KR101918607B1 - Knock-in vector for expression of bovine lactoferrin and knock-in method in the bovine embryo using the same - Google Patents

Knock-in vector for expression of bovine lactoferrin and knock-in method in the bovine embryo using the same Download PDF

Info

Publication number
KR101918607B1
KR101918607B1 KR1020180065639A KR20180065639A KR101918607B1 KR 101918607 B1 KR101918607 B1 KR 101918607B1 KR 1020180065639 A KR1020180065639 A KR 1020180065639A KR 20180065639 A KR20180065639 A KR 20180065639A KR 101918607 B1 KR101918607 B1 KR 101918607B1
Authority
KR
South Korea
Prior art keywords
knock
vector
gene
seq
bovine
Prior art date
Application number
KR1020180065639A
Other languages
Korean (ko)
Inventor
강만종
김세은
박다솜
구덕본
김민지
Original Assignee
전남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교 산학협력단 filed Critical 전남대학교 산학협력단
Priority to KR1020180065639A priority Critical patent/KR101918607B1/en
Application granted granted Critical
Publication of KR101918607B1 publication Critical patent/KR101918607B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/79Transferrins, e.g. lactoferrins, ovotransferrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/072Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/101Bovine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Abstract

The present invention relates to a knock-in vector for bovine lactoferrin expression and a knock-in method in a bovine embryo using the knock-in vector. More particularly, the present invention provides a bovine beta-casein genomic DNA knock-in vector, comprising: a 5′-terminal fragment comprising a nucleic acid sequence represented by SEQ ID NO: 1 and comprising a promoter of a sub-beta-casein genomic DNA and a part of exon 7, as a 5′-arm; a gene encoding a therapeutic protein; and an intron portion between exon 7 and 8 of the bovine beta-casein genomic DNA, comprising the nucleic acid sequence shown in SEQ ID NO: 4, as a 3′-arm.

Description

소 락토페린 발현을 위한 넉-인 벡터 및 이를 이용한 소 수정란에서 넉-인 방법{Knock-in vector for expression of bovine lactoferrin and knock-in method in the bovine embryo using the same}Knock-in vector for expression of bovine lactoferrin and knock-in method using knock-in vector for expression of bovine lactoferrin.

본 발명은 소 락토페린 발현을 위한 넉-인 벡터에 관한 것으로서, 더 상세하게는 소 락토페린 발현을 위한 넉-인 벡터 및 이를 이용한 소 수정란에서 넉-인 방법에 관한 것이다. The present invention relates to a knock-in vector for bovine lactoferrin expression, and more particularly, to a knock-in vector for bovine lactoferrin expression and a knock-in method in a bovine embryo using the same.

락토페린(lactoferrin)은 락토트란스페린(lactotransferrin)으로고도 불리며, 철 결합 단백질의 일종으로 강력한 항균, 항바이러스, 항암, 항염증 등의 기능이 있는 것으로 알려져 있다. 소의 락토페린은 초유에서 0.8 g/L의 높은 농도로 존재하나, 우유에서는 100-400 mg/L로 낮아지는 것으로 알려져 있어 상기 락토페린을 우유에서도 높은 농도를 유지하도록 하게 되면 젖소의 유방염 예방뿐만 아니라, 바이러스 감염에 의한 송아지 설사 방지 등을 통해 축산 생산성 향상이 가능하다. 이와 같은 유용 단백질을 동물의 유즙 등으로부터 생산하는 동물 바이오리액터(bioreactor) 개발에 대한 노력은 동물 생명공학 분야의 중요한 목표로, 많은 연구가 진행되고 있고 현재까지 ZFNs(zinc-finger nucleases), TALENs(transcription activator-like effector nucleases)과 CRISPR(clsutered regulatory interspaced short palindromic repeat)/Cas9 등의 유전자 가위가 개발되어 최근, 유전자 편집을 세포 내 또는 수정란 내에서 유도하기 위한 다양한 종류의 유전자 편집 동물 생산에 이용되고 있다. 이러한 유전자 가위에 의하여 특정 DNA 염기서열이 절단되면Non-homologouse end joining(NHEJ)에 의하여 몇 개의 염기가 제거 또는 삽입되는현상을 통해 특정 유전자의 넉-아웃을 유도할 수 있으며 편집용 donor DNA(넉-인 벡터)를 유전자 가위와 함께 세포 또는 수정란에 도입하면 상기 MMEJ와 상동재조합(homologous recombination, HR)에 의하여 야기되는 상동유전자 재조합을 유도할 수 있어 넉-인 효율 증진을 위한 다양한 편집용 donor DNA(넉-인 벡터)들이 이용되고 있다. 이와 관련하여 대한민국 등록특허 제1507600호는 치료용 단백질의 생산을 위하여 소 베타 카제인을 이용한 제조된 넉-인 벡터를 개시하고 있다. Lactoferrin is also known as lactotransferrin, a type of iron-binding protein known to have strong antibacterial, antiviral, anticancer and anti-inflammatory properties. Lactoferrin in bovine milk is present at a high concentration of 0.8 g / L in colostrum, but it is known to be lowered to 100-400 mg / L in milk. If lactoferrin is maintained at high concentration in milk, Prevention of calf diarrhea caused by infection can improve productivity of animal husbandry. Efforts to develop animal bioreactors that produce such useful proteins from animal milk, etc. have been an important goal in animal biotechnology, and many studies have been conducted. To date, studies on zinc-finger nucleases (ZFNs), TALENs transcription activator-like effector nucleases (CRISPRs) and clasutered regulatory interspaced short palindromic repeats (CRISPRs) / Cas9 have recently been developed and used in the production of various types of genetically modified animals to induce genetic editing in cells or embryos have. When a specific DNA sequence is cleaved by such a gene scissors, several bases are removed or inserted by non-homologous end joining (NHEJ) to induce knock-out of a specific gene. -Inductor vector) with the gene scissors can be introduced into cells or embryos to induce homologous recombination caused by homologous recombination (HR) with the MMEJ. Various donor DNAs for knock-in efficiency enhancement (Knock-in vectors) are used. In this regard, Korean Patent No. 1507600 discloses a knock-in vector produced using sobetalkase for the production of a therapeutic protein.

그러나 상기 선행기술의 경우, 벡터를 체세포에 도입 후 상동유전자 재조합에 의해 유전자 적중(gene targeting)된 체세포를 이용하여 복제동물을 생산하는 방법이므로 형질전환 수정란의 확보가 어렵고 생산효율도 낮은 문제점이 있다. However, in the case of the above prior art, it is difficult to obtain a transgenic embryo and production efficiency is low because it is a method of introducing a vector into a somatic cell and then producing a cloned animal using somatic cells gene-targeted by homologous gene recombination .

본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 소의 세포와 수정란에서 유전자 가위(CRISPR/Cas9)를 이용하여 소 락토페린 유전자를 효과적으로 타게팅할 수 있는 소 락토페린 발현을 위한 넉-인 벡터 및 이를 이용한 소 수정란에서 넉-인 방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a knockout mouse for the expression of bovine lactoferrin capable of efficiently targeting bovine lactoferrin gene using gene scissors (CRISPR / Cas9) Vector and a knock-in method in a bovine embryo using the same. However, these problems are exemplary and do not limit the scope of the present invention.

본 발명의 일 관점에 따르면, 5'-아암(arm)으로서, 서열번호 1로 기재되는 핵산서열로 구성되며 소 베타-카제인 게놈 DNA의 프로모터, 엑손 7의 일부를 포함하는 5'-말단 단편; 치료용 단백질(therapeutic protein)을 암호화하는 유전자; 및3'-아암(arm)으로서, 서열번호 6으로 기재되는 핵산서열로 구성되며 소 베타-카제인 게놈 DNA의 엑손 7 및 8 사이의 인트론 부분을 포함하는, 소 베타-카제인 게놈 DNA 넉-인 벡터가 제공된다. According to one aspect of the present invention, there is provided a 5'-arm comprising: a 5'-terminal fragment comprising a nucleic acid sequence represented by SEQ ID NO: 1 and comprising a promoter of a sub-beta-casein genomic DNA; A gene encoding a therapeutic protein; And a 3'-arm, comprising a nucleic acid sequence as set forth in SEQ ID NO: 6 and comprising an intron portion between exons 7 and 8 of the sub-beta-casein genomic DNA, wherein the sub-beta-casein genomic DNA knock- Is provided.

본 발명의 다른 일 관점에 따르면, 상기 넉-인 벡터; 5'-아암 sgRNA; 3'-아암 sgRNA; 및 Cas9 또는 상기 Cas9을 암호화하는 폴리뉴클레오타이드를 포함하는, 소 베타-카제인 게놈 DNA 넉-인용 조성물이 제공된다.According to another aspect of the present invention, the knock-in vector; 5'-arm sgRNA; 3'-arm sgRNA; And Cas9 or a polynucleotide encoding said Cas9 are provided.

본 발명의 다른 일 관점에 따르면, 상기 소 베타-카제인 게놈 DNA 넉-인용 조성물을 소의 수정란에 미세주입하는 미세주입단계; 상기 미세주입한 수정란을 배반포기까지 배양하는 배양단계; 상기 배반포기 수정란의 DNA를 추출하여 PCR로 증폭하는 증폭단계; 및 상기 증폭된 PCR 산물의 유무 및 크기를 판별하여 상기 벡터가 소 베타-카제인 게놈 DNA의 제 위치로 삽입된 것을 확인하는, 소의 수정란에서의 베타-카제인 게놈 DNA로의 치료용 단백질을 암호화하는 유전자의 넉-인 방법이 제공된다. According to another aspect of the present invention, there is provided a microinjection step of microinjecting a composition for cowbeta-casein genomic DNA knockout into a fertilized egg of a cow; Culturing the microinjected embryo to a blastocyst; An amplification step of amplifying the DNA of the blastocyst embryo by PCR; And a gene encoding a protein for treatment with beta-casein genomic DNA in a bovine embryo, wherein the presence or absence of the amplified PCR product and the presence or absence of the amplified PCR product are confirmed and that the vector has been inserted into the place of the sobeta-casein genomic DNA A knock-in method is provided.

상기한 바와 같이 본 발명의 소 락토페린 발현을 위한 넉-인 벡터 및 이를 이용한 소 수정란에서 넉-인 방법을 이용하면 소 베타-카세인 유전자의 엑손에 소 락토페린 유전자를 정확하게 타게팅함에 따라 이를 이용하여 생산된 형질전환 소를 이용하면 소 락토페린이 소 베타-카제인과 융합된 형태로 유즙으로 분비되는 항균, 항바이러스 등의 기능을 가진 저항성 젖소를 개발할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.As described above, the knock-in vector for the expression of bovine lactoferrin of the present invention and the knock-in method using the bovine embryo using the bovine embryo can be used to precisely target the bovine lactoferrin gene to the exon of the sobeta-casein gene, Using a transgenic cattle, a resistant cow can be developed that has the functions of antibiotics, antivirals, etc. secreted by lactoferrin in a form fused with sobeta-casein. Of course, the scope of the present invention is not limited by these effects.

도 1은 소 수정란에서 본 발명의 일 실시예에 따라 제조한 넉-인 벡터 및 유전자 가위 CRISPR/Cas9를 소 수정란에 미세주입하여 형질전환 젖소를 생산하는 과정을 나타내는 모식도이다.
도 2는 소 베타-카제인의 유전자 구조, 소 락토페린 발현용 3 가지 넉-인 벡터 및 상기 넉-인 벡터가 삽입된 베타-카제인 유전자의 모식도이다.
도 3은 소 베타-카제인 엑손 7의 말단을 절단할 수 있는 sgRNA 표적 부위(a) 및 합성된 sgRNA의 in vitroin vivo 활성을 확인한 젤 사진이다(b 및 c).
도 4는 본 발명의 넉-인 벡터가 삽입된 pBluescript SK(-)의 양 쪽 말단을 절단 할 수 있는 sgRNA 표적 부위(a) 및 합성된 sgRNA의 in vitro 활성을 확인한 젤 사진이다(b 및 c).
도 5는 본 발명의 소 락토페린 발현용 3 가지 넉-인 벡터가 주입된 수정란의 PCR 분석결과를 나타내는 전기영동 사진이다.
도 6은 넉-인된 수정란에서 확보된 PCR 단편에서 sgRNA 표적 부위를 포함하여 F2A와 일부의 소 락토페린 DNA 염기서열과 넉-인된 염기서열에서 아미노산 서열의 이상여부를 분석한 그림이다.
FIG. 1 is a schematic diagram showing a process for producing a transgenic cow by microinjecting knock-in vector and gene scissors CRISPR / Cas9 produced in a bovine embryo according to an embodiment of the present invention into bovine embryos.
FIG. 2 is a schematic diagram of a gene structure of sowbeta-casein, three knock-in vectors for bovine lactoferrin expression, and a beta-casein gene into which the knock-in vector is inserted.
Fig. 3 is a gel photograph (b and c) showing the sgRNA target site (a) capable of cleaving the end of Sobeta-casein exon 7 and the in vitro and in vivo activities of the synthesized sgRNA.
Fig. 4 is a gel photograph showing the sgRNA target site (a) capable of cleaving both ends of pBluescript SK (-) inserted with the knock-in vector of the present invention and the in vitro activity of synthesized sgRNA (b and c ).
FIG. 5 is an electrophoresis image showing the result of PCR analysis of embryos implanted with three knock-in vectors for bovine lactoferrin expression of the present invention. FIG.
FIG. 6 is an analysis of the amino acid sequence abnormality in F2A and some bovine lactoferrin DNA sequences and knocked-in base sequences including the sgRNA target site in PCR fragments obtained from knock-in embryos.

용어의 정의:Definition of Terms:

본 문서에서 사용되는 "넉-인(knock in) 벡터"는 유전자 타켓팅(gene targeting)용 벡터의 하나로서, 특정 유전자를 넉-아웃(knockout)시키고 그 유전자의 위치에 정확하게 발현시키고자 하는 외래 유전자를 도입하는데 사용하는 벡터이다. 넉-인 벡터에 의하여 삽입된 외래 유전자는 삽입된 위치의 게놈 상에 위치한 유전자 발현조절 영역의 모든 부분을 이용할 수 있으므로, 원래 그 위치에 존재하는 유전자의 발현량 만큼 발현될 가능성이 있다.As used herein, the term " knock-in vector " refers to a gene targeting gene that knockout a specific gene and express the exogenous gene Lt; / RTI > Since the foreign gene inserted by the knock-in vector can utilize all parts of the gene expression regulatory region located in the genome of the inserted position, it is likely to be expressed by the expression amount of the gene originally present at the position.

본 문서에서 사용되는 용어 "치료용 단백질(therapeutic protein)"은 치료 활성을 가진 단백질 또는 폴리펩티드를 의미한다. As used herein, the term " therapeutic protein " refers to a protein or polypeptide having therapeutic activity.

본 문서에서 사용되는 용어 "clustered reg㎕atory interspaced short palindromic repeat(CRISPR)/Cas9"는 유전자가위이며 구성성분인 sgRNA는 특정 DNA 염기배열 20bp를 인식할 수 있는 능력을 가지고 있고 Cas9 단백질은 sgRNA와 결합한 특정 DNA을 절단하는 능력이 있는 것으로 보고되고 있다. 크리스퍼 유전자가위(CRISPR/Cas9)를 이용하여 보다 효율적으로 유전자 적중된 동물을 생산하고 있으나 대가축인 소에 있어서 젖소 베타-카제인 유전자의 특정 부위를 절단하여 상동유전자 재조합에 의하여 바이오신약 생산 특정 유전자를 도입한 결과는 보고되고 있지 않다. As used herein, the term "clustered regulatory interspaced short palindromic repeat (CRISPR) / Cas9" is a gene scissor, and the constituent sgRNA has the ability to recognize a specific DNA base sequence of 20 bp. Cas9 protein binds to sgRNA Have been reported to have the ability to cleave specific DNA. However, in the case of the large cattle, the specific part of the cow beta-casein gene is cleaved and homologous gene recombination is used to produce a biotin-producing specific gene (CRISPR / Cas9) The results are not reported.

본 문서에서 사용되는 용어 "락토페린(lactoferrin)"은 면역기능조절 기능을 담당하면서 항균, 항바이러스, 항암 및 항염증 기능을 가지고 있는 단백질을 말한다. As used herein, the term " lactoferrin " refers to a protein that has antimicrobial, antiviral, anti-cancer, and anti-inflammatory properties while functioning to regulate immune function.

본 문서에서 사용되는 용어 "유전자 적중(gene targeting)"은 상동유전자 재조합에 의하여 특정 염색체 위치에 변이된 유전자를 도입하는 기술로 유전자적중 벡터를 상동유전자 재조합에 의하여 생쥐 줄기세포의 특정 유전자 위치에 도입시킨 후 그 줄기세포를 이용하여 키메라 생쥐를 생산하는 법으로 넉-아웃 생쥐 생산에 주로 이용되었고 knock-out과 knock-in으로 구별된다.  As used herein, the term " gene targeting " refers to a technique of introducing a gene mutated at a specific chromosomal location by homologous gene recombination, introducing the gene hit vector into a specific gene locus in a mouse stem cell by homologous gene recombination And then used to produce chimeric mice using the stem cells, which are mainly used for knock-out mouse production, and are distinguished by knock-out and knock-in.

본 문서에서 사용되는 용어 "넉-아웃(knock-out)"은 특정 유전자 위치에 상동유전자 재조합에 의하여 변이된 유전자를 도입하여 특정 유전자의 발현이 일어나지 않도록 하는 것을 말한다.  As used herein, the term " knock-out " refers to introducing a gene mutated by homologous gene recombination at a specific gene position to prevent expression of a specific gene.

