KR101863653B1 - Knock in vector for expressing lactoferrin and knock in method using thereof - Google Patents

Knock in vector for expressing lactoferrin and knock in method using thereof Download PDF

Info

Publication number
KR101863653B1
KR101863653B1 KR1020160069050A KR20160069050A KR101863653B1 KR 101863653 B1 KR101863653 B1 KR 101863653B1 KR 1020160069050 A KR1020160069050 A KR 1020160069050A KR 20160069050 A KR20160069050 A KR 20160069050A KR 101863653 B1 KR101863653 B1 KR 101863653B1
Authority
KR
South Korea
Prior art keywords
knock
vector
gene
fluorescent protein
seq
Prior art date
Application number
KR1020160069050A
Other languages
Korean (ko)
Other versions
KR20170137275A (en
Inventor
강만종
김세은
구덕본
박재영
Original Assignee
전남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교 산학협력단 filed Critical 전남대학교 산학협력단
Priority to KR1020160069050A priority Critical patent/KR101863653B1/en
Publication of KR20170137275A publication Critical patent/KR20170137275A/en
Application granted granted Critical
Publication of KR101863653B1 publication Critical patent/KR101863653B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Humanized animals, e.g. knockin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/40Transferrins, e.g. lactoferrins, ovotransferrins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/79Transferrins, e.g. lactoferrins, ovotransferrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/101Bovine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins

Abstract

본 발명은 치료용 단백질 생산용 넉-인 벡터 및 이를 이용한 넉-인 방법에 관한 것으로서, 5'-아암(arm)으로서, 서열번호 1로 기재되는 핵산서열을 갖는 폴리뉴클레오티드로 구성된 소 베타-카제인 게놈 DNA의 프로모터, 엑손 1 및 2를 포함하는 5' 말단 단편; 치료용 단백질(therapeutic protein)을 암호화하는 유전자; 및3'-아암(arm)으로서, 서열번호 2로 기재되는 핵산서열을 갖는 폴리뉴클레오티드로 구성된 소 베타-카제인 게놈 DNA의 엑손 3, 4, 5 및 6을 포함하는, 치료용 단백질 생산용 넉-인 벡터를 제공한다.The present invention relates to a knock-in vector for producing a therapeutic protein and a knock-in method using the knock-in vector. As a 5'-arm, there is provided a microorganism which comprises a microorganism having a nucleotide sequence of SEQ ID NO: A 5 'end fragment comprising the promoter of genomic DNA, exons 1 and 2; A gene encoding a therapeutic protein; And a 3'-arm, which comprises exon 3, 4, 5 and 6 of a sub-beta-casein genomic DNA consisting of a polynucleotide having the nucleic acid sequence set forth in SEQ ID NO: 2, Lt; / RTI > vector.

Description

락토페린 발현용 넉-인 벡터 및 이를 이용한 넉인 방법{Knock in vector for expressing lactoferrin and knock in method using thereof}Knock-in vectors for expressing lactoferrin and knock-in vectors using the knock-

본 발명은 넉-인 벡터 및 이를 이용한 넉인 방법에 관한 것으로서, 더 상세하게는 락토페린 발현용 넉-인 벡터 및 이를 이용한 넉인 방법에 관한 것이다. The present invention relates to a knock-in vector and a knock-in method using the same, and more particularly, to a knock-in vector for lactoferrin expression and a knock-in method using the knock-in vector.

형질전환동물(transgenic animal)은 인위적으로 동물의 유전체(genome)에 외래 유전자가 도입된 동물로 1982년 세계 최초로 미국의 Palmiter와 Brinster 그룹에 의하여 성장호르몬 유전자가 도입된 거대생쥐가 개발된 이후 1985년에는 Hammer 그룹에 의해서 가축인 토끼, 돼지 및 양에서도 사람 성장호르몬을 생산하는 형질전환 가축이 개발되었다. 형질전환동물의 생산 방법에는 미세주입법(microinjection), 레트로바이러스 벡터법(retroviral vector), 배아줄기세포 및 체세포를 이용한 동물 복제법 등이 이용되고 있는데 초기의 형질전환동물은 주로 외래 유전자를 전핵기 수정란의 핵에 미세조작기를 이용하여 미세주입한 후 대리모에 수정란을 이식하는 방법으로 생산되었다. 이러한 방법은 외래 유전자를 운반하는 벡터가 일반적인 프로모터(promoter)와 발현 하고자 하는 유전자를 연결하여 유전체(genome)에 무작위적으로 삽입되어 형질전환 산자의 생산 효율이 2 내지 3%로 매우 낮으며 삽입된 유전자의 위치도 프로모터 특이적으로 유전자의 발현이 되지 않거나 낮은 문제점이 있다. 이러한 문제점을 극복하기 위하여 유전자적중(gene targeting) 방법을 이용하여 가축의 체세포에서 특정 유전자를 조작한 후 그 체세포를 이용하여 복제동물을 생산하는 방법이 제시되었으나 이 또한 효율이 낮은 것으로 알려져 있다. 이와 관련하여 대한민국 등록특허 제1507600호는 치료용 단백질의 생산을 위하여 소 베타 카제인을 이용한 제조된 넉-인 벡터를 개시하고 있다. A transgenic animal is an artificially introduced foreign gene in the genome of an animal. It was first developed in 1982 by the Palmiter and Brinster groups of the United States in 1982, , Transgenic livestock were developed by the Hammer group to produce human growth hormone in rabbits, pigs and sheep, both of which are domestic animals. Methods for producing transgenic animals include microinjection, retroviral vector, animal cloning using embryonic stem cells and somatic cells. In the early transgenic animal, the foreign gene is mainly transferred to the nucleus embryo And then embryos were transplanted into the surrogate mother. In this method, a vector carrying a foreign gene is randomly inserted into a genome by linking a general promoter with a gene to be expressed, so that the production efficiency of the transformant is very low as 2 to 3% There is a problem that the gene is not expressed locally or locally in a promoter-specific manner. In order to overcome this problem, a method of producing a cloned animal using somatic cells after manipulating a specific gene in somatic cells of a livestock using a gene targeting method has been proposed, but this is also known to be low in efficiency. In this regard, Korean Patent No. 1507600 discloses a knock-in vector produced using sobetalkase for the production of a therapeutic protein.

그러나 상기 선행기술의 경우, 벡터를 체세포에 도입 후 상동유전자 재조합에 의해 유전자 적중된 체세포를 이용하여 복제동물을 생산하는 방법이므로 형질전환 수정란의 확보가 어렵고 생산효율도 낮은 문제점이 있다. However, in the case of the above-mentioned prior art, it is difficult to obtain a transgenic embryo and production efficiency is low because it is a method of introducing a vector into a somatic cell and then producing a cloned animal using somatic cells genetically-matched by homologous gene recombination.

본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 형질전환 수정란 확보율이 높아 형질전환 동물 생산에 효율적인 넉-인 형질전환 방법 및 그에 의한 재조합 단백질 생산방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.It is an object of the present invention to provide a knock-in method for producing transgenic animals and a method for producing recombinant protein by the method, . However, these problems are exemplary and do not limit the scope of the present invention.

본 발명의 일 관점에 따르면, 5'-아암(arm)으로서, 서열번호 1로 기재되는 핵산서열을 갖는 폴리뉴클레오티드로 구성된 소 베타-카제인 게놈 DNA의 프로모터, 엑손 1 및 2를 포함하는 5' 말단 단편; 치료용 단백질(therapeutic protein)을 암호화하는 유전자; 및 3'-아암(arm)으로서, 서열번호 2로 기재되는 핵산서열을 갖는 폴리뉴클레오티드로 구성된 소 베타-카제인 게놈 DNA의 엑손 3, 4, 5 및 6을 포함하는, 치료용 단백질 생산용 넉-인 벡터가 제공된다. According to one aspect of the present invention, there is provided, as a 5'-arm, a promoter of a sub-beta-casein genomic DNA consisting of a polynucleotide having a nucleic acid sequence represented by SEQ ID NO: 1, a 5'- snippet; A gene encoding a therapeutic protein; And a 3'-arm, which comprises exon 3, 4, 5 and 6 of a sub-beta-casein genomic DNA consisting of a polynucleotide having the nucleic acid sequence set forth in SEQ ID NO: 2, Is provided.

본 발명의 다른 일 관점에 따르면, 상기 넉-인 벡터와 CRISPR/Cas9 인공효소를 포유동물의 수정란에 미세주입하는 미세주입단계; 상기 미세주입한 수정란을 배반포기까지 배양하는 배양단계; 상기 배반포기 수정란의 DNA를 추출하여 PCR로 증폭하는 증폭단계; 및 상기 증폭된 PCR 산물의 유무 및 크기를 판별하여 상기 벡터가 소 베타-카제인 게놈 DNA의 제 위치로 삽입된 것을 확인하는, 넉-인 방법이 제공된다. According to another aspect of the present invention, there is provided a microinjection step of microinjecting the knock-in vector and a CRISPR / Cas9 artificial enzyme into mammalian embryos; Culturing the microinjected embryo to a blastocyst; An amplification step of amplifying the DNA of the blastocyst embryo by PCR; And determining whether the amplified PCR product is present or not and inserting the vector into place of the sub-beta-casein genomic DNA.

본 발명의 다른 일 관점에 따르면, 상기 넉-인 벡터를 숙주세포에 형질전환시킨, 치료용 단백질 대량생산용 형질전환 소가 제공된다. According to another aspect of the present invention, there is provided a transformant for mass production of a therapeutic protein, wherein the knock-in vector is transformed into a host cell.

본 발명의 다른 일 관점에 따르면, 상기 넉-인 벡터를 세포 내로 도입하여, 치료용 단백질을 발현시키는 단계를 포함하는, 치료용 단백질의 생산방법이 제공된다. According to another aspect of the present invention, there is provided a method for producing a therapeutic protein, comprising introducing the knock-in vector into a cell to express a therapeutic protein.

상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 정확한 유전자적중에 따른 형질전환 동물의 효율적인 수정란 생산효과를 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to one embodiment of the present invention as described above, it is possible to efficiently produce fertilized eggs of a transgenic animal according to accurate gene hits. Of course, the scope of the present invention is not limited by these effects.

도 1은 본 발명의 일 실시예에 따라 넉-인 벡터와 크리스퍼 유전자가위(CRISPR/Cas9)를 이용하여 형질전환 소를 생산하는 과정을 핵치환 방법과 비교하여 나타내는 모식도이다.
도 2는 pDT_A_RG1_bBCE3_hLF_EGFP KI vector I의 구조 및 상동유전자 재조합을 나타낸 모식도이다.
도 3은 pDT_A_RG1_bBCE3_hLF_EGFP KI vector I의 원형 플라스미드의 구조를 나타낸 모식도이다.
도 4는 pDT_A_RG1_bBCE3_hLF_EGFP KI vector I 구축 단계를 나타낸 모식도이다.
도 5는 본 발명의 일 실시예에 따른 소 베타-카제인을 이용하여 제조한 pDT_A_RG1_bBCE3_hLF_EGFP KI vector I 넉-인 벡터의 클로닝을 확인한 겔사진이다.
도 6은 소 유선세포주인 MAC-T 세포에서 크리스퍼 유전자가위(CRISPR/Cas9)의 절단 활성을 T7 엔도뉴클리아제 분석에 의하여 검증한 겔 사진이다.
도 7은 소 유선세포주인 MAC-T 세포에서 크리스퍼 유전자가위(CRISPR/Cas9)의 절단 활성을 리포터 유전자(reporter gene)를 이용하여 검증한 현미경 사진이다.
도 8은 본 발명의 일 실시예에 따라 단백질 생산용 넉-인 벡터와 크리스퍼 유전자가위(CRISPR/Cas9)를 전핵기 소 수정란에 미세주입하여 마커유전자인 GFP가 발현하는 모습을 확인한 수정란 사진이다.
도 9는 본 발명의 일 실시예에 따라 제작된 넉-인 수정란에서 상동 유전자 재조합이 일어난 부분을 PCR로 동정한 전기영동 사진이다.
FIG. 1 is a schematic diagram showing a process of producing a transformant using a knock-in vector and a crystal gene scissors (CRISPR / Cas9) according to an embodiment of the present invention, in comparison with a nuclear replacement method.
Fig. 2 is a schematic diagram showing the structure and homologous recombination of pDT_A_RG1_bBCE3_hLF_EGFP KI vector I.
Fig. 3 is a schematic diagram showing the structure of a circular plasmid of pDT_A_RG1_bBCE3_hLF_EGFP KI vector I.
Fig. 4 is a schematic diagram showing a construction step of pDT_A_RG1_bBCE3_hLF_EGFP KI vector I.
FIG. 5 is a photograph showing the cloning of a vector pDT_A_RG1_bBCE3_hLF_EGFP KI vector I knock-in vector prepared using a sub-beta-casein according to an embodiment of the present invention.
FIG. 6 is a gel photograph of the cleavage activity of CRISPR / Cas9 in the bovine mammary gland cell line MAC-T cell by T7 endonuclease analysis.
FIG. 7 is a microphotograph showing the cleavage activity of CRISPR / Cas9 in a bovine mammary cell line, MAC-T cell, using a reporter gene.
8 is a photograph showing the expression of a marker gene GFP by microinjecting a knock-in vector for protein production and a CRISPR / Cas9 gene into a preprocentric embryo according to an embodiment of the present invention .
FIG. 9 is an electrophoresis image of a knock-in embryo produced according to an embodiment of the present invention, in which homologous recombination has occurred by PCR.

용어의 정의:Definition of Terms:

본 문서에서 사용되는 "넉-인(knock in) 벡터"는 유전자 타켓팅(gene targeting)용 벡터의 하나로서, 특정 유전자를 넉-아웃(knockout)시키고 그 유전자의 위치에 정확하게 발현시키고자 하는 외래 유전자를 도입하는데 사용하는 벡터이다. 넉-인 벡터에 의하여 삽입된 외래 유전자는 삽입된 위치의 게놈 상에 위치한 유전자 발현조절 영역의 모든 부분을 이용할 수 있으므로, 원래 그 위치에 존재하는 유전자의 발현량 만큼 발현될 가능성이 있다.As used herein, the term " knock-in vector "refers to a gene targeting gene that knockout a specific gene and express the exogenous gene Lt; / RTI > Since the foreign gene inserted by the knock-in vector can utilize all parts of the gene expression regulatory region located in the genome of the inserted position, it is likely to be expressed by the expression amount of the gene originally present at the position.

본 문서에서 사용되는 용어 "치료용 단백질(therapeutic protein)"은 치료 활성을 가진 단백질 또는 폴리펩티드를 의미한다. As used herein, the term "therapeutic protein" refers to a protein or polypeptide having therapeutic activity.

본 문서에서 사용되는 용어 "clustered reg㎕atory interspaced short palindromic repeat(CRISPR)/Cas9"는 유전자가위이며 구성성분인 sgRNA는 특정 DNA 염기배열 20bp를 인식할 수 있는 능력을 가지고 있고 Cas9 단백질은 sgRNA와 결합한 특정 DNA을 절단하는 능력이 있는 것으로 보고되고 있다. 크리스퍼 유전자가위(CRISPR/Cas9을 이용하여 보다 효율적으로 유전자 적중된 동물을 생산하고 있으나 대가축인 소에 있어서 젖소 베타-카제인 유전자의 특정 부위를 절단하여 상동유전자 재조합에 의하여 바이오신약 생산 특정 유전자를 도입한 결과는 보고되고 있지 않다. As used herein, the term "clustered regulatory interspaced short palindromic repeat (CRISPR) / Cas9" is a gene scissor, and the constituent sgRNA has the ability to recognize a specific DNA base sequence of 20 bp. Cas9 protein binds to sgRNA Have been reported to have the ability to cleave specific DNA. In the case of large-scale cattle, the specific part of the cow beta-casein gene is cleaved to produce a biotin-producing specific gene by homologous gene recombination, although the animal is produced more efficiently by CRISPR / Cas9 The results of the introduction are not reported.

본 문서에서 사용되는 용어 "락토페린(lactoferrin)"은 면역기능조절 기능을 담당하면서 항균, 항바이러스, 항암 및 항염증 기능을 가지고 있는 단백질을 말한다. As used herein, the term " lactoferrin "refers to a protein that has antimicrobial, antiviral, anti-cancer, and anti-inflammatory properties while functioning to regulate immune function.

본 문서에서 사용되는 용어 "유전자적중(gene targeting)"은 상동유전자 재조합에 의하여 특정 염색체 위치에 변이된 유전자를 도입하는 기술로 유전자적중 벡터를 상동유전자 재조합에 의하여 생쥐 줄기세포의 특정 유전자 위치에 도입시킨 후 그 줄기세포를 이용하여 키메라 생쥐를 생산하는 법으로 넉-아웃 생쥐 생산에 주로 이용되었고 knock-out과 knock-in으로 구별된다.  As used herein, the term "gene targeting" refers to a technique of introducing a gene mutated at a specific chromosomal location by homologous gene recombination, introducing the gene hit vector into a specific gene locus in a mouse stem cell by homologous gene recombination And then used to produce chimeric mice using the stem cells, which are mainly used for knock-out mouse production, and are distinguished by knock-out and knock-in.

본 문서에서 사용되는 용어 "넉-아웃(knock-out)"은 특정 유전자 위치에 상동유전자 재조합에 의하여 변이된 유전자를 도입하여 특정 유전자의 발현이 일어나지 않도록 하는 것을 말한다.  As used herein, the term "knock-out" refers to introducing a gene mutated by homologous gene recombination at a specific gene position to prevent expression of a specific gene.

본 문서에서 사용되는 용어 "넉-인(knock-in)"은 특정 유전자의 위치에 발현 시키고자 하는 외래 유전자를 상동유전자 재조합에 의하여 도입하는 것으로 삽입된 외래 유전자는 특정 유전자의 프로모터와 인헨서를 포함하는 유전자 발현 조절 염기서열 전체를 이용하여 발현할 수 있다. The term " knock-in "as used herein refers to the introduction of a foreign gene to be expressed at the position of a specific gene by homologous gene recombination. The foreign gene inserted includes a promoter and a phosphorus of a specific gene Lt; RTI ID = 0.0 > of the < / RTI > gene expression regulatory sequences.

발명의 상세한 설명:DETAILED DESCRIPTION OF THE INVENTION [

본 발명의 일 관점에 따르면, 5'-아암(arm)으로서, 서열번호 1로 기재되는 핵산서열을 갖는 폴리뉴클레오티드로 구성된 소 베타-카제인 게놈 DNA의 프로모터, 엑손 1 및 2를 포함하는 5' 말단 단편; 치료용 단백질(therapeutic protein)을 암호화하는 유전자; 및 3'-아암(arm)으로서, 서열번호 2로 기재되는 핵산서열을 갖는 폴리뉴클레오티드로 구성된 소 베타-카제인 게놈 DNA의 엑손 3, 4, 5 및 6을 포함하는, 치료용 단백질 생산용 넉-인 벡터가 제공된다. According to one aspect of the present invention, there is provided, as a 5'-arm, a promoter of a sub-beta-casein genomic DNA consisting of a polynucleotide having a nucleic acid sequence represented by SEQ ID NO: 1, a 5'- snippet; A gene encoding a therapeutic protein; And a 3'-arm, which comprises exon 3, 4, 5 and 6 of a sub-beta-casein genomic DNA consisting of a polynucleotide having the nucleic acid sequence set forth in SEQ ID NO: 2, Is provided.

상기 치료용 단백질 생산용 넉-인 벡터에 있어서, 상기 치료용 단백질은 인간 락토페린(lactoferrin)일 수 있고 상기 인간 락토페린을 코딩하는 유전자는 서열번호 3으로 기재되는 핵산서열을 갖는 폴리뉴클레오티드일 수 있으며 상기 인간 락토페린을 코딩하는 유전자의 3' 말단에 polyA 신호가 추가로 연결될 수 있다. In the knock-in vector for producing a therapeutic protein, the therapeutic protein may be human lactoferrin, and the gene encoding human lactoferrin may be a polynucleotide having a nucleic acid sequence of SEQ ID NO: 3, A polyA signal can be further ligated to the 3 ' end of the gene encoding human lactoferrin.

상기 치료용 단백질 생산용 넉-인 벡터에 있어서, 상기 인간 락토페린을 코딩하는 유전자의 3' 말단에 융합 형광 단백질의 발현을 확인하기 위한 리포터 유전자(reporter gene)가 추가로 연결될 수 있고 상기 형광단백질은 녹색형광단백질(green fluorescent protein, GFP), 황색형광단백질(yellow fluorescent protein, YFP), 적색형광단백질(red fluorescent protein, RFP), 주황형광단백질(orange fluorescent protein, OFP), 청록색형광단백질(cyan fluorescent protein, CFP), 청색형광단백질(blue fluorescent protein, BFP) 또는 원적색형광단백질(far-red fluorescent protein)일 수 있다.  In the knock-in vector for producing a therapeutic protein, a reporter gene for confirming the expression of the fusion fluorescent protein may be further connected to the 3 'end of the gene encoding the human lactoferrin, (GFP), yellow fluorescent protein (YFP), red fluorescent protein (RFP), orange fluorescent protein (OFP), cyan fluorescent protein protein, CFP), a blue fluorescent protein (BFP) or a far-red fluorescent protein.

상기 치료용 단백질 생산용 넉-인 벡터에 있어서, 음성 선별마커(negative selectable marker)를 함께 포함할 수 있고 상기 음성 선별마커는 디프테리아 톡신(DT-A) 유전자일 수 있다.  In the knock-in vector for producing the therapeutic protein, a negative selectable marker may be included together, and the negative selection marker may be a diphtheria toxin (DT-A) gene.

본 발명의 다른 일 관점에 따르면, 상기 넉-인 벡터와 CRISPR/Cas9 인공효소를 포유동물의 수정란에 미세주입하는 미세주입단계; 상기 미세주입한 수정란을 배반포기까지 배양하는 배양단계; 상기 배반포기 수정란의 DNA를 추출하여 PCR로 증폭하는 증폭단계; 및 상기 증폭된 PCR 산물의 유무 및 크기를 판별하여 상기 벡터가 소 베타-카제인 게놈 DNA의 제 위치로 삽입된 것을 확인하는, 넉-인 방법이 제공된다. According to another aspect of the present invention, there is provided a microinjection step of microinjecting the knock-in vector and a CRISPR / Cas9 artificial enzyme into mammalian embryos; Culturing the microinjected embryo to a blastocyst; An amplification step of amplifying the DNA of the blastocyst embryo by PCR; And determining whether the amplified PCR product is present or not and inserting the vector into place of the sub-beta-casein genomic DNA.

상기 넉-인 방법에 있어서, 상기 CRISPR/Cas9 인공효소는 서열번호 15로 기재되는 핵산서열을 표적으로 할 수 있다. In the knock-in method, the CRISPR / Cas9 artificial enzyme may target a nucleic acid sequence represented by SEQ ID NO: 15.

본 발명의 다른 일 관점에 따르면, 상기 넉-인 벡터를 숙주세포에 형질전환시킨, 치료용 단백질 대량생산용 형질전환 소가 제공된다. According to another aspect of the present invention, there is provided a transformant for mass production of a therapeutic protein, wherein the knock-in vector is transformed into a host cell.

본 발명의 다른 일 관점에 따르면, 상기 넉-인 벡터를 세포 내로 도입하여, 치료용 단백질을 발현시키는 단계를 포함하는, 치료용 단백질의 생산방법이 제공된다. According to another aspect of the present invention, there is provided a method for producing a therapeutic protein, comprising introducing the knock-in vector into a cell to express a therapeutic protein.

종래에는 치료용 단백질을 생산하기 위하여 넉-인 벡터를 체세포에 형질전환시키고 상기 형질전환된 체세포를 난자에 주입하여 핵치환을 유도하는 방식이었으나 상기 방법은 제 위치에서 넉-인이 일어나지 않고 무작위적으로 삽입된 형질전환체가 다수이기 때문에 형질전환 수정란의 생산효율이 매우 낮았다. 그러나 본 발명은 소 베타-카제인 유전자의 엑손 3 위치를 타켓팅 할 수 있는 넉-인 벡터를 크리스퍼 유전자가위(CRISPR/Cas9)과 함께 소의 전핵기 수정란에 미세주입하여 배반포시기까지 배양하여 EGFP를 발현하는 배아만 선별함으로써 형질전환 수정란의 확보율이 핵치환 방법과 비교하여 월등히 높게 나타나고 상기 배아를 대리모에게 이식함으로써 매우 효율적으로 치료 단백질의 생산을 가능하게 한다(도 1).Conventionally, in order to produce a therapeutic protein, a knock-in vector was transformed into somatic cells and the transformed somatic cells were injected into the oocyte to induce nuclear replacement. However, this method is not a method in which knock- The production efficiency of transgenic embryos was very low. However, the present invention is based on the fact that a knock-in vector capable of targeting the exon 3 position of the sobeta-casein gene is microinjected into bovine precursor nucleus embryos with a crystal gene scissor (CRISPR / Cas9) (Fig. 1). As shown in Fig. 1, the selection rate of transgenic embryos is much higher than that of nuclear substitution.

이하, 실시예를 통하여 본 발명을 더 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, the present invention will be described in more detail by way of examples. It should be understood, however, that the invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, Is provided to fully inform the user.

실시예 1: 미세주입용 넉-인(knock-in) 벡터의 구축Example 1: Construction of a knock-in vector for microinjection

본 발명의 일 실시예에 따라 인간 치료용단백질(락토페린) 생산을 위한 미세주입용 넉-인(knock-in) 벡터를 구축하기 위하여, 서열번호 1로 기재되는 핵산서열을 갖는 폴리뉴클레오티드로 구성된 소 베타-카제인 게놈 DNA의 인트론1 일부와 엑손2 일부를 포함하는 5'-아암(arm)과 넉-인 벡터를 이용하여 생산될 인간치료용 단백질 유전자 락토페린(lactoferrin)를 암호화하는 유전자(서열번호 3)를 포함하는 플라스미드를 클로닝하였고 서열번호 2로 기재되는 핵산서열을 갖는 폴리뉴클레오티드로 구성된 소 베타-카제인 게놈 DNA의 엑손 4에서 6을 포함하는 3'-아암(arm)의 플라스미드를 클로닝하였다. 또한, 상기 유전자의 3'-아암 부분에 연결되어 안정적인 발현 및 핵에서 세포질로의 이행을 위해서 필요한 BGH polyA 신호를 암호화하는 폴리뉴클레오티드(서열번호 4)를 포함하는 플라스미드를 클로닝하였고 추가적으로 상기 수정란에서 EGFP의 발현을 확인하기 위한 마커(marker)로서 CMV-EGFP-polyA 유전자(서열번호 16)를 상기 BGH polyA의 3' 말단에 위치하도록 클로닝하였다.In order to construct a knock-in vector for microinjection for the production of a human therapeutic protein (lactoferrin) according to an embodiment of the present invention, a small molecule consisting of a polynucleotide having a nucleic acid sequence shown in SEQ ID NO: 1 (SEQ ID NO: 3) encoding a human therapeutic protein gene lactoferrin to be produced using a 5'-arm and knock-in vector comprising a part of intron 1 of beta-casein genomic DNA and a part of exon 2 ) And cloned a 3'-arm plasmid containing exons 4 to 6 of the sub-beta-casein genomic DNA consisting of the polynucleotide having the nucleic acid sequence shown in SEQ ID NO: 2. Also, a plasmid containing a polynucleotide (SEQ ID NO: 4) encoding a BGH polyA signal necessary for stable expression and transition from the nucleus to the cytoplasm was ligated to the 3'-arm portion of the gene and further cloned from the embryo into EGFP EGFP-polyA gene (SEQ ID NO: 16) as a marker for confirming the expression of the BGH polyA was cloned at the 3 'end of the BGH polyA.

1-1: pBSK-bBCE3 5'_hLF 플라스미드의 클로닝1-1: Cloning of pBSK-bBCE3 5'_hLF plasmid

본 발명의 일 실시예에 따라 5'-아암과 연결된 인간 락토페린 유전자를 클로닝하기 위하여 먼저 종래 특허인 소 베타카제인을 이용하여 제조된 넉-인 벡터(등록번호:제10-1507600호, 등록일자: 2015년 3월 25일)에서 확보된 pMCDT-polyA-neo-βC3' 벡터를 주형으로 이용하고 LF 5 arm NotI S(RGEN) 프라이머(서열번호 5), LF 3 arm XbaI AS(RGEN) 프라이머(서열번호 6) 및 pfu-X DNA plymerase(SolGent)를 사용하여 95℃ 20초, 54℃ 40초 및 72℃ 1분의 조건에서 35 사이클을 실시하여 5'-아암 약 1 kb와 락토페린 유전자가 포함된 전체 약 3.12 kb의 단편을 확보하였다. 상기 확보된 단편은 제한효소 NotI과 XbaI으로 절단한 다음 pBSK/NotI-XbaI 벡터에 서브클로닝(subcloning)한 후 전체 염기서열을 결정하였다.In order to clone a human lactoferrin gene linked to a 5'-arm according to an embodiment of the present invention, a knock-in vector (registration number: 10-1507600, manufactured by using a conventional patent, sobeta casein, 3, 2015 using the pMCDT-polyA-neo-βC3 'vector obtained from the 25th) as a template and LF 5 arm Not I S (RGEN) primer (SEQ ID NO: 5), LF 3 arm Xba I aS (RGEN) primer ( (SEQ ID NO: 6) and pfu-X DNA plymerase (SolGent) under conditions of 95 ° C for 20 seconds, 54 ° C for 40 seconds and 72 ° C for 1 minute to contain about 1 kb of 5'- arm and lactoferrin gene A total of about 3.12 kb fragment was obtained. The obtained fragment was digested with restriction enzymes Not I and Xba I and then subcloned into pBSK / Not I- Xba I vector to determine the entire nucleotide sequence.

1-2: pBSK-bβCE4-E6 3′플라스미드의 클로닝1-2: Cloning of pBSK-b? CE4-E6 3 'plasmid

본 발명의 일 실시예에 따라 3'-아암은 종래에 확보되어 있는 pGEM-bBC E2/E8 플라스미드를 주형으로 하고 bBC-E3 3 arm S HindⅢ 센스 프라이머(서열번호 7), bBC-E6 SalI AS2 안티센스 프라이머(서열번호 8) 및 Pfu DNA polymerase(BioFACT)를 사용하여 95℃ 20초, 68℃ 40초 및 72℃ 1분 조건으로 35 사이클로 PCR 증폭을 실시하였다. 상기 증폭에 의하여 확보된 약 2.08kb의 단편은 제한효소 HindⅢ와 SalI으로 절단한 다음 pBSK/HindⅢ-SalI 벡터에 서브클로닝한 후 전체 염기서열을 확인하였다. 상기 클로닝에 사용된 프라이머를 비롯한 본 발명에 사용된 모든 프라이머에 대한 정보를 하기 표 1에 표시하였다. 3'-arm of E2 / E8 plasmid pGEM-bBC which is secured to the conventional as a template bBC E3 3-arm S Hind Ⅲ sense primer (SEQ ID NO: 7), according to one embodiment of the invention, E6 bBC-Sal I PCR amplification was carried out using AS2 antisense primer (SEQ ID NO: 8) and Pfu DNA polymerase (BioFACT) for 35 cycles at 95 ° C for 20 seconds, 68 ° C for 40 seconds and 72 ° C for 1 minute. The fragment of about 2.08 kb obtained by the above amplification was digested with restriction enzymes Hind III and Sal I, and then subcloned into pBSK / Hind III- Sal I vector to confirm the entire nucleotide sequence. Information on all the primers used in the present invention, including the primers used in the cloning, is shown in Table 1 below.

프라이머 primer 핵산서열(5'->3')The nucleic acid sequence (5 '-> 3') 서열번호 SEQ ID NO: LF 5 arm NotI S(RGEN)LF 5 arm Not I S (RGEN) gcgcggccgctgtcaagagatgttgatggcgcgcggccgctgtcaagagatgttgatggc 55 LF 3 arm XbaI AS(RGEN)LF 3 arm Xba I AS (RGEN) gctctagattcggttttacttcctgaggaagctctagattcggttttacttcctgaggaa 66 bBC-E3 3 arm S HindbBC-E3 3 arm S Hind III gcaagcttattgtggaaagcctttcaagcgcaagcttattgtggaaagcctttcaagc 77 bBC-E6 SalI AS2 bBC-E6 Sal I AS2 gcgtcgacctctgtttgctgctgttcctcacgcgtcgacctctgtttgctgctgttcctcac 88 CRISPR/Cas9 sense primerCRISPR / Cas9 sense primer GCT GTG TCTATT CAA CAC AGG ATG ATA CTCGCT GTG TCTATT CAA CAC AGG ATG ATA CTC 99 CRISPR/Cas9 anti-sense primerCRISPR / Cas9 anti-sense primer AAC ACT ATC TTA CCT CAC TGC TTG AAA GGCAAC ACT ATC TTA CCT CAC TGC TTG AAA GGC 1010 M13_R_RG1_hLF 5 Sc S5M13_R_RG1_hLF 5 Sc S5 GGAAACAGCTATGACCATGGTAGTTTGCAAATCTGGGATTGAAGATGTGGGAAACAGCTATGACCATGGTAGTTTGCAAATCTGGGATTGAAGATGTG 1111 M13_F_hLF Sc AS4 M13_F_hLF Sc AS4 GGTTTTCCCAGTCACGACCCCGAGGAACAGCAGGACGAGGAAGACAAGGGTTTTCCCAGTCACGACCCCGAGGAACAGCAGGACGAGGAAGACAAG 1212 M13-FM13-F GGTTTTCCCAGTCACGACGGTTTTCCCAGTCACGAC 1313 M13-RM13-R GGAAACAGCTATGACCATGGGAAACAGCTATGACCATG 1414

1-3: 넉-인(Knock-in) 벡터의 서브 클로닝1-3: Subcloning of Knock-in Vector

본 발명의 일 실시예에 따라 종래 확보되어 있는 pBSK-tEndo-GFP KI vector Ⅲ를 제한효소 NotI과 XbaI으로 절단한 벡터에 pBSK-bBCE3 5'_hLF 플라스미드를 NotI과 XbaI으로 절단하여 확보한 인서트(5'arm-hLF)를 결찰(ligation)하여 pBSK-bBCE3_hLF_BGHpA_EGFP_BGHpA_bBCE7_3'arm 플라스미드를 확보하였다. 또한 3′아암(arm)의 연결은 pBSK-bβCE4-E6 3'-아암 플라스미드를 HindⅢ와 SalI으로 절단하여 확보한 약 2.08 kb의 인서트를 pBSK-bBCE3_hLF_BGHpA_EGFP_BGHpA_bBCE7_3arm 플라스미드를 HindⅢ와 SalI으로 절단하여 확보한 벡터에 결찰하여 pBSK-RG1_bBCE3_hLF_GFP KI vector I을 구축하였다(도 2). 이 후, 최종 벡터 DT-A_RG1_bBCE3_hLF_GFP KI vector I을 구축하기 위하여 pBSK-RG1_bBCE3_hLF_GFP KI vector I을 NotI과 SalI으로 절단하여 확보한 인서트를 pMCDT-A/NotI ­ Sal 벡터에 결찰하여 넉-인 벡터(DT-A_RG1_bBCE3_hLF_GFP KI vector I)를 완성하였다(도 3 및 4).In accordance with one embodiment of the present invention, the pBSK-bEBE3 5'-hLF plasmid was digested with Not I and Xba I into a vector obtained by digesting the previously obtained pBSK-tEndo-GFP KI vector III with restriction enzymes Not I and Xba I One insert (5'arm-hLF) was ligated to obtain pBSK-bBCE3_hLF_BGHpA_EGFP_BGHpA_bBCE7_3'arm plasmid. In addition, 3 'connected to the arm (arm) is cut into pBSK-bβCE4-E6 3'- arm for the insert of about 2.08 kb obtained by cutting the plasmid with Hind Ⅲ and Sal I pBSK-bBCE3_hLF_BGHpA_EGFP_BGHpA_bBCE7_3arm plasmid with Sal I Hind Ⅲ And ligated to the obtained vector to construct pBSK-RG1_bBCE3_hLF_GFP KI vector I (FIG. 2). Thereafter, the final vector DT-A_RG1_bBCE3_hLF_GFP KI in order to establish a vector I pBSK-RG1_bBCE3_hLF_GFP KI vector I and ligated to the insert was obtained by cutting with Not I and Sal I to pMCDT-A / Not I Sal vector knock-in vector ( DT-A_RG1_bBCE3_hLF_GFP KI vector I) (FIGS. 3 and 4).

실시예 2: 넉-인(knock-in) 벡터의 검증Example 2: Validation of Knock-in Vectors

상기 실시예 1에서 최종적으로 제조한 DT-A_RG1_bBCE3_hLF_GFP KI vector I 벡터의 클로닝이 정상적으로 이루어졌는지 확인하였다. 그 결과, 상기 제조한 벡터는 베타-카제인 엑손 2와 락토페린 유전자가 함께 mRNA로 합성되며 상기 mRNA를 이용하여 락토페린 폴리펩티드가 합성될 수 있다. 상기 넉-인 벡터를 제한효소 NotI, XbaI, HindⅢ 및 SalI로 절단한 결과 5'-아암-락토페린 유전자, BGH polyA-CMV-EGFP-plyA 단편, 3'-아암과 pMCDT-A 벡터 모두 확인할 수 있었다(도 5). The DT-A_RG1_bBCE3_hLF_GFP KI vector I vector finally prepared in Example 1 was confirmed to be cloned normally. As a result, the prepared vector is synthesized into mRNA together with beta-casein exon 2 and lactoferrin gene, and lactoferrin polypeptide can be synthesized using the mRNA. The knock-in vector was digested with restriction enzymes Not I, Xba I, Hind III and Sal I, and the 5'-arm-lactoferrin gene, BGH polyA-CMV-EGFP-plyA fragment, 3'- arm and pMCDT- (Fig. 5).

실시예 3: 넉-인(knock-in) 벡터의 정제Example 3: Purification of knock-in vector

본 발명의 일 실시예에 따라 상기 제조한 넉-인 벡터를 전핵기 수정란에 미세주입하기 위해서 제한효소 NotI으로 절단하고 페놀(phenol) 및 클로로포름(chloroform)을 처리 후 에탄올(ethanol) 침전을 이용해서 DNA를 농축하였다. 이어서, 전기영동 방법으로 GIAquick Gel Extraction kit(Qiagene)를 이용하여 아가로즈 겔(agarose gel)로부터 상기 넉-인 벡터를 정제하였다. 상기 최종 정제를 위해 용출 버퍼(elution buffer)는 RNase free water를 이용하였고 최종 정제된 넉-인 벡터를 전핵기 수정란에 미세주입하기 위해서 10∼25 ng/㎕로 농도를 조절하였다.In accordance with an embodiment of the present invention, the knock-in vector prepared above is cut into restriction enzyme Not I in order to microinject into the nucleus-containing embryos, treated with phenol and chloroform, and then precipitated with ethanol And the DNA was concentrated. Next, the knock-in vector was purified from agarose gel using a GIAquick Gel Extraction kit (Qiagen) by an electrophoresis method. For the final purification, RNase free water was used as an elution buffer and the concentration was adjusted to 10 to 25 ng / μl to microinject the final purified knock-in vector into the nucleus embryos.

실시예 4: 젖소 β-casein 유전자 엑손 3위치를 절단 할 수 있는 CRISPR/Cas9 확보Example 4: Securing CRISPR / Cas9 capable of cleaving the exon 3 position of the cow β-casein gene

본 발명의 일 실시예에 따라 젖소 베타-카제인(β-casein) 유전자 엑손3 위치 타겟 서열(서열번호 15)을 인식하는 sgRNA 및 발현 벡터, Cas9 mRNA 및 발현 벡터 모두 툴젠(Toolgen)에서 구입하였다. In accordance with one embodiment of the present invention, sgRNA and expression vector, Cas9 mRNA and expression vector that recognize the cow beta-casein gene exon 3 position sequence (SEQ ID NO: 15) were all purchased from Toolgen.

4-1: T7 endonuclease I에 의한 활성 측정4-1: Measurement of activity by T7 endonuclease I

본 발명의 일 실시예에 따라 젖소 유선세포인 MAC-T 세포에서 상기 CRISPR/Cas9의 활성을 검증하였다. 먼저, MAC-T 세포는 DMEM(Hyclone, Logan, USA), 10% FBS(Hyclone), 1% 페니실린/스트렙토마이신(Hyclone), 5 ㎍/ml 인슐린(Sigma, St Louis, USA) 1 ㎍/ml hydrocortisone(Sigma) 조건에서 배양하였고 상기 MAC-T 세포(2.5x105)를 6 mm 배양접시에 파종(seeding)한 다음 1일 후에 sgRNA 벡터 1.625 ㎍, Cas9 벡터 1.625 ㎍ 및Lipofectamin 2000(Invitrogen, Waltham, USA)을 이용하여 형질주입(transfection)을 실시하였다. 48시간 후에 상기 세포를 회수하였고, G-DEX™ IIc For Cell/tissue Genomic DNA extraction Kit(Intron, Seongnam-si, Korea)를 이용하여 게놈(genome) DNA를 분리하였다. CRISPR/Cas9의 활성을 측정하기 위하여 CRISPR/Cas9에 의하여 절단될 수 있는 부위에 대한 센스 프라이머(서열번호 9), 안티센스 프라이머(서열번호 10) 및 Ex taq(Takara)을 이용하여 94℃ 30초, 56℃ 30초 및 72℃ 1분의 33 사이클의 조건에서 PCR 증폭을 실시하였다. T7 endonuclease I에 의한 활성 측정은 상기 증폭에 의해 생성된 PCR 생성물(product)을 QIAgen quick Gel extract Kit(QIAgen)로 처리 후 추출된 1 ㎍의 DNA을 이용하여 95℃ 10분 처리 후 85℃ 까지 초당 2℃ 간격으로 처리하였고, 25℃까지 초당 0.1℃ 간격으로 처리하였다. 상기와 같이 처리된 DNA에 T7 endonuclease I(NEB, Ipswich, USA) 1 ㎕(10 unit)을 첨가하였고 37℃에서 30분 처리한 후 2% 아가로스 젤에서 전기영동하여 절단된 단편 325 bp와 151 bp을 확인함으로써 베타-카제인 엑손 3이 CRISPR/Cas9 시스템에 의해 절단된 것을 확인하였다(도 6).In accordance with one embodiment of the present invention, the activity of CRISPR / Cas9 was verified in MAC-T cells, which are mammary gland cells. First, MAC-T cells were cultured in DMEM (Hyclone, Logan, USA), 10% FBS (Hyclone), 1% penicillin / streptomycin (Hyclone), 5 μg / ml insulin (Sigma, St Louis, USA) (1.6 × 10 5 ) were seeded in a 6 mm culture dish. After 1 day, 1.625 μg of the sgRNA vector, 1.625 μg of the Cas 9 vector and 1.6 μg of Lipofectamin 2000 (Invitrogen, Waltham, Calif.) were cultured under the conditions of hydrocortisone USA) was used for transfection. After 48 hours, the cells were harvested and genomic DNA was isolated using G-DEX ™ IIc For Cell / tissue Genomic DNA Extraction Kit (Intron, Seongnam-si, Korea). (SEQ ID NO: 9), antisense primer (SEQ ID NO: 10) and Ex taq (Takara) for the site which can be cleaved by CRISPR / Cas9 to measure the activity of CRISPR / PCR was carried out under conditions of 56 ° C for 30 seconds and 72 ° C for 1 minute and 33 cycles. The activity of T7 endonuclease I was measured by treating the PCR product produced by the above amplification with QIAgen quick gel extract kit (QIAgen), using 1 μg DNA extracted at 95 ° C for 10 minutes, Treated at intervals of 2 ° C and treated at intervals of 0.1 ° C per second up to 25 ° C. 1 μl (10 units) of T7 endonuclease I (NEB, Ipswich, USA) was added to the DNA thus treated, treated at 37 ° C. for 30 minutes, and then electrophoresed on 2% agarose gel to obtain a fragment of 325 bp and 151 bp, it was confirmed that beta-casein exon 3 was cleaved by the CRISPR / Cas9 system (Fig. 6).

4-2: CRISPR/Cas9의 활성 측정4-2: Measurement of activity of CRISPR / Cas9

본 발명의 일 실시예에 따라 CRISPR/Cas9의 활성은 젖소 유선세포인 MAC-T 세포에서 RFP-GFP 리포터 벡터를 이용하여 검증하였다. 먼저, MAC-T 세포는 DMEM (Hyclone, Logan, USA), 10% FBS(Hyclone), 1% penicillin/streptomycin(Hyclone), 5 ㎍/ml ins㎕in(Sigma, St Louis, USA) 1 ㎍/ml hydrocortisone(Sigma) 조건에서 배양하였다. 또한 상기 세포(2.5x105)를 6 mm 배양접시에 파종(seeding)한 다음 1일 후에 sgRNA 발현 벡터 1.25 ㎍, Cas9 발현 벡터 1.25 ㎍, exon2 target 또는 exon7 target RFP-GFP reporter 플라스미드 2.5 ㎍ 및 jetPEI transfection reagent (polyplus-transfection, Illkirch, France)를 이용하여 형질주입(transfection)을 수행하였고 36시간 후에 RFP와 GFP 발현 정도를 형광현미경(Nikon, Tokyo, Japan)을 통해 확인하였다. In accordance with one embodiment of the present invention, the activity of CRISPR / Cas9 was verified using RFP-GFP reporter vector in MAC-T cells, cow stream cells. First, MAC-T cells were cultured in DMEM (Hyclone, Logan, USA), 10% FBS (Hyclone), 1% penicillin / streptomycin (Hyclone), 5 μg / ml insulin (Sigma, St Louis, USA) ml hydrocortisone (Sigma). The cells (2.5x10 5 ) were seeded in a 6 mm culture dish, and after 1 day, 1.25 μg of sgRNA expression vector, 1.25 μg of Cas9 expression vector, 2.5 μg of exon 2 target or exon 7 target RFP-GFP reporter plasmid, and jetPEI transfection Transfection was performed using a reagent (polyplus-transfection, Illkirch, France). After 36 hours, the degree of RFP and GFP expression was confirmed by fluorescence microscopy (Nikon, Tokyo, Japan).

그 결과, 비-적중 부위(non-target site)를 가지고 있는 exon7 target RFP-GFP reporter 플라스미드와 sgRNA/Cas9을 도입하였을 경우는 RFP만 검증되어 비-적중 부위를 절단하지 않음이 확인되었고, exon2 target RFP-GFP reporter 플라스미드와 Cas9 벡터만 도입한 경우에도 RFP만 확인되었다. 그러나 엑손 3 sgRNA 발현 벡터, exon2 target RFP-GFP reporter 플라스미드와 Cas9 벡터를 도입한 경우에는 RFP 발현하는 세포에서 GFP가 발현하는 것이 확인되어 본 실험에 사용한 CRISPR/Cas9 시스템은 엑손 3을 특이적으로 인식하여 절단함을 확인하였다(도 7).As a result, when exon 7 target RFP-GFP reporter plasmid and sgRNA / Cas9 were introduced with non-target site, only RFP was verified and it was confirmed that the non-target site was not cleaved, and exon2 target Only the RFP-GFP reporter plasmid and the Cas9 vector alone were confirmed as RFP. However, when exon 2 sgRNA expression vector and exon 2 target RFP-GFP reporter plasmid and Cas9 vector were introduced, expression of GFP was observed in RFP-expressing cells. Thus, CRISPR / Cas9 system used in this experiment specifically recognized exon 3 (FIG. 7).

실험예 5: 넉-인 벡터의 전핵기 수정란 미세주입 Experimental Example 5: Microinjection of prenucleated embryos in a knock-in vector

본 발명의 일 실시예에 따라 상술한 바와 같이 미세주입용 sgRNA, Cas9 mRNA 및 넉-인 벡터를 준비하였으며 직선화된 넉-인 벡터의 최종 농도는 10 ng/㎕ 또는 25 ng/㎕, sgRNA와 Cas9 mRNA는 각각 최종 농도 100 ng/㎕가 되도록 하여 실험에 사용하였다. The final concentration of the linearized knock-in vector was 10 ng / μl or 25 ng / μl, and the sgRNA and Cas9 (SEQ ID NO: 2) were prepared as described above according to an embodiment of the present invention. mRNA was used for the experiment so that the final concentration was 100 ng / μl.

5-1: 전핵기 수정란의 준비5-1: Preparation of all nucleus embryos

본 발명의 일 실시예에 따라 도축장에서 회수한 소 난소를 75 ㎍/ml potassium penicillin G가 첨가된 생리식염수에 넣어 25-30℃ 온도의 상태로 실험실로 운반하였고 멸균된 37℃의 생리식염수로 3번 이상 세척한 뒤, 직경이 3-6 mm인 난포만을 선별하여 18 게이지 주사바늘이 부착된 주사기로 흡입한 후 실체 현미경 하에서 난포란을 회수하였다. 상기 회수된 난포란은 Tyrode's lactate(TL)-Hepes 용액으로 3회 세척한 뒤 체외성숙 배양액으로 3회 이상 세척하였고 체외성숙 배양액(TCM-199) 50 ㎕ 소적에 10-15개의 난포란을 넣어 38.5℃ 온도와 5% CO2 조건하에서 24시간 동안 배양하였다. 체외성숙이 완료된 난포란은 수정용 배양액(Fert-TALP)에 3번 세척 후 수정용 배양액 소적(44 ㎕)에 10개씩 옮겨두고 동결된 소의 정자를 2ㅧ106/ml의 최종 농도로 맞추어 25 ㎍/ml 헤파린(heparin)과 PHE를 함께 첨가한 후 38.5℃, 5% CO2 조건하에서 18시간 동안 수정을 유도하였다. 체외수정 유도 후 16-18 시간째 제2 극체가 확인된 수정란을 선별하여 미세주입을 위해 준비하였다. According to one embodiment of the present invention, the small ovaries recovered from the slaughterhouse were transferred to a laboratory in a physiological saline solution containing 75 μg / ml potassium penicillin G at a temperature of 25-30 ° C., After follicles were washed, only follicles with a diameter of 3-6 mm were selected, and the follicles were collected under a stereomicroscope after being inhaled by a syringe equipped with an 18 gauge needle. The recovered oocytes were washed three times with Tyrode's lactate (TL) -Hepes solution, washed three times with in vitro maturation medium, and 10-15 follicles were added to 50 μl of in vitro maturation medium (TCM-199) And 5% CO 2 for 24 hours. Fertilized oocytes were washed three times in Fert-TALP and transferred to fertilized culture medium (44 μl) in a volume of 10 ml. Frozen bovine spermatozoa were adjusted to a final concentration of 2 ㅧ 10 6 / ml, / ml Heparin and PHE were added together and the modification was induced for 18 hours at 38.5 ℃ and 5% CO 2 . Embryos confirmed to have a second polar body at 16-18 hours after in vitro fertilization were selected and prepared for microinjection.

5-2: 넉-인 벡터의 미세주입5-2: Microinjection of knock-in vector

본 발명의 일 실시예에 따라 체외수정 후 16-18 시간째 제2 극체가 확인된 수정란을 선별하여 미세주입에 이용하였다. 수정란의 전핵에 sgRNA, Cas9 mRNA와 넉-인 벡터를 미세주입하기 위해서 먼저 수정란을 12,000 rpm에서 5분간 원심분리를 실시하여 지질을 한쪽으로 치우치게 하여 전핵 관찰을 용이하게 하였다. 이후 도립현미경에 장착된 미세조작기를 이용하여 소 수정란의 전핵에 미세주입을 실시하였다. 상기 미세주입이 완료된 수정란은 3 mg/ml BSA가 첨가된 CR1-aa 배양액에 세척한 후 50 ㎕ 소적에 10-15개씩 옮겨 38.5℃, 5% CO2 조건하에서 7일간 배양을 실시하였고 형광현미경을 통하여 모든 배반포 배아에서 마커(marker) 유전자인 EGFP가 발현하여 sgRNA, Cas9 mRNA 및 넉-인 벡터가 전핵기 수정란에 성공적으로 주입되었음을 확인하였다(도 8).According to one embodiment of the present invention, the embryos identified with the second polar body 16-18 hours after in vitro fertilization were selected and used for microinjection. In order to microinject sgRNA, Cas9 mRNA and knock-in vector into the nucleus of embryo, the embryos were centrifuged at 12,000 rpm for 5 minutes to facilitate the observation of the nucleus by biasing the lipid to one side. Then, microinjection was performed on the nucleus of bovine embryo using a micro manipulator mounted on an inverted microscope. The microinjected embryos were washed in CR1-aa medium supplemented with 3 mg / ml BSA, and then transferred to 50 ㎕ colony by 10-15. The cells were cultured for 7 days under the conditions of 38.5 ℃ and 5% CO 2 . The marker gene EGFP was expressed in all the blastocyst embryos and sgRNA, cas9 mRNA and knock-in vector were successfully injected into the nucleus embryo (FIG. 8).

실험예6: 미세주입된 수정란으로부터 넉-인 검증Experimental Example 6: Knock-in Verification from Microinjected Embryos

본 발명의 일 실시예에 따라 sgRNA, Cas9 mRNA와 넉-인 벡터가 미세주입된 수정란으로부터 넉-인 검증은 아래와 같이 검증하였다. 먼저 미세주입 후 배반포로 발달한 수정란 1개가 있는 PCR 튜브에 10 ㎕의 1X direct buffer(50 mM Tris-HCl, (pH 8.5), 1 mM EDTA, 0.005% SDS, 200 ㎍/ml ProteinaseK)를 첨가 후 55℃에서 2시간 처리한 다음 95℃에서 10분간 처리하여 ProteinaseK를 불활성화 시켰고 PCR 전에 최종 농도 2%가 되도록 20% Tween20 2㎕을 첨가하였다. 상기 준비된 DNA 용액을 주형으로 하고 M13_R_RG1_hLF 5 Sc S5(서열번호 11), M13_F_hLF Sc AS4 (서열번호 12) 및 FX Neo polymerase(TOYOBO, KFX-201)를 이용하여 98℃ 10초, 68℃ 1.5분을 1 사이클로 하는 two step PCR 조건으로 전체 35 사이클로 증폭을 실시하였다.상기 PCR 증폭 후 2차 PCR은 1차 PCR 생성물 1 ㎕를 주형으로 하고 M13-F 프라이머(서열번호 13), M13-R 프라이머(서열번호 14) 및 Go Taq polymerase를 이용하여 94℃ 30초, 64℃ 30초, 72℃ 1.5분을 1 사이클로 전체 30 사이클의 조건으로 PCT 증폭을 실시하였다. 그 후 증폭된 단편은 1% 아가로즈 겔(agarose gel)에서 전기영동하여 증폭여부를 확인하였고(도 9) 또한 sgRNA, Cas9 mRNA 및 넉-인 벡터를 전핵기 수정란에 주입한 8개의 수정란 중 4개에서 넉-인된 밴드가 검출되어 약 50%의 넉-인 효율을 나타내었으며 이를 하기 표 2에 표시하였다. In accordance with one embodiment of the present invention, knock-in assays from microinjected embryos with sgRNA, Cas9 mRNA and knock-in vectors were verified as follows. First, 10 μl of 1 × direct buffer (50 mM Tris-HCl, (pH 8.5), 1 mM EDTA, 0.005% SDS, 200 μg / ml Proteinase K) was added to the PCR tube with one embryo developed after blastocyst development Proteinase K was inactivated by treatment at 55 ° C for 2 hours and then at 95 ° C for 10 minutes, and 2 μl of 20% Tween20 was added to the final concentration of 2% before PCR. Using the prepared DNA solution as a template, PCR was carried out at 98 ° C. for 10 seconds and 68 ° C. for 1.5 minutes using M13_R_RG1_hLF 5 Sc S5 (SEQ ID NO: 11), M13_F_hLF Sc AS4 (SEQ ID NO: 12) and FX Neo polymerase (TOYOBO, KFX- (SEQ ID NO: 13), M13-R primer (SEQ ID NO: 13), and M13-R primer (SEQ ID NO: 13) were used as the template and 1 mu l of the first PCR product was used as a template. No. 14) and Go Taq polymerase under conditions of 30 cycles of 94 ° C for 30 seconds, 64 ° C for 30 seconds, and 72 ° C for 1.5 minutes in a total of 30 cycles. The amplified fragments were then subjected to electrophoresis on 1% agarose gel to confirm amplification (FIG. 9). Also, sgRNA, Cas9 mRNA and knock-in vector were amplified by PCR using 4 The knocked-in bands were detected and the knock-in efficiency was about 50%, which is shown in Table 2 below.

sgRNA/Cas9 mRNA/hLF 벡터sgRNA / Cas9 mRNA / hLF vector
(ng/㎕)(ng / mu l)
주입 배아 수Number of injected embryos 배반포 수(%)Number of blastocysts (%) GFP 발현 배반포 수 (%)Number of blastocysts expressing GFP (%) PCT 분석 수(%)PCT analysis (%) 양성 배아수(%)Number of positive embryos (%)
100/100/25100/100/25 111111 1818 1414 33 22 100/100/25100/100/25 3030 55 55 55 22 총합total 141141 23(16.3)23 (16.3) 19(82.6)19 (82.6) 88 4(50)4 (50)

결론적으로, 소 베타-카제인을 타겟팅 할 수 있는 넉-인 벡터를 크리스퍼 유전자가위(CRISPR/Cas9)과 함께 소의 전핵기 수정란에 미세주입하여 수정란에서 상동유전자 재조합을 통해 종래의 체세포 핵치환방법과 비교하여 높은 형질전환 수정란을 확보할 수 있으므로 대리모에 이식하였을 때 높은 착상율을 기대할 수 있고 형질전환 소의 생산으로 인한 더 효율적인 치료용 단백질 생산이 가능하다. In conclusion, knock-in vectors targeting sobeta-casein were microinjected into bovine precursor nucleus embryos with the CRISPR / Cas9 gene to allow the recombination of homologous genes in embryos to replace conventional somatic cell nucleus replacement As a result, a high implantation rate can be expected when transplanted into surrogate mothers, and it is possible to produce therapeutic proteins more efficiently due to the production of transgenic plants.

본 발명은 상술한 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

<110> INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY <120> Knock in vector for expressing lactoferrin and knock in method using thereof <130> PD16-5360 <160> 16 <170> KopatentIn 2.0 <210> 1 <211> 1064 <212> DNA <213> Bos taurus <400> 1 gcggccgctg tcaagagatg ttgatggcaa gaacattttt ttttcaagaa cttataaaaa 60 tgcaacaaaa caaaccattt aatacatttt ggtcaaaaat agtatgtatt ttattttatg 120 ctacaaggag aagtagtcta aagtgaggac tgggcaagag aatctgacac cctggtaaat 180 caccgagaga taagtacaca gttctctgta gagaaaataa gcatagtgta tgatctctaa 240 aattatgtgg gacaaagggg agataacatt aggcatgtgg ggatgaagac tgagtacaga 300 agaaacaatc tagtcagtcc aagaaaacat gtggatcaat ggaacaaata gaagaaatgc 360 taaaatgaaa cagaagtctt actggaaata aaagatatga ggaagacaaa cattcatgaa 420 aatcacttag tttagtagag aaaagataaa aataaagtat taccttcttc ttcatataca 480 ttgtttgatc agatgcccct caataaaact gagtctccaa cagaactgaa actttaatat 540 tttgttcact gctctaatcc cagaatctaa gacatatctg gcaataaaaa ttaataaata 600 aatattttta ataagtaaat caatcactta atttttctgt aagtatctgt aacttctctt 660 ctgtctttcc aaaaaacact cataagtact gtgaataaga tgaaaagagt gaaataagat 720 ataggctgtt agctgaaaac atctggatag ctggcagtga aacattaact tgaaatgtaa 780 gattaatgag taatagtaaa ttttaacctt ggccgtatga taaaatgtct attaatattt 840 ttctaaaata cagggctttt tgtttttgcc atgaggtttg caggatcttg gttccctgat 900 gagggatcaa acctgggctc ccctggaagc acggagtctt agatatttgt attatacact 960 atctttggtt tcttttaaag ggaagtaatt ctacttaaat aagaaaatag attgacaagt 1020 aatacactat ttcctcatct tcccattccc aggaattgag agcc 1064 <210> 2 <211> 2089 <212> DNA <213> Bos taurus <400> 2 aagcttattg tggaaagcct ttcaagcagt gaggtaagat agtgttcatt cagaggcaat 60 ttcccaaatt tagagcaata aaatgctgta ttatcttttt gtgttacatt aatggcaacc 120 cactccagta ttcttgcctg gaaaatccca tagaggagga gcctggtagg ctgcagtcca 180 cggggtcgct aagagtcgga caggactgag cgacttccct ttcacttttc actttcatgc 240 cttggagaag gaaatggcaa cccactccag ttttcttgcc gggagaatcc cagggacggg 300 ggagcctggt gggctgccgt ctatggggtc gcacagagtt ggacacgact gaagcgactt 360 agcagtagca gcagcaggac agttaaggtt tctctaatag ctcagttggt aaagaatctg 420 gctgcagtgc aggagaccct ggttcgattc ctcaagatct gcaggagaag ggataggcta 480 cccattccag tgttctttaa gccaatgtgg ctatgtactg acgggtaact attgtcaatt 540 tccactctat atatttaaag gaataaatgt gtagaaggtt taatattcta gtaatttcta 600 aatgggtttg ttatttgaaa ttgtgtcatt gtgccctgct ttttttcctt aatgaactgt 660 acagtcctct tttctgtctt gaactttcta tgttaacctc cttccatgct ttggcattta 720 ttgagcactt tctgtttcag actttgacta ggaactgcag tacaaactag aaagagggat 780 gccctttgta aagtgtgagc agacatgcaa atggacatat tttattatta tacaagcaat 840 ccagtacaca agaggcagtg agaatgagtg tagtcctaaa tctgcctggt ggaatgaggt 900 agataataac cctatgccac tctttctggc tctgtcatca gctgttggtt aaatagtgca 960 tcaatatact ttgtctcttc acaaaggtca aaagatgctg ctgctgctgc taagtccctt 1020 cagtcatgtc tgactctgtg cgacctcata gatggcagcc tgccaggctc ccccatccct 1080 gggattctcc agacaagaat actggagtgg gttgccattt cctattccaa tgcataaaag 1140 tgaaaagtga aagtgaagtc gctcagtcgt gtccgactcc tagtgacccc gtggactgca 1200 gcctaccagg ctcctccatc catgggattt tccaggcaag agtactggag tgggttgcca 1260 ttgccatctc caaagatcct tataggaggg tatgtatttc ttataattca ttagaagcct 1320 aaacataacc agggaactaa gaatgattaa caagttcatg cgtggttatt attatatatt 1380 ttcaatgact attattcttt tagaaccaga tgaaaatatt agagatcatt tgttgtccta 1440 aggagagaac aggatgattg agagacatgt atgcatgcaa agttgcttca gccctttcca 1500 actctgtatg accctatgga ctgtaacctg ccaggttcct ctgtctatgg gattctccag 1560 gcaagaatac aggagtgggt tgtcatctcc tccagggcct aggaatcgac ctgcatctct 1620 tacgtctcct gcattggcag gcaggttctt taccactagc accacctggg aagcccgatt 1680 agtatctgtt aaatgcctct ttgagtacta tgctctctaa tcctcttttt cttgattgca 1740 tcatctttct ttttatacaa cagccttatt cagaagagtg gaacataaac tttcagccat 1800 aaaataatga tattatcaaa tgagctgtcc atattaatct attaaatttc ttcattttct 1860 gatttatgtt gacaaataag aatttttttt aaagctagac ctgattttat ttttattttt 1920 ccaaaggaat ctattacacg catcaataag gtaaaaccct catatttaaa tgtacatttt 1980 tttaaatttc atgtttgatt tttataaaca gcatttcttt atgtattttt tttttaacca 2040 gaaaattgag aagtttcaga gtgaggaaca gcagcaaaca gaggtcgac 2089 <210> 3 <211> 1973 <212> DNA <213> homo sapiens <400> 3 atgaaacttg tcttcctcgt cctgctgttc ctcggggccc tcggactgtg tctggctggc 60 cgtaggagaa ggagtgttca gtggtgcacc gtatcccaac ccgaggccac aaaatgcttc 120 caatggcaaa ggaatatgag aagagtgcgt ggccctcctg tcagctgcat aaagagagac 180 tcccccatcc agtgtatcca ggccattgcg gaaaacaggg ccgatgctgt gacccttgat 240 ggtggtttca tatacgaggc aggcctggcc ccctacaaac tgcgacctgt agcggcggaa 300 gtctacggga ccgaaagaca gccacgaact cactattatg ccgtggctgt ggtgaagaag 360 ggcggcagct ttcagctgaa cgaactgcaa ggtctgaagt cctgccacac aggccttcgc 420 aggaccgctg gatggaatgt gcctataggg acacttcgtc cattcttgaa ttggacgggt 480 ccacctgagc ccattgaggc agctgtggcc aggttcttct cagccagctg tgttcccggt 540 gcagataaag gacagttccc caacctgtgt cgcctgtgtg cggggacagg ggaaaacaaa 600 tgtgccttct cctcccagga accgtacttc agctactctg gtgccttcaa gtgtctgaga 660 gacggggctg gagacgtggc ttttatcaga gagagcacag tgtttgagga cctgtcagac 720 gaggctgaaa gggacgagta tgagttactc tgcccagaca acactcggaa gccagtggac 780 aagttcaaag actgccatct ggcccgggtc ccttctcatg ccgttgtggc acgaagtgtg 840 aatggcaagg aggatgccat ctggaatctt ctccgccagg cacaggaaaa gtttggaaag 900 gacaagtcac cgaaattcca gctctttggc tcccctagtg ggcagaaaga tctgctgttc 960 aaggactctg ccattgggtt ttcgagggtg cccccgagga tagattctgg gctgtacctt 1020 ggctccggct acttcactgc catccagaac ttgaggaaaa gtgaggagga agtggctgcc 1080 cggcgtgcgc gggtcgtgtg gtgtgcggtg ggcgagcagg agctgcgcaa gtgtaaccag 1140 tggagtggct tgagcgaagg cagcgtgacc tgctcctcgg cctccaccac agaggactgc 1200 atcgccctgg tgctgaaagg agaagctgat gccatgagtt tggatggagg atatgtgtac 1260 actgcaggca aatgtggttt ggtgcctgtc ctggcagaga actacaaatc ccaacaaagc 1320 agtgaccctg atcctaactg tgtggataga cctgtggaag gatatcttgc tgtggcggtg 1380 gttaggagat cagacactag ccttacctgg aactctgtga aaggcaagaa gtcctgccac 1440 accgccgtgg acaggactgc aggctggaat atccccatgg gcctgctctt caaccagacg 1500 ggctcctgca aatttgatga atatttcagt caaagctgtg cccctgggtc tgacccgaga 1560 tctaatctct gtgctctgtg tattggcgac gagcagggtg agaataagtg cgtgcccaac 1620 agcaatgaga gatactacgg ctacactggg gctttccggt gcctggctga gaatgctgga 1680 gacgttgcat ttgtgaaaga tgtcactgtc ttgcagaaca ctgatggaaa taacaatgag 1740 gcatgggcta aggatttgaa gctggcagac tttgcgctgc tgtgcctcga tggcaaacgg 1800 aagcctgtga ctgaggctag aagctgccat cttgccatgg ccccgaatca tgccgtggtg 1860 tctcggatgg ataaggtgga acgcctgaaa caggtgctgc tccaccaaca ggctaaattt 1920 gggagaaatg gatctgactg cccggacaag ttttgcttat tccagtctga aac 1973 <210> 4 <211> 239 <212> DNA <213> Artificial Sequence <220> <223> BGH polyA <400> 4 ggatcccgac tgtgccttct agttgccagc catctgttgt ttgcccctcc cccgtgcctt 60 ccttgaccct ggaaggtgcc actcccactg tcctttccta ataaaatgag gaaattgcat 120 cgcattgtct gagtaggtgt cattctattc tggggggtgg ggtggggcag gacagcaagg 180 gggaggattg ggaagacaat agcaggcatg ctggggatgc ggtgggctct atggaattc 239 <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> LF 5 arm NotI S(RGEN) <400> 5 gcgcggccgc tgtcaagaga tgttgatggc 30 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> LF 3 arm XbaI AS(RGEN) <400> 6 gctctagatt cggttttact tcctgaggaa 30 <210> 7 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> bBC-E3 3 arm S Hind3 <400> 7 gcaagcttat tgtggaaagc ctttcaagc 29 <210> 8 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> bBC-E6 SalI AS2 <400> 8 gcgtcgacct ctgtttgctg ctgttcctca c 31 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CRISPR/Cas9 sense primer <400> 9 gctgtgtcta ttcaacacag gatgatactc 30 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CRISPR/Cas9 anti-sense primer <400> 10 aacactatct tacctcactg cttgaaaggc 30 <210> 11 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> M13_R_RG1_hLF 5 Sc S5 <400> 11 ggaaacagct atgaccatgg tagtttgcaa atctgggatt gaagatgtg 49 <210> 12 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> M13_F_hLF Sc AS4 <400> 12 ggttttccca gtcacgaccc cgaggaacag caggacgagg aagacaag 48 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> M13-F <400> 13 ggttttccca gtcacgac 18 <210> 14 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> M13-R <400> 14 ggaaacagct atgaccatg 19 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 15 ctggaagaac tcaatgtacc tgg 23 <210> 16 <211> 1578 <212> DNA <213> Artificial Sequence <220> <223> CMV-EGFP-polyA <400> 16 gaattctagt tattaatagt aatcaattac ggggtcatta gttcatagcc catatatgga 60 gttccgcgtt acataactta cggtaaatgg cccgcctggc tgaccgccca acgacccccg 120 cccattgacg tcaataatga cgtatgttcc catagtaacg ccaataggga ctttccattg 180 acgtcaatgg gtggagtatt tacggtaaac tgcccacttg gcagtacatc aagtgtatca 240 tatgccaagt acgcccccta ttgacgtcaa tgacggtaaa tggcccgcct ggcattatgc 300 ccagtacatg accttatggg actttcctac ttggcagtac atctacgtat tagtcatcgc 360 tattaccatg gtgatgcggt tttggcagta catcaatggg cgtggatagc ggtttgactc 420 acggggattt ccaagtctcc accccattga cgtcaatggg agtttgtttt ggcaccaaaa 480 tcaacgggac tttccaaaat gtcgtaacaa ctccgcccca ttgacgcaaa tgggcggtag 540 gcgtgtacgg tgggaggtct atataagcag agctggttta gtgaaccgtc agatccgcta 600 gcgctaccgg actcagatcc atcgccacca tggtgagcaa gggcgaggag ctgttcaccg 660 gggtggtgcc catcctggtc gagctggacg gcgacgtaaa cggccacaag ttcagcgtgt 720 ccggcgaggg cgagggcgat gccacctacg gcaagctgac cctgaagttc atctgcacca 780 ccggcaagct gcccgtgccc tggcccaccc tcgtgaccac cctgacctac ggcgtgcagt 840 gcttcagccg ctaccccgac cacatgaagc agcacgactt cttcaagtcc gccatgcccg 900 aaggctacgt ccaggagcgc accatcttct tcaaggacga cggcaactac aagacccgcg 960 ccgaggtgaa gttcgagggc gacaccctgg tgaaccgcat cgagctgaag ggcatcgact 1020 tcaaggagga cggcaacatc ctggggcaca agctggagta caactacaac agccacaacg 1080 tctatatcat ggccgacaag cagaagaacg gcatcaaggt gaacttcaag atccgccaca 1140 acatcgagga cggcagcgtg cagctcgccg accactacca gcagaacacc cccatcggcg 1200 acggccccgt gctgctgccc gacaaccact acctgagcac ccagtccgcc ctgagcaaag 1260 accccaacga gaagcgcgat cacatggtcc tgctggagtt cgtgaccgcc gccgggatca 1320 ctctcggcat ggacgagctg tgggcgactg tgccttctag ttgccagcca tctgttgttt 1380 gcccctcccc cgtgccttcc ttgaccctgg aaggtgccac tcccactgtc ctttcctaat 1440 aaaatgagga aattgcatcg cattgtctga gtaggtgtca ttctattctg gggggtgggg 1500 tggggcagga cagcaagggg gaggattggg aagacaatag caggcatgct ggggatgcgg 1560 tgggctctat ggaagctt 1578 <110> INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY <120> Knock in vector for expressing lactoferrin and knock in method          using <130> PD16-5360 <160> 16 <170> Kopatentin 2.0 <210> 1 <211> 1064 <212> DNA <213> Bos taurus <400> 1 gcggccgctg tcaagagatg ttgatggcaa gaacattttt ttttcaagaa cttataaaaa 60 tgcaacaaaa caaaccattt aatacatttt ggtcaaaaat agtatgtatt ttattttatg 120 ctacaaggag aagtagtcta aagtgaggac tgggcaagag aatctgacac cctggtaaat 180 caccgagaga taagtacaca gttctctgta gagaaaataa gcatagtgta tgatctctaa 240 aattatgtgg gacaaagggg agataacatt aggcatgtgg ggatgaagac tgagtacaga 300 agaaacaatc tagtcagtcc aagaaaacat gtggatcaat ggaacaaata gaagaaatgc 360 taaaatgaaa cagaagtctt actggaaata aaagatatga ggaagacaaa cattcatgaa 420 aatcacttag tttagtagag aaaagataaa aataaagtat taccttcttc ttcatataca 480 ttgtttgatc agatgcccct caataaaact gagtctccaa cagaactgaa actttaatat 540 tttgttcact gctctaatcc cagaatctaa gacatatctg gcaataaaaa ttaataaata 600 aatattttta ataagtaaat caatcactta atttttctgt aagtatctgt aacttctctt 660 ctgtctttcc aaaaaacact cataagtact gtgaataaga tgaaaagagt gaaataagat 720 ataggctgtt agctgaaaac atctggatag ctggcagtga aacattaact tgaaatgtaa 780 gattaatgag taatagtaaa ttttaacctt ggccgtatga taaaatgtct attaatattt 840 ttctaaaata cagggctttt tgtttttgcc atgaggtttg caggatcttg gttccctgat 900 gagggatcaa acctgggctc ccctggaagc acggagtctt agatatttgt attatacact 960 atctttggtt tcttttaaag ggaagtaatt ctacttaaat aagaaaatag attgacaagt 1020 aatacactat ttcctcatct tcccattccc aggaattgag agcc 1064 <210> 2 <211> 2089 <212> DNA <213> Bos taurus <400> 2 aagcttattg tggaaagcct ttcaagcagt gaggtaagat agtgttcatt cagaggcaat 60 ttcccaaatt tagagcaata aaatgctgta ttatcttttt gtgttacatt aatggcaacc 120 cactccagta ttcttgcctg gaaaatccca tagaggagga gcctggtagg ctgcagtcca 180 cggggtcgct aagagtcgga caggactgag cgacttccct ttcacttttc actttcatgc 240 cttggagaag gaaatggcaa cccactccag ttttcttgcc gggagaatcc cagggacggg 300 ggagcctggt gggctgccgt ctatggggtc gcacagagtt ggacacgact gaagcgactt 360 agcagtagca gcagcaggac agttaaggtt tctctaatag ctcagttggt aaagaatctg 420 gctgcagtgc aggagaccct ggttcgattc ctcaagatct gcaggagaag ggataggcta 480 cccattccag tgttctttaa gccaatgtgg ctatgtactg acgggtaact attgtcaatt 540 tccactctat atatttaaag gaataaatgt gtagaaggtt taatattcta gtaatttcta 600 aatgggtttg ttatttgaaa ttgtgtcatt gtgccctgct ttttttcctt aatgaactgt 660 acagtcctct tttctgtctt gaactttcta tgttaacctc cttccatgct ttggcattta 720 ttgagcactt tctgtttcag actttgacta ggaactgcag tacaaactag aaagagggat 780 gccctttgta aagtgtgagc agacatgcaa atggacatat tttattatta tacaagcaat 840 ccagtacaca agaggcagtg agaatgagtg tagtcctaaa tctgcctggt ggaatgaggt 900 agataataac cctatgccac tctttctggc tctgtcatca gctgttggtt aaatagtgca 960 tcaatatact ttgtctcttc acaaaggtca aaagatgctg ctgctgctgc taagtccctt 1020 cagtcatgtc tgactctgtg cgacctcata gatggcagcc tgccaggctc ccccatccct 1080 gggattctcc agacaagaat actggagtgg gttgccattt cctattccaa tgcataaaag 1140 tgaaaagtga aagtgaagtc gctcagtcgt gtccgactcc tagtgacccc gtggactgca 1200 gcctaccagg ctcctccatc catgggattt tccaggcaag agtactggag tgggttgcca 1260 ttgccatctc caaagatcct tataggaggg tatgtatttc ttataattca ttagaagcct 1320 aaacataacc agggaactaa gaatgattaa caagttcatg cgtggttatt attatatatt 1380 ttcaatgact attattcttt tagaaccaga tgaaaatatt agagatcatt tgttgtccta 1440 aggagagaac aggatgattg agagacatgt atgcatgcaa agttgcttca gccctttcca 1500 actctgtatg accctatgga ctgtaacctg ccaggttcct ctgtctatgg gattctccag 1560 gcaagaatac aggagtgggt tgtcatctcc tccagggcct aggaatcgac ctgcatctct 1620 tacgtctcct gcattggcag gcaggttctt taccactagc accacctggg aagcccgatt 1680 agtatctgtt aaatgcctct ttgagtacta tgctctctaa tcctcttttt cttgattgca 1740 tcatctttct ttttatacaa cagccttatt cagaagagtg gaacataaac tttcagccat 1800 aaaataatga tattatcaaa tgagctgtcc atattaatct attaaatttc ttcattttct 1860 gatttatgtt gacaaataag aatttttttt aaagctagac ctgattttat ttttattttt 1920 ccaaaggaat ctattacacg catcaataag gtaaaaccct catatttaaa tgtacatttt 1980 tttaaatttc atgtttgatt tttataaaca gcatttcttt atgtattttt tttttaacca 2040 gaaaattgag aagtttcaga gtgaggaaca gcagcaaaca gaggtcgac 2089 <210> 3 <211> 1973 <212> DNA <213> homo sapiens <400> 3 atgaaacttg tcttcctcgt cctgctgttc ctcggggccc tcggactgtg tctggctggc 60 cgtaggagaa ggagtgttca gtggtgcacc gtatcccaac ccgaggccac aaaatgcttc 120 caatggcaaa ggaatatgag aagagtgcgt ggccctcctg tcagctgcat aaagagagac 180 tcccccatcc agtgtatcca ggccattgcg gaaaacaggg ccgatgctgt gacccttgat 240 ggtggtttca tatacgaggc aggcctggcc ccctacaaac tgcgacctgt agcggcggaa 300 gtctacggga ccgaaagaca gccacgaact cactattatg ccgtggctgt ggtgaagaag 360 ggcggcagct ttcagctgaa cgaactgcaa ggtctgaagt cctgccacac aggccttcgc 420 aggaccgctg gatggaatgt gcctataggg acacttcgtc cattcttgaa ttggacgggt 480 ccacctgagc ccattgaggc agctgtggcc aggttcttct cagccagctg tgttcccggt 540 gcagataaag gacagttccc caacctgtgt cgcctgtgtg cggggacagg ggaaaacaaa 600 tgtgccttct cctcccagga accgtacttc agctactctg gtgccttcaa gtgtctgaga 660 gacggggctg gagacgtggc ttttatcaga gagagcacag tgtttgagga cctgtcagac 720 gaggctgaaa gggacgagta tgagttactc tgcccagaca acactcggaa gccagtggac 780 aagttcaaag actgccatct ggcccgggtc ccttctcatg ccgttgtggc acgaagtgtg 840 aatggcaagg aggatgccat ctggaatctt ctccgccagg cacaggaaaa gtttggaaag 900 gacaagtcac cgaaattcca gctctttggc tcccctagtg ggcagaaaga tctgctgttc 960 aaggactctg ccattgggtt ttcgagggtg cccccgagga tagattctgg gctgtacctt 1020 ggctccggct acttcactgc catccagaac ttgaggaaaa gtgaggagga agtggctgcc 1080 gt; tggagtggct tgagcgaagg cagcgtgacc tgctcctcgg cctccaccac agaggactgc 1200 atcgccctgg tgctgaaagg agaagctgat gccatgagtt tggatggagg atatgtgtac 1260 actgcaggca aatgtggttt ggtgcctgtc ctggcagaga actacaaatc ccaacaaagc 1320 agtgaccctg atcctaactg tgtggataga cctgtggaag gatatcttgc tgtggcggtg 1380 gttaggagat cagacactag ccttacctgg aactctgtga aaggcaagaa gtcctgccac 1440 accgccgtgg acaggactgc aggctggaat atccccatgg gcctgctctt caaccagacg 1500 ggctcctgca aatttgatga atatttcagt caaagctgtg cccctgggtc tgacccgaga 1560 tctaatctct gtgctctgtg tattggcgac gagcagggtg agaataagtg cgtgcccaac 1620 agcaatgaga gatactacgg ctacactggg gctttccggt gcctggctga gaatgctgga 1680 gacgttgcat ttgtgaaaga tgtcactgtc ttgcagaaca ctgatggaaa taacaatgag 1740 gcatgggcta aggatttgaa gctggcagac tttgcgctgc tgtgcctcga tggcaaacgg 1800 aagcctgtga ctgaggctag aagctgccat cttgccatgg ccccgaatca tgccgtggtg 1860 tctcggatgg ataaggtgga acgcctgaaa caggtgctgc tccaccaaca ggctaaattt 1920 gggagaaatg gatctgactg cccggacaag ttttgcttat tccagtctga aac 1973 <210> 4 <211> 239 <212> DNA <213> Artificial Sequence <220> <223> BGH polyA <400> 4 ggtcccgac tgtgccttct agttgccagc catctgttgt ttgcccctcc cccgtgcctt 60 ccttgaccct ggaaggtgcc actcccactg tcctttccta ataaaatgag gaaattgcat 120 cgcattgtct gagtaggtgt cattctattc tggggggtgg ggtggggcag gacagcaagg 180 gggaggattg ggaagacaat agcaggcatg ctggggatgc ggtgggctct atggaattc 239 <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> LF 5 arm NotI S (RGEN) <400> 5 gcgcggccgc tgtcaagaga tgttgatggc 30 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> LF 3 arm XbaI AS (RGEN) <400> 6 gctctagatt cggttttact tcctgaggaa 30 <210> 7 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> bBC-E3 3 arm S Hind3 <400> 7 gcaagcttat tgtggaaagc ctttcaagc 29 <210> 8 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> bBC-E6 SalI AS2 <400> 8 gcgtcgacct ctgtttgctg ctgttcctca c 31 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CRISPR / Cas9 sense primer <400> 9 gctgtgtcta ttcaacacag gatgatactc 30 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CRISPR / Cas9 anti-sense primer <400> 10 aacactatct tacctcactg cttgaaaggc 30 <210> 11 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> M13_R_RG1_hLF 5 Sc S5 <400> 11 ggaaacagct atgaccatgg tagtttgcaa atctgggatt gaagatgtg 49 <210> 12 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> M13_F_hLF Sc AS4 <400> 12 ggttttccca gtcacgaccc cgaggaacag caggacgagg aagacaag 48 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> M13-F <400> 13 ggttttcccc gtcacgac 18 <210> 14 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> M13-R <400> 14 ggaaacagct atgaccatg 19 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 15 ctggaagaac tcaatgtacc tgg 23 <210> 16 <211> 1578 <212> DNA <213> Artificial Sequence <220> <223> CMV-EGFP-polyA <400> 16 gaattctagt tattaatagt aatcaattac ggggtcatta gttcatagcc catatatgga 60 gttccgcgtt acataactta cggtaaatgg cccgcctggc tgaccgccca acgacccccg 120 cccattgacg tcaataatga cgtatgttcc catagtaacg ccaataggga ctttccattg 180 acgtcaatgg gtggagtatt tacggtaaac tgcccacttg gcagtacatc aagtgtatca 240 tatgccaagt acgcccccta ttgacgtcaa tgacggtaaa tggcccgcct ggcattatgc 300 ccagtacatg accttatggg actttcctac ttggcagtac atctacgtat tagtcatcgc 360 tattaccatg gtgatgcggt tttggcagta catcaatggg cgtggatagc ggtttgactc 420 acggggattt ccaagtctcc accccattga cgtcaatggg agtttgtttt ggcaccaaaa 480 tcaacgggac tttccaaaat gtcgtaacaa ctccgcccca ttgacgcaaa tgggcggtag 540 gcgtgtacgg tgggaggtct atataagcag agctggttta gtgaaccgtc agatccgcta 600 gcgctaccgg actcagatcc atcgccacca tggtgagcaa gggcgaggag ctgttcaccg 660 gggtggtgcc catcctggtc gagctggacg gcgacgtaaa cggccacaag ttcagcgtgt 720 ccggcgaggg cgagggcgat gccacctacg gcaagctgac cctgaagttc atctgcacca 780 ccggcaagct gcccgtgccc tggcccaccc tcgtgaccac cctgacctac ggcgtgcagt 840 gcttcagccg ctaccccgac cacatgaagc agcacgactt cttcaagtcc gccatgcccg 900 aaggctacgt ccaggagcgc accatcttct tcaaggacga cggcaactac aagacccgcg 960 ccgaggtgaa gttcgagggc gacaccctgg tgaaccgcat cgagctgaag ggcatcgact 1020 tcaaggagga cggcaacatc ctggggcaca agctggagta caactacaac agccacaacg 1080 tctatatcat ggccgacaag cagaagaacg gcatcaaggt gaacttcaag atccgccaca 1140 acatcgagga cggcagcgtg cagctcgccg accactacca gcagaacacc cccatcggcg 1200 acggccccgt gctgctgccc gacaaccact acctgagcac ccagtccgcc ctgagcaaag 1260 accccaacga gaagcgcgat cacatggtcc tgctggagtt cgtgaccgcc gccgggatca 1320 ctctcggcat ggacgagctg tgggcgactg tgccttctag ttgccagcca tctgttgttt 1380 gcccctcccc cgtgccttcc ttgaccctgg aaggtgccac tcccactgtc ctttcctaat 1440 aaaatgagga aattgcatcg cattgtctga gtaggtgtca ttctattctg gggggtgggg 1500 tggggcagga cagcaagggg gaggattggg aagacaatag caggcatgct ggggatgcgg 1560 tgggctctat ggaagctt 1578

Claims (12)

5'-아암(arm)으로서, 서열번호 1로 기재되는 핵산서열로 구성되며 소 베타-카제인 게놈 DNA의 프로모터, 엑손 2의 일부를 포함하는 5' 말단 단편; 치료용 단백질(therapeutic protein)을 암호화하는 유전자; 및 3'-아암(arm)으로서, 서열번호 2로 기재되는 핵산서열로 구성되며 소 베타-카제인 게놈 DNA의 엑손 4, 5 및 6을 포함하는, 치료용 단백질 생산용 넉-인 벡터 및 CRISPR/Cas9 인공효소를 포유동물의 수정란에 미세주입하는 미세주입단계;
상기 미세주입한 수정란을 배반포기까지 배양하는 배양단계;
상기 배반포기 수정란의 DNA를 추출하여 PCR로 증폭하는 증폭단계; 및
상기 증폭된 PCR 산물의 유무 및 크기를 판별하여 상기 벡터가 소 베타-카제인 게놈 DNA의 제 위치로 삽입된 것을 확인하는, 넉-인 방법.
A 5'-arm comprising a promoter of a sub-beta-casein genomic DNA comprising a nucleic acid sequence as set forth in SEQ ID NO: 1, a 5 'end fragment comprising a portion of exon 2; A gene encoding a therapeutic protein; And a 3'-arm, comprising a nucleic acid sequence as set forth in SEQ ID NO: 2 and comprising exon 4, 5 and 6 of the sub-beta-casein genomic DNA, and a CRISPR / A microinjection step of microinjecting Cas9 artificial enzyme into mammalian embryos;
Culturing the microinjected embryo to a blastocyst;
An amplification step of amplifying the DNA of the blastocyst embryo by PCR; And
Determining the presence or absence of the amplified PCR product and confirming that the vector is inserted into the site of the sub-beta-casein genomic DNA.
제1항에 있어서,
상기 치료용 단백질은 인간 락토페린(lactoferrin)인, 넉-인 방법.
The method according to claim 1,
Wherein the therapeutic protein is human lactoferrin.
제2항에 있어서,
상기 인간 락토페린을 코딩하는 유전자는 서열번호 3으로 기재되는 핵산서열로 구성되는 폴리뉴클레오티드인, 넉-인 방법.
3. The method of claim 2,
Wherein the gene encoding human lactoferrin is a polynucleotide consisting of a nucleic acid sequence represented by SEQ ID NO: 3.
제2항에 있어서,
상기 인간 락토페린을 코딩하는 유전자의 3' 말단에 polyA 신호가 추가로 연결된, 넉-인 방법.
3. The method of claim 2,
Wherein the polyA signal is additionally attached to the 3 ' end of the gene encoding the human lactoferrin.
제2항에 있어서,
상기 인간 락토페린을 코딩하는 유전자의 3' 말단에 융합 형광 단백질의 발현을 확인하기 위한 리포터 유전자(reporter gene)가 추가로 연결된, 넉-인 방법.
3. The method of claim 2,
Wherein a reporter gene for confirming the expression of the fusion fluorescent protein is additionally connected to the 3 'end of the gene encoding the human lactoferrin.
제5항에 있어서,
상기 형광단백질은 녹색형광단백질(green fluorescent protein, GFP), 황색형광단백질(yellow fluorescent protein, YFP), 적색형광단백질(red fluorescent protein, RFP), 주황형광단백질(orange fluorescent protein, OFP), 청록색형광단백질(cyan fluorescent protein, CFP), 청색형광단백질(blue fluorescent protein, BFP) 또는 원적색형광단백질(far-red fluorescent protein)인, 넉-인 방법.
6. The method of claim 5,
The fluorescent protein may be selected from the group consisting of green fluorescent protein (GFP), yellow fluorescent protein (YFP), red fluorescent protein (RFP), orange fluorescent protein (OFP) Which is a cyan fluorescent protein (CFP), a blue fluorescent protein (BFP), or a far-red fluorescent protein.
제1항에 있어서,
음성 선별마커(negative selectable marker)를 함께 포함하는, 넉-인 방법.
The method according to claim 1,
Knock-in method comprising a negative selectable marker.
제7항에 있어서,
상기 음성 선별마커는 디프테리아 톡신(DT-A) 유전자인, 넉-인 방법.
8. The method of claim 7,
Wherein the negative selection marker is a diphtheria toxin (DT-A) gene.
삭제delete 제1항에 있어서,
상기 CRISPR/Cas9 인공효소는 서열번호 15로 기재되는 핵산서열을 표적으로 하는, 넉-인 방법.
The method according to claim 1,
Wherein the CRISPR / Cas9 artificial enzyme targets the nucleic acid sequence as set forth in SEQ ID NO: 15.
제1항 내지 제8항 및 제10항 중 어느 한 항의 넉-인 방법으로 숙주세포에 형질전환시킨, 치료용 단백질 대량생산용 형질전환 소.A transformant for the mass production of therapeutic proteins, which is transformed into a host cell by the knock-in method according to any one of claims 1 to 8 and 10. 제1항 내지 제8항 및 제10항 중 어느 한 항에 따른 넉-인 방법으로 인간을 제외한 포유동물의 수정란 내로 도입하여, 치료용 단백질을 발현시키는 단계를 포함하는, 치료용 단백질의 생산방법.
A method for producing a therapeutic protein, comprising introducing into a mammalian embryo a mammal other than a human by a knock-in method according to any one of claims 1 to 8 and expressing a therapeutic protein .
KR1020160069050A 2016-06-02 2016-06-02 Knock in vector for expressing lactoferrin and knock in method using thereof KR101863653B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160069050A KR101863653B1 (en) 2016-06-02 2016-06-02 Knock in vector for expressing lactoferrin and knock in method using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160069050A KR101863653B1 (en) 2016-06-02 2016-06-02 Knock in vector for expressing lactoferrin and knock in method using thereof

Publications (2)

Publication Number Publication Date
KR20170137275A KR20170137275A (en) 2017-12-13
KR101863653B1 true KR101863653B1 (en) 2018-06-05

Family

ID=60944491

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160069050A KR101863653B1 (en) 2016-06-02 2016-06-02 Knock in vector for expressing lactoferrin and knock in method using thereof

Country Status (1)

Country Link
KR (1) KR101863653B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235895A1 (en) * 2018-06-07 2019-12-12 한국생명공학연구원 Transgenic mouse for aglycosylated antibody production and use of aglycosylated antibody produced therefrom
WO2020141109A1 (en) * 2018-12-30 2020-07-09 F. Hoffmann-La Roche Ag Method for the selection of cells based on crispr/cas-controlled integration of a detectable tag to a target protein
RU2744757C1 (en) * 2020-07-27 2021-03-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Астраханский государственный технический университет" A means of increasing the level of lactoferrin in the body
CN117586383A (en) * 2022-08-10 2024-02-23 青岛清原化合物有限公司 Method for specifically improving lactoferrin gene expression quantity and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236724B1 (en) * 2010-11-23 2013-02-26 대한민국 Gene targeting knock-in vector containing overexpression cassette, the method for constructing the same and transgenic cloned animal carrying the vector for xenotransplantation
KR101507600B1 (en) * 2012-10-08 2015-04-29 전남대학교산학협력단 Knock in vector comprising bovine beta casein genome
CA2917961A1 (en) * 2013-07-10 2015-01-15 Joseph A. Majzoub Mrap2 knockouts

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HEO 등, "CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells", Stem Cells and Development, Vol.24, No.3 (2015)*
NCBI, GenBank accession no. KT006756.1 (2016.05.08.)*
NCBI, GenBank accession no. M55158.1 (1993.04.26.)*
강만종, "바이오신약 생산 관련 유전자 발굴/발현벡터 시스템 구축 및 형질전환 세포주 확립", 차세대 바이오그린 21 사업 완결과제 최종보고서, 주관연구기관: 전남대학교, 주관부처: 농촌진흥청 (2013)*

Also Published As

Publication number Publication date
KR20170137275A (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP5320546B2 (en) Tol1 element transposase and DNA introduction system using the same
KR101863653B1 (en) Knock in vector for expressing lactoferrin and knock in method using thereof
WO2012158986A2 (en) Methods for site-specific genetic modification in stem cells using xanthomonas tal nucleases (xtn) for the creation of model organisms
WO2012158985A2 (en) Methods for site-specific genetic modification in spermatogonial stem cells using zinc finger nuclease (zfn) for the creation of model organisms
JP5507555B2 (en) Porcine αS1 casein gene, promoter thereof, and use thereof
JP2021166551A (en) Birds and bird eggs
JP2001513336A (en) Use of &#34;marina&#34; transposans in the production of transgenic animals
EP3562944A1 (en) Transgenic animals and method for bioproduction
WO2020240876A1 (en) Exon-humanized mouse
KR101435635B1 (en) Knock-in vector and process for preparing transgenic animal for transplantation employing the same
KR101068479B1 (en) alpha 1,3-galactosyltransferase gene targeting vector and uses thereof
US20220192163A1 (en) Hemophilia b rat model
JP7426120B2 (en) Method for producing knock-in cells
JP6267785B2 (en) CMP-acetylneuraminic acid hydroxylase targeting vector, transgenic animal for xenotransplantation into which the vector is introduced, and method for producing the same
KR101054264B1 (en) Method for producing transgenic porcine somatic cells incorporating a knock-in vector for the production of human basic FFP using the porcine beta-casein genome DNA
KR101918607B1 (en) Knock-in vector for expression of bovine lactoferrin and knock-in method in the bovine embryo using the same
KR20100003224A (en) A gene of porcine beta casein, a promoter of the same and use thereof
KR101636885B1 (en) Method for preparing bio-pharmaceutical protein fused to bovine beta-casein
KR102058015B1 (en) Transgenic cloned piglets defecting porcine GGTA1 gene, and expressing human CD39 and CD55 gene for xenotransplantation, and producing method thereof
KR101628701B1 (en) A bovine knock-in vector and use thereof
KR101515066B1 (en) Genetically-modified cell line for inhibiting blood coagulation for xenotransplantation and method for preparing the same
KR20240004489A (en) Methods and means for regulated gene expression
KR20150047670A (en) A gene expression system in mammary tissue using porcine WAP promoter
CN115843746A (en) USH2A gene humanized mouse model and establishment method and application thereof
CN116083482A (en) Construction method of B cell conditional knockout DHX9 gene mouse model

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant