KR101925473B1 - 플렉시블 인조 망막 장치들 - Google Patents

플렉시블 인조 망막 장치들 Download PDF

Info

Publication number
KR101925473B1
KR101925473B1 KR1020187001437A KR20187001437A KR101925473B1 KR 101925473 B1 KR101925473 B1 KR 101925473B1 KR 1020187001437 A KR1020187001437 A KR 1020187001437A KR 20187001437 A KR20187001437 A KR 20187001437A KR 101925473 B1 KR101925473 B1 KR 101925473B1
Authority
KR
South Korea
Prior art keywords
pixels
light
cells
implantable device
neurons
Prior art date
Application number
KR1020187001437A
Other languages
English (en)
Other versions
KR20180008928A (ko
Inventor
롱-쉥 판
Original Assignee
이리듐 메디칼 테크놀로지 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/102,596 external-priority patent/US20120109255A1/en
Priority claimed from US13/282,423 external-priority patent/US9114004B2/en
Priority claimed from US13/282,422 external-priority patent/US8530265B2/en
Priority claimed from US13/282,421 external-priority patent/US8954156B2/en
Application filed by 이리듐 메디칼 테크놀로지 컴퍼니 리미티드 filed Critical 이리듐 메디칼 테크놀로지 컴퍼니 리미티드
Publication of KR20180008928A publication Critical patent/KR20180008928A/ko
Application granted granted Critical
Publication of KR101925473B1 publication Critical patent/KR101925473B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0543Retinal electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36046Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the eye

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Prostheses (AREA)

Abstract

복수의 광센서들, 복수의 마이크로 전극들, 및 상기 광센서들 및 상기 마이크로 전극들에 결합된 회로들을 포함하는 임플란트 장치가 개시된다. 상기 광센서들은 입사하는 광을 수신할 수 있다. 상기 회로는 상기 광센서들에 의해 포획되는 광의 시각을 인지할 수 있는 신경 세포들을 자극하기 위해 상기 마이크로 전극들을 구동시킬 수 있다. 상기 장치는 상기 자극에 대한 상기 신경 세포들의 근방에 상기 마이크로 전극들을 허용하고 또한 인간 안구의 형태에 따르는 플렉시블 물질로 구현될 수 있다. 다른 실시예에 있어서, 망막 인공기관을 위한 화소들의 어레이를 가지는 플렉시블 장치를 위한 제조 방법이 개시된다. 상기 제조 방법은 기판 상에 상기 화소들의 어레이를 포함하는 레이어드 구조들을 형성하는 단계를 포함할 수 있고, 상기 화소 각각은 프로세싱 회로들, 마이크로 전극 및 광센서를 포함한다. 또 다른 실시예에 있어서, 망막 세포들에 인터페이스하는 임플란트가능한 장치를 구성하기 위한 장치들 및 방법들이 개시된다. 상기 장치는 상기 망막 세포들을 자극할 수 있는 화소들의 어레이를 포함할 수 있다. 상기 화소들은 정상 모드 및 미세조정 모드를 포함하는 복수의 모드들로부터 선택된 작업 모드에서 작동할 수 있다.

Description

플렉시블 인조 망막 장치들{FLEXIBLE ARTIFICIAL RETINA DEVICES}
본 발명은 일반적으로 마이크로 장치들, 보다 상세하게는 신경 세포들을 자극할 수 있는 플렉시블 집적 회로 장치들에 관한 것이다.
본 출원서는 발명의 명칭이 "망막 인공기관 및 그 제조 방법들"인 2010년 10월 27일에 출원된 미국 가출원 제 61/407,229호의 우선권의 이익을 주장하는, 발명의 명칭이 "망막 자극 장치 및 그 제조 방법"인 2011년 5월 6일에 출원된 미국 특허 출원 제 13/102,596호의 우선권을 이익을 주장하고 또한 그 부분계속출원(CIP)이고, 양 출원은 여기에 그 전체가 참조로서 반영된다.
노인성 황반변성(age-related macular disease, AMD) 및 망막색소변성증(retinitis pigmentosa, RP)은 실명, 특히 전세계 노인의 실명의 주요 원인들로 확인되고 있다. 망막 인공기관 장치(retinal prosthesis device)는 맹인들에게 시각(vision)의 일부를 복구하는 것이 가능하게 한다. 통상적으로, 이러한 장치는 각각의 마이크로 전극을 제어하기 위해 분리된 배선 임플란트를 필요로 하는 마이크로 전극들을 포함한다. 하지만, 이러한 장치들에 의해 제공되는 시야(field of view)는, 마이크로 전극들의 수 및 이 장치에 포함된 마이크로 전극들의 간격(pitch)에 달려 있는데, 이것은 상기 배선 임플란트에 있어서의 한정된 크기로 인해 극히 제한될 수 있다.
나아가, 망막 인공기관 장치의 이미지 해상도는 이러한 장치 안의 마이크로 전극들의 밀도에 관련될 수 있다. 종래의 망막 인공기관 장치들은 망막 조직들에 임플란트된 이미지 센서 칩들 또는 전극으로부터 분리된 구동 회로 칩들을 포함할 수 있다. 그러므로, 상기 마이크로 전극 칩들과 상기 구동 회로 칩들 사이에서 필요한 전기적 상호연결들(electrical interconnections)의 수는 상당히 커지고 또한 달성가능한 픽셀들의 수에 불필요한 상한(ceilings)을 부과할 수 있다.
이에 더하여, 현존하는 망막 인공기관 장치들은 망막 조직들의 비평면적인 형태들에 따르지 않는 플래너 칩들(planner chips)로부터 만들어진 마이크로 전극들에 기초할 수 있다. 그 결과, 형태들에서의 불일치로 인해 상기 마이크로 전극들 사이에서 추가적인 간섭들이 발생하여 이러한 장치에서 가능한 이미지 해상도를 더 제한할 수 있다.
그러므로, 전통적인 망막 인공기관 장치들은 환자들이 손상된 시각 능력으로부터 회복하도록 돕기 위해 진짜 망막에 가까운 레벨들을 달성할 수 있도록, 내재적으로 이미지 해상도들, 시야들, 또는 다른 시각적 특성들의 레벨들을 제한적으로 제공한다.
미국 공개특허공보 US 2010/0204754 A1 미국 등록특허공보 US 7,127,301 B1
일 실시예에 있어서, 플렉시블 집적 장치는 망막 인공기관에 있어서의 수 도 또는 수 십 도 시야에 대응하는 망막 영역에서의 적어도 1 mm (밀리미터)에서 수 mm에 걸쳐 (예를 들어 개별적인 망막 세포 수준)의 고해상도의 전기적 들뜸(high resolution of electrical excitations)을 제공할 수 있다. 상기 플렉시블 집적 장치는 목표 망막 신경세포들에 들뜸을 조정하기 위한 튜닝(tuning) 및 미세조정(calibration)이 가능할 수 있다. 일 실시예에 있어서, 상기 플렉시블 집적 장치는 (예를 들어 망막 상에서 또는 입사광에 향하는 망막의 전면으로부터의) 망막 외 접근(epi-retinal approach) 또는 (상기 망막 뒤에서의) 하위 망막 접근(sub-retinal approach) 중 하나를 이용해 임플란트될 수 있다.
다른 실시예에 있어서, 단일 플렉시블 CMOS(complementary metal-oxide-semiconductor) 칩은 화소들(pixel units)의 어레이를 집적할 수 있다. 각각의 픽셀은 마이크로 전극, 광센서, 신호 프로세서 및 드라이버 회로들을 포함할 수 있다. 상기 플렉시블 칩은 상기 망막의 형태를 따르기에 충분히 얇게 제조될 수 있다. 예를 들어, 대략 지름 3 mm의 상기 플렉시블 칩은 콘택트 렌즈와 유사한 유사-구 형태(quasi-spherical shape)의 2차원 곡면을 형성하기 위해 상기 칩의 중심으로부터 상기 칩의 모서리까지 대략 90 ㎛(마이크로 미터)까지 구부릴 수 있다.
다른 실시예에 있어서, 플렉시블 집적 장치는 경계들을 통해 하위-모듈들의 모자이크를 포함할 수 있다. 이러한 하위-모듈들 사이의 몇몇의 전도 라인들(예. 금속 라인들)을 제외한 장치 물질은 장치의 성형성(moldability)(예. 다른 형태들을 따르는 유연성)를 증가시키기 위해 상기 경계들로부터 제거될 수 있다. 몇몇의 실시예들에 있어서, 상기 플렉시블 집적 장치는 상기 장치를 가로지르는 액체 흐름을 유지하기 위해 (예. 관통 공들(perforation holes)을 이용해) 관통될 수 있다. 선택적으로 또는 대안적으로, 상기 플렉시블 집적 장치는 광의 일 부분이 상기 칩의 후면을 관통하여 상기 집적된 광센서들에 도달할 수 있도록 얇은 기판을 포함할 수 있고, 또한 망막 외 인공기관(epi-retinal prosthesis)에 적용할 수 있다.
다른 실시예에 있어서, 플렉시블 집적 장치는 로컬 복귀 경로들(또는 "가이드 링")에 맞는 전극들을 포함할 수 있는데, 이로써 상기 전극들로부터의 전류들의 총 거리를 제한하고 단축시킨다. 그 결과, 상기 전류들의 전이 상태에서 손실되는 전기량은 하위-망막 경우에서 신경절 세포들(ganglion cells) 또는 양극성 세포들(bipolar cells)와 같이, 상기 목표 신경 세포들로부터 더 멀리 있는 신경 세포들의 원치 않는 자극을 막을 수 있도록 낮아질 수 있다. 상기 전극들의 표면들은 ON 및 OFF 세포들의 층들(strata)과 같이, 서로 다른 신경 세포들의 층들을 서로 다르게 자극하기 위해 상기 장치의 상기 기판으로부터 복수의 전극 높이들을 가지고 3차원 방식으로 위치될 수 있다.
다른 실시예에 있어서, 플렉시블 집적 장치는 근처의 이웃 화소들과 같이, 복수의 화소들로부터 입력들을 취함으로써 화소를 위한 적절한 자극 파형들을 생성할 수 있는 온-칩 신호 프로세싱 회로들을 포함할 수 있다. 상기 플렉시블 집적 장치는 수신 필드를 통해 각각의 화소에 인터페이스하는 목표 신경 세포들의 특정 종류들을 확인하고 (예. 상기 화소에 근접하게 위치하는) 상기 목표 신경 세포들로부터 패턴들을 발사할 수 있는 전기 감지 회로들을 포함할 수 있다.
다른 실시예에 있어서, 망막 인공기관으로서 사용자에게 임플란트되는 플렉시블 집적 망막 칩을 포함하는 공급 시스템(provision system)은 외부 명령들을 통해 상기 칩의 미세 튜닝을 허용할 수 있다. 예를 들어, 상기 칩 안의 각각의 화소는 사용자의 시각 인지에 따라 상기 칩의 일 부분들을 선택 및/또는 구성하기 위해 외부 명령들에 대한 광학적 및/또는 무선 통신 신호들을 수신하는 특정 수신기들 및/또는 회로들을 포함할 수 있다. 상기 공급 시스템은 상기 외부 명령들을 광학적으로 또는 무선으로 내보내기 위해 원격 제어를 포함할 수 있다.
다른 실시예에 있어서, 임플란트 장치는 광을 수신하기 위한 복수의 광센서들, 복수의 마이크로 전극들, 및 상기 광센서들 및 상기 마이크로 전극들에 결합된 회로들을 포함할 수 있다. 상기 회로는 상기 광센서들에 의해 포획되는 광의 시각을 인지할 수 있는 신경 세포들을 자극하기 위해 상기 마이크로 전극들을 구동시킨다. 상기 장치는 상기 자극에 대한 상기 신경 세포들의 근방에 상기 마이크로 전극들을 허용하고 또한 인간 안구의 형태에 따르는 플렉시블 물질로 구현될 수 있다.
다른 실시예에 있어서, 신경 세포들을 포함하는 조직들에 구현될 수 있는 장비는 화소들에 입사되는 광으로부터 시각 인지를 가능하게 하기 위해 2차원 어레이로 배치되는 복수의 화소들을 포함할 수 있다. 화소 각각은 상기 광을 수신하는 광센서, 상기 인지를 위한 상기 신경 세포들 중 목표 신경 세포들에 자극을 전달하는 전극, 및 상기 광으로부터 상기 자극을 유도하고 상기 전극을 구동하는 회로들을 포함할 수 있다. 상기 2차원 어레이는 전면 및 상기 전면에 대향하는 후면을 가지는 장치 안에 배치될 수 있다. 생체적합 층들(biocompatible layers)은 상기 장치 및 상기 조직들을 양방향으로 보호하기 위해 상기 장치를 쌀 수 있다. 일 실시예에 있어서, 상기 생체적합 층들은 상기 화소들의 전극들이 상기 신경 세포들을 자극하도록 허용하는 개구부들을 포함할 수 있다. 상기 장치는 상기 장치가 인간 안구의 형태를 따르는 2차원 방식으로 구부러질 수 있도록 허용하는, 플렉시블 물질을 포함할 수 있다. 상기 플렉시블 물질은 상기 장치가 상기 장치의 전면 또는 후면 중 어느 하나로부터 상기 광을 수신할 수 있도록 반투명일 수 있다.
다른 실시예에 있어서, 망막 인공기관을 위한 집적 회로 장치는 광의 시각을 인지할 수 있는 화소들의 어레이를 포함할 수 있다. 상기 픽셀 어레이 각각은 상기 광을 감지하는 센서, 상기 인지를 위해 신경 세포들 중 목표 신경 세포들에 자극을 전달하는 마이크로 전극, 및 상기 전극을 구동하기 위해 상기 광으로부터 상기 자극을 유도하는 회로들을 포함할 수 있다. 상기 화소들의 어레이는 상기 장치 안에서 mm 제곱 당 1000보다 큰 밀도로 배치될 수 있다. 일 실시예에 있어서, 상기 장치는 상기 화소들의 어레이가 인간 안구의 형태에 따라 적어도 12.5 mm의 굴곡 반지름에 따르도록 구부릴 수 있다.
일 실시예에 있어서, 망막 인공기관을 위한 화소들의 어레이를 가지는 플렉시블 장치를 위한 제조 방법은 기판 상에 상기 화소들의 어레이를 포함하는 레이어드 구조들을 형성하는 단계를 포함할 수 있고, 상기 화소 각각은 프로세싱 회로들, 마이크로 전극 및 광센서를 포함한다.생체적합 층들의 제1세트는, 상기 레이어드 구조들 상에 형성될 수 있다. 일 실시예에 있어서, 상기 기판은 대략 망막의 굴곡까지 상기 기판의 구부림을 허용하기 위해 상기 기판의 제어된 두께까지 얇게 될 수 있다. 생체적합 층들의 제2세트는 상기 얇아진 기판 상에 형성될 수 있다. 몇몇의 실시예들에 있어서, 상기 생체적합 층들의 제2세트는 상기 장치가 망막 조직들에 장기로 접촉하는 것을 허용하기 위해 상기 장치를 싸는 밀봉 생체적합 층들을 형성하기 위해 상기 구조 주위 상기 생체적합 층들의 제1세트에 접촉될 수 있다. 상기 화소들의 상기 마이크로 전극들은 이러한 생체적합 층들의 상기 개구부들을 통해 노출될 수 있다
다른 실시예에 있어서, 망막 자극 장치를 위한 제조 방법은 복수의 광센서들, 복수의 마이크로 전극들, 및 복수의 프로세싱 회로들을 가지는 기판 상에 레이어드 구조를 형성하는 단계를 포함할 수 있다. 상기 마이크로 전극들은 상기 기판의 표면 상의 개구부들 상에서 노출될 수 있다. 상기 개구부들을 포함하는 표면은 상기 레이어드 구조를 보호할 수 있는 배리어 박막들(barrier thin films)로 패시베이팅(passivated)될 수 있다. 상기 개구부들 안의 전극들은 상기 전극들 주위의 측벽들을 보호하기 위해 상기 배리어층을 위한 상기 배리어층을 통하여 노출될 수 있다. 상기 기판은 상기 망막의 굴곡을 따르기 위해 상기 장치를 구부리는 것이 가능하도록 얇게 될 수 있다. 폴리머층은 상기 배리어층 상에 형성될 수 있다. 일 실시예에 있어서, 상기 폴리머층은 생체 조직들 안에 상기 장치의 임플란트를 허용하기 위해 생체적합성을 가질 수 있다. 상기 전극들은 상기 폴리머층을 통해 노출될 수 있다.
다른 실시예에 있어서, 망막을 위해 임플란트될 수 있는 장치를 위한 제조 방법은, 기판 상에 화소들의 어레이를 형성하는 단계를 포함할 수 있다. 각각의 화소는 광센서, 마이크로 전극, 및 상기 광센서와 상기 마이크로 전극에 결합되는 프로세싱 회로들를 포함할 수 있다. 각각의 화소는 전도 배선들로 상기 어레이 안의 이웃 화소들과 결합될 수 있다. 상기 기판은 상기 망막의 굴곡을 따르는 굴곡 영역 상에 상기 화소들을 위치시키기 위해 상기 장치를 구부리는 것을 허용하기 위해 소정의 두께까지 얇게 될 수 있다. 상기 장치는 상기 망막에 연관된 조직들과 상기 장치 사이에 양방향 보호를 제공하기 위해 생체적합성을 가지는 보호층들로 덮일 수 있다. 복수의 관통 공들은 상기 관통 공들을 통해 상기 장치를 통하는 액체 흐름을 허용하기 위해 상기 칩 표면에 수직하는 상기 화소들 사이에서 개방될 수 있다. 상기 화소들의 상기 마이크로 전극들은 상기 보호층들을 통해 노출될 수 있다.
다른 실시예에 있어서, 망막 세포들에 인터페이스하기 위해 임플란트가능한 장치는 상기 망막 세포들을 자극할 수 있는 화소들의 어레이를 포함할 수 있다. 상기 화소들은 정상 모드 및 미세조정 모드를 포함하는 복수의 모드들로부터 선택된 작동 모드에서 작동할 수 있다. 상기 장치의 제어 회로들은 상기 화소들을 위한 상기 작동 모드들을 전환하도록 구성될 수 있다. 일 실시예에 있어서, 상기 정상 모드 동안, 상기 화소들은 상기 광을 인지할 수 있도록 상기 망막 세포들을 자극하기 위한 광을 수신하도록 구성될 수 있다. 상기 미세조정 모드 동안, 상기 화소들은 상기 망막 세포들의 자극의 양(강도, 지속시간, 듀티 사이클, 잠복기 등)을 조정하도록 구성될 수 있다.
다른 실시예에 있어서, 망막 인공기관 장치를 미세조정하는 방법은 상기 장치를 미세조정 모드로 야기시키기 위해 RF 신호 시퀀스 또는 미리 결정된 (시공간에 있어서) 광 패턴들의 프리앰블을 검출하는 단계를 포함할 수 있다. 상기 장치는 상기 광의 시각을 인지할 수 있도록 광을 수신하기 위한 화소들의 어레이를 포함할 수 있다. 상기 화소들은 전기적 변수들을 통해 구성될 수 있다. RF(Radio Frequency) 신호 시퀀스 또는 광 패턴들은 상기 어레이로부터 하나 또는 그 이상의 화소들을 선택하기 위해 수신될 수 있다. 일 실시예에 있어서, 상기 광 패턴들은 시각 감지의 공지된 효과와 연관될 수 있다. 자극들은 상기 선택된 화소들에 의해 포획된 상기 광 패턴들을 통해 시각 감지의 실제 효과를 야기시키도록 신경 세포들을 자극하기 위해 상기 선택된 화소들로부터 생성될 수 있다. 외부 명령들을 수신하는 것에 응답하여, 상기 전기적 변수들이 상기 시각 감지의 공지된 효과를 위한 시각 감지의 실제 효과를 개선하기 위해 상기 선택된 화소들을 위해 갱신될 수 있다.
다른 실시예에 있어서, 망막 인공기관 미세조정을 위한 시스템은 망막 세포들과의 인터페이스를 위한 망막 인공기관 장치 및 상기 외부 명령들을 송신할 수 있는 원격 제어 장치를 포함할 수 있다. 상기 장치는 광을 수신하는 복수의 광센서들, 상기 망막 세포들을 자극하는 복수의 전극들, 상기 수신된 광에 기초하여 상기 전극들을 위한 자극들을 생성하기 위한 구성을 가지는, 구성가능한 프로세싱 회로들, 및 외부 명령들에 따라 상기 구성가능한 프로세싱 회로들을 구성하는 제어 회로들을 포함할 수 있다. 공지된 시각 인지가 상기 광을 통해 투영될 수 있다. 일 실시예에 있어서, 상기 외부 명령은 상기 광센서들 및 상기 전극들 중 하나 또는 그 이상을 선택할 수 있다. 선택적으로 또는 대안적으로, 상기 외부 명령들은 상기 공지된 시각 인지와 상기 자극된 신경 세포들로부터의 시각의 실제 인지 사이의 비교를 통해 상기 구성가능한 프로세싱 회로들의 구성을 선택할 수 있다. 상기 구성가능한 프로세싱 회로들은 상기 구성에 따라 자극들을 생성할 수 있다.
본 발명의 다른 특징들은 이하의 상세한 설명 및 첨부한 도면들로부터 명백해질 것이다.
본 발명은 예시를 통해 설명되고 첨부한 도면들의 도시에 한정되지 않는다. 유시한 참조부호들은 유사한 구성요소들을 지시한다.
도 1a 내지 도 1b는 망막 인공기관을 위한 집적 플렉시블 장치들의 실시예들을 도시한 블록도들이다.
도 2a 내지 도 2b는 본 발명의 일 실시예에 따라 굴곡이 있는 플렉시블 장치들의 영향들을 도시한 관계 도면들이다.
도 3은 본 발명의 일 실시예에 따른 관통 공들을 가지는 예시적인 장치를 도시한 대략적인 도면이다.
도 4a 내지 도 4b는 본 발명의 일 실시예에 있어서의 플렉시블 장치들의 단면들을 도시한 블록도들이다.
도 5a 내지 도 5j는 본 발명의 일 실시예에 있어서의 플렉시블 장치들의 제조 프로세스들의 시퀀스를 도시한 블록도들이다.
도 510a 내지 도 510f는 본 발명의 일 실시예에 있어서의 플렉시블 장치들을 위한 제조 프로세스들의 대안적인 또는 바람직한 시퀀스를 도시한 블록도들이다.
도 6a 내지 도 6d는 망막 인공기관을 임플란트하는 서로 다른 접근들을 위한 플렉시블 장치들의 예시적인 레이어드 구조들을 도시한 블록도들이다.
도 7a 내지 도 7b는 본 발명의 예시적인 실시예들에 있어서 이웃하는 복귀 경로를 제공하고 전류들을 제한하는 가이드 링들을 도시한 블록도들이다.
도 8은 본 발명의 일 실시예에 있어서 돌출 전극들을 가지는 플렉시블 장치들을 위한 레이어드 구조들을 도시한 블록도이다.
도 9는 본 발명의 일 실시예에 있어서 복수-레벨 전극들을 가지는 플렉시블 장치들에서의 레이어드 구조들을 도시한 블록도이다.
도 10a 내지 도 10b는 본 발명의 일 실시예에 따른 플렉시블 장치들에 있어서의 예시적인 신호 프로세싱 회로들을 도시한 대략적인 도면들이다.
도 11a 내지 도 11b는 본 발명의 일 실시예에 있어서 구성된 플렉시블 장치들의 작동들을 도시한 블록도들이다.
도 12는 본 발명의 일 실시예에 있어서 상기 플렉시블 장치들을 미세조정 및 튜닝하는 시스템을 도시한 블록도이다.
도 13은 여기에 도시된 일 실시예에 있어서 플렉시블 장치들을 구성하는 방법을 도시한 흐름도이다.
플렉시블 인조 망막 장치들이 여기에 개시된다. 이하의 설명에 있어서, 수많은 특정한 상세사항들이 본 발명의 실시예들의 완전한 설명을 제공하기 위해 발생한다. 하지만, 본 발명의 실시예들이 이러한 특정한 상세사항들 없이도 실행될 수 있음이 당업자에게 명백할 것이다. 다른 예에 있어서, 공지된 구성요소들, 구조들, 및 기술들은 본 발명의 상세한 설명의 이해를 모호하게 하지 않기 위해 상세하게 나타내지 않았다.
본 발명의 상세한 설명에서 "일 실시예" 또는 " 실시예"의 언급은 해당 실시예와 연결되어 설명되는 특별한 특징, 구조, 또는 특성이 본 발명의 적어도 하나의 실시예에 포함될 수 있다는 것을 의미한다. 본 발명의 상세한 설명의 많은 곳에서 나타나는 "일 실시예에 있어서"라는 문구는 동일한 실시예에서 모두 언급될 필요가 없다.
플렉시블 IC(integrated circuit) 장치는 단일 칩에 "픽셀들"의 어레이를 집적할 수 있다. 각각의 픽셀은 전극, 센서들(예. 광센서들, 전기 센서들 또는 다른 적용가능한 센서들), 신호 프로세서 및/또는 드라이버 회로들을 포함할 수 있다. 이러한 집적(integration)은 배선(wiring), 팬 아웃(fan out), 멀티플렉싱(multiplexing) 또는 상기 장치의 의도된 기능들을 가능하게 하는 다른 요구조건들을 단순화시킬 수 있다. 예를 들어 EM(electromagnetic) 파들을 통한, 센서/프로세싱 회로들 사이의 고가의 신호 전송 및 전극 어레이들은 제거될 수 있다. 각각의 픽셀은 상기 장치 안의 수천 또는 수만 개의 픽셀들이 신경 세포들에 인터페이스할 수 있도록 상기 장치 안에서 접근가능할 수 있다. 예를 들어, 상기 플렉시블 집적 장치는 대략 2 내지 4 mm 크기의, 10,000 ~ 20,000 화소들을 가지는 고밀도 어레이에 대응하는 20/80 시력(visual acuity)을 회복하기 위해 요구되는 밀도를 제공할 수 있다.
일 실시예에 있어서, 집적 장치의 유연성(flexibility)은 상기 자치의 제어된 두께에 기초될 수 있다. 예를 들어, 상기 장치는 망막의 형태(예. 인간 안구)를 따라 중심에서 모서리까지 ~90 ㎛ 까지 구부리기에 충분히 얇아질 수 있다. 몇몇의 실시예들에 있어서, 상기 장치는 여전히 상기 장치의 물질 강도의 안전 한계(safety margin) 안에 있는 대략 인간 망막의 평균 반경 굴곡인, 12 mm 미만의 굴곡 반경까지 구부리기에 충분히 얇게 (예. 제조 프로세스에 따라) 만들어질 수 있다.
장치가 상기 망막의 굴곡을 따라 구부러짐에 따라 상기 망막의 목표 신경 세포들과 상기 장치의 전극들 사이의 신경-전극 거리는 줄어들 수 있다. 따라서, 상기 신경 세포들을 들뜨게 하거나 자극하기 위해 각각의 픽셀에서 필요로 하는 전력은, 허용된 전력 밀도를 가지고 더 높은 픽셀 밀도를 가능하게 하기 위해 줄어들고 또한 환자에 임플란트된 상기 장치를 이용해 상기 신경 세포들을 통해 인지되는 이미지들의 해상도를 개선할 수 있다. 어떤 실시예들에 있어서, 상기 장치는 (예. 전극 당 개별적인 신경 세포를 목표로 하는) 개별적인 망막 신경 세포들을 들뜨게 하는 적합성 요구조건들(conformity requirements)을 충족시킬 수 있다.
일 실시예에 있어서, 망막 인공기관을 위한 플렉시블 집적 회로(또는 장치)는, (Polyimide/SiC, Parylene/SiC와 같이) 2개의 생체적합 폴리머 및 배리어 층들 사이에 삽입된 <~30 마이크로미터 두께 Si 장치 층을 이용해 180 nm(나노미터) CMOS 기술에 기초하여 제조될 수 있다. 이러한 (폴리이미드(polyimide), 파리렌(parylene), 액정 폴리머들(liquid-crystal polymers) 등과 같은) 생체적합 폴리머 및 이러한 (SiC, TiN, DLC 다이아몬드-유사 탄소 또는 다이아몬드 필름들 등과 같은) 배리어 층은 상기 장치가 조직들 안에 임플란트될 때 상기 플렉시블 집적 장치 및 둘러싸는 조직들 사이에 양방향 보호를 제공하기 위해 (예. 장기 접촉을 허용하기 위해) ISO(International Organization for Standardizaion) 10993 표준들과 상호호환가능(예. 생체적합)할 수 있다.
플렉시블 집적 장치의 제조 접근방식은 의료적 임플란트들에 필요한 동일한 플렉시블 패치 상에 신경 세포 자극 전극 어레이들과 함께 신호 프로세싱 회로들 및 고밀도 CMOS 이미지 센서들의 집적을 가능하게 할 수 있다. 몇몇의 실시예들에 있어서, 반도체 기판은 광학적 이미지들을 감지하고 또한 상기 감지된 광학적 이미지들의 함수로서 전기적 자극을 생성하는, 필요한 광학적 및/또는 전자적 구성요소들의 포함을 허용하기 위해 상기 장치에 사용될 수 있다.
대안적인 다른 실시예에 있어서, 플렉시블 집적 장치는 서로 다른 방식의 망막 임플란트에 적용가능할 수 있다. 예를 들어, 상기 장치는 상기 장치를 관통하는 광의 소정 부분을 허용하기에 충분히 얇게 제조될 수 있다. 센서들 및 전극들은 이러한 반투명 장치의 동일 측(또는 표면) 또는 대향하는 측들에 위치될 수 있다. 그 결과, 상기 장치는 RGC(retinal ganglion cells) 층 앞의 망막 신경 네트워크를 이용하지 않고 상기 장치의 전극들을 통해 직접 RGC를 자극하기 위해 망막-외 방식으로 임플란트될 수 있다. 또는, 상기 장치는 양극 세포 측으로부터 상기 전극들을 통해 상기 망막을 자극하기 위해, 예를 들어 양극 세포들, 수평 세포들, 아마크린 세포들(amacrine cells) 등과 같은 다양한 신경 세포들에 의해 형성되는 나머지 신경 네트워크와 함께 동작하기 위해 하부-망막 방식으로 임플란트될 수 있다.
일 실시예에 있어서, 플렉시블 집적 장치는 광 자극들에 반응하는 상기 신경 세포들의 특성들에 따라 목표 신경 세포들 또는 신경들을 들뜨게 할 수 있다. 예를 들어, 상기 특성들은 목표 신경 세포들이 ON 타입 세포들, OFF 타입 세포들 또는 다른 타입들의 세포들임을 지시할 수 있다. ON 타입 세포는 광 자극들의 온셋에 실질적으로 동기화하여 반응할 수 있다. OFF 타입 세포는 상기 광 자극들의 오프셋에 실질적으로 동기화하여 반응할 수 있다. 상기 플렉시블 집적 장치는 상기 목표 신경 세포들을 적절하게 들뜨게 하기 위해 (예. 상기 신경 세포들이 상기 수신된 광에 의해 직접 자극되면) 예를 들어, 특정 자극 패턴(또는 파형들), 시간 지연들, 점화(ignition), 억제(suppression), 또는 다른 적용가능한 자극 방식들 등을 통해, 수신된 광으로부터 자극들을 생성하는 프로세싱 능력을 포함할 수 있다. 일 실시예에 있어서, 상기 플렉시블 집적 장치는 통신(또는 자극)하는 (예. 신경 연결 성층으로 인해) 서로 다른 층들의 신경 세포들의 물리적 선택을 (예. 근접성에 기초하여) 허용하기 위해, (예. 3차원 방식으로 분포된) 전극들의 복수의 층들을 포함할 수 있다. 예를 들어, 각각의 전극 또는 마이크로 전극은 목표가 아닌 다른 신경 세포들에 영향 없이 (예. 4, 8, 또는 다른 적용가능한 수와 같이 미리 결정된 수보다 작게 제한되는) 적은 수의 신경 세포들을 목표로 하여 위치될 수 있다.
플렉시블 집적 장치는 서로 다른 망막 임플란트 요구들에 대하여 최적화된 기능들을 제공하도록 구성될 수 있다. 예를 들어, 수동 및/또는 자가(자동) 미세조정 작동들이 (예. 환자에 임플란트 후) 체외에서 목표 신경 세포들의 타입들을 확인 및/또는 상기 장치의 센서/전극 어레이 변수들을 상기 수신한 환자의 실제 시각 인지에 따라 조정하기 위해 적용될 수 있다. 프로세싱 기능들은 균등한 신호 프로세싱 효과들을 제공하기 위해, 예를 들어 상기 수신한 환자의 손상된 시각을 개선하기 위해 손상된 신경 세포 네트워크들을 대체하기 위해, (예. 프로그램가능한 회로들을 통해) 활성화되거나 프로그램될 수 있다.
도 1a 내지 도 1b는 망막 인공기관을 위한 집적 플렉시블 장치들의 실시예들을 도시한 블록도들이다. 도 1의 장치(100a)는 화소들의 2차원 어레이를 포함할 수 있다. 각각의 화소는 유사한 구조들을 포함할 수 있다. 예를 들어, 화소(107)는 입사되는 광을 수신하는 광센서(101), 작업들을 수행하는 프로세싱 회로들(105), 및 상기 입사되는 광에 의해 투영되는 시각 인지를 허용하기 위해 목표 신경 세포들을 자극하는 전극(103)을 포함할 수 있다. 일 실시예에 있어서, 프로세싱 회로들(105)은 상기 목표 신경 세포들을 자극하기 위해 전극(103)을 구동하기 위해 자극 또는 파형, 활성화 패턴들 등을 생성하는 광센서(101)로부터 감지된 광을 처리하는 디지털, 아날로그 또는 다른 적용가능한 회로들을 포함할 수 있다.
또는, 도 1b의 장치(100b)는 광센서(111), 전극(113) 및 회로들(115)을 포함하는 화소(109)를 포함할 수 있다. 전극(113)은 목표 신경 세포들에 자극을 전달 및/또는 상기 목표 신경 세포들로부터 전기적 활동을 감지하기 위해 상기 목표 신경 세포들과 인터페이스할 수 있다. 상기 자극은 광센서(111)에 의해 포획된 광으로부터 유도될 수 있다. 일 실시예에 있어서, 회로들(115)은 전기적 신호들을 수신, 처리, 및/또는 구동하는 프로세싱(예. 신호 처리) 기능들을 제공할 수 있다. 예를 들어, 전기적 신호들은 전극(113)으로부터 감지된 전기장 또는 광센서(111)로부터 감지된 광을 통해 수신될 수 있다. 회로들(115)은 전극(113)을 통해 전기적 신호들로서 자극을 구동할 수 있다.
상기 망막 인공기관 칩 장치(100b) 안의 전기적 감지 회로(115)의 합체(incorporation)는 감시된 수신장(예. 전기장) 및 시간 도메인에서의 신경세포 스파이킹 패턴들을 통한 신경 세포들의 자동 또는 수동 확인을 가능하게 해 줄 수 있다. 예시들은 ON 세포들의 수신장이 OFF 세포들보다 20% 더 커서 더 높은 전장(full-field) 민감도로 귀결되고, ON 세포들이 OFF 세포들보다 20% 더 빠른 반응 운동역학을 가지는 영장류 망막의 ON 및 OFF 신경절 세포들에 있어서 기능적으로 비대칭일 수 있다. 상기 망막을 따르고 감지 및 자극이 가능한 세포 크기의 마이크로 전극들의 커다란 어레이는 ON 및 OFF 망막의 망막 신경절 세포들을 선택적 자극 또는 억제하는 것을 허용할 수 있다.
도 2a 내지 도 2b는 본 발명의 일 실시예에 따라 굴곡이 있는 플렉시블 장치들의 영향들을 도시한 관계 도면들이다. 통상, 망막 인공기관 장치의 이미지 해상도 및 요구되는 구동 전력(예. 임계 전류 밀도)은 상기 장치의 굴곡에 따라 달라질 수 있다. 일 실시예에 있어서, 망막 인공기관을 위한 플렉시블 집적 장치는 평면 IC 리소그래피 기술에 의해 제조되는, 세포-간격의 전극 어레이(예. 각각의 전극은 대략 하나의 신경 세포의 크기임)를 포함할 수 있다. 도 2a는 평균 지름 25 mm를 가지는 대략적인 구인, 인간 안구에 따라 굴곡이 있는 망막에 접촉하는 mm-크기의 플래너 전극 어레이 칩을 구현하기 위한 신경-전극 거리들의 분포도(200a)을 도시하고 있다.
분포도(200a)에 도시된 바와 같이, 칩 중심에서 상기 망막(201)에 접촉하는 mm-크기의 평면 전극 어레이 칩(203)은 상기 중심으로부터 칩의 모서리를 향해 거리 1.5 mm에서 대략 90 마이크론 만큼 상기 망막으로부터 빠르게 분리될 수 있다. 상기 신경-전극 거리의 증가는 예를 들어, 목표 신경세포들을 소극화(depolarize)하기 위해 전극에 필요한 임계 전류에 있어서의 증가를 암시할 수 있다. 도 2b의 관계도(200b)에 도시된 바와 같이, 요구되는 상기 임계 전류에 있어서의 증가는 커브(205)를 따라 근접하는 주변보다 1~2차수로 큰 크기일 수 있다. 추가적으로, 신경-전극 거리의 증가는, 전기 전극들로부터의 (예. 자극 신호들을 송신하기 위한) 상기 장력선들(field lines) 및 전기적 전류들이 원격의 신경세포들에 도달하기 위해 거리를 가지고 퍼져 있고 큰 면적을 커버할 수 있기 때문에, 특정 신경세포들을 소극화하기 위해 해상도를 감소시킬 수 있다. 일 실시예에 있어서, 본 발명의 플렉시블 집적 장치는 도 2a 및 도 2b에 도시된 큰 거리 또는 분리된 암시들 없이 임플란트될 수 있다.
도 3은 본 발명의 일 실시예에 따른 관통 공들을 가지는 예시적인 장치를 도시한 대략적인 도면이다. 장치(300)는 적어도 대략 평균 인간 안구의 굴곡(예. 25 mm 지름)을 가지는 곡선으로 복수의 차원에서 플렉시블할 수 있다. 일 실시예에 있어서, 장치(300)는 관통 공들에 의해 관통되는 인접하는 모듈들 사이에서 경계들을 가지는 복수의 육각형이 축적된 모듈들을 포함할 수 있다.
모듈(301)과 같은, 각각의 모듈은 장치의 일 구획(partition)에 일 군의 화소들을 포함할 수 있다. 상기 구획은 육각형, 사각형, 또는 다른 적용가능한 형태들로 제조될 수 있다. 일 실시예에 있어서, 관통 공들은 액체가 장치(300)의 서로 다른 표면들 사이에서 교환되는 것을 허용할 수 있다. 경계(303)과 같은, 인접하는 모듈들 사이의 경계들은 서로 직접 통신하는 인접 모듈들을 위한 신호 라인들로서 금속 트레이스(trace)(또는 다른 전도 트레이스 또는 전도 라인들)을 포함할 수 있다. 금속 트레이스들은 상기 모듈들 사이에서 전력 분포를 제공할 수 있다. 관통은 상기 관통 공들을 통해 (예. 조직들 안에 임플란트된) 상기 장치의 양측의 조직들 사이에서의 액체 흐름을 유지할 수 있다. 상기 경계들을 따르는 금속 라인들을 제외한 상기 폴리머와 배리어층들 사이의 집적 회로 물질(예. 실리콘)의 완벽한 제거는, 상기 장치의 성형성을 증가시킬 수 있다.
도 4a 내지 도 4b는 본 발명의 일 실시예에 있어서의 플렉시블 장치들의 단면들을 도시한 블록도들이다. 도 4a의 단면(400a)은 실리콘층(407), 산화 및 금속 상호연결층들(409) 또는 폴리머(401) 및 배리어층을 포함하는 생체적합 층들과 같은, 레이어드 구조들을 가지는 복수의 화소들(417, 419, 421, 425)을 가지는 플렉시블 집적 장치를 지시할 수 있다. 화소(417)는 트랜지스터들(403), 실리콘 층(407) 안의 광센서(405), 및 알루미늄(411)을 통해 (예. 트랜지스터들(403)을 포함하는) 회로들에 결합되는 전극(413)을 포함할 수 있다. 관통 공(403)은 인접 모듈들 사이의 경계를 따라 상기 장치를 가로질러 형성될 수 있다. 예를 들어, 화소들(417, 419)은 화소들(421, 425)을 포함하는 분리된 모듈에 인접하는 하나의 모듈 안에 그루핑되어 있을 수 있다.
단면(400b)는 관통 공들을 관통해 절단하지 않고 상기 모듈들의 경계를 가로지르는 절단 평면을 가지는 플렉시블 집적 장치의 인접 모듈들(또는 화소들) 사이의 단면도를 지시할 수 있다. 패시베이팅 금속 라인들 또는 금속 배선(423)과 같이, 다른 플렉시블 전도 라인들은 화소에서 화소로 전기적 신호들을 가져가기 위해 상기 경계(예. 상기 관통 공들 사이)를 가로질러 이어질 수 있다.
도 5a 내지 도 5j는 본 발명의 일 실시예에 있어서의 플렉시블 장치들의 제조 프로세스들의 시퀀스를 도시한 블록도들이다. 일 실시예에 있어서, 도 5a의 구조(500a) 안의 전극 어레이들을 가지는 광센서들의 접적 및 CMOS는, 실리콘 웨이퍼 상에 표준 또는 약간 변형된 CMOS 기술 또는 CMOS 이미지 센서(CIS) 기술을 이용해 제조될 수 있다. 바람직하게, 상기 실리콘 웨이퍼는 수 마이크로미터의 두께를 가지는 실리콘 에피택셜 층을 가지는 SOI(Silocon On Insulator) 웨이퍼를 포함할 수 있다. PN 접합 다이오드는 상기 변형된 CMOS 기술을 통해 광센서로서 사용될 수 있다. 또는, 최적화된 도핑 프로파일들 및 반사방지 코팅들을 가지는 광센서들이 상기 CIS 기술을 통해 사용될 수 있다. 소정의 실시예들에 있어서, TiN과 같이 CMOS-호환가능한 전도 막들은 패터닝 전극들 전에 전극 층들(예. 알루미늄(511))의 상단에 증착될 수 있다. 상기 전극들은 종래의 CMOS 프로세스의 마지막 패드 개방 스텝에서 노출될 수 있다.
일 실시예에 있어서, 도 5a의 구조(500a)는 산화/금속 층들(509), Si 기판(501), 선택적 산화층(541), 실리콘 층(또는 반도체 층)(503) 상에 화소(513)을 위한 알루미늄(511), 트랜지스터들(505), 광센서(507)를 포함하는, 플렉시블 집적 장치를 위한 레이어드 구조들을 포함할 수 있다. 구조(500a)는 화소(513) 안에서와 유사한 구성요소들을 가지는 화소들(515, 517, 519)를 포함할 수 있다. 구조(500a)는 전면(또는 전방 표면, 트랜지스터 측)(537) 및 상기 전면(537)에 대향하는 후면(535)을 가질 수 있다. 구조(500a)는 예를 들어, CMOS 프로세스의 결과로서 패시베이션 층(539)을 포함할 수 있다. 전면(537)은 웨이퍼의 칩 표면 또는 실리콘 칩에 대응할 수 있다.
다음으로, 도 5b에 도시된 바와 같이, 레이어드 구조의 상기 전면은 예를 들어, SiC, 다이아몬드 또는 DLC (Diamond-Like-Carbon) 물질 또는 층들에 기초하여, (예. 대략 0.1 ㎛ 에서 수 ㎛의 두께를 가지는) 접착/배리어 박막들에 의해 패시베이션될 수 있다. 일 실시예에 있어서, 도 5b의 구조(500b)는 패시베이션의 결과로서 배리어 층(525)을 포함할 수 있다. 상기 접착/배리어 박막들은 예를 들어, CMOS 프로세스의 마지막 단계에서, 플렉시블 집적 장치를 위한 이미 개방된 패드 및 전극 영역들을 덮을 수 있다.
상기 패시베이션 프로세스 후, 패드 및 전극 영역들은 CMOS 프로세스에서 만들어진 패드 크기 및 전극 크기보다 작은, 원래의 윈도우 크기들보다 약간 작은 윈도우 크기들을 가지고, 포토리소그래피 및 식각에 의해 재개방될 수 있다. 그 결과, 패드들 및 전극들을 둘러싸는 노출된 측벽들은 상기 패시베이션 프로세스 동안 증착된 상기 접착/배리어 층에 의해 보호될 수 있다. 상기 노출된 측벽들은, 보호되거나 덮이지 않으면, PECVD(Plasma-Enhanced Chemical Vapor Deposition) 실리콘 이산화물 및 실리콘 질소화물과 같은 표준 CMOS 패비베이션 층들의 물질들을 노출시킬 수 있다.
일 실시예에 있어서, 알루미늄(511)과 같은, 금속 전극은 전극을 위해 적용될 수 있다. 생체적합 폴리머 (I)(523)과 같은, 생체적합 폴리머 증착은 배리어 층(525)와 같은, 배리어 층 상에 적용될 수 있다. 상기 생체적합 폴리머는 폴리이미드, PDMS(Polydimethylsiloxane), 패릴렌, 액정 폴리머 또는 다른 적용가능한 생체적합 물질에 기초할 수 있다. 일 실시예에 있어서, 상기 생체적합 물질은 ISO 10993 표준을 통해 상세화된 표준에 따라 선택될 수 있다. 상기 생체적합 층의 적용 후, 일 실시예에 있어서, 제1 핸들 웨이퍼는 상기 장치 웨이퍼의 전면에 결합(bond)된다. 예를 들어, 구조(500c)는 도 5c의 글루(545)을 통해 결합되는 핸들 기판 (I)(543)을 포함할 수 있다. 구조(500c)는 상기 후면으로부터 얇게 하는 처리를 할 수 있다. 몇몇의 실시예들에 있어서, 전극들은 생체적합 폴리머 (I)(523)와 같은 생체적합 폴리머 층이 증착된 후 바로 개방될 수 있다.
도 5d를 참조하면, 도 5c의 기판(501)과 같은, 장치 웨이퍼의 실리콘 기판은 래핑 및 화학적 식각 단계들의 조합에 의해 적절한 두께까지 얇게 될 수 있다. 도 5c의 핸들 기판 (I)(543)과 같은, 상기 캐리어 기판에 결합한 후, 기판(501)과 같은, 상기 Si 웨이퍼 기판은 그후 웨이퍼 래핑 기계에 의해 기계적으로 대략 50 마이크로미터의 두께 또는 다른 적절한 두께까지 얇아질 수 있다. 결과적 표면은 상기 래핑 프로세스 동안 유도된 마이크로-크랙 손상들을 포함할 수 있다. 일 실시예에 있어서, SF6 플라즈마 식각, 건식 XeF2 식각, 또는 다른 적용가능한 식각 프로세스들과 같은, 실리콘 화학 식각 프로세스가 이러한 손상들을 제거하기 위해 제어된 두께까지 적용될 수 있다. 또는, SOI를 이용하는 기판 상에 식각은 식각 중단(etching stop)으로서 상기 매립 산화층에서 중단될 수 있다. 통상적으로, 이러한 두께는 수 마이크론에서 수 십 마이크론 이하까지 제어될 수 있어, 상기 광센서들은 이 두께를 통해 광자들을 효과적으로 흡수하고 상기 기판은 원하는 굴곡까지 구부릴 수 있게 된다. 도 5d의 구조(500d)는 상기 얇게 하는 프로세스를 통해 실질적으로 얇게 된 웨이퍼 기판을 포함할 수 있다.
도 5e를 참조하면, 접착/배리어 박막들은 상기 얇게 하는 프로세스 후 연마 및/또는 식각된 표면 상에 증착될 수 있다. 다이싱 레인(531)과 같은, 다이싱 레인들(또는 관통 공들)을 위한 트렌치들이 형성될 수 있다. 배리어 층(527)은 도 5e의 구조(500e)의 후면 상에 증착될 수 있다. 그후, 장치 전면과 후면 사이의 관통 공들(또는 비아 홀들)이 패터닝되고 예를 들어, 리소그래피 및 RIE(Reactive Ion Etching) 프로세스들 또는 다른 적용가능한 프로세스들에 의해 개방될 수 있다. 예를 들어, 도 5f의 구조(500f)는 관통 공 또는 다이싱 레인(531)을 포함할 수 있다. 몇몇의 실시예들에 있어서, 플렉시블 장치의 모서리들은 도 5e의 개방단(539)으로 도시된 바와 같이 유사하게 개방될 수 있다.
도 5g를 참조하면, 폴리머 층이 관통 공들을 위해 핸들 기판까지 더 식각될 수 있다. 예를 들어, 구조(500g)는 핸들 기판(I)(543)까지 생체적합 폴리머 (I)(523)를 관통해 식각되는 관통 공(531)을 포함할 수 있다. 그후, 제2 생체적합 폴리머 층이 상기 관통 공들을 개방하기 위해 증착되거나 패터닝될 수 있다. 예를 들어, 생체적합 폴리머(II)(529)는 구조(500g)의 후면 상에 증착되고 관통 공(531)을 위해 개방될 수 있다. 2 개의 생체적합 층들은 도 5g의 밀봉(535)에 도시된 것과 유사하게 장치 주위를 싸서 함께 밀봉될 수 있다. 일 실시예에 있어서, 생체적합 폴리머(529)(예. 10 ㎛ 두께)는 배리어 층(527)(예. 대략 1 또는 2 ㎛ 두께)보다 더 두꺼울 수 있다. 생체적합 폴리머들(529, 523)은 유사한 두께일 수 있다.
그후, 제2 핸들 기판이 장치의 제1 핸들 기판의 대향하는 측 상에 결합될 수 있는데, 이것은 이미 상기 장치에 결합되어 있다. 상기 제1 핸들 기판은 상기 장치로부터 제거될 수 있다. 예를 들어, 도 5h의 구조(500h)는 핸들 기판(I((543)과 같이 상기 전면으로부터 제거되는, 상기 제1 핸들 기판과 상기 후면 상에 새로이 결합된 핸들 기판(II)(533)을 포함할 수 있다.
상기 전면으로부터 핸들 기판을 제거한 후, 전극들은 리소그래피 및 RIE(Reactive Ion Etching) 프로세스 또는 다른 적용가능한 프로세스들을 적용하는 것에 의해 노출될 수 있다. 예를 들어, 도 5i의 구조(500i)는 상기 전면 상에 전극(521)을 위해 생체적합 폴리머 (I)(523)를 관통하는 개구부를 포함할 수 있다. 전극(521)은 금, 플래티늄 및/또는 구리와 같은 전도 금속 물질을 포함할 수 있다. 일 실시예에 있어서, 전극(521)은 더 나은 전극-전해질 인터페이스를 위해, 다른 금속화 층(IrOx, Pt, TiN, FeOx 등)에 의해 덮일 수 있다. 대안적으로 또는 선택적으로, 전극은 직류 대신 변위 전류에 기초하여 자극을 제공하는, 도 5i의 유전체(535)와 같이, 선택적 유전체 층(예. 대략 0.1 ㎛의 높은 k-유전계수의 얇은 층)을 포함할 수 있다. 몇몇의 실시예들에 있어서, 대략 수 마이크론에서 0.1 ㎛ 이하의 라미닌(laminin)과 같은, 다른 선택적 접착 층이 상기 전극(또는 플렉시블 장치)이 임플란트를 개선하기 위해 조직들에 접착되는 것을 보조하기 위해 상기 전극(또는 플렉시블 장치)의 상단 표면 상에 증착될 수 있다. 마지막으로, 제2 핸들 웨이퍼는 플렉시블 집적 장치의 제조 프로세스를 완료하기 위해 제거될 수 있다. 예를 들어, 도 5j의 구조(500j)는 도 5i의 핸들 기판 (II)(533)과 같이, 제2 핸들 기판이 없는 플렉시블 집적 장치를 나타낼 수 있다.
도 510a 내지 도 510f는 본 발명의 일 실시예에 있어서의 플렉시블 장치들을 위한 제조 프로세스들의 대안적인 또는 바람직한 시퀀스를 도시한 블록도들이다. 도 510a의 구조(510a)의 마이크로 전극 어레이들과 광센서들의 집적 및 CMOS 회로들은 실리콘 웨이퍼 상에 표준 또는 약간 변형된 CMOS/CIS 기술 또는 다른 적용가능한 기술들을 이용해 제조될 수 있다. (예. 대략 50-100 ㎛ 폭) 다이싱 레인들을 위한 트렌치들 및 선택적 관통 공들은 플렉시블 장치들을 제조하기 위해 하나 이상의 캐리어 핸들러를 필요로 하지 않는 전면 프로세싱에 기초하여 프로세싱될 수 있다. 그 결과, 얇게 하는 프로세스(예. 후면 래핑)가 불결한 프로세스로 간주되고 소정의 청결한 제조 프로세스들로 다시 전달되는 것을 방지하기 때문에 이러한 제조 절차는 능률적으로 될 수 있다.
일 실시예에 있어서, 구조(510a)는 예를 들어, CMOS/CIS 프로세스에 따라, 실리콘 또는 SOI 웨이퍼(미도시) 상에 산화/금속 층(5105) 및 능동 실리콘 층(5107)을 포함할 수 있다. 상기 능동 실리콘 층(5107)은 실리콘 층들(5107, 5129) 사이에 선택적 산화 층(5131)을 가지는 실리콘 기판(5129) 상에 트랜지스터들(5123) 및 광센서들(5125)을 포함할 수 있다. CMOS/CIS 프로세스의 결과, 구조(510a)는 금속 접촉 패드들, 금속(5103)과 같이, 개방된 마이크로 전극들을 가지는 (예. 실리콘 질소화물/산화물) 패시베이션(5101)을 포함할 수 있다.
도 510b를 참조하면, 구조(510b)는 전극들(5109)를 포함할 수 있고, 플렉시블 장치들을 위한 다이싱 레인들 또는 관통 공들을 위한 트렌치들(5127)은 구조(510a)로부터 제조될 수 있다. 예를 들어, 얇은 금속막들이 상기 웨이퍼의 구조(510a)를 덮을 수 있게 부가될 수 있다. 두꺼운 광 저항 물질(photo resistance material)이 상기 얇은 금속 막들 상의 상기 웨이퍼를 스핀 코팅하는 것에 의해 부가될 수 있다. 전극(5109)은 상기 두꺼운 포토레지스트 포토리소그래피 프로세스들 후 (예. Pt 또는 Au 물질을 포함하는) 전기도금을 통해 부가될 수 있다. 그후, 상기 광 저항 물질 및 상기 얇은 금속 막은 제거될 수 있다. 일 실시예에 있어서, 전극(5109)은 마지막 커버링 폴리머 층의 원하는 두께(예를 들어, 10 ㎛)와 대체적으로 동일한 두께일 수 있다. 부가적인 광 저항 코팅 및 포토리소그래피 노출은 상기 표면에 적용될 수 있고 RIE 프로세스들이 상기 패시베이션 층, 상기 실리콘 이산화물 층들을 관통해, 트렌치(5127)를 생성하기 위해 상기 실리콘 기판으로 식각하는 데 사용될 수 있다. 트렌치(5127)는 상기 실리콘 영역(또는 능동 실리콘 층((5107)을 관통해 식각될 수 있다.
그후, 도 510c를 참조하면, 구조(510c)는 도 510b의 구조(510b) 상에 증착되는 배리어 층(5111)을 포함할 수 있다. 배리어 층(5111)은 DLC(diamond like carbon), SiC 또는 다른 적용가능한 물질에 기초할 수 있다. 상기 전극(5109)를 형성한 후 배리어 층을 부가하는 제조는 상기 배리어 층에 의해 둘러싸이거나 에워싸지는 전극(5109) 측벽들의 보호를 보장할 수 있다. 생체적합 폴리머 층은 그후 배리어 층(5111)을 덮도록 코팅될 수 있다. 예를 들어, 도 510d의 구조(510d)는 생체적합 폴리머(5113)를 포함할 수 있다. 일 실시예에 있어서, 대략 20 ㎛ 두께의 폴리머 층이 스핀 코팅 및 이어지는 경화 프로세스들에 의해 적용될 수 있다. 상기 폴리머 층은 (예를 들어, 대략 10 ㎛ 두께)의 전극 두께에 근접하게 래핑 프로세스 또는 RIE 프로세스에 의해 평탄화될 수 있다.
구조(510e)는 SIROF(sputtered iridium oxide film)에 기초하여 전극 컨덕터(5115)를 포함할 수 있다. 일 실시예에 있어서, SIROF는 산소-함유 플라즈마 안의 스퍼터링 이리듐 목표를 통해 또한 상기 전극 영역을 정의하기 위해 리프트-오프 프로세스(lift-off process)를 이용해 증착될 수 있다. 마지막으로, 선택적 얇은 유전체 층이 상기 마이크로 전극들의 전압-모드 작동을 위해 마이크로 전극의 상단에 증착될 수 있다.
도 510e를 참조하면, 구조(510e)는 글루 층(예.왁스)(5117)에 의해 상기 전면 상에 캐리어 웨이퍼(5115)에 부착되는 도 510d의 구조(510d)를 포함한다. 후면 Si 기판(예. 도 510d의 실리콘 기판(5129))은 최총 두께 대략 20 ㎛에서 중단되는 화학적 식각 프로세스들(예. SOI 웨이퍼가 사용되면 매립 산화물 층 또는 배리어 층(5111)에서의 중단), 래핑을 통해 얇아질 수 있다. 그후, 배리어 층이 이미 얇아진 구조(510e)의 상단에 부가되고 다른 생체적합 폴리머 코팅이 이어질 수 있다.
예를 들어, 도 510f를 참조하면, 구조(510f)는 배리어 층(5119) 및 후면 패시베이션에 기초하여, 예를 들어 도 510e의 구조(510e) 상에 코팅되는 생체적합 폴리머(5121)를 포함할 수 있다. 구조(510f)는 상기 글루 층(5117)을 해체하는 것에 의해 캐리어 웨이퍼(5115)로부터 해제될 수 있다. 그 결과, 배리어 층의 하나의 층, 예를 들어, 배리어 층(5119)은, 배리어 층의 다른 층, 예를 들어, 배리어 층(5111)에 접촉하여 증착될 수 있다. 상기 2 개의 생체적합 폴리머 층들, 예를 들어 폴리머(5121, 5113)를 함께, 상기 마이크로 전극 영역을 제외한 상기 얇은 칩을 완전히 덮고/쌀 수 있다.
일 실시예에 있어서, 다이 분리(die separation, 또는 다이싱)이 트렌치(5127)와 같은 다이싱 레인들을 따라 면도날 절단(razor blade cutting)을 통해 적용될 수 있다. 대안적으로 또는 선택적으로, 관통 공들은 트렌치(5127)를 관통해 폴리머 및 배리어 층들을 제거하기 위해 추가적인 포토리소그래피 및 플라스마 식각 및 RIE 프로세스들을 적용하는 것에 의해 생성될 수 있다. 선택적 접착 층(예를 들어, 라미닌 또는 피브로넥틴(fibronectin))이 상기 마이크로 전극들에 조직 접촉을 촉진시키기 위해 마이크로 전극들 표면 상에 적용될 수 있다.
도 6a 내지 도 6d는 망막 인공기관을 임플란트하는 서로 다른 접근들을 위한 플렉시블 장치들의 예시적인 레이어드 구조들을 도시한 블록도들이다. 일 실시예에 있어서, 망막 인공기관을 위한 플렉시블 집적 장치는 금속들에 의해 방해받지 않을 때 광의 일 부분이 상기 장치(또는 칩)을 관통하는 것을 허용하도록 얇은 기판을 포함할 수 있다. 그러므로, 이러한 모놀리식 칩(monolithic chip)은 상기 광센서들 및 전극들 모두가 상기 칩의 전면 상에 제조될 때조차도 망막-외 인공기관을 위해 사용될 수 있다.
예를 들어, 도 6a의 장치(600a)는 상기 장치의 전면(또는 트랜지스터 측) 상에 제조된 광센서(607) 및 전극(615)를 포함할 수 있다. 장치(600a)는 상기 장치의 후면으로부터 입사되는 광(623)으로 망막 외 방식으로 임플란트될 수 있다. 일 실시예에 있어서, 장치(600a)의 전극들 및 광센서들은 망막 신경절 세포들(621)을 향하는 면에 대면할 수 있다. 장치(600a)는 트랜지스터들/센서들을 포함하는 실리콘(603), 산화물 층들(609), 알루미늄(613) 및 전극(615)을 위한 선택적 조직 글루(예를 들어, 라미닌, 피브로넥틴 등), 상기 장치를 싸는 생체적합 폴리머(601) 및 상기 장치를 관통해 개방된 선택적 관통 공(619)을 포함하는 레이어드 구조들을 포함할 수 있다.
일 실시예에 있어서, 장치(600a)는 가시광선의 광학적 감쇄 길이가 실리콘에서 수 마이크론일 수 있기 때문에 상기 장치의 후면으로부터 입사한 광의 수 퍼센트보다 많이 상기 광센서들에 도달하도록 허용하기 위해 대략 10 ㎛ 이하의 얇은 실리콘 기판을 포함할 수 있다. 얇은 실리콘 기판은 SOI(silicon on insulator) 웨이퍼들을 이용하고 상기 MOS 프로세스 후 실리콘 웨이퍼를 얇게 하는 제조 프로세스들에 기초할 수 있다.
도 6b를 참조하면, 장치(600b)는 도 6a의 장치(600a)와 유사한 레이어드 구조들을 포함할 수 있다. 일 실시예에 있어서, 장치(600b)는 상기 장치의 전면으로부터 입사하는 광(649)을 가지고 하부-망막 방식으로 구현될 수 있다. 장치(600b)의 전극들 및 광센서들은 망막 양극성 세포들(625) 및 입사하는 광을 향하여 대면할 수 있다.
도 6c에 도시된 바와 같은 다른 실시예에 있어서, 장치(600c)는 상기 장치의 후면 상에 전극(637) 및 상기 전면 상에 광센서(633)를 포함할 수 있다. 유리하게도, 장치(600c) 안의 전극들은 광센서들로 입사하는 광을 막지 않을 것이다. 일 실시예에 있어서, 장치(600c)는 상기 전면으로부터 입사한 광(647) 및 상기 후면 상의 망막 신경절 세포들(645)에 대면하는 전극들을 가지고 망막 외 방식으로 구현될 수 있다. 장치(600c)는 트랜지스터들/센서들(631)을 가지는 실리콘(629), 산화물 및 금속 상호연결 층들(627), 전극(637)을 위한 선택적 조직 글루(643), 상기 장치를 싸는 생체적합 폴리머 및 배리어 층들(635) 및 상기 장치의 전면 및 후면을 가로지르는 관통 공(641)을 가지는 레이어드 구조들을 포함할 수 있다. 전극(637)은 알루미늄(639) 안의 TSV(through silicon via)와 같은, 전도 비아들을 통해, 예를 들어, 트랜지스터들 회로(631)를 포함하는, 프로세싱 회로들에 결합될 수 있다.
또는, 도 6d에 있어서, 장치(600d)는 도 6c의 장치(600c)와 유사한 레이어드 구조들을 포함될 수 있다. 장치(600d)는 상기 장치의 후면으로부터 입사하는 광(653)을 가지고 하부-망막 방식으로 구현될 수 있다. 장치(600d)의 전극들은 망막 양극성 세포들(651)을 향하여 대면할 수 있다.
도 7a 내지 도 7b는 본 발명의 예시적인 실시예들에 있어서 이웃하는 복귀 경로를 제공하고 전류들을 제한하는 가이드 링들을 도시한 블록도들이다. 도 7a의 장치(700a)는 로컬 복귀 경로들, 또는 전극들로부터 전류를 제한하는 "가이드 링"에 맞는 전극들을 포함할 수 있다. 일 실시예에 있어서, 장치(700a)는 트랜지스터들 회로(709) 및 광센서들(711)을 가지는 실리콘(707), 산화물 층들(719), 알루미늄 상의 전극(715), 및 배리어/접착 층(705) 상의 상기 장치를 싸는 생체적합 폴리머 층들(701, 703)을 포함하는 레이어드 구조들을 가지는 플렉시블 집적 장치일 수 있다. 장치(700a)는 전류 구동 모드에서 조직(721) 안에 임플란트될 수 있다. 예를 들어, 전극(715)으로부터의 전류(723)가 가장 낮은 임피던스 경로를 흐를 수 있다. 장치(700a)는 원하지 않는 목표 방향들로부터 로컬 복귀 경로 안내 전류(723)를 제공하기 위해 가이드 링(또는 로컬 복귀 전극)으로서 가이드(713)를 포함할 수 있다.
도 7b와 유사하게, 장치(700b)는 가이드(713)를 통해 제한되는 전극(715)으로부터의 전기장(727)을 가지고 전압 구동 모드에서 작동될 수 있다. 장치(700b)는 전극(715)을 위한 선택적 유전체(725)를 포함할 수 있다.
바람직하게, 전기장 또는 전류는 가이드 링들을 통해 발생 전극들에 지역으로 근접하게 제한(또는 작게, 좁게 만들어)질 수 있다. 그러므로, 신경절 세포들을 들뜨게 하지 않으면서 양극성 세포들을 자극하는 것과 같이, 각각의 전극의 목표 신경세포들 외의 신경 세포들의 원하지 않는 자극이 방지될 수 있다. 가이드 링들을 가지는 플렉시블 집적 장치에 있어서, 상기 하나의 전극으로부터의 전기장들은 가이드 링들을 이용하는 분리된 전극들로부터의 다른 전기장들과 간섭하지 않을 수 있다.
도 8은 본 발명의 일 실시예에 있어서 돌출 전극들을 가지는 플렉시블 장치들을 위한 레이어드 구조들을 도시한 블록도이다. 예를 들어, 장치(800)는 돌출 전극 어레이들을 가지는 플렉시블 집적 칩을 포함할 수 있다. 장치(800)는 금속/유전체 층들(807), 능동 구성요소들을 갖는 실리콘(809), 및 상기 폴리머 및 배리어 층들(813)을 가지고 상기 장치를 싸는 폴리머 및 배리어 층들(811)을 가지는 레이어드 구조들을 포함할 수 있다. 전극(803)은 목표 신경 세포(801)에 근접하는 돌출 팁을 이용해 상승될 수 있다. 바람직하게, 임플란트될 때, 상승된 자극 전극들은 상기 자극의 목표 위치들에 근접하여 있는 조직들의 분리 층들 중 일부를 통해 밀 수 있다. 그러므로, 상기 목표 신경세포들을 소극화하는 데 요구되는 임계 전류 또는 전력은 (예를 들어, 적어도 mm 제곱 당 250 이상의) 더 미세한 해상도를 가지는 더 많은 수의 전극들을 가능하도록 하여 감소될 수 있다.
도 9는 본 발명의 일 실시예에 있어서 복수-레벨 전극들을 가지는 플렉시블 장치들에서의 레이어드 구조들을 도시한 블록도이다. 예를 들어, 장치(900)는 복수 레벨들로 돌출되는 전극의 어레이들을 가지는 플렉시블 집적 칩을 포함할 수 있다. 장치(900)는 금속/유전체 층들(907), 능동 구성요소들을 갖는 실리콘(909), 및 상기 폴리머 및 배리어 층들(911)을 가지고 상기 장치를 싸는 폴리머 및 배리어 층들(913)을 가지는 레이어드 구조들을 포함할 수 있다. 전극들(917, 903)은 개별적으로 신경 세포들(901, 915)을 자극하기 위해 2개의 서로 다른 레벨들로 위치될 수 있다.
일 실시예에 있어서, 전극들(917, 903)과 같이, 복수-레벨 돌출 전극들은, 서로 다른 타입들의 신경 세포들(예. ON 타입 세포들, OFF 타입 세포들, 또는 다른 적용가능한 타입들의 세포들)에서 서로 다른 층들을 구별해서 자극할 수 있다. 예를 들어, 복수-레벨 돌출 전극들은 서로 다른 레벨들의 계층으로 분리되는 양극성 세포들과 신경절 세포들 사이의 망막 연결들로서 개별적으로 신경세포들 ON-경로 및 OFF 경로를 목표로 할 수 있다.
도 10a 내지 도 10b는 본 발명의 일 실시예에 따른 플렉시블 장치들에 있어서의 예시적인 신호 프로세싱 회로들을 도시한 대략적인 도면들이다. 도 10a의 자장치(1000a)는 2차원 화소 어레이로 이웃 화소들(1001, 1003, 1007, 1009)과 결합된 화소(1005)를 포함할 수 있다. 화소(1005)는 2차원 화소 어레이인 (m, n)에 의해 인덱스될 수 있고, I(m, n, t)로 표현되는 시간 t에서 입사하는 광을 수신한다. 각각의 화소는 이웃 화소들(또는 다른 적용가능한 화소들)과 수신된 광에 대한 정보를 교환할 수 있다.
일 실시예에 있어서, 각각의 화소는 이웃 화소들로부터 수신들을 수신하는 신호 프로세싱 회로들을 포함할 수 있다. 예를 들어, 도 10a를 참조하면, 이웃 화소들(1001, 1003, 1007, 1009)로부터 수신 또는 감지되는 광을 표현하는 신호들 I(m, n+1, t), I(m-1, n, t), I(m, n-1, t), 및 I(m+1, n, t)은 화소(1005)에서 이용가능할 수 있다. 화소들의 배치는 사각형, 육각형(예. 6의 가까운 이웃 화소들을 가진 각각의 화소를 가지고), 또는 다른 적용가능한 2차원 또는 복수-차원 어레이에 기초할 수 있다.
소정의 실시예들에 있어서, 플렉시블 집적 장치는 신경세포들의 중심/둘레 대립 수신장(center/surround antagonism receptive field)과 유사한 신경세포 네트워크 프로세싱 메카니즘들을 자극할 수 있는 신호 프로세싱 회로들을 포함할 수 있다. 예를 들어, 화소는 적절한 RGC 스파이킹을 들뜨게 하기 위해 그 이웃들에서의 둘레 광 세기의 평균 합과 중심 화소 광 세기의 합의 차이에 비례하는 화소 전류 출력(또는 자극)을 생성할 수 있다. 일반적으로, 화소는 자극을 생성하기 위해 포획된 광으로부터 유도되는 처리된 신호를 유도하기 위해, 최근접한 이웃들, 두번째로 근접한 이웃들, 세번째로 근접한 이웃들, 등과 같이, 지역적으로 결합된 이웃 화소들로부터 입력들을 합하기 위해 서로 다른 가중치들을 사용할 수 있다.
예를 들어, 도 10b의 회로들(1000b)는 가중치 설정들(1011, 1013)(예. 저항 구성요소들(resistor components))을 통해 개별적으로 가중치가 적용되는, 감지된 신호 입력들(1019)로부터 가중치가 적용된 출력 Id(m, n)(1017)을 생성하는 프로세싱 요소(1015)을 포함할 수 있다. 일 실시예에 있어서, 도 10a의 화소(1005)는 신호 프로세싱을 위한 회로들(1000b)을 포함할 수 있다. 4 개의 감지된 신호들 I(m-1, n), I(m+1, n), I(m, n-1), 및 I(m, n+1)(1019)(예. 이웃 화소들로부터의 입력들)은 R(1013) 및 R/4(1011)와 같은, 저항 구성요소들을 통해 감지된 신호 I(m, n)의 1/4과 동일한 가중치들로 가중치가 적용될 수 있다. 몇몇의 실시예들에 있어서, 가중치들은 디지털 카메라들에 사용되는 복수지점 측정에서와 유사한 방식으로 절대적인 광 세기의 배경 효과를 감소시키기 위한 위치들을 측정하는 화소들을 제외한 대다수의 이웃 화소들에 대하여 대략 0(예. 대응하는 이웃 화소들로부터 연결해제되는 것과 균등)으로 설정(예. 동적으로 구성)될 수 있다. 몇몇의 실시예들에 있어서, 신호 감산은 절대적인 세기 대신 입사되는 광의 상대적인 세기에 기초하여 자극들을 생성하기 위해, 이웃 화소들로부터 교환된 프로세싱 신호들에 적용될 수 있다.
도 11a 내지 도 11b는 본 발명의 일 실시예에 있어서 구성된 플렉시블 장치들의 작동들을 도시한 블록도들이다. 예를 들어, 플렉시블 집적 장치(1133)는 손상되거나 악화된 시각 인지를 재설립하기 위해, 망막 신경절 세포들(1105) 및/또는 신경 세포 네트워크들(1107)과 같은, 신경 세포들로부터 확인된 기능성의 부분들을 제공하도록 구성될 수 있다. 신경 세포 네트워크들(1107)은 수평 세포들, 양극성 세포들, 아마크린 세포들 또는 다른 망막 세포들 등과 같은 신경 세포들을 포함할 수 있다. 장치(1133)는 신경세포들로 자극을 송신하거나 및/또는 신경 세포들로부터 응답들을 감지할 수 있는 마이크로 전극 어레이(1103)에 결합되는 프로세싱 회로들(1101)을 포함할 수 있다.
일 실시예에 있어서, 장치(1133)는 미세조정/프로그래밍 모드에서 작동될 때 구성가능할 수 있다. 장치(1133)는 시각 인지를 가능하게 하기 위해 입사하는 광으로부터 신경 세포들을 자극하기 위해 정상 모드와 같은 다른 모드들에서 작동할 수 있다. 몇몇의 실시예들에 있어서, 미세조정/프로그래밍 모드 동안, 센서 및 프로세싱 회로들(1101)은 (예. 프로그램가능한 로직 어레이 또는 다른 적용가능한 프로그램가능한 회로들을 통해) 프로세싱 특성들을 확인 및 구성하기 위해 감지 모드와 구동 모드 사이에서 전환될 수 있어, 적절한 자극들이 상기 신경 세포들의 일 부분이 적절하게 기능하지 못할 때(예. 손상되거나, 붕괴되거나, 악화되거나 등) 입사한 광 I(xi, yi)(1111)으로부터 원하는 감각 출력 O(pi, qi)(1115)(예. 생성된 광)에 대하여 생성될 수 있다.
예를 들어, 센서 및 프로세싱 회로들(1101)은 감각 출력 O(pi, qi)(1115)을 생성하기 위해, 입사한 광 I(xi, yi)(1111)으로부터 정상 작업 또는 상대적으로 건강한 신경 세포들로 자극을 송신한 직후 감각 모드에 진입할 수 있다. 몇몇의 실시예들에 있어서, 광 I(xi, yi)(1111)는 장치(1133)의 일 부분(하나의 화소 또는 화소들의 일 군)을 선택적으로 선택 및 구성하도록 생성될 수 있다. 상기 감지 모드에서 프로세싱 회로들(1101)은 망막 신경절 세포들(1105)과 같은, 상기 신경 세포들로부터 응답들을 검출할 수 있다. 상기 응답들은 감각 출력 O(pi, qi)(1115)을 나타내기 위해 일정 시간에 걸쳐 전압들, 파형들 또는 다른 적용가능한 신호들 또는 스파이크들일 수 있다. 프로세싱 회로들(1101)은 입사한 광 및 이에 대응하는 검출된 반응들 사이의 관계를 포함하는 정보를 저장할 수 있다. 상기 정보는 예를 들어, O=H*I에 의해 지시되는 관계에 기초하여, 신경 세포들에 있어서의 내재적 프로세싱 특성들 H(pi, qi, xi, yi)(1135)을 나타낼 수 있다.
그후, 도 11b에 도시된 바와 같이, 프로세싱 회로들(1101)은 신경 세포들의 손실되거나 또는 변경된 시각 정보 프로세싱 능력들을 보상하기 위한 작업들을 수행하도록 구성될 수 있다. 예를 들어, 광수용성 세포들(1109)은 손상되거나 또는 탈색되어 신경 세포 네트워크들(1107)이 감지된 광 신호들을 처리하는 것을 막을 수 있다. 그 결과, 시각 인지는 망막 신경절 세포들(1105)의 프로세싱 특성들 G'(pi, qj, x'i, y'j)에 기초할 수 있다.
일 실시예에 있어서, 프로세싱 회로들(1101)은 오퍼레이션(또는 변환 오퍼레이션) H(x'i, y'j, xi, yj)을 (예. 자동으로 또는 수동으로) 수행하도록 구성될 수 있다. 예를 들어, G'*I'에 따라 인식된 출력 O'(pi, qj)(1123)가 O(pi, qj)(1115)에 근접하도록 허용하기 위해, 망막 신경절 세포들(1105)에의 자극들이 유효 광 입력 I' = H'*I에 따라 상기 구성된 프로세싱 회로들(1101)에서 생성될 수 있다. 일 실시예에 있어서, H'(x'i, y'j, xi, yj)는 내재적인 프로세싱 특성들 H(pi, qj, xi, yj)에 기초하여 프로그램되거나 또는 구성될 수 있다. 프로세싱 회로들(1101)은 상기 구성된 프로세싱 능력을 가지고 구동 모드에서 작동할 수 있다. 장치(1133)는 작동의 정상 모드에서, 또는 더 미세한 튜닝 또는 조정을 위한 작동의 미세조정 모드에서 작동할 수 있다.
일 실시예에 있어서, 프로세싱 회로들은 예를 들어, 장치(1133)가 망막-외 방식으로 임플란트될 때, 미세조정 모드 동안 망막 신경 응답 운동역학의 측정을 가능하게 하는 전기적 감지 회로들과 협동할 수 있다. 전기적 자극 직후 전기적 감지로 상기 장치(또는 칩)를 전환하는 능력을 가지고, 상기 ON 세포들 및 OFF 세포들은 상기 응답 시간을 통해 확인될 수 있고, 이 정보는 로컬 광 정보가 상기 장치 상의 광센서들에 의해 감지될 때 상기 이웃하는 전극으로부터 특정한 전기적 자극을 표현하는 데 사용될 수 있다.
도 12는 본 발명의 일 실시예에 있어서 상기 플렉시블 장치들을 미세조정 및 튜닝하는 시스템을 도시한 블록도이다. 시스템(1200)은 구성가능한 장치(1133)를 튜닝/조정하기 위한 제어 또는 피드백 경로를 제공하기 위해, 외부 또는 원격 제어 장치(1201)에 광학적으로 또는 무선으로 결합된 온-칩 프로세싱 회로들(1101)을 가지는 구성가능한 망막 인공기관 장치(1133)를 포함할 수 있다. 일 실시예에 있어서, 프로세싱 회로들(1101) 및 전극 어레이(1103)는 예를 들어, 개별적인 화소 레벨까지 광 민감도, 자극 세기 또는 다른 적용가능한 변수들을 조정하기 위한, 외부 명령들을 통해 갱신될 수 있고 원하는 시각 인지를 달성할 수 있는 전기적 변수들 또는 설정들을 포함할 수 있다. 일 실시예에 있어서, 환자는 시각령(visual cortex)(1205)에 있는 인식된 시각들에 기초하여 사용자 제어(1207)를 통해 원격 제어(1201)를 작동할 수 있다.
몇몇의 실시예들에 있어서, 외부 명령들(1203)은 미리 결정된 시각 패턴들을 포함할 수 있는 광학적 입력들(1209)에 포함되는 광학적 명령들일 수 있다. 또는, 외부 명령들(1203)은 무선 송수신기를 통해 장치(1133)로 (예. EM 신호들 또는 RF 신호들에 기초하여) 무선으로 전송될 수 있다. 장치(1133)는 튜닝/조정을 위한 미세조정 모드로 상기 칩에 진입하기 위해 광학적 입력(1203)으로부터 특정한 광 펄스 패턴을 검출하기 위해 칩 상에 특정한 디코딩 회로와 함께 소정의 광 감지 화소들을 포함할 수 있다. 또는, 상기 외부 명령들은 무선으로 장치(1133)을 작업의 미세조정 모드 또는 다른 모드들로 진입시킬 수 있다.
일 실시예에 있어서, 장치(1133)의 각각의 화소 또는 화소들의 영역들은 (예. 임플란트된 영역 상의 눈으로) 광 투영(light projection)을 통해 광학적으로 또는 무선으로 개별적으로 접근될 수 있다. 상기 화소 또는 영역들은 시각 감지의 목표로 하는 효과들을 달성하기 위해 전기적 자극 변수들을 튜닝하기 위해 칩 상에 전기적으로 접근될 수 있다. 일 실시예에 있어서, 테스트 패턴들은, 예를 틀어 광학적 입력(1209)을 통해, 임플란트한 환자들에게 직접 보이는, 또는 임플란트된 망막 상에 투영될 수 있다. 상기 목표로 하는 시각 효과들은 상기 목표로 하는 시각 효과들의 최상의 근사(approximation)를 허용하기 위해 상기 외부 광학적 입력 장치를 이용해 임플란트된 망막 인공기관 칩들의 변수들의 수동 튜닝을 수행하기 위해 환자들에게 설명될 수 있다.
도 13은 여기에 도시된 일 실시예에 있어서 플렉시블 장치들을 구성하는 방법을 도시한 흐름도이다. 예시적인 프로세스(1300)는 하드웨어(회로들, 전용 로직(dedicated logic), 등), (기계 또는 프로세싱 장치에서 실행되는 기계 코드(machine code)와 같은) 소프트웨어, 또는 이들의 조합을 포함할 수 있는 프로세싱 회로들에 의해 수행될 수 있다. 예를 들어, 프로세스(1300)는 도 12의 시스템(1200)의 일부의 구성요소들에 의해 수행될 수 있다.
일 실시예에 있어서, 상기 프로세스(1300)의 프로세싱 로직은 블록(1301)에서 광센서들을 통해 수신된 광으로부터 (예. 미리 결정된) 광 패턴들을 검출할 수 있다. 상기 프로세스(1300)의 프로세싱 로직은 상기 광에 광학적으로 인코딩된 상기 광 패턴들을 추출하기 위해 상기 포획된 광을 디코딩할 수 있다. 상기 광 패턴들을 검출하자마자, 상기 프로세스(1300)의 프로세싱 로직은 장치가 구성을 위한 미세조정 모드로 진입하도록 할 수 있다. 상기 장치는 상기 광으로부터 시각 인지를 가능하게 하는 광을 수신하기 위해 화소들의 어레이를 포함할 수 있다. 상기 화소들은 전극들을 위한 구동 회로들 및/또는 광센서들을 위한 검출 회로들과 같이, 전기적 변수들을 통해 구성가능한 회로들을 포함할 수 있다.
블록(1303)에서, 일 실시예에 있어서, 상기 프로세(1300)의 프로세싱 로직은 플렉시블 집적 장치의 화소들의 어레이로부터 화소들을 선택하기 위해 광 패턴들을 수신할 수 있다. 상기 광 패턴들은 시각 감지의 공지된 효과들에 연관되어 있을 수 있다. 예를 들어, 상기 장치가 임플란트된 환자는 광의 이미지의 형태, 광의 이미지의 상대적인 강도 또는 다른 시각적 효과들과 같은, 어떠한 시각적 인지가 예상되는지 알고 있을 수 있다. 블록(1305)에서, 상기 프로세스(1300)의 프로세싱 로직은 정상인이 수신된 광 패턴들을 가지고 경험해야 하는 것과 유사한 시각 감지의 실제 효과를 야기시키기 위해 신경 세포들을 자극하기 위해 선택된 화소들로부터 자극들을 생성할 수 있다. 몇몇의 실시예들에 있어서, 상기 광 패턴들은 어떠한 화소가 선택되어야 하는지 확인하기 위해 선택 광 패턴들을 포함할 수 있다.
그후, 블록(1307)에서, 일 실시예에 있어서, 상기 프로세스(1300)의 프로세싱 로직은 플렉시블 집적 장치의 전기적 변수들을 갱신하기 위해 외부 명령들을 수신할 수 있다. 상기 외부 명령들은 광학적으로 또는 무선으로 수신될 수 있다. 상기 프로세스(1300)의 프로세싱 로직은 전기적 변수들로 갱신되는 선택된 화소들을 통해 수신된 광 패턴들(또는 다른 적용가능한 입사한 광)으로부터 시각 감지의 실제 효과들의 조정을 야기시키기 위해 전기적 변수들을 갱신할 수 있다. 상기 포획된 광(예. 광 패턴들)은 공지의 시각 효과들과 연관되어 있을 수 있다. 갱신 결과, 시각 감지의 실제 효과는 상기 시각 감지의 공지된 효과들이 상기 장치의 적절한 구성에 일치하도록 조정될 수 있다. 몇몇의 실시예들에 있어서, 광 패턴들은 화소 선택 및 상기 선택된 화소들에 대해 전기적 또는 회로들 갱신들을 위해 개별적으로 생성될 수 있다.
상기의 상세한 설명에 있어서, 본 발명은 특정 예시적인 실시예들을 참조하여 설명되었다. 이로부터 이하의 청구항들로 발생되는 본 발명의 보다 더 넓은 범위를 벗어나지 않으면서 다양한 변형들이 만들어질 수 있음이 명백할 것이다. 본 발명은 특정 형태들, 도면들, 크기들, 및 개시된 상세한 정보들에 한정되지 않는다. 본 상세한 설명 및 도면들은, 그러므로 한정적이기보다는 설명적으로 간주되어야 한다.

Claims (21)

  1. 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치에 있어서,
    상기 신경 세포들을 자극할 수 있는 화소들의 어레이; 및
    상기 화소들을 위한 작동 모드들을 전환하도록 구성되는 제어 회로들을 포함하고,
    상기 화소들은 정상 모드 및 미세조정 모드를 포함하는 복수의 모드들로부터 선택된 작동 모드에서 작동하고,
    상기 정상 모드 동안, 상기 화소들은 광을 인지할 수 있도록 상기 신경 세포들을 자극하기 위한 광을 수신하도록 구성되고,
    상기 미세조정 모드 동안, 상기 화소들은 상기 신경 세포들의 자극의 양을 조정하도록 구성되는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  2. 제 1 항에 있어서, 상기 제어 회로들은 광이 미리 결정된 시각 패턴을 나타내는지 여부를 검출하는 디코딩 회로들을 포함하고, 상기 제어 회로들은 상기 미리 결정된 시각 패턴이 검출되면 상기 화소들의 작동 모드를 전환하는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  3. 제 1 항에 있어서, 상기 화소들 각각은 프로세싱 회로들을 포함하고,
    상기 프로세싱 회로들은 하나 이상의 목표 신경 세포들에 전달하기 위해 적어도 하나의 전극을 위한 작동의 정상 모드에서 자극을 생성하도록 구성되는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  4. 제 3 항에 있어서, 상기 화소들 각각은 상기 전극 및 광 센서를 포함하고,
    상기 광 센서는 광을 수신하고,
    상기 전극은 상기 목표 신경 세포들을 자극하는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  5. 제 3 항에 있어서, 상기 화소는 상기 목표 신경 세포들에 상기 자극을 제한하기 위해 가이드 링을 더 포함하는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  6. 제 4 항에 있어서, 상기 화소는 상기 어레이 안의 하나 또는 그 이상의 이웃 화소들에 결합되고, 이때 상기 광센서로부터의 세기 신호는 상기 수신된 광을 지시하고, 상기 화소는 상기 이웃 화소들로부터 세기 신호들을 수신하고, 상기 생성은 상기 이웃 화소들로부터 수신된 세기 신호들 및 상기 세기 신호에의 신호 처리 작업들을 포함하는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  7. 제 6 항에 있어서, 상기 신호 처리는 절대적인 배경 광 세기의 영향을 감소시키기 위해 상기 세기 신호들의 가중치 적용된 조합을 포함하는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  8. 제 4 항에 있어서, 상기 화소들은 상기 자극을 위한 구성 설정들을 포함하고, 상기 구성 설정들을 갱신하기 위해 상기 미세조정 모드에서 외부 명령들을 수신하는 인터페이스를 더 포함하고,
    상기 구성 설정들은 광센서들 검출 회로들의 전기적 변수들을 포함하는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  9. 제 8 항에 있어서, 상기 구성 설정들은 전극들 구동 회로들의 전기적 변수들을 포함하는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  10. 제 1 항에 있어서, 상기 제어 회로들은 상기 신경 세포들을 부분적으로 자극하기 위해 상기 화소들의 일 부분을 선택할 수 있고, 상기 제어 회로들은 상기 화소들의 상기 일 부분을 선택적으로 갱신할 수 있는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  11. 제 8 항에 있어서, 상기 인터페이스는 무선 연결에 기초하는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  12. 제 3 항에 있어서, 상기 화소는 상기 목표 신경 세포들로부터 전류를 수신하기 위한 전기 센서를 더 포함하는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  13. 제 12 항에 있어서, 상기 자극의 생성은 상기 목표 신경 세포들의 특성에 따라 달라지는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  14. 제 12 항에 있어서, 상기 화소들 중 적어도 하나는 상기 자극을 위한 목표 신경 세포들을 억제하는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  15. 제 13 항에 있어서, 상기 특성은 상기 목표 신경 세포들이 ON 타입이고, 상기 자극은 상기 광의 온셋과 동기화되는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  16. 제 13 항에 있어서, 상기 특성은 상기 목표 신경 세포들이 OFF 타입이고, 상기 자극은 상기 광의 오프셋과 동기화되는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  17. 제 13 항에 있어서, 상기 프로세싱 회로들은,
    작업의 상기 미세조정 모드에서 상기 목표 신경 세포들에의 테스트 자극을 생성하고, 이때 상기 목표 신경 세포들은 응답 신호가 상기 테스트 자극에 응답하도록 야기하고; 및
    상기 응답 신호에 따라 상기 목표 신경 세포들의 상기 특성을 확인하도록 구성되는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  18. 제 17 항에 있어서, 상기 화소는 상기 응답 신호를 제공하기 위해 상기 목표 신경 세포들로부터 전류를 수신하는 전기 센서를 더 포함하는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  19. 제 18 항에 있어서, 상기 확인은 상기 응답 신호로부터 상기 전류의 동역학을 측정하는 것을 포함하고, 이때 동역학은 상기 테스트 자극과 상기 전류 사이의 시간 지연을 포함하는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  20. 제 8 항에 있어서, 상기 화소들은 상기 미세조정 모드에서 광학적 입력으로부터 자극들을 상기 신경 세포들로 전달하고, 상기 자극들은 신경 세포들의 네트워크를 통해 공지된 시각 인지를 야기하고, 이때 상기 제어 회로들은 상기 화소들이 상기 신경 세포들의 네트워크 없이 상기 공지된 시각 인지를 야기시키기 위해 상기 광학적 입력으로부터 갱신된 자극들을 생성하도록 허용하기 위해 상기 구성 설정들을 조정하도록 더 구성되는, 신경 세포들에 인터페이스하기 위해 임플란트가능한 장치.
  21. 삭제
KR1020187001437A 2010-10-27 2011-10-27 플렉시블 인조 망막 장치들 KR101925473B1 (ko)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US40722910P 2010-10-27 2010-10-27
US61/407,229 2010-10-27
US13/102,596 US20120109255A1 (en) 2010-10-27 2011-05-06 Retina Stimulation Apparatus and Manufacturing Method Thereof
US13/102,596 2011-05-06
US13/282,422 2011-10-26
US13/282,423 US9114004B2 (en) 2010-10-27 2011-10-26 Flexible artificial retina devices
US13/282,422 US8530265B2 (en) 2010-10-27 2011-10-26 Method of fabricating flexible artificial retina devices
US13/282,421 US8954156B2 (en) 2010-10-27 2011-10-26 Methods and apparatuses for configuring artificial retina devices
US13/282,421 2011-10-26
US13/282,423 2011-10-26
PCT/US2011/058159 WO2012058477A2 (en) 2010-10-27 2011-10-27 Flexible artificial retina devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020177019710A Division KR101822112B1 (ko) 2010-10-27 2011-10-27 플렉시블 인조 망막 장치들

Publications (2)

Publication Number Publication Date
KR20180008928A KR20180008928A (ko) 2018-01-24
KR101925473B1 true KR101925473B1 (ko) 2018-12-05

Family

ID=48431831

Family Applications (5)

Application Number Title Priority Date Filing Date
KR1020177019710A KR101822112B1 (ko) 2010-10-27 2011-10-27 플렉시블 인조 망막 장치들
KR1020167018920A KR101766763B1 (ko) 2010-10-27 2011-10-27 플렉시블 인조 망막 장치들
KR1020187001437A KR101925473B1 (ko) 2010-10-27 2011-10-27 플렉시블 인조 망막 장치들
KR1020187001438A KR101893993B1 (ko) 2010-10-27 2011-10-27 플렉시블 인조 망막 장치들
KR1020137012584A KR101645573B1 (ko) 2010-10-27 2011-10-27 플렉시블 인조 망막 장치들

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020177019710A KR101822112B1 (ko) 2010-10-27 2011-10-27 플렉시블 인조 망막 장치들
KR1020167018920A KR101766763B1 (ko) 2010-10-27 2011-10-27 플렉시블 인조 망막 장치들

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020187001438A KR101893993B1 (ko) 2010-10-27 2011-10-27 플렉시블 인조 망막 장치들
KR1020137012584A KR101645573B1 (ko) 2010-10-27 2011-10-27 플렉시블 인조 망막 장치들

Country Status (5)

Country Link
EP (1) EP2632388B1 (ko)
JP (1) JP6260969B2 (ko)
KR (5) KR101822112B1 (ko)
AU (1) AU2011319744A1 (ko)
WO (1) WO2012058477A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102196461B1 (ko) * 2019-08-27 2020-12-29 아주대학교산학협력단 에피형 인공망막 장치
KR20210105179A (ko) * 2020-02-18 2021-08-26 서울대학교산학협력단 완전 이식형 시각 보철 시스템 및 그 동작 방법

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9052528B2 (en) * 2013-02-28 2015-06-09 Johnson & Johnson Vision Care, Inc. Electronic ophthalmic lens with multi-input voting scheme
AU2016261030B2 (en) * 2015-05-12 2020-07-23 Pixium Vision Sa Photosensitive pixel structure with wrapped resistor
CN107667432B (zh) * 2015-06-24 2022-07-08 Pixium视野股份公司 具有提高的光吸收的光敏像素结构以及光敏植入物
EP3144032A1 (en) * 2015-09-15 2017-03-22 Pixium Vision SA Photosensitive pixel structure with front side coating
DE102016222710A1 (de) * 2016-11-18 2018-05-24 Neuroloop GmbH Implantierbare elektrische Kontaktanordnung
JP6993006B2 (ja) * 2017-03-31 2022-01-13 エコール・ポリテクニーク・フェデラル・ドゥ・ローザンヌ (ウ・ペ・エフ・エル) ポリマー系光電子インターフェース及びその製造方法
KR101978549B1 (ko) 2017-04-06 2019-05-14 서울대학교산학협력단 인공 안구용 전자 장치 및 이를 포함하는 인공 안구
EP3427790A1 (en) 2017-07-14 2019-01-16 Pixium Vision SA Photosensitive array
FR3072564B1 (fr) * 2017-10-25 2019-10-18 Universite De Lille 1 Sciences Et Technologies Capteur optique
KR102075084B1 (ko) * 2017-11-10 2020-02-07 서울대학교산학협력단 Cop 또는 coc를 사용한 인공망막 장치
KR102095437B1 (ko) 2017-12-06 2020-04-01 재단법인대구경북과학기술원 풍선 타입 망막 자극장치 및 이의 제조방법
GB2570483A (en) * 2018-01-26 2019-07-31 The Francis Crick Institute Ltd Visual implant
KR102141048B1 (ko) * 2018-04-05 2020-08-06 재단법인대구경북과학기술원 3차원 전극장치 및 이의 제조방법
KR102148985B1 (ko) * 2018-11-06 2020-08-28 서울대학교 산학협력단 생체 내에 삽입되는 멀티 노드 무선 전력 전송 시스템, 노드 및 복수의 노드 사용방법
KR102133288B1 (ko) * 2019-02-19 2020-07-14 재단법인대구경북과학기술원 3차원 전극장치의 제조방법 및 이의 제조방법으로 제조된 3차원 전극장치
KR102133289B1 (ko) * 2019-02-21 2020-07-14 재단법인대구경북과학기술원 전극장치의 제조방법 및 이의 제조방법으로 제조된 전극장치
KR102577790B1 (ko) * 2019-05-07 2023-09-14 한국전자통신연구원 자극 신호를 방사하고 생체 신호를 수신하기 위한 픽셀 회로 및 이를 포함하는 전자 장치
KR102268561B1 (ko) * 2019-07-17 2021-06-22 인천대학교 산학협력단 인공 광 통각 수용체
KR102278552B1 (ko) * 2019-08-06 2021-07-16 인천대학교 산학협력단 인공안구를 위한 투명 시각피질
CN112972888A (zh) * 2019-12-13 2021-06-18 中国科学院深圳先进技术研究院 一种神经刺激阵列系统及其制备方法
KR102451859B1 (ko) * 2020-10-12 2022-10-11 고려대학교 산학협력단 3차원 망막 자극 디바이스
KR102326786B1 (ko) * 2020-12-10 2021-11-16 주식회사 셀리코 전극 표면에 복수의 홀을 포함하는 인공망막 장치 및 그 제조방법
KR102339008B1 (ko) * 2020-12-10 2021-12-14 주식회사 셀리코 마이크로렌즈를 포함하는 서브형 인공망막 장치 및 그 제조방법
KR102581638B1 (ko) * 2021-08-23 2023-09-22 인제대학교 산학협력단 망막 화상처리 장치 및 그 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020091422A1 (en) 1999-03-24 2002-07-11 Greenberg Robert J. Visual prosthesis with operational data telemetry
US20060241753A1 (en) * 2005-04-25 2006-10-26 Suaning Gregg J Electrode multiplexing method for retinal prosthesis
US20080058897A1 (en) * 2006-04-28 2008-03-06 Mcmahon Matthew J Visual Prosthesis Fitting
JP2009520578A (ja) * 2005-12-20 2009-05-28 オプトバイオニクス コーポレイション 電荷集積人工網膜および方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840199A (en) * 1994-06-01 1998-11-24 Litton Systems, Inc. Method for purging a multi-layer sacrificial etched silicon substrate
US6324429B1 (en) 1998-05-08 2001-11-27 Massachusetts Eye And Ear Infirmary Chronically implantable retinal prosthesis
US6389317B1 (en) * 2000-03-31 2002-05-14 Optobionics Corporation Multi-phasic microphotodetector retinal implant with variable voltage and current capability
US6647297B2 (en) * 2000-08-09 2003-11-11 The United States Of America As Represented By The Secretary Of The Navy Permanent retinal implant device
ATE359762T1 (de) * 2001-01-09 2007-05-15 Microchips Inc Flexible mikrochip-vorrichtungen zur ophthalmologischen und anderen applikation
US6949763B2 (en) * 2001-10-11 2005-09-27 Marc Ovadia Semiconductor and non-semiconductor non-diffusion-governed bioelectrodes
US7127301B1 (en) 2003-04-28 2006-10-24 Sandia Corporation Flexible retinal electrode array
DE10329615A1 (de) * 2003-06-23 2005-03-03 Eberhard-Karls-Universität Tübingen Universitätsklinikum Aktives Retina-Implantat mit einer Vielzahl von Bildelementen
US7130693B1 (en) * 2004-07-07 2006-10-31 National Semiconductor Corporation Method for increasing the resolution and decreasing the power dissipation in eye prosthetics
JP2006051164A (ja) * 2004-08-11 2006-02-23 Seiko Epson Corp 人工網膜及びその製造方法
US7772116B2 (en) 2005-09-01 2010-08-10 Micron Technology, Inc. Methods of forming blind wafer interconnects
US8197539B2 (en) * 2006-05-05 2012-06-12 University Of Southern California Intraocular camera for retinal prostheses
JP2009273712A (ja) * 2008-05-15 2009-11-26 Ryukoku Univ 人工網膜
US8150526B2 (en) * 2009-02-09 2012-04-03 Nano-Retina, Inc. Retinal prosthesis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020091422A1 (en) 1999-03-24 2002-07-11 Greenberg Robert J. Visual prosthesis with operational data telemetry
US20060241753A1 (en) * 2005-04-25 2006-10-26 Suaning Gregg J Electrode multiplexing method for retinal prosthesis
JP2009520578A (ja) * 2005-12-20 2009-05-28 オプトバイオニクス コーポレイション 電荷集積人工網膜および方法
US20080058897A1 (en) * 2006-04-28 2008-03-06 Mcmahon Matthew J Visual Prosthesis Fitting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102196461B1 (ko) * 2019-08-27 2020-12-29 아주대학교산학협력단 에피형 인공망막 장치
KR20210105179A (ko) * 2020-02-18 2021-08-26 서울대학교산학협력단 완전 이식형 시각 보철 시스템 및 그 동작 방법
KR102387763B1 (ko) * 2020-02-18 2022-04-18 서울대학교산학협력단 완전 이식형 시각 보철 시스템 및 그 동작 방법

Also Published As

Publication number Publication date
WO2012058477A3 (en) 2012-06-14
KR101893993B1 (ko) 2018-10-04
WO2012058477A2 (en) 2012-05-03
EP2632388A4 (en) 2014-04-30
KR20170086136A (ko) 2017-07-25
KR20160087924A (ko) 2016-07-22
EP2632388B1 (en) 2020-03-25
JP6260969B2 (ja) 2018-01-17
KR101822112B1 (ko) 2018-01-25
KR20180008928A (ko) 2018-01-24
KR101766763B1 (ko) 2017-08-09
KR101645573B1 (ko) 2016-08-04
KR20130127979A (ko) 2013-11-25
AU2011319744A1 (en) 2013-05-23
KR20180008929A (ko) 2018-01-24
EP2632388A2 (en) 2013-09-04
JP2014503229A (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
KR101925473B1 (ko) 플렉시블 인조 망막 장치들
US9114004B2 (en) Flexible artificial retina devices
US8954156B2 (en) Methods and apparatuses for configuring artificial retina devices
US8530265B2 (en) Method of fabricating flexible artificial retina devices
US9737710B2 (en) Methods and apparatuses for configuring artificial retina devices
US7308317B1 (en) Micromachined electrode array
US8738149B2 (en) Flexible circuit electrode array device and a method for backside processing of a flexible circuit electrode device
AU6820594A (en) Independent photoelectric artificial retina device and method
US11464975B2 (en) Methods and apparatuses for configuring artificial retina devices
KR20120108884A (ko) 나노와이어 광 검출기를 이용한 인공 망막 시스템 및 그 제조 방법
AU2017268551B2 (en) Flexible artificial retina devices
TWI507182B (zh) 用以製造可撓性人工視網膜裝置的方法
TWI519288B (zh) 用以設定人工視網膜裝置的方法和設備
TWI519289B (zh) 可撓性人工視網膜裝置

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant