KR101896979B1 - 무선 전력 전송 및 충전 시스템, 무선전력 전송 및 충전 시스템의 공진 주파수 제어 방법 - Google Patents

무선 전력 전송 및 충전 시스템, 무선전력 전송 및 충전 시스템의 공진 주파수 제어 방법 Download PDF

Info

Publication number
KR101896979B1
KR101896979B1 KR1020120047312A KR20120047312A KR101896979B1 KR 101896979 B1 KR101896979 B1 KR 101896979B1 KR 1020120047312 A KR1020120047312 A KR 1020120047312A KR 20120047312 A KR20120047312 A KR 20120047312A KR 101896979 B1 KR101896979 B1 KR 101896979B1
Authority
KR
South Korea
Prior art keywords
power
target device
target
resonator
wireless power
Prior art date
Application number
KR1020120047312A
Other languages
English (en)
Other versions
KR20120127233A (ko
Inventor
김남윤
권상욱
박윤권
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20120127233A publication Critical patent/KR20120127233A/ko
Application granted granted Critical
Publication of KR101896979B1 publication Critical patent/KR101896979B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/005Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with variable reactance for tuning the antenna
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • H03H3/0076Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients
    • H03H3/0077Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients by tuning of resonance frequency
    • H04B5/26
    • H04B5/79
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

무선전력 전송 및 충전 시스템, 무선전력 전송 및 충전 시스템의 통신 방법이 개시된다.
무선 전력은, 마그네틱 커플링을 통해 무선 전력 전송 장치로부터 무선 전력 수신 장치로 전달되는 에너지를 의미한다. 따라서, 무선 전력 전송 및 충전 시스템은, 전력을 무선으로 전송하는 소스 디바이스와 전력을 무선으로 수신하는 타겟 디바이스를 포함한다. 이때, 소스 디바이스는 무선 전력 전송 장치라 칭할 수 있다. 또한, 타겟 디바이스는 무선 전력 수신 장치라 칭할 수 있다.

Description

무선 전력 전송 및 충전 시스템, 무선전력 전송 및 충전 시스템의 공진 주파수 제어 방법{WIRELESS POWER TRANSMISSION AND CHARGING SYSTEM, AND CONTROL METHOD OF RESONANT FREQUENCY OF WIRELESS POWER TRANSMISSION AND CHARGING SYSTEM}
기술분야는 무선 전력 전송 및 충전 시스템, 무선전력 전송 및 충전 시스템의 공진 주파수 제어 방법에 관한 것이다.
무선 전력은, 마그네틱 커플링을 통해 무선 전력 전송 장치로부터 무선 전력 수신 장치로 전달되는 에너지를 의미한다. 무선 전력 수신 장치는 수신된 에너지를 이용하여 배터리를 충전할 수 있다. 따라서, 무선 전력 전송 및 충전 시스템은, 전력을 무선으로 전송하는 소스 디바이스와 전력을 무선으로 수신하는 타겟 디바이스를 포함한다. 이때, 소스 디바이스는 무선 전력 전송 장치라 칭할 수 있다. 또한, 타겟 디바이스는 무선 전력 수신 장치라 칭할 수 있다.
소스 디바이스는 소스 공진기(source resonator)를 구비하고, 타겟 디바이스는 타겟 공진기(target resonator)를 구비한다. 소스 공진기와 타겟 공진기 사이에 마그네틱 커플링 또는 공진 커플링이 형성될 수 있다. 소스 디바이스 및 타겟 디바이스는 제어 및 상태 정보를 송수신하기 위하여 통신할 수 있다.
일 측면에 있어서, 무선전력 전송 장치의 공진 주파수 제어 방법은, 기준 공진 주파수 FRef를 이용하여 전력 증폭부에 공급되는 직류 전압을 교류 전압으로 변환함으로써, 복수의 타겟 디바이스들에서 사용되는 통신용 전력을 생성하는 단계와, 마그네틱 커플링을 통해 상기 통신용 전력을 상기 복수의 타겟 디바이스들에 전송하는 단계와, 상기 복수의 타겟 디바이스들로 웨이크-업 요청 메시지를 전송하는 단계와, 상기 복수의 타겟 디비이스들 각각으로부터 상기 웨이크-업 요청 메시지에 대한 응답 메시지들을 수신하는 단계와, 상기 수신된 응답 메시지들에 기초하여 상기 복수의 타겟 디바이스들의 개수를 검출하는 단계와, 상기 복수의 타겟 디바이스들의 개수를 고려하여 상기 전력 증폭부에 공급되는 직류 전압의 신호 레벨을 조정함으로써, 충전용 전력을 생성하는 단계와, 상기 마그네틱 커플링을 통해 상기 충전용 전력을 상기 복수의 타겟 디바이스들에 전송하는 단계 및 상기 충전용 전력에 대한 반사파, 상기 복수의 타겟 디비이스들 각각의 수신 전력량, 상기 충전용 전력의 전력량, 또는 상기 충전용 전력의 전송 효율에 기초하여, 상기 FRef를 조정하는 단계를 포함한다.
일 측면에 있어서, 무선 전력 전송 장치는, 기준 공진 주파수 FRef를 이용하여 전력 증폭부에 공급되는 직류 전압을 교류 전압으로 변환함으로써, 복수의 타겟 디바이스들에서 사용되는 통신용 전력 또는 충전용 전력을 생성하는 전력 변환부와, 마그네틱 커플링을 통해 상기 통신용 전력 또는 상기 충전용 전력을 상기 타겟 디바이스에 전송하는 소스 공진기 및 상기 복수의 타겟 디바이스들의 개수를 고려하여 상기 전력 증폭부에 공급되는 직류 전압의 신호 레벨을 조정하고, 상기 충전용 전력에 대한 반사파, 상기 복수의 타겟 디비이스들 각각의 수신 전력량, 상기 충전용 전력의 전력량, 또는 상기 충전용 전력의 전송 효율에 기초하여, 상기 FRef를 조정하는 제어 및 통신부를 포함한다.
일 측면에 있어서, 무선 전력 수신 장치는, 소스 공진기와의 마그네틱 커플링에 의해 소스 공진기로부터 전력을 수신하는 타겟 공진기와, 무선 전력 전송 장치로부터 웨이크-업 요청 메시지를 수신하고, 상기 타겟 공진기에 수신되는 전력의 양을 검출하고, 상기 타겟 공진기에 수신되는 전력의 양에 대한 정보를 무선 전력 전송 장치로 전송하는 제어 및 통신부와, 상기 타겟 공진기에 수신되는 전력의 교류 신호를 정류하여 직류 신호를 생성하는 정류부 및 상기 직류 신호의 레벨을 조정하여 일정 레벨의 전압을 부하에 공급하는 DC/DC 컨버터를 포함하고, 상기 제어 및 통신부는 "해당 타겟 디바이스의 제품의 종류", "해당 타겟 디바이스의 제조사 정보", "해당 타겟 디바이스의 모델명", "해당 타겟 디바이스의 Battery type", "해당 타겟 디바이스의 충전 방식", "해당 타겟 디바이스의 Load의 임피던스 값", "해당 타겟 디바이스의 Target 공진기의 특성에 대한 정보", "해당 타겟 디바이스의 사용 주파수 대역에 대한 정보", "해당 타겟 디바이스의 소요되는 전력량", "해당 타겟 디바이스의 고유의 식별자", 또는 "해당 타겟 디바이스의 제품의 버전 또는 규격 정보"를 포함하는 응답 메시지를 상기 무선 전력 전송 장치로 전송한다.
무선 전력 전송 및 충전 시스템에서, 공진 주파수의 제어에 의해 별도의 매칭 회로 없이 전송 전력의 손실을 줄일 수 있다.
무선 전력 전송 및 충전 시스템에서, 전력 전송 효율을 고려하여 공진 주파수를 제어할 수 있다.
도 1은 일 실시 예에 따른 무선 전력 전송 및 충전 시스템을 나타낸다.
도 2는 도 1에서 전력변환부의 구성 예를 나타낸다.
도 3은 일 실시 예에 따른 무선 전력 전송 및 충전 시스템의 동작 환경을 나타낸다.
도 4는 일 실시 예에 따른 공진 주파수 제어 방법을 나타낸다.
도 5는 도 4에서 공진 주파수 조정 단계의 일 예를 나타낸다.
도 6은 도 5에서 전력 전송 효율이 가장 좋은 트래킹 주파수를 선택하는 방법의 일 예를 나타낸다.
도 7은 트래킹 주파수 선택 방법의 예들을 나타낸다.
도 8 내지 도 14는 공진기들의 실시 예들을 나타낸다.
도 15는 도 8에 도시된 공진기의 등가 회로를 나타낸다.
도 16은 일 실시예에 따른 공진기 및 피더에서 자기장의 분포를 나타낸다.
도 17은 일 실시예에 따른 공진기 및 피더의 구성을 나타낸 도면이다.
도 18은 일 실시예에 따른 피딩부의 피딩에 따른 공진기의 내부에서 자기장의 분포를 나타낸 도면이다.
도 19는 일 실시예에 따른 전기 자동차(electric vehicle) 충전 시스템을 나타낸다.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 일 실시 예에 따른 무선 전력 전송 및 충전 시스템을 나타낸다.
도 1을 참조하면, 일 실시 예에 따른 무선 전력 전송 및 충전 시스템은 소스 디바이스(110) 및 타겟 디바이스(120)를 포함한다.
소스 디바이스(110)는 AC/DC 컨버터(111), Power Detector(113), 전력변환부(114), 제어 및 통신부(115) 및 소스 공진기(116)을 포함한다.
타겟 디바이스(120)는 타겟 공진기(121), 정류부(122), DC/DC 컨버터(123), 스위치부(124), 충전부(125) 및 제어 및 통신부(126)를 포함한다.
AC/DC 컨버터(111)는 Power Supply(112)로부터 출력되는 수십 Hz 대역의 AC 전압을 정류하여 DC 전압을 생성한다. AC/DC 컨버터(111)는 일정한 레벨의 DC 전압을 출력하거나, 제어 및 통신부(115)의 제어에 따라 DC 전압의 출력 레벨을 조정할 수 있다.
Power Detector(113)는 AC/DC 컨버터(111)의 출력 전류 및 전압을 검출하고, 검출된 전류 및 전압에 대한 정보를 제어 및 통신부(115)로 전달한다. 또한, Power Detector(113)는 전력변환부(114)의 입력 전류 및 전압을 검출할 수 도 있다.
전력변환부(114)는 수 MHz ~ 수십 MHz 대역의 스위칭 펄스 신호에 의하여 일정한 레벨의 DC 전압를 AC 전압으로 변환함으로써 전력을 생성할 수 있다. 즉, 전력변환부(114)는 기준 공진 주파수 FRef를 이용하여 전력 증폭부에 공급되는 직류 전압을 교류 전압으로 변환함으로써, 복수의 타겟 디바이스들에서 사용되는 통신용 전력 또는 충전용 전력을 생성할 수 있다. "통신용 전력" 및 "충전용 전력"에 대한 구체적인 설명은 도 4의 설명 부분에서 후술된다.
한편, 본 명세서에서 "기준 공진 주파수"는 소스 디바이스(110)가 기본적으로 사용하는 공진 주파수의 의미로 사용된다. 또한, "트래킹 주파수"는 기 설정된 방식에 따라 조정된 공진 주파수의 의미로 사용된다.
제어 및 통신부(115)는 "통신용 전력" 또는 "충전용 전력"에 대한 반사파를 검출하고, 검출된 반사파에 기초하여 상기 타겟 공진기(121)와 상기 소스 공진기(116) 사이의 미스매칭(mismatching)을 검출한다. 제어 및 통신부(115)는 반사파의 엔벨롭(envelop)을 검출함으로써, 미스 매칭을 검출하거나 반사파의 전력량을 검출함으로써 미스 매칭을 검출할 수 있다. 제어 및 통신부(115)는 소스 공진기(116) 또는 전력 변환부(114)의 출력 전압의 레벨 및 상기 반사파의 전압 레벨에 기초하여 전압정재파비(VSWR, Voltage standing wave ratio)를 계산하고, 상기 전압정재파비가 기 설정된 값보다 작으면 상기 미스매칭이 검출된 것으로 결정할 수 있다. 또한, 제어 및 통신부(115)는 상기 전압정재파비가 기 설정된 값보다 작으면 기 설정된 N개의 트래킹 주파수 각각에 대한 전력 전송 효율을 계산하고, 상기 N개의 트래킹주파수 중 전력 전송 효율이 가장 좋은 트래킹 주파수 FBest를 결정하고, 상기 FRef를 상기 FBest로 조정할 수 있다.
또한, 제어 및 통신부(115)는 스위칭 펄스 신호의 주파수를 조정할 수 있다. 제어 및 통신부(115)의 제어에 의하여 스위칭 펄스 신호의 주파수가 결정될 수 있다. 제어 및 통신부(115)는 전력변환부(114)를 제어함으로써, 타겟 디바이스(120)에 전송하기 위한 변조 신호를 생성할 수 있다. 즉, 제어 및 통신부(115)는 인-밴드 통신"을 통해 상기 타겟 디바이스에 다양한 메시지를 전송할 수 있다. 또한, 제어 및 통신부(115)는 반사파를 검출하고, 반사파의 포락선을 통해 타겟 디바이스로부터 수신되는 신호를 복조할 수 있다.
제어 및 통신부(115)는 다양한 방법을 통해, 인-밴드 통신을 수행하기 위한 변조 신호를 생성할 수 있다. 제어 및 통신부(115)는 스위칭 펄스 신호를 온/오프 함으로써, 변조신호를 생성할 수 있다. 또한, 제어 및 통신부(115)는 델타-시그마 변조를 수행하여, 변조신호를 생성할 수 있다. 제어 및 통신부(115)는 일정한 포락선을 가지는 펄스폭 변조신호를 생성할 수 있다.
한편, 제어 및 통신부(115)는 통신 채널을 이용하는 아웃-밴드 통신을 수행할 수 도 있다. 제어 및 통신부(115)는 Zigbee, Bluetooth 등의 통신 모듈을 포함할 수 있다. 제어 및 통신부(115)는 아웃-밴드 통신을 통해 타겟 디바이스(120)와 데이터를 송수신 할 수 있다.
소스 공진기(116)는 전자기(electromagnetic) 에너지를 타겟 공진기(121)로 전달(transferring)한다. 즉, 소스 공진기(116)는 타겟 공진기(121)와의 마그네틱 커플링을 통해 "통신용 전력" 또는 "충전용 전력"을 타겟 디바이스(120)로 전달한다.
타겟 공진기(121)는 소스 공진기(116)로부터 전자기(electromagnetic) 에너지를 수신한다. 즉, 타겟 공진기(121)는 소스 공진기(116)와의 마그네틱 커플링을 통해 소스 디바이스(110)로부터 "통신용 전력" 또는 "충전용 전력"을 수신한다. 또한, 타겟 공진기(121)는 인-밴드 통신을 통해 상기 소스 디바이스로부터 다양한 메시지를 수신할 수 있다.
정류부(122)는 교류 전압을 정류함으로써, DC 전압을 생성한다. 즉, 정류부(122)는 타겟 공진기(121)에 수신된 교류 전압을 정류한다.
DC/DC 컨버터(123)는 정류부(122)에서 출력되는 DC 전압의 레벨을 충전부(125)의 용량에 맞게 조정한다. 예를 들어, DC/DC 컨버터(123)는 정류부(122)에서 출력되는 DC 전압의 레벨을 3~10Volt로 조정할 수 있다.
스위치부(124)는 제어 및 통신부(126)의 제어에 따라 온/오프 된다. 스위치부(124)가 오프되는 경우, 소스 디바이스(110)의 제어 및 통신부(115)는 반사파를 검출하게 된다. 즉, 스위치부(124)가 오프되는 경우, 소스 공진기(116)와 타겟 공진기(121) 사이의 마그네틱 커플링이 제거 될 수 있다.
충전부(125)는 배터리를 포함할 수 있다. 충전부(125)는 DC/DC 컨버터(123)로부터 출력되는 DC 전압을 이용하여 배터리를 충전할 수 있다.
제어 및 통신부(126)는 공진 주파수를 이용하여 데이터를 송수신하는 인-밴드 통신을 수행할 수 있다. 이때, 제어 및 통신부(126)는 타겟 공진기(121)과 정류부(122) 사이의 신호를 검출하여 수신 신호를 복조하거나, 정류부(122)의 출력 신호를 검출하여 수신 신호를 복조할 수 있다. 즉, 제어 및 통신부(126)는 인-밴드 통신을 통해 수신된 메시지를 복조할 수 있다. 또한, 제어 및 통신부는 타겟 공진기(121)의 임피던스를 조정함으로써, 소스 디바이스(110)에 전송하는 신호를 변조할 수 있다. 또한, 제어 및 통신부는 스위치부(124)의 온/오프를 통해 소스 디바이스(110)에 전송하는 신호를 변조할 수 도 있다. 간단한 예로, 제어 및 통신부(126)는 타겟 공진기(121)의 임피던스를 증가 시킴으로써, 소스 디바이스(110)의 제어 및 통신부(115)에서 반사파가 검출되도록 할 수 있다. 반사파의 발생 여부에 따라, 소스 디바이스(110)의 제어 및 통신부(115)는 이진수 "0" 또는 "1"을 검출할 수 있다.
제어 및 통신부(126)는 "해당 타겟 디바이스의 제품의 종류", "해당 타겟 디바이스의 제조사 정보", "해당 타겟 디바이스의 모델명", "해당 타겟 디바이스의 Battery type", "해당 타겟 디바이스의 충전 방식", "해당 타겟 디바이스의 Load의 임피던스 값", "해당 타겟 디바이스의 Target 공진기의 특성에 대한 정보", "해당 타겟 디바이스의 사용 주파수 대역에 대한 정보", "해당 타겟 디바이스의 소요되는 전력량", "해당 타겟 디바이스의 고유의 식별자", 또는 "해당 타겟 디바이스의 제품의 버전 또는 규격 정보"를 포함하는 응답 메시지를 상기 무선 전력 전송 장치로 전송할 수 있다.
한편, 제어 및 통신부(126)는 통신 채널을 이용하는 아웃-밴드 통신을 수행할 수 도 있다. 제어 및 통신부(126)는 Zigbee, Bluetooth 등의 통신 모듈을 포함할 수 있다. 제어 및 통신부(126)는 아웃-밴드 통신을 통해 소스 디바이스(110)와 데이터를 송수신 할 수 있다.
제어 및 통신부(126)는 무선 전력 전송 장치로부터 웨이크-업 요청 메시지를 수신하고, 상기 타겟 공진기에 수신되는 전력의 양을 검출하고, 상기 타겟 공진기에 수신되는 전력의 양에 대한 정보를 무선 전력 전송 장치로 전송할 수 있다. 이때, 타겟 공진기에 수신되는 전력의 양에 대한 정보는, "상기 정류부(122)의 입력 전압 값 및 전류 값", "상기 정류부(122)의 출력 전압 값 및 전류 값" 또는 "DC/DC(123) 출력 전압 값 및 전류 값"이다.
도 1에서, 제어 및 통신부(115)는 소스 공진기(116)의 공진 대역폭(Resonance Bandwidth)을 설정할 수 있다. 소스 공진기(116)의 공진 대역폭(Resonance Bandwidth)의 설정에 따라서, 소스 공진기(116)의 Q-factor(QS)가 결정될 수 있다.
또한, 제어 및 통신부(126)는 타겟 공진기(121)의 공진 대역폭(Resonance Bandwidth)을 설정할 수 있다. 타겟 공진기(121)의 공진 대역폭(Resonance Bandwidth)의 설정에 따라서, 타겟 공진기(121)의 Q-factor가 결정될 수 있다. 이때, 소스 공진기(116)의 공진 대역폭은 타겟 공진기(121)의 공진 대역폭 보다 넓거나 좁게 설정될 수 있다. 통신을 통해, 소스 디바이스(110)와 타겟 디바이스(120)는 소스 공진기(116) 및 타겟 공진기(121) 각각의 공진 대역폭에 대한 정보를 공유할 수 있다. 타겟 디바이스(120)로부터 기준값 보다 높은 전력(High Power)이 요구되는 경우, 소스 공진기(116)의 큐-펙터 QS는 100 보다 큰 값으로 설정될 수 있다. 또한, 타겟 장치(120)로부터 기준 값 보다 낮은 전력(Low Power)이 요구되는 경우, 소스 공진기(116)의 큐-펙터 QS는 100보다 작은 값으로 설정될 수 있다.
공진 방식의 무선 전력 전송에서, 공진 대역폭은 중요한 factor이다. 소스 공진기(116)와 타겟 공진기(121) 사이의 거리 변화, 공진 임피던스의 변화, 임피던스 미스 매칭, 반사 신호 등을 모두 고려한 Q-factor를 Qt라 할 때, Qt는 수학식 1과 같이 공진 대역폭과 반비례 관계를 갖는다.
[수학식 1]
Figure 112012035672976-pat00001
수학식 1에서, f0는 중심주파수,
Figure 112012035672976-pat00002
는 대역폭,
Figure 112012035672976-pat00003
는 공진기 사이의 반사 손실, BWS는 소스 공진기(116)의 공진 대역폭, BWD는 타겟 공진기(121)의 공진 대역폭을 나타낸다.
한편, 무선 전력 전송에 있어서, 무선 전력 전송의 효율 U는 수학식 2와 같이 정의될 수 있다.
[수학식 2]
Figure 112012035672976-pat00004
여기서, K는 소스 공진기(115)와 타겟 공진기(121) 사이의 에너지 커플링에 대한 결합 계수,
Figure 112012035672976-pat00005
는 소스 공진기(115)에서의 반사계수,
Figure 112012035672976-pat00006
는 타겟 공진기(121)에서의 반사계수,
Figure 112012035672976-pat00007
는 공진 주파수, M은 소스 공진기(116)와 타겟 공진기(121) 사이의 상호 인덕턴스, RS는 소스 공진기(116)의 임피던스, RD는 타겟 공진기(121)의 임피던스, QS는 소스 공진기(116)의 Q-factor, QD는 타겟 공진기(121)의 Q-factor, QK는 소스 공진기(116)와 타겟 공진기(121) 사이의 에너지 커플링에 대한 Q-factor이다.
상기 수학식 2를 참조하면, Q-factor는 무선 전력 전송의 효율과 관련이 높다.
따라서, 무선 전력 전송의 효율을 높이기 위하여 Q-factor는 높은 값으로 설정된다. 이때, QS 와 QD가 각각 지나치게 높은 값으로 설정된 경우, 에너지 커플링에 대한 결합 계수 K의 변화, 소스 공진기(116)와 타겟 공진기(121) 사이의 거리 변화, 공진 임피던스의 변화, 임피던스 미스 매칭 등에 의하여 무선 전력 전송의 효율이 감소하는 현상이 발생할 수 있다.
또한, 무선 전력 전송의 효율을 높이기 위해, 소스 공진기(116)와 타겟 공진기(121) 각각의 공진 대역폭을 지나치게 좁게(narrow) 설정하면, 외부의 작은 영향에도 임피던스 미스매칭 등이 쉽게 발생할 수 있다. 임피던스 미스 매칭을 고려하면, 수학식 1은 수학식 3과 같이 나타낼 수 있다.
[수학식 3]
Figure 112012035672976-pat00008
소스 공진기(115)와 타겟 공진기(121) 간의 공진 대역폭 또는 임피던스 매칭 주파수의 대역폭을 불평형(unbalance) 관계로 유지하는 경우, 결합 계수 K의 변화, 소스 공진기(116)와 타겟 공진기(121) 사이의 거리 변화, 공진 임피던스의 변화, 임피던스 미스 매칭 등에 의하여 무선 전력 전송의 효율이 감소하는 현상이 감소할 수 있다. 수학식 1 및 수학식 3에 따르면, 소스 공진기(116)와 타겟 공진기(121) 간의 공진 대역폭 또는 임피던스 매칭 주파수의 대역폭을 불평형(unbalance) 관계로 유지하면, 소스 공진기(116)의 큐-펙터와 타겟 공진기(121)의 큐-펙터는 서로 불평형(unbalance) 관계가 유지된다.
도 2는 도 1에서 전력변환부의 구성 예를 나타낸다.
도 2를 참조하면, 전력변환부(114)는 스위칭 펄스 신호 발생부(210) 및 전력 증폭부(220)을 포함한다.
스위칭 펄스 신호 발생부(210)는 수 MHz ~ 수십 MHz 대역의 스위칭 펄스 신호를 생성한다. 이때, 스위칭 펄스 신호의 주파수는 제어 및 통신부(115)의 제어에 따라서 결정된다. 예를 들어, 소스 공진기(116)의 기준 공진 주파수 FRef가 13.56MHz 또는 5.78MHz인 경우, 제어 및 통신부(115)는 스위칭 펄스 신호의 주파수가 13.56MHz 또는 5.78MHz가 되도록 스위칭 펄스 신호 발생부(210)를 제어할 수 있다. 스위칭 펄스 신호 발생부(210)는 복수의 커패시터들 및 스위치를 포함할 수 있다. 스위칭 펄스 신호 발생부(210)는 상기 복수의 커패시터들을 스위칭함으로써 상기 스위칭 펄스 신호의 주파수를 조정할 수 있다.
전력 증폭부(220)는 공진 주파수 발생부(120)에서 출력되는 스위칭 펄스 신호에 의해 교류 전력을 생성할 수 있다. 즉, 전력 증폭부(220)는 스위칭 펄스 신호에 따라 도 2에 도시된 PA 전력 제어 전압을 스위칭함으로써, 통신용 전력 또는 충전용 전력을 생성할 수 있다.
제어 및 통신부(115)는 복수의 타겟 디바이스들의 개수를 고려하여 상기 도 2에 도시된 PA 전력 제어 전압의 신호 레벨을 조정하고, 상기 충전용 전력에 대한 반사파, 상기 복수의 타겟 디비이스들 각각의 수신 전력량, 상기 충전용 전력의 전력량, 또는 상기 충전용 전력의 전송 효율에 기초하여, 상기 FRef를 조정한다.
도 3은 일 실시 예에 따른 무선 전력 전송 및 충전 시스템의 동작 환경을 나타낸다.
도 2을 참조하면, 소스 디바이스(310)은 복수의 타겟 디바이스들(321, 323, 325)로 동시에 에너지를 무선으로 전달할 수 있다. 즉, 공진 방식의 무선 전력 전송 방식에 따르면, 하나의 소스 디바이스(310)는 복수의 타겟 디바이스들(321, 323, 325)을 동시에 충전할 수 있다.
또한, 공진 방식의 무선 전력 전송 방식에 따르면, 소스 디바이스(310) 및 복수의 타겟 디바이스들(321, 323, 325)은 아웃 밴드 통신 또는 인-밴드 통신을 통해 데이터를 송수신 할 수 있다.
인-밴드 통신 방식에 따르면, 소스 공진기와 타겟 공진기의 커플링 영역 내에서만 전력 및 신호의 전송이 가능하다. 따라서, 아웃 밴드 통신 방식과는 달리, 인-밴드 통신 방식은 주변 기기에 간섭을 적게 일으킨다. 여기서, 아웃 밴드 통신이란, Zigbee, Bluetooth 등의 통신 채널을 통한 통신을 의미한다. 인-밴드 통신 방식은 전력 전송 채널을 이용하여 데이터를 전송한다.
도 4는 일 실시 예에 따른 공진 주파수 제어 방법을 나타낸다.
도 4에 도시된 예에서, Source Device, Target Device 1 및 Target Device 2는 인-밴드 통신을 통해 데이터를 송수신할 수 있다. 또한, Source Device, Target Device 1 및 Target Device 2는 아웃-밴드 통신을 통해 데이터를 송수신할 수 도 있다.
도 4를 참조하면, 410단계에서 Source Device는 타겟 디바이스가 감지되지 않으면 대기 모드로 동작한다. Source Device는 대기 모드에서 Target Device 1 및 Target Device 2가 감지되면, 타겟 디바이스에서 사용되는 통신용 전력을 생성한다. 즉, 소스 디바이스는 기준 공진 주파수 FRef를 이용하여 전력 증폭부(220)에 공급되는 직류 전압을 교류 전압으로 변환함으로써, 복수의 타겟 디바이스들에서 사용되는 통신용 전력을 생성한다. 여기서, Source Device는 소정 주기로 테스트 신호를 전송하거나, 감압 센서를 이용하여 Target Device 1 또는 Target Device 2를 감지 할 수 있다. 예를 들어, Source Device 위에 Target Device 1이 놓여지는 경우, Source Device에 구비된 감압 센서를 통해 Target Device 1을 감지할 수도 있다. 또한, Source Device는 특정 제어 신호에 의하여 대기 모드에서 접속 모드로 전환할 수 도 있다. 이때, 접속 모드는 도 4의 420단계 및 430단계의 동작을 수행하는 모드를 의미한다.
420단계에서 Source Device는 마그네틱 커플링을 통해 Target Device 1 또는 Target Device 2에 통신용 전력을 전송한다. 즉, Source Device는 마그네틱 커플링을 통해 상기 통신용 전력을 상기 복수의 타겟 디바이스들에 전송한다. Source Device는 기준 공진 주파수 FRef를 이용하여 전력 증폭부(220)에 공급되는 직류 전압을 교류 전압으로 변환함으로써, 타겟 디바이스에서 사용되는 통신용 전력을 생성할 수 있다. 여기서, "통신용 전력"은 타겟 디바이스의 통신 모듈 및 프로세서를 활성화 시키기 위한 에너지를 의미한다. "통신용 전력"은 CW(constant wave)의 형태로 일정 시간 동안 전송될 수 있다. 따라서, Target Device 1 및 Target Device 2은 "통신용 전력"을 수신함으로써, 통신 모듈 및 프로세서의 동작에 필요한 전력을 공급 받을 수 있다.
430단계에서 Source Device는 타겟 디바이스를 웨이크-업 시키거나, 가상 식별자를 타겟 디바이스에 할당할 수 있다. 430단계에서 타겟 디바이스는 Source Device로부터 웨이크-업 요청 메시지를 수신하고, "가상 식별자"를 할당 받을 수 있다. 즉, 430단계에서 Target Device 1 및 Target Device 2는 웨이크-업 요청 메시지에 의해 통신 및 제어 기능을 활성화 시키고, Source Device로부터 "가상 식별자"를 할당 받을 수 있다.
430단계는, Source Device가 웨이크-업 요청 메시지를 Target Device 1 및 Target Device 2에 전송하는 431단계와, Source Device가 Target Device 1로부터 ACK(Acknowledge) 메시지를 수신하는 433단계 및 Source Device가 Target Device 2로부터 ACK(Acknowledge) 메시지를 수신하는 435단계를 포함할 수 있다. 즉, 431단계에서 Source Device는 복수의 타겟 디바이스들로 웨이크-업 요청 메시지를 전송한다. 433단계 내지 435단계에서 Source Device는 복수의 타겟 디비이스들 각각으로부터 상기 웨이크-업 요청 메시지에 대한 응답 메시지들을 수신한다. Source Device는 수신된 응답 메시지들에 기초하여 상기 복수의 타겟 디바이스들의 개수를 검출할 수 있다. 여기서, 응답 메시지와 ACK 메시지는 동일한 메시지를 의미한다.
이때, ACK(Acknowledge)는 Target Device 1 및 Target Device 2는 각각의 식별자 정보를 포함할 수 있다. ACK(Acknowledge)에 포함되는 식별자 정보는 Target Device 1 및 Target Device 2 각각의 고유한 식별자 일 수 있다. 또한, 웨이크-업 요청 메시지에 대한 응답 메시지들 각각은 "해당 타겟 디바이스의 제품의 종류", "해당 타겟 디바이스의 제조사 정보", "해당 타겟 디바이스의 모델명", "해당 타겟 디바이스의 Battery type", "해당 타겟 디바이스의 충전 방식", "해당 타겟 디바이스의 Load의 임피던스 값", "해당 타겟 디바이스의 Target 공진기의 특성에 대한 정보", "해당 타겟 디바이스의 사용 주파수 대역에 대한 정보", "해당 타겟 디바이스의 소요되는 전력량", "해당 타겟 디바이스의 고유의 식별자", 또는 "해당 타겟 디바이스의 제품의 버전 또는 규격 정보"를 포함할 수 있다.
430단계는 가상 식별자를 할당하는 437단계를 더 포함할 수 있다. 가상 식별자는 Target Device 1 및 Target Device 2 각각의 고유한 식별자 대신 사용될 수 있다. 즉, 가상 식별자는 충전시 사용되는 임시의 식별자이다. 예를 들어, 가상 식별자는 접속 순서에 따라 1~8의 숫자로 부여될 수 도 있다. 고유한 식별자와는 달리, 가상 식별자는 단순히 440단계 내지 460단계에서 타겟 디바이스를 구별하는 용도로 사용될 수 있다. 고유한 식별자는 모델명, 제품의 일련 번호, 제조사 정보 등을 포함하는 byte 스케일의 긴 데이터일 수 있다. 반면, 가상 식별자는 3~4bit의 짧은 데이터일 수 있다.
440단계에서 Source Device는 충전용 전력을 생성하고, 마그네틱 커플링을 통해 상기 충전용 전력을 상기 복수의 타겟 디바이스들에 전송한다. 즉, 440단계에서 Source Device는 복수의 타겟 디바이스들의 개수를 고려하여 전력 증폭부(220)로 입력되는 전력 증폭부(220)에 공급되는 직류 전압의 신호 레벨을 조정함으로써, 충전용 전력을 생성한다. 또한, 440단계에서 Source Device는 충전용 전력을 Target Device 1 및 Target Device 2에 전송한다. 여기서, 전력 증폭부(220)로 공급되는 직류 전압이란, 도 2에 도시된 PA 전력 제어 전압을 의미한다. 충전용 전력은 소정 시간 동안 계속 전송될 수 있으며, "통신용 전력" 보다 높은 전력 레벨로 전송될 수 있다. 예를 들어, "통신용 전력"의 전력 레벨은 0.1~1Watt이고, "충전용 전력"의 전력 레벨은 1~20Watt일 수 있다.
440단계에서 Source Device의 제어 및 통신부(115)는 상기 "해당 타겟 디바이스의 제품의 종류", "해당 타겟 디바이스의 제조사 정보", "해당 타겟 디바이스의 모델명", "해당 타겟 디바이스의 Battery type", "해당 타겟 디바이스의 충전 방식", "해당 타겟 디바이스의 Load의 임피던스 값", "해당 타겟 디바이스의 Target 공진기의 특성에 대한 정보", "해당 타겟 디바이스의 사용 주파수 대역에 대한 정보", 또는 "해당 타겟 디바이스의 소요되는 전력량"을 고려하여 전력 증폭부(220)로 입력되는 직류 전압의 신호 레벨을 결정할 수 있다. 예를 들어, Source Device는 Target Device 1의 Battery type 및 Target Device 2의 Battery type에 따라서 전력 증폭부(220)로 입력되는 직류 전압의 레벨을 기 설정된 값으로 결정할 수 도 있다. 즉, Source Device는 타겟 디바이스의 정보에 매핑된 룩-업 테이블을 참조하여 전력 증폭부(220)로 입력되는 직류 전압의 레벨을 기 설정된 값으로 결정할 수 있다.
450 단계에서 Source Device는 충전용 전력에 대한 반사파 및 상기 충전용 전력의 전송 효율에 기초하여, 상기 FRef를 조정한다. Source Device는 450단계는 도 5에 도시된 551단계 내지 557단계를 포함할 수 있다.
460단계에서 Source Device는 조정된 공진 주파수를 갖는 충전용 전력을 전송한다.
한편, 도 4에서, 440단계의 충전용 전력은 제1 충전용 전력이라 칭하고, 460단계의 충전용 전력은 제2 충전용 전력이라 칭할 수 있다. 따라서, 무선 전력 수신 장치의 전력 수신 방법은, 무선 전력 전송 장치로부터 제1 충전용 전력을 수신하는 단계 및 상기 무선 전력 전송 장치에서 상기 FRef가 조정된 후, 조정된 FRef를 이용하여 생성된 제2 충전용 전력을 수신하는 단계를 포함한다. 또한, 상기 FRef는 상기 제1 충전용 전력에 대한 반사파, 상기 제1 충전용 전력의 전력량, 또는 상기 제1 충전용 전력의 전송 효율에 기초하여 조정될 수 있다. 또한, 무선 전력 수신 장치는, 450단계에서, a) 상기 제2 충전용 전력을 수신하는 것 b) "Target 디바이스의 입력 전압 값 및 전류 값을 요청하는 명령어" 또는 "Target 디바이스의 DC/DC 출력 전압 값 및 전류 값을 요청하는 명령어"를 상기 무선 전력 전송 장치로부터 수신하는 것 c) "정류부의 입력 전압 값 및 전류 값"또는 "DC/DC 출력 전압 값 및 전류 값"을 상기 무선 전력 수신 장치로 전송하는 것;을 반복할 수 있다.
도 5는 도 4에서 공진 주파수 조정 단계의 일 예를 나타낸다.
도 5를 참조하면, 551단계에서 Source device는 반사파의 전압 레벨 및 소스 공진기의 출력 전압 및 전류의 레벨에 기초하여 전압정재파비(VSWR, Voltage standing wave ratio)를 계산한다.
553단계에서 Source device는 전압정재파비가 기 설정된 기준값보다 작은지를 판단한다. Source device는 전압정재파비가 기 설정된 기준값보다 작으면, 555단계에서 기 설정된 N개의 트래킹주파수들 중 전력 전송 효율이 가장 좋은 트래킹 주파수 FBest를 결정한다. 555 단계에서 FBest는 도 6의 610단계 내지 660단계를 반복 수행함으로써 결정될 수 있다. 즉, 상기 기 설정된 N개의 트래킹 주파수들 중 상기 FBest를 결정하는 과정은, 610단계 내지 660단계를 반복 수행함으로써 결정될 수 있다.
557단계에서 Source Device는 상기 FBest를 갖는 충전용 전력을 생성한다. 즉, Source Device는 스위칭 펄스 신호의 주파수를 FRef에서 FBest로 변경한다.
도 6은 도 5에서 전력 전송 효율이 가장 좋은 트래킹 주파수를 선택하는 방법의 일 예를 나타낸다.
도 6의 610단계 내지 660단계는 도 1 또는 도 2의 제어 및 통신부(115)에 의해 수행될 수 있다.
도 6을 참조하면, 610단계에서 Source device는 기 설정된 주파수 선택 방식에 따라서 N개의 트래킹 주파수들 중 어느 하나를 선택한다. 이때, 기 설정된 주파수 선택 방법은 도 7에 도시된 (A), (B), 또는 (C)일 수 있다.
620단계에서 Source device는 상기 기준 공진 주파수 FRef를 선택된 트래킹 주파수 FSelected로 변경한다.
630단계에서 Source device는 충전용 전력을 전송한다. 이때, 630단계에서 전송되는 충전용 전력의 주파수는 FSelected이다.
640단계에서 Source device는 타겟 디바이스들에게 정보를 요청한다. 즉, 640단계에서 Source device는 "Target 디바이스의 입력 전압 값 및 전류 값을 요청하는 명령어" 또는 "Target 디바이스의 DC/DC 출력 전압 값 및 전류 값을 요청하는 명령어"를 상기 복수의 타겟 디바이스들로 전송한다.
641단계 및 643단계에서 Source device는 복수의 타겟 디바이스들 각각으로부터 "정류부의 입력 전압 값 및 전류 값"또는 "DC/DC 출력 전압 값 및 전류 값"을 수신한다.
650단계에서 Source device는 상기 "입력 전압 값 및 전류 값"또는 "DC/DC 출력 전압 값 및 전류 값"에 기초하여 상기 복수의 타겟 디바이스들 각각의 수신 전력량을 계산한다. 전력은 전류 곱하기 전압이므로, 수신 전력량은 간단하게 계산될 수 있다.
660단계에서 Source device는 "소스 공진기의 출력 전압 및 전류의 레벨" 및 "상기 복수의 타겟 디바이스들 각각의 수신 전력량"에 기초하여 상기 충전용 전력의 전송 효율을 계산한다. 이때, 소스 공진기의 출력 전압 및 전류의 레벨은 도 2의 도 2에 도시된 PA 전력 제어 전압의 레벨 및 전력 증폭부(220)으로 흐르는 전류의 레벨일 수 도 있고, 전력 변환부(114)의 출력 전압 및 전류의 레벨일 수 도 있다. 전력 전송의 효율은 타겟 디바이스들 각각의 수신 전력량을 모두 더한 값과 소스 공진기의 출력 전력의 레벨의 비율로 계산될 수 있다. 소스 공진기의 출력 전력의 레벨은 소스 공진기의 출력 전압 및 전류의 레벨을 곱한 값일 수 있다.
도 7은 트래킹 주파수 선택 방법의 예들을 나타낸다.
도 7에 도시된 예에서, (A)는 기 설정된 N개의 트래킹 주파수들 중 낮은 주파수로부터 높은 주파수로 순차적으로 선택하는 방식을 나타낸다.
도 7에 도시된 예에서, (B)는 높은 주파수로부터 낮은 주파수로 순차적으로 선택하는 방식을 나타낸다.
도 7에 도시된 예에서, (C)는 기 설정된 N개의 트래킹 주파수들 중 기 설정된 M개(M<N)의 트래킹 주파수를 순차적으로 선택하고, 1차적으로 상기 M개의 트래킹 주파수 각각에 대해 상기 620 단계 내지 660단계를 반복한 후, 2차적으로 상기 기 설정된 N개의 트래킹 주파수들 중 상기 기 설정된 M개의 트래킹 주파수를 제외한 트래킹 주파수들 각각에 대해 상기 620 단계 내지 660단계를 반복하는 방식을 나타낸다. 즉, (C) 방식을 이용하는 경우, 소스 디바이스는 먼저, F3, F8을 선택하고, F3 및 F8에 대해 620 단계 내지 660단계를 반복할 수 있다. 다음에 소스 디바이스는, F3 및 F8을 제외한 F1, F2, F4, F5, F6, F7, F9, F10, F11, …FN에 대해 620 단계 내지 660단계를 반복할 수 있다.
한편, 소스 디바이스는 기 설정된 N개의 트래킹주파수들을 M개(M<N)의 그룹(710, 720)으로 구분하고, 상기 복수의 타겟 디바이스들의 개수에 따라 M개의 그룹 중 어느 하나를 선택하고, 선택된 그룹에 속한 트래킹주파수들을 순차적으로 선택하는 방식을 사용할 수 있다. 예를 들어, 소스 디바이스는 타겟 디바이스들의 개수가 4개 이하인 경우에는 제1 그룹(710)을 선택하고, 제1 그룹(710)에 속한 F1, F2, F3, F4, F5에 대해 620 단계 내지 660단계를 반복할 수 있다.
한편, 소스 공진기, 및/또는 리피터 공진기 및/또는 타겟 공진기는 헬릭스(helix) 코일 구조의 공진기, 또는 스파이럴(spiral) 코일 구조의 공진기, 또는 meta-structured 공진기로 구성될 수 있다.
이미 잘 알려진 내용들이지만, 이해의 편의를 위하여 관련 용어들을 기술한다. 모든 물질들은 고유의 투자율(Mu) 및 유전율(epsilon)을 갖는다. 투자율은 해당 물질에서 주어진 자계(magnetic field)에 대해 발생하는 자기력선속밀도(magnetic flux density)와 진공 중에서 그 자계에 대해 발생하는 자기력선속밀도의 비를 의미한다. 그리고, 유전율은 해당 물질에서 주어진 전계(electric field)에 대해 발생하는 전기력선속밀도(electric flux density)와 진공 중에서 그 전계에 대해 발생하는 전기력선속밀도의 비를 의미한다. 투자율 및 유전율은 주어진 주파수 또는 파장에서 해당 물질의 전파 상수를 결정하며, 투자율 및 유전율에 따라 그 물질의 전자기 특성이 결정된다. 특히, 자연계에 존재하지 않는 유전율 또는 투자율을 가지며, 인공적으로 설계된 물질을 메타 물질이라고 하며, 메타 물질은 매우 큰 파장(wavelength) 또는 매우 낮은 주파수 영역에서도 쉽게(즉, 물질의 사이즈가 많이 변하지 않더라도) 공진 상태에 놓일 수 있다.
도 8 내지 도 14는 공진기들의 실시 예들을 나타낸다.
도 8은 본 발명의 일실시예에 따른 2 차원 구조의 공진기를 나타낸 도면이다.
도 8을 참조하면, 본 발명의 일실시예에 따른 2 차원 구조의 공진기는 제1 신호 도체 부분(811), 제2 신호 도체 부분(812) 및 그라운드 도체 부분(813)을 포함하는 전송 선로, 커패시터(820), 매칭기(830) 및 도체들(841, 842)을 포함한다.
도 8에 도시된 바와 같이, 커패시터(820)는 전송 선로에서 제1 신호 도체 부분(811)과 제2 신호 도체 부분(812) 사이에 위치에 직렬로 삽입되며, 그에 따라 전계(electric field)는 커패시터(820)에 갇히게 된다. 일반적으로, 전송 선로는 상부에 적어도 하나의 도체, 하부에 적어도 하나의 도체를 포함하며, 상부에 있는 도체를 통해서는 전류가 흐르며, 하부에 있는 도체는 전기적으로 그라운드된다(grounded). 본 명세서에서는 전송 선로의 상부에 있는 도체를 제1 신호 도체 부분(811)과 제2 신호 도체 부분(812)로 나누어 부르고, 전송 선로의 하부에 있는 도체를 그라운드 도체 부분(813)으로 부르기로 한다.
도 8에 도시된 바와 같이 본 발명의 일실시예에 따른 공진기(800)는 2 차원 구조의 형태를 갖는다. 전송 선로는 상부에 제1 신호 도체 부분(811) 및 제2 신호 도체 부분(812)을 포함하고, 하부에 그라운드 도체 부분(813)을 포함한다. 제1 신호 도체 부분(811) 및 제2 신호 도체 부분(812)과 그라운드 도체 부분(813)은 서로 마주보게 배치된다. 전류는 제1 신호 도체 부분(811) 및 제2 신호 도체 부분(812)을 통하여 흐른다.
또한, 도 8에 도시된 바와 같이 제1 신호 도체 부분(811)의 한쪽 단은 도체(842)와 접지(short)되고, 다른 쪽 단은 커패시터(820)와 연결된다. 그리고, 제2 신호 도체 부분(812)의 한쪽 단은 도체(841)와 접지되며, 다른 쪽 단은 커패시터(820)와 연결된다. 결국, 제1 신호 도체 부분(811), 제2 신호 도체 부분(812) 및 그라운드 도체 부분(813), 도체들(1641, 1642)은 서로 연결됨으로써, 공진기(800)는 전기적으로 닫혀 있는 루프 구조를 갖는다. 여기서, '루프 구조'는 원형 구조, 사각형과 같은 다각형의 구조 등을 모두 포함하며, '루프 구조를 갖는다고 함은' 전기적으로 닫혀 있다는 것을 의미한다.
커패시터(820)는 전송 선로의 중단부에 삽입된다. 보다 구체적으로, 커패시터(820)는 제1 신호 도체 부분(811) 및 제2 신호 도체 부분(812) 사이에 삽입된다. 이 때, 커패시터(820)는 집중 소자(lumped element) 및 분산 소자(distributed element) 등의 형태를 가질 수 있다. 특히, 분산 소자의 형태를 갖는 분산된 커패시터는 지그재그 형태의 도체 라인들과 그 도체 라인들 사이에 존재하는 높은 유전율을 갖는 유전체를 포함할 수 있다.
커패시터(820)가 전송 선로에 삽입됨에 따라 상기 공진기(800)는 메타물질(metamaterial)의 특성을 가질 수 있다. 여기서, 메타물질이란 자연에서 발견될 수 없는 특별한 전기적 성질을 갖는 물질로서, 인공적으로 설계된 구조를 갖는다. 자연계에 존재하는 모든 물질들의 전자기 특성은 고유의 유전율 또는 투자율을 가지며, 대부분의 물질들은 양의 유전율 및 양의 투자율을 갖는다. 대부분의 물질들에서 전계, 자계 및 포인팅 벡터에는 오른손 법칙이 적용되므로, 이러한 물질들을 RHM(Right Handed Material)이라고 한다. 그러나, 메타물질은 자연계에 존재하지 않는 유전율 또는 투자율을 가진 물질로서, 유전율 또는 투자율의 부호에 따라 ENG(epsilon negative) 물질, MNG(mu negative) 물질, DNG(double negative) 물질, NRI(negative refractive index) 물질, LH(left-handed) 물질 등으로 분류된다.
이 때, 집중 소자로서 삽입된 커패시터(820)의 커패시턴스가 적절히 정해지는 경우, 상기 공진기(800)는 메타물질의 특성을 가질 수 있다. 특히, 커패시터(820)의 커패시턴스를 적절히 조절함으로써, 공진기는 음의 투자율을 가질 수 있으므로, 본 발명의 일실시예에 따른 공진기(800)는 MNG 공진기로 불려질 수 있다. 아래에서 설명하겠지만, 커패시터(820)의 커패시턴스를 정하는 전제(criterion)들은 다양할 수 있다. 공진기(800)가 메타물질(metamaterial)의 특성을 가질 수 있도록 하는 전제(criterion), 상기 공진기(800)가 대상 주파수에서 음의 투자율을 갖도록 하는 전제 또는 상기 공진기(800)가 대상 주파수에서 영번째 공진(Zeroth-Order Resonance) 특성을 갖도록 하는 전제 등이 있을 수 있고, 상술한 전제들 중 적어도 하나의 전제 아래에서 커패시터(820)의 커패시턴스가 정해질 수 있다.
상기 MNG 공진기(800)는 전파 상수(propagation constant)가 0일 때의 주파수를 공진 주파수로 갖는 영번째 공진(Zeroth-Order Resonance) 특성을 가질 수 있다. MNG 공진기(800)는 영번째 공진 특성을 가질 수 있으므로, 공진 주파수는 MNG 공진기(800)의 물리적인 사이즈에 대해 독립적일 수 있다. 즉, 아래에서 다시 설명하겠지만, MNG 공진기(800)에서 공진 주파수를 변경하기 위해서는 커패시터(820)를 적절히 설계하는 것으로 충분하므로, MNG 공진기(800)의 물리적인 사이즈를 변경하지 않을 수 있다.
또한, 근접 필드(near field)에서 전계는 전송 선로에 삽입된 커패시터(820)에 집중되므로, 커패시터(820)로 인하여 근접 필드에서는 자계(magnetic field)가 도미넌트(dominant)해진다. 그리고, MNG 공진기(800)는 집중 소자의 커패시터(820)을 이용하여 높은 큐-팩터(Q-Factor)를 가질 수 있으므로, 전력 전송의 효율을 향상시킬 수 있다. 참고로, 큐-팩터는 무선 전력 전송에 있어서 저항 손실(ohmic loss)의 정도 또는 저항(resistance)에 대한 리액턴스의 비를 나타내는데, 큐-팩터가 클수록 무선 전력 전송의 효율이 큰 것으로 이해될 수 있다.
또한, MNG 공진기(800)는 임피던스 매칭을 위한 매칭기(830)를 포함할 수 있다. 이 때, 매칭기(830)는 MNG 공진기(800) 의 자계의 강도를 적절히 조절 가능(tunable)하고, 매칭기(830)에 의해 MNG 공진기(800)의 임피던스는 결정된다. 그리고, 전류는 커넥터(840)를 통하여 MNG 공진기(800)로 유입되거나 MNG 공진기(800)로부터 유출될 수 있다. 여기서, 커넥터(840)는 그라운드 도체 부분(813) 또는 매칭기(830)와 연결될 수 있다. 다만, 커넥터(840)와 그라운드 도체 부분(813) 또는 매칭기(830) 사이에는 물리적인 연결이 형성될 수도 있고, 커넥터(840)와 그라운드 도체 부분(813) 또는 매칭기(830) 사이의 물리적인 연결 없이 커플링을 통하여 전력이 전달될 수도 있다.
보다 구체적으로, 도 8에 도시된 바와 같이, 매칭기(830)는 공진기(800)의 루프 구조로 인해 형성되는 루프의 내부에 위치할 수 있다. 매칭기(830)는 물리적인 형태를 변경함으로써, 공진기(800)의 임피던스를 조절할 수 있다. 특히, 매칭기(830)는 그라운드 도체 부분(813)으로부터 거리 h 만큼 떨어진 위치에 임피던스 매칭을 위한 도체(831)를 포함할 수 있으며, 공진기(800)의 임피던스는 거리 h를 조절함으로써 변경될 수 있다.
도 8에 도시되지 아니하였지만, 매칭기(830)를 제어할 수 있는 컨트롤러가 존재하는 경우, 매칭기(830)는 컨트롤러에 의해 생성되는 제어 신호에 따라 매칭기(830)의 물리적 형태를 변경할 수 있다. 예를 들어, 제어 신호에 따라 매칭기(830)의 도체(831)와 그라운드 도체 부분(813) 사이의 거리 h가 증가하거나, 감소될 수 있으며, 그에 따라 매칭기(830)의 물리적 형태가 변경됨으로써, 공진기(800)의 임피던스는 조절될 수 있다.
매칭기(830)는 도 8에 도시된 바와 같이, 도체 부분(831)과 같은 수동 소자로 구현될 수 있으며, 실시예에 따라서는 다이오드, 트랜지스터 등과 같은 능동 소자로 구현될 수 있다. 능동 소자가 매칭기(830)에 포함되는 경우, 능동 소자는 컨트롤러에 의해 생성되는 제어 신호에 따라 구동될 수 있으며, 그 제어 신호에 따라 공진기(800)의 임피던스는 조절될 수 있다. 예를 들어, 매칭기(830)에는 능동 소자의 일종인 다이오드가 포함될 수 있고, 다이오드가 'on' 상태에 있는지 또는 'off'' 상태에 있는지에 따라 공진기(800)의 임피던스가 조절될 수 있다.
또한, 도 8에 도시되지 아니하였으나, MNG 공진기(800)를 관통하는 마그네틱 코어가 더 포함될 수 있다. 이러한 마그네틱 코어는 전력 전송 거리를 증가시키는 기능을 수행할 수 있다.
도 9는 본 발명의 일실시예에 따른 3 차원 구조의 공진기를 나타낸 도면이다.
도 9를 참조하면, 본 발명의 일실시예에 따른 3 차원 구조의 공진기(900)는 제1 신호 도체 부분(911), 제2 신호 도체 부분(912) 및 그라운드 도체 부분(913)을 포함하는 전송 선로 및 커패시터(920)를 포함한다. 여기서 커패시터(920)는 전송 선로에서 제1 신호 도체 부분(911)과 제2 신호 도체 부분(912) 사이에 위치에 직렬로 삽입되고, 전계(electric field)는 커패시터(920)에 갇히게 된다.
또한, 도 9에 도시된 바와 같이 공진기(900)는 3차원 구조의 형태를 갖는다. 전송 선로는 상부에 제1 신호 도체 부분(911) 및 제2 신호 도체 부분(912)을 포함하고, 하부에 그라운드 도체 부분(913)을 포함한다. 제1 신호 도체 부분(911) 및 제2 신호 도체 부분(912)과 그라운드 도체 부분(913)은 서로 마주보게 배치된다. 전류는 제1 신호 도체 부분(911) 및 제2 신호 도체 부분(912)을 통하여 x 방향으로 흐르며, 이러한 전류로 인해 -y 방향으로 자계(magnetic field) H(w)가 발생한다. 물론, 도 9에 도시된 것과 다르게, +y 방향으로 자계(magnetic field) H(w)가 발생할 수 있다.
또한, 도 9에 도시된 바와 같이 제1 신호 도체 부분(911)의 한쪽 단은 도체(942)와 접지(short)되고, 다른 쪽 단은 커패시터(920)와 연결된다. 그리고, 제2 신호 도체 부분(912)의 한쪽 단은 도체(941)와 접지되며, 다른 쪽 단은 커패시터(920)와 연결된다. 결국, 제1 신호 도체 부분(911), 제2 신호 도체 부분(912) 및 그라운드 도체 부분(913), 도체들(941, 942)은 서로 연결됨으로써, 공진기(900)는 전기적으로 닫혀 있는 루프 구조를 갖는다. 여기서, '루프 구조'는 원형 구조, 사각형과 같은 다각형의 구조 등을 모두 포함하며, '루프 구조를 갖는다고 함은' 전기적으로 닫혀 있다는 것을 의미한다.
또한, 도 9에 도시된 바와 같이 커패시터(920)는 제1 신호 도체 부분(911) 및 제2 신호 도체 부분(912) 사이에 삽입된다. 이 때, 커패시터(920)는 집중 소자(lumped element) 및 분산 소자(distributed element) 등의 형태를 가질 수 있다. 특히, 분산 소자의 형태를 갖는 분산된 커패시터는 지그재그 형태의 도체 라인들과 그 도체 라인들 사이에 존재하는 높은 유전율을 갖는 유전체를 포함할 수 있다.
도 9에 도시된 바와 같이 커패시터(920)가 전송 선로에 삽입됨에 따라 상기 공진기(900)는 메타물질(metamaterial)의 특성을 가질 수 있다. 집중 소자로서 삽입된 커패시터(920)의 커패시턴스가 적절히 정해지는 경우, 상기 공진기(900)는 메타물질의 특성을 가질 수 있다. 특히, 커패시터(920)의 커패시턴스를 적절히 조절함으로써, 공진기(900)는 특정 주파수 대역에서 음의 투자율을 가질 수 있으므로, 본 발명의 일실시예에 따른 공진기(900)는 MNG 공진기로 불려질 수 있다. 아래에서 설명하겠지만, 커패시터(920)의 커패시턴스를 정하는 전제(criterion)들은 다양할 수 있다. 공진기(900)가 메타물질(metamaterial)의 특성을 가질 수 있도록 하는 전제(criterion), 상기 공진기(900)가 대상 주파수에서 음의 투자율을 갖도록 하는 전제 또는 상기 공진기(900)가 대상 주파수에서 영번째 공진(Zeroth-Order Resonance) 특성을 갖도록 하는 전제 등이 있을 수 있고, 상술한 전제들 중 적어도 하나의 전제 아래에서 커패시터(920)의 커패시턴스가 정해질 수 있다.
도 9에 도시된 상기 MNG 공진기(900)는 전파 상수(propagation constant)가 0일 때의 주파수를 공진 주파수로 갖는 영번째 공진(Zeroth-Order Resonance) 특성을 가질 수 있다. MNG 공진기(900)는 영번째 공진 특성을 가질 수 있으므로, 공진 주파수는 MNG 공진기(900)의 물리적인 사이즈에 대해 독립적일 수 있다. MNG 공진기(900)에서 공진 주파수를 변경하기 위해서는 커패시터(920)를 적절히 설계하는 것으로 충분하므로, MNG 공진기(900)의 물리적인 사이즈를 변경하지 않을 수 있다.
도 9에 도시된 바와 같이 MNG 공진기(900)를 참조하면, 근접 필드(near field)에서 전계는 전송 선로(910)에 삽입된 커패시터(920)에 집중되므로, 커패시터(920)로 인하여 근접 필드에서는 자계(magnetic field)가 도미넌트(dominant)해진다. 특히, 영번째 공진(Zeroth-Order Resonance) 특성을 갖는 MNG 공진기(900)는 자계 다이폴(magnetic dipole)과 유사한 특성들을 가지므로, 근접 필드에서는 자계가 도미넌트하며, 커패시터(920)의 삽입으로 인해 발생하는 적은 양의 전계 또한 그 커패시터(920)에 집중되므로, 근접 필드에서는 자계가 더더욱 도미넌트해진다. MNG 공진기(900)는 집중 소자의 커패시터(920)을 이용하여 높은 큐-팩터(Q-Factor)를 가질 수 있으므로, 전력 전송의 효율을 향상시킬 수 있다.
또한, 도 9에 도시된 MNG 공진기(900)는 임피던스 매칭을 위한 매칭기(930)를 포함할 수 있다. 이 때, 매칭기(930)는 MNG 공진기(900)의 자계의 강도를 적절히 조절 가능(tunable)하고, 매칭기(930)에 의해 MNG 공진기(900)의 임피던스는 결정된다. 그리고, 전류는 커넥터(940)를 통하여 MNG 공진기(900)로 유입되거나 MNG 공진기(900)로부터 유출된다. 여기서, 커넥터(940)는 그라운드 도체 부분(913) 또는 매칭기(930)와 연결될 수 있다.
보다 구체적으로, 도 9에 도시된 바와 같이, 매칭기(930)는 공진기(900)의 루프 구조로 인해 형성되는 루프의 내부에 위치할 수 있다. 매칭기(930)는 물리적인 형태를 변경함으로써, 공진기(900)의 임피던스를 조절할 수 있다. 특히, 매칭기(930)는 그라운드 도체 부분(913)으로부터 거리 h 만큼 떨어진 위치에 임피던스 매칭을 위한 도체 부분(931)을 포함할 수 있으며, 공진기(900)의 임피던스는 거리 h를 조절함으로써 변경될 수 있다.
도 9에 도시되지 아니하였지만, 매칭기(930)를 제어할 수 있는 컨트롤러가 존재하는 경우, 매칭기(930)는 컨트롤러에 의해 생성되는 제어 신호에 따라 매칭기(930)의 물리적 형태를 변경할 수 있다. 예를 들어, 제어 신호에 따라 매칭기(930)의 도체(931)과 그라운드 도체 부분(930) 사이의 거리 h가 증가하거나, 감소될 수 있으며, 그에 따라 매칭기(930)의 물리적 형태가 변경됨으로써, 공진기(900)의 임피던스는 조절될 수 있다. 매칭기(930)의 도체(931)과 그라운드 도체 부분(930) 사이의 거리 h는 다양한 방식들로 조절될 수 있다. 즉, 첫째, 매칭기(930)에는 여러 도체들이 포함될 수 있고, 그 도체들 중 어느 하나를 적응적으로 활성화함으로써 거리 h가 조절될 수 있다. 둘째, 도체(931)의 물리적인 위치를 상하로 조절함으로써, 거리 h가 조절될 수 있다. 이러한 거리 h는 컨트롤러의 제어 신호에 따라 제어될 수 있으며, 컨트롤러는 다양한 팩터들을 고려하여 제어 신호를 생성할 수 있다. 컨트롤러가 제어 신호를 생성하는 것에 대해서는 아래에서 설명한다.
매칭기(930)는 도 9에 도시된 바와 같이, 도체 부분(931)과 같은 수동 소자로 구현될 수 있으며, 실시예에 따라서는 다이오드, 트랜지스터 등과 같은 능동 소자로 구현될 수 있다. 능동 소자가 매칭기(930)에 포함되는 경우, 능동 소자는 컨트롤러에 의해 생성되는 제어 신호에 따라 구동될 수 있으며, 그 제어 신호에 따라 공진기(900)의 임피던스는 조절될 수 있다. 예를 들어, 매칭기(930)에는 능동 소자의 일종인 다이오드가 포함될 수 있고, 다이오드가 'on' 상태에 있는지 또는 'off'' 상태에 있는지에 따라 공진기(900)의 임피던스가 조절될 수 있다.
또한, 도 9에 명시적으로 도시되지 아니하였으나, MNG 공진기(900)를 관통하는 마그네틱 코어가 더 포함될 수 있다. 이러한 마그네틱 코어는 전력 전송 거리를 증가시키는 기능을 수행할 수 있다.
도 10은 bulky type으로 설계된 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 10을 참조하면, 제1 신호 도체 부분(1011)과 도체(1042)는 개별적으로 제작된 후, 서로 연결되는 것이 아니라 하나의 일체형으로 제작될 수 있다. 마찬가지로, 제2 신호 도체 부분(1012)과 도체(1041) 역시 하나의 일체형으로 제작될 수 있다.
제2 신호 도체 부분(1012)과 도체(1041)가 개별적으로 제작된 후, 서로 연결되는 경우, 이음매(1050)로 인한 도체 손실이 있을 수 있다. 이 때, 본 발명의 실시예에 따르면, 제2 신호 도체 부분(1012)과 도체(1041)는 별도의 이음매 없이(seamless) 서로 연결되며, 도체(1041)와 그라운드 도체 부분(1013)도 별도의 이음매 없이 서로 연결될 수 있으며, 이음매로 인한 도체 손실을 줄일 수 있다. 결국, 제2 신호 도체 부분(1012)과 그라운드 도체 부분(1013)는 별도의 이음매 없이 하나의 일체형으로서 제작될 수 있다. 마찬가지로, 제1 신호 도체 부분(1011)과 그라운드 도체 부분(1013)는 별도의 이음매 없이 하나의 일체형으로서 제작될 수 있다.
도 10에 도시된 바와 같이, 별도의 이음매 없이 하나의 일체형으로서 둘 이상의 부분(partition)들을 서로 연결하는 유형을 'bulky type'이라고 부르기도 한다.
도 11은 Hollow type으로 설계된 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 11을 참조하면, Hollow type으로 설계된 무선 전력 전송을 위한 공진기의 제1 신호 도체 부분(1111), 제2 신호 도체 부분(1112), 그라운드 도체 부분(1113), 도체들(1141, 1142) 각각은 내부에 비어 있는 공간을 포함한다.
주어진(given) 공진 주파수에서, 유효 전류는 제1 신호 도체 부분(1111), 제2 신호 도체 부분(1112), 그라운드 도체 부분(1113), 도체들(1141, 1142) 각각의 모든 부분을 통해 흐르는 것이 아니라, 일부의 부분만을 통해 흐르는 것으로 모델링될 수 있다. 즉, 주어진 공진 주파수에서, 제1 신호 도체 부분(1111), 제2 신호 도체 부분(1112), 그라운드 도체 부분(1113), 도체들(1141, 1142) 두께(depth)가 각각의 skin depth보다 지나치게 두꺼운 것은 비효율적일 수 있다. 즉, 그것은 공진기(1100)의 무게 또는 공진기(1100)의 제작 비용을 증가시키는 원인이 될 수 있다.
따라서, 본 발명의 실시예에 따르면, 주어진 공진 주파수에서 제1 신호 도체 부분(1111), 제2 신호 도체 부분(1112), 그라운드 도체 부분(1113), 도체들(1141, 1142) 각각의 skin depth를 기초로 제1 신호 도체 부분(1111), 제2 신호 도체 부분(1112), 그라운드 도체 부분(1113), 도체들(1141, 1142) 각각의 두께를 적절히 정할 수 있다. 제1 신호 도체 부분(1111), 제2 신호 도체 부분(1112), 그라운드 도체 부분(1113), 도체들(1141, 1142) 각각이 해당 skin depth보다 크면서도 적절한 두께를 갖는 경우, 공진기(1100)는 가벼워질 수 있으며, 공진기(1100)의 제작 비용 또한 감소될 수 있다.
예를 들어, 도 11에 도시된 바와 같이, 제2 신호 도체 부분(1112)의 두께는 d m로 정해질 수 있고, d는
Figure 112012035672976-pat00009
를 통해서 결정될 수 있다. 여기서, f는 주파수,
Figure 112012035672976-pat00010
는 투자율,
Figure 112012035672976-pat00011
는 도체 상수를 나타낸다. 특히, 제1 신호 도체 부분(1111), 제2 신호 도체 부분(1112), 그라운드 도체 부분(1113), 도체들(1141, 1142) 이 구리(copper)로서 5.8x10^7의 도전율(conductivity)을 갖는 경우에, 공진 주파수가 10kHz에 대해서는 skin depth가 약 0.6mm일 수 있으며, 공진 주파수가 100MHz에 대해서는 skin depth는 0.006mm일 수 있다.
도 12는 parallel-sheet이 적용된 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 12를 참조하면, parallel-sheet이 적용된 무선 전력 전송을 위한 공진기에 포함된 제1 신호 도체 부분(1211), 제2 신호 도체 부분(1212) 각각의 표면에는 parallel-sheet이 적용될 수 있다.
제1 신호 도체 부분(1211), 제2 신호 도체 부분(1212)은 완벽한 도체(perfect conductor)가 아니므로, 저항 성분을 가질 수 있고, 그 저항 성분으로 인해 저항 손실(ohmic loss)가 발생할 수 있다. 이러한 저항 손실은 Q 팩터를 감소시키고, 커플링 효율을 감소시킬 수 있다.
본 발명의 실시예에 따르면, 제1 신호 도체 부분(1211), 제2 신호 도체 부분(1212) 각각의 표면에 parallel-sheet을 적용함으로써, 저항 손실을 줄이고, Q 팩터 및 커플링 효율을 증가시킬 수 있다. 도 12의 부분(1270)을 참조하면, parallel-sheet이 적용되는 경우, 제1 신호 도체 부분(1211), 제2 신호 도체 부분(1212) 각각은 복수의 도체 라인들을 포함한다. 이 도체 라인들은 병렬적으로 배치되며, 제1 신호 도체 부분(1211), 제2 신호 도체 부분(1212) 각각의 끝 부분에서 접지(short)된다.
제1 신호 도체 부분(1211), 제2 신호 도체 부분(1212) 각각의 표면에 parallel-sheet을 적용하는 경우, 도체 라인들이 병렬적으로 배치되므로, 도체 라인들이 갖는 저항 성분들의 합은 감소된다. 따라서, 저항 손실을 줄이고, Q 팩터 및 커플링 효율을 증가시킬 수 있다.
도 13은 분산된 커패시터를 포함하는 무선 전력 전송을 위한 공진기의 예를 나타낸 도면이다.
도 13을 참조하면, 무선 전력 전송을 위한 공진기에 포함되는 커패시터(1320)는 분산된 커패시터일 수 있다. 집중 소자로서의 커패시터는 상대적으로 높은 등가 직렬 저항(Equivalent Series Resistance: ESR)을 가질 수 있다. 집중 소자로서의 커패시터가 갖는 ESR을 줄이기 위한 여러 제안들이 있지만, 본 발명의 실시예는 분산 소자로서의 커패시터(1320)를 사용함으로써, ESR을 줄일 수 있다. 참고로, ESR로 인한 손실은 Q 팩터 및 커플링 효율을 감소시킬 수 있다.
분산 소자로서의 커패시터(1320)는 도 13에 도시된 바와 같이, 지그 재그 구조를 가질 수 있다. 즉, 분산 소자로서의 커패시터(1320)는 지그 재그 구조의 도체 라인 및 유전체로 구현될 수 있다.
뿐만 아니라, 도 13에 도시된 바와 같이, 본 발명의 실시예는 분산 소자로서의 커패시터(1320)를 사용함으로써, ESR로 인한 손실을 줄일 수 있을 뿐만 아니라, 복수 개의 집중 소자로서의 커패시터들을 병렬적으로 사용함으로써, ESR로 인한 손실을 줄일 수 있다. 왜냐 하면, 집중 소자로서의 커패시터들 각각이 갖는 저항 성분들은 병렬 연결을 통하여 작아지기 때문에, 병렬적으로 연결된 집중 소자로서의 커패시터들의 유효 저항 또한 작아질 수 있으며, 따라서, ESR로 인한 손실을 줄일 수 있다. 예를 들어, 10pF의 커패시터 하나를 사용하는 것을 1pF의 커패시터들 10개를 사용하는 것으로 대체함으로써, ESR로 인한 손실을 줄일 수 있다.
도 14는 2 차원 구조의 공진기 및 3 차원 구조의 공진기에서 사용되는 매칭기들의 예들을 나타낸 도면이다.
도 14의 A는 매칭기를 포함하는 도 8에 도시된 2 차원 공진기의 일부를 나타내며, 도 14의 B는 매칭기를 포함하는 도 9에 도시된 3 차원 공진기의 일부를 나타낸다.
도 14의 A를 참조하면, 매칭기는 도체(831), 도체(832) 및 도체(833)을 포함하며, 도체(832) 및 도체(833)는 전송 선로의 그라운드 도체 부분(813) 및 도체(831)와 연결된다. 도체(831) 및 그라운드 도체 부분(813) 사이의 거리 h에 따라 2 차원 공진기의 임피던스는 결정되며, 도체(831) 및 그라운드 도체 부분(813) 사이의 거리 h는 컨트롤러에 의해 제어된다. 도체(831) 및 그라운드 도체 부분(813) 사이의 거리 h는 다양한 방식들로 조절될 수 있으며, 도체(831)가 될 수 있는 여러 도체들 중 어느 하나를 적응적으로 활성화함으로써 거리 h를 조절하는 방식, 도체(831)의 물리적인 위치를 상하로 조절함으로써, 거리 h를 조절하는 방식 등이 있을 수 있다.
도 14의 B를 참조하면, 매칭기는 도체(931), 도체(932) 및 도체(933)을 포함하며, 도체(932) 및 도체(933)는 전송 선로의 그라운드 도체 부분(913) 및 도체(931)와 연결된다. 도체(931) 및 그라운드 도체 부분(913) 사이의 거리 h에 따라 3 차원 공진기의 임피던스는 결정되며, 도체(931) 및 그라운드 도체 부분(913) 사이의 거리 h는 컨트롤러에 의해 제어된다. 2 차원 구조의 공진기에 포함되는 매칭기와 마찬가지로, 3 차원 구조의 공진기에 포함되는 매칭기에서도 도체(931) 및 그라운드 도체 부분(913) 사이의 거리 h는 다양한 방식들로 조절될 수 있다. 예를 들어, 도체(931)가 될 수 있는 여러 도체들 중 어느 하나를 적응적으로 활성화함으로써 거리 h를 조절하는 방식, 도체(931)의 물리적인 위치를 상하로 조절함으로써, 거리 h를 조절하는 방식 등이 있을 수 있다.
도 14에 도시되지 아니하였지만, 매칭기는 능동 소자를 포함할 수 있으며, 능동 소자를 이용하여 공진기의 임피던스를 조절하는 방식은 상술한 바와 유사하다. 즉, 능동 소자를 이용하여 매칭기를 통해 흐르는 전류의 경로를 변경함으로써, 공진기의 임피던스가 조절될 수 있다.
도 15는 도 8에 도시된 무선 전력 전송을 위한 공진기의 등가 회로를 나타낸 도면이다.
도 8에 도시된 무선 전력 전송을 위한 공진기는 도 15에 도시된 등가 회로로 모델링될 수 있다. 도 15의 등가 회로에서 CL은 도 8의 전송 선로의 중단부에 집중 소자의 형태로 삽입된 커패시터를 나타낸다.
이 때, 도 8에 도시된 무선 전력 전송을 위한 공진기는 영번째 공진 특성을 갖는다. 즉, 전파 상수가 0인 경우, 무선 전력 전송을 위한 공진기는
Figure 112012035672976-pat00012
를 공진 주파수로 갖는다고 가정한다. 이 때, 공진 주파수
Figure 112012035672976-pat00013
는 하기 수학식 4와 같이 표현될 수 있다. 여기서, MZR은 Mu Zero Resonator를 의미한다.
[수학식 4]
Figure 112012035672976-pat00014

상기 수학식 4를 참조하면, 공진기의 공진 주파수
Figure 112012035672976-pat00015
Figure 112012035672976-pat00016
에 의해 결정될 수 있고, 공진 주파수
Figure 112012035672976-pat00017
와 공진기의 물리적인 사이즈는 서로 독립적일 수 있음을 알 수 있다. 따라서, 공진 주파수
Figure 112012035672976-pat00018
와 공진기의 물리적인 사이즈가 서로 독립적이므로, 공진기의 물리적인 사이즈는 충분히 작아질 수 있다.
도 16은 일 실시예에 따른 공진기 및 피더에서 자기장의 분포를 나타낸다.
별도의 피더를 통해 공진기가 전력을 공급받는 경우에는 피더에서 자기장이 발생하고, 공진기에서도 자기장이 발생한다.
도 16의 (a)를 참조하면, 피더(1610)에서 입력 전류가 흐름에 따라 자기장(1630)이 발생한다. 피더(1610) 내부에서 자기장의 방향(1631)과 외부에서 자기장의 방향(1633)은 서로 반대 위상을 가진다. 피더(1610)에서 발생하는 자기장(1630)에 의해 공진기(1620)에서 유도 전류가 발생한다. 이때 유도 전류의 방향은 입력 전류의 방향과 반대이다.
유도 전류에 의해 공진기(1620)에서 자기장(1640)이 발생한다. 자기장의 방향은 공진기(1620)의 내부에서는 동일한 방향을 가진다. 따라서, 공진기(1620)에 의해 피더(1610)의 내부에서 발생하는 자기장의 방향(1641)과 피더(1610)의 외부에서 발생하는 자기장의 방향(1643)은 동일한 위상을 가진다.
결과적으로 피더(1610)에 의해서 발생하는 자기장과 공진기(1620)에서 발생하는 자기장을 합성하면, 피더(1610)의 내부에서는 자기장의 세기가 약화되고, 피더(1610)의 외부에서는 자기장의 세기가 강화된다. 따라서, 도 16과 같은 구조의 피더(1610)를 통해 공진기(1620)에 전력을 공급하는 경우에, 공진기(1620) 중심에서 자기장의 세기가 약하고, 외곽에서 자기장의 세기가 강하다. 공진기(1620) 상에서 자기장의 분포가 균일(uniform)하지 않은 경우, 입력 임피던스가 수시로 변화하므로 임피던스 매칭을 수행하는 것이 어렵다. 또한, 자기장의 세기가 강한 부분에서는 무선 전력 전송이 잘되고, 자기장의 세기가 약한 부분에서는 무선 전력 전송이 잘 되지 않으므로, 평균적으로 전력 전송 효율이 감소한다.
(b)는 공진기(1650)와 피더(1660)가 공통의 접지를 가진 무선 전력 전송 장치의 구조를 나타낸다. 공진기(1650)는 캐패시터(1651)를 포함할 수 있다. 피더(1660)는 포트(1661)를 통하여, RF 신호를 입력 받을 수 있다. 피더(1660)에는 RF 신호가 입력되어, 입력 전류가 생성될 수 있다. 피더(1660)에 흐르는 입력 전류는 자기장을 생성하고, 상기 자기장으로부터 공진기(1650)에 유도 전류가 유도된다. 또한, 공진기(1650)를 흐르는 유도 전류로부터 자기장이 발생한다. 이때, 피더(1660)에 흐르는 입력 전류의 방향과 공진기(1650)에 흐르는 유도 전류의 방향은 서로 반대 위상을 가진다. 따라서, 공진기(1650)와 피더(1660) 사이의 영역에서, 입력 전류에 의해 발생하는 자기장의 방향(1671)과 유도 전류에 의해 발생하는 자기장의 방향(1673)은 동일한 위상을 가지므로, 자기장의 세기가 강화된다. 반면에, 피더(1660)의 내부에서는, 입력 전류에 의해 발생하는 자기장의 방향(1681)과 유도 전류에 의해 발생하는 자기장의 방향(1683)은 반대 위상을 가지므로, 자기장의 세기가 약화된다. 결과적으로 공진기(1650)의 중심에서는 자기장의 세기가 약해지고, 공진기(1650)의 외곽에서는 자기장의 세기가 강화될 수 있다.
도 17은 일 실시예에 따른 공진기 및 피더의 구성을 나타낸 도면이다.
도 17의 (a)를 참조하면, 공진기(1710)는 캐패시터(1711)를 포함할 수 있다. 피딩부(1720)는 캐패시터(1711)의 양단에 전기적으로 연결될 수 있다.
(b)는 (a)의 구조를 좀 더 구체적으로 표시한 도면이다. 이때, 공진기(1710)는 제1 전송선로, 제1 도체(1741), 제2 도체(1742), 적어도 하나의 제1 캐패시터(1750)를 포함할 수 있다.
제1 캐패시터(1750)는 제1 전송 선로에서 제1 신호 도체 부분(1731)과 제2 신호 도체 부분(1732) 사이에 위치에 직렬로 삽입되며, 그에 따라 전계(electric field)는 제1 캐패시터(1750)에 갇히게 된다. 일반적으로, 전송 선로는 상부에 적어도 하나의 도체, 하부에 적어도 하나의 도체를 포함하며, 상부에 있는 도체를 통해서는 전류가 흐르며, 하부에 있는 도체는 전기적으로 그라운드 된다(grounded). 본 명세서에서는 제1 전송 선로의 상부에 있는 도체를 제1 신호 도체 부분(1731)과 제2 신호 도체 부분(1732)로 나누어 부르고, 제1 전송 선로의 하부에 있는 도체를 제1 그라운드 도체 부분(1733)으로 부르기로 한다.
(b)에 도시된 바와 같이, 공진기는 2 차원 구조의 형태를 갖는다. 제1 전송 선로는 상부에 제1 신호 도체 부분(1731) 및 제2 신호 도체 부분(1732)을 포함하고, 하부에 제1 그라운드 도체 부분(1733)을 포함한다. 제1 신호 도체 부분(1731) 및 제2 신호 도체 부분(1732)과 제1 그라운드 도체 부분(1733)은 서로 마주보게 배치된다. 전류는 제1 신호 도체 부분(1731) 및 제2 신호 도체 부분(1732)을 통하여 흐른다.
또한, (b)에 도시된 바와 같이 제1 신호 도체 부분(1731)의 한쪽 단은 제1 도체(1741)와 접지(short)되고, 다른 쪽 단은 제1 캐패시터(1750)와 연결된다. 그리고, 제2 신호 도체 부분(1732)의 한쪽 단은 제2 도체(1742)와 접지되며, 다른 쪽 단은 제1 캐패시터(1750)와 연결된다. 결국, 제1 신호 도체 부분(1731), 제2 신호 도체 부분(1732) 및 제1 그라운드 도체 부분(1733), 도체들(1741, 1742)은 서로 연결됨으로써, 공진기는 전기적으로 닫혀 있는 루프 구조를 갖는다. 여기서, '루프 구조'는 원형 구조, 사각형과 같은 다각형의 구조 등을 모두 포함하며, '루프 구조를 갖는다고 함은' 전기적으로 닫혀 있다는 것을 의미한다.
제1 캐패시터(1750)는 전송 선로의 중단부에 삽입된다. 보다 구체적으로, 제1캐패시터(1750)는 제1 신호 도체 부분(1731) 및 제2 신호 도체 부분(1732) 사이에 삽입된다. 이 때, 제1 캐패시터(1750)는 집중 소자(lumped element) 및 분산 소자(distributed element) 등의 형태를 가질 수 있다. 특히, 분산 소자의 형태를 갖는 분산된 캐패시터는 지그재그 형태의 도체 라인들과 그 도체 라인들 사이에 존재하는 높은 유전율을 갖는 유전체를 포함할 수 있다.
제1 캐패시터(1750)가 전송 선로에 삽입됨에 따라 소스 공진기는 메타물질(metamaterial)의 특성을 가질 수 있다. 여기서, 메타물질이란 자연에서 발견될 수 없는 특별한 전기적 성질을 갖는 물질로서, 인공적으로 설계된 구조를 갖는다. 자연계에 존재하는 모든 물질들의 전자기 특성은 고유의 유전율 또는 투자율을 가지며, 대부분의 물질들은 양의 유전율 및 양의 투자율을 갖는다.
대부분의 물질들에서 전계, 자계 및 포인팅 벡터에는 오른손 법칙이 적용되므로, 이러한 물질들을 RHM(Right Handed Material)이라고 한다. 그러나, 메타물질은 자연계에 존재하지 않는 유전율 또는 투자율을 가진 물질로서, 유전율 또는 투자율의 부호에 따라 ENG(epsilon negative) 물질, MNG(mu negative) 물질, DNG(double negative) 물질, NRI(negative refractive index) 물질, LH(left-handed) 물질 등으로 분류된다.
이 때, 집중 소자로서 삽입된 제1 캐패시터(1750)의 캐패시턴스가 적절히 정해지는 경우, 소스 공진기는 메타물질의 특성을 가질 수 있다. 특히, 제1 캐패시터(1750)의 캐패시턴스를 적절히 조절함으로써, 소스 공진기는 음의 투자율을 가질 수 있으므로, 소스 공진기는 MNG 공진기로 불려질 수 있다. 제1 캐패시터(1750)의 캐패시턴스를 정하는 전제(criterion)들은 다양할 수 있다. 소스 공진기가 메타물질(metamaterial)의 특성을 가질 수 있도록 하는 전제(criterion), 소스 공진기가 대상 주파수에서 음의 투자율을 갖도록 하는 전제 또는 소스 공진기가 대상 주파수에서 영번째 공진(Zeroth-Order Resonance) 특성을 갖도록 하는 전제 등이 있을 수 있고, 상술한 전제들 중 적어도 하나의 전제 아래에서 제1 캐패시터(1750)의 캐패시턴스가 정해질 수 있다.
MNG 공진기는 전파 상수(propagation constant)가 0일 때의 주파수를 공진 주파수로 갖는 영번째 공진(Zeroth-Order Resonance) 특성을 가질 수 있다. MNG 공진기는 영번째 공진 특성을 가질 수 있으므로, 공진 주파수는 MNG 공진기의 물리적인 사이즈에 대해 독립적일 수 있다. 즉, 아래에서 다시 설명하겠지만, MNG 공진기에서 공진 주파수를 변경하기 위해서는 제1 캐패시터(1750)를 적절히 설계하는 것으로 충분하므로, MNG 공진기의 물리적인 사이즈를 변경하지 않을 수 있다.
또한, 근접장(near field)에서 전계는 전송 선로에 삽입된 제1 캐패시터(1750)에 집중되므로, 제1 캐패시터(1750)로 인하여 근접 필드에서는 자기장(magnetic field)이 도미넌트(dominant)해진다. 그리고, MNG 공진기는 집중 소자의 제1 캐패시터(1750)를 이용하여 높은 큐-팩터(Q-Factor)를 가질 수 있으므로, 전력 전송의 효율을 향상시킬 수 있다. 참고로, 큐-팩터는 무선 전력 전송에 있어서 저항 손실(ohmic loss)의 정도 또는 저항(resistance)에 대한 리액턴스의 비를 나타내는데, 큐-팩터가 클수록 무선 전력 전송의 효율이 큰 것으로 이해될 수 있다.
또한, (b)에 도시되지 아니하였으나, MNG 공진기를 관통하는 마그네틱 코어가 더 포함될 수 있다. 이러한 마그네틱 코어는 전력 전송 거리를 증가시키는 기능을 수행할 수 있다.
(b)를 참조하면, 피딩부(1720)는 제2 전송선로, 제3 도체(1771), 제4 도체(1772), 제5 도체(1781) 및 제6 도체(1782)를 포함할 수 있다.
제2 전송 선로는 상부에 제3 신호 도체 부분(1761) 및 제4 신호 도체 부분(1762)을 포함하고, 하부에 제2 그라운드 도체 부분(1763)을 포함한다. 제3 신호 도체 부분(1761) 및 제4 신호 도체 부분(1762)과 제2 그라운드 도체 부분(1763)은 서로 마주보게 배치된다. 전류는 제3 신호 도체 부분(1761) 및 제4 신호 도체 부분(1762)을 통하여 흐른다.
또한, (b)에 도시된 바와 같이 제3 신호 도체 부분(1761)의 한쪽 단은 제3 도체(1771)와 접지(short)되고, 다른 쪽 단은 제5 도체(1781)와 연결된다. 그리고, 제4 신호 도체 부분(1762)의 한쪽 단은 제4 도체(1772)와 접지되며, 다른 쪽 단은 제6 도체 (1782)와 연결된다. 제5 도체(1781)는 제1 신호 도체 부분(1731)과 연결되고, 제6 도체 (1782)는 제2 신호 도체 부분(1732)과 연결된다. 제5 도체(1781)와 제6 도체(1782)는 제1 캐패시터(1750)의 양단에 병렬로 연결된다. 이때, 제5 도체(1781) 및 제6 도체(1782)는 RF신호를 입력받는 입력 포트로 사용될 수 있다.
결국, 제3 신호 도체 부분(1761), 제4 신호 도체 부분(1762) 및 제2 그라운드 도체 부분(1763), 제3 도체(1771), 제4 도체(1772), 제5 도체(1781), 제6 도체(1782) 및 공진기(1710)는 서로 연결됨으로써, 공진기(1710) 및 피딩부(1720)는 전기적으로 닫혀 있는 루프 구조를 갖는다. 여기서, '루프 구조'는 원형 구조, 사각형과 같은 다각형의 구조 등을 모두 포함한다. 제5 도체(1781) 또는 제6 도체(1782)를 통하여 RF 신호가 입력되면, 입력 전류는 피딩부(1720) 및 공진기(1710)에 흐르게 되고, 입력 전류에 의해 발생하는 자기장에 의하여, 공진기(1710)에 유도 전류가 유도 된다. 피딩부(1720)에서 흐르는 입력 전류의 방향과 공진기(1710)에서 흐르는 유도 전류의 방향이 동일하게 형성됨으로써, 공진기(1710)의 중앙에서는 자기장의 세기가 강화되고, 공진기(1710)의 외곽에서는 자기장의 세기가 약화된다.
공진기(1710)와 피딩부(1720) 사이 영역의 면적에 의해 입력 임피던스가 결정될 수 있으므로, 전력 증폭기의 출력 임피던스와 상기 입력 임피던스의 매칭을 수행하기 위해 별도의 매칭 네트워크는 필요하지 않다. 매칭 네트워크가 사용되는 경우에도, 피딩부(1720)의 크기를 조절함으로써, 입력 임피던스를 결정할 수 있기 때문에, 매칭 네트워크의 구조는 단순해질 수 있다. 단순한 매칭 네트워크 구조는 매칭 네트워크의 매칭 손실을 최소화한다.
제2 전송 선로, 제3 도체(1771), 제4 도체(1772), 제5 도체(1781), 제6 도체(1782) 는 공진기(1710)와 동일한 구조를 형성할 수 있다. 즉, 공진기(1710)가 루프 구조인 경우에는 피딩부(1720)도 루프 구조일 수 있다. 또한, 공진기(1710)가 원형 구조인 경우에는 피딩부(1720)도 원형 구조일 수 있다.
도 18은 일 실시예에 따른 피딩부의 피딩에 따른 공진기의 내부에서 자기장의 분포를 나타낸 도면이다.
무선 전력 전송에서 피딩은, 소스 공진기에 전력을 공급하는 것을 의미한다. 또한, 무선 전력 전송에서 피딩은, 정류부에 AC 전력을 공급하는 것을 의미할 수 있다. (a)는 피딩부에서 흐르는 입력 전류의 방향 및 소스 공진기에서 유도되는 유도 전류의 방향을 나타낸다. 또한, (a)는 피딩부의 입력 전류에 의해 발생하는 자기장의 방향 및 소스 공진기의 유도 전류에 의해 발생하는 자기장의 방향을 나타낸다. (a)는 도 17의 공진기(1710) 및 피딩부(1720)를 좀 더 간략하게 표현한 도면이다. (b)는 피딩부와 공진기의 등가회로를 나타낸다.
(a)를 참조하면, 도 17에서 피딩부(1720)의 제5 도체(1781) 또는 제6 도체(1782)는 입력 포트(1810)로 사용될 수 있다. 입력 포트(1810)는 RF 신호를 입력 받는다. RF 신호는 전력 증폭기로부터 출력될 수 있다. 전력 증폭기는 타겟 디바이스의 필요에 따라 RF 신호의 진폭을 증감시킬 수 있다. 입력 포트(1810)에서 입력된 RF 신호는 피딩부에 흐르는 입력 전류의 형태로 표시될 수 있다. 피딩부를 흐르는 입력 전류는 피딩부의 전송선로를 따라 시계방향으로 흐른다. 그런데, 피딩부의 제5 도체는 공진기와 전기적으로 연결된다. 좀 더 구체적으로, 제5 도체는 공진기의 제1 신호 도체 부분과 연결된다. 따라서 입력 전류는 피딩부 뿐만 아니라 공진기에도 흐르게 된다. 공진기에서 입력 전류는 반시계 방향으로 흐른다. 공진기에 흐르는 입력 전류에 의하여 자기장이 발생하고, 상기 자기장에 의해 공진기에 유도 전류가 생성된다. 유도 전류는 공진기에서 시계방향으로 흐른다. 이때 유도 전류는 공진기의 캐패시터에 에너지를 전달할 수 있다. 또한, 유도 전류에 의해 자기장이 발생한다. (a)에서 피딩부 및 공진기에 흐르는 입력 전류는 실선으로 표시되고, 공진기에 흐르는 유도 전류는 점선으로 표시되었다.
전류에 의해 발생하는 자기장의 방향은 오른나사의 법칙을 통해 알 수 있다. 피딩부 내부에서, 피딩부에 흐르는 입력 전류에 의해 발생한 자기장의 방향(1821)과 공진기에 흐르는 유도 전류에 의해 발생한 자기장의 방향(1823)은 서로 동일하다. 따라서, 피딩부 내부에서 자기장의 세기가 강화된다.
또한, 피딩부와 공진기 사이의 영역에서, 피딩부에 흐르는 입력 전류에 의해 발생한 자기장의 방향(1833)과 소스 공진기에 흐르는 유도 전류에 의해 발생한 자기장의 방향(1831)은 서로 반대 위상이다. 따라서, 피딩부와 공진기 사이의 영역에서, 자기장의 세기는 약화된다.
루프 형태의 공진기에서는 일반적으로 공진기의 중심에서는 자기장의 세기가 약하고, 공진기의 외곽부분에서는 자기장의 세기가 강하다. 그런데 (a)를 참조하면, 피딩부가 공진기의 캐패시터 양단에 전기적으로 연결됨으로써 공진기의 유도 전류의 방향과 피딩부의 입력 전류의 방향이 동일해 진다. 공진기의 유도 전류의 방향과 피딩부의 입력 전류의 방향이 동일하기 때문에, 피딩부의 내부에서는 자기장의 세기가 강화되고, 피딩부의 외부에서는 자기장의 세기가 약화된다. 결과적으로 루프 형태의 공진기의 중심에서는 피딩부로 인하여 자기장의 세기가 강화되고, 공진기의 외곽부분에서는 자기장의 세기가 약화될 수 있다. 그러므로 공진기 내부에서는 전체적으로 자기장의 세기가 균일해질 수 있다.
한편, 소스 공진기에서 타겟 공진기로 전달되는 전력 전송의 효율은 소스 공진기에서 발생하는 자기장의 세기에 비례하므로, 소스 공진기의 중심에서 자기장의 세기가 강화됨에 따라 전력 전송 효율도 증가할 수 있다.
(b)를 참조하면, 피딩부(1840) 및 공진기(1850)는 등가회로로 표현될 수 있다. 피딩부(1840)에서 공진기 측을 바라볼 때 보이는 입력 임피던스 Zin은 다음의 수식과 같이 계산될 수 있다.
Figure 112012035672976-pat00019
여기서, M은 피딩부(1840)와 공진기(1850) 사이의 상호 인덕턴스를 의미하고, ω 는 피딩부(1840)와 공진기(1850) 간의 공진 주파수를 의미하고, Z는 공진기(1850)에서 타겟 디바이스 측을 바라볼 때 보이는 임피던스를 의미한다. Zin은 상호 인덕턴스 M에 비례한다. 따라서, 피딩부(1840)와 공진기(1850) 사이에 상호 인덕턴스를 조절함으로써 Zin을 제어할 수 있다. 상호 인덕턴스 M은 피딩부(1840)와 공진기(1850) 사이 영역의 면적에 따라 조절될 수 있다. 피딩부(1840)의 크기에 따라 피딩부(1840)와 공진기(1850) 사이 영역의 면적이 조절될 수 있다. Zin은 피딩부(1840)의 크기에 따라 결정될 수 있으므로, 전력 증폭기의 출력 임피던스와 임피던스 매칭을 수행하기 위해 별도의 매칭 네트워크가 필요하지 않다.
무선 전력 수신 장치에 포함된 타겟 공진기 및 피딩부도 위와 같은 자기장의 분포를 가질 수 있다. 타겟 공진기는 소스 공진기로부터 마그네틱 커플링을 통하여 무선 전력을 수신한다. 이때 수신되는 무선 전력을 통하여 타겟 공진기에서는 유도 전류가 생성될 수 있다. 타겟 공진기에서 유도 전류에 의해 발생한 자기장은 피딩부에 다시 유도 전류를 생성할 수 있다. 이때, (a)의 구조와 같이 타겟 공진기와 피딩부가 연결되면, 타겟 공진기에서 흐르는 전류의 방향과 피딩부에서 흐르는 전류의 방향은 동일해진다. 따라서, 피딩부의 내부에서는 자기장의 세기가 강화되고, 피딩부와 타겟 공진기 사이의 영역에서는 자기장의 세기가 약화될 수 있다.
도 19는 일 실시예에 따른 전기 자동차(electric vehicle) 충전 시스템을 나타낸다.
도 19를 참조하면, 전기 자동차 충전 시스템(1900)은 소스 시스템(1910), 소스 공진기(1920), 타겟 공진기(1930), 타겟 시스템(1940) 및 전기 자동차용 배터리(1950)을 포함한다.
전기 자동차 충전 시스템(1900)은 도 1의 무선 전력 전송 시스템과 유사한 구조를 가진다. 즉, 전기 자동차 충전 시스템(1900)은 소스 시스템(1910) 및 소스 공진기(1920)로 구성되는 소스를 포함한다. 또한, 전기 자동차 충전 시스템(1900)은 타겟 공진기(1930) 및 타겟 시스템(1940)로 구성되는 타겟을 포함한다.
이때, 소스 시스템(1910)은 도 1의 소스(110)와 같이, AC/DC 컨버터, Power Detecter, 전력변환부, 제어 및 통신부를 포함할 수 있다. 이때, 타겟 시스템(1940)은 도 1의 타겟(120)과 같이, 정류부, DC/DC 컨버터, 스위치부, 충전부 및 제어 및 통신부를 포함할 수 있다.
전기 자동차용 배터리(1950)는 타겟 시스템(1940)에 의해 충전 될 수 있다.
전기 자동차 충전 시스템(1900)은 수 KHz~수십 MHz의 공진 주파수를 사용할 수 있다.
소스 시스템(1910)은 충전 차량의 종류, 배터리의 용량, 배터리의 충전 상태에 따라 전력을 생성하고, 생성된 전력을 타겟 시스템(1940)으로 공급할 수 있다.
소스 시스템(1910)은 소스 공진기(1920) 및 타겟 공진기(1930)의 정렬(alignment)를 맞추기 위한 제어를 수행할 수 있다. 예를 들어, 소스 시스템(1910)의 제어부는 소스 공진기(1920)와 타겟 공진기(1930)의 alignment가 맞지 않은 경우, 타겟 시스템(1940)으로 메시지를 전송하여 alignment를 제어할 수 있다.
이때, alignment가 맞지 않은 경우란, 타겟 공진기(1930)의 위치가 마그네틱 레조넌스(magnetic resonance)가 최대로 일어나기 위한 위치에 있지 않은 경우 일 수 있다. 즉, 차량이 정확하게 정차되지 않은 경우, 소스 시스템(1910)은 차량의 위치를 조정하도록 유도함으로써, 소스 공진기(1920)와 타겟 공진기(1930)의 alignment가 맞도록 유도할 수 있다.
소스 시스템(1910)과 타겟 시스템(1940)은 통신을 통해, 차량의 식별자를 송수신할 수 있고, 각종 메시지를 주고 받을 수 있다.
도 2 내지 도 18에서 설명된 내용들은 전기 자동차 충전 시스템(1900)에 적용될 수 있다. 다만, 전기 자동차 충전 시스템(1900)은 수 KHz~수십 MHz의 공진 주파수를 사용하고, 전기 자동차용 배터리(1950)를 충전하기 위해 수십 watt이상의 전력 전송을 수행할 수 있다.
본 발명의 실시 예에 따른 방법들은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (25)

  1. 복수의 타겟 디바이스들에서 사용되는 통신용 전력을 생성하는 단계;
    상기 통신용 전력을 상기 복수의 타겟 디바이스들에 전송하는 단계;
    웨이크-업 요청 메시지에 대한 응답 메시지들에 기초하여 상기 복수의 타겟 디바이스들의 개수를 검출하는 단계;
    상기 복수의 타겟 디바이스들의 개수에 기초하여 충전용 전력을 상기 복수의 타겟 디바이스들에 전송하는 단계; 및
    상기 복수의 타겟 디바이스들 각각의 수신 전력량, 상기 충전용 전력의 전력량, 및 상기 충전용 전력의 전송 효율 중 적어도 하나에 기초하여, 공진 주파수를 조정하는 단계를 포함하는,
    무선전력 전송 장치의 공진 주파수 제어 방법.
  2. 제1항에 있어서,
    상기 웨이크-업 요청 메시지에 대한 응답 메시지들 각각은,
    해당 타겟 디바이스의 제품의 종류, 해당 타겟 디바이스의 제조사 정보, 해당 타겟 디바이스의 모델명, 해당 타겟 디바이스의 배터리 타입, 해당 타겟 디바이스의 충전 방식, 해당 타겟 디바이스의 부하의 임피던스 값, 해당 타겟 디바이스의 타겟 공진기의 특성에 대한 정보, 해당 타겟 디바이스의 사용 주파수 대역에 대한 정보, 해당 타겟 디바이스의 소요되는 전력량, 해당 타겟 디바이스의 고유의 식별자, 해당 타겟 디바이스의 제품의 버전 및 규격 정보 중 적어도 하나를 포함하는,
    무선전력 전송 장치의 공진 주파수 제어 방법.
  3. 제2항에 있어서,
    상기 충전용 전력은,
    상기 해당 타겟 디바이스의 제품의 종류, 해당 타겟 디바이스의 제조사 정보, 해당 타겟 디바이스의 모델명, 해당 타겟 디바이스의 배터리 타입, 해당 타겟 디바이스의 충전 방식, 해당 타겟 디바이스의 부하의 임피던스 값, 해당 타겟 디바이스의 타겟 공진기의 특성에 대한 정보, 해당 타겟 디바이스의 사용 주파수 대역에 대한 정보, 및 해당 타겟 디바이스의 소요되는 전력량 중 적어도 하나에 기초하여 생성되는,
    무선전력 전송 장치의 공진 주파수 제어 방법.
  4. 제1항에 있어서,
    상기 공진 주파수를 조정하는 단계는,
    반사파의 전압 레벨 및 소스 공진기의 출력 전압 및 전류의 레벨에 기초하여 전압정재파비(VSWR, Voltage standing wave ratio)를 계산하는 것;
    상기 전압정재파비가 기 설정된 기준값보다 작으면 기 설정된 N개의 트래킹주파수들 중 전력 전송 효율이 가장 좋은 최적의 트래킹 주파수를 결정하는 것; 및
    상기 최적의 트래킹 주파수를 갖는 충전용 전력을 생성하는 것을 포함하는,
    무선전력 전송 장치의 공진 주파수 제어 방법.
  5. 제4항에 있어서,
    상기 기 설정된 N개의 트래킹 주파수들 중 상기 최적의 공진 주파수를 결정하는 과정은, 상기 기 설정된 N개의 트래킹 주파수들 각각에 대하여 하기 a) 단계 내지 g) 단계를 반복하는,
    a) 기 설정된 주파수 선택 방식에 따라서 N개의 트래킹 주파수들 중 어느 하나를 선택하는 것;
    b) 상기 공진 주파수를 상기 선택된 트래킹 주파수로 변경하는 것;
    c) 상기 충전용 전력을 전송하는 것;
    d) 타겟 디바이스의 정류부의 입력 전압 값 및 전류 값 세트를 요청하는 명령어, 및 타겟 디바이스의 DC/DC 출력 전압 값 및 전류 값 세트를 요청하는 명령어 중 적어도 하나를 상기 복수의 타겟 디바이스들로 전송하는 것;
    e) 상기 복수의 타겟 디바이스들 각각으로부터 정류부의 입력 전압 값 및 전류 값 세트, 및 DC/DC 출력 전압 값 및 전류 값 세트 중 적어도 하나를 수신하는 것;
    f) 상기 정류부의 입력 전압 값 및 전류 값 세트, 및 상기 DC/DC 출력 전압 값 및 전류 값 세트 중 적어도 하나에 기초하여 상기 복수의 타겟 디바이스들 각각의 수신 전력량을 계산하는 것; 및
    g) 상기 소스 공진기의 출력 전압 및 전류의 레벨 및 상기 복수의 타겟 디바이스들 각각의 수신 전력량에 기초하여 상기 충전용 전력의 전송 효율을 계산하는 것,
    무선전력 전송 장치의 공진 주파수 제어 방법.
  6. 제5항에 있어서,
    상기 a) 단계의 상기 기 설정된 주파수 선택 방식은,
    상기 기 설정된 N개의 트래킹 주파수들 중 낮은 주파수로부터 높은 주파수로 순차적으로 선택하는 방식, 또는 높은 주파수로부터 낮은 주파수로 순차적으로 선택하는 방식인,
    무선전력 전송 장치의 공진 주파수 제어 방법.
  7. 제5항에 있어서,
    상기 a) 단계의 상기 기 설정된 주파수 선택 방식은,
    상기 기 설정된 N개의 트래킹 주파수들 중 기 설정된 M개(M<N)의 트래킹 주파수를 순차적으로 선택하고, 1차적으로 상기 M개의 트래킹 주파수 각각에 대해 상기 b) 단계 내지 g) 단계를 반복한 후, 2차적으로 상기 기 설정된 N개의 트래킹 주파수들 중 상기 기 설정된 M개의 트래킹 주파수를 제외한 트래킹 주파수들 각각에 대해 상기 b) 단계 내지 g) 단계를 반복하도록 선택되는,
    무선 전력 전송 장치의 공진 주파수 제어 방법.
  8. 제5항에 있어서,
    상기 a) 단계의 상기 기 설정된 주파수 선택 방식은,
    상기 기 설정된 N개의 트래킹 주파수들을 M개(M<N)의 그룹으로 구분하고, 상기 복수의 타겟 디바이스들의 개수에 따라 M개의 그룹 중 어느 하나를 선택하고, 선택된 그룹에 속한 트래킹 주파수들을 순차적으로 선택하는 방식인,
    무선전력 전송 장치의 공진 주파수 제어 방법.
  9. 복수의 타겟 디바이스들에서 사용되는 통신용 전력 및 충전용 전력 중 적어도 하나를 생성하는 전력 변환부;
    상기 통신용 전력 및 상기 충전용 전력 중 적어도 하나를 상기 타겟 디바이스에 전송하는 소스 공진기; 및
    상기 복수의 타겟 디바이스들 각각의 수신 전력량, 상기 충전용 전력의 전력량, 및 상기 충전용 전력의 전송 효율 중 적어도 하나에 기초하여, 공진 주파수를 조정하는 제어부를 포함하고,
    상기 제어부는 웨이크-업 요청 메시지에 대한 응답 메시지들에 기초하여 상기 복수의 타겟 디바이스들의 개수를 검출하고,
    상기 전력 변환부는 상기 복수의 타겟 디바이스들의 개수를 고려하여 상기 충전용 전력을 생성하는,
    무선전력 전송 장치.
  10. 제9항에 있어서,
    상기 제어부는,
    상기 복수의 타겟 디바이스들 각각의 해당 타겟 디바이스의 제품의 종류, 해당 타겟 디바이스의 제조사 정보, 해당 타겟 디바이스의 모델명, 해당 타겟 디바이스의 배터리 타입, 해당 타겟 디바이스의 충전 방식, 해당 타겟 디바이스의 부하의 임피던스 값, 해당 타겟 디바이스의 타겟 공진기의 특성에 대한 정보, 해당 타겟 디바이스의 사용 주파수 대역에 대한 정보, 및 해당 타겟 디바이스의 소요되는 전력량 중 적어도 하나를 고려하여 전력 증폭부에 공급되는 직류 전압의 신호 레벨을 결정하는,
    무선 전력 전송 장치.
  11. 제9항에 있어서,
    상기 제어부는,
    반사파의 전압 레벨 및 소스 공진기의 출력 전압 및 전류의 레벨에 기초하여 전압정재파비(VSWR, Voltage standing wave ratio)를 계산하고, 상기 전압정재파비가 기 설정된 값보다 작으면 기 설정된 N개의 트래킹 주파수 각각에 대한 전력 전송 효율을 계산하고, 상기 N개의 트래킹 주파수 중 전력 전송 효율이 가장 좋은 최적의 트래킹 주파수를 결정하고, 상기 공진 주파수를 상기 최적의 주파수로 조정하는,
    무선 전력 전송 장치.
  12. 제11항에 있어서,
    상기 제어부는,
    상기 최적의 주파수를 결정하기 위해 상기 기 설정된 N개의 트래킹 주파수 각각에 대하여 하기 a) 단계 내지 g) 단계를 반복 수행하는,
    a) 기 설정된 주파수 선택 방식에 따라서 N개의 트래킹 주파수 중 어느 하나를 선택하는 것;
    b) 상기 공진 주파수를 상기 선택된 트래킹 주파수로 변경하는 것;
    c) 상기 충전용 전력을 전송하는 것;
    d) 타겟 디바이스의의 정류부의 입력 전압 값 및 전류 값을 요청하는 명령어, 및 타겟 디바이스의 DC/DC 출력 전압 값 및 전류 값 세트를 요청하는 명령어 중 적어도 하나를 상기 복수의 타겟 디바이스들로 전송하는 것;
    e) 상기 복수의 타겟 디바이스들 각각으로부터 정류부의 입력 전압 값 및 전류 값 세트, 및 DC/DC 출력 전압 값 및 전류 값 세트 중 적어도 하나를 수신하는 것;
    f) 상기 정류부의 입력 전압 값 및 전류 값 세트, 및 DC/DC 출력 전압 값 및 전류 값 세트 중 적어도 하나에 기초하여 상기 복수의 타겟 디바이스들 각각의 수신 전력량을 계산하는 것; 및
    g) 상기 소스 공진기의 출력 전압 및 전류의 레벨 및 상기 복수의 타겟 디바이스들 각각의 수신 전력량에 기초하여 상기 충전용 전력의 전송 효율을 계산하는 것,
    무선 전력 전송 장치.
  13. 제12항에 있어서,
    상기 a) 단계의 상기 기 설정된 주파수 선택 방식은,
    상기 기 설정된 N개의 트래킹 주파수들 중 낮은 주파수로부터 높은 주파수로 순차적으로 선택하는 방식, 또는 높은 주파수로부터 낮은 주파수로 순차적으로 선택하는 방식인,
    무선 전력 전송 장치.
  14. 제12항에 있어서,
    상기 a) 단계의 상기 기 설정된 주파수 선택 방식은,
    상기 기 설정된 N개의 트래킹 주파수들 중 기 설정된 M개(M<N)의 트래킹 주파수를 순차적으로 선택하고, 1차적으로 상기 M개의 트래킹 주파수 각각에 대해 상기 b) 단계 내지 g) 단계를 반복한 후, 2차적으로 상기 기 설정된 N개의 트래킹 주파수들 중 상기 기 설정된 M개의 트래킹 주파수를 제외한 트래킹 주파수들 각각에 대해 상기 b) 단계 내지 g) 단계를 반복하도록 선택되는,
    무선 전력 전송 장치.
  15. 제12항에 있어서,
    상기 a) 단계의 상기 기 설정된 주파수 선택 방식은,
    상기 기 설정된 N개의 트래킹 주파수들을 M개(M<N)의 그룹으로 구분하고, 상기 복수의 타겟 디바이스들의 개수에 따라 M개의 그룹 중 어느 하나를 선택하고, 선택된 그룹에 속한 트래킹 주파수들을 순차적으로 선택하는 방식인,
    무선 전력 전송 장치.
  16. 소스 공진기와의 마그네틱 커플링에 의해 소스 공진기로부터 전력을 수신하는 타겟 공진기;
    무선 전력 전송 장치로부터 웨이크-업 요청 메시지를 수신하고, 상기 타겟 공진기에 수신되는 전력의 양을 검출하고, 상기 타겟 공진기에 수신되는 전력의 양에 대한 정보를 무선 전력 전송 장치로 전송하는 제어부;
    상기 타겟 공진기에 수신되는 전력의 교류 신호를 정류하여 직류 신호를 생성하는 정류부; 및
    상기 직류 신호의 레벨을 조정하여 일정 레벨의 전압을 부하에 공급하는 DC/DC 컨버터를 포함하고,
    상기 제어부는 해당 타겟 디바이스의 제품의 종류, 해당 타겟 디바이스의 제조사 정보, 해당 타겟 디바이스의 모델명, 해당 타겟 디바이스의 배터리 타입, 해당 타겟 디바이스의 충전 방식, 해당 타겟 디바이스의 부하의 임피던스 값, 해당 타겟 디바이스의 타겟 공진기의 특성에 대한 정보, 해당 타겟 디바이스의 사용 주파수 대역에 대한 정보, 해당 타겟 디바이스의 소요되는 전력량, 해당 타겟 디바이스의 고유의 식별자, 해당 타겟 디바이스의 제품의 버전 및 규격 정보 중 적어도 하나를 포함하는 응답 메시지를 상기 무선 전력 전송 장치로 전송하는,
    무선 전력 수신 장치.
  17. 제16항에 있어서,
    상기 타겟 공진기에 수신되는 전력의 양에 대한 정보는,
    상기 정류부의 입력 전압 값 및 전류 값 세트, 상기 정류부의 출력 전압 값 및 전류 값 세트, 및 DC/DC 출력 전압 값 및 전류 값 세트 중 적어도 하나인,
    무선 전력 수신 장치.
  18. 공진 주파수를 이용하여 생성된 통신용 전력을 마그네틱 커플링을 통해 무선 전력 전송 장치로부터 수신하는 단계;
    상기 무선 전력 전송 장치로부터 웨이크-업 요청 메시지를 수신하는 단계;
    상기 웨이크-업 요청 메시지에 대한 응답 메시지를 상기 무선 전력 전송 장치로 전송하는 단계;
    상기 무선 전력 전송 장치로부터 제1 충전용 전력을 수신하는 단계; 및
    상기 무선 전력 전송 장치에서 상기 공진 주파수가 조정된 후, 조정된 공진 주파수를 이용하여 생성된 제2 충전용 전력을 수신하는 단계를 포함하는,
    무선전력 수신 장치의 전력 수신 방법.
  19. 제18항에 있어서,
    상기 제1 충전용 전력은,
    상기 무선 전력 전송 장치의 전력 증폭부에 공급되는 직류 전압의 신호 레벨을 조정함으로써 생성되는,
    무선전력 수신 장치의 전력 수신 방법.
  20. 제18항에 있어서,
    상기 공진 주파수는 상기 제1 충전용 전력에 대한 반사파, 상기 제1 충전용 전력의 전력량, 및 상기 제1 충전용 전력의 전송 효율 중 적어도 하나에 기초하여 조정되는,
    무선전력 수신 장치의 전력 수신 방법.
  21. 제18항에 있어서,
    상기 웨이크-업 요청 메시지에 대한 응답 메시지는,
    해당 타겟 디바이스의 제품의 종류, 해당 타겟 디바이스의 제조사 정보, 해당 타겟 디바이스의 모델명, 해당 타겟 디바이스의 배터리 타입, 해당 타겟 디바이스의 충전 방식, 해당 타겟 디바이스의 부하의 임피던스 값, 해당 타겟 디바이스의 타겟 공진기의 특성에 대한 정보, 해당 타겟 디바이스의 사용 주파수 대역에 대한 정보, 해당 타겟 디바이스의 소요되는 전력량, 해당 타겟 디바이스의 고유의 식별자, 해당 타겟 디바이스의 제품의 버전, 및 규격 정보 중 적어도 하나를 포함하는,
    무선전력 수신 장치의 전력 수신 방법.
  22. 제18항에 있어서,
    상기 조정된 공진 주파수는 기 설정된 N개의 트래킹 주파수들 중 전력 전송 효율이 가장 좋은 최적의 트래킹 주파수인,
    무선전력 수신 장치의 전력 수신 방법.
  23. 제22항에 있어서,
    상기 최적의 주파수는 상기 기 설정된 N개의 트래킹 주파수들 각각에 대하여 하기 a) 단계 내지 c) 단계를 반복함으로써 결정되는,
    a) 상기 제2 충전용 전력을 수신하는 것;
    b) 타겟 디바이스의 입력 전압 값 및 전류 값을 요청하는 명령어, 및 타겟 디바이스의 DC/DC 출력 전압 값 및 전류 값을 요청하는 명령어 중 적어도 하나를 상기 무선 전력 전송 장치로부터 수신하는 것;
    c) 정류부의 입력 전압 값 및 전류 값 세트, 및 DC/DC 출력 전압 값 및 전류 값 세트 중 적어도 하나를 상기 무선 전력 수신 장치로 전송하는 것;
    무선전력 수신 장치의 전력 수신 방법.
  24. 공진 주파수를 이용하여, 전력 증폭부에 공급되는 직류 전압을 교류 전압으로 변환함으로써, 타겟 디바이스에서 사용되는 통신용 전력을 생성하는 단계;
    마그네틱 커플링을 통해 상기 통신용 전력을 상기 타겟 디바이스에 전송하는 단계;
    상기 타겟 디바이스로 웨이크-업 요청 메시지를 전송하는 단계;
    상기 타겟 디바이스로부터 상기 웨이크-업 요청 메시지에 대한 응답 메시지를 수신하는 단계;
    상기 전력 증폭부에 공급되는 직류 전압의 신호 레벨을 조정함으로써, 충전용 전력을 생성하는 단계;
    상기 마그네틱 커플링을 통해 상기 충전용 전력을 상기 타겟 디바이스에 전송하는 단계; 및
    상기 충전용 전력에 대한 반사파, 상기 타겟 디바이스의 수신 전력량, 상기 충전용 전력의 전력량, 및 상기 충전용 전력의 전송 효율 중 적어도 하나에 기초하여, 상기 공진 주파수를 조정하는 단계를 포함하는,
    무선전력 전송 장치의 공진 주파수 제어 방법.
  25. 삭제
KR1020120047312A 2011-05-12 2012-05-04 무선 전력 전송 및 충전 시스템, 무선전력 전송 및 충전 시스템의 공진 주파수 제어 방법 KR101896979B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110044679 2011-05-12
KR1020110044679 2011-05-12

Publications (2)

Publication Number Publication Date
KR20120127233A KR20120127233A (ko) 2012-11-21
KR101896979B1 true KR101896979B1 (ko) 2018-09-11

Family

ID=47141442

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120047312A KR101896979B1 (ko) 2011-05-12 2012-05-04 무선 전력 전송 및 충전 시스템, 무선전력 전송 및 충전 시스템의 공진 주파수 제어 방법

Country Status (2)

Country Link
US (2) US9306399B2 (ko)
KR (1) KR101896979B1 (ko)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9725003B2 (en) 2011-08-06 2017-08-08 Delphi Technologies, Inc. Wireless battery charging system varying magnetic field frequency to maintain a desired voltage-current phase relationship
US20130058379A1 (en) * 2011-09-05 2013-03-07 Samsung Electronics Co., Ltd. Communication apparatus and communication method in wireless power transmission system
WO2013077450A1 (ja) * 2011-11-25 2013-05-30 株式会社Ihi 移動式電力供給装置
JP5899306B2 (ja) * 2012-03-14 2016-04-06 パイオニア株式会社 非接触充電システム、非接触送電装置及び方法、並びに非接触受電装置及び方法
JP5692163B2 (ja) * 2012-05-21 2015-04-01 トヨタ自動車株式会社 車両、および送電装置
CN104604077B (zh) 2012-09-05 2018-10-19 瑞萨电子株式会社 非接触充电装置以及使用该非接触充电装置的非接触供电系统
JP6135471B2 (ja) * 2012-12-19 2017-05-31 Tdk株式会社 送電装置およびそれを用いたワイヤレス電力伝送システム
JP6094204B2 (ja) * 2012-12-20 2017-03-15 Tdk株式会社 ワイヤレス電力伝送システム
KR102004541B1 (ko) * 2012-12-31 2019-07-26 지이 하이브리드 테크놀로지스, 엘엘씨 공진형 무선 전력 전송 시스템에서의 무선 전력 전송 제어 방법, 이를 이용하는 무선 전력 전송 장치, 및 이를 이용하는 무선 전력 수신 장치
KR102028112B1 (ko) * 2013-01-14 2019-10-04 삼성전자주식회사 상호 공진을 이용하는 전력 전송 및 데이터 송수신 장치, 상호 공진을 이용하는 전력 수신 및 데이터 송수신 장치 및 이의 방법
EP2953235B1 (en) * 2013-01-29 2018-09-12 Fujitsu Limited Wireless power transfer system, power receiver, and wireless power transfer method
KR20140124708A (ko) * 2013-04-17 2014-10-27 인텔렉추얼디스커버리 주식회사 무선 전력 전송 장치 및 무선 전력 전송 방법
KR102042674B1 (ko) * 2013-05-23 2019-11-11 삼성전자주식회사 무선 전력 전송 장치 및 무선 전력 전송 방법
US9413175B2 (en) 2013-06-03 2016-08-09 Lg Electronics Inc. Wireless charging system for transferring power to receivers having different standards using coils of differing shapes
KR102140268B1 (ko) * 2013-10-21 2020-07-31 삼성전자주식회사 무선 전력 전송 시스템에서의 고립 공진기를 이용한 임피던스 매칭 방법 및 장치
US10031165B2 (en) * 2013-12-23 2018-07-24 Qualcomm Technologies International, Ltd. Wireless charging performance measurement
US20150214748A1 (en) * 2014-01-24 2015-07-30 Mediatek Inc. Wireless power supply scheme capable of dynamically adjusting output power of wireless power transmitter according to voltage/current/power information of portable electronic device to be charged
US9635222B2 (en) 2014-08-03 2017-04-25 PogoTec, Inc. Wearable camera systems and apparatus for aligning an eyewear camera
EP3175289A4 (en) 2014-08-03 2018-04-18 Pogotec, Inc. Wearable camera systems and apparatus and method for attaching camera systems or other electronic devices to wearable articles
KR102025899B1 (ko) * 2014-09-11 2019-09-26 주식회사 위츠 비접촉 방식 충전 장치 및 비접촉 방식 배터리 장치
CN104283293B (zh) * 2014-09-29 2016-06-29 深圳市泰金田科技有限公司 谐振-移频实现汽车无线充电的方法及系统
US20160134127A1 (en) * 2014-11-10 2016-05-12 Eaton Corporation Wireless power system
CN104331986A (zh) * 2014-12-01 2015-02-04 深圳市泰金田科技有限公司 一种电动车辆无线充电的付费装置
US9628707B2 (en) 2014-12-23 2017-04-18 PogoTec, Inc. Wireless camera systems and methods
CN107683555A (zh) * 2015-05-11 2018-02-09 德尔福技术有限公司 改变磁场频率以维持期望的电压‑电流的相位关系的无线电池充电系统
TW201640772A (zh) * 2015-05-13 2016-11-16 圓展科技股份有限公司 充電系統及其設備與控制方法
WO2016201261A1 (en) 2015-06-10 2016-12-15 PogoTec, Inc. Eyewear with magnetic track for electronic wearable device
US10481417B2 (en) 2015-06-10 2019-11-19 PogoTec, Inc. Magnetic attachment mechanism for electronic wearable device
JP6532357B2 (ja) * 2015-08-31 2019-06-19 キヤノン株式会社 送電装置、制御方法及びプログラム
US10341787B2 (en) 2015-10-29 2019-07-02 PogoTec, Inc. Hearing aid adapted for wireless power reception
CH711864A1 (de) * 2015-12-15 2017-06-15 Q2Power Ag Steckdosenadapter mit Relais.
US11558538B2 (en) 2016-03-18 2023-01-17 Opkix, Inc. Portable camera system
US10000133B2 (en) 2016-04-20 2018-06-19 Qualcomm Incorporated Systems and methods for identifying an ideal operation frequency for wireless power transfer
US10199871B2 (en) * 2016-06-29 2019-02-05 Qualcomm Incorporated Apparatus and method for wireless power charging of subsequent receiver
WO2018089533A1 (en) 2016-11-08 2018-05-17 PogoTec, Inc. A smart case for electronic wearable device
CN106740220B (zh) * 2017-01-05 2023-04-18 西安特来电智能充电科技有限公司 一种恒流恒压复合拓扑的无线充电电路
JP6502988B2 (ja) * 2017-03-22 2019-04-17 株式会社Subaru 車両、非接触給電装置
US10320224B2 (en) 2017-05-25 2019-06-11 Nxp B.V. Wireless charging transmitter and method for operating the wireless charging transmitter
US10825328B2 (en) 2017-07-03 2020-11-03 Motorola Solutions, Inc. Apparatus for managing a plurality of devices in a portable communication system
KR102092445B1 (ko) * 2017-12-12 2020-03-23 한국과학기술원 무전원 전자기 센서 및 이를 포함하는 수술 항법 시스템
US11106260B2 (en) * 2018-02-13 2021-08-31 Microsoft Technology Licensing, Llc Smart charging platform
CN110988754B (zh) * 2018-10-10 2020-11-13 哈尔滨工业大学 基于磁表征参量的电动汽车无线充电系统磁传输部件互操作性测试方法
CN111030763B (zh) * 2018-10-10 2021-08-13 哈尔滨工业大学 基于复阻抗表征参量的电动汽车无线充电系统磁传输部件互操作性测试方法
WO2020102237A1 (en) 2018-11-13 2020-05-22 Opkix, Inc. Wearable mounts for portable camera
US11642537B2 (en) 2019-03-11 2023-05-09 Axonics, Inc. Charging device with off-center coil
CN112332506A (zh) * 2019-07-18 2021-02-05 Oppo广东移动通信有限公司 用于无线发射装置的无线充电方法和无线发射装置
KR102252469B1 (ko) * 2020-06-10 2021-05-14 삼성전자주식회사 무선 전력 전송 장치 및 무선 전력 전송 방법
US20220052565A1 (en) * 2020-08-15 2022-02-17 Aira, Inc. Resonant Reflection Device Detection
KR20220107528A (ko) * 2021-01-25 2022-08-02 삼성전자주식회사 링형 공진기 및 링형 공진기를 포함하는 무선 전력 송신 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100231340A1 (en) 2008-09-27 2010-09-16 Ron Fiorello Wireless energy transfer resonator enclosures
WO2011036702A1 (ja) * 2009-09-24 2011-03-31 株式会社 東芝 無線電力伝送システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260424B2 (en) * 2002-05-24 2007-08-21 Schmidt Dominik J Dynamically configured antenna for multiple frequencies and bandwidths
US8004235B2 (en) * 2006-09-29 2011-08-23 Access Business Group International Llc System and method for inductively charging a battery
JP4308858B2 (ja) 2007-02-16 2009-08-05 セイコーエプソン株式会社 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
JP4600464B2 (ja) 2007-11-22 2010-12-15 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び無接点電力伝送システム
JP5075683B2 (ja) 2008-03-05 2012-11-21 富士フイルム株式会社 非接触充電装置および非接触充電方法
JP2009213294A (ja) 2008-03-05 2009-09-17 Sharp Corp 非接触充電器
JP4911148B2 (ja) 2008-09-02 2012-04-04 ソニー株式会社 非接触給電装置
KR101063156B1 (ko) 2009-04-08 2011-09-07 주식회사 와이즈파워 무접점 충전제어장치 및 충전제어방법
WO2011005012A2 (ko) * 2009-07-06 2011-01-13 삼성전자주식회사 무선 전력 전송 시스템 및 상기 시스템을 위한 공진기
KR101084904B1 (ko) 2009-10-07 2011-11-18 삼성전기주식회사 통신 기능이 구비된 무선전력 송수신 장치 및 그 무선전력 송수신 방법
US8174234B2 (en) * 2009-10-08 2012-05-08 Etymotic Research, Inc. Magnetically coupled battery charging system
US8638070B2 (en) * 2010-05-21 2014-01-28 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US9391461B2 (en) * 2011-05-31 2016-07-12 Samsung Electronics Co., Ltd. Wireless power transmission and charging system, and power control method of wireless power transmission and charging system
KR102022350B1 (ko) * 2011-05-31 2019-11-04 삼성전자주식회사 무선 전력을 이용한 통신 장치 및 방법
US9667322B2 (en) * 2012-12-28 2017-05-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and system for wireless power transfer calibration
JP2015006096A (ja) * 2013-06-21 2015-01-08 ルネサスエレクトロニクス株式会社 非接触充電システムおよび非接触充電方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100231340A1 (en) 2008-09-27 2010-09-16 Ron Fiorello Wireless energy transfer resonator enclosures
WO2011036702A1 (ja) * 2009-09-24 2011-03-31 株式会社 東芝 無線電力伝送システム

Also Published As

Publication number Publication date
US9306399B2 (en) 2016-04-05
US20120286726A1 (en) 2012-11-15
KR20120127233A (ko) 2012-11-21
US10224754B2 (en) 2019-03-05
US20160294223A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
KR101896979B1 (ko) 무선 전력 전송 및 충전 시스템, 무선전력 전송 및 충전 시스템의 공진 주파수 제어 방법
KR101925959B1 (ko) 무선 전력 전송 및 충전 시스템, 무선전력 전송 및 충전 시스템의 임피던스 제어 방법
KR101925992B1 (ko) 무선전력 전송 및 충전 시스템, 무선전력 전송 및 충전 시스템의 통신 방법
KR101926009B1 (ko) 무선 전력을 송수신하는 전자 기기 및 방법
KR101988009B1 (ko) 공진 주파수를 조정해서 커플링 효율을 높이는 무전전력 전송 시스템 및 방법
KR101809470B1 (ko) 무선 전력 전송 시스템, 무선 전력 전송 시스템에서 공진 주파수 트래킹 방법 및 장치
KR101813264B1 (ko) 무선 전력 전송 시스템, 무선 전력 전송 시스템에서 전력 제어 방법 및 장치
KR101817194B1 (ko) 태양전지 모듈을 이용한 무선 전력 전송 시스템
KR101859191B1 (ko) 무선 전력 전송 시스템, 무선 전력 전송 및 수신 제어 방법
KR101850527B1 (ko) 휴대용 디바이스 및 휴대용 디바이스의 무선 전력 충전 시스템
KR101813129B1 (ko) 무선 전력 송수신 시스템
KR101813131B1 (ko) 무선 전력 전송 시스템, 무선 전력 전송 시스템의 공진 임피던스 및 공진 주파수의 제어 방법
KR101735558B1 (ko) 공진 전력 전송 시스템, 공진 전력 전송 및 수신 제어 방법
KR101947982B1 (ko) 무선 전력 전송 시스템의 공진기 제어 장치 및 방법
KR101739293B1 (ko) 인 밴드 통신을 이용한 무선 전력 송수신 시스템
KR102000525B1 (ko) 무선 전력을 이용한 인 밴드 데이터 통신 시스템
KR101726195B1 (ko) 공진 전력 전달 시스템에서 공진 임피던스 트래킹 장치 및 방법
KR101897160B1 (ko) 무전 전력 전송 시스템에서 무선 전력을 분배하는 장치 및 방법
KR101382213B1 (ko) 무선 전력 전송 장치 및 방법, 무선 전력 수신 장치
KR101813125B1 (ko) 무선 전력 전송 시스템 및 검출 파라미터에 기초한 무선 전력 전송 시스템의 전력 제어 방법
KR102227504B1 (ko) 복수의 무선 전력 수신 장치에 대해 안정적으로 전력을 송신하는 무선 전력 송신 방법 및 장치
US20160254695A1 (en) Robot cleaning system and control method having wireless electric power charge function
KR101808086B1 (ko) 무선 전력 전송을 이용한 사운드 시스템
KR20140008020A (ko) 무선 전력 전송 장치, 무선 전력 릴레이 장치 및 무선 전력 수신 장치
KR20120127231A (ko) 무선 전력 전송 장치 및 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant