KR101874904B1 - A light emitting device - Google Patents
A light emitting device Download PDFInfo
- Publication number
- KR101874904B1 KR101874904B1 KR1020110114945A KR20110114945A KR101874904B1 KR 101874904 B1 KR101874904 B1 KR 101874904B1 KR 1020110114945 A KR1020110114945 A KR 1020110114945A KR 20110114945 A KR20110114945 A KR 20110114945A KR 101874904 B1 KR101874904 B1 KR 101874904B1
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- semiconductor layer
- section
- light emitting
- energy band
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 93
- 230000004888 barrier function Effects 0.000 claims abstract description 25
- 230000007423 decrease Effects 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims description 29
- 229910052738 indium Inorganic materials 0.000 claims description 28
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 26
- 230000003247 decreasing effect Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 5
- 229920005989 resin Polymers 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 200
- 239000000758 substrate Substances 0.000 description 23
- 239000000463 material Substances 0.000 description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 229910052759 nickel Inorganic materials 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 229910001887 tin oxide Inorganic materials 0.000 description 7
- -1 Aluminum Tin Oxide Chemical compound 0.000 description 6
- VRIVJOXICYMTAG-IYEMJOQQSA-L iron(ii) gluconate Chemical compound [Fe+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O VRIVJOXICYMTAG-IYEMJOQQSA-L 0.000 description 6
- 238000002161 passivation Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 230000005428 wave function Effects 0.000 description 5
- 229910002704 AlGaN Inorganic materials 0.000 description 4
- 229910019897 RuOx Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- YZZNJYQZJKSEER-UHFFFAOYSA-N gallium tin Chemical compound [Ga].[Sn] YZZNJYQZJKSEER-UHFFFAOYSA-N 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- HRHKULZDDYWVBE-UHFFFAOYSA-N indium;oxozinc;tin Chemical compound [In].[Sn].[Zn]=O HRHKULZDDYWVBE-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000005701 quantum confined stark effect Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000005699 Stark effect Effects 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/0004—Devices characterised by their operation
- H01L33/0008—Devices characterised by their operation having p-n or hi-lo junctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
실시 예는 제1 반도체층, 제2 반도체층, 및 상기 제1 반도체층과 상기 제2 반도체층 사이에 배치되고, 적어도 한번 이상 교대로 적층되는 우물층 및 장벽층을 갖는 활성층을 포함하며, 상기 우물층은 제1 방향으로 에너지 밴드가 감소하는 제1 구간, 및 상기 제1 방향으로 에너지 밴드가 증가하는 제2 구간을 포함하며, 상기 제1 구간은 에너지 밴드의 기울기가 서로 다른 2 이상의 서브 구간들을 포함하고, 상기 제1 방향은 상기 제1 반도체층으로부터 상기 제2 반도체층으로 진행하는 방향이다.An embodiment includes a first semiconductor layer, a second semiconductor layer, and an active layer disposed between the first semiconductor layer and the second semiconductor layer and having a well layer and a barrier layer stacked alternately at least once, Wherein the well layer includes a first section in which the energy band decreases in the first direction and a second section in which the energy band increases in the first direction, And the first direction is a direction from the first semiconductor layer to the second semiconductor layer.
Description
본 발명은 발광 소자 및 발광 소자 패키지에 관한 것이다.The present invention relates to a light emitting device and a light emitting device package.
반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드나 레이저 다이오드와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하다.Light emitting devices such as light emitting diodes and laser diodes using semiconductor materials of Group 3-5 or Group 2-6 compound semiconductors can realize various colors such as red, green, blue and ultraviolet rays through the development of thin film growth techniques and device materials, By using fluorescent materials or by combining colors, it is possible to realize a white light beam having high efficiency.
이러한 기술의 발달로 디스플레이 소자뿐만 아니라 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등에까지 응용이 확대되고 있다. 이러한 발광 소자의 구조에 대해서는 공개특허 10-2009-0002241호를 참조할 수 있다.With the development of such technology, not only display devices but also transmission modules of optical communication means, light-emitting diode backlights replacing CCFL (Cold Cathode Fluorescence Lamp) constituting the backlight of LCD (Liquid Crystal Display) White light emitting diodes (LED) lighting devices, automotive headlights, and traffic lights. For the structure of such a light-emitting device, reference may be made to US Pat.
실시 예는 내부 양자 효율을 향상시킬 수 있는 발광 소자를 제공한다.Embodiments provide a light emitting device capable of improving internal quantum efficiency.
실시 예에 따른 발광 소자는 제1 반도체층, 제2 반도체층, 및 상기 제1 반도체층과 상기 제2 반도체층 사이에 배치되고, 적어도 한번 이상 교대로 적층되는 우물층 및 장벽층을 갖는 활성층을 포함하며, 상기 우물층은 제1 방향으로 에너지 밴드가 감소하는 제1 구간 및 상기 제1 방향으로 에너지 밴드가 증가하는 제2 구간을 포함하며, 상기 제1 구간은 에너지 밴드의 기울기가 서로 다른 2 이상의 서브 구간들을 포함하고, 상기 제1 방향은 상기 제1 반도체층으로부터 상기 제2 반도체층으로 진행하는 방향이다. 상기 제1 구간과 상기 제2 구간은 서로 인접할 수 있다.A light emitting device according to an embodiment includes a first semiconductor layer, a second semiconductor layer, and an active layer disposed between the first semiconductor layer and the second semiconductor layer and having a well layer and a barrier layer stacked alternately at least once Wherein the well layer includes a first section in which the energy band decreases in the first direction and a second section in which the energy band increases in the first direction, And the first direction is a direction from the first semiconductor layer to the second semiconductor layer. The first section and the second section may be adjacent to each other.
상기 제1 구간의 서브 구간들 각각의 에너지 밴드의 기울기는 선형적으로 감소하고, 상기 제2 구간의 에너지 밴드의 기울기는 선형적으로 증가할 수 있다. 상기 서브 구간들 각각의 에너지 밴드의 기울기는 서로 다를 수 있다.The slope of the energy band of each of the sub-sections of the first section linearly decreases and the slope of the energy band of the second section may linearly increase. The slopes of the energy bands of the sub-sections may be different from each other.
상기 제1 반도체층은 n형 반도체층이고, 상기 제2 반도체층은 p형 반도체층일 수 있다. 또한 상기 제1 반도체층은 p형 반도체층이고, 상기 제2 반도체층은 n형 반도체층일 수 있다.The first semiconductor layer may be an n-type semiconductor layer, and the second semiconductor layer may be a p-type semiconductor layer. The first semiconductor layer may be a p-type semiconductor layer, and the second semiconductor layer may be an n-type semiconductor layer.
상기 장벽층은 AlaInbGaN(1-a-b)(0≤a<1, 0<b<1)의 조성을 가지며, 상기 우물층은 InxGaN(1-x)(0<x<1)의 조성을 가질 수 있다. 상기 제1 서브 구간 및 상기 제2 서브 구간 각각의 인듐(In)의 함유량은 선형적으로 증가할 수 있다. 상기 제2 구간의 인듐(In) 함유량은 선형적으로 감소할 수 있다. 상기 2 이상의 서브 구간들 중 제1 서브 구간의 조성은 InxGaN(1-x)(0<x≤0.13)이고, 제2 서브 구간의 조성은 InxGaN(1-x)(0.13≤x≤0.17)일 수 있다. 상기 제2 구간의 조성은 InxGaN(1-x)(0.17≤x<1)일 수 있다. 상기 제2 구간의 두께와 상기 제1 구간의 두께의 비는 1: 1.5~2.5일 수 있다. 상기 서브 구간들 각각의 두께는 서로 동일할 수 있다.The barrier layer is Al a In b GaN (1- ab) having a composition of (0≤a <1, 0 <b <1), the well layer is In x GaN (1-x) (0 <x <1) . ≪ / RTI > The content of indium (In) in each of the first sub-section and the second sub-section may increase linearly. The indium (In) content in the second section may decrease linearly. The composition of the two or more of the sub-section a first sub-interval is In x GaN (1-x) (0 <x≤0.13) , and the second composition of the sub-interval is In x GaN (1-x) (0.13≤x Lt; = 0.17). The composition of the second section may be In x GaN (1-x) (0.17? X <1). The ratio of the thickness of the second section to the thickness of the first section may be 1: 1.5 to 2.5. The thicknesses of the sub-sections may be equal to each other.
상기 발광 소자는 상기 제1 반도체층 아래에 배치되는 기판, 상기 제2 반도체층 상에 배치되는 전도층, 상기 제1 반도체층 상에 배치되는 제1 전극, 및 상기 전도층 상에 배치되는 제2 전극을 더 포함할 수 있다.The light emitting device includes a substrate disposed below the first semiconductor layer, a conductive layer disposed on the second semiconductor layer, a first electrode disposed on the first semiconductor layer, and a second electrode disposed on the conductive layer, Electrode.
또는 상기 발광 소자는 상기 제1 반도체층 상에 배치되는 제1 전극, 상기 제2 반도체층 아래에 배치되는 오믹층, 및 상기 오믹층 아래에 배치되는 반사층을 더 포함할 수 있다.Alternatively, the light emitting device may further include a first electrode disposed on the first semiconductor layer, an ohmic layer disposed under the second semiconductor layer, and a reflective layer disposed under the ohmic layer.
실시 예는 압전 전기장에 기인하는 활성층에서의 에너지 밴드의 치우침을 보상할 수 있고, 내부 양자 효율을 향상시킬 수 있다.The embodiment can compensate for the shift of the energy band in the active layer due to the piezoelectric field and improve the internal quantum efficiency.
도 1은 실시 예에 따른 발광 소자를 나타낸다.
도 2는 실시 예에 따른 활성층의 전도대의 에너지 밴드를 나타낸다.
도 3은 다른 실시 예에 따른 활성층의 전도대의 에너지 밴드를 나타낸다.
도 4는 일반적으로 성장된 활성층의 에너지 밴드 다이어그램을 나타낸다.
도 5는 실시 예에 따른 발광 소자의 활성층의 에너지 밴드 다이어그램을 나타낸다.
도 6은 실시 예에 따른 발광 소자의 내부 양자 효율을 나타낸다.
도 7은 다른 실시 예에 따른 발광 소자를 나타낸다.
도 8은 실시 예에 따른 발광 소자를 포함하는 발광 소자 패키지를 나타낸다.
도 9는 실시 예에 따른 발광 소자 패키지를 포함하는 조명 장치의 분해 사시도이다.
도 10은 실시 예에 따른 발광 소자 패키지를 포함하는 표시 장치를 나타낸다.1 shows a light emitting device according to an embodiment.
2 shows the energy band of the conduction band of the active layer according to the embodiment.
3 shows the energy band of the conduction band of the active layer according to another embodiment.
Figure 4 shows an energy band diagram of a generally grown active layer.
5 shows an energy band diagram of an active layer of a light emitting device according to an embodiment.
6 shows the internal quantum efficiency of the light emitting device according to the embodiment.
7 shows a light emitting device according to another embodiment.
8 illustrates a light emitting device package including a light emitting device according to an embodiment.
9 is an exploded perspective view of a lighting device including a light emitting device package according to an embodiment.
10 shows a display device including a light emitting device package according to an embodiment.
이하, 실시 예들은 첨부된 도면 및 실시 예들에 대한 설명을 통하여 명백하게 드러나게 될 것이다. 도면에서 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다. 또한 동일한 참조번호는 도면의 설명을 통하여 동일한 요소를 나타낸다. 이하, 첨부된 도면을 참조하여 실시 예에 따른 발광 소자, 및 발광 소자 패키지를 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The above and other features and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. In the drawings, dimensions are exaggerated, omitted, or schematically illustrated for convenience and clarity of illustration. Also, the size of each component does not entirely reflect the actual size. The same reference numerals denote the same elements throughout the description of the drawings. Hereinafter, a light emitting device and a light emitting device package according to embodiments will be described with reference to the accompanying drawings.
도 1은 실시 예에 따른 발광 소자(100)를 나타낸다. 도 1을 참조하면, 발광 소자(100)는 기판(110), 발광 구조물(120), 전도층(125), 제1 전극(130), 및 제2 전극(140)을 포함한다.1 shows a
기판(110)은 반도체 물질 성장에 적합한 물질, 캐리어 웨이퍼로 형성될 수 있다. 또한 기판(110)은 열전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판일 수 있다. 예를 들어 기판(110)은 사파이어(Al203), GaN, SiC, ZnO, Si, GaP, InP, Ga203, GaAs 중 적어도 하나를 포함하는 물질일 수 있다. 이러한 기판(110)의 상면에는 요철 패턴이 형성될 수 있다. 기판(110)은 발광 구조물(예컨대, 제1 도전형 반도체층(122)) 아래에 배치될 수 있다.The
발광 구조물(120)은 빛을 발생하는 반도체층일 수 있으며, 제1 도전형 반도체층(122), 활성층(124), 및 제2 도전형 반도체층(126)을 포함할 수 있다. 발광 구조물(120)은 기판(110) 상에 제1 도전형 반도체층(122), 활성층(124), 및 제2 도전형 반도체층(126)이 순차로 적층된 구조일 수 있다. 여기서 제1 도전형은 n형이고, 제2 도전형은 p형일 수 있다. 도면에는 도시되지 않았지만, 제1 도전형 반도체층(122)과 기판(110) 사이에 기판(110)과 반도체층(120) 사이의 격자 불일치에 의한 격자 부정합을 완화하기 위하여 적어도 하나의 버퍼층(buffer layer)이 형성될 수 있다.The
제1 도전형 반도체층(122)은 반도체 화합물로 형성될 수 있다. 제1 도전형 반도체층(122)은 3족-5족, 2족-6족 등의 화합물 반도체로 구현될 수 있으며, 제1 도전형 도펀트가 도핑될 수 있다.The first
예컨대, 제1 도전형 반도체층(122)은 InxAlyGa1 -x- yN(0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 가지는 반도체일 수 있다. 예컨대, 제1 도전형 반도체층(122)은 InAlGaN, GaN, AlGaN, InGaN, AlN, InN 중 어느 하나를 포함할 수 있으며, n형 도펀트(예: Si, Ge, Sn 등)가 도핑될 수 있다.For example, the first conductivity
활성층(124)은 제1 도전형 반도체층(122)과 제2 도전형 반도체층(126) 사이에 배치되며, 제1 도전형 반도체층(122) 및 제2 도전형 반도체층(126)으로부터 제공되는 전자(electron)와 정공(hole)의 재결합(recombination) 과정에서 발생하는 에너지에 의해 광을 생성할 수 있다.The
활성층(124)은 반도체 화합물, 예컨대, 3족-5족, 2족-6족의 화합물 반도체일 수 있으며, 단일 우물 구조, 다중 우물 구조, 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 등으로 형성될 수 있다.The
활성층(124)은 우물층(19-1 내지 19-M, M>1인 자연수)과 장벽층(19-1 내지 19-, N>1인 자연수)이 적어도 한번 이상 교대로 적층되는 다층 구조일 수 있다. 우물층(19-1 내지 19-M, M>1인 자연수)은 양자 우물층일 수 있고, 장벽층(18-1 내지 18-N)은 양자 장벽층일 수 있다.The
제2 도전형 반도체층(126)은 반도체 화합물로 형성될 수 있다. 제2 도전형 반도체층(126)은 3족-5족, 2족-6족 등의 화합물 반도체로 구현될 수 있으며, 제2 도전형 도펀트가 도핑될 수 있다.The second
예컨대, 제2 도전형 반도체층(126)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체일 수 있다. 예를 들어 제2 도전형 반도체층(126)은 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 어느 하나를 포함할 수 있으며, p형 도펀트(예컨대, Mg, Zn, Ca, Sr, Ba)가 도핑될 수 있다.For example, the second conductivity
도 2는 실시 예에 따른 활성층(124)의 전도대(conduction band)의 에너지 밴드를 나타낸다. 도 2를 참조하면, 우물층들(19-1 내지 19-M) 각각은 에너지 밴드의 전위가 감소하는 제1 구간(a1), 및 에너지 밴드의 전위가 증가하는 제2 구간(a2)을 포함한다.2 shows the energy band of the conduction band of the
제1 구간(a1)과 제2 구간(a2)은 접하고, 제1 구간(a1)은 제1 방향으로 에너지 밴드의 전위가 감소하고, 제2 구간(a2)은 제1 방향으로 에너지 밴드의 전위가 증가할 수 있다. 이때 제1 방향은 제1 도전형 반도체층(122)으로부터 제2 도전형 반도체층(126)으로 진행하는 방향일 수 있다.The first section a1 and the second section a2 are in contact with each other so that the potential of the energy band decreases in the first direction a1 and the potential of the energy band in the first direction a2 decreases. Can be increased. In this case, the first direction may be a direction from the first conductivity
제1 구간(a1)은 서로 다른 기울기로 감소하는 2 이상의 서브 구간들(b1, b2)을 포함할 수 있다. 2 이상의 서브 구간들(b1,b2) 각각에서 에너지 밴드의 전위는 선형적으로 감소할 수 있으나, 이에 한정되는 것은 아니며, 비선형적 또는 계단적으로 감소할 수도 있다.The first section a1 may include two or more sub-sections b1 and b2 that decrease at different slopes. In each of the two or more sub-intervals b1 and b2, the potential of the energy band may decrease linearly, but is not limited thereto, and may be nonlinearly or systematically decreased.
제2 구간(a2)에서 에너지 밴드의 전위는 선형적으로 증가할 수 있으나, 이에 한정되는 것은 아니며, 비선형적 또는 계단적으로 증가할 수도 있다. 서브 구간들(b1,b2) 각각의 기울기의 절대값은 제2 구간(a2)의 기울기의 절대값보다 작을 수 있다.In the second section a2, the potential of the energy band may increase linearly, but it is not limited thereto, and may be nonlinearly or gradually increased. The absolute value of the slope of each of the sub-intervals b1 and b2 may be smaller than the absolute value of the slope of the second interval a2.
우물층(19-1 내지 19-M, 예컨대, M=3)의 조성은 InxGaN(1-x)(0<x<1)일 수 있다.The composition of the well layers 19-1 to 19-M, for example, M = 3 may be In x GaN (1-x) (0 <x <1).
장벽층(18-1 내지 18-N, 예컨대, N=2)의 조성은 AlaInbGaN(1-a-b)(0≤a<1, 0<b<1)일 수 있다. 예컨대, 장벽층(18-1 내지 18-N, 예컨대, N=2)은 우물층(19-1 내지 19-M, 예컨대, M=3)에 비해 밴드 갭 에너지가 큰 (Al, In, Ga)N 계열의 III족 질화물 반도체층, 예컨대, AlGaN층, InGaN층 또는 GaN층으로 형성될 수 있다.The composition of the barrier layers 18-1 to 18-N, for example, N = 2 may be Al a In b GaN (1-ab) (0? A <1, 0 <b <1). For example, the barrier layers 18-1 to 18-N (e.g., N = 2) may have a larger bandgap energy than that of the well layers 19-1 to 19-M ) N-type group III nitride semiconductor layer, for example, an AlGaN layer, an InGaN layer, or a GaN layer.
제1 구간(a1)의 인듐(In)의 조성은 점진적으로 증가할 수 있다. 예컨대, 제1 구간(a1)의 인듐(In)의 조성은 선형적으로 증가할 수 있다. 예컨대, 서브 구간들(b1,b2) 각각의 인듐(In)의 함유량은 선형적으로 증가할 수 있다.The composition of indium (In) in the first section a1 may gradually increase. For example, the composition of indium (In) in the first section a1 may increase linearly. For example, the content of indium (In) in each of the sub-regions b1 and b2 may increase linearly.
또한 서브 구간들(b1,b2) 각각의 인듐(In)의 증가율을 서로 다를 수 있다. 예컨대, 제1 서브 구간(b1)의 인듐의 증가율은 제2 서브 구간(b2)의 인듐의 증가율보다 크거나 작을 수 있다.Also, the growth rates of indium (In) in the sub-regions b1 and b2 may be different from each other. For example, the rate of increase of indium in the first sub-section b1 may be larger or smaller than the rate of increase of indium in the second sub-interval b2.
제1 서브 구간(b1)의 조성은 InxGaN(1-x)(0<x≤0.13)일 수 있고, 제2 서브 구간(b2)의 조성은 InxGaN(1-x)(0.13≤x≤0.17)일 수 있다.The composition of the first sub-section b1 may be In x GaN (1-x) (0 < x ? 0.13) and the composition of the second sub-section b2 may be In x GaN (1-x) x? 0.17).
제2 구간(a2)의 인듐의 조성은 점진적으로 감소할 수 있다. 예컨대, 제2 구간(a2)의 인듐의 조성은 선형적으로 감소할 수 있다. 제2 구간(a2)의 조성은 InxGaN(1-x)(0.17≤x<1)일 수 있다.The composition of indium in the second section a2 may gradually decrease. For example, the composition of indium in the second section a2 may decrease linearly. The composition of the second section a2 may be In x GaN (1-x) (0.17? X <1).
우물층들(19-1 내지 19-M, 예컨대, M=3) 각각의 두께는 1.5nm ~ 3nm일 수 있다. 그리고 제2 구간(a2)의 두께와 제1 구간(a1)의 두께의 비는 1: 1.5~2.5일 수 있다. 예컨대, 제1 구간(a1)의 두께는 2nm이하일 수 있고, 제2 구간(a2)의 두께는 1nm이하 일 수 있다.The thickness of each of the well layers 19-1 to 19-M, e.g., M = 3, may be 1.5 nm to 3 nm. The ratio of the thickness of the second section a2 to the thickness of the first section a1 may be 1: 1.5 to 2.5. For example, the thickness of the first section a1 may be 2 nm or less, and the thickness of the second section a2 may be 1 nm or less.
서브 구간들(b1, b2) 각각의 두께는 서로 동일할 수 있다. 장벽층들(18-1 내지 18-N, 예컨대, N=2) 각각의 두께는 5nm ~ 30nm일 수 있다.The thicknesses of the sub-sections b1 and b2 may be equal to each other. The thickness of each of the barrier layers 18-1 through 18-N, e.g., N = 2, may be between 5 nm and 30 nm.
일반적으로, 양자 우물 구조에 수직으로 전기장이 작용하게 되면, 기저 상태(ground state)의 전자(electon)와 정공(hole)의 파동 함수(wave function)는 서로 다른 진행 방향으로 이동할 수 있다. 다시 말해, 전자의 서브밴드 에너지(subband energy)는 아래로 이동하고, 정공의 서브밴드 에너지는 위로 각각 이동할 수 있다.In general, when an electric field is applied perpendicularly to the quantum well structure, the wave functions of the electon and hole in the ground state can move in different traveling directions. In other words, the subband energy of the electrons moves down, and the subband energy of holes moves upwards.
이로 인하여 엑시톤(exciton), 즉 전자 및 정공의 쌍(electron-hole pair)의 바인딩 에너지(binding energy)는 줄어들고, 밴드 갭 에너지(band gap energy)는 작아질 수 있다. 이러한 현상을 양자 구속 스타크 효과(QCSE: Quantum Confined Stark Effect, 이하 QCSE라 한다)라 한다.This reduces the binding energy of the excitons, that is, the electron-hole pairs, and the band gap energy can be reduced. This phenomenon is referred to as a quantum confined stark effect (QCSE).
그리고 일반적으로 양자 우물층(InGaN) 및 양자 장벽층(GaN)을 포함하는 활성층 성장시, InGaN과 GaN 사이에 격자 부정합(lattice mismatch)으로 인하여 InGaN층와 GaN층의 경계면에서 스트레스(stress)가 발생하고, 이러한 스트레스로 인하여 자체적으로 압전 전기장(piezoelectric field)이 발생할 수 있다. 그리고 이러한 압전 전기장에 의하여 양자 구속 스타크 효과가 생기게 되어 발광 소자의 내부 양자 효율(Internal Quantum Efficiency, IQE)이 감소할 수 있다.Generally, during the growth of an active layer including a quantum well layer (InGaN) and a quantum barrier layer (GaN), a stress occurs at the interface between the InGaN layer and the GaN layer due to lattice mismatch between InGaN and GaN , And this stress can cause a piezoelectric field itself. The quantum confinement stark effect is generated by the piezoelectric field, and the internal quantum efficiency (IQE) of the light emitting device can be reduced.
도 4는 일반적으로 성장된 활성층의 에너지 밴드 다이어그램을 나타낸다. f1은 전자의 파동 함수를 나타내고, f2는 정공의 파동 함수를 나타내고, g1은 전자의 에너지 밴드를 나타내고, g2는 정공의 에너지 밴드를 나타낸다.Figure 4 shows an energy band diagram of a generally grown active layer. f1 represents the wave function of the electron, f2 represents the wave function of the hole, g1 represents the energy band of electrons, and g2 represents the energy band of holes.
도 4를 참조하면, 일반적으로 성장된 활성층의 에너지 밴드는 압전 전기장에 의하여 우물층(410)의 에너지 밴드가 휘어질 수 있다(401,402). 이로 인하여 전자의 파동 함수(f1)와 정공의 파동 함수(f2)의 중첩이 감소하여 내부 양자 효율이 감소할 수 있다. Referring to FIG. 4, the energy band of the grown active layer may be bent by the piezoelectric field (401, 402). As a result, the overlap of the electron wave function f1 and the hole wave function f2 is reduced and the internal quantum efficiency can be reduced.
그러나 도 2에 도시된 바와 같이, 실시 예는 활성층(124) 성장시 압전 전기장에 의하여 변형되는 에너지 밴드를 보상할 수 있는 형태의 에너지 밴드를 갖는 우물층(19-1 내지 19-M, 또는 19-1 내지 19-M')을 제공한다. 즉 실시 예는 우물층(19-1 내지 19-M, 또는 19-1 내지 19-M')에 포함되는 인듐의 조성을 조절하여 압전 전기장에 의하여 변형되는 에너지 밴드를 보상할 수 있다. However, as shown in FIG. 2, the embodiment includes the well layers 19-1 to 19-M or 19 having the energy bands of the type capable of compensating the energy band which is deformed by the piezoelectric field when the
도 2에 도시된 바와 같은 형태를 갖도록 인듐 조성을 조절하여 우물층을 성장함에 따라 압전 전기장에 의하여 변형되는 에너지 밴드가 보상되어 결국 편편한 에너지 밴드를 형성할 수 있다.As the well layer is grown by controlling the indium composition so as to have a shape as shown in FIG. 2, the energy band that is deformed by the piezoelectric field is compensated, so that a flat energy band can be formed.
실시 예는 압전 전기장에 기인하는 활성층(124)에서의 에너지 밴드의 치우침을 보상하여, 에너지 밴드의 변형을 방지하여, 발광 소자(100)의 내부 양자 효율을 향상시킬 수 있다.The embodiment can compensate for the shift of the energy band in the
도 5는 실시 예에 따른 발광 소자의 활성층의 에너지 밴드 다이어그램을 나타낸다. 도 5를 참조하면, 실시 예의 활성층(124)은 압전 전기장에 기인하는 에너지 밴드의 변형이 보상되어 편편한 에너지 밴드(501,502)를 가질 수 있다.5 shows an energy band diagram of an active layer of a light emitting device according to an embodiment. Referring to FIG. 5, the
도 6은 실시 예에 따른 발광 소자의 내부 양자 효율을 나타낸다.6 shows the internal quantum efficiency of the light emitting device according to the embodiment.
x축은 발광 소자에 인가되는 전류 밀도(A/㎠)를 나타내고, y축은 내부 양자 효율을 나타낸다. R은 우물층의 에너지 밴드가 직사각형(rectangular)인 경우이고, T는 우물층의 에너지 밴드가 사다리꼴(trapezoidal)인 경우이고, E1은 우물층의 에너지 밴드가 도 2에 도시된 실시 예에 따른 경우이고, E2는 우물층의 에너지 밴드가 도 3에 도시된 실시 예에 따른 경우이다. The x axis represents the current density (A / cm 2) applied to the light emitting element, and the y axis represents the internal quantum efficiency. R is the energy band of the well layer is rectangular, T is the energy band of the well layer is trapezoidal, E1 is the energy band of the well layer according to the embodiment shown in FIG. 2 And E2 is the case where the energy band of the well layer is according to the embodiment shown in Fig.
도 6을 참조하면, 다른 경우들(R, T)에 비하여, 실시 예에 따른 경우(E1, E2)가 내부 양자 효율이 향상됨을 알 수 있다.Referring to FIG. 6, it can be seen that the internal quantum efficiency is improved by the cases (E1, E2) according to the embodiment, as compared with the other cases (R, T).
도 3은 다른 실시 예에 따른 활성층(124)의 전도대(conduction band)의 에너지 밴드를 나타낸다. 도 3을 참조하면, 우물층들(19-1' 내지 19-M', M'>1인 자연수) 각각은 에너지 밴드의 전위가 감소하는 제1 구간(a1'), 및 에너지 밴드의 전위가 증가하는 제2 구간(a2')을 포함한다.3 shows the energy band of the conduction band of the
제1 구간(a1')과 제2 구간(a2')은 접하고, 제1 구간(a1')은 제1 방향으로 에너지 밴드의 전위가 감소하고, 제2 구간(a2')은 제1 방향으로 에너지 밴드의 전위가 증가할 수 있다. 이때 제1 방향은 제1 도전형 반도체층(122)으로부터 제2 도전형 반도체층(126)으로 진행하는 방향일 수 있다.The first section a1 'and the second section a2' are in contact with each other and the potential of the energy band in the first section a1 'decreases in the first direction and the potential of the energy band decreases in the first section a2' The potential of the energy band can be increased. In this case, the first direction may be a direction from the first conductivity
제1 구간(a1')의 에너지 밴드의 전위는 선형적으로 감소할 수 있으나, 이에 한정되는 것은 아니며, 비선형적 또는 계단적으로 감소할 수도 있다. The potential of the energy band of the first section a1 'may decrease linearly, but is not limited thereto, and may be nonlinearly or systematically reduced.
제2 구간(a2')은 서로 다른 기울기로 증가하는 2 이상의 서브 구간들(b1', b2')을 포함할 수 있다. 2 이상의 서브 구간들(b1',b2') 각각에서 에너지 밴드의 전위는 선형적으로 증가할 수 있으나, 이에 한정되는 것은 아니며, 비선형적 또는 계단적으로 증가할 수도 있다.The second section a2 'may include two or more sub-sections b1', b2 'that increase in different slopes. In each of the two or more sub-intervals b1 'and b2', the potential of the energy band may increase linearly, but is not limited thereto, and may increase non-linearly or continuously.
서브 구간들(b1',b2') 각각의 에너지 밴드의 전위의 기울기의 절대값은 제1 구간(a1')의 에너지 밴드 전위의 기울기의 절대값보다 작을 수 있다.The absolute value of the slope of the potential of the energy band of each of the sub-sections b1 'and b2' may be smaller than the absolute value of the slope of the energy band potential of the first section a1 '.
우물층(19-1' 내지 19-M', 예컨대, M'=3)의 조성은 InyGaN(1-y)(0<x<1)일 수 있다. 장벽층(18-1' 내지 18-N', 예컨대, N'=2)은 우물층(19-1' 내지 19-M', 예컨대, M'=3)에 비해 밴드 갭 에너지가 큰 (Al, In, Ga)N 계열의 III족 질화물 반도체층, 예컨대, AlGaN층, InGaN층 또는 GaN층으로 형성될 수 있다.The composition of the well layers 19-1 'to 19-M', for example, M '= 3 may be In y GaN (1-y) (0 <x <1). The barrier layers 18-1 'to 18-N', e.g., N '= 2, have a bandgap energy greater than that of the well layers 19-1' to 19-M ' , In, Ga) N series, for example, an AlGaN layer, an InGaN layer, or a GaN layer.
제1 구간(a1')의 인듐의 조성은 점진적으로 증가할 수 있다. 예컨대, 제1 구간(a1')의 인듐의 조성은 선형적으로 증가할 수 있다. 제1 구간(a1')의 조성은 InyGaN(1-y)(1<y≤0.17)일 수 있다. The composition of indium in the first section a1 'may gradually increase. For example, the composition of indium in the first section a1 'may increase linearly. The composition of the first section a1 'may be In y GaN (1-y) (1 < y ? 0.17).
제2 구간(a2')의 인듐 조성은 점진적으로 감소할 수 있다. 예컨대. 제2 구간(a2')의 인듐 조성은 선형적으로 감소할 수 있다. 예컨대, 서브 구간들(b1',b2') 각각의 인듐(In)의 함유량은 선형적으로 감소할 수 있다.The indium composition of the second section a2 'may gradually decrease. for example. The indium composition of the second section a2 'may decrease linearly. For example, the content of indium (In) in each of the sub-regions b1 'and b2' may be linearly decreased.
또한 서브 구간들(b1',b2') 각각의 인듐(In)의 감소율은 서로 다를 수 있다. 예컨대, 제1 서브 구간(b1')의 인듐의 감소율은 제2 서브 구간(b2')의 인듐의 감소율보다 크거나 작을 수 있다.Also, the decreasing rates of indium (In) in the sub-regions b1 'and b2' may be different from each other. For example, the decreasing rate of indium in the first sub-section b1 'may be larger or smaller than the decreasing rate of indium in the second sub-section b2'.
제1 서브 구간(b1')의 조성은 InyGaN(1-y)(0.17≤x≤0.13)일 수 있고, 제2 서브 구간(b2')의 조성은 InyGaN(1-y)(0.13≤x≤1)일 수 있다.The composition of the first sub-section b1 'may be In y GaN (1-y) (0.17 x 0.13), and the composition of the second sub-section b2' may be In y GaN (1-y) 0.13? X? 1).
우물층들(19-1' 내지 19-M', 예컨대, M'=3) 각각의 두께는 1.5nm ~ 3nm일 수 있다. 그리고 제1 구간(a1')의 두께와 제2 구간(a2')의 두께의 비는 1: 1.5~2.5일 수 있다. 예컨대, 제1 구간(a1')의 두께는 1nm이하일 수 있고, 제2 구간(a2')의 두께는 2nm이하 일 수 있다. 서브 구간들(b1', b2') 각각의 두께는 서로 동일할 수 있다. 장벽층들(18-1' 내지 18-N', 예컨대, N'=2) 각각의 두께는 5nm ~ 30nm일 수 있다.The thickness of each of the well layers 19-1 'to 19-M', e.g., M '= 3, may be 1.5 nm to 3 nm. The ratio of the thickness of the first section a1 'to the thickness of the second section a2' may be 1: 1.5 to 2.5. For example, the thickness of the first section a1 'may be 1 nm or less, and the thickness of the second section a2' may be 2 nm or less. The thicknesses of the sub-sections b1 'and b2' may be equal to each other. The thickness of each of the barrier layers 18-1 'to 18-N', e.g., N '= 2, may be between 5 nm and 30 nm.
발광 구조물(120)는 제1 도전형 반도체층(122)의 일부를 노출하도록 제2 도전형 반도체층(126), 활성층(120) 및 제1 도전형 반도체층(122)의 일부가 식각된 구조일 수 있다.The
전도층(125)은 제2 도전형 반도체층(126) 상에 배치된다. 전도층(125)은 전반사를 감소시킬 뿐만 아니라, 투광성이 좋기 때문에 활성층(124)으로부터 제2 도전형 반도체층(126)으로 방출되는 빛의 추출 효율을 증가시킬 수 있다.The
전도층(125)은 발광 파장에 대해 투과율이 높은 투명한 산화물계 물질, 예컨대, ITO(Indium Tin Oxide), TO(Tin Oxide), IZO(Indium Zinc Oxide), IZTO(Indium Zinc Tin Oxide), IAZO(Indium Aluminium Zinc Oxide), IGZO(Indium Gallium Zinc Oxide), IGTO(Indium Gallium Tin Oxide), AZO(Aluminium Zinc Oxide), ATO(Aluminium Tin Oxide), GZO(Gallium Zinc Oxide), IrOx, RuOx, RuOx/ITO, Ni, Ag, Ni/IrOx/Au 또는 Ni/IrOx/Au/ITO 중 하나 이상을 이용하여 단층 또는 다층으로 구현할 수 있다.The
제1 전극(130)은 식각에 의하여 노출된 제1 도전형 반도체층(122) 상에 배치되고, 제2 전극(140)은 전도층(125) 상에 배치될 수 있다. 제1 전극(130) 및 제2 전극(140)은 도전성 금속, 예컨대, 크롬(Cr), 니켈(Ni), 금(Au), 알루미늄(Al), 타이타늄(Ti), 백금(Pt) 중에서 선택된 어느 하나 또는 이들의 합금으로 이루어질 수 있다.The
도 7은 다른 실시 예에 따른 발광 소자(200)를 나타낸다. 도 7을 참조하면, 발광 소자(200)는 제2 전극층(205), 발광 구조물(120), 보호층(235), 패시베이션층(passivation layer, 250), 및 제1 전극(260)을 포함한다.7 shows a
제2 전극층(205)은 발광 구조물(120)을 지지하며, 제2 전원을 공급한다.The
제2 전극층(205)은 지지층(210), 접합층(215), 배리어층(220), 반사층(225), 오믹층(ohmic contact layer, 230)를 포함할 수 있다.The
지지층(210)은 금속 기판 또는 반도체로 이루어질 수 있다. 예컨대, 지지층(210)은 Cu, Cr, Ni, Ag, Au, Mo, Pd, W 또는 Al 등의 금속 물질로 이루어질 수 있다.The
배리어층(220)은 발광 구조물(120)과 지지층(210) 사이에 배치되며, 지지층(210)의 금속 이온이 발광 구조물(120)로 확산하는 것을 방지한다. 배리어층(220)은 배리어 금속 물질, 예컨대, 니켈(Ni), 티타늄(Ti), 또는 TiN 등으로 이루어질 수 있다.The
접합층(215)은 배리어층(220)과 지지층(210) 사이에 배치될 수 있다. 접합층(215)은 배리어층(220)과 지지층(210) 사이에 삽입되어 양자를 접합할 수 있다.The
접합층(215)은 지지층(210)을 본딩 방식으로 접합하기 위해 형성되는 것이기 때문에, 지지층(210)을 도금이나 증착 방법으로 형성하는 경우 또는 지지층(210)이 반도체층일 경우에는 접합층(215)은 생략될 수 있다. 접합층(215)은 접합 금속 물질, 예컨대, Au, Sn, Ni, Nb, In, Cu, Ag 및 Pd 중 적어도 하나를 포함할 수 있다.The
반사층(225)은 유효 휘도를 향상시키기 위하여 배리어층(220) 상에 위치하며, 반사 물질, 예컨대, Au, Ni, Ag, Al 또는 그 합금으로 이루어질 수 있다.The
오믹층(230)은 반사층(225)과 발광 구조물(120) 사이의 오믹 접촉을 위하여 반사층(225)과 제2 도전형 반도체층(220) 사이에 위치한다. 오믹층(230)은 제2 도전형 반도체층(220)과 오믹 접촉하는 물질, 예컨대, ITO(Indium Tin Oxide), TO(Tin Oxide), IZO(Indium Zinc Oxide), IZTO(Indium Zinc Tin Oxide), IAZO(Indium Aluminium Zinc Oxide), IGZO(Indium Gallium Zinc Oxide), IGTO(Indium Gallium Tin Oxide), AZO(Aluminium Zinc Oxide), ATO(Aluminium Tin Oxide), GZO(Gallium Zinc Oxide), IrOx, RuOx, RuOx/ITO, Ni, Ag, Ni/IrOx/Au 또는 Ni/IrOx/Au/ITO 중 적어도 하나를 포함하는 투명 전도성 산화물로 이루어질 수 있다.The
발광 구조물(120)은 제2 전극층(205) 상에 배치된다. 예컨대, 발광 구조물(120)은 제2 전극층(205) 상에 순차로 적층되는 제2 도전형 반도체층(126), 활성층(124), 및 제1 도전형 반도체층(122)을 포함할 수 있다. 활성층(124)은 적어도 1회 교대로 반복되는 우물층(19-1 내지 19-M) 및 장벽층(18-1 내지 18-N)을 포함할 수 있다. 우물층(19-1 내지 19-M) 및 장벽층(18-1 내지 18-N)의 에너지 밴드의 전위, 조성, 및 두께 등은 상술한 바와 동일할 수 있다.The
보호층(235)은 제2 전극층(205)의 가장 자리 영역 상에 배치될 수 있다. 예컨대, 보호층(235)은 발광 구조물(120)의 측면에 인접하는 배리어층(220)의 가장 자리 영역 상에 배치될 수 있으며, 일 측이 오믹층(215)과 인접할 수 있다.The
패시베이션층(250)은 발광 구조물(120)의 상면 또는 측면 상에 배치되어, 발광 구조물(120)을 보호할 수 있다. 보호층(235) 또는 패시베이션층(250)은 실리콘 산화막(SiO2), 실리콘 질화막(Si3N4) 또는 AlN으로 이루어질 수 있다. 제1 전극(260)은 제1 도전형 반도체층(146) 상에 배치될 수 있다.The
실시 예는 상술한 바와 같이, 압전 전기장에 기인하는 활성층(124)에서의 에너지 밴드의 치우침을 보상하여, 에너지 밴드의 변형을 방지하여, 발광 소자(200)의 내부 양자 효율을 향상시킬 수 있다.As described above, the embodiment can compensate the deviation of the energy band in the
도 8은 실시 예에 따른 발광 소자를 포함하는 발광 소자 패키지를 나타낸다.8 illustrates a light emitting device package including a light emitting device according to an embodiment.
도 8을 참조하면, 실시 예에 따른 발광 소자 패키지는 패키지 몸체(510), 제1 리드 프레임(512), 제2 리드 프레임(514), 발광 소자(520), 반사판(525), 와이어(530), 및 수지층(540)을 포함한다.Referring to FIG. 8, a light emitting device package according to an embodiment includes a
패키지 몸체(510)는 일측 영역에 캐버티(cavity)가 형성된 구조이다. 이때 캐버티의 측벽은 경사지게 형성될 수 있다. 패키지 몸체(510)는 실리콘 기반의 웨이퍼 레벨 패키지(wafer level package), 실리콘 기판, 실리콘 카바이드(SiC), 질화알루미늄(aluminum nitride, AlN) 등과 같이 절연성 또는 열전도도가 좋은 기판으로 형성될 수 있으며, 복수 개의 기판이 적층되는 구조일 수 있다. 실시 예는 상술한 몸체의 재질, 구조, 및 형상으로 한정되지 않는다.The
제1 리드 프레임(512) 및 제2 리드 프레임(514)은 열 배출이나 발광 소자의 장착을 고려하여 서로 전기적으로 분리되도록 패키지 몸체(510)의 표면에 배치될 수 있다. 발광 소자(520)는 제1 리드 프레임(512) 및 제2 리드 프레임(514)과 전기적으로 연결된다. 이때 발광 소자(520)는 실시 예에 따른 발광 소자들(100, 200,300) 중 어느 하나일 수 있다.The
예컨대, 도 1에 도시된 발광 소자(100)의 제1 전극(130)는 제2 와이어(524)에 의하여 제2 리드 프레임(514)에 전기적으로 연결된다. 그리고 제2 전극(140)은 제1 와이어(522)에 의하여 제1 리드 프레임(512)에 전기적으로 연결될 수 있다.For example, the
또한 도 7에 도시된 발광 소자(200)의 제2 전극부(205)는 제1 리드 프레임(512)에 본딩되고, 제1 전극(260)은 제2 리드 프레임(514)과 전기적으로 연결될 수 있다.The
반사판(525)은 발광 소자(520)에서 방출된 빛을 소정의 방향으로 지향하도록 패키지 몸체(510)의 캐버티 측벽에 형성된다. 반사판(525)은 광반사 물질로 이루어지며, 예컨대, 금속 코팅이거나 금속 박편일 수 있다.The reflection plate 525 is formed on the cavity side wall of the
수지층(540)은 패키지 몸체(510)의 캐버티 내에 위치하는 발광 소자(520)를 포위하여 발광 소자(520)를 외부 환경으로부터 보호한다. 수지층(540)은 에폭시 또는 실리콘과 같은 무색 투명한 고분자 수지 재질로 이루어진다. 수지층(540)은 발광 소자(520)에서 방출된 광의 파장을 변화시킬 수 있도록 형광체가 포함될 수 있다. 발광 소자 패키지는 상기에 개시된 실시 예들의 발광 소자들 중 적어도 하나를 탑재할 수 있으며, 이에 대해 한정하지는 않는다.The
실시 예에 따른 발광 소자 패키지는 복수 개가 기판 상에 어레이되며, 발광 소자 패키지의 광 경로 상에 광학 부재인 도광판, 프리즘 시트, 확산 시트 등이 배치될 수 있다. 이러한 발광 소자 패키지, 기판, 광학 부재는 백라이트 유닛으로 기능할 수 있다.A plurality of light emitting device packages according to embodiments may be arranged on a substrate, and a light guide plate, a prism sheet, a diffusion sheet, and the like may be disposed on the light path of the light emitting device package. The light emitting device package, the substrate, and the optical member may function as a backlight unit.
또 다른 실시 예는 상술한 실시 예들에 기재된 발광 소자 또는 발광 소자 패키지를 포함하는 표시 장치, 지시 장치, 조명 시스템으로 구현될 수 있으며, 예를 들어, 조명 시스템은 램프, 가로등을 포함할 수 있다.Still another embodiment may be implemented as a display device, an indicating device, and a lighting system including the light emitting device or the light emitting device package described in the above embodiments. For example, the lighting system may include a lamp and a streetlight.
도 9는 실시 예에 따른 발광 소자 패키지를 포함하는 조명 장치의 분해 사시도이다. 도 9를 참조하면, 조명 장치는 광을 투사하는 광원(750)과 광원(7500)이 내장되는 하우징(700)과 광원(750)의 열을 방출하는 방열부(740) 및 광원(750)과 방열부(740)를 하우징(700)에 결합하는 홀더(760)를 포함한다.9 is an exploded perspective view of a lighting device including a light emitting device package according to an embodiment. 9, the illumination device includes a
하우징(700)은 전기 소켓(미도시)에 결합되는 소켓 결합부(710)와, 소켓 결합부(710)와 연결되고 광원(750)이 내장되는 몸체부(730)를 포함한다. 몸체부(730)에는 하나의 공기 유동구(720)가 관통하여 형성될 수 있다.The
하우징(700)의 몸체부(730) 상에 복수 개의 공기 유동구(720)가 구비되며, 공기 유동구(720)는 하나이거나, 복수 개일 수 있다. 공기 유동구(720)는 몸체부(730)에 방사상으로 배치되거나 다양한 형태로 배치될 수 있다.A plurality of air flow holes 720 are provided on the
광원(750)은 기판(754) 상에 구비되는 복수 개의 발광 소자 패키지(752)를 포함한다. 기판(754)은 하우징(700)의 개구부에 삽입될 수 있는 형상일 수 있으며, 후술하는 바와 같이 방열부(740)로 열을 전달하기 위하여 열전도율이 높은 물질로 이루어질 수 있다. 복수 개의 발광 소자 패키지는 상술한 실시 예일 수 있다.The
광원(750)의 하부에는 홀더(760)가 구비되며, 홀더(760)는 프레임 및 다른 공기 유동구를 포함할 수 있다. 또한, 도시되지는 않았으나 광원(750)의 하부에는 광학 부재가 구비되어 광원(750)의 발광 소자 패키지(752)에서 투사되는 빛을 확산, 산란 또는 수렴시킬 수 있다.A
도 10은 실시 예에 따른 발광 소자 패키지를 포함하는 표시 장치를 나타낸다. 도 10을 참조하면, 표시 장치(800)는 바텀 커버(810)와, 바텀 커버(810) 상에 배치되는 반사판(820)과, 광을 방출하는 발광 모듈(830, 835)과, 반사판(820)의 전방에 배치되며 상기 발광 모듈(830,835)에서 발산되는 빛을 표시 장치 전방으로 안내하는 도광판(840)과, 도광판(840)의 전방에 배치되는 프리즘 시트들(850,860)을 포함하는 광학 시트와, 광학 시트 전방에 배치되는 디스플레이 패널(870)과, 디스플레이 패널(870)과 연결되고 디스플레이 패널(870)에 화상 신호를 공급하는 화상 신호 출력 회로(872)와, 디스플레이 패널(870)의 전방에 배치되는 컬러 필터(880)를 포함할 수 있다. 여기서 바텀 커버(810), 반사판(820), 발광 모듈(830,835), 도광판(840), 및 광학 시트는 백라이트 유닛(Backlight Unit)을 이룰 수 있다.10 shows a display device including a light emitting device package according to an embodiment. 10, the
발광 모듈은 기판(830) 상의 발광 소자 패키지(835)를 포함하여 이루어진다. 여기서, 기판(830)은 PCB 등이 사용될 수 있다. 발광 소자 패키지(835)는 실시 예에 따른 발광 소자 패키지일 수 있다.The light emitting module comprises a light emitting
바텀 커버(810)는 표시 장치(800) 내의 구성 요소들을 수납할 수 있다. 그리고, 반사판(820)은 본 도면처럼 별도의 구성요소로 마련될 수도 있으며, 도광판(840)의 후면이나, 바텀 커버(810)의 전면에 반사도가 높은 물질로 코팅되는 형태로 마련되는 것도 가능하다.The
여기서, 반사판(820)은 반사율이 높고 초박형으로 사용 가능한 소재를 사용할 수 있고, 폴리에틸렌 테레프탈레이트(PolyEthylene Terephtalate; PET)를 사용할 수 있다.Here, the
그리고, 도광판(830)은 폴리메틸메타크릴레이트(PolyMethylMethAcrylate; PMMA), 폴리카보네이트(PolyCarbonate; PC), 또는 폴리에틸렌(PolyEthylene; PE) 등으로 형성될 수 있다.The
그리고, 제1 프리즘 시트(850)는 지지 필름의 일면에, 투광성이면서 탄성을 갖는 중합체 재료로 형성될 수 있으며, 중합체는 복수 개의 입체구조가 반복적으로 형성된 프리즘층을 가질 수 있다. 여기서, 복수 개의 패턴은 도시된 바와 같이 마루와 골이 반복적으로 스트라이프 타입으로 구비될 수 있다.The
그리고, 제2 프리즘 시트(860)에서 지지 필름 일면의 마루와 골의 방향은, 제1 프리즘 시트(850) 내의 지지필름 일면의 마루와 골의 방향과 수직할 수 있다. 이는 발광 모듈과 반사 시트로부터 전달된 빛을 디스플레이 패널(1870)의 전면으로 고르게 분산하기 위함이다.In the
그리고, 도시되지는 않았으나, 도광판(840)과 제1 프리즘 시트(850) 사이에 확산 시트가 배치될 수 있다. 확산 시트는 폴리에스터와 폴리카보네이트 계열의 재료로 이루어질 수 있으며, 백라이트 유닛으로부터 입사된 빛을 굴절과 산란을 통하여 광 투사각을 최대로 넓힐 수 있다. 그리고, 확산 시트는 광확산제를 포함하는 지지층과, 광출사면(제1 프리즘 시트 방향)과 광입사면(반사시트 방향)에 형성되며 광확산제를 포함하지 않는 제1 레이어와 제2 레이어를 포함할 수 있다.Although not shown, a diffusion sheet may be disposed between the
실시 예에서 확산 시트, 제1 프리즘시트(850), 및 제2 프리즘시트(1860)가 광학 시트를 이루는데, 광학 시트는 다른 조합 예를 들어, 마이크로 렌즈 어레이로 이루어지거나 확산 시트와 마이크로 렌즈 어레이의 조합 또는 하나의 프리즘 시트와 마이크로 렌즈 어레이의 조합 등으로 이루어질 수 있다.In an embodiment, the diffusion sheet, the
디스플레이 패널(870)은 액정 표시 패널(Liquid crystal display)가 배치될 수 있는데, 액정 표시 패널(860) 외에 광원을 필요로 하는 다른 종류의 표시 장치가 구비될 수 있다.The
이상에서 실시 예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시 예에 포함되며, 반드시 하나의 실시 예에만 한정되는 것은 아니다. 나아가, 각 실시 예에서 예시된 특징, 구조, 효과 등은 실시 예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시 예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The features, structures, effects and the like described in the embodiments are included in at least one embodiment of the present invention and are not necessarily limited to one embodiment. Further, the features, structures, effects, and the like illustrated in the embodiments can be combined and modified by other persons having ordinary skill in the art to which the embodiments belong. Therefore, it should be understood that the present invention is not limited to these combinations and modifications.
110: 기판, 120: 발광 구조물,
122:제1 도전형 반도체층, 124: 활성층
125: 전도층, 126: 제2 도전형 반도체층,
130: 제1 전극, 140: 제2 전극
205: 제2 전극층, 210: 지지층
220: 배리어층, 225: 반사층
230: 오믹층, 235: 보호층
250: 패시베이션층, 260: 제1 전극
18-1 내지 18-N: 장벽층, 19-1 내지 19-M: 우물층.110: substrate, 120: light emitting structure,
122: first conductivity type semiconductor layer, 124: active layer
125: conductive layer, 126: second conductive type semiconductor layer,
130: first electrode, 140: second electrode
205: second electrode layer, 210: support layer
220: barrier layer, 225: reflective layer
230: ohmic layer, 235: protective layer
250: passivation layer, 260: first electrode
18-1 to 18-N: barrier layer, 19-1 to 19-M: well layer.
Claims (15)
제2 반도체층; 및
상기 제1 반도체층과 상기 제2 반도체층 사이에 배치되고, 적어도 한번 이상 교대로 적층되는 우물층 및 장벽층을 갖는 활성층을 포함하며,
상기 우물층은,
제1 방향으로 에너지 밴드가 감소하는 제1 구간; 및
상기 제1 구간과 접하고, 상기 제1 방향으로 에너지 밴드가 선형적으로 증가하는 제2 구간을 포함하며,
상기 제1 구간은
선형적으로 감소하는 제1 에너지 밴드의 기울기를 갖는 제1 서브 구간; 및
선형적으로 감소하는 제2 에너지 밴드의 기울기을 갖는 제2 서브 구간을 포함하고,
상기 제1 에너지 밴드의 기울기와 상기 제2 에너지 밴드의 기울기는 서로 다르고,
상기 제2 구간의 두께와 상기 제1 구간의 두께의 비는 1: 1.5~2.5이고,
상기 제1 및 제2 에너지 밴드의 기울기들 각각의 절대값은 상기 제2 구간의 에너지 밴드의 기울기의 절대값보다 작고,
상기 제1 방향은 상기 제1 반도체층으로부터 상기 제2 반도체층으로 진행하는 방향인 발광 소자.A first semiconductor layer;
A second semiconductor layer; And
And an active layer disposed between the first semiconductor layer and the second semiconductor layer and having a well layer and a barrier layer stacked alternately at least once,
Wherein the well layer comprises:
A first section in which an energy band decreases in a first direction; And
And a second section in contact with the first section and linearly increasing an energy band in the first direction,
The first section
A first sub-section having a slope of a linearly decreasing first energy band; And
And a second sub-section having a slope of a linearly decreasing second energy band,
Wherein a slope of the first energy band and a slope of the second energy band are different from each other,
The ratio of the thickness of the second section to the thickness of the first section is 1: 1.5 to 2.5,
The absolute value of each of the slopes of the first and second energy bands is smaller than the absolute value of the slope of the energy band of the second section,
Wherein the first direction is a direction from the first semiconductor layer to the second semiconductor layer.
상기 제1 반도체층은 n형 반도체층이고, 상기 제2 반도체층은 p형 반도체층인 발광 소자.The method according to claim 1,
Wherein the first semiconductor layer is an n-type semiconductor layer and the second semiconductor layer is a p-type semiconductor layer.
상기 제1 반도체층은 p형 반도체층이고, 상기 제2 반도체층은 n형 반도체층인 발광 소자.The method according to claim 1,
The first semiconductor layer is a p-type semiconductor layer, and the second semiconductor layer is an n-type semiconductor layer.
상기 제1 서브 구간의 조성은 InxGaN(1-x)(0<x≤0.13)이고, 상기 제2 서브 구간의 조성은 InxGaN(1-x)(0.13≤x≤0.17)이고, 상기 제2 구간의 조성은 InxGaN(1-x)(0.17≤x<1)이고,
상기 제1 방향으로 상기 제1 및 제2 서브 구간들 각각의 인듐의 함유량은 선형적으로 증가하고,
상기 제1 방향으로 상기 제2 구간의 인듐 함유량은 선형적으로 감소하는 발광 소자.The method according to claim 1,
Wherein the composition of the first sub-section is In x GaN (1-x) (0 < x ? 0.13), the composition of the second sub-section is In x GaN (1-x) The composition of the second section is In x GaN (1-x) (0.17? X <1)
The content of indium in each of the first and second sub-sections in the first direction linearly increases,
And the indium content in the second section in the first direction decreases linearly.
상기 제1 및 제2 서브 구간들 각각의 두께는 서로 동일한 발광 소자.The method according to claim 1,
Wherein the first and second sub-sections have the same thickness.
상기 패키지 몸체에 배치되는 제1 리드 프레임과 제2 리드 프레임;
상기 제1 리드 프레임 및 상기 제2 리드 프레임과 전기적으로 연결되고, 제1항, 제5항 내지 제7항, 및 제13항 중 어느 한 항에 기재된 발광 소자; 및
상기 발광 소자를 포위하는 수지층을 포함하는 발광 소자 패키지.A package body;
A first lead frame and a second lead frame disposed in the package body;
A light emitting element electrically connected to the first lead frame and the second lead frame, the light emitting element according to any one of claims 1 to 7, and 13; And
And a resin layer surrounding the light emitting element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110114945A KR101874904B1 (en) | 2011-11-07 | 2011-11-07 | A light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110114945A KR101874904B1 (en) | 2011-11-07 | 2011-11-07 | A light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130049905A KR20130049905A (en) | 2013-05-15 |
KR101874904B1 true KR101874904B1 (en) | 2018-08-02 |
Family
ID=48660462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110114945A KR101874904B1 (en) | 2011-11-07 | 2011-11-07 | A light emitting device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101874904B1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101423720B1 (en) * | 2008-03-25 | 2014-08-04 | 서울바이오시스 주식회사 | Light emitting device having active region of multi quantum well structure and method for fabricating the same |
WO2010101335A1 (en) * | 2009-03-06 | 2010-09-10 | Chung Hoon Lee | Light emitting device |
-
2011
- 2011-11-07 KR KR1020110114945A patent/KR101874904B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR20130049905A (en) | 2013-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9620682B2 (en) | Light emitting device | |
KR101799451B1 (en) | A light emitting device | |
US9153622B2 (en) | Series of light emitting regions with an intermediate pad | |
EP2381493B1 (en) | Light emitting device | |
US20110095263A1 (en) | Light emitting device and light emitting device package | |
KR20120138080A (en) | Light emitting device | |
KR101954205B1 (en) | A light emitting device | |
KR101799450B1 (en) | A light emitting device and a light emitting device package | |
EP2381492B1 (en) | Light emitting device with resonant thickness of one semiconductor layer | |
KR20130065096A (en) | Light emitting device | |
KR102160776B1 (en) | A light emitting device | |
KR101850433B1 (en) | Light emitting device | |
KR101874904B1 (en) | A light emitting device | |
KR101838022B1 (en) | Light emitting device | |
KR101861636B1 (en) | Light emitting device | |
KR101888605B1 (en) | Light emitting device | |
KR101998764B1 (en) | A light emitting device | |
KR101992364B1 (en) | A light emitting device | |
KR101904323B1 (en) | A light emitting device and a light emitting device package | |
KR101827974B1 (en) | A light emitting device | |
KR102239624B1 (en) | A light emitting device package | |
KR102076242B1 (en) | A light emitting device | |
KR20130058232A (en) | Light emitting device | |
KR20120036643A (en) | Light emitting device | |
KR20130064251A (en) | Light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |