KR101869339B1 - 열교환기 및 이를 구비한 원전 - Google Patents
열교환기 및 이를 구비한 원전 Download PDFInfo
- Publication number
- KR101869339B1 KR101869339B1 KR1020170048730A KR20170048730A KR101869339B1 KR 101869339 B1 KR101869339 B1 KR 101869339B1 KR 1020170048730 A KR1020170048730 A KR 1020170048730A KR 20170048730 A KR20170048730 A KR 20170048730A KR 101869339 B1 KR101869339 B1 KR 101869339B1
- Authority
- KR
- South Korea
- Prior art keywords
- plate
- flow path
- flow paths
- heat exchanger
- flow
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0062—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/16—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
- F22B1/162—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour in combination with a nuclear installation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/04—Arrangements for sealing elements into header boxes or end plates
- F28F9/16—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
- F28F9/162—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by using bonding or sealing substances, e.g. adhesives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/04—Arrangements for sealing elements into header boxes or end plates
- F28F9/16—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
- F28F9/18—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2230/00—Sealing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/06—Fastening; Joining by welding
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
제1유체 및 제2유체 상호 간의 열교환을 위한 복수의 제1유로 및 제2유로를 형성하고, 오목한 형태로 이루어지는 그루브형 유로를 복수개 구비하는 상부플레이트 및 하부플레이트 중 적어도 하나의 플레이트; 상기 상부플레이트 또는 하부플레이트에 결합되거나, 상기 상부플레이트 및 하부플레이트 사이에 삽입 결합되어, 상기 제1유로 및 제2유로 중 적어도 하나의 유로 깊이를 증가시키는 확장플레이트를 포함하고, 상기 확장플레이트는, 상기 그루브형 유로와 각각 연통되도록 이격 배치되고, 두께방향으로 관통 형성되는 복수의 관통형 유로; 및 상기 관통형 유로를 연결하는 절단부를 구비하는 열교환기가 개시된다.
Description
본 발명은 유로 깊이 증가를 통해 유로면적 확장이 가능한 열교환기 및 이를 구비한 원전에 관한 것이다.
인쇄기판형 열교환기는 영국 Heatric 사(US 4665975A, 1987.05.19 공개)에서 개발되어 일반 산업분야에 매우 다양하게 이용되고 있다.
인쇄기판형 열교환기는 광화학적 식각 기술(Photo-chemical etching technique)에 의한 조밀한 유로배치 및 확산접합 기술을 이용하여 열교환기의 판 사이의 용접을 없앤 구조의 열교환기이다.
이로써, 인쇄기판형 열교환기는 고온 고압의 환경에 대한 내구성이 강하고, 고집적도와 우수한 열교환 성능 등의 장점을 가짐에 따라 냉난방시스템, 연료전지, 자동차, 화학 공정, 의료기기, 원자력, 정보 통신 장비, 극저온 환경 등의 증발기, 응축기, 냉각기, 라디에이터, 열교환기, 반응기 등 매우 다양한 분야로 적용범위가 확대되고 있다. 또한, 인쇄기판형태의 제작 기술은 광화학적 식각 기술(Photo-chemical etching technique)을 이용하므로 일반 가공 방식보다는 매우 자유롭게 유로를 가공할 수 있는 장점이 있다.
본 발명의 일 예 중의 하나로 활용할 판형 열교환기는 100년 넘게 산업계에서 광범위하게 적용되고 있다. 판형(plate type) 열교환기는 일반적으로 판을 압출하여 유로를 형성하여 결합시킨다. 이에 따라 인쇄기판형 열교환기와 적용분야는 유사하나 압력이 낮은 저압 환경에서 더 많이 이용되고 있다. 판형 열교환기의 열교환 성능은 인쇄기판형 열교환기에 비해 작고, 쉘 앤 튜브(shell and tube)형 열교환기에 비해 우수한 특성이 있다. 또한 판형 열교환기는 인쇄기판형 열교환기에 비해 제작이 간편한 특성이 있다.
본 발명에서 플레이트형 열교환기 또는 증기발생기라 함은, 특별한 언급이 없는 한, 일반적인 판형과 인쇄기판형 열교환기 또는 증기발생기뿐만 아니라 플레이트(판)의 가공 방법이나 접합 방법에 차이가 있는 경우의 열교환기 또는 증기발생기를 모두 포괄적으로 지칭한다.
도 1a 내지 도 1d는 종래의 인쇄기판형 열교환기의 일부 단위 구조를 보여주는 단면도이다.
도 1a에 도시된 열교환기(10)는 제1유로(13) 및 제2유로(14)를 구비하여, 제1유로(13) 및 제2유로(14)에 각각 흐르는 고온의 제1유체와 저온의 제2유체를 서로 열교환 시킨다. 제1유로(13)는 상부의 제1플레이트(11)의 상면에 오목하게 형성되고, 제2유로(14)는 하부의 제2플레이트(12) 상면에 오목하게 형성된다. 열교환기(10)는 도 1a와 같은 단위 구조가 반복적으로 결합하여 형성된다.
도 1b의 열교환기에 구비되는 제1유로(24)는 위에서부터 첫번째 및 두번째 플레이트(21,22)에 서로 마주보게 형성된 한 쌍의 유로홈의 조합에 의해 형성된다. 도 1b의 열교환기에 구비되는 제2유로(25)는 세번째 플레이트(23)의 상면에 형성된다.
도 1c의 열교환기(30)에 구비되는 제1유로(35) 및 제2유로(36)는 위쪽과 아래쪽에 각각 한 쌍씩 배치되는 플레이트(31,32,33,34)에 서로 마주보게 형성된 한 쌍의 유로홈의 조합에 의해 형성된다.
도 1d의 열교환기(40)에 구비되는 제1유로(45) 및 제2유로(46) 사이에 감시용 유로(47)가 더 형성된다. 기타 구성은 도 1c와 유사하다.
인쇄기판형 열교환기의 플레이트에 유로를 형성하기 위해, 일반적으로 에칭(ETCHING) 등과 같은 광학적 식각 기술을 적용한다.
그런데, 에칭은 유로 폭에는 크게 제한을 받지 않으나, 유로의 가공 깊이가 깊어짐에 따라 가공비가 증가하고 정밀도가 감소하여 깊이가 약 1mm 이내로 제한되고 있으며, 유로 깊이가 제한됨에 따라 유로저항 증가, 유로 오염 및 막힘 등의 문제가 발생할 수 있어 제한적인 산업분야에 이용되고 있다.
따라서, 인쇄기판형 열교환기의 유로 깊이를 증가시키기 위해 다양한 방법 및 개발이 시도되고 있다.
이와 관련하여 유로가 겹치도록 한 쌍의 플레이트를 결합하는 형태(하기, 선행기술문헌 D1 참조)와, 플레이트를 겹쳐 주유로를 깊게 형성하는 형태(하기, 선행기술문헌 D2 참조)가 제시되어 있다. 상기한 방법에 의해 일정부분 유로면적을 넓히는 목적을 달성할 수는 있다.
그러나, 한 쌍의 플레이트를 겹치는 방법을 제시하는 D1에 따르면, 약 2mm 이상 깊이의 유로를 형성하는 것이 어렵다.
또한, 플레이트를 겹쳐 주유로를 깊게 형성하는 형태를 제시하는 D2에 따르면, 상부플레이트 및 하부플레이트 사이에 관통형의 중간플레이트가 삽입될 경우 중간플레이트플레이트의 입출구 유로 형태를 2개로 나누거나, 유로면적이 다시 좁아지는 구간을 구성할 수밖에 없어 입출구의 유로면적이 넓히는데 한계가 있다.
따라서, 본 발명의 일 목적은, 유로 깊이를 증가시킬 수 있는 열교환기 및 이를 구비한 원전를 제공하기 위한 것이다.
*이와 같은 본 발명의 일 목적을 달성하기 위하여 본 발명에 따른 열교환기는 제1유체 및 제2유체 상호 간의 열교환을 위한 복수의 제1유로 및 제2유로를 형성하고, 오목한 형태로 이루어지는 그루브형 유로를 복수개 구비하는 상부플레이트 및 하부플레이트 중 적어도 하나의 플레이트; 상기 상부플레이트 또는 하부플레이트에 결합되거나, 상기 상부플레이트 및 하부플레이트 사이에 삽입 결합되어, 상기 제1유로 및 제2유로 중 적어도 하나의 유로 깊이를 증가시키는 확장플레이트를 포함하고, 상기 확장플레이트는, 상기 그루브형 유로와 각각 연통되도록 이격 배치되고, 두께방향으로 관통 형성되는 복수의 관통형 유로; 및 상기 관통형 유로를 연결하는 절단부를 구비한다.
본 발명과 관련된 일 예에 따르면, 상기 플레이트는 확산접합 또는 용접에 의해 적층 결합될 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 플레이트는 볼트에 의해 서로 결합되고, 상기 플레이트의 가장자리부는 개스킷에 의해 밀봉될 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 확장플레이트는 복수 개로 적층될 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 절단부는 적어도 일부에 유로가 형성되지 않아 복수의 관통형 유로를 연결할 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 상부플레이트 또는 하부플레이트는 적어도 일부에 유로가 형성되지 않는 절단부를 포함할 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 복수의 플레이트는 적층 결합된 후, 상기 절단부는 절단 가공될 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 절단부가 절단 가공된 후, 볼트 또는 용접에 의해 헤더가 결합될 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 열교환기는 원자로용기의 내부에 배치될 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 플레이트 사이에 감시용 유로를 구비하여, 제1유로 및 제2유로의 손상을 감시할 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 제1유로 또는 제2유로는 동일한 평면에서 서로 인접한 유로의 연결을 위한 횡방향 유로를 포함하는 개방형 또는 유선형 구조로 이루어질 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 제2유로는 유로저항부를 구비할 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 제1유로 및 제2유로 중 적어도 하나 이상의 유로는 상부플레이트, 하부플레이트 및 확장플레이트를 조합하여 형성될 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 확장플레이트는 레이저 가공, 절삭 가공 및 프린트 가공 중 적어도 하나 또는 이들의 조합에 의해 형성될 수 있다.
본 발명의 다른 실시예에 따른 원전은 원자로용기; 상기 원자로용기의 내부에 설치되고, 제1유체 및 제2유체 상호 간의 열교환을 위한 복수의 제1유로 및 제2유로를 형성하는 복수의 플레이트를 구비하는 열교환기를 포함하고, 상기 제1유로 및 제2유로 중 적어도 하나의 유로는, 복수의 그루브형 유로를 가지는 상부플레이트 또는 하부플레이트; 및 상기 그루브형 유로와 연통되는 복수의 관통형 유로를 가지고, 서로 인접한 관통형 유로를 연결하는 절단부를 구비하는 확장플레이트를 조합하여 형성된다.
본 발명의 다른 실시예와 관련된 일 예에 따르면, 상기 열교환기는 원자로냉각재계통의 열을 이차계통으로 전달하는 증기발생기일 수 있다.
상기와 같이 구성된 본 발명에 의하면, 다음과 같은 효과가 있다.
첫째, 플레이트형 열교환기의 코어를 구성함에 있어서, 관통형 유로 및 서로 인접한 관통형 유로를 연결하는 절단부를 구비하는 확장플레이트를 도입하여, 입구 및 출구영역을 포함하여 대부분의 유로를 효율적으로 확장할 수 있고, 유로 형상을 다양하게 제작할 수 있다.
둘째, 유로 깊이를 증가시켜 유로저항을 저감할 수 있다.
셋째, 유로 면적을 증가시켜 유로 오염 및 막힘 등의 문제를 해소 또는 완화할 수 있다.
넷째, 복수의 플레이트를 적용하여 열전달 유로를 확보하는 것에 비해 유로 구조가 단순하므로 설계하기가 용이하다.
다섯째, 확장플레이트의 가공 방법은 반드시 에칭에 의한 가공 방법을 적용하지 않아도 되므로, 비용이 적게 드는 다른 방법을 적용하여 경제성을 향상시킬 수 있다.
여섯째, 더욱 다양한 형태의 유로를 구성할 수 있어, 다양한 산업분야에서 요구하는 열전달면적 및 유로저항을 맞추기가 용이하다.
일곱째, 쉘 앤드 튜브형 열교환기에 비해 매우 큰 열전달 면적을 확보할 수 있어, 열교환기의 크기를 크게 줄일 수 있고, 특히 인쇄기판형 열교환기와 같이 내구성이 우수한 열교환기를 더욱 다양한 산업분야에 적용할 수 있다.
여덟째, 일체형 원자로에 본 발명의 기술을 적용할 경우에 증기발생기의 크기를 획기적으로 줄임에 따라 원자로용기와 원자로건물의 크기를 감소시킬 수 있으므로, 원전의 경제성을 더욱 향상시킬 수 있다.
도 1a 내지 도 1d는 종래의 인쇄기판형 열교환기의 일부를 보여주는 단면도이다.
도 2a 내지 도 2d는 본 발명에 따른 유로 깊이를 증가시켜 유로 면적이 확장된 열교환기의 일부를 보여주는 단면도이다.
도 3a는 본 발명의 제1실시예에 따른 열교환기의 가공 전 플레이트 형상을 보여주는 단면도 및 평면도이다.
도 3b는 본 발명의 제2실시예에 따른 열교환기의 가공 전 플레이트 형상을 보여주는 단면도 및 평면도이다.
도 3c는 본 발명의 제3실시예에 따른 열교환기의 가공 전 플레이트 형상을 보여주는 단면도 및 평면도이다.
도 3d는 본 발명의 제4실시예에 따른 열교환기의 가공 전 플레이트 형상을 보여주는 단면도 및 평면도이다.
도 4는 본 발명에 따른 열교환기의 가공 후 플레이트 형상을 보여주는 단면도 및 평면도이다.
도 5a는 본 발명에 따른 플레이트형 열교환기의 유로(상부/하부플레이트)를 상세하게 보여주는 개념도이다.
도 5b는 본 발명에 따른 플레이트형 열교환기의 유로(확장플레이트)를 상세하게 보여주는 개념도이다.
도 6a는 본 발명에 따른 플레이트형 열교환기의 유로(상부 및 하부플레이트)를 상세하게 보여주는 개념도이다.
도 6b는 본 발명에 따른 플레이트형 열교환기의 유로(확장플레이트)를 상세하게 보여주는 개념도이다.
도 7a는 본 발명에 따른 플레이트형 열교환기의 유로(상부 및 하부플레이트)를 상세하게 보여주는 개념도이다.
도 7b는 본 발명에 따른 플레이트형 열교환기의 유로(확장플레이트)를 상세하게 보여주는 개념도이다.
도 8a는 본 발명에 따른 플레이트형 열교환기의 유로(상부 및 하부플레이트)를 상세하게 보여주는 개념도이다.
도 8b는 본 발명에 따른 플레이트형 열교환기의 유로(확장플레이트)를 상세하게 보여주는 개념도이다.
도 8c는 본 발명에 따른 플레이트형 열교환기의 유로(확장플레이트)를 상세하게 보여주는 개념도이다.
도 9a는 본 발명에 따른 플레이트형 열교환기의 유로(상부 및 하부플레이트)를 상세하게 보여주는 개념도이다.
도 9b는 본 발명에 따른 플레이트형 열교환기의 유로(확장플레이트)를 상세하게 보여주는 개념도이다.
도 9c는 본 발명에 따른 플레이트형 열교환기의 유로(확장플레이트를 상세하게 보여주는 개념도이다.
도 10은 본 발명에 따른 감시용 유로 플레이트를 보여주는 개략도이다.
도 11은 본 발명에 따른 플레이트형 열교환기(증기발생기)를 장착한 원전을 보여주는 수직방향의 단면도이다.
도 2a 내지 도 2d는 본 발명에 따른 유로 깊이를 증가시켜 유로 면적이 확장된 열교환기의 일부를 보여주는 단면도이다.
도 3a는 본 발명의 제1실시예에 따른 열교환기의 가공 전 플레이트 형상을 보여주는 단면도 및 평면도이다.
도 3b는 본 발명의 제2실시예에 따른 열교환기의 가공 전 플레이트 형상을 보여주는 단면도 및 평면도이다.
도 3c는 본 발명의 제3실시예에 따른 열교환기의 가공 전 플레이트 형상을 보여주는 단면도 및 평면도이다.
도 3d는 본 발명의 제4실시예에 따른 열교환기의 가공 전 플레이트 형상을 보여주는 단면도 및 평면도이다.
도 4는 본 발명에 따른 열교환기의 가공 후 플레이트 형상을 보여주는 단면도 및 평면도이다.
도 5a는 본 발명에 따른 플레이트형 열교환기의 유로(상부/하부플레이트)를 상세하게 보여주는 개념도이다.
도 5b는 본 발명에 따른 플레이트형 열교환기의 유로(확장플레이트)를 상세하게 보여주는 개념도이다.
도 6a는 본 발명에 따른 플레이트형 열교환기의 유로(상부 및 하부플레이트)를 상세하게 보여주는 개념도이다.
도 6b는 본 발명에 따른 플레이트형 열교환기의 유로(확장플레이트)를 상세하게 보여주는 개념도이다.
도 7a는 본 발명에 따른 플레이트형 열교환기의 유로(상부 및 하부플레이트)를 상세하게 보여주는 개념도이다.
도 7b는 본 발명에 따른 플레이트형 열교환기의 유로(확장플레이트)를 상세하게 보여주는 개념도이다.
도 8a는 본 발명에 따른 플레이트형 열교환기의 유로(상부 및 하부플레이트)를 상세하게 보여주는 개념도이다.
도 8b는 본 발명에 따른 플레이트형 열교환기의 유로(확장플레이트)를 상세하게 보여주는 개념도이다.
도 8c는 본 발명에 따른 플레이트형 열교환기의 유로(확장플레이트)를 상세하게 보여주는 개념도이다.
도 9a는 본 발명에 따른 플레이트형 열교환기의 유로(상부 및 하부플레이트)를 상세하게 보여주는 개념도이다.
도 9b는 본 발명에 따른 플레이트형 열교환기의 유로(확장플레이트)를 상세하게 보여주는 개념도이다.
도 9c는 본 발명에 따른 플레이트형 열교환기의 유로(확장플레이트를 상세하게 보여주는 개념도이다.
도 10은 본 발명에 따른 감시용 유로 플레이트를 보여주는 개략도이다.
도 11은 본 발명에 따른 플레이트형 열교환기(증기발생기)를 장착한 원전을 보여주는 수직방향의 단면도이다.
이하, 본 발명에 관련된 열교환기에 대하여 도면을 참조하여 보다 상세하게 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일·유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다. 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 발명은 유로 깊이를 증가시켜 유로 면적을 증대시킬 수 있는 열교환기에 관한 것이다.
본 발명에서 플레이트형 열교환기라 함은 증기발생기를 포함한다.
본 발명에서는 열교환기의 유로 깊이를 증가시켜 유로 면적을 증대시키기 위해 확장플레이트를 제공한다. 확장플레이트는 절단부를 포함하고, 확장플레이트는 유로의 상하(깊이)방향으로 관통된 형태로 구성된다. 절단부는 플레이트의 일부에 유로가 형성되지 않아 플레이트 유로가 관통된 형태로 구성되더라도 플레이트가 조각나지 않도록 형성된다. 또한 이렇게 형성된 확장플레이트는 상부플레이트 또는 하부플레이트에 결합되거나 상부플레이트 및 하부플레이트 사이에 놓여 보다 큰 유로를 형성할 수 있다.
또한, 열교환기의 내부에 적층되는 제1유로플레이트 및 제2유로플레이트들은 확산접합 등에 의해 접합된 후 절단부가 절단됨으로 열교환기 코어를 형성한다. 이후 열교환기 코어에 헤더 등을 용접 가공하여 열교환기를 구성할 수 있다.
*단, 본 발명의 확장플레이트의 가공기술은 반드시 에칭(etching) 기법으로 한정되지 않고 절삭 또는 레이저 또는 프린트 가공 등 다양한 가공기술이 적용될 수 있으며, 판형 열교환기에도 유사한 기법이 적용될 수 있으므로, 인쇄기판형 열교환기로 한정하지 않는다.
본 발명의 기술을 적용하면, 플레이트형 열교환기의 열전달 유로 크기, 특히 깊이를 매우 자유롭게 구성할 수 있어, 플레이트형 열교환기에 보다 큰 유로를 적용할 수 있다. 또한 보다 다양한 형태의 유로를 구성할 수 있어, 다양한 산업분야에서 요구하는 유로 면적 및 유로저항을 맞추기가 용이해진다. 또한 유로 면적이 큰 경우에 적용되던 쉘 앤드 튜브형 열교환기보다 매우 큰 열전달 면적을 확보할 수 있어 열교환기의 크기를 크게 줄일 수 있다. 특히 인쇄기판형 열교환기와 같이 내구성이 우수한 열교환기를 보다 다양한 산업분야에 이용되게 할 수 있다.
또한, 본 발명의 기술을 일체형 원자로에 적용할 경우 증기발생기의 크기를 획기적으로 줄이고, 이에 따라 원자로용기와 원자로건물의 크기를 줄일 수 있어, 원전의 경제성을 더욱 향상시키는 효과를 얻을 수 있다.
이하, 도면을 참조하여 본 발명의 실시예를 더욱 상세하게 설명하면 다음과 같다.
도 2a 내지 도 2d는 본 발명에 따른 유로 깊이를 증가시켜 유로 면적이 확장된 열교환기(100)의 일부(단위유로)를 보여주는 단면도이다.
본 발명에 따른 플레이트형 열교환기(100) 또는 인쇄기판형 열교환기(100)는 상부플레이트 또는 하부플레이트(111,112)와 확장플레이트(113)를 조합하여 이루어질 수 있다.
본 발명의 열교환기(100)는 제1유로(121) 및 제2유로(122)를 구비한다.
제1유로(121)는 고온의 제1유체가 흐르는 유로를 의미한다. 제2유로(122)는 저온의 제2유체가 흐르는 유로를 의미한다. 단, 도 2a 내지 도 2d에서 제1유로(121) 또는 제2유로(122)로는 고온 및 저온의 유체가 서로 바뀌어 흐를 수도 있다. 제1유로(121) 및 제2유로(122)는 상하방향으로 서로 이격 배치되어, 각 유로를 따라 흐르는 유체의 열을 교환할 수 있다. 유로 깊이 증가에 따른 유로 확장은 열교환기의 요구 특성에 따라 제1유로(121) 및 제2유로(122)에 선택적으로 또는 둘다 적용될 수 있다.
또한, 유로 오염 및 막힘 현상을 해소하고 유로저항을 줄이기 위해 개방형 유로 또는 유선형 유로 구조를 적용할 수 있다.
또한, 유로 오염 및 막힘 현상을 해소하고 유로저항을 줄이기 위해 유로 깊이 뿐만 아니라 유로폭을 함께 넓히거나, 복수의 플레이트를 겹친 유로 구조를 적용할 수도 있다.
복수의 플레이트를 겹친 유로 구조를 적용하는 경우에, 제1유로플레이트(110)와 제2유로플레이트(112)의 갯수가 1대 다, 다대 다, 다대 1의 비율로 구성될 수 있다.
예를 들면, 1대 다(예,1:2)의 비율인 경우 제1유로플레이트(110), 제2유로플레이트(112), 제2유로플레이트(112) 순서로 반복적으로 배치될 수 있다.
다대 다의 비율인 경우 제1유로플레이트(110), 제1유로플레이트(110), 제2유로플레이트(112), 제2유로플레이트(112) 순서로 반복해서 배치될 수 있다.
다대 1의 비율인 경우 제1유로플레이트(110), 제1유로플레이트(110), 제2유로플레이트(112) 순서로 반복해서 배치될 수 있다.
도 2a에 도시된 열교환기(100)는 유로 깊이를 증가시켜 유로 면적이 증가된 제1유로(121)와 유로 깊이 증가가 없는 제2유로(122)를 포함하여 구성된다. 제1유로(121)의 유로 면적 증가를 위해 확장플레이트(113)가 추가로 도입된다. 예를 들면, 제1하부플레이트(111)로 이루어지는 제1유로(121)의 유로 깊이를 증가시키기 위해, 제1하부플레이트(111)의 그루브형 유로와 연통되며 그루브형 유로에서 상방향으로 연장되는 복수의 관통형 유로를 갖는 확장플레이트(113)가 제1하부플레이트(111) 상부에 추가로 적층 결합된다.
그루브(groove)형 유로란 반원호 형성 또는 반타원호 형상 등의 홈 형태로 오목하게 형성된 유로를 의미하나, 이밖에도 다양한 유로 형성이 가능하므로 반드시 이에 한정되는 것은 아니다. 관통형 유로는 상하방향 또는 두께방향으로 관통 형성되는 유로를 의미한다. 제1하부플레이트(111)에 형성되는 그루브형 유로와 확장플레이트(113)에 형성되는 관통형 유로는 서로 다른 평면 상에서 상하방향으로 마주보게 형성된다. 이에 의해, 유로면적을 증대시키며, 유로저항을 감소시킬 수 있다. 도 2a에 따른 유로 깊이를 증가시켜 유로 면적을 증가시키는 구조는 가장 단순한 유로 면적 증가 방식이며 플레이트 개수를 최소화할 수 있다. 유로의 형상은 특별히 제한되지 않는다. 또한, 유로 형상은 폐쇄형 또는 개방형 또는 유선형 일 수 있다.
도 2a에 도시된 제2유로(122)는 제2하부플레이트(112)의 상면에 이격 배치되는 그루브형 유로이다. 제2하부플레이트(112)는 제1하부플레이트(111)의 하부에 적층 결합된다.
도 2b에 도시된 열교환기(200)의 제1유로(221)는 상부플레이트(211) 및 하부플레이트(212)를 포함하여 구성되고, 유로 깊이를 증가시켜 유로 면적을 증가시키기 위해 상부플레이트(211) 및 하부플레이트(212) 사이에 확장플레이트(213)가 추가로 도입된다. 도 2b에 도시된 제2유로(222)는 도 2a의 제2유로(122)와 유사하므로, 상세한 설명을 생략하기로 한다.
도 2c에 도시된 열교환기(300)의 제1유로(321) 및 제2유로(322)는 모두 상부플레이트(311,314) 및 하부플레이트(312,315)를 포함하여 구성되고, 둘 다 유로면적을 증대시키기 위해 상부플레이트(311,314) 및 하부플레이트(312,315) 사이에 확장플레이트(313,316)가 추가로 삽입된다.
도 2d에 도시된 열교환기(400)는 제1유로(421) 및 제2유로(422) 사이에 형성되는 감시용 유로(423)를 더 포함한다. 기타구성은 도 2c와 유사하므로, 상세한 설명은 생략하기로 한다.
감시용 유로(423)는 제1유로(121) 및 제2유로(122)의 손상 여부를 감시하기 위해 형성되며, 제1유로(121) 및 제2유로(122)보다는 매우 작은 유로로 형성되며, 열교환기(400)가 정상 작동중일 때는 유동이 형성되지 않으며 제1유로(121) 및 제2유로(122)가 손상되는 경우에 감시유로를 통해 이상상태가 감시되도록 구성된다.
열교환기(300) 코어의 제작방법을 살펴보면, 상부플레이트(311), 확장플레이트(313) 및 하부플레이트(312)를 중첩되게 겹쳐서 제1유로(321)를 형성하고, 제2유로(322)를 형성하는 제2유로플레이트(330)와 반복되는 구조로 복수의 플레이트를 적층시킨다.
이어서, 적층된 복수의 플레이트들을 확산용접 등에 의해 접합 또는 용접 또는 볼트에 의해 조립 후, 유로가 포함되지 않은 불필요한 부분을 절단하여 열교환기(300) 코어를 제작한다.
상기 플레이트의 접합 방법으로 볼트결합 및 용접 중 적어도 하나의 방법을 사용할 수 있다. 플레이트 사이에 개스킷을 삽입한 후 볼트 결합함으로 밀봉할 수 있다. 용접의 경우 일반 용접 또는 브레이징 용접으로 플레이트를 결합할 수 있다.
그 다음, 열교환기(300) 코어에 입구나 출구헤더를 용접하여 열교환기 단위 모듈 또는 열교환기(300)를 구성할 수 있다.
도 3a는 본 발명의 제1실시예에 따른 열교환기(200)의 가공 전 플레이트 형상을 보여주는 단면도 및 평면도이다.
열교환기(200)의 코어는 제1유로(221)를 형성하는 제1유로플레이트(210)와 제2유로(222)를 형성하는 제2유로플레이트(214)를 중첩되게 적층시켜 결합될 수 있다.
제1유로(221) 및 제2유로(222) 모두가 상부플레이트(211), 확장플레이트(213) 및 하부플레이트(212)를 조합하여 적층 결합되거나, 제1유로(221) 또는 제2유로(222)가 상부플레이트(211), 확장플레이트(213) 및 하부플레이트(212)를 조합하여 적층 결합될 수 있다.
도 3a에 도시된 열교환기(200)는 제1유로(221)만 상부플레이트(211), 확장플레이트(213) 및 하부플레이트(212)를 조합하여 적층 결합된다. 예를 들면, 도 3a의 열교환기(200)는 제1유로(221)를 형성하기 위한 상부플레이트(211), 확장플레이트(213) 및 제1하부플레이트(212)과, 제2유로(222)를 형성하기 위한 제2하부플레이트(214)를 포함하여 구성된다. 여기서, 확장플레이트(213)만이 다른 플레이트에 비해 한쪽 측면이 크게 형성될 수 있다.
상부플레이트(211)는 도 3a의 단면도에서 상단에 배치되고, 도 3a의 평면도 중 왼쪽으로부터 첫번째에 위치하며, 상부플레이트(211)의 하면에 복수의 그루브형 유로가 형성되어 있다.
확장플레이트(213)는 열교환기(200)의 유로 깊이를 증가시켜 유로면적을 증대시키기 위해 추가된다. 확장플레이트(213)는 도 3a의 단면도에서 상단으로부터 두번째 배치되고, 도 3a의 평면도 중 왼쪽으로부터 두번째에 위치한다. 확장플레이트(213)에 상하(깊이)방향으로 완전히 뚫린 복수의 관통형 유로가 형성된다. 관통형 형상의 확장플레이트(213)를 도입하면, 플레이트가 조각나게 된다. 이를 방지하기 위해 확장플레이트(213)에 절단부(213a)를 구비한다.
예를 들면, 절단부(213a)는 확장플레이트(213)의 오른쪽 측면에서 돌출 형성된다. 복수의 관통형 유로는 절단선 이후에 유로가 형성되지 않으며 결합후 절단하는 절단부(213a)에 의해 연결되므로, 확장플레이트(213)의 입구영역, 주열전달 영역 및 출구영역을 포함하여 대부분의 유로가 관통되게 형성되더라도 플레이트가 조각나는 것을 방지할 수 있다.
확장플레이트(213)는 복수개로 구성될 수 있다.
확장플레이트(213)의 관통형 유로 가공 시 유로와 절단부(213a)의 경계인 절단선을 지나 절단부(213a)의 일부까지 연장되어 유로가 더 형성되는 것이 가공상의 편의를 위해 바람직하다.
상부플레이트(211) 또는 하부플레이트(212)에 형성되는 그루브형 유로의 경우 에칭 등의 방법으로 가공하는 것이 일반적이지만, 확장플레이트(213)의 관통형 유로의 경우 유로가 상하로 관통 형성되므로, 에칭 이외에 비용이 저렴한 가공방법에 의해 형성될 수 있다. 예를 들면, 절삭공구를 이용한 기계적 가공 또는 레이저를 이용한 가공 또는 프린트 가공 방법 등이 선택적으로 적용될 수 있다. 레이저 등의 가공방법을 이용하면, 다수개의 확장플레이트(213)를 적층시킨 후 복수의 플레이트에 동시에 유로를 형성하는 것이 가능하다.
절단부(213a)는 적층되는 플레이트의 접합 또는 용접 또는 볼트에 의해 조립 후 절단선을 따라 절단가공될 수 있다.
여기서, 절단부(213a)의 형성 위치는 도 3a에 한정되지 않고, 유로의 형상에 따라 달라질 수 있다.
제1하부플레이트(212)는 도 3a의 단면도에서 상단으로부터 세번째에 배치되고, 도 3a의 평면도 중 왼쪽으로부터 세번째에 위치하며, 제1하부플레이트(212)의 상면에 복수의 그루브형 유로가 형성되어 있다.
제2하부플레이트(214)는 도 3a의 단면도에서 하단에 배치되고, 도 3a의 평면도 중 오른쪽 끝에 위치하며, 제2하부플레이트(214)의 상면에 복수의 그루브형 유로가 형성된다.
도 3b는 본 발명의 제2실시예에 따른 열교환기(200)의 가공 전 플레이트 형상을 보여주는 단면도 및 평면도이다.
도 3b에 도시된 열교환기(200)의 경우 복수의 플레이트 전체가 확장플레이트(213)와 동일한 크기로 사용될 수 있다. 예를 들어, 제1유로(221) 형성을 위한 상부플레이트(211), 확장플레이트(213), 제1하부플레이트(212)와, 제2유로(222) 형성을 위한 제2하부플레이트(214) 모두가 절단부(211a,213a,212a,214a)를 구비한다.
절단부(211a,213a,212a,214a)는 각 플레이트의 측면에 전체 길이에 걸쳐 종방향으로 형성되거나, 플레이트의 측면 일부에만 형성될 수 있다. 도 3b에 도시된 절단부(213a)는 플레이트의 측면 전체에 걸쳐 형성된다. 이 경우 플레이트 접합 또는 용접 또는 볼트에 의해 조립 후 절단 가공 시 동시에 절단가능하므로, 가공 편의성 측면에서 유리할 수 있다.
기타 구성은 도 3a와 유사하므로, 상세한 설명을 생략하기로 한다.
도 3c는 본 발명의 제3실시예에 따른 열교환기(200)의 가공 전 플레이트 형상을 보여주는 단면도 및 평면도이다.
도 3c에 도시된 열교환기(200)의 경우 절단부(211a,213a,212a,214a)를 최소화하기 위해 필요한 부분에만 형성할 수 있다. 예를 들어, 제1유로(221) 형성을 위한 상부플레이트(211), 확장플레이트(213), 제1하부플레이트(212)와, 제2유로(222) 형성을 위한 제2하부플레이트(214) 모두가 절단부(211a,213a,212a,214a)를 구비하되, 각 플레이트의 절단부(211a,213a,212a,214a)는 각 플레이트의 오른쪽 측면 일부에 형성될 수 있다.
절단부(213a)는 확장플레이트(213)가 관통형 유로에 의해 조각나는 것을 방지하기 위한 것이므로, 확장플레이트(213)의 측면에 종방향 길이 전체적으로 형성되지 않아도 되고, 예를 들면 관통형 유로의 입구 및 출구 단부에만 절단부(213a)를 형성하여도 된다.
도 3c의 실시예에 따르면, 절단부(211a,213a,212a,214a)를 형성하기 위한 재료 비용이 도 3b에 비해 절감될 수 있다.
도 3d는 본 발명의 제4실시예에 따른 열교환기(200)의 가공 전 플레이트 형상을 보여주는 단면도 및 평면도이다.
도 3d에 도시된 열교환기(200)의 경우 제1유로(221)의 유로면적 확장을 위한 확장플레이트(213)만 절단부(213a)를 구비하되, 절단부(213a)가 확장플레이트(213)의 일부에 형성될 수 있다.
여기서, 확장플레이트(213)의 일부에만 절단부(213a)를 형성한 이유 및 효과는 도 3c의 실시예에서 설명한 바와 같다.
도 4는 본 발명에 따른 열교환기(200)의 가공 후 플레이트 형상을 보여주는 단면도 및 평면도이다.
도 4에 도시된 열교환기(200)에 의하면, 절단부의 절단가공이 완료되면 열교환기(200)의 오른쪽 측면에서 돌출된 절단부가 제거된다. 하지만, 이 경우 절단부에 의해 연결되었던 관통형 유로(221)는 확장플레이트(213)의 상부와 하부면에 상부플레이트(211) 및 하부플레이트(212)가 각각 접합 또는 용접 또는 볼트에 의해 조립되므로 흐트러짐 없이 제자리를 유지하게 되는 것이다.
절단부가 절단가공되면, 유체의 입구영역 및 출구영역의 유로가 플레이트 밖으로 노출된다.
도 5a 내지 도 7b는 제1유체 또는 제2유체가 모두 흐를 수 있는 유로로서 설명을 간결히 하기 위해 도 5a 내지 6b에서는 제1유체 또는 도 7a 내지 도 7b에서는 제2유체로 설명한다.
도 5a는 본 발명에 따른 플레이트형 열교환기(100)의 유로(상부/하부플레이트(111))를 상세하게 보여주는 개념도이다.
도 5a에 도시된 플레이트는 열교환기(300A)의 제1유체가 흐르도록 제1유로(321)를 형성하는 제1유로플레이트(310) 중 상부플레이트(311) 및 하부플레이트(312)의 유로를 보여준다.
상부플레이트(211) 및 하부플레이트(312)는 종방향을 따라 오목하게 형성된 복수의 그루브형 유로를 갖는다. 복수의 그루브형 유로는 상부 또는 하부에 직선 형태로 형성되는 입구/출구 영역(341,342)(341,342)과, 입구/출구 영역(341,342)(341,342) 사이에 좌우로 굴곡있게 형성되는 주전열부(343)(343)로 구성될 수 있다.
그루브형 유로는 폐쇄형 유로일 수 있다.
그루브형 유로의 입구/출구 영역(341,342)(341,342)에 헤더가 구비되어, 유체를 각 유로로 분배하거나 각 유로로부터 수집할 수 있다.
도 5b는 본 발명에 따른 플레이트형 열교환기(300A)의 유로(확장플레이트(313))를 상세하게 보여주는 개념도이다.
도 5b에 도시된 플레이트는 열교환기(300A)의 제1유체가 흐르도록 구성된 제1유로플레이트(310) 중 유로 확장을 위한 확장플레이트(313)의 유로를 보여준다. 도 5b에 도시된 확장플레이트(313)는 도 5a에 도시된 상부플레이트(311) 또는 하부플레이트(312)에 결합되거나, 상부플레이트(311) 및 하부플레이트(312) 사이에 결합될 수 있다.
확장플레이트(313)의 상단부 및 하단부에 각각 절단부가 구비된다. 절단부는 관통형 유로로 인해 확장플레이트(313)가 조각나는 것을 방지할 수 있다. 왜냐하면, 확장플레이트(313)는 절단부(313a)가 없다면 관통형 유로를 사이에 두고 서로 이격 배치되는 여러 개의 조각들로 구성될 수 있으므로, 절단부(313a)는 서로 이격 배치되는 조각의 상단부와 하단부를 연결하여 지지한다.
절단부(313a)는 플레이트 접합 또는 용접 또는 볼트에 의해 조립 후 절단가공될 것이므로, 도 5a와 같은 형태의 유로를 적용할 경우 관통형 유로(321)의 상단부 또는 하단부에 형성되는 것이 바람직하다. 또한, 관통형 유로(321)의 중간에 절단하여 제거하지 못하는 연결부분이 형성될 경우 유로가 좁아지거나 두 개의 유로로 분리되는 문제점이 있으므로, 관통형 유로(321)의 상단부 또는 하단부에 절단부(313a)를 형성하는 것이 바람직하다.
도 6a는 본 발명에 따른 플레이트형 열교환기(300B)의 유로(상부 및 하부플레이트(311,312))를 상세하게 보여주는 개념도이다.
도 6a에 도시된 열교환기(300B)는 상부플레이트(311) 또는 하부플레이트(312)에 형성되는 개방형 유로(321)를 보여준다. 개방형 유로(321)는 제1유로(121)의 유로 오염 및 막힘 등의 문제의 해소 또는 유로저항을 줄이기 위해 횡방향으로 이격 배치되는 종방향 유로(321a)와, 종방향 유로(321a) 사이를 연결하는 횡방향 유로(321b)들로 구성될 수 있다. 종방향 유로(321a)는 횡방향 유로(321b)에 의해 서로 연통되므로, 유체가 서로 인접한 종방향 유로(321a)로 이동하는 것이 가능하다.
여기서, 개방형 유로(321)는 그루브형 유로이다.
개방형 유로(321)는 플레이트의 상부와 하부에 각각 형성된 직선형의 입구/출구 영역(341,342)과, 입구/출구 영역(341,342) 사이에 형성되는 좌우로 굴곡있게 형성되는 주전열부(343)로 구성될 수 있다. 횡방향 유로는 입구/출구 영역(341,342) 및 주전열부(343) 모두 또는 일부에 형성될 수 있다.
플레이트의 상단부와 하단부에 각각 헤더가 결합되어, 유체를 각 유로로 분배하거나, 유로로부터 유체를 수집할 수 있다.
도 6b는 본 발명에 따른 플레이트형 열교환기(300B)의 유로(확장플레이트(313))를 상세하게 보여주는 개념도이다.
도 6b에 도시된 열교환기(300B)는 확장플레이트(313)에 형성되는 폐쇄형 유로를 보여준다. 도 6b에 도시된 확장플레이트(313)는 도 6a에 도시된 개방형 상부플레이트(311) 또는 하부플레이트(312)에 결합되거나, 상부플레이트(311) 및 하부플레이트(312) 사이에 결합될 수 있다. 확장플레이트(313)는 상단부 및 하단부에 절단부를 구비한다. 절단부의 형성 이유는 전술한 바와 같다. 확장플레이트(313)가 중간에 삽입되는 상부플레이트(311) 및 하부플레이트(312)가 개방형 유로이더라도 확장플레이트(313)는 폐쇄형 유로로 형성되어야 한다. 왜냐하면, 개방형 유로(321)로 형성되는 경우, 즉 종방향 유로(321a) 사이에 횡방향 유로(321b)가 형성되는 경우에 횡방향 유로(321b)로 인해 확장플레이트(313)가 종방향으로 이격되게 배치되는 조각들로 서로 분리되어, 유로 형성이 어렵고 유로가 형성된 후에도 플레이트 조각들을 연결하거나 제위치에 고정하기가 거의 불가능하기 때문이다. 이러한 조합에서도 종방향 유로(321a)가 주유동이 형성되는 방향이며, 도 6a에 도시된 상부플레이트(311) 또는 하부플레이트(312)에 형성된 횡방향 유로(321b)에 의해 횡방향 유로의 형성 목적을 달성할 수 있다. 단, 횡방향 유도를 더 확장하기 위해 확장플레이트(313)의 일면 또는 양면에 관통형이 아닌 부분적으로 횡방향 유로(321b)가 형성될 수도 있다.
절단부(313a)는 플레이트 접합 또는 용접 또는 볼트에 의해 조립 후 절단선을 따라 절단 가공될 수 있다.
확장플레이트(313) 유로는 플레이트 상부 및 하부에 형성되는 입구/출구 영역(341)과, 입구/출구 영역(341) 사이에 형성된 주전열부(343)를 포함하여 구성될 수 있다.
전술한 바와 같이 도 5a 내지 도 7b는 제1유체 또는 제2유체가 모두 흐를 수 있는 유로로서 설명을 간결히 하기 위해 도 7a 내지 도 7b에서는 제2유체로 설명한다.
도 7a는 본 발명에 따른 플레이트형 열교환기(300A)의 유로(상부 및 하부플레이트(311,312))를 상세하게 보여주는 개념도이다.
도 7a에 도시된 열교환기(300A)는 제2유체가 흐르도록 제2유로(322)를 형성하기 위한 제2유로플레이트(330) 중 상부플레이트(314) 또는 하부플레이트(315)에 형성되는 폐쇄형 유로를 보여준다. 폐쇄형 유로는 제2유로플레이트(112)의 상부 및 하부에 각각 형성되는 입구/출구 영역(341,342)과, 입구/출구 영역(341,342) 사이에 형성되는 주전열부(343)로 구성될 수 있다.
입구/출구 영역(341,342)의 유로는 플레이트의 일 측면에서 수평방향으로 형성되는 수평유로와, 수평유로의 단부에서 주전열부(343)의 유로로 연장되는 수직유로로 구성될 수 있다.
주전열부(343)의 유로는 입구/출구 영역(341,342)의 유로를 연결하는 종방향 유로로 구성될 수 있다.
여기서, 제2유체는 이차계통 유체일 수 있다. 예를 들어, 열교환기(100)가 원자로용기의 내부에 설치되어 원자로냉각재계통의 열을 이차계통 또는 원전안전계통(예, 원자로잔열제거계통 및/또는 격납부냉각계통 등)으로 전달하는 증기발생기인 경우에 제2유체는 냉각수 또는 증기일 수 있다.
도 7b는 본 발명에 따른 플레이트형 열교환기(300A)의 유로(확장플레이트(316))를 상세하게 보여주는 개념도이다.
도 7b에 도시된 열교환기(300A)는 제2유체가 흐르도록 제2유로(322)를 형성하기 위한 제2유로플레이트(300) 중 확장플레이트(316)에 형성되는 폐쇄형 유로를 보여준다. 도 7b에 도시된 확장플레이트(313)는 도 7a에 도시된 폐쇄형 상부플레이트(314) 또는 하부플레이트(315)에 결합되거나, 상부플레이트(314) 및 하부플레이트(315) 사이에 결합될 수 있다. 확장플레이트(316)의 폐쇄형 유로는 상하(깊이)방향으로 관통 형성되고, 상부플레이트(314) 또는 하부플레이트(315)에 결합되거나 상부플레이트(314) 및 하부플레이트(315) 사이에 결합될 경우 유로 깊이를 증가시켜 유로 면적을 증대시킬 수 있다. 확장플레이트(316)의 관통형 유로는 상부 및 하부에 형성되는 입구/출구 영역(341,342), 입구/출구 영역(341,342) 사이에 형성되는 주전열부(343)로 구성되고, 입구/출구 영역(341,342)의 유로 단부, 즉 확장플레이트(113)의 측면에 절단부를 구비하여, 플레이트가 조각나는 것을 방지할 수 있다.
도 8a는 본 발명에 따른 플레이트형 열교환기(300C)의 유로(상부 및 하부플레이트(314,315))를 상세하게 보여주는 개념도이다.
도 8a에 도시된 열교환기(300C)는 제2유체가 흐르도록 제2유로(322)를 형성하기 위한 제2유로플레이트(330) 중 상부플레이트(314) 또는 하부플레이트(315)에 형성되는 부분개방형 유로를 보여준다. 도 8a에 도시된 열교환기(300C)는 열교환기(300C)를 증기발생기로 이용할 경우 주로 이용될 수 있으며, 유동불안정을 방지하고, 유로 오염 및 막힘 등의 문제의 해소 등을 위한 제2유로(322)에 적용될 수 있다. 부분개방형 유로는 그루브형 유로이다. 제2유체가 열을 받아 플레이트의 하부에서 상방향으로 상승하도록 유로가 구성될 경우에, 그루브형 유로는 플레이트 하부에 형성되는 입구영역(342), 플레이트 상부에 형성되는 출구영역(341), 입구/출구 영역(342,341) 사이에 형성되는 주전열부(343)로 구성될 수 있다.
부분개방형 유로(322)는 종방향 유로(322a)의 일부에 횡방향 유로(322b)가 형성되고, 서로 인접한 종방향 유로(322a)의 일부가 서로 연통되어 이동가능한 유로를 의미한다. 도 8a에 도시된 부분개방형 유로(322)의 경우 입구영역(342)의 공통헤더(342a) 및 주전열부(343)에만 개방형 유로로 구성될 수 있다.
입구영역(342)의 유로는 상류측에 공통헤더부(342a), 유로저항부(342b)(또는 이코노마이저), 유로확대부(342c) 등이 더 구비되어 유동불안정을 방지하도록 구성될 수 있다.
공통헤더부(342a)는 플레이트의 일 측면 하부에서 수평방향으로 연장되는 복수의 수평유로와, 수평유로에서 수직방향으로 연장되는 복수의 수직유로로 구성될 수 있다. 수직유로는 후술할 유로저항부의 오리피스(헬리컬 증기발생기의 오리피스에 해당) 유로와 연결되어, 유로저항부로 유량을 배분한다.
일반적으로 증기발생기로 이용되는 열교환기(300)에 있어서, 증기 형성과정에서 유동이 불안정한 현상이 발생할 수 있다. 예를 들면, 유로면적 또는 유동경로 또는 열전달 표면의 거칠기의 미세한 차이 등으로 1차계통으로부터 전달되는 고온의 열량이 주전열부(343)와 입구영역(342)의 유로마다 동일하게 전달되지 않고 각 유로에 전달되는 열량에 미세한 차이를 보여 동일한 양의 2차 유체가 각 유로로 유입되더라도 증기발생시점이 서로 다를 수 있기 때문에 증기형성 시 나타나는 압력파에 의해 각 유로의 유량분배가 불균일해지고 압력이 변동하는 문제가 발생할 수 있다.
이러한 문제점을 해결하기 위해, 입구영역(342)에 유로의 폭을 적절히 좁히고 직선 형태가 아닌 좌우방향으로 굴곡되게 형성된 굴곡형 유로 형태로 유로를 형성하는 경우에 입구영역(342)의 유로저항이 커지고, 주전열부(343)에서 압력변동이 발생하는 경우에도 입구영역(342)의 유로저항이 압력변동이 입구 쪽의 유동에 영향을 주는 것을 억제해줄 수 있다.
이코노마이저는 쉘 & 튜브형(shell & tube)형 증기발생기에서 튜브 바깥에 있는 쉘쪽을 2차 유체(급수/증기)의 유로로 사용할 경우 입구영역에서 유동을 안정화하고, 열전달 효율을 증가시킬 수 있다.
유로확대부(342c)는 유로저항부(342b)의 유로와 주전열부(343)의 유로를 연결하는 유로이며, 유로저항부(342b)의 유로에서 주전열부(343)의 유로로 갈수록 유로폭이 점점 커진다. 이에 의해 유동단면적의 증가로 주전열부(343) 이후의 유동저항이 감소한다.
도 8b는 본 발명에 따른 플레이트형 열교환기(300C)의 유로(확장플레이트(316))를 상세하게 보여주는 개념도이다.
도 8b에 도시된 열교환기(300C)는 제2유체(이차유체)가 흐르도록 제2유로(322)를 형성하기 위한 제2유로플레이트(330) 중 확장플레이트(316)에 형성되는 폐쇄형 유로를 보여준다.
도 8b에 도시된 확장플레이트(316)는 도 8a에 도시된 부분 개방형 상부플레이트(314) 또는 하부플레이트(315)에 결합되거나, 상부플레이트(314) 및 하부플레이트(315) 사이에 결합될 수 있다. 이 경우에 상부플레이트(314) 또는 하부플레이트(315)의 유로가 부분개방형 유로 또는 개방형 유로이더라도, 확장플레이트(316)는 폐쇄형 유로로 구성되어야 한다. 왜냐하면, 확장플레이트(316)는 관통형 유로이어서, 개방형 유로로 구성될 경우 조각날 수 있기 때문이다. 전술한 바와 같이 이러한 조합에서도 종방향 유로(322a)가 주유동이 형성되는 방향이며, 도 8a에 도시된 상부플레이트(314) 또는 하부플레이트(315)에 형성된 횡방향 유로(322b)에 의해 횡방향 유로의 형성 목적을 달성할 수 있다. 단, 횡방향 유도를 더 확장하기 위해 확장플레이트(316)의 일면 또는 양면에 관통형이 아닌 부분적으로 횡방향 유로(322b)가 형성될 수도 있다.
확장플레이트(316)의 관통형 유로는 상부플레이트(314) 및 하부플레이트(315)의 유로와 서로 마주보게 형성되어 연통됨에 따라, 유로면적이 증대될 수 있다.
확장플레이트(316)의 관통형 유로는 하부에 위치하는 입구영역(342), 중간에 위치하는 주전열부(343), 상부에 위치하는 출구영역(341)으로 크게 구분될 수 있다. 입구영역(342)은 다시 공통헤더(342a), 유로저항부(342b), 유로확대부(342c)로 구성될 수 있다.
공통헤더(342a) 영역에 유체를 유로저항부(342b)로 분배하기 위한 분배유로가 횡방향으로 이격 배치되고 종방향으로 길게 형성된다. 분배유로는 공통헤더(342a)의 하단부에 유로가 형성되지 않는 연결부에 의해 연결되므로, 플레이트가 조각나는 것을 방지할 수 있다. 물론, 분배유로도 폐쇄형 유로이므로, 횡방향 유로에 의해 연결되지 않는다.
출구영역(341)의 단부에 절단부(316a)가 구비될 수 있다. 출구영역(341)의 단부가 확장플레이트(316)의 주전열부(343)의 유로에서 오른쪽 측면 가가장자리까지 연장되는 경우에, 절단부(316a)는 확장플레이트(316)의 오른쪽 측면 가장자리 일부에서 측방향으로 더 돌출되게 형성된다. 절단부(316a)는 유로가 형성되지 않고 출구영역의 유로를 연결하므로, 확장플레이트(316)가 조각나는 것을 방지할 수 있다.
유로가 형성되지 않는 절단부(316a)는 주로 입구/출구영역(342,341)의 단부에 형성된다.
하지만, 입구영역(342) 또는 출구영역(341)에 개방형 유로가 도입되어 판이 조각나는 구조에서는 반드시 절단부(316a) 만을 사용하는 것은 아니며, 입구 또는 출구에 판이 조각나는 것을 방지하기 위해 유로가 가공되지 않은 부분을 포함할 수 있다.
예를 들면, 도 8b에 도시된 확장플레이트(113)의 하단부는 유로가 가공되지 않은 부분을 포함하여, 입구영역(342)의 플레이트가 조각나는 것을 방지할 수 있다.
도 8c는 본 발명에 따른 플레이트형 열교환기(300C)의 유로(확장플레이트(316))를 상세하게 보여주는 개념도이다.
도 8c에 도시된 열교환기(300C)는 제2유체(이차유체)가 흐르도록 제2유로(322)를 형성하기 위한 제2유로플레이트(330) 중 확장플레이트(316)에 형성되는 폐쇄형 유로를 보여준다. 도 8c에 도시된 확장플레이트(316)도 도 8b에 도시된 확장플레이트(316)와 같이 도 8a에 도시된 부분 개방형 상부플레이트(314) 또는 하부플레이트(315)에 결합되거나, 상부플레이트(314) 및 하부플레이트(315) 사이에 결합될 수 있다.
확장플레이트(316)에 유로 깊이 증가를 통해 유로 면적을 확장시키기 위해 관통형 유로(322)가 형성된다. 플레이트가 조각나는 것을 방지하기 위해, 확장플레이트(316)의 측면 상부와 하부에 각각 절단부(316a)를 구비할 수 있다.
확장플레이트(316)의 측면 상부에 형성되는 절단부(316a)는 출구영역(341)의 횡방향 유로 단부를 연결하고, 확장플레이트(316)의 측면 하부에 형성되는 절단부(316)는 입구영역의 횡방향 유로 단부를 연결 및 지지한다.
기타 구성은 도 8b에 도시된 구성과 유사하므로, 상세한 설명은 생략하기로 한다.
다만, 입구영역(342) 중 공통헤더(342a)의 분배유로는 플레이트의 하단부에 가로방향 또는 수평방향으로 평행하게 형성되는 한 쌍의 횡방향 유로를 포함하여 구성된다. 공통헤더(342a)의 플레이트가 조각나는 것을 방지하기 위한 횡방향 유로가 서로 연결되지 않는다.
도 9a는 본 발명에 따른 플레이트형 열교환기(300B)의 유로(상부 및 하부플레이트(314,315))를 상세하게 보여주는 개념도이다.
도 9a에 도시된 열교환기(300B)는 제2유체가 흐르도록 제2유로(322)를 형성하기 위한 제2유로플레이트(330) 중 상부플레이트(314) 또는 하부플레이트(315)에 형성되는 개방형 유로(322)를 보여준다. 도 9a에 도시된 열교환기(300B)도 열교환기(300B)를 증기발생기로 이용할 경우 주로 이용될 수 있으며, 유동불안정을 방지하기 하고 유로 오염 및 막힘 등의 문제의 해소 등을 위한 위한 제2유로(322)에 적용될 수 있다.
개방형 유로(322)의 유동방향은 플레이트의 하부에서 상부로 흐르는 방향이고, 개방형 유로(322)는 종방향 유로(322a)와 이를 연결하는 횡방향 유로(322b)로 구성된다. 개방형 유로(322)는 플레이트의 하부에 위치한 입구영역(342), 중간에 위치한 주전열부(343), 상부에 위치한 출구영역(341)으로 구분될 수 있다. 개방형 유로(322) 중 입구영역(342)의 유로저항부(342b)를 제외한 나머지 종방향 유로(322a)들은 대부분 횡방향 유로(322b)에 의해 서로 연결될 수 있다.
다만, 도 8a에 도시된 부분개방형 유로의 경우 출구영역의 유로는 폐쇄형 유로지만, 도 9a에 도시된 개방형 유로(322)의 경우 출구영역(341)의 유로는 개방형이다.
도 9b는 본 발명에 따른 플레이트형 열교환기(300B)의 유로(확장플레이트(316))를 상세하게 보여주는 개념도이다.
도 9b에 도시된 열교환기(300B)는 제2유로플레이트(330) 중 확장플레이트(316)에 형성되는 폐쇄형 유로를 보여준다.
기타 구성은 도 8b에 도시된 확장플레이트(316)의 폐쇄형 유로와 유사하므로, 상세한 설명은 생략하기로 한다. 다만, 도 9b에 도시된 확장플레이트(316)는 도 9a에 따른 개방형 유로를 갖는 상부플레이트(314) 또는 하부플레이트(315)와 결합될 수 있다.
도 9c는 본 발명에 따른 플레이트형 열교환기(300B)의 유로(확장플레이트(316)를 상세하게 보여주는 개념도이다.
도 9c에 도시된 열교환기(300B)는 제2유로플레이트(330) 중 확장플레이트(316)에 형성되는 폐쇄형 유로를 보여준다.
기타 구성은 도 9b에 도시된 확장플레이트(316)의 폐쇄형 유로와 유사하므로, 상세한 설명은 생략하기로 한다. 다만, 도 9c에 도시된 확장플레이트(316)의 경우 입구영역(342)의 공통헤더(342a)에 형성되는 분배유로의 형상이 변경될 수 있다. 예를 들면, 분배유로 중 적어도 하나의 분배유로는 수평방향으로 연장되는 횡방향 유로를 더 포함한다. 또한, 도 9c에 도시된 확장플레이트(316)는 오른쪽 측면 하단부에 절단부(316a)를 구비하고, 절단부(316a)는 공통헤더 영역에서 상기 횡방향 유로 사이의 플레이트 조각을 지지하여 공통헤더의 플레이트가 조각나는 것을 방지할 수 있다. 도 9c에 도시된 확장플레이트(316)는 도 9a의 개방형 유로를 갖는 상부플레이트(314) 또는 하부플레이트(315)와 결합될 수 있다.
도 10은 본 발명에 따른 감시용 유로(423)를 보여주는 개략도이다.
도 10에 도시된 감시용 유로(423)는 하부플레이트(412) 또는 상부플레이트(414)에 형성되거나 또는 별도의 플레이트로 구성되어 삽입될 수 있다. 즉, 감시용 유로(423)는 반드시 감시용 유로 플레이트에 형성되어야 하는 것은 아니며, 제1유로플레이트(410) 또는 제2유로플레이트(430)의 일면에 형성될 수도 있다. 감시용 유로 플레이트는 제1유로플레이트(410)(또는 1차 유체 플레이트)와 제2유로플레이트(430)(2차 유체 플레이트) 사이에 배치되고, 감시용 유로(423)는 제1유로(421)(1차유로) 또는 제2유로(422)(2차유로)의 크기보다 상대적으로 크기가 훨씬 작은 미세유로로 형성된다. 감시용 유로(423)는 격자형태로 이루어질 수 있다. 감시용 유로(423)는 개방형 유로이며, 서로 인접한 유로, 즉 수평유로 및 수직유로 간에 유체이동이 가능하도록 서로 연결되어 있다. 그리고, 감시용 유로(423) 모두는 헤더(440)에 연결된다. 이에 의해, 제1유로플레이트(410) 또는 제2유로플레이트(430)의 어느 한 군데에서 손상이 발생한 경우에 소통되는 감시용 유로(423)를 따라 전달되어 물리적 또는 화학적 상태가 헤더로 수집되어 센서로 감지될 수 있다.
감시용 유로(423)는 유로의 크기가 매우 작으므로, 제1유로플레이트(410)와 제2유로플레이트(430) 사이의 열전달 저항을 최소화시킬 수 있다. 또한, 미세유로의 적용에 따라 제1유로(421)-감시용 유로(423)-제2유로(422) 사이의 간극이 좁아짐에 따라 발생하는 구조적 영향을 최소화할 수 있다.
또한, 감시용 유로(423)는 복수의 플레이트 사이에 형성되고, 확산접합 또는 용접에 의해 서로 결합된 복수의 플레이트 사이에 틈새가 발생하는 경우를 대비해 이를 감지하는 감시용 유로(423)를 별도로 구비할 수 있다.
감시용 유로(423)는 이중으로 설치될 수 있다.
도 11은 본 발명에 따른 플레이트형 열교환기(400)(증기발생기)를 장착한 원전(500)을 보여주는 수직방향의 단면도이다.
도 11을 참조하여 본 발명의 일 예에 따른 일체형 원자로에 적용되는 증기발생기(400)의 작동과정을 설명하면 다음과 같다.
원전(500)의 정상 운전시 주급수관(5)을 통해 급수계통으로부터 원자로용기(1)(일체형원자로의 경우 원자로냉각재계통) 내부에 설치되는 증기발생기(400)로 급수가 공급되며, 증기발생기(400)는 노심(2)에서 전달된 열을 이용해 증기를 발생시킨다. 증기는 주증기관(6)을 통해 터빈계통으로 공급되며, 터빈계통은 공급받은 증기를 이용하여 전기를 생산한다. 주급수관(5)과 주증기관(6)에 설치되는 격리밸브(7)들은 원전(500)의 정상 운전시에는 개방되어 있으나, 사고 발생시에는 작동 신호에 의해 닫힌다.
원자로냉각재계통(1)의 내부에는 일차계통 유체(또는 일차 유체, 제1유체)가 채워져 있으며, 일차계통 유체는 노심(2)에서 전달받은 열을 증기발생기(400)를 통해 이차계통 유체에 전달한다. 원전(500)의 일차계통이란 노심(2)으로부터 직접적으로 열을 전달받아 노심(2)을 냉각하는 계통이고, 이차계통이란 상기 일차계통과 압력경계를 유지하면서 상기 일차계통으로부터 전달받은 열을 이용해 전기를 생산하는 계통이다. 특히, 가압 경수형 원전의 건전성을 위해 일차계통과 이차계통 사이에는 반드시 압력경계가 유지되어야 한다.
(1) 1차유체의 이동경로: 노심(2)에서 열을 전달받아 온도가 상승한 원자로냉각재계통(1)의 1차유체는 원자로냉각재펌프(4)의 순환동력에 의해 증기발생기(400)의 상부로 유입되고, 플레이트의 제1유로(421)를 따라 흐르며, 2차유체와 열을 교환한 후 냉각되면서 증기발생기(400) 하부의 1차유체 출구헤더와 방출관을 통해 원자로냉각재계통(1)으로 방출되며, 노심(2)으로 다시 유입된다.
(2) 2차유체의 이동경로: 급수계통에서 급수펌프의 순환동력에 의해 증기발생기 하부의 급수 입구헤더로 공급된 2차유체(급수)는 플레이트의 제2유로(422)를 따라 흐르며, 1차유체로부터 열을 전달받아 2차유체는 점차 증기로 바뀌며, 2차유체(증기)는 증기발생기(400) 상부의 2차유체 출구헤더 및 증기관을 통해 터빈계통으로 공급된다.
(3) 감시용 유로(423): 한편, 1차유체 또는 2차유체의 유로가 손상되어 1차 또는 2차유체가 감시용 유로(423)로 유출되는 경우, 감시용 유로(423)의 상태가 바뀌고, 감시용 유로(423)의 연결된 유로를 따라 헤더(440)로 모아져 센서(441)로 계측된다. 기설정값 이상의 이상 상태가 감지되면 열교환기(100) 또는 증기발생기 관련 설비를 중지한다.
따라서, 본 발명에 의하면, 입구영역과 출구영역을 포함하여 대부분의 1차측 또는 2차측 유로의 크기를 자유롭게 구성할 수 있어, 유로 오염 및 막힘 현상을 해소 또는 크게 완화하고 유로저항을 감소시켜 열교환기(증기발생기)의 설계가 용이하다.
이상에서 설명된 열교환기 및 이를 구비한 원전은 상기 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
1 : 원자로용기(원자로냉각재계통)
2 : 노심
3 : 가압기
4 : 원자로냉각재펌프
5 : 주급수관
6 : 주증기관
7 : 격리밸브
100,200,300,300A,300B,300C,400 : 열교환기
110,210,310,410 : 제1유로플레이트
211,311,314,411,414 : 상부플레이트
312,315,412,415 : 하부플레이트
111,212 : 제1하부플레이트
112,214, : 제2하부플레이트
113,213,313,316,413,416 : 확장플레이트
211a,212a,213a,213b,214a : 절단부
121,221,321,421 : 제1유로
321a : 종방향 유로
321b : 횡방향 유로
122,222,322,422 : 제2유로
341,342 : 입구/출구영역
342a : 공통헤더
342b : 유로저항부
342c : 유로확대부
343 : 주전열부
423 : 감시용 유로
440 : 감시용 헤더
441 : 센서
2 : 노심
3 : 가압기
4 : 원자로냉각재펌프
5 : 주급수관
6 : 주증기관
7 : 격리밸브
100,200,300,300A,300B,300C,400 : 열교환기
110,210,310,410 : 제1유로플레이트
211,311,314,411,414 : 상부플레이트
312,315,412,415 : 하부플레이트
111,212 : 제1하부플레이트
112,214, : 제2하부플레이트
113,213,313,316,413,416 : 확장플레이트
211a,212a,213a,213b,214a : 절단부
121,221,321,421 : 제1유로
321a : 종방향 유로
321b : 횡방향 유로
122,222,322,422 : 제2유로
341,342 : 입구/출구영역
342a : 공통헤더
342b : 유로저항부
342c : 유로확대부
343 : 주전열부
423 : 감시용 유로
440 : 감시용 헤더
441 : 센서
Claims (14)
- 제1유체 및 제2유체 상호 간의 열교환을 위한 복수의 제1유로 및 제2유로를 각각 형성하는 제1 및 제2유로플레이트들로 적층되어 구성되는 열교환기에 있어서,
오목하게 형성되는 그루브형 유로를 복수개 구비하는 상부플레이트 또는 하부플레이트;
상기 상부플레이트 또는 하부플레이트와 결합되거나 상기 상부 및 하부플레이트 사이에 삽입 결합되어, 상기 제1유로 및 제2유로 중 적어도 하나의 유로 깊이를 확장하는 확장플레이트를 포함하고,
상기 확장플레이트는,
상기 그루브형 유로와 각각 연통되도록 이격 배치되고, 두께방향으로 관통 형성되는 복수의 관통형 유로; 및
유체가 유출되는 출구영역의 일측면에 상기 출구영역으로부터 절단선 이후에 상기 복수의 관통형 유로가 형성되지 않는 부분을 포함하여 상기 복수의 관통형 유로를 연결하는 절단부를 구비하고,
상기 복수의 관통형 유로는 폐쇄형 유로이고,
상기 복수의 관통형 유로는,
상기 유체를 유로저항부로 분배하는 분배유로를 포함하고,
상기 분배유로는,
상기 확장플레이트의 입구영역에 종방향으로 연장되며, 횡방향으로 서로 이격 배치되고, 각각의 일측이 상기 유로저항부와 연통되는 복수의 종방향 유로; 및
상기 복수의 종방향 유로로부터 하방향으로 이격되며, 횡방향으로 연장되는 복수의 횡방향 유로를 포함하고,
상기 복수의 종방향 유로와 상기 복수의 횡방향 유로는 상기 입구영역에서 상기 확장플레이트의 두께 방향으로 관통 형성되며, 상기 확장플레이트의 종방향을 따라 서로 이격되고,
상기 확장플레이트는 상기 입구영역에서 유로가 미형성된 위치에 배치되는 연결부를 더 포함하고, 상기 연결부는 상기 복수의 종방향 유로의 타측과 상기 복수의 횡방향 유로 사이에서 횡방향으로 연장되도록 형성되며,
상기 복수의 횡방향 유로의 일단부는, 확장플레이트가 조각나지 않도록 상기 확장플레이트의 일측면에 구비되어 상기 횡방향 유로가 형성되지 않은 절단부에 의해 연결되는 열교환기. - 제1항에 있어서,
상기 상부 및 하부플레이트와 확장플레이트는 확산접합 또는 용접에 의해 적층 결합되는 것을 특징으로 하는 열교환기. - 제1항에 있어서,
상기 상부 및 하부플레이트와 확장플레이트는 볼트에 의해 서로 결합되고, 상기 상부 및 하부플레이트와 확장플레이트의 가장자리부는 개스킷에 의해 밀봉되는 것을 특징으로 하는 열교환기. - 제1항에 있어서,
상기 확장플레이트는 복수 개로 적층되는 것을 특징으로 하는 열교환기. - 제1항에 있어서,
상기 상부플레이트 또는 하부플레이트는 적어도 일부에 유로가 형성되지 않는 절단부를 포함하는 것을 특징으로 하는 열교환기. - 제1항에 있어서,
상기 상부 및 하부플레이트와 확장플레이트는 적층 결합된 후, 상기 절단부는 절단 가공되는 것을 특징으로 하는 열교환기. - 제6항에 있어서,
상기 절단부가 절단 가공된 후, 볼트 또는 용접에 의해 헤더가 결합되는 것을 특징으로 하는 열교환기. - 제1항에 있어서,
원자로용기의 내부에 배치되는 열교환기. - 제1항 또는 제8항에 있어서,
상기 상부 및 하부플레이트와 확장플레이트 중 두 개의 플레이트 사이에 감시용 유로를 구비하여, 제1유로 및 제2유로의 손상을 감시하는 것을 특징으로 하는 열교환기. - 제1항 또는 제8항에 있어서,
상기 제2유로는 유로저항부를 구비하는 것을 특징으로 하는 열교환기. - 제1항 또는 제8항에 있어서,
상기 제1유로 및 제2유로 중 적어도 하나 이상의 유로는 상부플레이트, 하부플레이트 및 확장플레이트를 조합하여 형성되는 것을 특징으로 하는 열교환기. - 제1항에 있어서,
상기 확장플레이트는 레이저 가공, 절삭 가공 및 프린트 가공 중 적어도 하나 또는 이들의 조합에 의해 형성되는 것을 특징으로 하는 열교환기. - 원자로용기;
상기 원자로용기의 내부에 설치되고, 제1유체 및 제2유체 상호 간의 열교환을 위한 복수의 제1유로 및 제2유로를 형성하는 복수의 유로플레이트를 적층하여 구성하는 열교환기를 포함하고,
상기 열교환기는,
복수의 그루브형 유로를 가지는 상부플레이트 및 하부플레이트; 및
상기 상부플레이트 또는 하부플레이트와 결합되거나 상기 상부 및 하부플레이트 사이에 삽입 결합되어, 상기 제1유로 및 제2유로 중 적어도 하나의 유로 깊이를 확장하는 확장플레이트를 포함하고,
상기 확장플레이트는,
상기 복수의 그루브형 유로와 연통되는 복수의 관통형 유로를 가지고, 유체가 유출되는 출구영역의 일측면에 상기 출구영역으로부터 절단선 이후에 상기 복수의 관통형 유로가 형성되지 않는 부분을 포함하여 상기 복수의 관통형 유로를 연결하는 절단부를 구비하고,
상기 복수의 관통형 유로는 폐쇄형 유로이고,
상기 복수의 관통형 유로는,
상기 유체를 유로저항부로 분배하는 분배유로를 포함하고,
상기 분배유로는,
상기 확장플레이트의 입구영역에 종방향으로 연장되며, 횡방향으로 서로 이격 배치되고, 각각의 일측이 상기 유로저항부와 연통되는 복수의 종방향 유로; 및
상기 복수의 종방향 유로로부터 하방향으로 이격되며, 횡방향으로 연장되는 복수의 횡방향 유로를 포함하고,
상기 복수의 종방향 유로와 상기 복수의 횡방향 유로는 상기 입구영역에서 상기 확장플레이트의 두께 방향으로 관통 형성되며, 상기 확장플레이트의 종방향을 따라 서로 이격되고,
상기 확장플레이트는 상기 입구영역에서 유로가 미형성된 위치에 배치되는 연결부를 더 포함하고, 상기 연결부는 상기 복수의 종방향 유로의 타측과 상기 복수의 횡방향 유로 사이에서 횡방향으로 연장되도록 형성되며,
상기 복수의 횡방향 유로의 일단부는, 확장플레이트가 조각나지 않도록 상기 확장플레이트의 일측면에 구비되어 상기 횡방향 유로가 형성되지 않은 절단부에 의해 연결되는 원전. - 제13항에 있어서,
상기 열교환기는 원자로냉각재계통의 열을 이차계통으로 전달하는 증기발생기인 것을 특징으로 하는 원전.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170048730A KR101869339B1 (ko) | 2017-04-14 | 2017-04-14 | 열교환기 및 이를 구비한 원전 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170048730A KR101869339B1 (ko) | 2017-04-14 | 2017-04-14 | 열교환기 및 이를 구비한 원전 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150075116A Division KR20160139725A (ko) | 2015-05-28 | 2015-05-28 | 열교환기 및 이를 구비한 원전 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170045170A KR20170045170A (ko) | 2017-04-26 |
KR101869339B1 true KR101869339B1 (ko) | 2018-06-21 |
Family
ID=58705273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170048730A KR101869339B1 (ko) | 2017-04-14 | 2017-04-14 | 열교환기 및 이를 구비한 원전 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101869339B1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230015166A (ko) * | 2021-07-22 | 2023-01-31 | 한국원자력연구원 | 인쇄기판형 열교환기 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101233346B1 (ko) * | 2010-10-28 | 2013-02-20 | 주식회사 코헥스 | 접합금속을 이용한 마이크로 열교환기 및 그의 제조방법 |
JP2013541690A (ja) * | 2010-10-22 | 2013-11-14 | アルファ・ラバル・コーポレイト・エービー | 熱交換器プレートおよびプレート式熱交換器 |
-
2017
- 2017-04-14 KR KR1020170048730A patent/KR101869339B1/ko active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013541690A (ja) * | 2010-10-22 | 2013-11-14 | アルファ・ラバル・コーポレイト・エービー | 熱交換器プレートおよびプレート式熱交換器 |
KR101233346B1 (ko) * | 2010-10-28 | 2013-02-20 | 주식회사 코헥스 | 접합금속을 이용한 마이크로 열교환기 및 그의 제조방법 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230015166A (ko) * | 2021-07-22 | 2023-01-31 | 한국원자력연구원 | 인쇄기판형 열교환기 |
KR102523184B1 (ko) * | 2021-07-22 | 2023-04-21 | 한국원자력연구원 | 인쇄기판형 열교환기 |
Also Published As
Publication number | Publication date |
---|---|
KR20170045170A (ko) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101565436B1 (ko) | 열교환기 및 이를 구비하는 원전 | |
US9140498B2 (en) | Method for manufacturing a bundle of plates for a heat exchanger | |
KR20160139725A (ko) | 열교환기 및 이를 구비한 원전 | |
JP2008121658A (ja) | 排気ガス再循環装置 | |
US20200141656A1 (en) | Heat exchanger device | |
KR101891111B1 (ko) | 열교환기 및 이를 구비하는 원전 | |
KR101734288B1 (ko) | 열교환기 | |
US20180045469A1 (en) | Heat exchanger device | |
JP2008286437A (ja) | 熱交換器 | |
WO2012138833A2 (en) | Cooling assembly and method of control | |
US20160109189A1 (en) | Heat exchanger | |
KR101869339B1 (ko) | 열교환기 및 이를 구비한 원전 | |
JP5295737B2 (ja) | プレートフィン型熱交換器 | |
JP2016183811A (ja) | マイクロ流路熱交換器 | |
KR101976543B1 (ko) | 열교환기 및 이를 구비하는 원전 | |
KR101711998B1 (ko) | 열교환기 | |
KR20180136257A (ko) | 플레이트 열교환기 | |
KR20180015503A (ko) | 열교환기 및 이를 구비하는 원전 | |
US20210048257A1 (en) | Heat exchanger | |
US20230175785A1 (en) | Flat plate heat exchanger | |
KR101551822B1 (ko) | 증기발생기 및 이를 구비하는 원전 | |
JP4105902B2 (ja) | 液体金属冷却炉用熱交換器および液体金属冷却炉用熱交換器の製造方法 | |
JP7505400B2 (ja) | 熱交換器 | |
CN115302167B (zh) | 不锈钢管内多层环形微流道的焊接结构 | |
US11578923B2 (en) | Heat exchanger comprising fluid tubes having a first and a second inner wall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) |