본 문서에서 사용되는 용어 "넉-인(knock-in)"은 특정 유전자의 위치에 발현 시키고자 하는 외래 유전자를 상동유전자 재조합에 의하여 도입하는 것으로 삽입된 외래 유전자는 특정 유전자의 프로모터와 인헨서를 포함하는 유전자 발현 조절 염기서열 전체를 이용하여 발현할 수 있다. The term " knock-in " as used herein refers to the introduction of a foreign gene to be expressed at the position of a specific gene by homologous gene recombination. The foreign gene inserted includes a promoter and a phosphorus of a specific gene Lt; RTI ID = 0.0 > of the < / RTI > gene expression regulatory sequences.

본 문서에서 사용되는 용어 "단일-가이드 RNA(single guide RNA)"는 자연적으로 발생하는 2-피스 가이드 RNA 복합체의 버전으로 단일 연속 서열로 구성되었다. 단순화된 단일 가이드 RNA는 Cas9 단백질이 게놈 편집을 위해 특정 DNA 서열을 결합하고 절단하도록 지시하는 데 사용된다. As used herein, the term " single guide RNA " is a version of a naturally occurring two-piece guide RNA complex that consists of a single contiguous sequence. A simplified single guide RNA is used to direct the Cas9 protein to bind and cleave specific DNA sequences for genomic editing.

발명의 상세한 설명:DETAILED DESCRIPTION OF THE INVENTION [

본 발명의 일 관점에 따르면, 5'-아암(arm)으로서, 서열번호 1로 기재되는 핵산서열로 구성되며 소 베타-카제인 게놈 DNA의 프로모터, 엑손 7의 일부를 포함하는 5'-말단 단편; 치료용 단백질(therapeutic protein)을 암호화하는 유전자; 및3'-아암(arm)으로서, 서열번호 6으로 기재되는 핵산서열로 구성되며 소 베타-카제인 게놈 DNA의 엑손 7 및 8 사이의 인트론 부분을 포함하는, 소 베타-카제인 게놈 DNA 넉-인 벡터가 제공된다.According to one aspect of the present invention, there is provided a 5'-arm comprising: a 5'-terminal fragment comprising a nucleic acid sequence represented by SEQ ID NO: 1 and comprising a promoter of a sub-beta-casein genomic DNA; A gene encoding a therapeutic protein; And a 3'-arm, comprising a nucleic acid sequence as set forth in SEQ ID NO: 6 and comprising an intron portion between exons 7 and 8 of the sub-beta-casein genomic DNA, wherein the sub-beta-casein genomic DNA knock- Is provided.

상기 넉-인 벡터에 있어서, 소 락토페린(bovine lactoferrin)일 수 있고 상기 소 락토페린을 코딩하는 유전자는 서열번호 7로 기재되는 핵산서열로 구성되는폴리뉴클레오티드일 수 있으며 상기 소 락토페린을 코딩하는 유전자의 3' 말단에 polyA 신호가 추가로 연결될 수 있다. The knock-in vector may be bovine lactoferrin, and the gene coding for bovine lactoferrin may be a polynucleotide consisting of a nucleic acid sequence represented by SEQ ID NO: 7, and the 3 ' 'Terminal can be further connected to the polyA signal.

상기 넉-인 벡터에 있어서, 상기 인간 락토페린을 코딩하는 유전자의 3' 말단에 융합 형광 단백질의 발현을 확인하기 위한 리포터 유전자(reporter gene)가 추가로 연결될 수 있고 상기 형광단백질은 녹색형광단백질(green fluorescent protein, GFP), 황색형광단백질(yellow fluorescent protein, YFP), 적색형광단백질(red fluorescent protein, RFP), 주황형광단백질(orange fluorescent protein, OFP), 청록색형광단백질(cyan fluorescent protein, CFP), 청색형광단백질(blue fluorescent protein, BFP) 또는 원적색형광단백질(far-red fluorescent protein)일 수 있다. In the knock-in vector, a reporter gene for confirming the expression of the fusion fluorescent protein may be further connected to the 3 'end of the gene encoding the human lactoferrin, and the fluorescent protein may be a green fluorescent protein (green fluorescent protein (GFP), yellow fluorescent protein (YFP), red fluorescent protein (RFP), orange fluorescent protein (OFP), cyan fluorescent protein Blue fluorescent protein (BFP) or far-red fluorescent protein.

상기 넉-인 벡터에 있어서, 양성 선별마커(positive selectable marker)와 음성 선별마커(negative selectable marker)를 각각 또는 함께 포함할 수 있고 상기 양성 선별마커는 네오(neo) 유전자, 퓨로마이신(puromycin) 저항성 유전자 또는 지오신(zeocin) 저항성 유전자일 수 있다. The knock-in vector may comprise a positive selectable marker and a negative selectable marker, respectively, and the positive selectable marker may be a neo gene, a puromycin resistance gene, Gene or a zeocin resistance gene.

본 발명의 다른 일 관점에 따르면, 상기 넉-인 벡터; 소 베타-카제인 게놈 DNA 엑손 7 표적용 sgRNA; 상기 넉-인 벡터의 5'-아암 표적용 sgRNA; 상기 넉-인 벡터의 3'-아암 표적용 sgRNA; 및 Cas9 또는 상기 Cas9을 암호화하는 폴리뉴클레오타이드를 포함하는, 소 베타-카제인 게놈 DNA 넉-인용 조성물이 제공된다.According to another aspect of the present invention, the knock-in vector; SUBBETA-casein genome DNA exon 7 TABLE-US-00086 sgRNA; 5'-arm labeled sgRNA of the knock-in vector; 3'-arm labeled sgRNA of the knock-in vector; And Cas9 or a polynucleotide encoding said Cas9 are provided.

상기 소 베타-카제인 게놈 DNA 넉-인용 조성물에 있어서, 소 베타-카제인 게놈 DNA 엑손 7 표적용 sgRNA는 서열번호 35로 기재되는 핵산서열을 표적으로 할 수 있고 상기 넉-인 벡터의 5'-아암 표적용 sgRNA 서열번호 36으로 기재되는 핵산서열을 표적으로 할 수 있으며 상기 넉-인 벡터의 3'-아암 표적용 sgRNA 서열번호 37로 기재되는 핵산서열을 표적으로 할 수 있다. In the composition for the sub-beta-casein genomic DNA knock-in, the sgRNA coding for Sobbeta-casein genome DNA exon 7 can target the nucleic acid sequence shown in SEQ ID NO: 35 and the 5'-arm of the knock- The nucleotide sequence of SEQ ID NO: 36 may be targeted and the nucleotide sequence of the knock-in vector described in the 3'-arm sgRNA SEQ ID NO: 37 may be targeted.

본 발명의 다른 일 관점에 따르면, 상기 소 베타-카제인 게놈 DNA 넉-인용 조성물을 소의 수정란에 미세주입하는 미세주입단계; 상기 미세주입한 수정란을 배반포기까지 배양하는 배양단계; 상기 배반포기 수정란의 DNA를 추출하여 PCR로 증폭하는 증폭단계; 및 상기 증폭된 PCR 산물의 유무 및 크기를 판별하여 상기 벡터가 소 베타-카제인 게놈 DNA의 제 위치로 삽입된 것을 확인하는, 소의 수정란에서의 베타-카제인 게놈 DNA로의 치료용 단백질을 암호화하는 유전자의 넉-인 방법이 제공된다. According to another aspect of the present invention, there is provided a microinjection step of microinjecting a composition for cowbeta-casein genomic DNA knockout into a fertilized egg of a cow; Culturing the microinjected embryo to a blastocyst; An amplification step of amplifying the DNA of the blastocyst embryo by PCR; And a gene encoding a protein for treatment with beta-casein genomic DNA in a bovine embryo, wherein the presence or absence of the amplified PCR product and the presence or absence of the amplified PCR product are confirmed and that the vector has been inserted into the place of the sobeta-casein genomic DNA A knock-in method is provided.

현재 넉-인 벡터와 유전자가위를 체세포에 도입하여 넉-인(knock-in)된 체세포를 확보한 후, 체세포 복제 수정란을 생산하여 유용단백질을 생산하는 동물 바이오리엑터를 개발하는 방법과 넉-인 벡터와 유전자 가위를 직접 수정란에 주입하여 동물 바이오리엑터를 개발하는 방법 등이 다양하게 시도되고 있다. 최근에는 크리스퍼 유전자 가위(CRISPR/Cas9)를 이용하여 유전자 적중(gene targeting)된 동물을 생산하는 연구가 진행되고 있으나, 대가축인 소에 있어서 베타-카제인 유전자의 특정 부위를 절단하여 상동유전자 재조합에 의해 바이오 신약 생산 특정 유전자를 도입하여 성공한 사례는 아직 보고되지 않고 있다. 또한, 종래에는 치료용 단백질을 생산하기 위하여 넉-인 벡터를 체세포에 형질전환시키고 상기 형질전환된 체세포를 난자에 주입하여 핵치환을 유도하는 방식이었으나 상기 방법은 제 위치에서 넉-인이 일어나지 않고 무작위적으로 삽입된 형질전환체가 다수이기 때문에 형질전환 수정란의 생산효율이 매우 낮았다. 이에 본 발명자들은 종래의 종래의 고전적인 방법인 체세포 핵치환 방법 및 일부 유전자 가위를 이용한 방법의 문제점을 해결하기 위하여, 예의노력한 결과, 소 락토페린 발현을 위한 넉-인 벡터 및 이를 이용한 소 수정란에서 넉-인 방법을 개발하였다. 본 발명은 소 베타-카제인 유전자의 엑손 7 위치에 소 락토페린 유전자의 타겟팅 효율을 증진시킬 수 있는 넉-인 벡터와 CRISPR/Cas9 유전자 가위를 이용하여 소 수정란에서 넉-인하는 방법을 제공함으로써 소 베타-카제인 엑손 7의 위치에 정확하게 삽입이 가능하며, 다량의 형질전환 수정란을 확보하고 이식하여 형질전환된 소를 통해 소 락토페린이 소 베타-카제인과 융합된 형태로 유즙으로 분비되도록 함으로써 항균, 항바이러스 등의 기능을 포함하는 소 락토페린의 생산에 활용가능하다(도 1). Currently, knock-in somatic cells are obtained by introducing knock-in vectors and gene scissors into somatic cells, and then a method of developing an animal bioreactor that produces useful protein by producing cloned embryonic somatic cells, And a method of developing an animal bioreactor by directly injecting a vector and gene scissors into an embryo. In recent years, studies have been conducted to produce animals that are gene targeting using the Crispyr gene scissors (CRISPR / Cas9). However, in a large animal cattle, specific regions of the beta-casein gene are cleaved and homologous recombination Have not been reported yet. Also, in the past, in order to produce a therapeutic protein, a knock-in vector was transformed into somatic cells and the transformed somatic cells were injected into the oocyte to induce nuclear replacement. However, the method did not cause knock- Production efficiency of transgenic embryos was very low because of the large number of randomly inserted transformants. Accordingly, the inventors of the present invention have found that knock-in vectors for the expression of bovine lactoferrin and bovine embryos using the knock-in vectors are useful for solving the problems of the conventional method of replacing somatic cell nuclei and the method of using some gene scissors, - method. The present invention provides a method of knocking down a bovine embryo using a knock-in vector and a CRISPR / Cas9 gene scissors capable of enhancing the targeting efficiency of a bovine lactoferrin gene at the exon 7 position of the sobeta-casein gene, - It is possible to insert precisely at the position of casein exon 7. It is ensured that large amount of transgenic embryos are acquired and transplanted to transform the bovine lactoferrin into a form that is fused with sobeta-casein, And the like (Fig. 1).

본 발명의 소 락토페린 발현을 위한 넉-인 벡터를 이용하여 소 수정란에서 넉-인할 경우, 수정란에서의 EGFP 발현 여부는 염색체의 구조 즉, 넉-인된 유전자가 위치한 부분의 염색체가 헤테로크로마틴(heterochromatin) 또는 유크로마틴(euchromatin) 구조를 갖느냐에 따라서 좌우될 수 있다. 그러나, 상기 수정란을 대리모에 이식하여 형질전환된 소를 출산한 후 정상적으로 성장할 경우, 락토페린 유전자는 베타-카제인 프로모터의 영향을 받기 때문에 유선조직에서 정상적으로 발현이 될 것으로 예상된다. 따라서 EGFP 발현여부가 아닌 넉-인 효율 자체가 중요하고 본 발명의 벡터는 종래 기술과 비교하여 상동 재조합을 위한 영역이 짧음에도 불구하고 유전자 가위를 이용한 결과 긴 상동 재조합 영역을 이용한 벡터보다 높은 수준으로 넉-인이 유도할 수 있음을 확인하였다. When knocking in a bovine embryo using a knock-in vector for the expression of bovine lactoferrin of the present invention, the expression of EGFP in the embryo indicates that the chromosome structure, that is, the chromosome at the site where the knocked- (heterochromatin) or euchromatin (euchromatin) structure. However, when the embryo is transplanted into a surrogate mother and the transformed cow is normally grown after birth, the lactoferrin gene is expected to be normally expressed in the mammary gland because it is affected by the beta-casein promoter. Therefore, the knock-in efficiency, which is not the expression of EGFP, is important, and the vector of the present invention has a higher level than the vector using the long homologous recombination region as a result of using gene scissors even though the region for homologous recombination is short Knock - in can be induced.

이하, 실시예를 통하여 본 발명을 더 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, the present invention will be described in more detail by way of examples. It should be understood, however, that the invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, Is provided to fully inform the user.

실시예 1: 소 락토페린 발현용 넉-인(knock-in) 벡터의 구축 Example 1 Construction of Knock-in Vectors for Bovine Lactoferrin Expression

1-1: 소 락토페린 유전자 동정 1-1: Identification of bovine lactoferrin gene

본 발명자들은 소 락토페린(lactoferrin) 유전자를 클로닝하기 위해 소의 유선 조직으로부터 확보된 cDNA를 주형으로 RT-PCR을 수행하였다. 구체적으로 상기 RT-PCR은 bLF Kpn I S(서열번호 10) 및 bLF Xba I AS(서열번호 11) 프라이머 세트 및 Ex Taq(TAKARA, Japan)을 이용하여 94℃ 30초, 68℃ 30초, 72℃ 2분 30초 35사이클 조건으로 수행하였다. 그 후 증폭된 PCR 산물은 0.8% 아가로스 젤에서 전기영동을 통해 확인하였고 QIAgen quick Gel extract Kit(QIAgen)를 이용하여 정제한 후 pGEM T-easy 벡터(Promega Co, USA)에 결찰(ligation)하여 pGEM T-easy_bLF 플라스미드를 확보하였으며 상기 확보한 플라즈미드를 Genetyx-win(version4.0)을 사용하여 염기서열을 확인하였다. The present inventors carried out RT-PCR using cDNA secured from bovine mammary gland as a template to clone a lactoferrin gene. Specifically, the RT-PCR was carried out at 94 ° C. for 30 seconds, 68 ° C. for 30 seconds, and 72 ° C. using bLF Kpn IS (SEQ ID NO: 10) and bLF Xba I AS (SEQ ID NO: 11) primer set and Ex Taq 2 min 30 sec 35 cycles. The amplified PCR product was confirmed by electrophoresis on 0.8% agarose gel, purified using QIAgen quick gel extract kit (QIAgen), and ligated to pGEM T-easy vector (Promega Co, USA) The pGEM T-easy_bLF plasmid was obtained and the plasmid thus obtained was confirmed by using Genetyx-win (version 4.0).

또한, 소 락토페린 유전자 염기서열 내부에는 Kpn I 제한효소 부위(site)가 존재하기 때문에 소 락토페린 발현용 knock-in 벡터 제조 시 소 락토페린 유전자가 Kpn I 제한효소에 의해 절단되는 것을 예방하기 위하여 Kpn I 제한효소 부위를 변형시키는 점 돌연변이(point mutation) PCR을 실시하였다. 이를 위해 pGEM T-easy_bLF 플라스미드를 주형으로 사용하였고 bLF Kpn I S(서열번호 10) 및 bLF Kpn I mutation AS 프라이머(서열번호 12) 세트 및 Ex Taq (TAKARA, Shiga, Japan)을 이용하여 94℃ 30초, 68℃ 30초, 72℃ 1분 30초 35사이클 조건으로 PCR을 수행하였고 전기영동을 통해 1% 아가로스 젤에서 약 1.5Kb의 PCR 산물을 확인하였다. 아울러, pGEM T-easy_bLF 플라스미드를 주형으로 bLF Kpn I mutation S(서열번호 13), bLF Xba I mutation AS 세트(서열번호 14) 및 Ex Taq (TAKARA, Shiga, Japan)을 이용하여 94℃ 30초, 59℃ 30초, 72℃ 1분 35 사이클 조건으로 PCR을 실시하였고 전기영동을 통해 1% 아가로스 젤에서 약 0.7 Kb의 PCR 산물을 확인하였다. In addition, since the Kpn I restriction site is present inside the bovine lactoferrin gene sequence, in order to prevent the cleavage of the bovine lactoferrin gene by the Kpn I restriction enzyme in the production of knock-in vector for bovine lactoferrin expression, Kpn I restriction Point mutation PCR was performed to modify the enzyme site. For this, a plasmid pGEM T-easy_bLF was used as a template and PCR was carried out using a set of bLF Kpn IS (SEQ ID NO: 10) and bLF Kpn I mutation AS primer (SEQ ID NO: 12) and Ex Taq (TAKARA, Shiga, Japan) , 68 ° C for 30 seconds, 72 ° C for 1 minute, 30 seconds and 35 cycles, and the PCR product was detected by electrophoresis on a 1% agarose gel at about 1.5 Kb. In addition, pGEM T-easy_bLF the template plasmid bLF Kpn I mutation S (SEQ ID NO: 13), bLF Xba I mutation AS set (SEQ ID NO: 14) and using Ex Taq (TAKARA, Shiga, Japan ) 30 cho 94 ℃, PCR was carried out at 59 ° C for 30 seconds, 72 ° C for 1 minute and 35 cycles. A PCR product of about 0.7 Kb was detected on 1% agarose gel by electrophoresis.

상기 2가지 PCR 산물을 QIAgen quick Gel extract Kit(QIAgen)로 정제한 후 농도를 10 ng/㎍으로 희석하였다. 상기 희석한 두개의 PCR 산물을 0.5 ㎍씩 혼합한 총 1 ㎍을 주형으로 bLF Kpn I S(서열번호 10), bLF Xba I mutation AS(서열번호 14) 프라이머 세트 및 Ex Taq(TAKARA, Shiga, Japan)을 이용하여 94℃ 30초, 68℃ 30초, 72℃ 1분 30초 35 cycle 조건에서 PCR을 수행하였고 전기영동을 통해 1% 아가로스 젤에서 약 2.1 Kb의 PCR 산물을 확인하였다. 그 후 QIAgen quick Gel extract Kit(QIAgen)를 이용해 정제하였고 pGEM T-easy 벡터(Promega Co, USA)에 결찰하여 pGEM T-easy_bLF(-KpnI) 플라스미드를 확보하였으며 상기 확보한 플라즈미드를 Genetyx-win(version4.0)을 사용하여 염기서열을 확인하였다. 상기 PCR 증폭을 포함하여 본 발명에서 사용한 프라이머에 대한 정보를 하기 표 1에 요약하였다. The two PCR products were purified with QIAgen quick gel extract kit (QIAgen) and diluted to a concentration of 10 ng /.. A total of 1 쨉 g of 0.5 μg of the two diluted PCR products was used as a template and bLF Kpn IS (SEQ ID NO: 10), bLF Xba I mutation AS (SEQ ID NO: 14) primer set and Ex Taq (TAKARA, Shiga, Japan) PCR was performed under conditions of 94 ° C for 30 seconds, 68 ° C for 30 seconds, and 72 ° C for 1 minute and 30 seconds and 35 cycles. A PCR product of about 2.1 Kb was detected in 1% agarose gel through electrophoresis. Then QIAgen quick Gel extract was purified using a Kit (QIAgen) pGEM T-easy vector (Promega Co, USA) ligated to pGEM T-easy_bLF to - has secured the (Kpn I) plasmid Genetyx-win the secure a plasmid ( version 4.0) was used to confirm the nucleotide sequence. The information on the primers used in the present invention including the PCR amplification is summarized in Table 1 below.

용도Usage 프라이머primer 핵산서열(5'->3')The nucleic acid sequence (5 '-> 3') 서열번호 SEQ ID NO: 소 락토페린
클로닝용
Bovine lactoferrin
For cloning
bLF KpnI SbLF Kpn I S GGTACCATGAAGCTCTTCCTCCCCGCCCTGCTGTGGTACCATGAAGCTCTTCCTCCCCGCCCTGCTGT 1010
bLF XbaI ASbLF Xba I AS TCTAGATTACCTCGTCAGGAAGGCGCAGGCTTCTCTAGATTACCTCGTCAGGAAGGCGCAGGCTTC 1111 bLF KpnI mutation ASbLF Kpn I mutation AS CAAGGTAGCCTTCCGTTGGTCAAGGTAGCCTTCCGTTGGT 1212 bLF KpnI mutation SbLF Kpn I mutation S ACCAACGGAAGGCTACCTTGACCAACGGAAGGCTACCTTG 1313 bLF XbaI mutation ASbLF Xba I mutation AS GCTCTAGACTACATTCTGTAGTTCTTGTTTCCTGCTCTAGACTACATTCTGTAGTTCTTGTTTCCT 1414 bLF 교체
knock-in
vector
구축용
Replace bLF
knock-in
vector
For building
100HR NotI S100HR Not I S gcgcggccgcAAAGCAGTGCCCTATCCgcgcggccgcAAAGCAGTGCCCTATCC 1515
100HR SalI AS100HR Sal I AS gcgtcgacAGCTATGCTTATTTTGGAACgcgtcgacAGCTATGCTTATTTTGGAAC 1616 40HR NotI S40HR Not I S gcgcggccgcCCTGTACTAGGTCCTGTCCgcgcggccgcCCTGTACTAGGTCCTGTCC 1717 40HR SalI AS40HR Sal I AS gcgtcgacGAATATCATACAAACATCAGgcgtcgacGAATATCATACAAACATCAG 1818


Single guide
RNA 제조용



Single guide
For RNA production
bβCE7-2 sgRNA oligob? CE7-2 sgRNA oligo gcctgcagTAATACGACTCACTATAGCAATAATAGGGAAGGGTCCCGTTTTAGAGCTAGAAATAGCAAGgcctgcagTAATACGACTCACTATAGCAATAATAGGGAAGGGTCCCGTTTTAGAGCTAGAAATAGCAAG 1919
pBSK(-) 1 sgRNA oligopBSK (-) 1 sgRNA oligo gcctgcagTAATACGACTCACTATAggCAAAAGCTGGAGCTCCACCGGTTTTAGAGCTAGAAATAGCAAGgcctgcagTAATACGACTCACTATAggCAAAAGCTGGAGCTCCACCGGTTTTAGAGCTAGAAATAGCAAG 2727 pBSK(-) SalI sgRNA oligopBSK (-) SalI sgRNA oligo gcctgcagTAATACGACTCACTATAGGGTACCGGGCCCCCCCTCGGTTTTAGAGCTAGAAATAGCAAGgcctgcagTAATACGACTCACTATAGGGTACCGGGCCCCCCCTCGGTTTTAGAGCTAGAAATAGCAAG 2828 Constant oligoConstant oligo gcgaattcAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAACgcgaattcAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC 2020 Oligo S Oligo S gcctgcagTAATACGACTCACTATAGgcctgcagTAATACGACTCACTATAG 2121 Oligo ASOligo AS gcgaattcAAAAGCACCGACTCGGTGgcgaattcAAAAGCACCGACTCGGTG 2222
bβCE7 indel
확인용

b? CE7 indel
For confirmation
E7 indel S1E7 indel S1 TACCACTCTGCAGGCAACTCAGGAAGATACCACTCTGCAGGCAACTCAGGAAGA 2323
E7 indel AS1E7 indel AS1 GGTAAGCCTAGACATTGAGATCTGGTGGGTAAGCCTAGACATTGAGATCTGGTG 2424 E7 indel S2E7 indel S2 GGAGTCTCCAAAGTGAAGGAGGCTATGGGGAGTCTCCAAAGTGAAGGAGGCTATGG 2525 E7 indel AS2E7 indel AS2 CTCAGCTATGCTTATTTTGGAACCATTCCTCAGCTATGCTTATTTTGGAACCATTC 2626 knock-in
확인용
knock-in
For confirmation
bLF 5 Sc S3bLF 5 Sc S3 TGCCCAGATGAGAGAAGTGAGGTACAGGACTGCCCAGATGAGAGAAGTGAGGTACAGGAC 3333
bLF 5 Sc AS9bLF 5 Sc AS9 CAGGGTCACAGCATCCGCCTTTTTCTCCGCCAGGGTCACAGCATCCGCCTTTTTCTCCGC 3434
bRAD51
cloning용

bRAD51
for cloning
bRAD51 NotI SbRAD51 Not I S gcggccgccaccATGGCTATGCAAATGCAGCTgcggccgccaccATGGCTATGCAAATGCAGCT 2929
bRAD51 XbaI ASbRAD51 Xba I AS ctagaaatTCAGTCTTTGGCATCTCCCActagaaatTCAGTCTTTGGCATCTCCCA 3030 pRC-CMV T7 pro SpRC-CMV T7 pro S TAATACGACTCACTATAGGGTAATACGACTCACTATAGGG 3131 pRC-CMV BGH pA ASpRC-CMV BGH pA AS TCCCCAGCATGCCTGCTATTTCCCCAGCATGCCTGCTATT 3232

1-2: bBCE7_bLF_1kbHR_GFP Knock-in 벡터(bLF_1kbHR_GFP KI ⓥ) 제조1-2: Manufacture of bBCE7_bLF_1kbHR_GFP knock-in vector (bLF_1kbHR_GFP KI ⓥ)

본 발명자들은 약 1 kb 길이의 5'-상동성 아암(homologous arm) 길이와 약 1.8 kb 길이의 3'-상동성 아암을 포함하고 있는 bBCE7_bLF_1kbHR_GFP 넉-인(knock-in) 벡터를 제조하기 위하여 먼저 기존에 확보되어 있는 pBSK(-)m_tEndo_EGFP KI 벡터 Ⅱ-1(특허 제10-1628701호)를 Kpn I과 Xba I 제한효소로 절단하여 벡터를 제조한 다음, pGEM Teasy_bLF(-Kpn I) 플라즈미드를 Kpn I, Xba I 제한효소로 절단하여 확보한 소 락토페린 단편을 결찰하여 bBCE7_bLF_1kbHR_GFP 넉-인 벡터를 확보하였고 염기서열 분석 후 Genetyx-win(version4.0)을 사용하여 염기서열을 확인하였다(도 2). We prepared a bBCE7_bLF_1kbHR_GFP knock-in vector containing a 5'-homologous arm length of about 1 kb and a 3'-homologous arm of about 1.8 kb in length pBSK that is secured to an existing (-) m_tEndo_EGFP KI vector ⅱ-1 (Patent No. 10-1628701), the Kpn I and Xba I restriction enzyme which cut to prepare a vector, and then, pGEM Teasy_bLF (- Kpn I) the plasmid Kpn I and Xba I restriction enzymes to obtain a bacterium bacterium bBCE7_bLF_1kbHR_GFP knock-in vector. After sequencing, the nucleotide sequence was confirmed using Genetyx-win (version 4.0) (Fig. 2).

1-3: bBCE7_bLF_100HR_GFP Knock-in 벡터(bLF_100HR_GFP KI ⓥ) 제조1-3: Manufacturing of bBCE7_bLF_100HR_GFP knock-in vector (bLF_100HR_GFP KI ⓥ)

본 발명자들은 약 100 bp 길이의 5'-상동성 아암 및 3'-상동성 아암을 포함하는 bBCE7_bLF_100HR_GFP 넉-인 벡터를 제조하기 위하여 각각 pBSK(-)_bBCE7 5'_F2A_bLF_BGHpA_CMV-EGFP_BGHpA_E8-9 3'(bBCE7_bLF_1kbHR_GFP KI 벡터) 플라즈미드를 주형으로 100HR NotI S(서열번호 15), 100HR SalI AS(서열번호 16) 프라이머 세트 및 KOD Fx neo(Toyobo, Osaka, Japan)를 이용하여 94℃ 30초, 54℃부터 62℃까지 온도구배로 30초, 72℃ 4분 30 사이클 조건으로 PCR을 수행하였고 전기영동을 통해 0.8% 아가로스 젤에서 약 4.1 Kb의 PCR 산물을 확인하였다. 그 후 상기 PCR 산물을 QIAgen quick Gel extract Kit(QIAgen)로 정제하였으며 Not I 및 Sal I 제한효소로 절단한 후, pBSK(-)/NotI,SalI 벡터에 결찰하여 bBCE7_bLF_100HR_GFP 또는 neo Knock-in 벡터를 확보하였고 염기서열 분석 후 Genetyx-win (version4.0)을 사용하여 염기서열을 확인하였다(도 2).BBCE7 5'_F2A_bLF_BGHpA_CMV-EGFP_BGHpA_E8-9 3 '(bBCE7_bLF_1kbHR_GFP) to produce a bBCE7_bLF_100HR_GFP knock-in vector comprising a 5'-homologous arm and a 3'- homologous arm of about 100 bp in length, KI vector) plasmid as a template at 94 ° C for 30 seconds, 54 ° C to 62 ° C using 100HR Not I S (SEQ ID NO: 15), 100HR Sal I AS (SEQ ID NO: 16) primer set and KOD Fx neo (Toyobo, Osaka, Japan) PCR was carried out under the conditions of temperature gradient of 30 sec., 72 ℃ for 4 min. And 30 cycles. From the electrophoresis, PCR product of about 4.1 Kb was detected in 0.8% agarose gel. Then, the PCR product was purified with QIAgen quick gel extract kit (QIAgen), digested with Not I and Sal I restriction enzymes, ligated to pBSK (-) / NotI, SalI vector to obtain bBCE7_bLF_100HR_GFP or neo knock-in vector And the nucleotide sequence was analyzed using Genetyx-win (version 4.0) after the sequencing (FIG. 2).

1-4: bBCE7_bLF_40HR_GFP Knock-in 벡터(bLF_40HR_GFP KI ⓥ) 제조1-4: Manufacturing of bBCE7_bLF_40HR_GFP knock-in vector (bLF_40HR_GFP KI ⓥ)

본 발명자들은 약 40 bp의 길이의 5'-상동성 아암 및 3'-상동성 아암을 포함하는 bBCE7_bLF_40HR_GFP 넉-인 벡터를 제조하기 위해 각각 pBSK(-)_bBCE7 5'_F2A_bLF_BGHpA_CMV-EGFP_BGHpA_E8-9 3'(bBCE7_bLF_1kbHR_GFP KI 벡터) 플라즈미드를 주형으로 40HR NotI S(서열번호 17), 40HR SalI AS (서열번호 18) 프라이머 세트 및 KOD Fx neo(Toyobo, Osaka, Japan)를 사용하여 94℃ 30초, 54℃부터 62℃까지 온도구배로 30초, 72℃ 4분 30 사이클 조건으로 PCR을 수행하였고 전기영동을 통해 0.8% 아가로스 젤에서 약 4 Kb의 PCR 산물을 확인하였다. PCR 산물을 QIAgen quick Gel extract Kit(QIAgen)로 정제하였고 NotI 및 SalI 제한효소로 절단한 후, pBSK(-)/NotI, SalI 벡터에 결찰하여 bBCE7_bLF_40HR_GFP 또는 neo Knock-in 벡터를 확보하였고 염기서열 분석 후 Genetyx-win(version4.0)을 사용하여 염기서열을 확인하였다(도 3).BBCE7 5'_F2A_bLF_BGHpA_CMV-EGFP_BGHpA_E8-9 3 '(SEQ ID NO: 2) to produce a bBCE7_bLF_40HR_GFP knock-in vector comprising a 5'-homologous arm and a 3'- homologous arm of about 40 bp in length bBCE7_bLF_1kbHR_GFP KI vector) was amplified by PCR using primers of 40HR Not I S (SEQ ID NO: 17), 40HR Sal I AS (SEQ ID NO: 18) and KOD Fx neo (Toyobo, Osaka, Japan) PCR was carried out at a temperature gradient of 62 ° C for 30 seconds, 72 ° C for 4 minutes and 30 cycles, and about 4 Kb of PCR product was detected in 0.8% agarose gel through electrophoresis. They were purified PCR products as QIAgen quick Gel extract Kit (QIAgen) was cut with Not I and Sal I restriction enzymes, pBSK (-) / Not I , and ligated to Sal I vector was secured bBCE7_bLF_40HR_GFP or neo Knock-in vector After the base sequence analysis, the nucleotide sequence was confirmed using Genetyx-win (version 4.0) (Fig. 3).

실시예 2: 소 베타-카제인 엑손 7 절단용 CRISPR/Cas9 확보Example 2: Securing CRISPR / Cas9 for cleaving sobeta-casein exon 7

2-1: 소 베타-카제인 엑손 7 염기서열 특이적 sgRNA 제조2-1: Production of Sobeta-casein exon 7 base sequence-specific sgRNA

본 발명자들은 소 β-casein 유전자 엑손 7 위치의 핵산서열(AATAATAGGGAAGGGTCCCCGG, bβCE7-2, 서열번호 35)을 인식하여 작동하는 sgRNA를 디자인하였다. 그 후 Pst I 제한효소 부위, T7 프로모터, sgRNA 표적 부위(target site) 및 Cas9 handle의 일부로 구성되어 있는 bβCE7-2 sgRNA 올리고(서열번호 19)와 Cas9 handle 일부, terminator 염기서열과 EcoR I 제한효소 부위를 포함하고 있는 constant 올리고(서열번호 20)를 합성하였다. 상기 두 가지 올리고를 어닐링(annealing)하기 위하여 100 μM의 bβCE7-2 sgRNA 올리고와 100 μM의 상기 Constant 올리고를 혼합하였고 PCR 머신을 이용하여 95℃ 5분 처리한 다음 85℃ 까지 초당 -2℃ 간격으로 처리하였으며 25℃까지 초당 -0.1℃ 간격으로 처리하였다. 그 후, 2.5 ㎍ 10 mM dNTP mix, 2 ㎕ 10X NEB buffer2, 0.2 ㎍ 100X NEB BSA, 1.5 U T4 NEB DNA polymerase(New England Biolabs, Beverly, MA, USA)를 첨가하고 12℃에서 20분간 반응하여 주형을 제조하였다. 상기 제조한 주형을 증폭시키기 위해 Oligo S(서열번호 21), AS(서열번호 22) 세트, 및 KOD Fx neo(Toyobo, Osaka, Japan)를 이용하여 94℃ 30초, 60℃ 30초, 72℃ 30초 35 사이클 조건으로 PCR을 실시하였고 전기영동을 통해 1.5% 아가로스 젤에서 약 135 bp의 PCR 산물을 확인하였다. 그 후, DNA를 RNA로 시험관내 전사(in vitro transcription)하기 위해 MEGAshortscript T7 Transcription Kit(Ambion, Huntingdon, UK)를 이용하여 sgRNA를 합성하였다. 이때 상기 시험관내 전사는 QIAgen quick Gel extract Kit(QIAgen)로 정제한 1 μg의 약 135 bp의 PCR 산물에 2 ㎍ T7 10X 반응 완충액, 각 2 ㎍ 75 mM ATP, CTP, GTP, UTP 솔루션과 2 ㎍ T7 enzyme mix를 첨가하였고 Nuclease-free water로 총 20 ㎍로 볼륨을 맞춘 후 37℃에서 4시간 동안 반응하여 실시하였다. 그 후 DNA를 분해하기 위해 1 ㎍ TURBO DNase를 넣고 37℃에서 15분간 반응하였다. 상기 합성된 sgRNA는 MEGAclear kit(Ambion, Huntingdon, UK)를 이용하여 정제하였고 소 베타-카제인 유전자 엑손 7 위치를 표적으로 하는 bβCE7-2 sgRNA를 합성하였다(도 3a).The present inventors designed an sgRNA that recognizes and operates the nucleic acid sequence (AATAATAGGGAAGGGTCCCCGG, bβCE7-2, SEQ ID NO: 35) at the exo 7 position of the small β-casein gene. The bβCE7-2 sgRNA oligo (SEQ ID NO: 19), which is composed of the Pst I restriction site, the T7 promoter, the sgRNA target site and a portion of the Cas9 handle, a portion of the Cas9 handle, a terminator sequence and an Eco RI restriction enzyme site (SEQ ID NO: 20) was synthesized. To anneal the two oligos, 100 μM bβCE7-2 sgRNA oligos were mixed with 100 μM of the constant oligonucleotide. Using a PCR machine, the mixture was treated at 95 ° C for 5 minutes and then heated to 85 ° C at intervals of -2 ° C And treated at -0.1 ℃ intervals per second to 25 ℃. Then, 2.5 μg of 10 mM dNTP mix, 2 μl of 10 × NEB buffer, 0.2 μg of 100 × NEB BSA and 1.5 U of T4 NEB DNA polymerase (New England Biolabs, Beverly, MA, USA) were added and reacted at 12 ° C. for 20 minutes, . (SEQ ID NO: 21), AS (SEQ ID NO: 22) set and KOD Fx neo (Toyobo, Osaka, Japan) were used to amplify the prepared template. PCR was carried out for 30 seconds and 35 cycles. A PCR product of about 135 bp was detected on 1.5% agarose gel by electrophoresis. Subsequently, sgRNA was synthesized using MEGAshortscript T7 Transcription Kit (Ambion, Huntingdon, UK) to in vitro transcription of the DNA into RNA. The in vitro transcription was performed using 2 μg T7 10X reaction buffer, 2 μg each of 75 mM ATP, CTP, GTP, UTP solution and 2 μg of each of the 135 bp PCR products purified with QIAgen quick Gel extract kit (QIAgen) T7 enzyme mix was added and the volume was adjusted to 20 ㎍ total with Nuclease-free water and reacted at 37 ℃ for 4 hours. Then, 1 μg of TURBO DNase was added to the DNA and the reaction was carried out at 37 ° C for 15 minutes. The synthesized sgRNA was purified using a MEGAclear kit (Ambion, Huntingdon, UK) and bβCE7-2 sgRNA targeting the position of the sub-beta-casein gene exon 7 was synthesized (FIG.

2-2: 2-2: In vitroIn vitro 에서 bβCE7 sgRNA의 활성검증Activation of bβCE7 sgRNA

본 발명자들은 상기 합성된 bβCE7-2 sgRNA 활성을 in vitro에서 검증하였다. 먼저 bβCE7 sgRNA의 표적 부위(target site)를 포함하는 기질(substrate)을 제조하였다. MAC-T 게놈(genome) DNA를 주형으로 E7 indel S1(서열번호 23), E7 indel AS1(서열번호 24) 프라이머 및 KOD Fx neo(Toyobo, Osaka, Japan)를 이용하여 94℃ 30초, 56℃ 30초, 72℃ 1분 32 사이클 조건에서 PCR을 실시하였고 전기영동을 통해 1.5% 아가로스 젤에서 약 997 bp의 PCR 산물을 확인하였다. 그 후, QIAgen quickGel extract Kit(QIAgen)로 정제하여 기질로 사용하였다. The present inventors have verified in vitro the above synthesized b? CE7-2 sgRNA activity. First, a substrate containing a target site of b? CE7 sgRNA was prepared. (SEQ ID NO: 23), E7 indel AS1 (SEQ ID NO: 24) primer and KOD Fx neo (Toyobo, Osaka, Japan) as primers for MAC-T genomic DNA at 94 ° C for 30 seconds, 56 ° C 30 sec, 72 ° C for 1 min and 32 cycles, and the PCR product was detected by electrophoresis on a 1.5% agarose gel at about 997 bp. Then, it was purified with QIAgen quickGel extract Kit (QIAgen) and used as a substrate.

이어서 상기 합성한 bβCE7-2 sgRNA 350 ng과 Cas9 단백질 500 ng(Toolgen, Seo㎍, Korea), bβCE7 표적 부위를 포함하는 기질 150 ng, 10X Buffrer H, 10X BSA(TAKARA, Shiga, Japan)를 첨가하고 총 10 ㎍까지 볼륨을 맞춘 후 37℃에서 1시간 반응하였다. 그 다음 RNA를 분해하기 위해 RNase A를 첨가하였고 37℃에서 15분간 반응시켰으며 1.5% 아가로즈 젤에서 전기영동을 통해 절단된 단편을 확인함에 따라 bβCE7-2 sgRNA가 작동하여 소 베타-카제인 엑손 7번 위치를 절단함을 확인하였다(도 3b).Subsequently, 150 ng of substrate containing 350 ng of the synthesized b? CE7-2 sgRNA and 500 ng of Cas9 protein (Toolgen, Seoge, Korea) and bβCE7 target site, 10 × Buffer H, 10 × BSA (TAKARA, Shiga, Japan) The volume was adjusted to a total of 10 μg and reacted at 37 ° C for 1 hour. Then, RNase A was added for the degradation of RNA, and the reaction was carried out at 37 ° C for 15 minutes. The fragment cleaved by electrophoresis on 1.5% agarose gel was confirmed, so that bβCE7-2 sgRNA was activated and the sub- (Fig. 3B).

2-3: 2-3: In vivoIn vivo 에서 bβCE7 sgRNA의 활성검증 Activation of bβCE7 sgRNA

본 발명자들은 소 유선세포(mammary alveolar cell)인 MAC-T 세포에서 bβCE7 sgRNA의 활성을 검증하였다. 상기 MAC-T 세포는 DMEM(Hyclone, Logan, USA), 5% FBS(Hyclone), 1% penicillin/streptomycin(Hyclone) 조건에서 배양하였고 트렌스펙션(transfection)은 MAC-T 세포를 6웰 플레이트에 2.5X105 세포를 파종(seeding)한 다음 1일 후에 Cas9 단백질 500 ng과 bβCE7-2 sgRNA 120 ng을 이용하여 Lipofectamin RNAiMAX reagent(Invitrogen, Waltham, USA)로 실시하였다. 상기 트렌스펙션 72시간 후에 세포를 회수하였고, G-DEX™ IIc For Cell/tissue Genomic DNA extraction Kit(Intron, Seongnam-si, Korea)를 이용하여 게놈 DNA를 분리하였다. 그 후 bβCE7 sgRNA의 활성을 측정하기 위하여 bβCE7 sgRNA에 의하여 절단될 수 있는 부위에 대한 E7 indel S2(서열번호 25), E7 indel AS2(서열번호 26) 및 KOD Fx neo (Toyobo, Osaka, Japan)을 이용하여 94℃ 10초, 60℃ 30초, 68℃ 30초 35 사이클 조건으로 PCR을 실시하였다. 그 후, T7 endonuclease I에 의한 활성 측정은 먼저 PCR 산물을 QIAgen quick Gel extract Kit(QIAgen)로 정제한 후 1 μg의 DNA을 이용하여 실시하였다. 먼저 DNA 단편을 PCR 머신을 이용하여 95℃ 10분 처리한 다음 85℃ 까지 초당 -2℃ 간격으로 처리하였고, 25℃까지 초당 -0.1℃ 간격으로 처리하였다. 상기 처리된 DNA에 10 U T7 endonuclease I(NEB, Ipswich, USA)을 첨가하고 37℃에서 30분 처리한 후 2% 아가로스 젤에서 전기영동하여 절단된 단편을 확인함에 따라 bβCE7-2 sgRNA가 작동하여 소 베타-카제인 엑손 7번 위치를 절단함을 확인하였다(도 3c).The present inventors have verified the activity of bβCE7 sgRNA in MAC-T cells, a mammary alveolar cell. The MAC-T cells were cultured in DMEM (Hyclone, Logan, USA), 5% FBS (Hyclone) and 1% penicillin / streptomycin (Hyclone) conditions. Transfection was performed by adding MAC- X10 5 cells were seeded. One day later, 500 ng of Cas9 protein and 120 ng of bβCE7-2 sgRNA were used as a Lipofectamin RNAiMAX reagent (Invitrogen, Waltham, USA). After 72 hours of the transfection, the cells were harvested and genomic DNA was isolated using G-DEX ™ IIc For Cell / tissue Genomic DNA Extraction Kit (Intron, Seongnam-si, Korea). E7 indel S2 (SEQ ID NO: 25), E7 indel AS2 (SEQ ID NO: 26), and KOD Fx neo (Toyobo, Osaka, Japan) were used to determine the activity of bβCE7 sgRNA PCR was carried out using 94 ° C for 10 seconds, 60 ° C for 30 seconds, 68 ° C for 30 seconds and 35 cycles. Then, the activity of T7 endonuclease I was first measured by using 1 μg of DNA after purifying the PCR product with QIAgen quick gel extract kit (QIAgen). First, the DNA fragment was treated at 95 ° C for 10 minutes using a PCR machine, then treated at 85 ° C for 2 ° C per second, and then treated at 25 ° C for -0.1 ° C per second. To the treated DNA, 10 U T7 endonuclease I (NEB, Ipswich, USA) was added and treated at 37 ° C for 30 minutes. After electrophoresis on 2% agarose gel, the cleaved fragments were confirmed and bβCE7-2 sgRNA And cleaved at position 7 of Sobeta-casein exon (FIG. 3C).

실시예 3: CRISPR/Cas9 확보Example 3: Securing CRISPR / Cas9

3-1: pBluescriptSK(-) 벡터 특정 염기서열 특이적 sg RNA 제조3-1: Preparation of pBluescriptSK (-) vector specific base sequence specific sg RNA

본 발명자들은 bLF replacement 넉-인 벡터의 5'아암(arm) 앞을 절단할 수 있는 pBSK(-) 1 sgRNA(CAAAAGCTGGAGCTCCACCGCGG, 서열번호 36)와 3'아암(arm) 뒤를 절단할 수 있는 pBSK(-) SalI sgRNA(GGGTACCGGGCCCCCCCTCGAGG, 서열번호 37)를 디자인하였다. 그 후 Pst I 제한효소 부위, T7 프로모터, pBluescriptSK(-) 벡터 표적 부위와 Cas9 handle의 일부로 구성되어있는 pBSK(-) 1 sgRNA oligo(서열번호 27) 또는 SalI 올리고(서열번호 28)와 Cas9 handle 일부, terminator 염기서열 및 EcoR I 제한효소 부위를 포함하고 있는 constant oligo(서열번호 20)를 합성하였다.The present inventors have succeeded in isolating pBSK (-) 1 sgRNA (CAAAAGCTGGAGCTCCACCGCGG, SEQ ID NO: 36) capable of cutting in front of the 5 'arm of the bLF replacement knock-in vector and pBSK (- ) Sal I sgRNA (GGGTACCGGGCCCCCCCTCGAGG, SEQ ID NO: 37) was designed. (-) 1 sgRNA oligo (SEQ ID NO: 27) or Sal I oligos (SEQ ID NO: 28) and Cas9 handle (SEQ ID NO: 28) consisting of the Pst I restriction site, the T7 promoter, the pBluescriptSK A partial constant oligo (SEQ ID NO: 20) containing the terminator sequence and the Eco R I restriction site was synthesized.

상기 두 가지 oligo를 어닐링하기 위하여 100 μM의 pBSK(-) 1 또는 SalI 올리고와 100 μM의 constant 올리고를 혼합하였고 PCR 머신을 이용하여 95℃ 5분 처리한 다음 85℃ 까지 초당 -2℃ 간격으로 처리하였고, 25℃까지 초당 -0.1℃ 간격으로 처리하였다. 그 후 2.5 ㎍ 10 mM dNTP mix, 2 ㎕ 10X NEB buffer2, 0.2 ㎍ 100X NEB BSA, 1.5 U T4 NEB DNA polymerase(New England Biolabs, Beverly, MA, USA)를 첨가하였고 12℃에서 20분간 반응하여 주형을 제조하였다. 상기 주형을 증폭시키기 위해 Oligo S(서열번호 21), AS (서열번호 22) 프라이머 세트, KOD Fx neo(Toyobo, Osaka, Japan)를 이용하여 94℃ 30초, 60℃ 30초, 72℃ 30초 35 사이클 조건으로 PCR을 실시하였고 전기영동을 통해 1.5% 아가로스 젤에서 약 135bp의 PCR 산물을 확인하였다. 그 후 상기 DNA를 RNA로 시험관내 전사하기 위하여 MEGAshortscript T7 Transcription Kit(Ambion, Huntingdon, UK)를 이용하여 sgRNA를 합성하였다. 상기 시험관내 전사는 QIAgen quick Gel extract Kit(QIAgen)로 정제한 1 μg의 약 135 bp의 PCR 산물에 2 ㎍ T7 10X 반응 완충액, 각 2 ㎍ 75mM ATP, CTP, GTP, UTP 솔루션 및 2 ㎍ T7 enzyme mix를 첨가하였고 Nuclease-free water로 총 20 ㎍으로 볼륨을 맞춘 후 37℃에서 4시간 동안 반응하여 실시하였다. 그 후 DNA를 분해하기 위해 1 ㎍ TURBO DNase를 넣고 37℃에서 15분간 반응하였고 상기 합성된 sgRNA는 MEGAclear kit(Ambion, Huntingdon, UK)를 이용하여 정제하였고 bLF replacement knock-in 벡터를 절단할 수 있는 pBSK(-) 1 과 SalI sgRNA를 합성하였다(도 4a).To anneal the two oligos, 100 μM pBSK (-) 1 or SalI oligo and 100 μM constant oligo were mixed and treated at 95 ° C for 5 minutes and then at 85 ° C for 2 ° C And treated at -0.1 ° C per second to 25 ° C. After addition of 2.5 μg of 10 mM dNTP mix, 2 μl of 10 × NEB buffer, 0.2 μg of 100 × NEB BSA and 1.5 U of T4 NEB DNA polymerase (New England Biolabs, Beverly, MA, USA) . 30 ° C for 30 seconds, 60 ° C for 30 seconds, and 72 ° C for 30 seconds using Oligo S (SEQ ID NO: 21), AS (SEQ ID NO: 22) primer set, KOD Fx neo (Toyobo, Osaka, Japan) PCR was performed under the condition of 35 cycles. A PCR product of about 135 bp was detected on 1.5% agarose gel by electrophoresis. Then, sgRNA was synthesized using MEGAshortscript T7 Transcription Kit (Ambion, Huntingdon, UK) for in vitro transcription of the DNA with RNA. The in vitro transcription was performed using 1 μg of the 135 bp PCR product purified with QIAgen quick gel extract kit (QIAgen), 2 μg T7 10X reaction buffer, 2 μg each 75 mM ATP, CTP, GTP, UTP solution and 2 μg T7 enzyme mix, and the volume was adjusted to 20 μg total with Nuclease-free water, followed by reaction at 37 ° C for 4 hours. The resulting sgRNA was purified using a MEGAclear kit (Ambion, Huntingdon, UK), and the bLF replacement knock-in vector was digested with 1 μg of TURBO DNase and reacted at 37 ° C. for 15 minutes. pBSK (-) 1 and Sal I sgRNA were synthesized (Fig. 4A).

3-2: 3-2: In vitroIn vitro 에서 pBSK(-) sgRNA의 활성검증 Activation of pBSK (-) sgRNA in rat

본 발명자들은 pBSK(-) sgRNA의 활성을 검증하기 위해 상기 합성된 pBSK(-) 1 또는 SalI sgRNA 350 ng 및 Cas9 protein 500 ng (Toolgen, Seo㎍, Korea), pBluscriptSK(-) 벡터 300 ng, 10X Buffrer H, 10XBSA (TAKARA, Shiga, Japan)를 첨가하여 총 10 ㎍까지 볼륨을 맞추고 37℃에서 1시간 반응하였다. 그 후 RNA를 분해하기 위해 RNase A를 첨가하였고 37℃에서 15분간 반응시켰으며 0.8% 아가로즈 젤에서 전기영동하여 절단된 단편을 확인함에 따라 pBSK(-) 1과 SalI sgRNA의 활성을 검증하였다(도 4b 및 4c).To examine the activity of pBSK (-) sgRNA, the present inventors used 350 ng of the synthesized pBSK (-) 1 or Sal I sgRNA and 500 ng of Cas9 protein (Toolgen, Seogye, Korea), 300 ng of the pBluscriptSK (- 10X Buffer H, and 10XBSA (TAKARA, Shiga, Japan) were added to a total volume of 10 μg and reacted at 37 ° C for 1 hour. After that, RNase A was added to decompose RNA, and the reaction was carried out at 37 ° C for 15 minutes. The fragments were confirmed by electrophoresis on 0.8% agarose gel to confirm the activity of pBSK (-) 1 and Sal I sgRNA (Figs. 4B and 4C).

실시예 4: Cas9 mRNA의 제조Example 4: Preparation of Cas9 mRNA

본 발명자들은 Cas9 mRNA의 제조를 위하여 Cas9 발현용 벡터(pRGEN-Cas9-CMV plasmid, 툴젠)를 SpeI 제한효소로 절단하여 직선화하였다. RNA 합성은 mMESSAGEmMACHINE T7 ㎍tra kit(Ambion, Waltham, USA)를 이용하여 하기와 같이 실시하였다. 먼저 직선화된 플라스미드 0.5 μg, T7 2X NTP/ARCA 5 ㎕, 10X T7 Reaction buffer 1 ㎕, T7 enzyme Mix 1 ㎕가 포함된 혼합물을 제조한 다음 37℃에서 2시간 보온 후 1 ㎕의 TURBO DNase을 넣고 37℃에서 15분간 보온하였다. 상기와 같이 준비된 RNA에 poly를 결합시키기 위하여 Poly(A) Tailing Kit(Ambion)를 이용하여 하기와 같이 실시하였다. 상기 준비된 RNA 용액 10 ㎕, 5X E-PAP buffer 10 ㎕, 25 mM ATP 5 ㎕, 25 mM MnCl2 5 ㎕, Nuclease free water 20 ㎕, 2 ㎕의 E-PAP을 넣고 37℃에서 1시간 반응하였다. 또한 RNA recovery를 위해 MEGA clear kit(Ambion)를 이용하여 poly(A) tailing된 RNA가 있는 tube에 50 ㎕의 용리액(elution solution)을 넣어 최종 볼륨이 100 ㎕가 되도록 하였고 350 ㎕의 Binding solution을 첨가하여 혼합하였으며, 이어서 250 ㎕의 100% EtOH를 첨가하였다. 상기 혼합된 수용액을 필터에 옮겨 10,000 rpm에서 1분간 원심분리하였고 500㎕의 세척액을 첨가 후 10,000 rpm에서 1분간 원심분리하였으며 이를 한 번 더 반복하였다. 그 후 필터를 새로운 1.5 ml 튜브에 옮긴 후 95℃에 있던 용리액 50 ㎕를 넣고 10,000 rpm에서 1분간 원심분리하였고 상기 방법을 한 번 더 반복하여 최종적으로 100 ㎕의 mRNA를 회수하였다. 상기 확보된 mRNA는 5 M Ammonium acetate에 의해 농축하였고 최종 20 ㎕의 Nuclease-free water에 용해한 후 사용 전 까지 -80℃에 보관하였다.For the production of Cas9 mRNA, the present inventors straightened Cas9 expression vector (pRGEN-Cas9-CMV plasmid, Tulgen) with Spe I restriction enzyme. RNA synthesis was carried out using mMESSAGEmMACHINE T7 ugtra kit (Ambion, Waltham, USA) as follows. First, prepare a mixture containing 0.5 μg of the linearized plasmid, 5 μl of T7 2X NTP / ARCA, 1 μl of 10 × T7 Reaction buffer, and 1 μl of T7 enzyme mix, incubate at 37 ° C for 2 hours, add 1 μl of TURBO DNase Lt; 0 > C for 15 minutes. The poly (A) tailing kit (Ambion) was used to bind poly (RNA) to the prepared RNA as follows. 10 μl of the prepared RNA solution, 10 μl of 5 × E-PAP buffer, 5 μl of 25 mM ATP, 5 μl of 25 mM MnCl 2 , 20 μl of Nuclease free water and 2 μl of E-PAP were added and reacted at 37 ° C for 1 hour. For RNA recovery, 50 μl of elution solution was added to the tube with poly (A) -tailed RNA using MEGA clear kit (Ambion) to make a final volume of 100 μl and 350 μl of binding solution was added , Followed by the addition of 250 [mu] l of 100% EtOH. The mixed aqueous solution was transferred to a filter, centrifuged at 10,000 rpm for 1 minute, added with 500 μl of washing solution, centrifuged at 10,000 rpm for 1 minute, and then repeated one more time. After transferring the filter to a new 1.5 ml tube, 50 μl of the eluate at 95 ° C was added, centrifuged at 10,000 rpm for 1 minute, and 100 μl of mRNA was finally recovered by repeating the above procedure one more time. The obtained mRNA was concentrated by 5 M Ammonium acetate and finally dissolved in 20 μl of Nuclease-free water and stored at -80 ° C. until use.

실시예 5: bRAD51 mRNA의 제조Example 5: Preparation of bRAD51 mRNA

본 발명자들은 소 RAD51 유전자를 동정하기 위해 소 유선세포인 MAC-T 세포의 cDNA를 주형으로 RT-PCR을 수행하였다. 먼저 bRAD51 유전자(NCBI 접근번호. NM_001046179) 에 특이적으로 결합할 수 있는 bRAD51 NotIS(서열번호 29), bRAD51 XbaI AS(서열번호 30) 프라이머 세트 및 KOD Fx neo (Toyobo, Osaka, Japan)를 사용하여 94℃ 30초, 56℃부터 64℃까지 gradient로 30초, 72℃ 2분 32 사이클 조건으로 PCR을 실시하였고 전기영동을 통해 0.8% 아가로스 젤에서 약 1 kb의 PCR 산물을 확인하였다. 그 후 5 U Go taq DNA polymerase(Promega, Madison, WI, USA)를 첨가하였고 72℃에서 15분 동안 반응하여 A tailing 한 후 QIAgen quick Gel extract Kit(QIAgen, Hilden, Germany)을 이용해 정제하였고 상기 정제한 산물은 pGEM-T.easy 벡터(Promega, Madison, WI, USA)에 서브-클로닝(sub-cloning)하여 pGEM-T.easy_bRAD51 플라스미드 DNA를 확보한 후 Genetyx-win(version4.0)을 사용하여 염기서열을 확인하였다. 이어서 pGEM-T.easy_bRAD51 플라스미드와 pRC-CMV 플라스미드를 Not I과 Xba I 제한효소로 절단한 후 서브-클로닝하여 bRAD51 유전자가 발현할 수 있는 pRC-CMV_bRAD51 플라스미드 DNA를 제조하였다. 그 후 상기 pRC-CMV_bRAD51 플라스미드 벡터의 T7 프로모터로부터 bRAD51 cDNA, BGHpA signal까지 DNA 염기서열로부터 bRAD51 mRNA를 합성하기 위해 pRC-CMV_bRAD51 플라스미드 벡터의 T7 프로모터 및 BGHpA signal에 특이적으로 결합할 수 있는 pRC-CMV T7 pro S(서열번호 31), pRC-CMV BGH pA AS(서열번호 32) 및 KOD Fx neo (Toyobo, Osaka, Japan)를 사용하여 94℃ 30초, 54℃부터 60℃까지 온도구배로 30초, 72℃ 2분 30초 30 사이클 조건으로 PCR을 실시하였고 전기영동을 통해 0.8% 아가로스 젤에서 약 1.4 kb의 PCR 산물을 확인하였으며 QIAgen quick Gel extract Kit(QIAgen)로 정제하여 시험관내 전사를 위한 주형으로 사용하였다. DNA를 RNA로 시험관내 전사하기 위하여 mMESSAGE mMACHINE T7 ULTRA Transcription Kit(Ambion, Huntingdon, UK)를 이용하여 mRNA를 합성하였고 시험관내 전사는 500 μg의 약 1.4kb의 PCR 산물에 2 ㎍ 10X T7 Reaction Buffer, 10 ㎍ T7 2X NTP/ARCA 및 2 ㎍ T7 enzyme mix를 첨가한 후 Nuclease-free water로 총 20 ㎍ 양을 맞춘 후 37℃에서 1시간 동안 반응하여 실시하였다. 그 후 DNA를 분해하기 위해 1 ㎍ TURBO DNase를 넣고 37℃에서 15분간 반응하여 5'-cap이 수식된 RNA를 합성하였다. 상기 합성된 RNA의 3'말단에 Poly A를 첨가하기 위해 Poly(A) Tailing Kit(Applied Biosystems, Foster City, CA, USA)를 이용하여 20 ㎍ 5X E-PAP buffer, 10 ㎍ 25 mM MnCl2, 10 ㎍ 10 mM ATP, 및 4 ㎍ E-PAP enzyme을 첨가하였고 Nuclease-free water로 총 100 ㎍로 볼륨을 맞춘 후 37℃에서 1시간동안 반응하였다. 상기 제조된 mRNA는 MEGAclear kit(Ambion, Huntingdon, UK)를 이용하여 정제한 뒤 실험에 사용하였다.The present inventors carried out RT-PCR using MAC-T cell cDNA as a bovine mammary cell to identify the bovine RAD51 gene. First, bRAD51 Not IS (SEQ ID NO: 29), bRAD51 XbaI AS (SEQ ID NO: 30) primer set and KOD Fx neo (Toyobo, Osaka, Japan) capable of specifically binding to the bRAD51 gene (NCBI accession number NM_001046179) PCR was performed at 94 ° C for 30 seconds, 56 ° C to 64 ° C for 30 seconds, and 72 ° C for 2 minutes and 32 cycles. A PCR product of about 1 kb was detected on 0.8% agarose gel by electrophoresis. Then, 5 U Go taq DNA polymerase (Promega, Madison, Wis., USA) was added and reacted at 72 ° C for 15 minutes. A tailings were then purified using a QIAgen quick gel extract kit (QIAgen, Hilden, Germany) One product was sub-cloned into the pGEM-T.easy vector (Promega, Madison, Wis., USA) to obtain pGEM-T.easy_bRAD51 plasmid DNA, and then using Genetyx-win (version 4.0) The nucleotide sequence was confirmed. Subsequently, pGEM-T.easy_bRAD51 plasmid and pRC-CMV plasmid were digested with Not I and Xba I restriction enzyme, and then sub-cloned to prepare pRC-CMV_bRAD51 plasmid DNA capable of expressing bRAD51 gene. Then, in order to synthesize bRAD51 mRNA from the DNA sequence from the T7 promoter of the pRC-CMV_bRAD51 plasmid vector to the bRAD51 cDNA and the BGHpA signal, the pRC-CMV_bRAD51 plasmid vector was used to express the T7 promoter and pRC-CMV 30 sec at 94 [deg.] C for 30 sec and 54 [deg.] C to 60 [deg.] C using T7 proS (SEQ ID NO: 31), pRC-CMV BGH pA AS (SEQ ID NO: 32) and KOD Fx neo (Toyobo, Osaka, Japan) , 72 ° C for 2 minutes and 30 seconds and 30 cycles. PCR products were detected in 0.8% agarose gel by electrophoresis and purified with QIAgen quick gel extract kit (QIAgen) for in vitro transcription As a template. MRNA was synthesized using mMESSAGE mMACHINE T7 ULTRA Transcription Kit (Ambion, Huntingdon, UK) in order to in vitro transcription of DNA into RNA. In vitro transcription was performed in 500 μg of PCR product of approximately 1.4 kb, 2 μg of 10X T7 Reaction Buffer, 10 μg T7 2X NTP / ARCA and 2 μg T7 enzyme mix were added, and the total amount of 20 ㎍ was mixed with nuclease-free water and reacted at 37 ° C for 1 hour. Then, 1 μg of TURBO DNase was added to the DNA to dissolve the DNA, and the reaction was carried out at 37 ° C. for 15 minutes to synthesize 5'-cap modified RNA. To add Poly A to the 3 'end of the synthesized RNA, 20 μg of 5 × E-PAP buffer, 10 μg of 25 mM MnCl 2 , and 10 μM of the poly (A) tailing kit (Applied Biosystems, Foster City, CA, USA) 10 μg of 10 mM ATP, and 4 μg of E-PAP enzyme were added, and the volume was adjusted to 100 μg total with Nuclease-free water and reacted at 37 ° C for 1 hour. The mRNA was purified using a MEGAclear kit (Ambion, Huntingdon, UK) and used for the experiment.

실시예 6: 전핵기 수정란 미세주입에 의한 넉-인 수정란의 확보Example 6: Securing knock-in fertilized eggs by microinjection of whole nucleus embryos

6-1: 전핵기 수정란의 준비6-1: Preparation of pre-nucleation embryos

본 발명자들은 전핵기 수정란을 준비하기 위하여 도축장에서 회수한 소 난소를 75 ㎍/ml 칼륨 페니실린 G가 첨가된 생리식염수에 넣어 25-30℃ 온도의 상태로 실험실로 운반하였다. 상기 난소를 멸균된 37℃의 생리식염수로 3번 이상 세척한 뒤, 직경이 3-6 mm로 성장한 난포를 18 게이지 주사바늘이 부착된 주사기로 흡입한 후 실체 현미경 하에서 난포란를 회수하였다. 상기 회수된 난포란은 Tyrode's lactate(TL)-Hepes 용액으로 3회 세척한 뒤 체외성숙 배양액으로 3회 이상 세척하였고 체외성숙 배양액(TCM-199) 50 ㎕ 소적에 10-15개의 난포란을 두고 38.5℃ 온도와 5% CO2 조건하에서 24시간 동안 배양하였다. 체외성숙이 완료된 난포란은 수정용 배양액(Fert-TALP)에 3번 세척 후 수정용 배양액 소적(44 ㎕)에 10개씩 옮겨두고 동결된 소의 정자를 2ㅧ106 cells/ml의 최종 농도로 맞추어 25 ㎍/ml 헤파린과 PHE를 함께 첨가한 후 38.5℃ 및 5% CO2 조건하에서 18시간 동안 수정을 유도하였다. 체외수정 유도 후 16-18 시간째 제2 극체가 확인된 수정란을 선별하여 미세주입에 이용하였다.To prepare the whole nucleus embryos, the present inventors transferred the small ovaries recovered from the slaughterhouse to physiological saline containing 75 μg / ml potassium penicillin G and transferred them to the laboratory at 25-30 ° C. The ovaries were washed three times or more with sterilized physiological saline at 37 ° C. Follicular growths of 3-6 mm in diameter were inhaled in a syringe equipped with an 18 gauge needle, and the ovaries were recovered under a stereomicroscope. The recovered ovarian follicles were washed three times with Tyrode's lactate (TL) -Hepes solution, and then washed three times or more with in vitro maturation medium. Ten ovum follicles were placed in 50 μl of in vitro maturation culture medium (TCM-199) And 5% CO 2 for 24 hours. After the in vitro maturation of the oocytes was completed, the cells were washed three times in Fert-TALP and transferred to 10 fertilizers (44 μl). The frozen spermatozoa were adjusted to a final concentration of 2 × 10 6 cells / ml ㎍ / ml heparin and PHE were added together and the modification was induced at 38.5 ℃ and 5% CO 2 for 18 hours. The fertilized eggs with the second polar body were selected 16-18 hours after induction of in vitro fertilization and used for microinjection.

6-2: 전핵기 수정란에 CRISPR/Cas9과 넉-인 벡터의 미세주입6-2: Microinjection of CRISPR / Cas9 and knock-in vector into pre-nucleation embryos

본 발명자들은 체외수정 후 16-18 시간째 제2극체가 확인된 수정란의 전핵에 CRISPR/Cas9 및 넉-인 벡터를 미세주입하기 위해서 먼저 수정란을 12,000 rpm에서 5분간 원심분리를 실시하여 지질을 한쪽으로 치우치게 하여 전핵 관찰을 용이하게 하였다. 그 후, 도립현미경에 장착된 미세조작기를 이용하여 본 발명의 넉-인 벡터 및 CRISPR/Cas9을 소 수정란의 세포질에 미세주입하였다. 상기 미세주입이 완료된 수정란은 3 mg/ml BSA가 첨가된 CR1-aa 배양액에 세척한 후 50 ㎕ 소적에 10-15개씩 옮겨 38.5℃ 및 5% CO2 조건하에서 7일간 배양을 실시하였다. 상기 미세주입용 샘플의 세부정보를 하기 표 2에 요약하였다. In order to microinject CRISPR / Cas9 and knock-in vector to the nucleus of embryos confirmed to have a second polar body 16-18 hours after in vitro fertilization, the embryos were first centrifuged at 12,000 rpm for 5 minutes, To make it easier to observe the nucleus. The knock-in vector of the present invention and CRISPR / Cas9 were then microinjected into the cytoplasm of bovine embryos using a micro manipulator mounted on an inverted microscope. The microinjected embryos were washed in CR1-aa medium supplemented with 3 mg / ml BSA, and then transferred to 50 ㎕ colony by 10-15 cells for 7 days at 38.5 ° C and 5% CO 2 . Details of the sample for microinjection are summarized in Table 2 below.

미세주입용 샘플의 세부정보 Details of sample for microinjection 번호number 샘플 이름Sample name 용량Volume L 최종 농도Final concentration 1One 넉-인 벡터Knock-in vector 1.2 ㎍/㎍1.2 [mu] g / [mu] g 1One 200 ng/㎍200 ng / [mu] g 44 Bovine-CNS-EX7_sgRNA_2Bovine-CNS-EX7_sgRNA_2 0.6 ㎍/㎍0.6 / / ㎍ 1One 100 ng/㎍100 ng / [mu] g 55 pBSK(-) sgRNA #1 + pBSK(-) SalIsgRNApBSK (-) sgRNA # 1 + pBSK (-) SalIsgRNA 1.2 ㎍/㎍1.2 [mu] g / [mu] g 1One 100 ng/㎍100 ng / [mu] g 66 Cas9 mRNACas9 mRNA 2.4 ㎍/㎍2.4 / / ㎍ 1One 400 ng/㎍400 ng / [mu] g 77 bRAD51 mRNAbRAD51 mRNA 0.6 ㎍/㎍0.6 / / ㎍ 1One 100 ng/㎍100 ng / [mu] g 88 Nuclease free water with Scr7Nuclease free water with Scr7 6 mM Scr7 6 mM Scr7 1One 1 mM1 mM 합계Sum 6 ㎍6 [mu] g

실시예 7: 미세주입된 수정란으로부터 넉-인 검증Example 7: Knock-in Validation from Microinjected Embryos

7-1: 넉-인 벡터가 도입된 수정란의 PCR 분석7-1: PCR analysis of embryos with knock-in vector

본 발명자들은 상기 넉-인 벡터가 미세주입된 수정란을 이용하여 넉-인 검증을 수행하였다. 먼저 미세주입 후 배반포로 발달한 수정란이 있는 0.5 ml 튜브에 동량의 2X Lysis buffer[200 mM Tris-HCl(pH 8.3), 200 mM KCl, 0.04% Gelatin, 0.9% Tween 20, 250 ㎍/ml Proteinase K, 120 ㎍/ml yeast tRNA]을 첨가한 후 56℃에서 10분 처리하였고 95℃에서 10분 처리하여 crude DNA를 제조하였다. 상기 제조한 crude DNA를 주형으로 사용하여 bLF 5 Sc S3(서열번호 33)와 bLF Sc AS9 (서열번호 34) 프라이머 세트, 및 KOD Fx neo(Toyobo, Osaka, Japan)를 사용하여 98℃ 20초, 68℃ 30초, 72℃ 2분 38 사이클 조건에서 PCR을 실시하였고 전기영동을 통해 0.8% 아가로스 젤에서 약 1.7 kb의 PCR 산물을 확인하였다.The present inventors performed knock-in assays using embryos implanted with knock-in vectors. After the microinjection, the same amount of 2X Lysis buffer [200 mM Tris-HCl (pH 8.3), 200 mM KCl, 0.04% Gelatin, 0.9% Tween 20 and 250 μg / ml Proteinase K , 120 ㎍ / ml yeast tRNA], and then treated at 56 ° C for 10 minutes and treated at 95 ° C for 10 minutes to prepare crude DNA. Using the crude DNA prepared above as a template, the primers set at bLF 5 Sc S3 (SEQ ID NO: 33), bLF Sc AS9 (SEQ ID NO: 34) and KOD Fx neo (Toyobo, Osaka, Japan) PCR was carried out at 68 ° C for 30 seconds, 72 ° C for 2 minutes and 38 cycles, and about 1.7 kb of PCR product was detected on 0.8% agarose gel by electrophoresis.

상동영역의 길이가 다른 세 가지 bLF_1kbHR_GFP KI ⓥ, bLF_100HR_GFP KI ⓥ 또는 bLF_40HR_GFP KI ⓥ 넉-인벡터 및 CRISPR/Cas9과 함께 전핵기 소 수정란의 세포질에 미세주입한 후 상동유전자 재조합에 의하여 넉-인이 발생한 수정란을 생산하기 위하여 배양한 결과 bbLF_1kbHR_GFP KI ⓥ 및 CRISPR/Cas9을 같이 53개의 소 수정란에 미세주입 하여 9개가 배반포기로 발달하였고 상기 배반포기 수정란을 이용하여 PCR을 실시한 결과 9개 중 2개의 배반포에서 EGFP가 발현되었고, 상기 2개의 배반포 모두 넉-인이 발생하여 1.7 kb의 밴드를 확인할 수 있었다. 하지만 상동영역의 길이가 100 bp인 bLF_100HR_GFP KI ⓥ 및 CRISPR/Cas9을 함께 62개의 소 수정란에 미세주입하여 배양한 결과 9개가 배반포기로 발달하였고 그 중 6개의 수정란에서 EGFP의 발현을 확인하였지만 PCR 결과 넉-인이 발생하지 않아 밴드를 확인할 수 없었다. 또한 bLF_40HR_GFP KI ⓥ 및 CRISPR/Cas9을 함께 77개의 소 수정란에 미세주입하여 14개가 배반포기로 발달하였고 2개는 상실포배로 발달하였으며 상기 14개 중 9개의 배반포배에서 EGFP 발현을 확인하였으며 2개의 상실포배에서도 EGFP의 발현을 확인하였다. 그 후 13개의 배반포배와 2개의 상실포배를 분석한 결과 중 4개의 배반포배 수정란에서 넉-인이 발생하여 1.7 kb의 밴드를 확인하여 넉-인이 확인된 4개의 수정란 중 2개의 수정란에서 EGFP가 발현하는 것을 확인하였다(도 5). 따라서 CRISPR/Cas9을 사용하여 소 수정란에서 상동영역의 길이가 다른 knock-in 벡터를 주입한 결과 22.2%에서 26.7%의 효율로 상동재조합에 의한 넉-인이 발생함을 확인하였다. 상기 본 발명의 넉-인 벡터 및 유전자 가위를 미세주입하여 넉-인 검증한 결과를 하기 표 3에 요약하였다. Three bLF_1kbHR_GFP KI ⓥ, bLF_100HR_GFP KI ⓥ, or bLF_40HR_GFP KI ⓥ knock-in vector and CRISPR / Cas9 with different lengths of homologous region were injected microinjected into the cytoplasm of prepubertal embryos and knocked out by homologous recombination As a result of culturing to produce embryos, bbLF_1kbHR_GFP KI ⓥ and CRISPR / Cas9 were microinjected into 53 bovine embryos, and 9 of them were developed into blastocysts. The PCR was carried out using the blastocyst embryos, And a knock-in occurred in both of the two blastocysts, and a band of 1.7 kb was confirmed. However, bLF_100HR_GFP KI ⓥ and CRISPR / Cas9, which were 100 bp in length, were microinjected into 62 embryos, and 9 of them were developed into blastocysts. EGFP expression was observed in 6 embryos, - The band could not be confirmed because no phosphorus occurred. In addition, bLF_40HR_GFP KI ⓥ and CRISPR / Cas9 were microinjected into 77 bovine embryos, 14 of them developed into blastocysts and 2 of them developed into blastocysts. EGFP expression was observed in 9 out of 14 blastocysts, , The expression of EGFP was confirmed. The results of analysis of 13 blastocysts and 2 blastocysts showed that knock-in occurred in 4 blastocyst embryos and 1.7 kb of bands were detected. Among the 4 knock-in embryos, (Fig. 5). Therefore, knock-in of homologous recombination was observed in 22.9% and 26.7% efficiency, respectively, using a CRISPR / Cas9 knock-in vector. The results of the knock-in test by microinjection of the knock-in vector and gene scissors of the present invention are summarized in Table 3 below.

소 락토페린 발현용 넉-인 벡터가 주입된 수정란의 넉-인 효율Knock-in efficiency of embryos injected with knock-in vector for bovine lactoferrin expression 넉-인 벡터Knock-in vector 미세주입된 배아수Number of microinjected embryos 배반포 수(%)Number of blastocysts (%) EGFP 발현(%)EGFP expression (%) PCR 분석 배아수(%)PCR analysis Number of embryos (%) 넉인-배아수
(넉인 효율, %)
Knuckle - number of embryos
(% Efficiency,%)
bLF_1kbHR_GFP KlⓥbLF_1kbHR_GFP Kl 5353 9(17.0)9 (17.0) 2(3.7)2 (3.7) 9(17.0)9 (17.0) 2(22.2)2 (22.2) bLF_100HR_GFP KlⓥbLF_100HR_GFP Kl 6262 9(14.5)9 (14.5) 6(9.7)6 (9.7) 9(14.5)9 (14.5) 00 bLF_40HR_GFP KlⓥbLF_40HR_GFP Kl 7777 14(18.2)14 (18.2) 9(11.7)9 (11.7) 15(19.5)15 (19.5) 4(26.7)4 (26.7)

7-2: 넉-인 벡터가 도입된 수정란의 염기서열 분석7-2: Nucleotide Sequence Analysis of Embryos Inserted with Knock-in Vectors

본 발명자들은 넉-인이 확인된 수정란은 염기서열을 분석하기 위하여 상기 실시예 7-1의 PCR 산물 1 ㎍를 주형으로 사용하고 bLF 5 Sc S3(서열번호 33)와 bLF ScAS9(서열번호 34) 프라이머 세트 및 KOD Fx neo(Toyobo, Osaka, Japan)를 사용하여 98℃ 20초, 68℃ 30초, 72℃ 2분 27 사이클 조건으로 2nd PCR을 수행하였고 전기영동을 통해 0.8% 아가로스 젤에서 약 1.7 kb의 PCR 산물을 확인하였다. 그 후 5 U의 Go taq DNA polymerase(Promega, Madison, WI, USA)를 첨가하고 72℃에서 15분 동안 반응하여 A tailing한 후 QIAgen quick Gel extract Kit(QIAgen, Hilden, Germany)을 이용해 정제한 산물을 pGEM-T.easy vector(Promega, Madison, WI, USA)에 서브클로닝하여 플라스미드 DNA를 확보하였다. 상기 확보한 플라스미드 DNA는 Genetyx-win(version4.0)을 사용하여 염기서열을 확인하였다. 따라서 를 CRISPR/Cas9과 함께 소 수정란에 미세주입하여 상동재조합에 의해 넉-인이 발생한 수정란의 염기서열을 분석하였다. The present inventors used bLF 5 Sc S3 (SEQ ID NO: 33) and bLF ScAS9 (SEQ ID NO: 34) using 1 ㎍ of the PCR product of Example 7-1 as a template to analyze the nucleotide sequence of knock- Second PCR was carried out using primer sets and KOD Fx neo (Toyobo, Osaka, Japan) at 98 ° C for 20 seconds, 68 ° C for 30 seconds, and 72 ° C for 2 minutes and 27 cycles, and electrophoresis was performed in 0.8% agarose gel A 1.7 kb PCR product was identified. Then, 5 U of goat DNA polymerase (Promega, Madison, Wis., USA) was added and reacted for 15 min at 72 ° C for A tailing. The product purified using QIAgen quick gel extract kit (QIAgen, Hilden, Germany) Were subcloned into pGEM-T.easy vector (Promega, Madison, Wis., USA) to obtain plasmid DNA. The obtained plasmid DNA was sequenced using Genetyx-win (version 4.0). Therefore, the nucleotide sequences of knock-in embryos were analyzed by homologous recombination by microinjection into bovine embryos with CRISPR / Cas9.

그 결과 두 가지 벡터(bLF_1kbHR_GFP KI ⓥ 및 bLF_40HR_GFP KI ⓥ)를 사용했을 때 모두 상동재조합이 발생하여 넉-인 벡터의 5'-아암(arm), F2A 염기서열 및 소 락토페린 유전자의 염기서열이 삽입된 것을 확인하였고 벡터 구축 시 사용한 제한효소 Xho I 부위(ctcgag)의 ctc가 제거된 것을 확인하였다. 그러나 상기 넉-인된 서열을 아미노산으로 변화시켜 보면 ctc의 제거가 아미노산 L을 합성하지 않지만 전체적인 아미노산 서열에는 이상이 없는 것으로 나타났다(도 6).As a result, homologous recombination occurred when two vectors (bLF_1kbHR_GFP KI ⓥ and bLF_40HR_GFP KI ⓥ) were used, and the nucleotide sequences of the 5'-arm, F2A base and bovine lactoferrin gene of the knock-in vector were inserted And the ctc of the restriction enzyme Xho I site (ctcgag) used in vector construction was removed. However, when the knocked-in sequence was changed to an amino acid, the elimination of ctc did not synthesize the amino acid L, but the amino acid sequence was not found to be abnormal (FIG. 6).

결론적으로, 본 발명의 소 락토페린 발현을 위한 넉-인 벡터 및 이를 이용한 소 수정란에서 넉-인 방법은 소 베타-카세인 유전자의 엑손 7 위치에 소 락토페린 유전자를 타게팅할 수 있는 넉-인 벡터를 유전자가위(CRISPR/Cas9)과 함께 소의 전핵기 수정란에 미세주입하여 수정란에서 상동유전자 재조합을 통해 종래의 체세포 핵치환방법과 비교하여 높은 형질전환 수정란을 확보할 수 있고 이를 이식하여 소 락토페린이 소 베타-카제인과 융합된 형태로 유즙이 분비되는 항균 및 항바이러스 기능을 갖는 유방염에 저항성이 높은 젖소를 대량생산할 수 있다. In conclusion, the knock-in vector for the expression of bovine lactoferrin and the knock-in method using the bovine lactoferrin expression vector of the present invention can be used as a knock-in vector capable of targeting the bovine lactoferrin gene to the exon 7 position of the sub- (CRISPR / Cas9) to obtain a high transgenic embryo compared to conventional somatic cell nuclear transfer through homologous gene recombination in fertilized embryos and transplanting it into a sub-beta- It is possible to mass-produce dairy cows that are highly resistant to mastitis that has antibacterial and antiviral functions that are secreted in milk in a form fused with casein.

본 발명은 상술한 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

<110> INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY <120> Knock-in vector for expression of bovine lactoferrin and knock-in method in the bovine embryo using the same <130> PD18-5665 <160> 37 <170> KoPatentIn 3.0 <210> 1 <211> 1056 <212> DNA <213> Artificial Sequence <220> <223> bLF_1kbHR_GFP KI vector 5'arm <400> 1 ggcacttagg ccaaattcta aatcaaaatg aatttacaac ttgatgcctt tgaagactca 60 agattaccac cttctaccaa gagaagtagt gctagaagtt ggccattgtt aaggaactcc 120 ttgaattaaa aaaacacata ttaagactta gttttcatta aaacaaacaa aaataaacct 180 cagagtaact tttaaagtct ttttaaaatg gatctttctt tgttatatga aaccagtttg 240 gactattatc caaagtatgt agccaccact ctgcaggcaa ctcaggaaga ggtggaataa 300 gtgttgaaat ctccaaaccc tgatttcact tgactctctg atttcacctg tgaagaaagt 360 gggttaatga gaaatccttc agtgagcatt ttactcatta gtcttcatat gaccccaatt 420 tcttaaccaa accaaatgga agattttctt tctctctctt cactgaatta tgttttaaaa 480 agaggaggat aattcatcat gaataacaat tataactgga ttatggactc aaagatttgt 540 tttccttctt tccaggatga actccaggat aaaatccacc cctttgccca gacacagtct 600 ctagtctatc ccttccctgg gcccatccct aacagcctcc cacaaaacat ccctcctctt 660 actcaaaccc ctgtggtggt gccgcctttc cttcagcctg aagtaatggg agtctccaaa 720 gtgaaggagg ctatggctcc taagcacaaa gaaatgccct tccctaaata tccagttgag 780 ccctttactg aaagccagag cctgactctc actgatgttg aaaatctgca ccttcctctg 840 cctctgctcc agtcttggat gcaccagcct caccagcctc ttcctccaac tgtcatgttt 900 cctcctcagt ccgtgctgtc cctttctcag tccaaagtcc tgcctgttcc ccagaaagca 960 gtgccctatc cccagagaga tatgcccatt caggcctttc tgctctacca agagcctgta 1020 ctaggtcctg tccggggacc ctttcctatc attgtc 1056 <210> 2 <211> 116 <212> DNA <213> Artificial Sequence <220> <223> bLF_100HR_GFP KI vector 5'arm <400> 2 gcggccgcaa agcagtgccc tatccccaga gagatatgcc cattcaggcc tttctgctct 60 accaagagcc tgtactaggt cctgtccggg gaccctttcc tatcattgtc ctcgag 116 <210> 3 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> bLF_40HR_GFP KI vector 5'arm <400> 3 gcggccgccc tgtactaggt cctgtccggg gaccctttcc tatcattgtc ctcgag 56 <210> 4 <211> 1792 <212> DNA <213> Artificial Sequence <220> <223> bLF_1kbHR_GFP KI vector 3'arm <400> 4 ctaactgtgc tgtttaactt ctgatgtttg tatgatattc gagtaattaa gagtcctata 60 aaaaaatgaa taatgaatgg ttccaaaata agcatagctg agattaatga ttgtcagcat 120 tagttataaa tagaataagc tggagaactt tcacctcccc tccaccacca gatctcaatg 180 tctaggctta cccgtggaga ttctgatgta attgttcttt ctatgtagaa gaaacttatt 240 gggaagaaat aatataatgg actatgattt aattggtctg ttgagaccaa ttaaattaga 300 tgaaggcgat taaggtacaa taaagccaga attgaatttg ataatctcat ttggctaaga 360 ataacaaacc taagaaggtt tgctattttc tacaattttg aagttctcct tatgcacaat 420 tatttcacca catgactcat ttcacatctt gtttttgata tatgagcata tgagggaaaa 480 atactgagat gcttatttca atactcaggg aaaattttct tgccaaaagg caagaattgt 540 ataaatcatt cacttatttt attttattat tttttttatt tttaaggtct aagaggattt 600 caaagtgaat gccccctcct cacttttggt aggctttagg atattggagg cagactgatc 660 atttttatag ttaatatctt ttacatttca ttttcctgga taagctccaa tagtagcaat 720 ttccatcagt gtaccagctt aaagattaat tataaattta ttttcaatga ttgactgtta 780 tttactggcc tgaaattatg tatctgttat atttcaaata atgcaaaact gtatatatat 840 ggtgtttaca gatttgattg gttttctttc aatagcctat atccttatta ttgattgtca 900 tcatttatag aaaaaactga aaataatttc ttatactttt atgtaaacct gttagagctt 960 attttaaaga tcaactgcat tcacatttct aatctagtca ttatgagctt caatagtttt 1020 atctcactta aaatatatat attgtctttt aattcatgag tcaaaataca atctcacagt 1080 ccagatatgg gacttaaaag ggggatagaa tatagttttg atattcttaa caatacacat 1140 ccttttgtga tcatgattca gcagacattt taataaaatg attccaagta agccgatgtt 1200 tggtcctaga ggaattttta taacctttaa gagaaggcat agcatggtgt ttttgtaata 1260 agatttcttt tatgaaaaag tcacaccaaa attgcaaatg gggtgagatg aagagttata 1320 acatataact aaatctatgt ttgttctcta ttccacagaa ttgactgcga ctggaaatat 1380 ggcaactttt caatccttgc atcatgttac taagataatt tttaaatgag tatacatgga 1440 acaaaaaatg aaactttatt cctttattta ttttatgctt tttcatctta atttgaattt 1500 gagtcataaa ctatatattt caaaatttta attcaacatt agcataaaag ttcaatttta 1560 acttggaaat atcatgaaca tatcaaaata tgtataaaaa taatttctgg aattgtgatt 1620 attatttctt taagaatcta tttcctaacc agtcatttca ataaattaat ccttaggcat 1680 atttaagttt tcttgtcttt attatatttt ttttaatgaa attggtctct ttattgttaa 1740 cttaaattta tctttgatgt taaaaagagc tgtggaaaat taaaattgaa ta 1792 <210> 5 <211> 112 <212> DNA <213> Artificial Sequence <220> <223> bLF_100HR_GFP KI vector 3'arm <400> 5 aagcttctaa ctgtgctgtt taacttctga tgtttgtatg atattcgagt aattaagagt 60 cctataaaaa aatgaataat gaatggttcc aaaataagca tagctggtcg ac 112 <210> 6 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> bLF_40HR_GFP KI vector 3'arm <400> 6 aagcttctaa ctgtgctgtt taacttctga tgtttgtatg atattcgtcg ac 52 <210> 7 <211> 2127 <212> DNA <213> Artificial Sequence <220> <223> bovine lactoferrin gene <400> 7 atgaagctct tcgtccccgc cctgctgtcc cttggagccc ttggactgtg tctggctgcc 60 ccgaggaaaa acgttcgatg gtgtaccatc tcccaacctg agtggttcaa atgccgccga 120 tggcagtgga ggatgaagaa gctgggtgct ccctctatca cctgtgtgag gagggccttt 180 gccttggaat gtatccgggc catcgcggag aaaaaggcgg atgctgtgac cctggatggt 240 ggcatggtgt ttgaggcggg ccgggacccc tacaaactgc ggccagtagc agcagagatc 300 tatgggacga aagagtctcc ccaaacccac tattatgctg tggccgtcgt gaagaagggc 360 agcaactttc agctggacca gctgcaaggc cggaagtcct gccatacggg ccttggcagg 420 tccgctgggt ggatcatccc tatgggaatc cttcgcccgt acttgagctg gacagagtca 480 ctcgagcccc tccagggagc tgtggctaaa ttcttctctg ccagctgtgt tccctgcatt 540 gatagacaag cataccccaa cctgtgtcaa ctgtgcaagg gggaggggga gaaccagtgt 600 gcctgctcct cccgggaacc atacttcggt tattctggtg ccttcaagtg tctgcaggac 660 ggggctggag acgtggcttt tgttaaagag acgacagtgt ttgagaactt gccagagaag 720 gctgacaggg accagtatga gcttctctgc ctgaacaaca gtcgggcgcc agtggatgcg 780 ttcaaggagt gccacctggc ccaggtccct tctcatgctg tcgtggcccg aagtgtggat 840 ggcaaggaag acttgatctg gaagcttctc agcaaggcgc aggagaaatt tggaaaaaac 900 aagtctcgga gcttccagct ctttggctct ccacccggcc agagggacct gctgttcaaa 960 gactctgctc ttgggttttt gaggatcccc tcgaaggtag attcggcgct gtacctgggc 1020 tcccgctact tgaccacctt gaagaacctc agggaaactg cggaggaggt gaaggcgcgg 1080 tacaccaggg tcgtgtggtg tgccgtggga cctgaggagc agaagaagtg ccagcagtgg 1140 agccagcaga gcggccagaa cgtgacctgt gccacggcgt ccaccactga cgactgcatc 1200 gtcctggtgc tgaaagggga agcagatgcc ctgaacttgg atggaggata tatctacact 1260 gcgggcaagt gtggcctggt gcctgtcctg gcagagaacc ggaaatcctc caaacacagt 1320 agcctagatt gtgtgctgag accaacggaa ggctaccttg ccgtggcagt tgtcaagaaa 1380 gcaaatgagg ggctcacatg gaattctctg aaagacaaga agtcgtgcca caccgccgtg 1440 gacaggactg caggctggaa catccccatg ggcctgatcg tcaaccagac aggctcctgc 1500 gcatttgatg aattctttag tcagagctgt gcccctgggg ctgacccgaa atccagactc 1560 tgtgccttgt gtgctggcga tgaccagggc ctggacaagt gtgtgcccaa ctctaaggag 1620 aagtactatg gctataccgg ggctttcagg tgcctggctg aggacgttgg ggacgttgcc 1680 tttgtgaaaa acgacacagt ctgggagaac acgaatggag agagcactgc agactgggct 1740 aagaacttga atcgtgagga cttcaggttg ctctgcctcg atggcaccag gaagcctgtg 1800 acggaggctc agagctgcca cctggcggtg gccccgaatc acgctgtggt gtctcggagc 1860 gatagggcag cacacgtgaa acaggtgctg ctccaccagc aggctctgtt tgggaaaaat 1920 ggaaaaaact gcccggacaa gttttgtttg ttcaaatctg aaaccaaaaa ccttctgttc 1980 aatgacaaca ctgagtgtct ggccaaactt ggaggcagac caacgtatga agaatatttg 2040 gggacagagt atgtcacggc cattgccaac ctgaaaaaat gctcaacctc cccgcttctg 2100 gaagcctgcg ccttcctgac gaggtaa 2127 <210> 8 <211> 227 <212> DNA <213> Artificial Sequence <220> <223> bovine growth hormone poly A <400> 8 cgactgtgcc ttctagttgc cagccatctg ttgtttgccc ctcccccgtg ccttccttga 60 ccctggaagg tgccactccc actgtccttt cctaataaaa tgaggaaatt gcatcgcatt 120 gtctgagtag gtgtcattct attctggggg gtggggtggg gcaggacagc aagggggagg 180 attgggaaga caatagcagg catgctgggg atgcggtggg ctctatg 227 <210> 9 <211> 84 <212> DNA <213> Artificial Sequence <220> <223> Purin-F2A <400> 9 agaaaaagaa gggctcctgt caaacaaact cttaactttg atttactcaa actggctggg 60 gatgtagaaa gcaatccagg tcca 84 <210> 10 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> bLF KpnI S <400> 10 ggtaccatga agctcttcct ccccgccctg ctgt 34 <210> 11 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> bLF XbaI AS <400> 11 tctagattac ctcgtcagga aggcgcaggc ttc 33 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> bLF KpnI mutation AS <400> 12 caaggtagcc ttccgttggt 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> bLF KpnI mutation S <400> 13 accaacggaa ggctaccttg 20 <210> 14 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> bLF XbaI mutation AS <400> 14 gctctagact acattctgta gttcttgttt cct 33 <210> 15 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> 100HR NotI S <400> 15 gcgcggccgc aaagcagtgc cctatcc 27 <210> 16 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 100HR SalI AS <400> 16 gcgtcgacag ctatgcttat tttggaac 28 <210> 17 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> 40HR NotI S <400> 17 gcgcggccgc cctgtactag gtcctgtcc 29 <210> 18 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 40HR SalI AS <400> 18 gcgtcgacga atatcataca aacatcag 28 <210> 19 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> b beta CE7-2 sgRNA oligo <400> 19 gcctgcagta atacgactca ctatagcaat aatagggaag ggtcccgttt tagagctaga 60 aatagcaag 69 <210> 20 <211> 88 <212> DNA <213> Artificial Sequence <220> <223> Constant oligo <400> 20 gcgaattcaa aagcaccgac tcggtgccac tttttcaagt tgataacgga ctagccttat 60 tttaacttgc tatttctagc tctaaaac 88 <210> 21 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Oligo S <400> 21 gcctgcagta atacgactca ctatag 26 <210> 22 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Oligo AS <400> 22 gcgaattcaa aagcaccgac tcggtg 26 <210> 23 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> E7 indel S1 <400> 23 taccactctg caggcaactc aggaaga 27 <210> 24 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> E7 indel AS1 <400> 24 ggtaagccta gacattgaga tctggtg 27 <210> 25 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> E7 indel S2 <400> 25 ggagtctcca aagtgaagga ggctatgg 28 <210> 26 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> E7 indel AS2 <400> 26 ctcagctatg cttattttgg aaccattc 28 <210> 27 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> pBSK(-) 1 sgRNA oligo <400> 27 gcctgcagta atacgactca ctataggcaa aagctggagc tccaccggtt ttagagctag 60 aaatagcaag 70 <210> 28 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> pBSK(-) SalI sgRNA oligo <400> 28 gcctgcagta atacgactca ctatagggta ccgggccccc cctcggtttt agagctagaa 60 atagcaag 68 <210> 29 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> bRAD51 NotI S <400> 29 gcggccgcca ccatggctat gcaaatgcag ct 32 <210> 30 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> bRAD51 XbaI AS <400> 30 ctagaaattc agtctttggc atctccca 28 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pRC-CMV T7 pro S <400> 31 taatacgact cactataggg 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pRC-CMV BGH pA AS <400> 32 tccccagcat gcctgctatt 20 <210> 33 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> bLF 5 Sc S3 <400> 33 tgcccagatg agagaagtga ggtacaggac 30 <210> 34 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> bLF 5 Sc AS9 <400> 34 cagggtcaca gcatccgcct ttttctccgc 30 <210> 35 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> exon 7 target sgRNA <400> 35 aataataggg aagggtcccc gg 22 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> pBSK(-) 1 sgRNA <400> 36 caaaagctgg agctccaccg cgg 23 <210> 37 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> pBSK(-) SalI sgRNA <400> 37 gggtaccggg ccccccctcg agg 23 <110> INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY <120> Knock-in vector for expression of bovine lactoferrin and knock-in          method in the bovine embryo using the same <130> PD18-5665 <160> 37 <170> KoPatentin 3.0 <210> 1 <211> 1056 <212> DNA <213> Artificial Sequence <220> <223> bLF_1kbHR_GFP KI vector 5'arm <400> 1 ggcacttagg ccaaattcta aatcaaaatg aatttacaac ttgatgcctt tgaagactca 60 agattaccac cttctaccaa gagaagtagt gctagaagtt ggccattgtt aaggaactcc 120 ttgaattaaa aaaacacata ttaagactta gttttcatta aaacaaacaa aaataaacct 180 cagagtaact tttaaagtct ttttaaaatg gatctttctt tgttatatga aaccagtttg 240 gactattatc caaagtatgt agccaccact ctgcaggcaa ctcaggaaga ggtggaataa 300 gtgttgaaat ctccaaaccc tgatttcact tgactctctg atttcacctg tgaagaaagt 360 gt; tcttaaccaa accaaatgga agattttctt tctctctctt cactgaatta tgttttaaaa 480 agaggaggat aattcatcat gaataacaat tataactgga ttatggactc aaagatttgt 540 tttccttctt tccaggatga actccaggat aaaatccacc cctttgccca gacacagtct 600 ctagtctatc ccttccctgg gcccatccct aacagcctcc cacaaaacat ccctcctctt 660 actcaaaccc ctgtggtggt gccgcctttc cttcagcctg aagtaatggg agtctccaaa 720 gtgaaggagg ctatggctcc taagcacaaa gaaatgccct tccctaaata tccagttgag 780 ccctttactg aaagccagag cctgactctc actgatgttg aaaatctgca ccttcctctg 840 cctctgctcc agtcttggat gcaccagcct caccagcctc ttcctccaac tgtcatgttt 900 cctcctcagt ccgtgctgtc cctttctcag tccaaagtcc tgcctgttcc ccagaaagca 960 gtgccctatc cccagagaga tatgcccatt caggcctttc tgctctacca agagcctgta 1020 ctaggtcctg tccggggacc ctttcctatc attgtc 1056 <210> 2 <211> 116 <212> DNA <213> Artificial Sequence <220> <223> bLF_100HR_GFP KI vector 5'arm <400> 2 gcggccgcaa agcagtgccc tatccccaga gagatatgcc cattcaggcc tttctgctct 60 accaagagcc tgtactaggt cctgtccggg gaccctttcc tatcattgtc ctcgag 116 <210> 3 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> bLF_40HR_GFP KI vector 5'arm <400> 3 gcggccgccc tgtactaggt cctgtccggg gaccctttcc tatcattgtc ctcgag 56 <210> 4 <211> 1792 <212> DNA <213> Artificial Sequence <220> <223> bLF_1kbHR_GFP KI vector 3'arm <400> 4 ctaactgtgc tgtttaactt ctgatgtttg tatgatattc gagtaattaa gagtcctata 60 aaaaaatgaa taatgaatgg ttccaaaata agcatagctg agattaatga ttgtcagcat 120 tagttataaa tagaataagc tggagaactt tcacctcccc tccaccacca gatctcaatg 180 tctaggctta cccgtggaga ttctgatgta attgttcttt ctatgtagaa gaaacttatt 240 gggaagaaat aatataatgg actatgattt aattggtctg ttgagaccaa ttaaattaga 300 tgaaggcgat taaggtacaa taaagccaga attgaatttg ataatctcat ttggctaaga 360 ataacaaacc taagaaggtt tgctattttc tacaattttg aagttctcct tatgcacaat 420 tatttcacca catgactcat ttcacatctt gtttttgata tatgagcata tgagggaaaa 480 atactgagat gcttatttca atactcaggg aaaattttct tgccaaaagg caagaattgt 540 ataaatcatt cacttatttt attttattat tttttttatt tttaaggtct aagaggattt 600 caaagtgaat gccccctcct cacttttggt aggctttagg atattggagg cagactgatc 660 atttttatag ttaatatctt ttacatttca ttttcctgga taagctccaa tagtagcaat 720 ttccatcagt gtaccagctt aaagattaat tataaattta ttttcaatga ttgactgtta 780 tttactggcc tgaaattatg tatctgttat atttcaaata atgcaaaact gtatatatat 840 ggtgtttaca gatttgattg gttttctttc aatagcctat atccttatta ttgattgtca 900 tcatttatag aaaaaactga aaataatttc ttatactttt atgtaaacct gttagagctt 960 attttaaaga tcaactgcat tcacatttct aatctagtca ttatgagctt caatagtttt 1020 atctcactta aaatatatat attgtctttt aattcatgag tcaaaataca atctcacagt 1080 ccagatatgg gacttaaaag ggggatagaa tatagttttg atattcttaa caatacacat 1140 ccttttgtga tcatgattca gcagacattt taataaaatg attccaagta agccgatgtt 1200 tggtcctaga ggaattttta taacctttaa gagaaggcat agcatggtgt ttttgtaata 1260 agatttcttt tatgaaaaag tcacaccaaa attgcaaatg gggtgagatg aagagttata 1320 acatataact aaatctatgt ttgttctcta ttccacagaa ttgactgcga ctggaaatat 1380 ggcaactttt caatccttgc atcatgttac taagataatt tttaaatgag tatacatgga 1440 acaaaaaatg aaactttatt cctttattta ttttatgctt tttcatctta atttgaattt 1500 gagtcataaa ctatatattt caaaatttta attcaacatt agcataaaag ttcaatttta 1560 acttggaaat atcatgaaca tatcaaaata tgtataaaaa taatttctgg aattgtgatt 1620 attatttctt taagaatcta tttcctaacc agtcatttca ataaattaat ccttaggcat 1680 atttaagttt tcttgtcttt attatatttt ttttaatgaa attggtctct ttattgttaa 1740 cttaaattta tctttgatgt taaaaagagc tgtggaaaat taaaattgaa ta 1792 <210> 5 <211> 112 <212> DNA <213> Artificial Sequence <220> <223> bLF_100HR_GFP KI vector 3'arm <400> 5 aagcttctaa ctgtgctgtt taacttctga tgtttgtatg atattcgagt aattaagagt 60 cctataaaaa aatgaataat gaatggttcc aaaataagca tagctggtcg ac 112 <210> 6 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> bLF_40HR_GFP KI vector 3'arm <400> 6 aagcttctaa ctgtgctgtt taacttctga tgtttgtatg atattcgtcg ac 52 <210> 7 <211> 2127 <212> DNA <213> Artificial Sequence <220> <223> bovine lactoferrin gene <400> 7 atgaagctct tcgtccccgc cctgctgtcc cttggagccc ttggactgtg tctggctgcc 60 ccgaggaaaa acgttcgatg gtgtaccatc tcccaacctg agtggttcaa atgccgccga 120 tggcagtgga ggatgaagaa gctgggtgct ccctctatca cctgtgtgag gagggccttt 180 gccttggaat gtatccgggc catcgcggag aaaaaggcgg atgctgtgac cctggatggt 240 ggcatggtgt ttgaggcggg ccgggacccc tacaaactgc ggccagtagc agcagagatc 300 tatgggacga aagagtctcc ccaaacccac tattatgctg tggccgtcgt gaagaagggc 360 agcaactttc agctggacca gctgcaaggc cggaagtcct gccatacggg ccttggcagg 420 tccgctgggt ggatcatccc tatgggaatc cttcgcccgt acttgagctg gacagagtca 480 ctcgagcccc tccagggagc tgtggctaaa ttcttctctg ccagctgtgt tccctgcatt 540 gatagacaag cataccccaa cctgtgtcaa ctgtgcaagg gggaggggga gaaccagtgt 600 gcctgctcct cccgggaacc atacttcggt tattctggtg ccttcaagtg tctgcaggac 660 ggggctggag acgtggcttt tgttaaagag acgacagtgt ttgagaactt gccagagaag 720 gctgacaggg accagtatga gcttctctgc ctgaacaaca gtcgggcgcc agtggatgcg 780 ttcaaggagt gccacctggc ccaggtccct tctcatgctg tcgtggcccg aagtgtggat 840 ggcaaggaag acttgatctg gaagcttctc agcaaggcgc aggagaaatt tggaaaaaac 900 aagtctcgga gcttccagct ctttggctct ccacccggcc agagggacct gctgttcaaa 960 gactctgctc ttgggttttt gaggatcccc tcgaaggtag attcggcgct gtacctgggc 1020 tcccgctact tgaccacctt gaagaacctc agggaaactg cggaggaggt gaaggcgcgg 1080 tacaccaggg tcgtgtggtg tgccgtggga cctgaggagc agaagaagtg ccagcagtgg 1140 agccagcaga gcggccagaa cgtgacctgt gccacggcgt ccaccactga cgactgcatc 1200 gtcctggtgc tgaaagggga agcagatgcc ctgaacttgg atggaggata tatctacact 1260 gcgggcaagt gtggcctggt gcctgtcctg gcagagaacc ggaaatcctc caaacacagt 1320 agcctagatt gtgtgctgag accaacggaa ggctaccttg ccgtggcagt tgtcaagaaa 1380 gcaaatgagg ggctcacatg gaattctctg aaagacaaga agtcgtgcca caccgccgtg 1440 gacaggactg caggctggaa catccccatg ggcctgatcg tcaaccagac aggctcctgc 1500 gcatttgatg aattctttag tcagagctgt gcccctgggg ctgacccgaa atccagactc 1560 tgtgccttgt gtgctggcga tgaccagggc ctggacaagt gtgtgcccaa ctctaaggag 1620 aagtactatg gctataccgg ggctttcagg tgcctggctg aggacgttgg ggacgttgcc 1680 tttgtgaaaa acgacacagt ctgggagaac acgaatggag agagcactgc agactgggct 1740 aagaacttga atcgtgagga cttcaggttg ctctgcctcg atggcaccag gaagcctgtg 1800 acggaggctc agagctgcca cctggcggtg gccccgaatc acgctgtggt gtctcggagc 1860 gatagggcag cacacgtgaa acaggtgctg ctccaccagc aggctctgtt tgggaaaaat 1920 ggaaaaaact gcccggacaa gttttgtttg ttcaaatctg aaaccaaaaa ccttctgttc 1980 aatgacaaca ctgagtgtct ggccaaactt ggaggcagac caacgtatga agaatatttg 2040 gggacagagt atgtcacggc cattgccaac ctgaaaaaat gctcaacctc cccgcttctg 2100 gaagcctgcg ccttcctgac gaggtaa 2127 <210> 8 <211> 227 <212> DNA <213> Artificial Sequence <220> <223> bovine growth hormone poly <400> 8 cgactgtgcc ttctagttgc cagccatctg ttgtttgccc ctcccccgtg ccttccttga 60 ccctggaagg tgccactccc actgtccttt cctaataaaa tgaggaaatt gcatcgcatt 120 gtctgagtag gtgtcattct attctggggg gtggggtggg gcaggacagc aagggggagg 180 attgggaaga caatagcagg catgctgggg atgcggtggg ctctatg 227 <210> 9 <211> 84 <212> DNA <213> Artificial Sequence <220> <223> Purin-F2A <400> 9 agaaaaagaa gggctcctgt caaacaaact cttaactttg atttactcaa actggctggg 60 gatgtagaaa gcaatccagg tcca 84 <210> 10 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> bLF KpnI S <400> 10 ggtaccatga agctcttcct ccccgccctg ctgt 34 <210> 11 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> bLF XbaI AS <400> 11 tctagattac ctcgtcagga aggcgcaggc ttc 33 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> bLF KpnI mutation AS <400> 12 caaggtagcc ttccgttggt 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> bLF KpnI mutation S <400> 13 accaacggaa ggctaccttg 20 <210> 14 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> bLF XbaI mutation AS <400> 14 gctctagact acattctgta gttcttgttt cct 33 <210> 15 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> 100HR NotI S <400> 15 gcgcggccgc aaagcagtgc cctatcc 27 <210> 16 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 100HR SalI AS <400> 16 gcgtcgacag ctatgcttat tttggaac 28 <210> 17 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> 40HR NotI S <400> 17 gcgcggccgc cctgtactag gtcctgtcc 29 <210> 18 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 40HR SalI AS <400> 18 gcgtcgacga atatcataca aacatcag 28 <210> 19 <211> 69 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > b beta CE7-2 sgRNA oligo <400> 19 gcctgcagta atacgactca ctatagcaat aatagggaag ggtcccgttt tagagctaga 60 aatagcaag 69 <210> 20 <211> 88 <212> DNA <213> Artificial Sequence <220> <223> Constant oligo <400> 20 gcgaattcaa aagcaccgac tcggtgccac tttttcaagt tgataacgga ctagccttat 60 tttaacttgc tatttctagc tctaaaac 88 <210> 21 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Oligo S <400> 21 gcctgcagta atacgactca ctatag 26 <210> 22 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Oligo AS <400> 22 gcgaattcaa aagcaccgac tcggtg 26 <210> 23 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> E7 indel S1 <400> 23 taccactctg caggcaactc aggaaga 27 <210> 24 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> E7 indel AS1 <400> 24 ggtaagccta gacattgaga tctggtg 27 <210> 25 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> E7 indel S2 <400> 25 ggagtctcca aagtgaagga ggctatgg 28 <210> 26 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> E7 indel AS2 <400> 26 ctcagctatg cttattttgg aaccattc 28 <210> 27 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> pBSK (-) 1 sgRNA oligo <400> 27 gcctgcagta atacgactca ctataggcaa aagctggagc tccaccggtt ttagagctag 60 aaatagcaag 70 <210> 28 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> pBSK (-) SalI sgRNA oligo <400> 28 gcctgcagta atacgactca ctatagggta ccgggccccc cctcggtttt agagctagaa 60 atagcaag 68 <210> 29 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> bRAD51 NotI S <400> 29 gcggccgcca ccatggctat gcaaatgcag ct 32 <210> 30 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> bRAD51 XbaI AS <400> 30 ctagaaattc agtctttggc atctccca 28 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pRC-CMV T7 pro S <400> 31 taatacgact cactataggg 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pRC-CMV BGH pA AS <400> 32 tccccagcat gcctgctatt 20 <210> 33 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> bLF 5 Sc S3 <400> 33 tgcccagatg agagaagtga ggtacaggac 30 <210> 34 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> bLF 5 Sc AS9 <400> 34 cagggtcaca gcatccgcct ttttctccgc 30 <210> 35 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> exon 7 target sgRNA <400> 35 aataataggg aagggtcccc gg 22 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> pBSK (-) 1 sgRNA <400> 36 caaaagctgg agctccaccg cgg 23 <210> 37 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> pBSK (-) SalI sgRNA <400> 37 gggtaccggg ccccccctcg agg 23

Claims (15)

5'-아암(arm)으로서, 서열번호 3으로 기재되는 핵산서열로 구성되며 소 베타-카제인 게놈 DNA의 프로모터, 엑손 7의 일부를 포함하는 5'-말단 단편;
치료용 단백질(therapeutic protein)을 암호화하는 유전자; 및
3'-아암(arm)으로서, 서열번호 6으로 기재되는 핵산서열로 구성되며 소 베타-카제인 게놈 DNA의 엑손 7 및 8 사이의 인트론 부분을 포함하는, 소 베타-카제인 게놈 DNA 넉-인 벡터.
A 5'-arm fragment comprising a nucleic acid sequence as set forth in SEQ ID NO: 3 and comprising a promoter of a sub-beta-casein genomic DNA, a portion of exon 7;
A gene encoding a therapeutic protein; And
A 3'-arm, comprising a nucleic acid sequence as set forth in SEQ ID NO: 6 and comprising an intron portion between exons 7 and 8 of a sub-beta-casein genomic DNA.
제1항에 있어서,
상기 치료용 단백질은 소 락토페린(bovine lactoferrin)인, 넉-인 벡터.
The method according to claim 1,
The therapeutic protein is bovine lactoferrin, a knock-in vector.
제2항에 있어서,
상기 소 락토페린을 코딩하는 유전자는 서열번호 7로 기재되는 핵산서열로 구성되는 폴리뉴클레오티드인, 넉-인 벡터.
3. The method of claim 2,
Wherein the gene encoding the bovine lactoferrin is a polynucleotide consisting of a nucleic acid sequence represented by SEQ ID NO: 7.
제2항에 있어서,
상기 소 락토페린을 코딩하는 유전자의 3' 말단에 polyA 신호가 추가로 연결된, 넉-인 벡터.
3. The method of claim 2,
A knock-in vector to which a polyA signal is additionally attached to the 3 'end of the gene encoding the bovine lactoferrin.
제2항에 있어서,
상기 소 락토페린을 코딩하는 유전자의 3' 말단에 융합 형광 단백질의 발현을 확인하기 위한 리포터 유전자(reporter gene)가 추가로 연결된, 넉-인 벡터.
3. The method of claim 2,
A knock-in vector further comprising a reporter gene for confirming the expression of the fusion fluorescent protein at the 3 'end of the gene encoding the bovine lactoferrin.
제5항에 있어서,
상기 형광단백질은 녹색형광단백질(green fluorescent protein, GFP), 황색형광단백질(yellow fluorescent protein, YFP), 적색형광단백질(red fluorescent protein, RFP), 주황형광단백질(orange fluorescent protein, OFP), 청록색형광단백질(cyan fluorescent protein, CFP), 청색형광단백질(blue fluorescent protein, BFP) 또는 원적색형광단백질(far-red fluorescent protein)인, 넉-인 벡터.
6. The method of claim 5,
The fluorescent protein may be selected from the group consisting of green fluorescent protein (GFP), yellow fluorescent protein (YFP), red fluorescent protein (RFP), orange fluorescent protein (OFP) Knock-in vector, which is a cyan fluorescent protein (CFP), a blue fluorescent protein (BFP), or a far-red fluorescent protein.
제1항에 있어서,
양성 선별마커(positive selectable marker) 또는 음성 선별마커(negative selectable marker)를 포함하는, 넉-인 벡터.
The method according to claim 1,
A knock-in vector comprising a positive selectable marker or a negative selectable marker.
제7항에 있어서,
상기 양성 선별마커는 네오(neo) 유전자, 퓨로마이신(puromycin) 저항성 유전자 또는 지오신(zeocin) 저항성 유전자인, 넉-인 벡터.
8. The method of claim 7,
Wherein the positive selection marker is a neo gene, a puromycin resistance gene, or a zeocin resistance gene.
제1항 내지 제7항 중 어느 한 항의 넉-인 벡터;
소 베타-카제인 게놈 DNA 엑손 7 표적용 sgRNA;
상기 넉-인 벡터의 5'-아암 표적용 sgRNA;
상기 넉-인 벡터의 3'-아암 표적용 sgRNA; 및
Cas9 또는 상기 Cas9을 암호화하는 폴리뉴클레오타이드를 포함하는, 소 베타-카제인 게놈 DNA 넉-인용 조성물.
A knock-in vector as claimed in any one of claims 1 to 7;
SUBBETA-casein genome DNA exon 7 TABLE-US-00086 sgRNA;
5'-arm labeled sgRNA of the knock-in vector;
3'-arm labeled sgRNA of the knock-in vector; And
Cas9 or a polynucleotide encoding said Cas9.
제9항에 있어서,
상기 소 베타-카제인 게놈 DNA 엑손 7 표적용 sgRNA는 서열번호 35로 기재되는 핵산서열을 표적으로 하는, 조성물.
10. The method of claim 9,
35. The composition of claim 21, wherein the sβRNA is a nucleic acid sequence as set forth in SEQ ID NO: 35.
제9항에 있어서,
상기 넉-인 벡터의 5'-아암 표적용 sgRNA 서열번호 36으로 기재되는 핵산서열을 표적으로 하는, 조성물.
10. The method of claim 9,
36. A composition for targeting a nucleic acid sequence as set forth in SEQ ID NO: 36 of a 5'-arm sgRNA of the knock-in vector.
제9항에 있어서,
상기 넉-인 벡터의 3'-아암 표적용 sgRNA 서열번호 37로 기재되는 핵산서열을 표적으로 하는, 조성물.
10. The method of claim 9,
37. The composition of claim 37, wherein the target is a nucleic acid sequence as set forth in SEQ ID NO: 37 of the 3'-arm of the knockin vector.
제9항에 있어서,
bRAD51 단백질 또는 상기 bRAD51 단백질을 암호화하는 폴리뉴클레오타이드를 추가로 포함하는, 소 베타-카제인 게놈 DNA 넉-인용 조성물.
10. The method of claim 9,
wherein the composition further comprises a bRAD51 protein or a polynucleotide encoding the bRAD51 protein.
제9항의 소 베타-카제인 게놈 DNA 넉-인용 조성물을 소의 수정란에 미세주입하는 미세주입단계;
상기 미세주입한 수정란을 배반포기까지 배양하는 배양단계;
상기 배반포기 수정란의 DNA를 추출하여 PCR로 증폭하는 증폭단계; 및
상기 증폭된 PCR 산물의 유무 및 크기를 판별하여 상기 벡터가 소 베타-카제인 게놈 DNA의 제 위치로 삽입된 것을 확인하는, 소의 수정란에서의 베타-카제인 게놈 DNA로의 치료용 단백질을 암호화하는 유전자의 넉-인 방법.
A microinjection step of microinjecting the composition of sub-beta-casein genomic DNA knock-in of claim 9 into a fertilized egg of a cow;
Culturing the microinjected embryo to a blastocyst;
An amplification step of amplifying the DNA of the blastocyst embryo by PCR; And
The presence or absence and size of the amplified PCR product are determined and it is confirmed that the vector has been inserted into the place of the sub-beta-casein genomic DNA. The gene encoding the protein for treating beta-casein genomic DNA in bovine embryo -In method.
제9항의 소 베타-카제인 게놈 DNA 넉-인용 조성물로 소 수정란의 핵 내 베타-카제인 게놈 DNA를 넉-인시킨 유전자 재조합 소 수정란으로부터 발생시킨, 치료용 단백질의 대량생산용 형질전환 소.
A transformant for the mass production of a therapeutic protein, which is generated from a recombinant bovine embryo knocked out with a beta-casein genomic DNA in the nucleus of a bovine embryo with the composition of the sub-beta-casein genomic DNA knockout of claim 9.
KR1020180065639A 2018-06-07 2018-06-07 Knock-in vector for expression of bovine lactoferrin and knock-in method in the bovine embryo using the same KR101918607B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180065639A KR101918607B1 (en) 2018-06-07 2018-06-07 Knock-in vector for expression of bovine lactoferrin and knock-in method in the bovine embryo using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180065639A KR101918607B1 (en) 2018-06-07 2018-06-07 Knock-in vector for expression of bovine lactoferrin and knock-in method in the bovine embryo using the same

Publications (1)

Publication Number Publication Date
KR101918607B1 true KR101918607B1 (en) 2018-11-14

Family

ID=64328318

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180065639A KR101918607B1 (en) 2018-06-07 2018-06-07 Knock-in vector for expression of bovine lactoferrin and knock-in method in the bovine embryo using the same

Country Status (1)

Country Link
KR (1) KR101918607B1 (en)

Similar Documents

Publication Publication Date Title
US20220256822A1 (en) Genetic modification non-human organism, egg cells, fertilized eggs, and method for modifying target genes
JP2021121220A (en) Genetically modified non-human mammals by multi-cycle electroporation of cas9 protein
WO2012158986A2 (en) Methods for site-specific genetic modification in stem cells using xanthomonas tal nucleases (xtn) for the creation of model organisms
JP6004290B2 (en) Transgenic chickens with inactivated endogenous loci
US20170223938A1 (en) Transgenic chickens with an inactivated endogenous gene locus
AU2009266603B2 (en) Gene of porcine alpha-s1 casein, a promoter of the same and use thereof
CN110184301B (en) Efficient and accurate targeted integration through Tild-CRISPR
KR101863653B1 (en) Knock in vector for expressing lactoferrin and knock in method using thereof
JP2021166551A (en) Birds and bird eggs
JP2001513336A (en) Use of &#34;marina&#34; transposans in the production of transgenic animals
KR20190042152A (en) Knock-in vector for expression of bovine lactoferrin and knock-in method using the same
KR102636332B1 (en) Methods for producing non-human large mammals or fish that produce gametes of heterospecific origin
EP3562944A1 (en) Transgenic animals and method for bioproduction
US20200149063A1 (en) Methods for gender determination and selection of avian embryos in unhatched eggs
KR101918607B1 (en) Knock-in vector for expression of bovine lactoferrin and knock-in method in the bovine embryo using the same
WO2020240876A1 (en) Exon-humanized mouse
JP7426120B2 (en) Method for producing knock-in cells
CN106978416A (en) A kind of assignment of genes gene mapping integrant expression system and its application
US20230257768A1 (en) Poultry cell in which a gene encoding a protein of interest is knocked-in at egg white protein gene, and method for producing said poultry cell
KR101068479B1 (en) alpha 1,3-galactosyltransferase gene targeting vector and uses thereof
KR101821873B1 (en) Cmp-acetylneuraminic acid hydroxylase targeting vector, vector-transduced transgenic animal for xenotransplantation, and method for producing same
CN111073963B (en) Method for identifying gender of fertilized eggs of chickens in one day
US8980627B2 (en) Method for enabling stable expression of transgene
KR101628701B1 (en) A bovine knock-in vector and use thereof
Gadwe AN OVERVIEW OF METHODS USED FOR PRODUCTION OF TRANSGENIC ANIMALS AND TRANSGENE DIAGNOSTICS

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant