KR101893630B1 - 전기 역전 모터를 갖춘 왕복 용적식 펌프 - Google Patents

전기 역전 모터를 갖춘 왕복 용적식 펌프 Download PDF

Info

Publication number
KR101893630B1
KR101893630B1 KR1020147008993A KR20147008993A KR101893630B1 KR 101893630 B1 KR101893630 B1 KR 101893630B1 KR 1020147008993 A KR1020147008993 A KR 1020147008993A KR 20147008993 A KR20147008993 A KR 20147008993A KR 101893630 B1 KR101893630 B1 KR 101893630B1
Authority
KR
South Korea
Prior art keywords
pump
shaft
output shaft
rotation
gear
Prior art date
Application number
KR1020147008993A
Other languages
English (en)
Other versions
KR20140063765A (ko
Inventor
티모씨 에스. 로만
그레그 티. 므로잭
Original Assignee
그라코 미네소타 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 그라코 미네소타 인크. filed Critical 그라코 미네소타 인크.
Publication of KR20140063765A publication Critical patent/KR20140063765A/ko
Application granted granted Critical
Publication of KR101893630B1 publication Critical patent/KR101893630B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/12Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0201Position of the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0209Rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Rotary Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

펌프 시스템은 전기 모터, 펌프, 변환기 및 컨트롤러를 포함한다. 전기 모터는 제1 회전 방향 및 반대 제2 회전 방향으로 회전가능한 회전 출력 샤프트를 구비한다. 펌프는 제1 선형 방향 및 반대 제2 선형 방향으로 이동가능한 선형으로 변위가능한 입력 샤프트를 구비한다. 변환기는 출력 샤프트의 제1 회전 방향으로의 회전이 입력 샤프트를 제1 선형 방향으로 병진 운동시키고, 출력 샤프트의 제2 회전 방향으로의 회전이 입력 샤프트를 제2 선형 방향으로 병진 운동시키도록 출력 샤프트를 입력 샤프트에 결합시킨다. 컨트롤러는 입력 샤프트의 왕복 운동을 생성하기 위해 출력 샤프트의 회전을 반복하여 역전시킨다.

Description

전기 역전 모터를 갖춘 왕복 용적식 펌프{RECIPROCATING POSITIVE DISPLACEMENT PUMP WITH ELECTRIC REVERSING MOTOR}
본 개시는 일반적으로 용적식 펌프 시스템에 관한 것이다. 보다 상세하게는, 본 개시는 왕복 펌프를 위한 구동 시스템과 왕복 운동을 제어하기 위한 방법에 관한 것이다.
용적식 펌프는 고정된 부피의 재료가 팽창 챔버 내로 흡입되고 그것이 수축할 때 챔버 밖으로 밀어내어지는 시스템을 포함한다. 그러한 펌프는 전형적으로 피스톤과 같은 왕복 펌핑 메커니즘 또는 기어 세트와 같은 회전 펌핑 메커니즘을 포함한다. 따라서, 왕복 피스톤 펌프는 펌핑 챔버를 팽창시키고 수축시키도록 피스톤을 구동시킬 수 있는 양방향 입력부를 필요로 한다. 전형적인 펌핑 시스템은 회전 출력 샤프트를 갖춘 모터와 같은 회전 입력부에 의해 구동된다. 모터는 압축 공기에 의해 작동되는 공기 모터 또는 교류 전류에 의해 작동되는 전기 모터로서 종래 방식으로 구성된다. 따라서, 회전 입력부는 출력 샤프트의 일방향 회전이 왕복 운동으로 변환될 것을 필요로 한다. 이는 그라코 인크.(Graco Inc.)에게 양도된, 레르케(Lehrke) 등에게 허여된 미국 특허 제5,145,339호에 기재된 것과 같은 크랭크샤프트 또는 캠 시스템의 사용에 의해 종래 방식으로 달성된다. 공기 모터는 모터가 압축기를 구동시킬 필요성, 압축 공기의 회전 운동으로의 변환의 필요성 및 회전 운동의 왕복 운동으로의 변환의 필요성으로 인해 에너지 소비에 있어 비효율적이다. 또한, 공기 모터와 이것들에 동력을 공급하는 압축기는 바람직하지 않은 양의 소음을 유발하고, 공기의 수축 및 팽창으로 인한 착빙(icing)에 관한 문제를 겪을 수 있다. 전기 모터는 공기 모터를 넘는 에너지 효율을 달성하지만, 여전히 일방향 회전을 펌프를 위한 양방향 왕복 선형 운동으로 변환시키기 위한 복잡한 기계 장치를 필요로 한다. 따라서, 용적식 펌프를 왕복 운동시키기 위한 개선된 구동 시스템이 필요하다.
펌프 시스템은 전기 모터, 펌프, 변환기 및 컨트롤러를 포함한다. 전기 모터는 제1 회전 방향 및 반대 제2 회전 방향으로 회전가능한 회전 출력 샤프트를 구비한다. 펌프는 제1 선형 방향 및 반대 제2 선형 방향으로 이동가능한 선형으로 변위가능한 입력 샤프트를 구비한다. 변환기는 출력 샤프트의 제1 회전 방향으로의 회전이 입력 샤프트를 제1 선형 방향으로 병진 운동시키고, 출력 샤프트의 제2 회전 방향으로의 회전이 입력 샤프트를 제2 선형 방향으로 병진 운동시키도록 출력 샤프트를 입력 샤프트에 결합시킨다. 컨트롤러는 입력 샤프트의 왕복 운동을 생성하기 위해 출력 샤프트의 회전을 반복하여 역전시킨다.
펌프를 작동시키는 방법은 전기 모터로의 전류 흐름 방향을 반복하여 역전시켜 모터의 출력 샤프트의 회전을 시계 방향 및 반시계 방향으로 교번시키는 단계, 및 출력 샤프트의 교번 회전을 펌프 샤프트의 왕복 선형 운동으로 변환시키는 단계를 포함한다.
도 1은 운동 변환기를 통해 양방향 전기 모터에 의해 구동되는 용적식 펌프를 갖춘 펌핑 시스템의 개략도이다.
도 2는 선형 변위 피스톤 펌프가 브러시리스 DC 모터에 의해 구동되는 도 1의 구성에 따른 펌핑 시스템의 사시도이다.
도 3은 브러시리스 DC 모터의 출력 샤프트를 선형 변위 피스톤 펌프의 입력 샤프트에 결합시키기 위한 기어 감속 시스템을 도시한 도 2의 펌핑 시스템의 분해도이다.
도 4는 기어 감속 시스템에 의해 연결되는 출력 샤프트의 피니언 기어 및 입력 샤프트의 랙 기어를 도시한 도 3의 펌핑 시스템의 사시도이다.
도 5a는 도 2-4의 브러시리스 DC 모터로의 입력 전류 극성 대 시간을 도시한 그래프이다.
도 5b는 도 2-4의 선형 변위 피스톤 펌프의 펌프 샤프트의 스트로크 대 시간을 도시한 그래프이다.
도 1은 전기 모터(14) 및 운동 변환기(16)에 의해 구동되는 용적식 펌프(12)를 갖춘 펌핑 시스템(10)의 개략도이다. 펌프(12)는 저장소(18)로부터 페인트와 같은 유체를 흡입하고, 가압 유체를 분무기(20)로 전달한다. 분무기(20)에 의해 소비되지 않은 유체는 저장소(18)로 복귀된다. 모터(14)의 구동 샤프트(22)와 펌프(12)의 펌프 샤프트(24)가 변환기(16)에 기계적으로 결합된다. 변환기(16)는 구동 샤프트(22)의 회전으로부터 펌프 샤프트(24)의 정변위(positive displacement)를 생성한다. 펌프(12)의 출구(26) 및 입구(28)가 각각 유체 라인(30A, 30B)을 통해 저장소(18)에 연결된다. 분무기(20)는 호스(32)에 의해 유체 라인(30A)에 결합된다. 모터(14)는 위치 센서(35)를 포함하는 컨트롤러(34)에 의해 전자적으로 제어된다.
전기 모터(14)는 구동 샤프트(22)에 원동력을 제공하기 위해 컨트롤러(34)로부터 전력을 공급받는다. 개시된 실시예에서, 모터(14)는 샤프트(22)가 중심축을 중심으로 회전하는 회전 모터를 포함한다. 컨트롤러(34)는 모터(14)에 제공되는 전류를 제어하여 모터(14)에 전기적으로 결합되어, 샤프트(22)의 회전을 제어한다. 도 2-4에 관하여 기술되는 실시예에서, 모터(14)는 브러시리스 직류(DC) 전기 모터를 포함한다. 그러나, 모터(14)는 브러시 DC 모터 또는 영구 자석 교류(AC) 모터를 포함할 수 있다.
샤프트(22)의 회전은 변환기(16) 내의 변환 메커니즘을 회전시킨다. 변환기(16)는 샤프트(22)의 회전 운동을 샤프트(24)의 선형 운동으로 변화시킨다. 구체적으로, 변환기(16)는 샤프트(22)의 일방향 회전을 단일 방향으로의 샤프트(24)의 변위로 변환시킨다. 도 2-4에 관하여 기술되는 실시예에서, 변환기(16)는 랙 및 피니언 시스템을 포함하며, 여기서 샤프트(22)는 펌프 샤프트(24)에 결합되는 선형 기어 랙과 서로 맞물리는 피니언 기어를 회전시킨다. 변환기(16)는 전형적으로 또한 예를 들어 구동 샤프트(22)에 대한 펌프 샤프트(24)의 속도를 감소시키는 기어 감속 시스템을 포함한다. 그러나, 변환기(16)는 캠 시스템 또는 크랭크 시스템과 같은 다른 유형의 변환 시스템을 포함할 수 있다.
변환기(16)는 펌프(12)의 펌프 샤프트(24)에 결합된다. 펌프(12)는 샤프트(24)의 왕복 운동이 펌핑 챔버를 팽창시키고 수축시키는 용적식 펌프를 포함한다. 도 2-4에 관하여 기술되는 실시예에서, 펌프(12)는 피스톤이 유체를 입구(28) 내로 흡입하기 위해 그리고 압축된 유체를 출구(26)로부터 밀어내기 위해 실린더 내에 배치되는 선형 변위 피스톤 펌프를 포함한다. 그러나, 펌프(12)는 다이아프램 펌프와 같은 다른 유형의 용적식 펌프를 포함할 수 있다.
가압 유체는 펌프 출구(26)로부터 배출된다. 가압 유체는 유체 라인(30A)을 통해 저장소(18)로 압송된다. 펌프(12)는 비가압 유체를 펌프(12)의 펌핑 메커니즘에 의해 저장소(18)로부터 유체 라인(30B) 및 입구(28)를 통해 흡입한다. 분무기(20)는 가압 유체를 유체 라인(30A)으로부터 흡입하기 위해 저장소(18)와 병렬로 연결된다. 분무기(20)는 저장소(18)의 유체를 분배하기 위해 선택적으로 작동된다. 분무기(20)는 직접 수동으로 작동될 수 있거나, 자동화된 분무 공정의 일부로서 컨트롤러에 의해 작동될 수 있다.
본 발명에서, 시스템(10)은 피스톤 펌프(12)와 같은 왕복 펌프를 구동시키기 위해, 변환기(16)와 같은 선형 액추에이터에 동력을 공급하는 브러시리스 DC 모터(14)와 같은 가역 전기 모터를 사용한다. 브러시리스 DC 모터를 사용하는 실시예에서, 컨트롤러(34)는 왕복 운동을 생성하기 위해 모터(14)에 역전하는 전류를 제공하도록 작동된다. 보다 구체적으로, 컨트롤러(34)는 샤프트(22)의 회전 방향의 변화를 일으키기 위해 모터(14)를 가로질러 전류 흐름 방향을 역전시킨다. 브러시리스 DC 모터는 낮은 관성을 갖고, 전류 흐름 방향의 변화에 신속히 응하여 방향을 역전시킬 수 있다. 또한, 브러시리스 DC 모터는 영속도(zero speed)에서 전체 범위의 토크를 제공하여, 펌프(12)가 소음, 비용 및 착빙(ice) 문제없이 공압 모터의 반응을 모사하는 전체 압력을 유지시킬 수 있게 한다. 브러시리스 DC 모터는 또한 인가 전류와 샤프트 토크 사이의 직접적인 관계를 갖는다. 따라서, 모터(14)의 일정한 토크(그리고 전류) 출력이 펌프(12)에서 일정한 압력 출력을 유지시킬 때 모터(14)의 속도만이 변화될 것이다. 또한, 본 발명의 다른 태양에서, 컨트롤러(35)는 펌프(12)의 역전이 시스템(10)의 내부 구성요소의 마모를 감소시키기 위해 랜덤화되거나 변화될 수 있도록 펌프 샤프트(24)의 위치를 모니터하기 위해 위치 센서(35)를 사용한다.
도 2는 선형 변위 피스톤 펌프(12)가 브러시리스 DC 모터(14)에 의해 구동되는 도 1의 구성에 따른 펌핑 시스템(10)의 사시도이다. 펌프(12)와 모터(14)는 또한 운동 변환기(16)(미도시)를 내장하는 하우징(36) 내에 내장된다. 변환기(16)는 하우징(36) 내에 장착되는 기어 감속 시스템(38)을 포함한다. 샤프트(40, 42)를 포함하는 기어 감속 시스템(38)은 모터(14)의 피니언 기어를 펌프(12)의 랙 기어에 연결한다. 펌프(12)는 입구(28), 출구(26), 피스톤 실린더(44), 및 펌프(12)를 위한 입력 샤프트(도 3)를 내장하는 샤프트 실드(shield)(46)를 포함한다. 펌프(12)는 타이 로드(50A, 50B, 50C)(도 3)를 통해 하우징(36)에 조립된다. 타이 로드(50A-50C)는 실드(46) 내의 펌프 샤프트(24)가 모터(14)에 의해 변환기(16) 및 기어 감속 시스템(38)을 통해 작동될 수 있도록 펌프(12)를 하우징(36)에 대해 고정되게 유지시킨다.
도 3은 브러시리스 DC 모터(14)의 구동 샤프트(22)를 선형 변위 피스톤 펌프(12)의 펌프 샤프트(24)에 결합시키기 위한 기어 감속 시스템(38)을 도시한 도 2의 펌핑 시스템(10)의 분해도이다. 변환기(16)(도 1)는 제1 기어 세트(56) 및 제2 기어 세트(58)를 포함하는 기어 감속 시스템(38)을 포위한다. 하우징(36)은 주 하우징(36A), 기어 커버(36B) 및 모터 커버(36C)를 포함한다.
모터(14)는 구동 샤프트(22)가 개구(60A)를 통해 연장되어 기어 감속 시스템(38)을 구동시키기 위한 출력 샤프트를 제공하도록 주 하우징(36A) 내의 캐비티 내로 삽입된다. 모터 커버(36C)는 모터(14)를 둘러싸도록 주 하우징(36A)에 맞대어져 위치된다. 제1 기어 세트(56)의 샤프트(40)는 주 하우징(36A) 내의 개구(60B)와 기어 커버(36B) 내의 개구(60C) 사이에 고정된다. 제2 기어 세트(58)의 샤프트(42)는 기어 커버(36B) 내의 개구(60D)에 고정되고, 주 하우징(36A)의 캐비티(62) 내로 연장된다. 펌프 샤프트(24)는 펌프(12)의 작동을 위한 입력 샤프트를 제공한다. 펌프(12)의 펌프 샤프트(24)의 제1 단부가 주 하우징(36A)의 캐비티(62) 내로 연장되고, 랙 기어[도 4의 랙 기어(70) 참조]를 통해 제2 기어 세트(58)에 결합된다. 펌프 샤프트(24)의 제2 단부가 피스톤(미도시)을 작동시키기 위해 실드(46)를 통해 피스톤 실린더(44) 내로 연장된다. 타이 로드(50A-50C)는 펌프(12)의 플랫폼(64)을 주 하우징(36A)의 기부(66)에 연결한다. 실드 피스(46A, 46B)는 타이 로드(50A-50C) 사이에서 펌프 샤프트(24) 주위에 위치된다. 펌프(12)의 입력부(28)가 유체 라인(30B)(도 1)과 같은 비가압 유체의 공급원에 결합된다. 펌프(12)의 출구(26)가 분무기(20)(도 1)와 같은 유체 분배기에 결합된다.
일 실시예에서, 모터(14)는 구동 샤프트(22)가 펌프 샤프트(24)에 수직하도록 하우징(32) 내에 장착된다. 예를 들어, 시스템(10)은 바닥과 같은 평평한 표면 위에서 작동되도록 의도된다. 펌프 샤프트(24)는 평평한 표면에 대체로 수직하게 구성된다. 이에 의해 모터(14)는 전형적으로 샤프트(24)에 수직하게 그리고 평평한 표면과 평행하게 장착된다. 따라서, 샤프트(22)의 회전이 예를 들어 랙 및 피니언 시스템의 사용에 의해 샤프트(24)의 상하 선형 병진 운동으로 쉽게 변환될 수 있다. 모터(14)는 구동 샤프트(22)를 회전시켜, 제1 기어 세트(56)에 회전을 제공한다. 제1 기어 세트(56)는 제2 기어 세트(58)의 회전을 유발하여, 랙 기어(미도시)를 통한 펌프(12)의 펌프 샤프트(24)의 운동을 유발한다. 펌프 샤프트(24)는 실린더(44) 내에서 피스톤을 비가압 유체를 입구(28) 내로 흡입하도록 그리고 가압 유체를 출구(26) 밖으로 밀어내도록 구동시킨다. 본 발명의 일 실시예에서, 펌프(12)는 그라코 인크.로부터 상업상 이용가능한 바와 같은 4-볼 피스톤 펌프를 포함한다. 4-볼 피스톤 펌프의 일례가 그라코 인크.에게 양도된, 파워즈(Powers)에게 허여된 미국 특허 제5,368,424호에 대체로 기재되어 있다. 실드 피스(46A, 46B)는 특히 쓰레기, 먼지 및 잔해가 펌프 샤프트(24)를 위한 출입구를 통해 펌프 실린더(44) 내로 들어가지 못하도록 보호한다. 타이 로드(50A-50C)는 기어 감속 시스템(38)을 비롯한 변환기(16)가 펌프 샤프트(24)를 실린더(44)에 대해 왕복 운동시킬 수 있도록 펌프(12)를 하우징(36)으로부터 이격시켜 견고하게 유지시킨다. 이에 의해 타이 로드(50A-50C)는 모터(14)에 의해 생성되고 그리고 펌프(12)에 인가되는 힘에 반응한다.
조립된 때, 기어 감속 시스템(38)은 구동 샤프트(22)의 피니언 기어(68)와 펌프 샤프트(24)의 랙 기어(70)(도 4) 사이의 동력 전달 커플링을 제공한다. 구체적으로, 피니언 기어(68)가 기어 세트(56)의 입력 기어(56A)에 연결된다. 출력 기어(56B)가 기어 세트(58)의 입력 기어(58A)에 연결되어, 출력 기어(58B)를 구동시킨다. 출력 기어(58B)는 랙 기어(70)에 회전 입력을 제공한다. 따라서, 모터(14)에 의한 샤프트(22)의 회전이 샤프트(24)의 선형 변위를 유발한다. 기어 감속 시스템(38)을 비롯한 변환기(16)는 샤프트(24)의 단일 운동 방향이 샤프트(22)의 단일 회전 방향과 상관되도록 샤프트(22)로부터 샤프트(24)로의 힘의 일방향 전달만을 제공한다. 모터(14)에 의한 샤프트(22)의 회전 방향은 샤프트(24)의 반복되는 왕복 운동이 실린더(44) 내의 피스톤의 펌핑 작용을 제공하도록 하기 위해 컨트롤러(34)(도 1)에 의해 역전된다.
도 4는 기어 감속 시스템(38)에 의해 연결되는 구동 샤프트(22)(도 3)의 피니언 기어(68)와 펌프 샤프트(24)의 랙 기어(70)를 도시한 도 3의 펌핑 시스템(10)의 사시도이다. 펌핑 시스템(10)의 구성요소의 조립을 볼 수 있도록 하우징(36)을 도 4에 도시하지 않았다. 모터(14)에 의한 구동 샤프트(22)의 회전은 펌프(12)의 펌프 샤프트(24)의 병진 운동을 유발한다. 모터(14)는 구동 샤프트(22)의 교번하는 쌍방향 또는 양방향 회전을 유발하기 위해 컨트롤러(34)(도 1)로부터 DC 전류의 역전하는 흐름을 공급받는다.
제1 시간 주기 동안, DC 전류의 제1 방향 흐름이 모터(14)에 제공되어, 샤프트(22)의 시계 방향으로의 회전을 유발하여서, 궁극적으로 펌프(12)의 펌프 샤프트(24)를 도 4에 대해 상향으로 이동시킬 것이다. 피니언 기어(68)의 시계 방향으로의 회전은 입력 기어(56A)의 반시계 방향으로의 회전을 유발한다. 입력 기어(56A)는 피니언 기어(68)의 그것에 비해 기어(56A)의 보다 큰 직경으로 인해 보다 느린 속도로 회전한다. 입력 기어(56A)와 출력 기어(56B)는 출력 기어(56B)가 입력 기어(56A)와 동일한 속도로 반시계 방향으로 회전하도록 샤프트(40) 상에 장착된다. 출력 기어(56B)는 출력 기어(56B)의 반시계 방향 회전이 입력 기어(58A)의 시계 방향 회전을 유발하도록 제2 기어 세트(58)의 입력 기어(58A)와 맞물린다. 입력 기어(58A)는 입력 기어(58A)가 출력 기어(56B)보다 느린 속도로 회전하도록 출력 기어(56B)보다 큰 직경을 갖는다. 입력 기어(58A)와 출력 기어(58B)는 출력 기어(58B)가 입력 기어(58A)와 동일한 속도로 시계 방향으로 회전하도록 샤프트(42) 상에 장착된다. 따라서, 출력 기어(58B)의 시계 방향 회전 속도가 피니언 기어(68)의 시계 방향 회전 속도에 비해 감소된다. 특정 속도 감소는 모터(14) 및 펌프(12)의 특정 파라미터와 시스템(10)의 원하는 출력에 의존한다. 출력 기어(58B)는 시계 방향으로 회전되어, 랙 기어(70)를 도 4의 배향에 관해 상향으로 밀어낸다.
랙 기어(70)의 상향 운동은 또한 펌프 샤프트(24)를 상향으로 압송시킨다. 펌프 샤프트(24)가 상향으로 이동하는 거리는 컨트롤러(34)에 의해 모터(14)가 샤프트(22)를 제1 방향으로 회전시키는 시간 주기와 직접적으로 상관된다. 따라서, 펌프 샤프트(24) 또는 실린더(44) 내의 피스톤의 스트로크 길이는 전류가 주어진 방향으로 모터(14)에 제공되는 시간의 길이에 직접적으로 대응한다. 샤프트(24)는 유체를 입구(28)에서 실린더(44) 내로 흡입하기 위해 펌프(12)로부터 멀어지게 외향으로 이동한다.
샤프트(24)를 실린더(44) 내로 재삽입하고 가압 유체를 출구(26)에서 실린더(44) 밖으로 밀어내기 위해, 컨트롤러(34)는 모터(14)가 샤프트(22)의 회전 방향을 제1 방향과 반대인 제2 방향으로 역전시키게 한다. 일 실시예에서, 컨트롤러(34)는 모터(14)를 통한 전류의 방향 흐름을 역전시킨다. 이는 당업계에 알려진 바와 같이 모터(14)의 전기자에서 전류의 극성을 역전시킴으로써 달성될 수 있다. 따라서, 랙 기어(70)가 제1 기어 세트(56) 및 제2 기어 세트(58)의 상호작용을 통해 하향으로 밀어내어져(도 4에 대해), 펌프 샤프트(24)를 실린더(44) 내로 밀어낸다. 따라서, 컨트롤러(34)(도 1)에 의해 지시되는 시간 주기 동안 전류의 연속 흐름을 모터(14)를 가로질러 반대 방향들로 교번시킴으로써 펌프 샤프트(24)의 선형 왕복 운동이 달성된다.
모터(14)에 대한 제어 파라미터가 펌프(12)의 원하는 출력에 기초하여 시스템(10)의 조작자에 의해 설정된다. 따라서, 컨트롤러(34)는 당업계에 알려진 바와 같이 프로세서, 메모리, 그래픽 디스플레이, 사용자 인터페이스, 메모리 등을 포함하는 컴퓨터 시스템을 포함한다. 모터(14)에 제공되는 전류의 크기, 전류의 극성(방향)의 교번, 및 각각의 극성의 전류가 모터(14)에 인가되는 시간의 길이가 컨트롤러(34)(도 1)에 의해 지시된다. 컨트롤러(34)는 각각의 극성에서 모터(14)에 대한 전류의 고정적인 크기를 유지시키도록 작동된다. 일정한 전류는 결과적으로 모터(14)가 일정한 토크 출력을 제공하게 한다. 구동 샤프트(22)로부터의 토크는 피니언 기어(68), 기어 감속 시스템(38) 및 랙 기어(70)에 의해 선형 관계로 직접 펌프 샤프트(24)로 전달된다. 따라서, 구동 샤프트(22)의 속도는 기어 감속 시스템(38)을 통해 펌프(12) 내의 압력으로부터 구동 샤프트(22)에 대해 반작용되는 힘에 의해 지시된다. 위에서 논의된 바와 같이, 브러시리스 DC 모터는 입력 전류의 변화에 신속히 반응하며, 이는 모터(14)가 방향을 신속히 역전시켜, 전반에 걸쳐 토크 출력을 유지시키면서, 중간의 짧은 순간 동안 물리적으로 회전을 정지(속도가 0과 동일한)시키도록 허용한다. 따라서, 브러시리스 DC 모터는 출력 샤프트의 회전을 펌프 샤프트의 양방향 왕복 병진 운동으로 변환시키기 위한 정교한 기계 장치의 필요없이 펌프 샤프트(24)의 왕복 운동으로 컨트롤러(34)에 의해 조작될 수 있다. 또한, 브러시리스 DC 모터는 종래 기술의 공기 모터보다 조용하고 동력을 덜 사용한다. 따라서, 펌핑 시스템(10)은 다른 시스템에 비해 소음 출력을 감소시키고 작동 비용을 개선한다.
도 5a는 도 2-4의 브러시리스 DC 모터(14)로의 입력 전류(i) 대 시간(t)을 도시한 그래프이다. 도 5b는 도 2-4의 선형 변위 피스톤 펌프(12)의 펌프 샤프트(24)의 스트로크(d) 대 시간(t)을 도시한 그래프이다. 도 5a에 관하여, 전류(i)의 크기는 모든 시점에서 대략 동일하다. 따라서, 샤프트(22)의 토크 출력이 대략 일정하다. 예를 들어, 시간 A에서, 컨트롤러(34)는 모터(14)를 통한 전류 흐름의 양의 흐름을 제공하도록 작동되며, 이는 기어링에 따라 펌프 샤프트(24)의 상향 운동을 유발한다. 이어서, 컨트롤러(34)는 즉시 양의 극성과 동일한 크기를 갖는 전류 흐름의 음의 흐름을 모터(14)를 가로질러 제공하도록 작동된다. 그러한 역전은 펌프 샤프트(24)의 하향 운동을 유발한다. 따라서, 시간 A와 시간 B 사이에서 하나의 완전한 펌프 역전 사이클이 일어난다. 전류(i)의 방향 흐름은 요망되는 만큼 긴 펌프 샤프트(24)의 연속 왕복 운동을 유발시키기 위한 시간 주기 동안 양의 흐름과 음의 흐름 사이에서 연속적으로 교번된다.
펌프 샤프트(24)의 상향 스트로크 및 하향 스트로크를 포함하는 펌프 역전 사이클이 한 쌍의 양의 전류 극성 및 음의 전류 극성에 의해 완료된다. 각각의 펌프 역전 사이클이 일어나는 시간의 양은 후술되는 바와 같이 시스템(10)의 성능의 이득을 달성하기 위해 변화될 수 있다. 도시된 실시예에서, 각각의 양의 극성 및 음의 극성이 도시된 시간 주기에 걸쳐 증가한다. 따라서, 제2 펌프 역전이 시간 B와 시간 C 사이에서 일어나고, 시간 A와 시간 B 사이의 제1 펌프 역전보다 길다. 각각의 후속 펌프 역전의 시간이 이전 펌프 역전에 비해 증가한다. 이는 도 5b에 도시된 바와 같이 펌프 샤프트(24)가 보다 큰 선형 길이를 횡단하여 실린더(44) 내에서의 피스톤의 스트로크 길이를 증가시키는 것에 해당한다. 이들 스트로크 길이의 변화는 펌프 샤프트(24)가 기어 감속 시스템(38) 내의 기어, 피니언 기어(68) 및 랙 기어(70)의 상이한 상호 맞물림 위치에서 방향을 역전시키게 하여, 기어링에서의 마모 분포를 개선한다.
도 5b에 관하여, 도시된 실선에 대해, 실린더(44) 내의 피스톤의 위치(d)가 시간 A로부터 시간 D로 크기가 증가하는 것으로 도시된다. 예를 들어, 시간 A와 시간 B 사이에서, 스트로크(d)는 특정 위치로 증가한 다음에 다시 시작 위치로 후퇴한다. 각각의 후속 펌프 역전이 스트로크(d)를 이전에 비해 증가시킨다. 따라서, 도 5a의 시간 A 내지 시간 B가 스트로크 길이 증가를 보여주는 도 5b의 동일한 기간에 해당한다. 스트로크 길이가 시간 D에서 모든 또는 대부분의 실린더(44)를 사용하도록 증가된 후, 스트로크 길이는 점진적으로 감소될 수 있다. 따라서, 도 5a 및 도 5b의 시간 A 내지 시간 B는 전류 간격 및 스트로크 길이를 점진적으로 단축시키기 위해 시간 D에서 수직축을 따라 거울 이미지화될 수 있다.
스트로크 길이를 변화시키는 것의 이득은 펌핑 시스템(10)의 마모 수명을 증가시키는 것을 포함한다. 특히, 변환기(16)의 기어의 마모 수명이 증가된다. 펌프 역전은 기어 치에, 특히 피니언 기어(68)에 충격 하중을 유발한다. 이는 펌프 역전 시간이 최소화되고 구동 샤프트(22)가 방향을 신속히 역전시킬 때 특히 그러하다. 펌프 샤프트(24)의 스트로크 길이를 변화시키는 것은 역전이 일어날 때 어느 기어 치가 맞물리는지를 변화시켜, 충격 하중을 보다 많은 수의 기어 치에 분배한다. 또한, 펌프 역전이 일어나는 펌핑 시스템(10) 내의 베어링 접촉 영역을 따른, 예를 들어 샤프트(24), 샤프트(40) 또는 샤프트(42)를 따른 위치가 변화되어, 시스템(10) 내의 베어링의 마모 수명을 증가시킬 것이다.
도 5a 및 도 5b의 실선 선도는 사전결정된 패턴에 걸친 스크로크 길이의 선형의 균일한 변화를 보여준다. 도 5a에서 볼 수 있는 바와 같이, 시간 A와 시간 B 사이에서 완전한 펌프 역전이 일어났다. 각각의 역전 시간 주기가 양의 전류 흐름과 음의 전류 흐름 사이에서 동일하게 분할된다. 그러한 동일한 분배는 펌프 샤프트(24)가 실린더(44) 내의 피스톤을 엔드-아웃(end-out)시키거나 실린더의 단부에 충격을 주어 프로그램된 펌프 스트로크를 완료하기에 충분한 공간을 갖지 못하게 하지 않는 것을 보장한다. 그러나, 스트로크 길이는 랜덤하게 변화될 수 있거나, 불균일 패턴에 걸쳐 변화될 수 있다. 각각의 펌프 역전 내에서 양의 극성 및 음의 극성에 대한 시간 분포는 컨트롤러(34)가 피스톤의 절대 위치를 모니터하거나 실린더 내의 피스톤의 엔딩-아웃(ending-out)을 회피하는 프로그램 패턴을 구비하는 한 변화될 수 있다. 따라서, 컨트롤러(34)는 실린더(44)에 대한 펌프 샤프트(24)의 절대 위치를 모니터하기 위해 위치 센서(35)를 사용한다. 대안적으로, 실린더(44)가 피스톤의 위치를 모니터하기 위한 위치 센서를 구비할 수 있다.
도 5b의 실선은 일례로서 변화하는 위치에서(피크의 팁에 의해 지시되는) 상향-스트로크로부터 하향-스트로크로의 변화를 보여주지만, 하향-스트로크로부터 상향-스트로크로의 변화는 항상 동일한 원래 위치에서(영축에서 밸리에 의해 지시되는) 일어난다. 그러나, 파선은 하향-스트로크로부터 상향-스트로크로의 변화가 상이한 위치에서 일어날 수 있음을 보여준다. 따라서, 스트로크 길이가 항상 실린더(44)의 전체 이용가능 공간 내에서 유지되지만, 각각의 스트로크 전환이 일어나는 위치는 변화될 수 있다. 따라서, 스트로크 길이의 크기가 변하게 될 수 있을 뿐만 아니라, 실린더(44)에 대한 샤프트(24)의 위치[그리고 변환기(16) 내의 기어링의 치의 맞물림]에 관하여, 스트로크 전환이 일어나는 위치도 또한 변하게 될 수 있다.
본 발명이 바람직한 실시예에 관하여 기술되었지만, 당업자는 본 발명의 사상 및 범위로부터 벗어나지 않고서 형태 및 세부 사항에 있어 변화가 이루어질 수 있는 것을 인식할 것이다.

Claims (23)

  1. 펌프 시스템이며,
    제1 회전 방향 및 반대 제2 회전 방향으로 가역적으로 회전가능한 출력 샤프트를 구비하는 전기 모터;
    제1 선형 방향 및 반대 제2 선형 방향으로 이동가능한 입력 샤프트를 구비하는 펌프;
    출력 샤프트를 입력 샤프트에 결합시키는 랙 및 피니언 변환 시스템 - 상기 랙 및 피니언 변환 시스템은,
    출력 샤프트의 제1 회전 방향으로의 회전이 입력 샤프트를 제1 선형 방향으로 병진 운동시키고,
    출력 샤프트의 제2 회전 방향으로의 회전이 입력 샤프트를 제2 선형 방향으로 병진 운동시키도록 출력 샤프트를 입력 샤프트에 결합시킴 - ; 및
    입력 샤프트의 왕복 운동을 생성하기 위해 출력 샤프트의 회전을 반복하여 역전시키는 컨트롤러
    를 포함하고,
    컨트롤러는 출력 샤프트의 회전을 역전시키기 위해 전기 모터에 제공되는 전류의 전류 흐름 방향을 역전시키고, 전류 흐름 방향 역전 사이의 시간 간격을 변화시킴으로써, 출력 샤프트의 회전을 역전시킬 때, 랙 및 피니언 변환 시스템에 맞물리는 기어 치를 변경하여, 충격 하중을 복수의 기어 치에 분배하는 펌프 시스템.
  2. 제1항에 있어서,
    펌프는 용적식 펌프를 포함하는 펌프 시스템.
  3. 삭제
  4. 제1항에 있어서,
    랙 및 피니언 변환 시스템은 기어 감속 시스템을 더 포함하는 펌프 시스템.
  5. 제4항에 있어서,
    기어 감속 시스템은 2단 속도 감소 시스템을 포함하는 펌프 시스템.
  6. 제1항에 있어서,
    전기 모터는 브러시리스 직류 모터를 포함하는 펌프 시스템.
  7. 제6항에 있어서,
    컨트롤러는 전기 모터의 일정한 토크 출력을 유지시키는 펌프 시스템.
  8. 삭제
  9. 제1항에 있어서,
    컨트롤러는 역전마다 전류 흐름 방향 역전 사이의 시간을 변화시키는 펌프 시스템.
  10. 제9항에 있어서,
    컨트롤러는 전류 흐름 방향 역전 사이의 시간을 상한 및 하한을 점차 증가시키고 점차 감소시키도록 변화시키는 펌프 시스템.
  11. 펌프를 작동시키는 방법이며,
    전기 모터로의 전류 흐름 방향을 반복하여 역전시켜 모터의 출력 샤프트의 회전을 시계 방향 및 반시계 방향으로 교번시키는 단계;
    랙 및 피니언 변환 시스템을 사용하여 출력 샤프트의 교번 회전을 펌프 샤프트의 왕복 선형 운동으로 변환시키는 단계; 및
    출력 샤프트의 회전을 역전시킬 때, 랙 및 피니언 변환 시스템에 맞물리는 기어 치가 변경되도록 전류 흐름 방향 역전 사이의 시간 간격을 변화시킴으로써 펌프 샤프트의 스트로크 길이의 크기를 변화시키는 단계
    를 포함하는 방법.
  12. 제11항에 있어서,
    전기 모터는 브러시리스 직류 모터를 포함하고,
    펌프는 용적식 펌프를 포함하는 방법.
  13. 제11항에 있어서,
    출력 샤프트의 교번 회전을 펌프 샤프트의 왕복 선형 운동으로 변환시키는 단계는,
    피니언 기어를 출력 샤프트로 회전시키는 단계; 및
    랙 기어를 피니언 기어로 병진 운동시키는 단계
    를 포함하는 방법.
  14. 제11항에 있어서,
    출력 샤프트의 시계 방향으로의 회전은 펌프 샤프트의 제1 방향으로의 선형 운동을 유발하고,
    출력 샤프트의 반시계 방향으로의 회전은 펌프 샤프트의 제2 반대 방향으로의 선형 운동을 유발하는 방법.
  15. 제11항에 있어서,
    전기 모터로의 전류의 일정한 흐름을 제공하여 일정한 토크를 유지시키는 단계; 및
    펌프에서 일정한 압력 출력을 유지시키는 단계
    를 더 포함하는 방법.
  16. 삭제
  17. 제11항에 있어서,
    전류 흐름 방향 역전 사이의 시간은 규칙적 반복가능 패턴에 걸쳐 변화되는 방법.
  18. 제17항에 있어서,
    전류 흐름 방향 역전 사이의 시간은 상한과 하한 사이에서 점차 증가하고 점차 감소하는 방법.
  19. 제11항에 있어서,
    전류 흐름 방향 역전 사이의 시간은 랜덤하게 변화되는 방법.
  20. 삭제
  21. 제11항에 있어서,
    펌프 샤프트가 선형 병진 운동을 역전시키는 펌프 샤프트의 전환 위치를 변화시키는 단계
    를 더 포함하는 방법.
  22. 펌프 시스템이며,
    회전 출력 샤프트를 구비하는 브러시리스 직류 전기 모터;
    선형으로 변위가능한 입력 샤프트를 구비하는 용적식 펌프;
    출력 샤프트의 시계 방향 회전이 입력 샤프트를 제1 방향으로 병진 운동시키고 출력 샤프트의 반시계 방향 회전이 입력 샤프트를 제2 반대 방향으로 병진 운동시키도록 출력 샤프트를 입력 샤프트에 결합시키는 랙 및 피니언 변환 시스템; 및
    입력 샤프트의 왕복 병진 운동을 생성하기 위해 출력 샤프트의 회전 방향을 반복하여 역전시키는 컨트롤러
    를 포함하고,
    컨트롤러는 회전 역전이 발생할 때 랙 및 피니언 변환 시스템에 맞물리는 기어 치가 변경되도록 펌프 샤프트의 스트로크 길이를 변화시킴으로써 충격 하중이 시간이 흐름에 따라 서로 다른 복수의 기어 치에 분배되도록 하는 펌프 시스템.
  23. 제22항에 있어서,
    랙 및 피니언 변환 시스템은,
    출력 샤프트에 결합되는 피니언 기어;
    입력 샤프트에 결합되는 랙 기어; 및
    피니언 기어 및 랙 기어에 결합되는 기어 감속 시스템
    을 포함하는 펌프 시스템.
KR1020147008993A 2011-09-09 2012-09-10 전기 역전 모터를 갖춘 왕복 용적식 펌프 KR101893630B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161532650P 2011-09-09 2011-09-09
US61/532,650 2011-09-09
PCT/US2012/054471 WO2013036937A2 (en) 2011-09-09 2012-09-10 Reciprocating positive displacement pump with electric reversing motor

Publications (2)

Publication Number Publication Date
KR20140063765A KR20140063765A (ko) 2014-05-27
KR101893630B1 true KR101893630B1 (ko) 2018-08-30

Family

ID=47832815

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147008993A KR101893630B1 (ko) 2011-09-09 2012-09-10 전기 역전 모터를 갖춘 왕복 용적식 펌프

Country Status (9)

Country Link
US (1) US10072652B2 (ko)
EP (1) EP2753832B1 (ko)
JP (1) JP6124895B2 (ko)
KR (1) KR101893630B1 (ko)
CN (1) CN103814213B (ko)
BR (1) BR112014005241A2 (ko)
ES (1) ES2727811T3 (ko)
RU (1) RU2633304C2 (ko)
WO (1) WO2013036937A2 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2861781C (en) * 2014-02-18 2016-03-29 Level Best Technologies Ltd. Rack and pinion driven gas compressor
US10046351B2 (en) * 2014-07-14 2018-08-14 Graco Minnesota Inc. Material dispense tracking and control
WO2016109673A1 (en) 2014-12-30 2016-07-07 Graco Minnesota Inc. Integral mounting system on axial reciprocating pumps
US10233919B2 (en) 2015-06-10 2019-03-19 Unico, Llc Dual completion linear rod pump
FR3044052B1 (fr) 2015-11-25 2019-09-13 Exel Industries Pompe d'alimentation d'un systeme d'application d'un produit de revetement liquide
US20170234308A1 (en) * 2016-02-11 2017-08-17 S.P.M. Flow Control, Inc. Transmission for pump such as hydraulic fracturing pump
DE102016005945A1 (de) * 2016-05-17 2017-11-23 Dürr Systems Ag Beschichtungsmittelpumpe
US20180030967A1 (en) * 2016-07-29 2018-02-01 Wagner Spray Tech Corporation Aligning reciprocating motion in fluid delivery systems
BR102018003284B1 (pt) 2017-02-21 2021-07-20 Graco Minnesota Inc. Haste de pistão para uma bomba, bomba, pulverizador, e, método para substituir uma luva de desgaste
FR3085729B1 (fr) 2018-09-12 2021-11-19 Exel Ind Pompe avec systeme de va-et-vient a pignon et cremaillere et utilisation d'une telle pompe
USD896280S1 (en) * 2019-01-16 2020-09-15 Graco Minnesota Inc. Piston rod
KR20220156638A (ko) 2020-03-31 2022-11-25 그라코 미네소타 인크. 펌프 구동 시스템

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1984296A (en) 1932-05-21 1934-12-11 Lawrie L Witter Liquid-dispensing device
JPS49105118A (ko) 1973-02-14 1974-10-04
US4093404A (en) * 1975-12-19 1978-06-06 Celanese Corporation Apparatus for preparation of matrices containing frangible particulate matter
JPS5845979A (ja) 1981-09-14 1983-03-17 Nippon Gakki Seizo Kk 楽譜プリント装置
JPS5845979U (ja) * 1981-09-21 1983-03-28 電気化学計器株式会社 パルス制御定量ポンプ
GB2158617A (en) 1984-05-11 1985-11-13 Computer Memories Inc DC Brushless motor drive control
EP0309596B1 (en) * 1987-09-26 1993-03-31 Hewlett-Packard GmbH Pumping apparatus for delivering liquid at high pressure
WO1990012962A1 (en) * 1989-04-26 1990-11-01 The Aro Corporation Electric motor driven diaphragm pump
GB9104097D0 (en) * 1991-02-27 1991-04-17 Univ Hospital London Dev Corp Computer controlled positive displacement pump for physiological flow stimulation
US5368454A (en) 1992-07-31 1994-11-29 Graco Inc. Quiet check valve
US5725358A (en) * 1995-08-30 1998-03-10 Binks Manufacturing Company Pressure regulated electric pump
US6577089B1 (en) * 1998-10-28 2003-06-10 Aspen Motion Technologies, Inc. Pressure control system using input current sensing
US6679105B1 (en) * 2001-09-19 2004-01-20 Sandia Corporation Oscillatory erosion and transport flume with superimposed unidirectional flow
US6662969B2 (en) * 2001-12-14 2003-12-16 Zaxis, Inc. Hydraulically and volumetrically dispensing a target fluid
BR0305458A (pt) * 2003-12-05 2005-08-30 Brasil Compressores Sa Sistema de controle de uma bomba de fluidos, método de controle de uma bomba de fluidos, compressor linear e refrigerador
DE102005039237A1 (de) * 2005-08-19 2007-02-22 Prominent Dosiertechnik Gmbh Motordosierpumpe
DE112008003968T5 (de) * 2008-08-07 2011-06-09 Agilent Technologies Inc., Santa Clara Synchronisation von Zufuhrströmungspfaden

Also Published As

Publication number Publication date
EP2753832A4 (en) 2015-07-29
RU2633304C2 (ru) 2017-10-11
WO2013036937A2 (en) 2013-03-14
US20140219819A1 (en) 2014-08-07
WO2013036937A3 (en) 2013-07-11
JP6124895B2 (ja) 2017-05-10
ES2727811T3 (es) 2019-10-18
BR112014005241A2 (pt) 2017-03-28
JP2014526638A (ja) 2014-10-06
EP2753832A2 (en) 2014-07-16
US10072652B2 (en) 2018-09-11
CN103814213A (zh) 2014-05-21
RU2014113456A (ru) 2015-10-20
KR20140063765A (ko) 2014-05-27
EP2753832B1 (en) 2019-04-24
CN103814213B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
KR101893630B1 (ko) 전기 역전 모터를 갖춘 왕복 용적식 펌프
JP2007515589A (ja) ポンプ
KR890014174A (ko) 콤프레서와 그 콤프레서를 사용하는 스프레이장치 및 스프레이장치용 에어브러쉬
CN102207066A (zh) 一种双作用柱塞泵
CA2179237A1 (en) Diaphragm pump including improved drive mechanism and pump head
WO2000004289A3 (en) Diaphragm pump including improved drive mechanism and pump head
CN115362318A (zh) 泵驱动系统
CN111405881A (zh) 具有可变流体增压的口腔清洁设备
CN212360076U (zh) 一种微型清洗机泵单元
CN219366250U (zh) 用于液泵装置的电驱装置、出液系统及冲牙器
KR100196279B1 (ko) 유체펌프
WO2007136718A3 (en) Heart booster pump
CN221074522U (zh) 一种节能型水汽混合泵
KR200228703Y1 (ko) 다이아프램 펌프
CN219159119U (zh) 空程节流型出液系统
RU2022169C1 (ru) Дозирующий поршневой насос
CN216202389U (zh) 定量电动黄油枪
CN219492504U (zh) 一种水泵及冲牙器
JP3701986B2 (ja) 液体加圧装置及びその運転方法
CN215762065U (zh) 一种水泵及清洗装置
JPH0233841B2 (ko)
CN216495768U (zh) 冲牙器工作机构
CN203005096U (zh) 取力器电液控制器的执行机构
RU117003U1 (ru) Насос-дозатор
CN115573897A (zh) 脉冲增强型出液系统

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right