433)를 제어할 수 있다. 제어기(470)는 공정 진행 중에 제1 가변 커패시터(431) 및 제2 가변 커패시터(433)를 제어하여 안테나들(411, 413) 간의 전압차가 변경되도록 하여, 플라즈마 점화 시간을 줄일 수 있다. 일 예로, 제어기(470)는 초기에 플라즈마를 점화시킬 때의 안테나들(411, 413) 간의 전압차가 점화 이후의 안테나들(411, 413) 간의 전압차보다 더 크도록 제1 가변 커패시터(431) 및 제2 가변 커패시터(433)를 제어할 수 있다.
또한, 제어기(470)는 안테나들(411, 413) 간의 위상 차이가 90도 이상이 되도록 제1 가변 커패시터(431) 및 제2 가변 커패시터(433)를 제어할 수 있다. 제1 가변 커패시터(431) 및 제2 가변 커패시터(433)의 임피던스 값을 조절하여 안테나들(411, 413) 간의 위상 차이가 90도 이상이 되면, 안테나들(411, 413) 간의 전압 차이가 커져서 플라즈마 점화에 필요한 시간을 더욱 줄일 수 있다.
또한, 도 3을 참고하면, 본 발명의 다른 실시 예에 따른 플라즈마 생성 유닛(400)은 복수의 안테나(411, 413) 중 어느 하나의 안테나(411)에만 가변 커패시터(431)가 제공될 수 있다. 즉, 플라즈마 생성 유닛(400)에서 제1 안테나(411)와 RF 전원(420) 사이에는 제1 가변 커패시터(431)가 제공되고, 제2 안테나(413)와 RF 전원(420) 사이에는 가변 커패시터가 제공되지 않으며, 제어기(470)는 제1 가변 커패시터(431)를 제어하여, 제1 안테나(411)와 제2 안테나(413) 간의 전압차가 변경되도록 할 수 있다.
구체적으로, 제어기(470)는 플라즈마 발생 유닛(400)에서 초기에 플라즈마를 점화시킬 때의 제1 안테나(411)와 제2 안테나(413) 간의 전압차가 점화 이후의 제1 안테나(411)와 제2 안테나(413) 간의 전압차보다 더 크도록 제1 가변 커패시터(431)의 임피던스 값을 조절할 수 있다. 따라서, 초기에 플라즈마 점화시 제1 안테나(411)와 제2 안테나(413) 간의 전압차가 상대적으로 커지므로, 플라즈마 점화시간을 줄일 수 있으며, 이에 따라, 유전체부에서의 스퍼터링 현상을 방지할 수 있다.
또한, 제어기(470)는 제1 가변 커패시터(431)의 임피던스 값을 조절하여, 플라즈마 점화시에 제1 안테나(411)와 제2 안테나(413) 간의 위상 차이가 90도 이상이 되도록 할 수 있다. 이에 따라, 플라즈마 점화시 제1 안테나(411)와 제2 안테나(413) 간의 전압 차이가 커져서 플라즈마 점화 시간을 더욱 줄일 수 있다.
도 4a를 참고하면, 가변 커패시터(431, 433)가 제공되지 않은 플라즈마 발생 유닛의 경우, 플라즈마 점화 시간(안정화 시간)이 대략 2 내지 3초 소요되는 것을 확인할 수 있다. 그러나 본 발명의 일 실시 예에 따른 가변 커패시터(431, 433)를 포함하는 플라즈마 발생 유닛(400)은 플라즈마 점화시 가변 커패시터(431, 433)를 제어하여 안테나들(411, 413) 간의 전압차를 변경함으로써, 도 4b와 같이, 플라즈마 점화 시간이 0.2 내지 0.3초밖에 소요되지 않는다. 즉, 본 발명의 일 실시 예에 따른 플라즈마 발생 유닛(400)은 가변 커패시터를 제어하여 초기에 플라즈마를 점화시킬 때의 안테나들(411, 413) 간의 전압차가 점화 이후의 안테나들(411, 413) 간의 전압차보다 더 크게 하여 플라즈마 점화 시간을 현저히 줄일 수 있다.
도 5는 본 발명의 일 실시 예에 따른 플라즈마 생성 방법을 나타내는 흐름도이다.
도 5를 참조하면, 우선, 기판 처리 장치에서 초기에 플라즈마를 점화시킬 때의 안테나들 간의 전압차가 점화 이후의 안테나들 간의 전압차보다 더 크도록 가변 커패시터를 제어한다(S510). 이 경우, 안테나들 간의 위상 차이가 90도 이상이 되도록 가변 커패시터를 제어할 수 있다(S520).
이상과 같이 본 발명의 다양한 실시 예에 따르면 안테나들에 연결되는 가변 커패시터를 제어하여 플라즈마 점화시 소요되는 시간을 줄일 수 있으며, 이에 따라 매칭 시간을 줄이고 유전체부에 스퍼터링 현상이 발생하는 것을 방지할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
10: 기판 처리 장치 100: 공정 챔버
200: 지지 유닛 300: 가스 공급 유닛
400: 플라즈마 발생 유닛 410: 안테나
420: RF 전원 430: 가변 커패시터

Claims (10)

  1. 기판을 처리하는 장치에 있어서,
    내부에 처리 공간을 가지는 공정 챔버;
    상기 처리 공간 내에서 기판을 지지하는 지지 유닛;
    상기 처리 공간 내로 가스를 공급하는 가스 공급 유닛; 및
    상기 처리 공간 내에서 사이 가스로부터 플라즈마를 발생시키는 플라즈마 발생 유닛을 포함하되,
    상기 플라즈마 발생 유닛은,
    복수의 안테나;
    상기 복수의 안테나 중 적어도 하나와 연결되는 가변 커패시터; 및
    상기 가변 커패시터를 제어하는 제어기;를 포함하며,
    상기 제어기는,
    초기에 플라즈마를 점화시킬 때의 상기 안테나들 간의 위상차가 90도 이상이 되도록 제어하여, 플라즈마 점화시의 상기 안테나들 간의 전압차가 점화 이후의 상기 안테나들 간의 전압차보다 더 크도록 상기 가변 커패시터를 제어하는 기판 처리 장치.
  2. 제1항에 있어서,
    상기 플라즈마 발생 유닛은,
    상기 복수의 안테나에 전력을 공급하는 고주파 전원;을 더 포함하고,
    상기 가변 커패시터는,
    상기 안테나와 상기 고주파 전원 사이에 제공되는 기판 처리 장치.
  3. 제2항에 있어서,
    상기 가변 커패시터는, 복수개 제공되며 상기 복수의 안테나 각각에 연결되는 기판 처리 장치.
  4. 삭제
  5. 제1항에 있어서,
    상기 복수의 안테나는, 반경이 서로 상이하게 제공되는 기판 처리 장치.
  6. 기판을 처리하는 방법에 있어서,
    복수의 안테나에 고주파 전압을 인가하여 가스로부터 플라즈마를 여기시키고, 여기된 플라즈마를 기판에 공급하여 기판을 처리하되,
    기판 처리 장치에서 초기에 플라즈마를 점화시킬 때의 상기 안테나들 간의 위상차가 90도 이상이 되도록 제어하여, 플라즈마 점화시의 상기 안테나들 간의 전압차가 점화 이후의 상기 안테나들 간의 전압차보다 더 크도록 상기 복수의 안테나 중 적어도 하나에 연결된 가변 커패시터를 제어하는 기판 처리 방법.
  7. 제6항에 있어서,
    상기 가변 커패시터는,
    상기 안테나와 상기 안테나에 전력을 공급하는 고주파 전원 사이에 제공되는 기판 처리 방법.
  8. 제7항에 있어서,
    상기 가변 커패시터는, 복수개 제공되며 상기 복수의 안테나 각각에 연결되는 기판 처리 방법.
  9. 삭제
  10. 제6항에 있어서,
    상기 복수의 안테나는, 반경이 서로 상이하게 제공되는 기판 처리 방법.

KR1020170105827A 2017-08-22 2017-08-22 기판 처리 장치 및 기판 처리 방법 KR101939661B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170105827A KR101939661B1 (ko) 2017-08-22 2017-08-22 기판 처리 장치 및 기판 처리 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170105827A KR101939661B1 (ko) 2017-08-22 2017-08-22 기판 처리 장치 및 기판 처리 방법

Publications (1)

Publication Number Publication Date
KR101939661B1 true KR101939661B1 (ko) 2019-01-18

Family

ID=65323491

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170105827A KR101939661B1 (ko) 2017-08-22 2017-08-22 기판 처리 장치 및 기판 처리 방법

Country Status (1)

Country Link
KR (1) KR101939661B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220096079A (ko) * 2020-12-30 2022-07-07 한양대학교 산학협력단 하이브리드 플라즈마 발생 장치 및 하이브리드 플라즈마 발생 장치의 제어방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282771A (ja) * 1995-02-08 1995-10-27 Yokogawa Electric Corp 高周波誘導結合プラズマ分析計のプラズマ点火方法
KR20110046256A (ko) * 2009-10-26 2011-05-04 어플라이드 머티어리얼스, 인코포레이티드 조정가능한 위상 코일 어셈블리를 갖는 듀얼 모드 유도 결합 플라즈마 반응기
KR20110089116A (ko) * 2008-10-27 2011-08-04 도쿄엘렉트론가부시키가이샤 유도 결합 플라즈마 처리 장치 및 플라즈마 처리 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282771A (ja) * 1995-02-08 1995-10-27 Yokogawa Electric Corp 高周波誘導結合プラズマ分析計のプラズマ点火方法
KR20110089116A (ko) * 2008-10-27 2011-08-04 도쿄엘렉트론가부시키가이샤 유도 결합 플라즈마 처리 장치 및 플라즈마 처리 방법
KR20110046256A (ko) * 2009-10-26 2011-05-04 어플라이드 머티어리얼스, 인코포레이티드 조정가능한 위상 코일 어셈블리를 갖는 듀얼 모드 유도 결합 플라즈마 반응기

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220096079A (ko) * 2020-12-30 2022-07-07 한양대학교 산학협력단 하이브리드 플라즈마 발생 장치 및 하이브리드 플라즈마 발생 장치의 제어방법
KR102467966B1 (ko) * 2020-12-30 2022-11-17 한양대학교 산학협력단 하이브리드 플라즈마 발생 장치 및 하이브리드 플라즈마 발생 장치의 제어방법

Similar Documents

Publication Publication Date Title
CN107919263B (zh) 基板支撑单元、包括其的基板处理装置及其控制方法
KR101570171B1 (ko) 플라즈마 발생 유닛 및 그를 포함하는 기판 처리 장치
KR101980203B1 (ko) 지지 유닛 및 그를 포함하는 기판 처리 장치
KR101522891B1 (ko) 플라즈마 발생 유닛 및 그를 포함하는 기판 처리 장치
KR101817210B1 (ko) 플라즈마 발생 장치, 그를 포함하는 기판 처리 장치, 및 그 제어 방법
KR101778972B1 (ko) 전력 공급 장치, 그리고 그를 이용하는 기판 처리 장치
KR20200072933A (ko) 기판처리장치
KR101939661B1 (ko) 기판 처리 장치 및 기판 처리 방법
US10600618B2 (en) Plasma generation apparatus, substrate treating apparatus including the same, and control method for the plasma generation apparatus
KR20170083363A (ko) 전력 공급 장치, 그를 이용하는 기판 처리 장치, 및 그 제어 방법
KR101522892B1 (ko) 플라즈마 발생 유닛 및 그를 포함하는 기판 처리 장치
KR101979597B1 (ko) 기판 처리 장치 및 기판 처리 방법
US11587770B2 (en) Apparatus and method for treating substrate
KR102225954B1 (ko) 플라즈마 생성 장치, 그를 포함하는 기판 처리 장치 및 그 제어 방법
KR101927937B1 (ko) 지지 유닛 및 이를 포함하는 기판 처리 장치
KR20160110904A (ko) 기판 처리 장치
KR20220021745A (ko) 기판 처리 장치
KR101543686B1 (ko) 기판 처리 장치 및 방법
KR20160002191A (ko) 기판 처리 장치 및 방법
KR20150062907A (ko) 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
KR102290910B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101502853B1 (ko) 지지 유닛 및 기판 처리 장치
KR20150077534A (ko) 플라즈마 발생 장치 및 그를 포함하는 기판 처리 장치
KR101842122B1 (ko) 전기장 발생 장치, 및 그를 포함하는 기판 처리 장치
KR20150077532A (ko) 플라즈마 발생 장치 및 그를 포함하는 기판 처리 장치

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant