KR101901505B1 - 황 회수 방법 및 장치 - Google Patents

황 회수 방법 및 장치 Download PDF

Info

Publication number
KR101901505B1
KR101901505B1 KR1020167032837A KR20167032837A KR101901505B1 KR 101901505 B1 KR101901505 B1 KR 101901505B1 KR 1020167032837 A KR1020167032837 A KR 1020167032837A KR 20167032837 A KR20167032837 A KR 20167032837A KR 101901505 B1 KR101901505 B1 KR 101901505B1
Authority
KR
South Korea
Prior art keywords
reactor
gas
stream
sulfur recovery
providing
Prior art date
Application number
KR1020167032837A
Other languages
English (en)
Other versions
KR20170008238A (ko
Inventor
엘모 나사토
Original Assignee
월리파슨스 유럽 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 월리파슨스 유럽 리미티드 filed Critical 월리파슨스 유럽 리미티드
Publication of KR20170008238A publication Critical patent/KR20170008238A/ko
Application granted granted Critical
Publication of KR101901505B1 publication Critical patent/KR101901505B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1468Removing hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0413Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process characterised by the combustion step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

황 회수 시스템에서 산성 가스 스트림을 처리하는 방법을 제공하며, 이 방법은, 구동 유체를 이젝터에 제공하는 단계; 산성 가스 스트림을 이젝터에 제공하여, 구동 유체와 산성 가스 스트림을 포함하는 혼합물을 취득하는 단계; 혼합물을 반응로에 제공하는 단계; 산소를 포함하는 연소 가스를 반응로에 제공하는 단계; 및 반응로의 내용물을 반응시키는 단계를 포함한다. 산성 가스 스트림을 처리하는 장치도 제공한다.

Description

황 회수 방법 및 장치{METHOD AND APPARATUS FOR SULFUR RECOVERY}
종래 출원에 대한 상호 참조
본원은 2014년 5월 20일에 출원한 미국 가특허출원 제62/000,845호인 우선권을 주장하며, 그 전문은 본원에 참고로 원용된다.
본 개시 내용은 일반적으로 황 회수 방법 및 장치에 관한 것이다. 구체적으로, 본 개시 내용은 클라우스(Claus) 플랜트에서 산성 가스 스트림으로부터의 황 회수에 관한 것이다.
황 회수 유닛(sulfur recovery unit; SRU)은 산성 가스 스트림으로부터 황을 회수하는 데 널리 사용되고 있다. 예를 들어, 산성 가스 스트림은 아민 가스 처리 공정을 통해 생성될 수 있으며, 황화수소(H2S)를 포함하는 사워 가스는 흡수 유닛과 재생 유닛을 통과하여, 아민산 가스 스트림이라고 흔히 알려져 있는, 황화수소가 풍부한 가스 스트림이 생성된다. 사워 가스의 조성에 따라, 산성 가스 스트림은, 또한 이산화탄소(CO2), 수증기(H2O), 암모니아(NH3), 및 기타 불순물 등의 다른 성분들을 포함할 수도 있다.
일반적으로, 황은, 예를 들어, Gas Conditioning Conference Report(1977)에서 B. G. Goar에 의해 개시된 "Fundamentals of Sulfur Recovery by the Claus Process" 문헌에 기재되어 있는 클라우스 공정이라고 알려져 있는 공정을 이용하여 황 회수 유닛에서 산성 가스 스트림으로부터 회수된다.
또한, 보충 산소 스트림을 반응로에 도입하여 반응로의 산소 농도를 증가시키는 공정인 산소 부화를 통해 황 회수 유닛의 용량이 향상될 수 있다는 점이 알려져 있다. 증가된 산소 농도는 클라우스 공정 동안 연소되는 황화수소의 양을 증가시킨다. SRU의 용량은 통상적으로 산소 부화를 이용하는 경우 증가되며, 그 이유는 주변 공기에 일반적으로 존재하는 불활성 가스(예를 들어, 질소)의 일부가 보충 산소로 교체되어, SRU를 유압식으로 언로딩하기 때문이다. 이는 산성 가스의 증가된 양이 SRU에 도입될 수 있게 하고, 이에 따라 전체 황 생산율을 증가시킬 수 있다.
그러나, 상업용 클라우스 플랜트에서 산소 부화를 이용할 수 있는 정도는, 일반적으로, SRU의 반응로에서 사용되는 내화물의 최대 허용가능 동작 온도에 의해 제한된다. 예를 들어, 시판되고 있는 반응로에서 사용되는 통상적인 내화물은 약 2850℉(1565℃)인 연속 최대 동작 온도를 갖는다. 내화물에 대한 스트레스를 줄이도록, 클라우스 플랜트의 운영자는, 동작 온도를 2500℉ 내지 2600℉로 낮게 보수적으로 제한할 수도 있다. 산소 부화는 일반적으로 동작 온도를 증가시키므로, 반응로에 첨가되는 산소의 양은, 동작 온도가 내화물의 원하는 또는 최대 허용가능 온도를 초과하지 않음을 확실히 하도록 엄밀하게 감시 및 제어된다. 그 결과, 산소 부화의 정도가 대략 제한되어, 이러한 SRU들의 용량이 비교적 적게 유지된다.
특히 산소 부화가 이용되는 클라우스 플랜트에서 SRU들의 용량을 증가시키고자 하는 시도가 일부 있었다. 예를 들어, Nasato의 미국 특허 제6,508,998호는, 공정 재활용 스트림이 반응로에서의 동작 온도를 제어하기 위한 히트 싱크로서 기능하도록 공정 재활용 스트림을 이젝터를 통해 반응로에 도입함으로써 산소 부화 클라우스 플랜트에서 SRU 용량을 개선하는 공정을 개시하고 있다. 그러나, 이러한 공정은, 일부 경우에, 재활용 가스 스트림의 취급을 필요로 하므로, 구현이 어려울 수 있다. 재활용 가스 스트림은 통상적으로 황 이슬점에 있으므로, 재활용 스트림의 황 증기는 액체로 응결될 수도 있고 이어서 고화되어 반응로 버너 및/또는 공정 라인 내에 퇴적될 수도 있다. 황의 응결 또는 고화는, 클라우스 플랜트 용량의 감소, 버너 성능의 불량, 또는 재앙적 장비 고장을 야기할 수도 있으므로, 동작에 있어서 위험요소이다. 또한, 재활용 스트림은, 암모니아, 암모니아 염, 및 타지 않은 탄화수소 등의 바람직하지 못한 오염물을 포함할 수도 있으며, 이에 따라 고체 염이 형성될 수 있고, 이는 장비를 오염시킬 수 있고 SRU의 성능에 악영향을 끼치거나 SRU의 용량을 감소시킬 수 있다. 또한, 공정은, 일반적으로, 적절히 동작하기 위한 재활용 파이핑과 밸브 및 이젝터와 공정 라인을 위한 증기 재킷을 필요로 하여, 플랜트의 동작 및 구현 비용을 증가시킨다.
Watson의 미국 특허 제5,294,428호는, 황화수소를 포함하는 공급 가스 스트림으로부터 황을 회수하기 위한 2단계 연소 공정을 개시하고 있다. Watson의 공정에서는, 두 개의 개별적인 연소 영역을 이용하여, 산소 부화 연소 공정으로부터 발생하는 열 로드를 취급한다. 그러나, Watson의 공정에서는, 열적 단계 장비의 두 개 세트 및 요구되는 장비 모두를 설치하기 위한 비교적 넓은 대지 공간을 필요로 한다. 이에 따라, 공정은, 특히 공간 제약이 있을 수도 있는 기존의 클라우스 플랜트를 개조하는 경우 대략 고가이며 구현하기 어렵다.
본 개시 내용의 목적은 전술한 단점들 중 적어도 하나를 다루는 것이다.
일 양태에서는, 황 회수 시스템을 제공하며, 이 시스템은, 반응로; 이젝터에 구동 유체(motive fluid)를 제공하기 위한 구동 유체 스트림; 이젝터에 산성 가스를 제공하기 위한 산성 가스 스트림으로서, 이젝터는 구동 유체와 산성 가스를 포함하는 혼합물을 반응로에 제공하도록 반응로에 연결된 것인, 산성 가스 스트림; 및 산소를 포함하는 연소 가스를 반응로에 제공하도록 반응로에 연결된 연소 가스 공급 스트림을 포함한다.
다른 일 양태에서는, 황 회수 시스템의 산성 가스 스트림을 처리하는 방법을 제공하며, 이 방법은, 구동 유체를 이젝터에 제공하는 단계; 산성 가스 스트림을 이젝터에 제공하여, 구동 유체와 산성 가스 스트림을 포함하는 혼합물을 취득하는 단계; 혼합물을 반응로에 제공하는 단계; 산소를 포함하는 연소 가스를 반응로에 제공하는 단계; 및 반응로의 내용물을 반응시키는 단계를 포함한다.
본 발명의 특징부들은 첨부 도면을 참조하는 다음에 따르는 상세한 설명에서 더욱 명백해질 것이다.
도 1은 일 실시예에 따른 황 회수 시스템의 개략도.
도 2는 일 실시예에 따라 황을 회수하는 방법을 도시하는 흐름도.
도 3은 일 실시예에 따라 스트림 유속과 산소 농도 간의 관계를 도시하는 차트.
"포함한다"(comprise), "포함한다"(comprises), "포함하였다", 또는 "포함하는"이라는 용어들이 본 명세서에서 사용될 수도 있다. (상세한 설명 및/또는 청구범위를 포함하는) 본원에서 사용되는 바와 같이, 이러한 용어들은, 언급된 특징부, 정수, 단계, 또는 구성요소의 존재를 특정하지만, 통상의 기술자에게 명백하듯이 하나 이상의 다른 특징부, 정수, 단계, 구성요소, 또는 이들의 그룹의 존재를 배제하지 않는 것으로서 해석되어야 한다.
일 양태에서는, 황 회수 시스템을 제공하며, 이러한 황 회수 시스템은, 반응로; 이젝터에 구동 유체를 제공하기 위한 구동 유체 스트림; 이젝터에 산성 가스를 제공하기 위한 산성 가스 스트림으로서, 이젝터는 구동 유체와 산성 가스를 포함하는 혼합물을 반응로에 제공하도록 반응로에 연결된 것인, 산성 가스 스트림; 및 산소를 포함하는 연소 가스를 반응로에 제공하도록 반응로에 연결된 연소 가스 공급 스트림을 포함한다. 예를 들어, 연소 가스는 공기, 공기와 보충 산소의 혼합물, 또는 순수 산소일 수도 있다.
일 실시예에서, 구동 유체 스트림은 제1 압력에서 이젝터에 공급되고, 산성 가스 스트림은 제2 압력에서 이젝터에 공급되고, 제1 압력은 제2 압력보다 크다.
일 실시예에서, 산성 가스는 아민산 가스를 포함한다. 예를 들어, 아민산 가스는 아민 가스 처리 공정에 의해 사워 가스를 처리함으로써 생성될 수 있으며, 이는 당업계에 공지되어 있다. 다른 일 실시예에서, 산성 가스는 산성수 스트립퍼 산성 가스(sour water stripper acid gas)를 포함한다. 이해할 수 있듯이, 산성 가스는 일반적으로 적어도 5몰 퍼센트의 황화수소를 포함하고, 통상적으로는 최대 약 80 내지 95몰 퍼센트의 황화수소를 포함한다. 아민산 가스는 이산화탄소, 수증기, 암모니아, 기타 불순물 등의 다른 가스들을 포함할 수 있지만, 이에 한정되지 않음을 이해할 것이다. 이해할 수 있듯이, 본원에서 사용되는 바와 같은 산성 가스 스트림은, 일반적으로 클린 스트림(clean stream)이며 재활용된 스트림(즉, 클라우스 공정에 의해 적어도 부분적으로 처리된 스트림)이 아니다.
일 실시예에서, 구동 유체는 증기를 포함한다. 다른 실시예들에서, 구동 유체는, 가압 액체 수, 수증기, 과포화 수증기, 황화수소, 이산화황, 이산화탄소, 또는 이들의 혼합물을 포함할 수도 있다.
일 실시예에서, 시스템은, 반응로로부터 유출 스트림을 수용하도록 반응로에 연결된 황 회수 블록, 및 황 회수 블록의 동작 압력을 제어하도록 황 회수 블록으로부터 하류측에 위치하는 배압 제어 밸브를 더 포함한다.
다른 일 실시예에서, 황 회수 시스템은, 반응로로부터 유출 스트림을 수용하도록 반응로에 연결된 황 회수 블록, 황 회수 블록으로부터 테일 가스 스트림을 수용하도록 반응로에 연결된 테일 가스 처리 블록, 및 테일 가스 처리 블록과 횡 회수 블록 중 적어도 하나의 동작 압력을 제어하도록 테일 가스 처리 유닛으로부터 하류측에 위치하는 배압 제어 밸브를 더 포함한다. 황 회수 시스템은, 또한, 황 회수 블록의 하류측이면서 테일 가스 처리 유닛 블록의 상류측에 위치하는 다른 배압 제어 밸브를 포함할 수도 있다.
도 1은 일 실시예에 따른 황 회수 시스템(100)의 개략도이다. 황 회수 시스템(100)에서는, 산성 가스 공급 스트림(30)을 이용하여 아민산 가스를 도입하고, 증기 공급 라인(20)을 이용하여 증기를 도입한다. 산성 가스 공급 스트림(30)과 증기 공급 라인(20)은, 입력 스트림에 존재하는 임의의 액체를 분리하는 데 사용되는 기액 분리기(80)에 연결된다. 입력 스트림으로부터 분류되는 임의의 액체는 압축기(86)에 의해 가압되며 라인(84)을 통해 제거되고, 분리된 가스는 라인(82)을 통해 반응로(130)의 버너(120)에 제공된다.
산소 유입 스트림(40)과 공기 유입 스트림(50)은 산소와 공기를 버너(120)에 도입하는 데 각각 사용된다. 도 1의 실시예에서, 공기 유입 스트림(50)은 메인 라인과 트림 라인(55)을 갖는 것으로서 도시되어 있다. 산성수 스트립퍼 산성 가스(SWSAG) 스트림(10)과 연료 가스 스트림(60) 등의 다른 유입 스트림들도, 추가 가스를 버너에 도입하도록 버너(120)에 연결될 수도 있다. 예를 들어, SWSAG 스트림(10)을 사용하여 H2S와 NH3를 포함하는 가스 스트림을 도입할 수도 있고, 연료 가스 스트림(60)을 사용하여 버너(120)를 위한 연료를 도입할 수도 있다.
시스템(100)의 구성에 있어서, 이젝터(26)는 증기 공급 라인(20)과 산성 가스 공급 스트림(30)에 연결된 것으로서 도시되어 있다. 증기 공급 라인(20)에 의해 반송되는 증기는 대략 고압 증기이며, 이는 이젝터(26) 내에 도입되는 경우 구동 유체로서 기능한다. 사용시, 산성 가스 공급 스트림(30)에 의해 반송되는 아민산 가스는 이젝터(26) 내에 흡입 유체로서 도입되어 출력 스트림을 생성하고, 이러한 출력 스트림이 기액 분리기(80)와 라인(82)을 통해 버너(120)에 공급된다. 이젝터(26)의 출력 스트림은 고압 증기를 아민산 가스와 혼합함으로써 형성되므로, 출력 스트림의 압력은 일반적으로 입력 아민산 가스의 압력보다는 크지만 입력 증기의 압력보다는 작다는 점을 이해할 것이다.
이어서, 유입 스트림들의 혼합물은 버너(120)에서 연소되며 클라우스 공정의 반응이 발생하는 반응로(130) 내로 발산된다. 특히, 반응로(130)에서, 황화수소의 대략 1/3이 산소와 반응하여 이산화황과 물을 생성하고, 남아 있는 황화수소는 이산화황과 반응하여 황과 물을 생성한다. 이러한 반응들은 다음에 따르는 식으로 표현된다.
Figure 112016114954162-pct00001
이어서, 반응로(130)로부터의 유출물을, 일반적으로 반응로 유출물로부터 황을 추출하는 데 사용되는 황 회수 블록(140)으로 보낸다. 예를 들어, 황 회수 블록(140)은 하나 이상의 응결기, 가열기, 및/또는 촉매 변환 반응기를 포함할 수도 있다. 이러한 구성요소들은 공지되어 있으며, 이러한 구성요소들에서 발생할 수도 있는 반응들은, 예를 들어, Nasato의 미국 특허 제6,508,998호 및 Ferrell의 미국 특허 제7,597,871호에 개시되어 있다.
이어서, 황 회수 블록(140)으로부터 유출되는 스트림은, 스트림에 존재하는 임의의 잔여 황을 갖는 화합물의 양을 감소시키는 데 사용되는 테일 가스 처리 유닛(TGTU) 블록(160)으로 도입된다. TGTU 블록(160)으로부터 유출되는 스트림은 대기에 방출되기 전에 소각로로 보내진다. 대안으로, 황 회수 블록(140)으로부터 유출되는 스트림은, 소각로로부터 방출되는 가스가 방출 규격을 충족하는 허용가능한 황 함량 수준에 있다면, TGTU 블록(160)을 통과하지 않고 소각로로 직접 보내질 수도 있다.
시스템(100)은, 다양한 스트림과 라인을 통한 가스들의 흐름을 규제하기 위한 다수의 밸브들을 더 포함한다. 도 1에 도시한 바와 같이, 증기 공급 라인(20)을 통한 가압된 증기의 흐름 및 산성 가스 공급 스트림(30)을 통한 아민산 가스의 흐름은, 정상적 폐쇄(NC) 밸브들(22, 32) 및 정상적 개방(NO) 밸브(34)에 의해 규제된다. 이젝터(26)의 유출은 NC 밸브(24)에 의해 규제된다. 산소 유입 스트림(40)에 있어서, 가스의 흐름은 밸브(42)에 의해 규제되고, 공기 유입 스트림(50)에 있어서, 흐름은 메인 라인의 밸브(52) 및 트림 라인(55)의 밸브(57)에 의해 규제된다.
밸브들은, 일반적으로, 시스템(100)에서 측정되는 하나 이상의 파라미터에 따라 제어된다. 예를 들어, 증기 흐름을 규제하기 위한 NC 밸브(22)는 흐름 제어부(220)에 의해 측정되는 흐름의 양에 따라 조정된다. 도 1에 도시한 바와 같이, 다른 NC 밸브들(24, 32) 및 NO 밸브(34)는, 산소 유입 스트림(40) 상에 위치하는 밸브(42)에 연결되어 있는 흐름 제어기(240)에 의해 제어된다. 공기 유입 스트림(50)의 메인 라인 상에 위치하는 밸브(52)는 제어기 유닛(270)에 의해 제어되고, 트림 라인(55) 상에 위치하는 밸브(57)는 테일 가스 분석기에 의해 제어된다.
다양한 측정 유닛들, 제어기들, 및/또는 표시기들은 서로 다른 공정 파라미터들을 감시 및/또는 제어하도록 시스템(100) 전체에 걸쳐 위치한다. 예를 들어, 흐름 표시기들(210, 230, 260)은, 각 스트림들의 각각을 통한 가스 흐름을 측정하도록 SWSAG 스트림(10), 산성 가스 공급 스트림(30), 및 연료 가스 스트림(60) 상에 각각 위치한다. 제어기 유닛(270)과 통신하는 압력 제어기(250)는, 공기 유입 스트림(50)을 통한 가스 흐름의 압력을 제어하도록 공기 유입 스트림(50) 상에 위치한다. 이러한 측정 유닛들, 제어기들, 및/또는 표시기들로부터 취한 측정값들은 제어기 유닛(270)에 송신되며, 필요시, 제어기 유닛(270)은 다양한 유입/유출 스트림들의 가스 흐름을 제어하기 위한 신호를 생성 및 송신할 수 있다. 도시한 바와 같이, 제어 유닛(270)을 수동 제어하기 위한 핸드 제어 유닛(280)을 제공할 수도 있다. 또한, 반응로(130) 내의 온도는 온도 표시기(330)에 의해 감시될 수도 있다.
일 실시예에서, 하나 이상의 배압 제어 밸브는 황 회수 블록(140)의 하류측에 위치한다. 하나 이상의 배압 제어 밸브는, 일반적으로, 하나 이상의 밸브로부터 상류측에 위치하는 임의의 황 회수 시스템의 동작 압력을 제어하는 데 사용된다. 예를 들어, 도 1에 도시한 시스템(100)에서, 제1 배압 제어 밸브(170)는, 황 회수 블록(140) 및/또는 TGTU 블록(160)의 동작 압력을 제어하도록 TGTU 블록(160)과 황 회수 블록(140)의 하류측에 위치하고, 제2 배압 제어 밸브(150)는, 황 회수 블록(140)의 동작 압력을 제어하도록 황 회수 블록(140)의 하류측이면서 TGTU 블록(160)의 상류측에 위치한다. 대안으로, 시스템(100)은, 하나의 배압 제어 밸브만을 사용하여 양측 황 회수 시스템의 동작 압력의 충분히 제어할 수 있다면 제2 압력 제어 밸브(150) 없이 제1 압력 제어 밸브(170)만을 포함할 수도 있다.
시스템이 TGTU 블록을 포함하지 않는 다른 실시예들에서, 황 회수 블록으로부터 유출되는 테일 가스는 소각로로 직접 보내질 수도 있다. 이러한 실시예들에서, 압력 제어 밸브는 황 회수 블록의 동작 압력을 제어하도록 황 회수 블록과 소각로 사이에 위치할 수도 있다. 대안으로, 압력 제어 밸브가 소각로의 하류측과 스택의 상류측에 위치할 수도 있음을 이해할 것이다.
하나 이상의 배압 제어 밸브는 일반적으로 시스템(100)으로부터 취해지는 다양한 측정에 따라 조정된다. 도 1에 도시한 실시예에서, 제1 배압 제어 밸브(170)는 압력 제어기(370)에 의해 제어되고, 제2 압력 제어 밸브(150)는 압력 제어기(350)에 의해 제어된다. 압력 제어기들(350, 370)은, 각 밸브들의 상류측에 위치하는 임의의 황 회수 시스템들의 압력을 감시하고 각 밸브들(150, 170)을 제어하여 이러한 황 회수 시스템들의 동작 압력을 조정하도록 구성된다. 하나 이상의 배압 제어 밸브를 사용하여 황 회수 블록(140) 및/또는 TGTU 블록(160)으로부터 유출되는 가스의 흐름을 제한함으로써, 이러한 블록들 내의 동작 압력이 증가하고, 이에 따라 산성 가스 스트림으로부터의 황 회수를 향상시킨다.
전술한 시스템은, 일부 경우에 당해 기술에 알려져 있는 일부 다른 시스템들보다 유리할 수도 있다. 예를 들어, 이젝터(26)는 증기 재킷의 동작을 필요로 하지 않으므로, 시스템 설치에 연관된 비용과 복잡성이 비교적 작게 유지된다. 또한, 시스템(100)에 한 세트의 열적 단계 장비만이 필요하므로, 클라우스 플랜트 공급 스트림의 흐름 분할이나 매니폴딩(manifolding)이 필요 없다. 이는, 또한, 설치, 동작, 및 유지보수의 비용과 복잡성을 감소시킨다. 추가 장점들은, 특히, 구성요소들의 설치에 일반적으로 기존의 대부분의 클라우스 플랜트나 시스템을 위한 추가 대지 공간이 필요하지 않으므로, 시스템(100)이 기존의 클라우스 플랜트 또는 시스템으로 개조되는 경우에 실현될 수도 있다.
다른 실시예들에서, SWSAG이 버너(120)에 도입되기 전에 SWSAG 스트림(10)의 압력을 향상시키도록 제2 이젝터가 이젝터(26)와 유사한 방식으로 구성될 수도 있음을 이해할 것이다. 또 다른 실시예에서, SWSAG 스트림(10)은 이젝터(26)에 진입하기 전에 산성 가스 공급 스트림(30)과 결합될 수도 있다.
일 양태에서는, 황 회수 시스템에서 산성 가스 스트림을 처리하는 방법을 제공하며, 이 방법은, 구동 유체를 이젝터에 제공하는 단계; 산성 가스 스트림을 이젝터에 제공하여, 구동 유체와 산성 가스 스트림을 포함하는 혼합물을 취득하는 단계; 혼합물을 반응로에 제공하는 단계; 산소를 포함하는 연소 가스를 반응로에 제공하는 단계; 및 반응로의 내용물을 반응시키는 단계를 포함한다. 예를 들어, 연소 가스는 공기, 공기와 보충 산소의 혼합물, 또는 순수 산소일 수도 있다.
일 실시예에서, 구동 유체는 제1 압력에서 제공되고, 산성 가스 스트림은 제2 압력에서 제공되고, 제1 압력은 제2 압력보다 크다.
일 실시예에서, 구동 유체는 증기를 포함한다. 예를 들어, 도 1의 실시예에서, 증기는, 증기 공급 라인(20)을 통해 이젝터(26)에 이젝터(26)를 위한 구동 유체로서 도입되는 것으로 도시되어 있다. 다른 실시예들에서, 구동 유체는, 수증기, 과포화 수증기, 황화수소, 이산화황, 이산화탄소, 및/또는 이들의 혼합물을 포함할 수도 있다.
도 2는 일 실시예에 따른 방법을 도시하는 흐름도이다. 더욱 명료해지도록, 그 방법을 도 1에 도시한 시스템(100)에 관하여 설명한다. 단계(510)에서는, 반응로(130)의 버너(120)를 턴온한다. 예를 들어, 버너(120)는, 연료 가스 스트림(60)을 통해 가스를 공급하고 연료 가스를 점화함으로써 기동될 수도 있다. 단계(520)에서는, 산성 가스, 산소, 및 공기를 산성 가스 공급 스트림(30), 산소 유입 스트림(40) 및, 공기 유입 스트림(50)을 통해 버너(120)에 각각 공급한다. 이해할 수 있듯이, 이 단계에서는 일반적으로 NC 밸브들(22, 24, 32)은 폐쇄되고 NO 밸브(34)가 개방되어, 산성 가스가 산성 가스 공급 스트림(30)을 통해 기액 분리기(80)로 흐를 수 있고 라인(82)을 통해 버너(120)로 흐를 수 있다. 버너(120)로 흐르는 산소와 공기의 양은 밸브들(42, 52, 57)을 조정함으로써 규제될 수도 있다.
일단 산성 가스, 산소, 및 공기가 버너(120)에 도입되면 연료 가스는 통상적으로 차단되지만, 특히 버너(120)가 연료 가스 없이 원하는 온도에서 불길을 유지할 수 없는 경우에는 연료 가스 스트림(60)이 연료를 버너(120)에 계속 공급할 수도 있음을 이해할 것이다. 예를 들어, 이는 산성 가스의 이산화탄소가 풍부한 경우에 발생할 수도 있다.
단계(530)에서는, 구동 유체를 이젝터(26) 내에 도입한다. 도 1의 실시예에서, 구동 유체는 증기 공급 라인(20)에 의해 반송되는 증기이다. 증기를 도입하도록, 증기가 이젝터(26)를 통해 기액 분리기(80)로 이동하고 라인(82)을 통해 버너(120)로 이동할 수도 있도록 NC 밸브들(22, 24)을 적어도 부분적으로 개방한다. 일 실시예에서, 산소 농도가 공기와 산소 스트림 혼합물의 30 내지 35 볼륨 퍼센트에 도달하면 구동 유체를 도입한다. 일단 증기가 도입되면, 단계(540)에서는, 산성 가스 공급 스트림(30) 상에 위치하는 NO 밸브(34)를 폐쇄하여 산성 가스의 흐름이 이젝터(26)로 다시 향하게 한다. 이러한 식으로, 라인(20)으로부터의 고압이 라인(30)으로부터의 산성 가스와 혼합되므로, 라인(82)을 통해 버너(120)로 도입되는 산성 가스의 흐름이 증가한다. 게다가, 증기를 도입하여 반응로 내의 온도를 낮춤으로써, 후술하는 바와 같이 용량을 향상시킨다.
이론적으로 한정하려는 것은 아니지만, 본 발명자들은, 증기가 반응로에서의 연소 산물의 온도를 완화하기 위한 히트 싱크로서 기능한다고 여긴다. 또한, 본 발명자들은, 증기의 존재가 클라우스 로 반응을 양호하게 시프트하여 산소 요구량을 감소시키고, 이에 따라 불길과 로 온도를 더욱 감소시킨다고 여긴다. 이러한 식으로 반응로의 동작 온도를 낮춤으로써, 로 온도를 원하는 수준 미만으로 유지하면서 산소 농도를 더욱 높은 수준으로 증가시킬 수 있다. 예를 들어, 도 3의 차트에 도시한 바와 같이, "메이크업 증기"라고도 하는 추가 증기를 도입하여 더욱 높은 산소 수준(예를 들어, 30% 초과)에서의 로 온도를 완화할 수도 있다. 도 3에서, 산소 농도가 30%를 초과하도록 증가할 때 구동 증기(motive steam)의 유속이 일정한 수준에서 유지되는 동안, 메이크업 증기를 구동 증기와는 별도로 도입하여 로 온도를 허용가능 수준에서 유지한다. 예를 들어, 메이크업 증기를, 증기 공급 라인(20)과는 독립적으로 동작되는 유입 스트림을 통해 버너(120)에 직접 도입할 수도 있다. 대안으로, 메이크업 증기를 구동 증기와 결합하여 라인(20)에 의해 이젝터(26)에 도입할 수도 있고, 반응로(130)에 도입할 수도 있다.
일 실시예에서는, 가압 액체 수 스트림만을 버너(120)에 주입한다. 다른 일 실시예에서는, 가압 액체 수 스트림을 증기와 함께 버너(120)에 주입한다. 예를 들어, 가압 액체 수 스트림을, 구동 증기 및 메이크업 증기가 존재하는 경우, 구동 증기 및 메이크업 증기와 함께 도입할 수도 있다.
플랜트 운영자가 반응로(130)의 산소 농도를 증가시키길 원하지 않는 경우에도, 실질적으로 동일한 수준의 처리량을 유지하면서 증기가 산소 요구량을 낮추므로, 증기 도입이 여전히 유익할 수도 있다. 요구되는 산소량을 낮춤으로써, 순수 산소의 구매 및/또는 생산에 연관된 동작 비용이 감소된다. 또한, 증기가 반응로(130) 내의 동작 온도를 낮추므로, 증기로 동작하는 로는, 증기 없이 동작하는 로와 실질적으로 동일한 수준의 처리량을 유지하면서 열적 스트레스를 덜 겪는다. 로 물질과 버너에 대하여 열적 스트레스를 덜 가함으로써, 로 및 로 내의 다양한 구성요소들의 수명을 잠재적으로 증가시킬 수도 있다.
구동 유체가 질소 또는 이산화탄소를 포함하는 경우에, 구동 유체는 여전히 반응로의 연소 산물의 온도를 완화하는 히트 싱크로서 기능할 수도 있어서, 용량을 증가시킬 수도 있다. 특히, 이산화탄소에 관하여, 이산화탄소를 도입함으로써 로 반응의 열역학적 평형상태를 시프트하여 산물 형성을 촉진할 수도 있다고 여겨진다. 이산화황이 구동 유체로서 도입되는 경우에, 이산화황이 반응물 중 하나이므로, 클라우스 반응의 평형 상태를 또한 시프트하여 산물 형성을 촉진할 수 있다. 또한, 이산화황을 도입함으로써, 황화수소를 형성하기 위한 산소와 반응하는 황화수소가 덜 필요하므로, 반응에 필요한 산소량이 감소된다.
황 회수 시스템의 적어도 하나의 구현예를 위해, 계산 유체 역학(CFD) 모델링을 이용하여 황 회수 유닛(SRU) 불길의 역학을 분석하였다. 구체적으로, SRU 열적 단계 불길 구역에 대한 열역학적 효과 및 고압 이젝터 시스템의 잠재적 능력을 더 이해하도록 CFD 모델링을 수행하였다. CFD 모델을 분석함으로써, SRU 불길의 일부 영역들이 그 불길의 다른 영역들보다 실질적으로 높은 온도를 가질 수도 있음을 알게 되었다. 이에 따라, 이젝터 가압 가스 스트림의 사용에 의해 이러한 고온 영역들에서의 소정의 유익한 화학 반응을 촉진할 수도 있음을 고려할 수 있다. 게다가, 가압 가스 스트림이 버너의 바람직한 영역들에 주입되도록 불길 패턴과 특징들을 조작함으로써 이러한 반응에 의해 제공되는 효과를 향상시킬 수도 있음을 고려할 수 있다.
도 2를 다시 참조해 볼 때, 단계(550)에서, 배압 밸브들(150, 170)을 사용하여 황 회수 블록(140) 및/또는 TGTU 블록(160)의 동작 압력을 증가시킨다. 예를 들어, 황 회수 블록(140)의 동작 압력은, 제2 배압 밸브(150)를 사용하여 황 회수 블록(140)으로부터 유출되는 가스의 흐름을 제한함으로써 증가될 수도 있다. 유사하게, 제1 배압 밸브(170)를 사용하여 TGTU 블록(160)으로부터 유출되는 가스의 흐름을 제한함으로써, TGTU 블록(160)의 동작 압력을 증가시킨다. 일부 구성에서는, 제1 배압 밸브(170)를 사용하여 황 회수 블록(140)과 TGTU 블록(160) 모두의 동작 압력을 완화할 수도 있음을 이해할 것이다.
전술한 바와 같이, 황 회수 블록(130) 및/또는 TGTU 블록(160)의 동작 압력을 상승시킴으로써, 주로 르샤틀리에 원리에 의해 산성 가스 공급 스트림으로부터의 황 회수를 향상시킨다. 예를 들어, 클라우스 반응을 위한 반응물들은 일반적으로 가스이므로, 반응 용기들의 압력을 증가시킴으로써, 산물 형성이 촉진되도록 반응의 평형 상태가 시프트된다. 동작 압력 증가도, 반응 가스들의 속도를 감소시키고, 이에 따라 반응 용기들에서의 반응 가스들의 체류 시간을 증가시킨다. 잔류 시간이 증가함으로써, 일부 경우에는 반응물들의 전환이 많아진다.
이젝터를 참조하여 장치의 다양한 실시예들을 설명하였지만, 공급 소스의 압력을 증가시키고 증기를 도입하기 위한 다른 기구들을 대신 이용할 수도 있음을 이해할 것이다. 예를 들어, 기계적 송풍기(blower) 및/또는 압축기를 사용하여 아민산 가스 스트림의 압력을 증가시킬 수도 있고, 압력 증가 전에 또는 후에 증기를 아민산 가스 스트림에 첨가할 수도 있다. 그러나, 이젝터를 사용하는 것이, 특히 장기간 동작에 있어서 유지보수의 용이성 및 비교적 높은 신뢰성 때문에 다른 압력 향상 기구들에 비해 유리할 수도 있다. 이젝터는 또한 당업계에서 열압축기 또는 이덕터(eductor)라고도 한다는 점에 주목한다.
밸브에 관하여 다양한 실시예들을 설명하였지만, 다른 흐름 제한 디바이스 또는 배압 향상 전략, 예컨대, 댐퍼, 이동형 게이트, 및 셔터를 밸브 대신에 사용할 수도 있다는 점을 이해할 것이다.
산소 부화 플랜트 및 시스템에 관하여 다양한 실시예들을 설명하였지만, 실질적으로 동일한 방법과 장치를 반응로에 보충 산소가 도입되지 않는 공기 기반 플랜트 및 시스템에 적용할 수도 있다는 점을 이해할 것이다.
또한, 본원에서는 황 회수 공정들에 관하여 장치와 방법을 설명하였지만, 유사한 장치 및 방법을 황 회수를 포함하지 않는 다른 공정들과 함께 이용할 수도 있다는 점을 이해할 것이다.
일부 특정 실시예들에 관하여 방법과 장치를 설명하였지만, 그 실시예들의 다양한 수정예들은 통상의 기술자에게 명백할 것이다. 본원에서 제공되는 임의의 예들은, 방법과 장치를 예시하고자 한 것일 뿐이며, 본 발명을 어떠한 식으로든 한정하려는 것이 아니다. 본원에서 제공되는 임의의 도들은, 본 발명의 다양한 양태들을 예시하기 위한 것일 뿐이며, 일정한 비율도 도시하려는 것이 아니며 또는 본 발명을 어떠한 식으로든 한정하려는 것이 아니다. 청구범위는, 위 설명에 기재된 바람직한 실시예들에 의해 제한되지 않아야 하며, 전체적으로 본원에 부합하는 가장 넓게 해석되어야 한다. 본원에서 인용되는 모든 종래 기술의 전문은 본원에서 참고로 원용된다.

Claims (24)

  1. 황 회수 시스템으로서,
    반응로;
    이젝터에 구동 유체를 제공하기 위한 구동 유체 스트림;
    상기 이젝터에 클린 산성 가스를 제공하기 위한 산성 가스 스트림으로서, 상기 이젝터는 상기 구동 유체와 상기 산성 가스를 포함하는 혼합물을 상기 반응로에 제공하도록 상기 반응로에 연결된 것인, 상기 산성 가스 스트림; 및
    산소를 포함하는 연소 가스를 상기 반응로에 제공하도록 상기 반응로에 연결된 연소 가스 공급 스트림을 포함하는, 황 회수 시스템.
  2. 제1항에 있어서,
    반응로;
    이젝터에 구동 유체를 제공하기 위한 구동 유체 스트림;
    상기 이젝터에 산성 가스를 제공하기 위한 상기 클린 산성 가스 스트림으로서, 상기 이젝터는 상기 구동 유체와 상기 산성 가스를 포함하는 혼합물을 제공하는 것인, 상기 클린 산성 가스 스트림;
    추가적으로 상기 혼합물 내에 존재하는 어떠한 액체를 분리해내기 위한 것이며 또한 상기 반응로에 분리된 가스를 제공하기 위한 기액 분리기를 포함하며; 및
    산소를 포함하는 연소 가스를 상기 반응로에 제공하도록 상기 반응로에 연결된 연소 가스 공급 스트림을 포함하는, 황 회수 시스템.
  3. 제1항에 있어서, 상기 산성 가스는 아민산 가스를 포함하는, 황 회수 시스템.
  4. 제1항 또는 제2항에 있어서, 상기 산성 가스는 5 이상 및 100 미만 몰 퍼센트 황화수소를 포함하는, 황 회수 시스템.
  5. 제1항 또는 제2항에 있어서, 상기 반응로에 산소를 제공하도록 상기 반응로에 연결된 산소 스트림을 더 포함하는, 황 회수 시스템.
  6. 제1항 또는 제2항에 있어서, 상기 구동 유체는 증기를 포함하는, 황 회수 시스템.
  7. 제1항 또는 제2항에 있어서, 상기 구동 유체는 가압 액체 수, 수증기, 황화수소, 이산화황, 이산화탄소, 또는 이들의 혼합물을 포함하는, 황 회수 시스템.
  8. 제1항 또는 제2항에 있어서, 상기 반응로부터 유출 스트림을 수용하도록 상기 반응로에 연결된 황 회수 블록, 및 상기 황 회수 블록의 동작 압력을 제어하도록 상기 황 회수 블록으로부터 하류측에 위치하는 압력 제어 밸브를 더 포함하는, 황 회수 시스템.
  9. 제1항 또는 제2항에 있어서, 상기 반응로부터 유출 스트림을 수용하도록 상기 반응로에 연결된 황 회수 블록, 상기 황 회수 블록으로부터 테일(tail) 가스 스트림을 수용하도록 상기 반응로에 연결된 테일 가스 치리 유닛, 및 상기 황 회수 블록과 상기 테일 가스 처리 유닛 중 적어도 하나의 동작 압력을 제어하도록 상기 테일 가스 처리 유닛으로부터 하류측에 위치하는 압력 제어 밸브를 더 포함하는, 황 회수 시스템.
  10. 황 회수 시스템의 산성 가스 스트림을 처리하는 방법으로서,
    구동 유체를 이젝터에 제공하는 단계;
    클린 산성 가스 스트림을 상기 이젝터에 제공하여, 상기 구동 유체와 상기 산성 가스 스트림을 포함하는 혼합물을 취득하는 단계;
    상기 혼합물을 반응로에 제공하는 단계;
    산소를 포함하는 연소 가스를 상기 반응로에 제공하는 단계; 및
    상기 반응로의 연소 가스와 상기 혼합물을 반응시키는 단계를 포함하는, 산성 가스 스트림 처리 방법.
  11. 제10항에 있어서, 상기 방법은
    구동 유체를 이젝터에 제공하는 단계;
    상기 클린 산성 가스 스트림을 상기 이젝터에 제공하여, 상기 구동 유체와 상기 클린 산성 가스 스트림을 포함하는 혼합물을 취득하는 단계;
    상기 혼합물 내에 존재하는 어떠한 액체를 분리해내기 위한 것이며 또한 상기 반응로에 분리된 가스를 제공하기 위한 기액 분리기에 상기 혼합물을 제공하는 단계;
    산소를 포함하는 연소 가스를 상기 반응로에 제공하는 단계; 및
    상기 반응로 내의 상기 연소 가스 및 상기 분리된 가스를 반응시키는 단계를 포함하는, 산성 가스 스트림을 처리하는 방법.
  12. 제10항에 있어서, 상기 구동 유체는 제1 압력에서 제공되고, 상기 산성 가스 스트림은 제2 압력에서 제공되고, 상기 제1 압력은 상기 제2 압력보다 큰, 산성 가스 스트림 처리 방법.
  13. 제10항 또는 제11항에 있어서, 상기 구동 유체는 증기를 포함하는, 산성 가스 스트림 처리 방법.
  14. 제10항 또는 제11항에 있어서, 상기 구동 유체는, 가압 액체 수, 수증기, 황화수소, 이산화황, 이산화탄소, 또는 이들의 혼합물을 포함하는, 산성 가스 스트림 처리 방법.
  15. 제10항 또는 제11항에 있어서, 상기 산성 가스 스트림은 아민산 가스를 포함하는, 산성 가스 스트림 처리 방법.
  16. 제10항 또는 제11항에 있어서, 상기 산성 가스 스트림은 5 이상 및 100 미만 몰 퍼센트 황화수소를 포함하는, 산성 가스 스트림 처리 방법.
  17. 제10항 또는 제11항에 있어서, 공기, 제2 산성 가스 스트림, 연료 가스, 또는 이들의 조합을 상기 반응로에 제공하는 단계를 더 포함하는, 산성 가스 스트림 처리 방법.
  18. 제17항에 있어서, 상기 혼합물, 상기 연소 가스, 및 상기 공기, 상기 제2 산성 가스 스트림, 상기 연료 가스 중 적어도 하나는 상기 반응로의 버너에 제공되는, 산성 가스 스트림 처리 방법.
  19. 제1항에 있어서, 상기 연소 가스는 공기인, 황 회수 시스템.
  20. 제1항에 있어서, 상기 연소 가스는 공기와 보충 산소를 포함하는, 황 회수 시스템.
  21. 제10항에 있어서, 상기 연소 가스는 공기인, 산성 가스 스트림 처리 방법.
  22. 제10항에 있어서, 상기 연소 가스는 공기와 보충 산소를 포함하는, 산성 가스 스트림 처리 방법.
  23. 제1항에 있어서, 추가적으로
    허용가능 수준에서 상기 반응로의 온도를 유지하기 위한 메이크업 증기; 및
    상기 반응로의 버너로 인젝트되는 가압 액체 수 스트림을 포함하는 황 회수 시스템.
  24. 제10항에 있어서, 추가적으로
    허용가능 수준에서 상기 반응로의 온도를 유지하기 위한 메이크업 증기를 제공하는 단계; 및
    상기 반응로의 버너로 가압 액체 수 스트림을 인젝트하는 단계를 포함하는 산성 가스 스트림 처리 방법.
KR1020167032837A 2014-05-20 2015-05-19 황 회수 방법 및 장치 KR101901505B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462000845P 2014-05-20 2014-05-20
US62/000,845 2014-05-20
PCT/CA2015/050447 WO2015176180A1 (en) 2014-05-20 2015-05-19 Method and apparatus for sulfur recovery

Publications (2)

Publication Number Publication Date
KR20170008238A KR20170008238A (ko) 2017-01-23
KR101901505B1 true KR101901505B1 (ko) 2018-09-21

Family

ID=54553148

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167032837A KR101901505B1 (ko) 2014-05-20 2015-05-19 황 회수 방법 및 장치

Country Status (14)

Country Link
US (1) US10835857B2 (ko)
EP (1) EP3145623B1 (ko)
JP (1) JP6410928B2 (ko)
KR (1) KR101901505B1 (ko)
CN (1) CN106457136A (ko)
BR (1) BR112016027230A2 (ko)
CA (1) CA2949146C (ko)
EA (1) EA037660B1 (ko)
MX (1) MX2016015189A (ko)
SA (1) SA516380323B1 (ko)
SG (1) SG11201609697RA (ko)
TN (1) TN2016000504A1 (ko)
WO (1) WO2015176180A1 (ko)
ZA (1) ZA201607915B (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108310964A (zh) 2017-01-16 2018-07-24 托普索公司 催化氧化贫h2s流的方法和系统
US10983538B2 (en) 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
FI129944B (en) * 2017-05-09 2022-11-15 Teknologian Tutkimuskeskus Vtt Oy Method and apparatus for pressurizing gas
EP3476798A1 (de) 2017-10-24 2019-05-01 Linde Aktiengesellschaft Verfahren und anlage zur gewinnung von wasserstoff und verfahren und anlage zur gewinnung eines syntheseprodukts unter verwendung dieses wasserstoffs
DE102018001751A1 (de) 2018-03-03 2019-09-05 Linde Aktiengesellschaft Verfahren und Anlage zur Entfernung von Schwefelwasserstoff aus einem Gasgemisch sowie Brenner zur Verwendung hierin
DE102019003985A1 (de) 2019-06-05 2020-12-10 Linde Gmbh Verfahren und Vorrichtung zur Schwefelgewinnung
US20210404485A1 (en) * 2020-06-30 2021-12-30 Kinetics Technology Corporation Tail gas exhausting pressure stabilization control system
CN113739592B (zh) * 2021-09-18 2023-12-08 山东三维化学集团股份有限公司 一种制硫燃烧炉自动控制方法及系统
US11772970B1 (en) 2022-06-10 2023-10-03 Saudi Arabian Oil Company Sulfur recovery unit oxidation air management during SuperClaus to Claus switching

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3532468A (en) * 1968-06-10 1970-10-06 Parsons Co Ralph M High pressure sulfur withdrawal system
SE405109B (sv) * 1977-04-12 1978-11-20 Svenska Flaektfabriken Ab Forfarande for utvinning av koncentrerad svaveldioxid ur avgaser innehallande svaveldioxid
US4888162A (en) * 1984-07-03 1989-12-19 Air Products And Chemicals, Inc. Temperature moderation with water of an oxygen enriched claus sulfur plant
GB8509393D0 (en) * 1985-04-12 1985-05-15 Boc Group Plc Treatment of gases
EP0237217B1 (en) 1986-03-07 1992-04-01 The BOC Group plc Treatment of gases
JP2626787B2 (ja) * 1988-04-20 1997-07-02 日揮株式会社 硫化水素含有ガスから硫黄を回収する方法
JPH09124309A (ja) * 1995-10-30 1997-05-13 Mitsubishi Kakoki Kaisha Ltd 硫黄ピット抽気ガスの処理方法
US6508998B1 (en) * 1996-10-28 2003-01-21 Gaa Engineered Systems, Inc. Temperature moderation of an oxygen enriched claus sulfur plant using an ejector
EP1115472B1 (en) * 1998-08-25 2003-07-30 Gastec N.V. A process for the recovery of sulphur from a hydrogen sulphide, containing gas
JP2004345904A (ja) * 2003-05-22 2004-12-09 Jgc Corp 硫黄回収方法及び硫黄回収装置
EP1720798A2 (en) * 2004-03-03 2006-11-15 Shell Internationale Research Maatschappij B.V. A process for the high recovery efficiency of sulfur from an acid gas stream
US7597871B2 (en) * 2005-01-13 2009-10-06 Goar, Allison & Associates, Inc. Steam modified Claus process
KR100812706B1 (ko) * 2007-03-14 2008-03-12 주식회사 포스코건설 클라우스 공정의 테일가스 처리장치 및 이를 이용한처리방법
US8713907B2 (en) 2010-01-04 2014-05-06 General Electric Company System for providing air flow to a sulfur recovery unit
US8440160B1 (en) * 2012-01-06 2013-05-14 Mahin Rameshni Integrated sulfur recovery methods in power plants and low BTU gas fields
CN103663386B (zh) * 2012-09-19 2015-05-20 中国石油化工股份有限公司 一种降低硫磺装置so2排放浓度的方法
CN103539077A (zh) 2013-10-29 2014-01-29 中国石油化工股份有限公司 一种克劳斯硫回收装置液硫池含硫废气处理工艺

Also Published As

Publication number Publication date
CA2949146C (en) 2019-03-26
EP3145623A1 (en) 2017-03-29
JP6410928B2 (ja) 2018-10-24
EA037660B1 (ru) 2021-04-28
SG11201609697RA (en) 2016-12-29
EA201692333A1 (ru) 2017-04-28
WO2015176180A1 (en) 2015-11-26
EP3145623A4 (en) 2017-12-06
CA2949146A1 (en) 2015-11-26
SA516380323B1 (ar) 2020-10-26
MX2016015189A (es) 2017-03-07
CN106457136A (zh) 2017-02-22
BR112016027230A2 (pt) 2018-06-26
US20170072360A1 (en) 2017-03-16
JP2017516742A (ja) 2017-06-22
KR20170008238A (ko) 2017-01-23
EP3145623B1 (en) 2020-04-08
TN2016000504A1 (en) 2018-04-04
ZA201607915B (en) 2017-09-27
US10835857B2 (en) 2020-11-17

Similar Documents

Publication Publication Date Title
KR101901505B1 (ko) 황 회수 방법 및 장치
EP2753416B1 (en) A process for incinerating nh3 and a nh3 incinerator
KR100648755B1 (ko) 황화수소를 함유하는 연소성 기체 스트림을 처리하는 방법 및 플랜트
CA1322650C (en) Treatment of gas streams
NO861068L (no) Oksygenanriket claus-system med svovelsyreinjeksjon.
KR960008940B1 (ko) 가스 스트림의 처리
EP2363376B1 (en) System and method for sulfur recovery
US20220396843A1 (en) Method and corresponding apparatus for producing iron from direct reduction of iron ore
KR20100114835A (ko) 온라인 분석 및 제어를 위한 장치를 포함하는 기체상 유출물의 탈황 방법
GB2187445A (en) Treatment of gas stream comprising H2S
CA1339563C (en) Treatment of gas streams
EP3984621A1 (en) Method and apparatus for desulphurisation of a sour gas mixture
JPH0642708A (ja) H2sの燃焼及びその関連クラウス法
AU2022221003A1 (en) Hydrogen production from refinery acid gas and sour water stripper
EP3375509A1 (en) Combined application of oxygen enrichment at claus units and also at respective incinerator for reduction of co emission
US328309A (en) John geeaves hawkins

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant