KR101865779B1 - Recombinant microorganism having ability to fix carbon dioxide and the method for producing useful substance using thereof - Google Patents
Recombinant microorganism having ability to fix carbon dioxide and the method for producing useful substance using thereof Download PDFInfo
- Publication number
- KR101865779B1 KR101865779B1 KR1020110119420A KR20110119420A KR101865779B1 KR 101865779 B1 KR101865779 B1 KR 101865779B1 KR 1020110119420 A KR1020110119420 A KR 1020110119420A KR 20110119420 A KR20110119420 A KR 20110119420A KR 101865779 B1 KR101865779 B1 KR 101865779B1
- Authority
- KR
- South Korea
- Prior art keywords
- seq
- nucleotide sequence
- nucleic acid
- acs
- acid molecule
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/93—Ligases (6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 Wood-Ljungdahl 경로에 관여하는 ACS/CODH(acetyl-CoA synthases/carbon monoxide dehydrogenase complex) 복합체를 코딩하는 유전자가 도입되어 있는 재조합 미생물에 관한 것으로, 본 발명에 따른 재조합 미생물은 이산화탄소 고정능을 가지고 있어, CO2로부터 알코올, 유기산과 같은 유용물질을 고농도, 고수율로 생산하는데 유용하다.The present invention relates to a recombinant microorganism into which a gene coding for ACS / CODH (acetyl-CoA synthase / carbon monoxide dehydrogenase complex) involved in the Wood-Ljungdahl pathway is introduced, and the recombinant microorganism according to the present invention has a carbon- And is useful for producing useful materials such as alcohols and organic acids from CO2 at high concentration and high yield.
Description
이산화탄소 고정능을 가지는 재조합 미생물 및 이를 이용하여 알코올과 같은 유용물질을 제조하는 방법에 관한 것으로, 보다 구체적으로는, ACS/CODH 복합체를 코딩하는 유전자를 발현시켜 이산화탄소 고정능을 가지는 재조합 미생물을 제조하는 방법 및 이러한 유전자가 도입되어 있는 재조합 미생물, 상기 재조합 미생물을 이용한 CO2의 고정방법 및 유용물질의 제조 방법에 관한 것이다.
The present invention relates to a method for producing a recombinant microorganism having carbon dioxide fixing ability and a method for producing a useful substance such as alcohol by using the recombinant microorganism having carbon dioxide fixability. More particularly, the present invention relates to a method for producing a recombinant microorganism having carbon dioxide fixing ability by expressing a gene encoding ACS / And a recombinant microorganism into which such a gene is introduced, a method for fixing CO 2 using the recombinant microorganism, and a method for producing a useful substance.
합성가스는 일산화탄소(CO) 가스, 이산화탄소(CO2) 가스, 수소(H2) 가스, 및 다른 휘발성 가스(CH4, N4, NH3, H25) 및 기타 미량 가스의 혼합물로서, 바이오매스, 유기 폐기물, 석탄, 석유, 플라스틱 또는 다른 탄소 함유 물질 또는 개량된 천연 가스를 포함하는 다양한 유기 물질의 가스화에 의해 생산된다.The syngas is a mixture of carbon monoxide (CO) gas, carbon dioxide (CO 2 ) gas, hydrogen (H 2 ) gas and other volatile gases (CH 4 , N 4 , NH 3 , H 25 ) , Organic wastes, coal, petroleum, plastics or other carbon-containing materials or modified natural gas.
이러한 합성 가스를 포함하는 대기 중에서 성장시킨 acetogenic Clostridia 미생물은 합성가스의 구성성분인 CO, CO2, 및 H2를 흡수할 수 있고, 알코올 및 지방족 C2-C6 유기산을 생산할 수 있다. 이러한 합성가스 구성성분은 Wood-Ljungdahl 대사 경로(pathway)를 활성화시켜, Wood-Ljungdahl 경로에 있어서 주요한 중간물질인 acetyl-coenzyme A의 형성을 유도한다. The acetogenic Clostridia microorganisms grown in the atmosphere containing these syngas can absorb CO, CO 2 , and H 2 , which are components of syngas, and can produce alcohols and aliphatic C 2 -C 6 organic acids. These syngas components activate the Wood-Ljungdahl metabolic pathway, leading to the formation of acetyl-coenzyme A, a major intermediate in the Wood-Ljungdahl pathway.
Wood-Ljungdahl pathway는 아세틸-CoA를 생합성하는 경로로서, 일부 혐기성 미생물에서 성장을 위한 에너지를 생성하는데 있어서 중요한 수단으로 이용된다. The Wood-Ljungdahl pathway is a pathway for biosynthesis of acetyl-CoA, and is used as an important means of generating energy for growth in some anaerobic microorganisms.
Wood-Ljungdahl 경로를 활성화시키는 효소는 carbon monooxide dehydrogenase(CODH) 및 수소화효소(hydrogenase)이다. 이러한 효소는 합성가스 중 CO 및 H2로부터 전자를 포획하고 이를 페레독신, 즉, 철-황(FeS) 전자 수송 단백질에게 전달한다. 합성가스 발효 중에는 산화환원전위가 매우 낮기 때문에, 페레독신은 주로 혐기성 클로스트리디아 내에서 Wood-Ljungdahl 경로에 있어서 주요 전자 운반자이다. The enzymes that activate the Wood-Ljungdahl pathway are carbon monooxide dehydrogenase (CODH) and hydrogenase (hydrogenase). These enzymes capture electrons from CO and H 2 in syngas and deliver it to ferredoxin, an iron-sulfur (FeS) electron transport protein. Because oxidation-reduction potentials are very low during synthesis gas fermentation, ferredoxin is a major electron-transporting agent in the Wood-Ljungdahl pathway, mainly in anaerobic Clostridia.
전자 전달시, 페레독신은 Fe3+에서 Fe2+로 전자상태를 변화한다. 페레독신-결합 전자는 그 다음 ferredoxin oxidoreductases (FORS)의 활성을 통해 보조인자인 NAD+ 및 NADP+에게 전달된다. 환원된 뉴클레오티드 보조인자(NAD+ 및 NADP+)는 Wood-Ljungdahl 경로에서 중간 화합물의 생성에 이용되고, 아세틸-CoA를 형성시킨다. In electron transfer, ferredoxin changes its electron state from Fe3 + to Fe2 +. Ferredoxin - binding electrons are then delivered to the co - hosts NAD + and NADP + via the activity of ferredoxin oxidoreductases (FORS). Reduced nucleotide cofactors (NAD + and NADP +) are used to generate intermediate compounds in the Wood-Ljungdahl pathway and form acetyl-CoA.
Wood-Ljungdahl 경로를 통한 아세틸-CoA합성에 있어서, CO2 또는 CO는 상기 경로의 기질을 제공한다. CO2로부터 유래한 탄소는 우선 formate dehydrogenase(FDH) 효소에 의해 formate로 환원된 뒤, 추가적으로 methyl tetrahydrofolate 중간산물로 환원됨으로서, 최종적으로 메틸기로 환원된다. CO로부터 유래한 탄소는 CODH에 의해 카보닐기로 환원된다. 그 다음 상기 두 개의 탄소 moieties는 CODH/ACS 복합체의 일부인 아세틸 CoA 합성효소(ACS)에 의해 아세틸-CoA로 통합된다. 아세틸-CoA는 acetogenic Clostridia에서 C2-C6 알코올 및 산의 생성에 있어서 중심적인 대사산물이다.In acetyl-CoA synthesis via the Wood-Lungdahl pathway, CO 2 or CO provides a substrate for this pathway. Carbon derived from the CO 2 is by being first formate dehydrogenase (FDH) back by the reduced enzyme to the formate, methyl tetrahydrofolate further reduced to intermediate, and finally reduced to a methyl group. Carbon derived from CO is reduced to carbonyl group by CODH. The two carbon moieties are then incorporated into acetyl-CoA by acetyl-CoA synthetase (ACS), which is part of the CODH / ACS complex. Acetyl-CoA is a central metabolite in the production of C 2 -C 6 alcohols and acids in acetogenic Clostridia.
이와 같이, acetogenic Clostridia는 Wood-Ljungdahl 경로를 통해서, 현재 상업적으로 주목받고 있는 C2-C6 알코올 및 산, 예컨대, 에탄올, n-부탄올, 헥산올, 아세트산, 및 부틸릭산의 혼합물을 일부 생산한다. 그러나, 그 생산성이 매우 낮은 문제점이 있고 대사조작의 어려움이 있다.Thus, acetogenic Clostridia, through the Wood-Ljungdahl pathway, partly produces a mixture of currently commercially-attracted C 2 -C 6 alcohols and acids such as ethanol, n-butanol, hexanol, acetic acid, and butyric acid . However, there is a problem that the productivity is very low and the metabolism is difficult to operate.
이에 본 발명자들은, Wood-Ljungdahl 경로를 토대로 목적하는 생산물의 수율이 향상된 미생물을 개발하기 위해 노력한 결과, Wood-Ljungdahl 경로에 관여하는 ACS/CODH(acetyl-CoA synthases/carbon monoxide dehydrogenase complex) 복합체를 코딩하는 유전자들을 클로닝한 뒤, 이종 숙주 미생물에 도입하여 최초로 발현시킴으로서 ACS/CODH 복합체를 코딩하는 유전자 및 이들 산물인 효소의 활성을 확인함과 아울러, 이러한 유전자를 도입하여 이산화탄소 고정능을 가지는 재조합 미생물을 제작하고, 상기 재조합 미생물이 CO2의 고정 및 알코올 등 유용물질의 고수율 생산에 적합함을 확인하고 본 발명을 완성하였다.
Therefore, the present inventors have made efforts to develop a microorganism having improved yield of the desired product based on the Wood-Ljungdahl pathway. As a result, the present inventors have found that the ACS / CODH (acetyl-CoA synthase / carbon monoxide dehydrogenase complex) And then introduced into a heterologous host microorganism to express the ACS / CODH complex-encoding gene and the activity of the enzyme, which is the product of the ACS / CODH complex, as well as the recombinant microorganism having the ability to fix the carbon dioxide And confirmed that the recombinant microorganism is suitable for fixing CO 2 and producing a high yield of a useful substance such as alcohol and completed the present invention.
본 발명의 목적은 숙주 미생물에, 아세틸-CoA 합성효소/카본 모노옥사이드 디히드로게나아제 (acetyl-CoA synthase/carbon monooxide dehydrogenase, ACS/CODH) 복합체를 코딩하는 유전자 또는 상기 유전자를 함유하는 재조합 벡터가 도입되어 있는, 이산화탄소 고정능을 가지는 재조합 미생물 및 이의 제조방법을 제공하는데 있다.It is an object of the present invention to provide a gene encoding a acetyl-CoA synthase / carbon monooxide dehydrogenase (ACS / CODH) complex or a recombinant vector containing the gene A recombinant microorganism having carbon dioxide fixability, and a method for producing the recombinant microorganism.
본 발명의 다른 목적은 상기 재조합 미생물을 이용한 CO2의 고정 방법 및 유용물질의 제조 방법을 제공하는데 있다.
Another object of the present invention is to provide a method for fixing CO 2 using the recombinant microorganism and a method for producing a useful substance.
상기 목적을 달성하기 위해, 본 발명은 숙주 미생물에, 아세틸-CoA 합성효소/카본 모노옥사이드 디히드로게나아제 (acetyl-CoA synthase/carbon monooxide dehydrogenase, ACS/CODH) 복합체를 코딩하는 유전자 또는 상기 유전자를 함유하는 재조합 벡터가 도입되어 있는, 이산화탄소 고정능을 가지는 재조합 미생물을 제공한다.In order to accomplish the above object, the present invention provides a method for producing a microorganism, which comprises administering to a host microorganism a gene coding for an acetyl-CoA synthase / carbon monooxide dehydrogenase (ACS / CODH) complex, A recombinant microorganism having the ability to fix carbon dioxide is introduced.
본 발명은 또한, 숙주 미생물에, 아세틸-CoA 합성효소/카본 모노옥사이드 디히드로게나아제 (acetyl-CoA synthase/carbon monooxide dehydrogenase, ACS/CODH) 복합체를 코딩하는 유전자 또는 상기 유전자를 함유하는 재조합 벡터를 도입시키는 것을 특징으로 하는, 재조합 미생물 제조방법을 제공한다.The present invention also relates to a method for producing a recombinant vector comprising a gene coding for an acetyl-CoA synthase / carbon monooxide dehydrogenase (ACS / CODH) complex or a recombinant vector containing the gene, And then introducing the recombinant microorganism.
본 발명은 또한, 상기 재조합 미생물을 CO2 존재하에 배양하는 것을 특징으로 하는 CO2의 고정방법을 제공한다. The present invention also provides a method of fixing the CO 2 which comprises culturing a recombinant microorganism under the CO 2 present.
본 발명은 또한, 상기 재조합 미생물을 CO2 존재하에 배양하여, 유용물질을 생성시킨 다음, 생산된 유용물질을 회수하는 것을 특징으로 하는, 유용물질 제조방법을 제공한다.
The present invention also provides a method for producing a useful substance, characterized in that the recombinant microorganism is cultured in the presence of CO 2 to produce a useful substance, and then the produced useful substance is recovered.
본 발명은 Wood-Ljungdahl 경로에 관여하는 ACS/CODH(acetyl-CoA synthases/carbon monoxide dehydrogenase complex) 복합체를 코딩하는 유전자가 도입되어 있는 재조합 미생물에 관한 것으로, 본 발명에 따른 재조합 미생물은 이산화탄소 고정능을 가지고 있어, CO2로부터 알코올, 유기산과 같은 유용물질을 고농도, 고수율로 생산하는데 유용하다.
The present invention relates to a recombinant microorganism into which a gene coding for ACS / CODH (acetyl-CoA synthase / carbon monoxide dehydrogenase complex) involved in the Wood-Ljungdahl pathway is introduced, and the recombinant microorganism according to the present invention has a carbon- And is useful for producing useful materials such as alcohols and organic acids from CO2 at high concentration and high yield.
도 1은 합성가스로부터 아세틸-CoA를 생합성하는 경로인 Wood-Ljungdahl 경로 및 이를 이용한 다양한 바이오화합물 및 바이오연료 생산을 나타낸 도식도이다.
도 2는 재조합 벡터 pTHL20-ACS-CODH의 개열 지도이다.
도 3은 Clostridium acetobutylicum에서 Tetrahydrofolate cycle과 ACS/CODH 복합체를 코딩하는 유전자의 도식도이다.FIG. 1 is a schematic diagram illustrating the production of various biochemicals and biofuel using the Wood-Ljungdahl pathway, which is a pathway for biosynthesis of acetyl-CoA from syngas.
Figure 2 is a cleavage map of the recombinant vector pTHL20-ACS-CODH.
3 is a schematic diagram of a gene coding for the Tetrahydrofolate cycle and the ACS / CODH complex in Clostridium acetobutylicum.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명자는 Wood-Ljungdahl 경로에 관여하는 ACS/CODH(acetyl-CoA synthases/carbon monoxide dehydrogenase complex) 복합체를 코딩하는 유전자들을 클로닝하여 이종 숙주 미생물에서 최초로 발현시킴으로서 상기 유전자들의 기능을 실험적으로 규명하였다. The present inventors experimentally cloned genes encoding ACS / CODH (acetyl-CoA synthases / carbon monoxide dehydrogenase complex) involved in the Wood-Ljungdahl pathway and firstly expressed them in heterologous host microorganisms.
따라서, 본 발명은 일 관점에서, 숙주 미생물에, 아세틸-CoA 합성효소/카본 모노옥사이드 디히드로게나아제 (acetyl-CoA synthase/carbon monooxide dehydrogenase, ACS/CODH) 복합체를 코딩하는 유전자 또는 상기 유전자를 함유하는 재조합 벡터가 도입되어 있는, 이산화탄소 고정능을 가지는 재조합 미생물에 관한 것이다.Accordingly, in one aspect, the present invention provides a method for producing a gene encoding a acetyl-CoA synthase / carbon monooxide dehydrogenase (ACS / CODH) complex or a gene encoding the acetyl-CoA synthase / carbon monooxide dehydrogenase To a recombinant microorganism having carbon dioxide fixing ability.
본 발명에서, ACS/CODH 복합체를 코딩하는 유전자는 디히드로리포아미드 디히드로게나아제(dihydrolipoamide dehydrogenase)(CD0723)(서열번호 1), 카본 모노옥사이드 디히드로게나아제 셰프론(carbon monooxide dehydrogenase chaperone)(CD0724)(서열번호 2), 코리노이드 철-황 단백질 소단위(corrinoid iron-sulfur protein small subunit)(CD0725)(서열번호 3), 코리노이드 철-황 단백질 대단위(corrinoid iron-sulfur protein large subunit)(CD0726)(서열번호 4), 메틸트랜스퍼라아제 서브유닛(methyltransferase subunit)(CD0727)(서열번호 5), 아세틸-CoA 합성효소(ACS) 또는 ACS/CODH 서브유닛 알파(CD0728)(서열번호 6) 및 글리신 절단 시스템 H 단백질(glycine cleavage system H protein)(CD0729)(서열번호 7)을 코딩하는 유전자로 구성된 군에서 선택된 하나 이상의 유전자일 수 있으나, 이에 국한되는 것은 아니다. In the present invention, the gene coding for the ACS / CODH complex is dihydrolipoamide dehydrogenase (CD0723) (SEQ ID NO: 1), carbon monooxide dehydrogenase chaperone ( CD0724) (SEQ ID NO: 2), corrinoid iron-sulfur protein small subunit (CD0725) (SEQ ID NO: 3), corrinoid iron-sulfur protein large subunit CD0726) (SEQ ID NO: 4), methyltransferase subunit (CD0727) (SEQ ID NO: 5), acetyl-CoA synthetase (ACS) or ACS / CODH subunit alpha (CD0728) And a gene coding for the glycine cleavage system H protein (CD0729) (SEQ ID NO: 7), but is not limited thereto.
또한, Wood-Ljungdahl pathway에 관여하는, 상기 서열번호 1 내지 7과 같은 ACS/CODH 복합체를 코딩하는 유전자의 수득은 다양한 생물자원으로부터 할 수 있으며, 특히 아세토전(acetogen)이나 메타노전(methanogen)으로부터 수득하는 것이 더욱 바람직하다. 본 발명에 있어서, 메타노전은 Methanobacterium bryantii, Methanobacterium formicum, Methanobrevibacter arboriphilicus, Methanobrevibacter gottschalkii, Methanobrevibacter ruminantium, Methanobrevibacter smithii, Methanocalculus chunghsingensis, Methanococcoides burtonii, Methanococcus aeolicus, Methanococcus deltae, Methanococcus jannaschii, Methanococcus maripaludis, Methanococcus vannielii, Methanocorpusculum labreanum, Methanoculleus bourgensis (Methanogenium olentangyi & Methanogenium bourgense), Methanoculleus marisnigri, Methanofollis liminatans, Methanogenium cariaci, Methanogenium frigidum, Methanogenium organophilum, Methanogenium wolfei, Methanomicrobium mobile, Methanopyrus kandleri, Methanoregula boonei, Methanosaeta concilii, Methanosaeta thermophila, Methanosarcina acetivorans, Methanosarcina barkeri, Methanosarcina mazei, Methanosphaera stadtmanae, Methanospirillium hungatei, Methanothermobacter defluvii (Methanobacterium defluvii), Methanothermobacter thermautotrophicus (Methanobacterium thermoautotrophicum), Methanothermobacter thermoflexus (Methanobacterium thermoflexum), Methanothermobacter wolfei (Methanobacterium wolfei), Methanothrix sochngenii 등을 예시할 수 있으며, 아세토전은 Acetoanaerobium ruminis, Acetoanaerobium noterae, Acetoanaerobium romashkovii, Acetobacterium baloi, Acetobacterium carbinolicum, Acetobacterium dehalogenans, Acetobacterium fimetarium, Acetobacterium malicum, Acetobacterium paludosum, Acetobacterium psammolithicum, Acetobacterium tundrae, Acetobacterium wieringae, Acetobacterium woodii, Acetobacterium sp., Acetonema longum, Bryantella formatexigens, Butyribacterium methylotrophicum, Caloramator fervidus, Clostridium aceticum, Clostridium autoethanogenum, Clostridium coccoides, Clostridium difficile, Clostridium formicaceticum, Clostridium glycolicum, Clostridium ljungdahlii, Clostridium magnum, Clostridium mayombei, Clostridium methoxybenzovorans, Clostridium scatologenes, Clostridium ultunense, Clostridium sp., Eubacterium aggregans, Eubacterium limosum, Holophaga foetida, Moorella glycerini, Moorella mulderi, Moorella thermoacetica, Moorella thermoautotrophica, Moorella sp., Natroniella acengena, Natronincola histidinovorans, Oxobacter pfennigii, Ruminococcus hydrogenotrophicus, Ruminococcus productus, Ruminococcus schinkii, Ruminococcus sp., Sporomusa acidovorans, Sporomusa aerivorans, Sporomusa malonica, Sporomusa ovata, Sporomusa paucivorans, Sporomusa silvacetica, Sporomusa sphaeroides, Sporomusa termitida, Sporomusa sp., Syntrophococcus sucromutans, Thermoacetogenium phaeum, Thermoanaerobacter kivui 등을 예시할 수 있다.In addition, the gene coding for the ACS / CODH complex, such as those of SEQ ID NOS: 1 to 7, involved in the Wood-Ljungdahl pathway can be obtained from a variety of biological sources, and particularly from acetogen or methanogen More preferably, In the present invention, meta nojeon is Methanobacterium bryantii, Methanobacterium formicum, Methanobrevibacter arboriphilicus, Methanobrevibacter gottschalkii, Methanobrevibacter ruminantium, Methanobrevibacter smithii, Methanocalculus chunghsingensis, Methanococcoides burtonii, Methanococcus aeolicus, Methanococcus deltae, Methanococcus jannaschii, Methanococcus maripaludis, Methanococcus vannielii, Methanocorpusculum labreanum, Methanoculleus bourgensis (Methanogenium olentangyi & Methanogenium bourgense), Methanoculleus marisnigri, Methanofollis liminatans, Methanogenium cariaci, Methanogenium frigidum, Methanogenium organophilum, Methanogenium wolfei, Methanomicrobium mobile, Methanopyrus kandleri, Methanoregula boonei, Methanosaeta concilii, Methanosaeta thermophila, Methanosarcina acetivorans, Methanosarcina barkeri, Methanosarcina mazei, Methanosphaera stadtmanae, Methanospirillium hungatei, Methanothermobacter defluvii (Methanobacterium defluvii), Methanothermobacter thermau totrophicus (Methanobacterium thermoautotrophicum), can be exemplified such as Methanothermobacter thermoflexus (Methanobacterium thermoflexum), Methanothermobacter wolfei (Methanobacterium wolfei), Methanothrix sochngenii, acetonitrile former is Acetoanaerobium ruminis, Acetoanaerobium noterae, Acetoanaerobium romashkovii, Acetobacterium baloi, Acetobacterium carbinolicum, Acetobacterium dehalogenans, Acetobacterium fimetarium, Acetobacterium malicum, Acetobacterium paludosum, Acetobacterium psammolithicum, Acetobacterium tundrae, Acetobacterium wieringae, Acetobacterium woodii, Acetobacterium sp., Acetonema longum, Bryantella formatexigens, Butyribacterium methylotrophicum, Caloramator fervidus, Clostridium aceticum, Clostridium autoethanogenum, Clostridium coccoides, Clostridium difficile, Clostridium formicaceticum, Clostridium glycolicum, Clostridium ljungdahlii, Clostridium magnum, Clostridium mayombei, Clostridium methoxybenzovorans, Clostridium scatologenes, Clostridium ultunense, Clostridium sp., Eubacterium sp., Eubacterium limosum, Holophaga foetida, Moorella glycerini, Moorella muldereri, Moorella thermoacetica, Moorella thermoautotrophica, Moorella sp., Natroniella acengena, Natronincola histidinovorans, Oxobacter pfennigii, Ruminococcus hydrogenotrophicus, Ruminococcus productus, Ruminococcus schinkii, Ruminococcus sp. , Sporomusa acidovorans, Sporomusa aerivorans, Sporomusa malonica, Sporomusa ovata, Sporomusa paucivorans, Sporomusa silvacetica, Sporomusa sphaeroides, Sporomusa termitida, Sporomusa sp., Syntrophococcus sucromutans, Thermoacetogenium phaeum and Thermoanaerobacter kivui.
본 발명에 있어서, 상기 ACS/CODH 복합체를 코딩하는 유전자는 Wood-Ljundahli pathway에서, 카보닐기와 메틸기 및 코엔자임 A가 생합성되는 단계에 관여하는 ACS/CODH 복합체(complex)를 형성하는 유전자들로서, 본 발명자는 Clostridium difficille로부터, 상동성(homology)을 가지는 단백질이 없는 약 9kb 길이의 유전자를 클로닝한 뒤, 이를 상기 유전자가 결실되어 있는 이종 숙주 미생물인 Clostridium acetobutylicum에서 발현시킴으로써, 상기 유전자들이 ACS/CODH 복합체 활성에 있어서 중요한 유전자임을 실험을 통해 증명하였다. In the present invention, genes coding for the ACS / CODH complex are genes that form an ACS / CODH complex involved in the step of biosynthesis of a carbonyl group, a methyl group and coenzyme A in the Wood-Ljundahli pathway. Clostridium difficille clones a gene of about 9 kb in length without a homologous protein and then expresses it in Clostridium acetobutylicum, a heterologous host microorganism in which the gene has been deleted. Thus, the genes are expressed in ACS / CODH complex activity , Which is an important gene in the human genome.
본 발명의 유전자는 코딩 영역으로부터 발현되는 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있고 코딩 영역을 제외한 부분에서도 유전자의 발현에 영향을 미치지 않는 범위 내에서 다양한 변형 또는 수식이 이루어질 수 있으며, 그러한 변형 유전자 역시 본 발명의 범위에 포함된다. The gene of the present invention may be modified in various ways within the scope of not altering the amino acid sequence of the protein expressed from the coding region and may be modified or modified within a range not affecting the expression of the gene, An expression can be made, and such modified genes are also included in the scope of the present invention.
따라서, 본 발명은 상기 유전자와 실질적으로 동일한 염기서열을 갖는 폴리뉴클레오티드 및 상기 유전자의 단편을 역시 포함한다. 실질적으로 동일한 폴리뉴클레오티드란 서열의 상동성과는 무관하게, 본 발명에서 사용된 것과 동일한 기능을 가지는 효소를 코딩하는 유전자를 의미한다. 상기 유전자의 단편 또한 단편의 길이와는 무관하게, 본 발명에서 사용된 것과 동일한 기능을 가지는 효소를 코딩하는 유전자를 의미한다. Therefore, the present invention also includes a polynucleotide having a base sequence substantially identical to the gene and a fragment of the gene. Substantially the same polynucleotide means a gene encoding an enzyme having the same function as that used in the present invention regardless of the homology of the sequence. Means a gene encoding an enzyme having the same function as that used in the present invention regardless of the fragment of the gene and the length of the fragment.
또한, 본 발명의 유전자의 발현산물인 단백질의 아미노산 서열이 해당 효소의 역가 및 활성에 영향을 미치지 않는 범위 내에서 다양한 미생물 등 생물자원들로부터 확보될 수 있으며, 그러한 다른 생물자원으로부터 확보한 단백질 역시 본 발명의 범위에 포함된다. In addition, the amino acid sequence of the protein, which is an expression product of the gene of the present invention, can be ensured from biological resources such as various microorganisms within a range not affecting the activity and activity of the enzyme, And are included in the scope of the present invention.
따라서, 본 발명은 상기 단백질과 실질적으로 동일한 아미노산서열을 갖는 폴리펩티드 및 상기 폴리펩티드의 단편을 역시 포함한다. 실질적으로 동일한 폴리펩티드란 아미노산 서열의 상동성과는 무관하게, 본 발명에서 사용된 것과 동일한 기능을 가지는 단백질을 의미한다. 상기 폴리펩티드의 단편 또한 단편의 길이와는 무관하게, 본 발명에서 사용된 것과 동일한 기능을 가지는 단백질을 의미한다.Thus, the present invention also includes polypeptides having substantially the same amino acid sequence as the protein and fragments of the polypeptides. A substantially identical polypeptide means a protein having the same function as that used in the present invention regardless of the homology of the amino acid sequence. A fragment of the polypeptide also means a protein having the same function as that used in the present invention regardless of the length of the fragment.
본원에서, "벡터( vector )"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드(plasmid)" 및 "벡터(vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수 개에서 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다. 라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 형질전환은 칼슘 클로라이드 방법 또는 전기천공법(electroporation) (Neumann, et al., EMBO J., 1:841, 1982) 등을 사용해서 용이하게 달성될 수 있다. As used herein, " vector " means a DNA construct containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in the appropriate host. The vector may be a plasmid, phage particle or simply a potential genome insert. Once transformed into the appropriate host, the vector may replicate and function independently of the host genome, or, in some cases, integrate into the genome itself. Because the plasmid is the most commonly used form of the current vector, the terms " plasmid " and " vector " are sometimes used interchangeably in the context of the present invention. For the purpose of the present invention, it is preferable to use a plasmid vector. Typical plasmid vectors that can be used for this purpose include (a) a cloning start point that allows replication to be efficiently made to include several to several hundred plasmid vectors per host cell, (b) a host cell transformed with the plasmid vector, (C) a restriction enzyme cleavage site into which a foreign DNA fragment can be inserted. Even if an appropriate restriction enzyme cleavage site is not present, using a synthetic oligonucleotide adapter or a linker according to a conventional method can easily ligate the vector and the foreign DNA. After ligation, the vector should be transformed into the appropriate host cell. Transformation can be readily accomplished using a calcium chloride method or electroporation (Neumann, et al., EMBO J. , 1: 841, 1982).
본 발명에 따른 유전자의 과발현을 위하여 사용되는 벡터는 당업계에 공지된 발현 벡터가 사용될 수 있다. As a vector used for overexpression of the gene according to the present invention, an expression vector known in the art can be used.
염기서열은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결(operably linked)"된다. 이것은 적절한 분자(예를 들면, 전사 활성화 단백질)가 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용한다. A nucleotide sequence is " operably linked " when placed in a functional relationship with another nucleic acid sequence. This may be the gene and regulatory sequence (s) linked in such a way as to enable gene expression when a suitable molecule (e. G., Transcriptional activator protein) is attached to the regulatory sequence (s). For example, DNA for a pre-sequence or secretory leader is operably linked to DNA for a polypeptide when expressed as a whole protein participating in the secretion of the polypeptide; A promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; Or the ribosome binding site is operably linked to a coding sequence if it affects the transcription of the sequence; Or a ribosome binding site is operably linked to a coding sequence if positioned to facilitate translation. Generally, " operably linked " means that the linked DNA sequences are in contact and, in the case of a secretory leader, are in contact and present in the reading frame. However, the enhancer need not be in contact. The linkage of these sequences is carried out by ligation (linkage) at convenient restriction sites. If such a site does not exist, a synthetic oligonucleotide adapter or a linker according to a conventional method is used.
당업계에 주지된 바와 같이, 숙주세포에서 형질전환 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 재조합벡터 내에 포함되게 된다. 숙주세포가 진핵세포인 경우에는, 재조합벡터는 진핵 발현 숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다. As is well known in the art, in order to increase the expression level of a transgene in a host cell, the gene must be operably linked to a transcriptional and detoxification regulatory sequence that functions in a selected expression host. Preferably the expression control sequence and the gene are contained within a recombinant vector containing a bacterial selection marker and a replication origin. If the host cell is a eukaryotic cell, the recombinant vector should further comprise a useful expression marker in the eukaryotic expression host.
상술한 재조합 벡터에 의해 형질전환된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미한다. The host cells transformed with the recombinant vectors described above constitute another aspect of the present invention. As used herein, the term " transformation " means introducing DNA into a host and allowing the DNA to replicate as an extrachromosomal factor or by chromosomal integration.
물론 모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다. Of course, it should be understood that not all vectors function equally well in expressing the DNA sequences of the present invention. Likewise, not all hosts function identically for the same expression system. However, those skilled in the art will be able to make appropriate selections among a variety of vectors, expression control sequences, and hosts without undue experimentation and without departing from the scope of the present invention. For example, in selecting a vector, the host should be considered because the vector must be replicated within it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, must also be considered.
아울러, ACS/CODH 복합체를 코딩하는 유전자는 숙주세포의 게놈에 도입되어 염색체 상 인자로서 존재하는 것을 특징으로 할 수 있다. 본 발명이 속하는 기술분야의 당업자에게 있어 상기 유전자를 숙주세포의 게놈 염색체에 삽입하여서도 상기와 같이 재조합 벡터를 숙주세포에 도입한 경우와 동일한 효과를 가질 것은 자명하다 할 것이다.In addition, the gene coding for the ACS / CODH complex may be introduced into the genome of the host cell to exist as a chromosomal factor. It will be apparent to those skilled in the art that the present invention has the same effect as that of introducing the recombinant vector into the host cell by inserting the gene into the genome of the host cell.
본 발명에 있어서, 숙주 미생물은 미생물이라면 제한없이 숙주 미생물로 이용할 수 있으나, 클로스트리듐 속 미생물을 이용하는 것이 바람직하다. In the present invention, the host microorganism is not limited as long as it is a microorganism, but it is preferable to use a microorganism belonging to the genus Clostridium.
본 발명에 있어서, 클로스트리듐 속 미생물로는 클로스트리듐 아세토부틸리쿰(Clostridium acetobutylicum), 클로스트리듐 바이예링키아이(Clostridium beijerinckii), 클로스트리듐 사카로부틸리쿰(Clostridium saccharobutylicum), 클로스트리듐 사카로퍼부틸아세토니쿰(Clostridium saccharoperbutylacetonicum), 클로스트리듐 퍼프린겐스(Clostridium perfringens), 클로스트리듐 테타니(Clostridium tetani), 클로스트리듐 디피실레(Clostridium difficile), 클로스트리듐 부티리쿰(Clostridium butyricum), 클로스트리듐 부틸리쿰(Clostridium butylicum), 클로스트리듐 클루이베리(Clostridium kluyveri), 클로스트리듐 타이로부틸리쿰(Clostridium tyrobutylicum), 클로스트리듐 타이로부티리쿰(Clostridium tyrobutyricum) 등을 예시할 수 있다.In the present invention, microorganisms belonging to the genus Clostridium include Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium saccharobutylicum, Clostridium saccharoperbutylacetonum, Clostridium perfringens, Clostridium tetani, Clostridium difficile, Clostridium butyricum, Clostridium spp. ), Clostridium butylicum, Clostridium kluyveri, Clostridium tyrobutylicum, Clostridium tyrobutyricum, and the like. can do.
지금까지 ACS/CODH를 다양한 host에서 발현시키려는 노력은 있었으나, 이종 host에서 발현시켜 활성을 보인 경우는 없었다. 종래에는 genome sequencing에 기반한 단순한 computational annotation 정보만 있으므로 이를 실험적으로 증명하여 characterization이 되어 있지 않았기에 이종 host에서의 발현이 매우 어려웠다. 또한, 이들 균주들에 대한 분자생물학적 연구의 미비 및 이와 관련된 도구들의 부재로 인하여 이들 균주들이 가진 유전자에 대한 검증이 불가능한 형편이다. 또한, 단순한 computational annotation 정보에 따른 유전자의 기능분석과 유전자의 발현을 통한 단백질의 실제 활성은 별개의 일이다. 본 발명자는 Clostridium difficille로부터, 상동성을 가지는 단백질이 없는 약 9kb 길이의 유전자를 클로닝한 뒤, 이를 상기 유전자가 결실되어 있는 이종 숙주 미생물인 Clostridium acetobutylicum에서 발현시키는데 성공하였고, 상기 유전자들이 ACS/CODH 복합체 활성에 있어서 중요한 유전자임을 실험을 통해 증명하였다.
Up to now, there have been efforts to express ACS / CODH in various hosts, but no cases have been shown to be expressed in heterologous hosts. In the past, only simple computational annotation information based on genome sequencing has been proven experimentally, and since it is not characterized, expression in heterologous host was very difficult. In addition, it is impossible to verify the genes possessed by these strains due to the lack of the molecular biologic researches and the related tools in these strains. In addition, functional analysis of genes based on simple computational annotation information and the actual activity of proteins through expression of genes are separate tasks. The present inventors have succeeded in expressing Clostridium difficille by cloning a gene of about 9 kb in length without a homologous protein and then expressing it in Clostridium acetobutylicum, a heterologous host microorganism in which the gene has been deleted. When the genes are expressed in the ACS / CODH complex It is proved through experiments that the gene is important for activity.
본 발명에 있어서, 상기 숙주 미생물은 Wood-Ljungdahl pathway에 관여하는 효소들을 코딩하는 유전자를 일부 또는 전부 가지는 것을 특징으로 할 수 있다. In the present invention, the host microorganism may be characterized in that it has some or all of the genes encoding enzymes involved in the Wood-Lung pathway.
Wood-Ljungdahl pathway에 관여하는 효소들을 코딩하는 유전자란 ACS/CODH 복합체를 코딩하는 유전자를 포함하는 개념이며, 숙주 미생물은 Wood-Ljungdahl pathway에 관여하는 효소들을 코딩하는 유전자를 일부 또는 전부 가질 수 있다. 본 발명자들은 Clostridium acetobutylicum 내에 존재하는 Wood-Ljungdahl pathway에 관여하는 효소들을 코딩하는 유전자들이 ACS/CODH 복합체 활성에 있어서 중요한 유전자임을 실험을 통해 증명하였다. 구체적으로, Clostridium acetobutylicum 내에 존재하는 유전자들에 대해서는 유전자결실(knockout) 실험을 통하여 ACS/CODH 복합체 활성에 있어서 중요한 유전자임을 실험을 통해 증명하였다.The gene coding for the enzymes involved in the Wood-Ljungdahl pathway is a concept that includes a gene encoding the ACS / CODH complex, and the host microorganism may have some or all of the genes encoding enzymes involved in the Wood-Lung pathway. The present inventors have demonstrated through experiments that genes coding for enzymes involved in the Wood-Ljungdahl pathway present in Clostridium acetobutylicum are important genes for ACS / CODH complex activity. Specifically, the genes present in Clostridium acetobutylicum were proved to be important genes for ACS / CODH complex activity by knockout experiments.
본 발명의 재조합 미생물은 숙주 미생물이 본래 가지고 있던 Wood-Ljungdahl pathway에 관여하는 효소들을 코딩하는 유전자 및/또는 본 발명자가 클로닝한 ACS/CODH 복합체를 코딩하는 유전자를 이용하여 이산화탄소 고정능을 갖는다. The recombinant microorganism of the present invention has carbon dioxide fixing ability by using a gene encoding enzymes involved in the Wood-Lung pathway originally possessed by the host microorganism and / or a gene encoding the ACS / CODH complex cloned by the present inventor.
본 발명에 있어서, 상기 숙주 미생물의 Wood-Ljungdahl pathway에 관여하는 효소들을 코딩하는 유전자는 카본 모노옥사이드 디히드로게나아제(carbon monooxide dehydrogenase)(CAC0116, 또한, CAC2498)(서열번호 8, 서열번호 9), 포밀-테트라하이드로폴레이트신타제(formyl-H4folate synthase)(CAC3201)(서열번호 10), 포미미도-테트라하이드로폴레이트 사이클로디아미나제(formimido-H4folate cyclodeaminase)(CAC2310, CAC2083)(서열번호 11, 서열번호 12), 포밀-테트라하이드로폴레이트 사이클로하이들롤라제/메틸렌-테트라하이드로폴레이트 디하이드로게나제(formyl-H4folate cyclohydrolase/methylene-H4folate dehydrogenase)(CAC2091)(서열번호 13) 및 메틸렌-테트라하이드로폴레이트 리덕타제(methylene-H4folate reductase)(CAC2091)(서열번호 13)을 코딩하는 유전자로 구성된 군에서 선택된 하나 이상의 유전자일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the gene coding for the enzymes involved in the Wood-Lung pathway of the host microorganism is carbon monooxide dehydrogenase (CAC0116, also CAC2498) (SEQ ID NO: 8, SEQ ID NO: 9) , Formyl-H4folate synthase (CAC3201) (SEQ ID NO: 10), formimido-tetrahalophate cyclodiaminease (CAC2310, CAC2083) , SEQ ID NO: 12), formyl-tetrahydrofolate cyclohydrolase / methylene-H4folate dehydrogenase (CAC2091) (SEQ ID NO: 13), and methylene-tetrahydrofolate dehydrogenase And a gene coding for methylene-H4folate reductase (CAC2091) (SEQ ID NO: 13), but it may be one or more genes selected from the group consisting of One that does not.
또 다른 관점에서, 본 발명은 숙주 미생물에, 아세틸-CoA 합성효소/카본 모노옥사이드 디히드로게나아제 (acetyl-CoA synthase/carbon monooxide dehydrogenase, ACS/CODH) 복합체를 코딩하는 유전자 또는 상기 유전자를 함유하는 재조합 벡터를 도입시키는 것을 특징으로 하는, 재조합 미생물 제조방법에 관한 것이다.According to another aspect of the present invention, there is provided a host microorganism, which comprises a gene encoding an acetyl-CoA synthase / carbon monooxide dehydrogenase (ACS / CODH) complex, And introducing a recombinant vector into the recombinant microorganism.
또 다른 관점에서, 본 발명은 본 발명에 따른 재조합 미생물을 CO2 존재 하에 배양하여 CO2를 고정시키는 방법에 관한 것이다. 본 발명에 따른 재조합 미생물은 새로 도입한 유전자와 본래 가지고 있는 유전자를 이용하여 CO2를 고정할 수 있다.In yet another aspect, the present invention provides a recombinant microorganism according to the present invention CO 2 The present invention relates to a method of immobilizing CO 2 in the presence of a culture medium. The recombinant microorganism according to the present invention can fix CO 2 using the newly introduced gene and the original gene.
또 다른 관점에서, 본 발명은 본 발명에 따른 재조합 미생물을 배양하여, 유용물질을 생성시킨 다음, 생산된 유용물질을 회수하는 것을 특징으로 하는, 유용물질의 제조방법에 관한 것이다. 본 발명에 따른 재조합 미생물은 CO2를 탄소원으로 이용하여 알코올과 같은 유용물질을 생산한다.In another aspect, the present invention relates to a method for producing a useful substance, which comprises culturing a recombinant microorganism according to the present invention to produce a useful substance, and then recovering the produced useful substance. The recombinant microorganism according to the present invention uses CO 2 as a carbon source to produce a useful substance such as alcohol.
본 발명에 있어서, 상기 유용물질은 부탄올 또는 에탄올을 포함하는 알코올인 것을 특징으로 할 수 있으나, 이에 국한되는 것은 아니다. 예컨대, 본 발명에 따른 CO2 고정능을 가지는 재조합 미생물에 의해 생성되는 모든 물질을 포함한다 할 것이다.In the present invention, the useful substance may be butanol or ethanol-containing alcohol, but the present invention is not limited thereto. For example, all substances produced by the recombinant microorganism having CO 2 fixing ability according to the present invention.
유용물질의 한 예시로서 알코올, 아미노산, 유기산, 알켄, 고분자 단량체 등을 들 수 있으며, 상기 알코올은 탄소수 2~10의 직쇄 또는 측쇄 알코올, 더욱 상세하게는 에탄올, 이소부탄올, 프로판올, 헥산올, 헵탄올, 옥탄올, 노난올, 데칸올, tert-부탄올, 1-펜탄올, 2-펜탄올, 3-펜탄올, 2-메틸-1-부탄올, 3-메틸-1-부탄올, 2-메틸-2-부탄올 등을 더욱 포함할 수 있다.Examples of useful substances include alcohols, amino acids, organic acids, alkenes, and polymeric monomers. The alcohols include linear or branched alcohols having 2 to 10 carbon atoms, more specifically, ethanol, isobutanol, propanol, hexanol, Butanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl- 2-butanol, and the like.
본 발명에 따른 재조합 미생물은 자연적으로 Wood-Ljungdal pathway를 이용하여 이산화탄소를 고정하는 균주들에 비해 알코올 등과 같은 목적하는 유용물질을 고농도, 고수율로 생산할 수 있는 특징이 있다. 또한 본 발명을 이용하여, 기존의 특정 목적화합물(아미노산, 유기산, 알켄, 고분자 단량체 등) 생산을 위한 대사공학이 수행된 변이 미생물에 CO2를 고정할 수 있는 대사회로를 도입함으로써 목적화합물을 이산화탄소로부터 생산할 수 있는 특징이 있다.The recombinant microorganism according to the present invention is characterized in that a desired useful substance such as alcohol can be produced at a high concentration and a high yield compared with strains which naturally fix carbon dioxide using the Wood-Ljungdal pathway. Further, by introducing a metabolic circuit capable of fixing CO 2 to a mutant microorganism subjected to metabolic engineering for producing a specific target compound (amino acid, organic acid, alkene, polymer monomer, etc.) using the present invention, And the like.
본 발명의 일 실시예에서는, Clostridium difficille로부터 ACS/CODH 복합체를 코딩하는 유전자를 클로닝하고, 상기 유전자를 Wood-Ljungdahl pathway에 관여하는 효소들을 코딩하는 유전자의 일부를 가지는 Clostridium acetobutylicum 숙주 미생물에 도입시켜 재조합 미생물을 제작하였다. 그리고, 제작된 재조합 미생물을 배양하여, 상기 재조합 미생물이 부탄올 및 에탄올을 고수율로 생산한다는 것을 확인하였다.
In one embodiment of the present invention, a gene encoding an ACS / CODH complex is cloned from Clostridium difficille, and the gene is introduced into Clostridium acetobutylicum host microorganism having a part of a gene encoding enzymes involved in the Wood-Ljungdahl pathway, Microorganisms were produced. Then, the produced recombinant microorganism was cultured to confirm that the recombinant microorganism produced butanol and ethanol at a high yield.
[[ 실시예Example ]]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It will be apparent to those skilled in the art that these embodiments are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.
특히, 하기 실시예에서는 본 발명에 따른 유전자를 발현시키기 위하여 숙주균주로 특정 클로스트리듐 아세토부틸리쿰 균주들만을 예시하였으나, 다른 클로스트리듐 속이나 다른 속의 미생물을 사용하더라도, 상동성이 있거나 동일한 유전자를 도입하고, 이를 이용하여 부탄올, 에탄올, 아미노산, 유기산, 알켄, 고분자 단량체 등의 목적화합물을 제조하는 것 역시 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.In the following examples, only specific clostridium acetobuttilicum strains are exemplified as the host strains for expressing the gene according to the present invention. However, even if other clostridium or other genus microorganisms are used, homologous or identical It is also apparent to those skilled in the art that a target compound such as butanol, ethanol, amino acid, organic acid, alkene, polymer monomer, etc. can be prepared by introducing a gene and using the same.
또한, 하기 실시예에서는 부탄올 또는 에탄올의 생산만을 예시하였으나, 그 외 아미노산, 유기산, 알켄, 고분자 단량체 등의 목적화합물을 제조하는 것 역시 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Although only the production of butanol or ethanol is exemplified in the following examples, it will also be apparent to those skilled in the art that other desired compounds such as amino acids, organic acids, alkenes, and polymeric monomers can be prepared.
실시예Example 1. One. pTHL20pTHL20 벡터 제작 Vector production
클로스트리듐 아세토부틸리쿰의 싸이올레이즈(thiolase) 프로모터와 라이보좀 결합 부위(ribosome binding site, RBS)를 포함하는 외래 단백질 발현용 셔틀 벡터를 다음과 같이 제작하였다. 싸이올레이즈는 세포 생장주기에 크게 영향받지 않고 계속적이고 안정적으로 유전자를 발현시킬 수 있는 것으로 알려져 있다(Tummala et al., Appl. Environ. Microbiol., 65:3793~3799, 1999). 따라서 본 실시예에서는 싸이올레이즈(NCBI GeneID:1119056) 상단에 위치한 프로모터를 클로닝하여 pIMP-H1del에 삽입하였다. pIMP-H1del은 2개의 HindIII 제한효소 자리를 가지는 pIMP1으로부터 3408번째 염기서열에 존재하는 HindIII site 1개를 제거하고 743번째 염기열에 존재하는 제한효소 자리만 남겨둔 pIMP1을 주형으로 하는 셔틀 벡터이다. 서열번호 1과 서열번호 2의 프라이머, 클로스트리듐 아세토부틸리쿰(ATCC 824) 균주의 total DNA를 주형으로 PCR을 수행하여 싸이올레이즈 프로모터를 증폭하였다. 증폭된 싸이올레이즈 프로모터 단편들을 정제 및 회수 한 후, HindIII와 PstI 제한효소로 처리한 후, 동일 효소로 처리된 pIMP-H1del 셔틀 벡터와 접합(ligation)함으로써 pTHL1 벡터 제작을 완성하였다.
A shuttle vector for the expression of foreign proteins including a thiolase promoter of clostridium acetobutylicum and a ribosome binding site (RBS) was constructed as follows. It is known that thialase is capable of continuously and stably expressing a gene without being greatly affected by the cell growth cycle (Tummala et al., Appl. Environ. Microbiol., 65: 3793-3799, 1999). Therefore, in this example, the promoter located at the upper end of the Cytolase (NCBI GeneID: 1119056) was cloned and inserted into pIMP-H1del. pIMP-H1del is a shuttle vector having pIMP1 as a template, which removes one HindIII site existing in the 3408th nucleotide sequence from pIMP1 having two HindIII restriction enzyme sites and leaves only restriction enzyme sites in the 743th nucleotide sequence. PCR was performed using the total DNA of the primers Clostridium acetobutylicum (ATCC 824) of SEQ ID NO: 1 and SEQ ID NO: 2 as a template to amplify the thialase promoter. The amplified thiolase promoter fragments were purified and recovered, treated with HindIII and PstI restriction enzymes, and then ligated with the pIMP-H1del shuttle vector treated with the same enzyme to complete pTHL1 vector production.
[서열번호 14]: 5'-GGCCCCAAGCTTAGAATGAAGTTTCTTATGCACAAG-3'[SEQ ID NO: 14]: 5'-GGCCCCAAGCTTAGAATGAAGTTTCTTATGCACAAG-3 '
[서열번호 15]: 5'-AAACTGCAGTCTAACTAACCTCCTAAATTTTGATAC-3'
[SEQ ID NO: 15]: 5'-AAACTGCAGTCTAACTAACCTCCTAAATTTTGATAC-3 '
또한, 서열번호 3과 서열번호 4의 프라이머, pSOS95-Cm을 주형으로 PCR을 수행하여 클로람페니콜 저항성 유전자를 증폭하고, 증폭된 클로람페니콜 저항성 유전자 단편들을 정제 및 회수 한 후, HindIII 제한효소로 처리하고, 동일 효소로 처리된 pTHL1 셔틀 벡터와 접합(ligation)함으로써 MCS자리에 NcoI 자리가 추가된 pTHL2-Cm 벡터 제작을 완성하였다. pSOS95-Cm은 pSOS95 (Nair and Papoutsakis, J. Bacteriol., 176:5843-5846, 1994)에 ATCC 824균주의 thioloase promoter를 cloning하고, 그 down-stream에 chloramphenicol/thiamphenicol 내성 유전자를 cloning함으로써 제작 가능하다.
Also, PCR was performed using the primers of SEQ ID NO: 3 and SEQ ID NO: 4, pSOS95-Cm as a template to amplify the chloramphenicol resistance gene, and the amplified chloramphenicol resistance gene fragments were purified and recovered, treated with HindIII restriction enzyme, The pTHL2-Cm vector with the NcoI site added to the MCS site was completed by ligation with the enzyme-treated pTHL1 shuttle vector. pSOS95-Cm can be prepared by cloning the thioloase promoter of ATCC 824 strain in pSOS95 (Nair and Papoutsakis, J. Bacteriol., 176: 5843-5846, 1994) and cloning the chloramphenicol / thiamphenicol resistance gene in the down-stream .
[서열번호 16]: 5'-CCAAGCTTCGACTTTTTAACAAAATATATTG-3'[SEQ ID NO: 16]: 5'-CCAAGCTTCGACTTTTTAACAAAATATATTG-3 '
[서열번호 17]: 5'-AAAACTGCAGCCATGGTCTAACTAACCTCCTAAATTTTGATAC-3'
[SEQ ID NO: 17]: 5'-AAAACTGCAGCCATGGTCTAACTAACCTCCTAAATTTTGATAC-3 '
NcoI과 SalI 자리 사이에 XbaI-PstI-KpnI-SphI 자리를 추가하기 위하여 하기 서열번호 18과 서열번호 19의 프라이머를 이용하여 ATCC 824 gDNA를 주형으로 PCR하여 thiolase 유전자의 일부를 증폭하고, 증폭된 유전자 단편들을 정제 및 회수 한 후, NcoI과 SalI 제한효소로 처리하고, 동일 효소로 처리된 pTHL2-Cm 셔틀 벡터와 접합(ligation)함으로써 MCS자리에 XbaI-PstI-KpnI-SphI 자리가 추가된 pTHL20 벡터 제작을 완성하였다.
In order to add XbaI-PstI-KpnI-SphI site between the NcoI and SalI sites, a part of the thiolase gene was amplified by PCR using ATCC 824 gDNA as a template using the primers of SEQ ID NO: 18 and SEQ ID NO: 19 below, The fragments were purified and recovered and then treated with NcoI and SalI restriction enzymes and ligation with the pTHL2-Cm shuttle vector treated with the same enzyme to construct a pTHL20 vector with XbaI-PstI-KpnI-SphI digits added to the MCS site .
[서열번호 18]: CATGCCATGGTCTAGACTGCAGTTACCACATGGGAATAACAGC[SEQ ID NO: 18]: CATGCCATGGTCTAGACTGCAGTTACCACATGGGAATAACAGC
[서열번호 19]: TACGCGTCGACGCATGCGGTACCGTTGATCCAAATCTAGGGTGC
[SEQ ID NO: 19]: TACGCGTCGACGCATGCGGTACCGTTGATCCAAATCTAGGGTGC
실시예Example 2. 2. pTHL20pTHL20 -- ACSACS -- CODHCODH 벡터의 제작 Production of vector
서열번호 20과 서열번호 21의 프라이머, C. difficile의 total DNA를 주형으로 PCR을 수행하여 ACS/CODH 유전자 복합체의 첫 번째 단편을 증폭하고, 증폭된 유전자 단편들을 정제 및 회수 한 후, NcoI-PstI 제한효소로 처리하고, 동일 효소로 처리된 pTHL20 셔틀 벡터와 접합(ligation)함으로써 pTHL20-ACS-CODH1 제작을 완성하였다.
The first fragment of the ACS / CODH gene complex was amplified by PCR using primers of SEQ ID NO: 20 and SEQ ID NO: 21 and the total DNA of C. difficile as a template, and the amplified gene fragments were purified and recovered. Then, NcoI-PstI Treated with restriction enzymes and ligated with the pTHL20 shuttle vector treated with the same enzyme to complete the production of pTHL20-ACS-CODH1.
[서열번호 20]: CATGCCATGGATGAAGATAGTAGTAGTAGGTGGTGG[SEQ ID NO: 20]: CATGCCATGGATGAAGATAGTAGTAGTAGGTGGTGG
[서열번호 21]: GTTTGAACCACCTACTAAAACAC
[SEQ ID NO: 21]: GTTTGAACCACCTACTAAAACAC
서열번호 22와 서열번호 23의 프라이머, C. difficile의 total DNA를 주형으로 PCR을 수행하여 ACS/CODH 유전자 복합체의 두 번째 단편을 증폭하고, 증폭된 유전자 단편들을 정제 및 회수 한 후, PstI-AvaI 제한효소로 처리하고, 동일 효소로 처리된 pTHL20-ACS-CODH1과 접합(ligation)함으로써 pTHL20-ACS-CODH2 제작을 완성하였다.
The second fragment of the ACS / CODH gene complex was amplified by performing PCR using the total DNA of C. difficile as primers of SEQ ID NOS: 22 and 23, and the amplified gene fragments were purified and recovered. Then, PstI-AvaI Treated with restriction enzymes and ligated with pTHL20-ACS-CODH1 treated with the same enzyme to complete pTHL20-ACS-CODH2 production.
[서열번호 22]: CATTTGGACCATTAAGTGAATTAG [SEQ ID NO: 22]: CATTTGGACCATTAAGTGAATTAG
[서열번호 23]: CCCCCGGGGGCTATGAATATATCTGCATTTCTTGC
[SEQ ID NO: 23]: CCCCCGGGGGCTATGAATATATCTGCATTTCTTGC
서열번호 24와 서열번호 25의 프라이머, C. difficile의 total DNA를 주형으로 PCR을 수행하여 ACS/CODH 유전자 복합체의 두 번째 단편을 증폭하고, 증폭된 유전자 단편들을 정제 및 회수 한 후, PstI 제한효소로 처리하고, 동일 효소로 처리된 pTHL20-ACS-CODH2과 접합(ligation)함으로써 pTHL20-ACS-CODH 제작을 완성하였다 (도 2).
The second fragment of the ACS / CODH gene complex was amplified by PCR using the total DNA of C. difficile as primers of SEQ ID NO: 24 and SEQ ID NO: 25, and the amplified gene fragments were purified and recovered. The PstI restriction enzyme , And ligated with pTHL20-ACS-CODH2 treated with the same enzyme to complete pTHL20-ACS-CODH production (FIG. 2).
[서열번호 24]: CAGAAGAAAGAACTATAGCAATGG [SEQ ID NO: 24]: CAGAAGAAAGAACTATAGCAATGG
[서열번호 25]: TGGGAATCCTAAAGCTATTGC
[SEQ ID NO: 25]: TGGGAATCCTAAAGCTATTGC
실시예Example 3. 재조합 미생물의 제작 3. Production of recombinant microorganisms
실시예 2에서 제작된 재조합 벡터 pTHL20-ACS-CODH를 일렉트로포레이션 방법을 이용하여 클로스트리듐 아세토부틸리쿰 ATCC 824 균주에 도입하여 ATCC 824-ACS/CODH 균주를 제작하였다. The recombinant vector pTHL20-ACS-CODH prepared in Example 2 was introduced into clostridium acetobutylicum ATCC 824 strain using an electroporation method to prepare an ATCC 824-ACS / CODH strain.
먼저, 바실러스 서브틸리스 파지 (Bacillus subtilis Phage) Φ3T I 메틸트랜스퍼라제(methyltransferase) 발현 벡터, pAN1 (Mermelstein et al ., Appl . Environ . Microbiol ., 59:1077, 1993)을 함유하는 대장균 TOP10에 실시예 2에서 제작된 재조합 벡터들을 도입하여, 상기 벡터들을 클로스트리듐으로의 형질전환에 적합하도록 메틸레이션을 유도하였다. 이렇게 메틸레이션된 벡터를 대장균으로부터 분리 및 정제하고, 이 벡터를클로스트리듐 아세토부틸리쿰 변이주 ATCC 824에 도입하여 재조합 변이 미생물을 제조하였다. First, the Bacillus subtilis phage (Bacillus subtilis Phage) Φ3T I methyltransferase expression vector, pAN1 (Mermelstein et al . , Appl . Environ . Microbiol ., 59: 1077, 1993) was introduced into E. coli TOP10, and the methylation was induced so that the vectors were suitable for transformation into clostridium. The methylated vector was isolated and purified from Escherichia coli, and this vector was introduced into clostridium acetobutylicum mutant ATCC 824 to prepare a recombinant mutant microorganism.
형질전환을 위한 ATCC 824 competent cell은 다음과 같이 준비하였다. 먼저 10 ml CGM (표 1)에 M5 균주를 접종한 후 OD 0.6이 될 때까지 배양하였다. 이를 이용하여 2X YTG배지 (Bacto Tryptone 16 g, Yeast extract 10 g, NaCl 4 g, Glucose 5 g, 1 리터 당) 60 ml에 10% 접종하여 4-5 시간 동안 배양하였다. 형질전환 버퍼 (EPB, 270 mM sucrose 15 ㎖, 686 mM NaH2PO4 110 ㎕, pH N.4)로 2번 washing한 후, 2.4 ㎖의 동일 버퍼로 미생물 세포를 현탁시켰다. 이렇게 만들어진 competent cell 600 ㎕와 재조합 플라스미드 DNA 25 ㎕를 섞어서 4 mm 전극을 가진 cuvette에 충진 후 2.5 kV, 25 uF의 조건으로 전기 충격을 가하였다. 즉시, 1 ml의 2X YTG 배지로 현탁하여 3시간 동안 37℃에서 배양한 후, 40 ㎍/ml의 에리스로마이신이 포함된 2X YTG 고체배지에 도말하여 형질전환체 ATCC 824-ACS/CODH를 선발하였다.
ATCC 824 competent cells for transformation were prepared as follows. First, 10 ml CGM (Table 1) was inoculated with strain M5 and cultured until OD 0.6. Using this, 10% of the cells were inoculated in 60 ml of 2X YTG medium (16 g of Bacto Tryptone, 10 g of yeast extract, 4 g of NaCl, 5 g of glucose, per liter) and cultured for 4-5 hours. After washing twice with transformation buffer (EPB, 15 ml of 270 mM sucrose, 110 μl of 686 mM NaH 2 PO 4 , pH N.4), the microbial cells were suspended in 2.4 ml of the same buffer. 600 μl of the competent cells and 25 μl of the recombinant plasmid DNA were mixed and filled into a 4 mm electrode cuvette, and then electric shock was applied at 2.5 kV and 25 μF. The cells were immediately suspended in 1 ml of 2X YTG medium, cultured at 37 ° C for 3 hours, and then plated on 2 × YTG solid medium containing 40 μg / ml erythromycin to select transformant ATCC 824-ACS / CODH .
실시예Example 4. 재조합 미생물을 이용한 4. Using recombinant microorganisms COCO 22 고정 fixing
상기의 재조합 변이 미생물 ATCC 824-ACS/CODH를 배양하여 이산화탄소 고정능을 평가하였다. CGM 배지 10㎖을 함유한 100㎖ serum bottle을 멸균 후 80℃ 이상에서 꺼내어 후 혐기 챔버에서 실온까지 식힌 후 에리트로마이신(erythromycin) 40 ㎍/㎖를 첨가하고, 상기 재조합 변이 미생물들을 접종하고, septum으로 완전히 밀폐 후, 37℃에서 혐기조건으로 7일 동안 배양을 수행하였다. 배양은 3반복 실험으로 수행하였다. 본 실시예에서는 외부로부터 이산화탄소 및 수소의 공급은 없었으나 (ATCC 824 균주의 경우 배양시, 이산화탄소 및 수소를 충분히 만듦), 이를 생산하지 않는 균주들에서는 두가지 gas를 외부에서 공급가능 하다. 배양 종료 후, 상등액을 회수하여 생산된 대사산물의 농도를 packed column(Supelco CarbopackTM B AW/6.6% PEG 20M, 2 m × 2 mm ID, Bellefonte, PA, USA)이 장착된 gas chromatography(Agillent 6890N GC System, Agilent Technologies Inc., CA, USA)로 측정하였다. 배양액으로부터 얻은 대사산물을 분석하여 total organic carbon을 조사해 본 결과, ATCC 824는 193 mmole이었으며, 재조합 변이 미생물 ATCC 824-ACS/CODH는 213 mmole의 결과를 보였다. 이는 재조합 변이 미생물 ATCC 824-ACS/CODH이 약 20 mmole의 탄소를 더 만들었음을 의미하며, 즉 20 mmole의 이산화탄소를 고정하였음을 보여준다.
The recombinant mutant microorganism ATCC 824-ACS / CODH was cultured to evaluate the carbon dioxide fixability. A 100 ml serum bottle containing 10 ml of CGM medium was sterilized and taken out at a temperature of 80 ° C or higher. After cooling to room temperature in the post anaerobic chamber, 40 μg / ml of erythromycin was added, and the recombinant mutant microorganisms were inoculated, After complete closure, incubation was carried out for 7 days with the anaerobic tank at 37 占 폚. Culture was performed in three replicate experiments. In this example, there was no supply of carbon dioxide and hydrogen from the outside (ATCC 824 strain produces enough carbon dioxide and hydrogen when cultured), but in the case of strains not producing it, two gases can be supplied externally. After completion of the incubation, the supernatant was recovered and the concentration of the produced metabolites was measured by gas chromatography (Agillent 6890N, manufactured by Supelco Carbopack ™ B AW / 6.6% PEG 20M, 2 m × 2 mm ID, Bellefonte, GC System, Agilent Technologies Inc., CA, USA). Analysis of the metabolites obtained from the culture broth showed that the total organic carbon was 193 mmole for ATCC 824 and 213 mmole for the recombinant mutant microorganism ATCC 824-ACS / CODH. This indicates that the recombinant mutant microorganism ATCC 824-ACS / CODH produced approximately 20 mmole of carbon, ie, 20 mmole of carbon dioxide.
실시예Example 5. 재조합 미생물을 이용한 13C- 5. Recombinant microorganism using 13C- COCO 22 고정 fixing
상기의 재조합 변이 미생물 ATCC 824-ACS/CODH를 13C-CO2배양하여 이산화탄소 고정능을 평가하였다. 배양은 상기 실시예 4에서와 동일한 조건으로 하였으나, 13C-sodium bicarbonate를 13C-CO2로써 외부에서 추가로 공급하였다. 재조합 미생물 배양 중, 대사산물을 채취하여 기체크로마토그래프/질량분석기(Gas Chromatograph/Mass Spectrometer) (Clarus 600 series + TurboMatrix HSS Trap, PerkinElmer)를 이용하여 대사산물들을 분석하였다. 질량분석기의 이온화는 Electron Ionization(EI) 방법을 이용하였다. 그 결과, 대조군에서는 동위원소 표지된 대사산물의 검출이 전혀 없었다. 반면, 재조합 변이 미생물 ATCC 824-ACS/CODH를 배양한 배양액에서 채취한 대사산물 분석에서 13-C 동위원소 화합물들이 관찰 되었다. 예로써 아세트산의 경우를 보면, major 이온 peak인 m/z 43과 45에서, 재조합 변이 미생물 ATCC 824-ACS/CODH를 배양한 배양액에서 분석된 질량분석 스펙트럼은 대조군과 비교했을 때보다 상대적으로 높은 m/z 45의 peak을 보였다. 이는 m/z 43에 나타나야하는 CH3CO-이온 일부가 동위원소가 표지되면서(13CH3 13CO-) m/z 45에 나타난 결과이다.
The recombinant mutant microorganism ATCC 824-ACS / CODH was cultured in 13C-CO 2 to evaluate the carbon dioxide fixability. The culture was carried out under the same conditions as in Example 4, but 13C-sodium bicarbonate was further supplied from the outside with 13C-CO 2 . During the culture of the recombinant microorganism, the metabolites were collected and metabolites were analyzed using a gas chromatograph / mass spectrometer (Clarus 600 series + TurboMatrix HSS Trap, PerkinElmer). Electron ionization (EI) method was used for ionization of the mass spectrometer. As a result, no detection of isotopically labeled metabolites was observed in the control group. On the other hand, 13-C isotope compounds were observed in the metabolite analysis of cultures obtained from the recombinant mutant microorganism ATCC 824-ACS / CODH. For example, in the case of acetic acid, the mass spectrometry analyzed in the culture solution of the recombinant mutant microorganism ATCC 824-ACS / CODH at m / z 43 and 45, which are major ion peaks, is relatively higher than that of the control group / z 45, respectively. This is due to the fact that some of the CH 3 CO- ions that should appear at m / z 43 are labeled with isotopes ( 13 CH 3 13 CO-) at m / z 45.
실시예Example 6. 6. ClostridiumClostridium acetobutylicumacetobutylicum 내에 존재하는 Existing within ACSACS // CODHCODH 복합체를 코딩하는 유전자 The gene encoding the complex
상기 실시예들에서 확인한 바와 같이, 재조합 변이 미생물 ATCC 824-ACS/CODH의 이산화탄소 고정능이 확인되었다. 따라서, ATCC 824 균주 내에도 일부 ACS/CODH 복합체를 코딩하는 유전자들이 존재함을 알려준다. 이를 확인하기 위하여 후보 유전자들을 발굴하였으며 (도 3), 이들 유전자들을 결실시켜 이산화탄소 고정능이 사라짐을 확인함으로써 ACS/CODH 복합체를 코딩하는 유전자임을 확인하였다.
As confirmed in the above examples, the carbon dioxide fixing ability of the recombinant mutant microorganism ATCC 824-ACS / CODH was confirmed. Therefore, it is known that genes encoding some ACS / CODH complexes are also present in the ATCC 824 strain. In order to confirm this, candidate genes were excised (Fig. 3), and it was confirmed that the gene coding for ACS / CODH complex was deleted by deleting these genes and confirming disappearance of carbon dioxide fixed ability.
실시예Example 7. 재조합 미생물을 이용한 목적화합물의 제조 7. Preparation of Target Compound Using Recombinant Microorganism
본 발명에서는 Clostridium acetobutylicum을 숙주로 이용한 관계로 부탄올, 에탄올, 아세톤, 유기산 생산능을 시험 할 수 있었다. 상기 실시예에서 제작한 변이 미생물 ATCC 824-ACS/CODH에 대한 부탄올 및 에탄올 생성능을 확인하였다. CGM 배지 10 ㎖을 함유한 30 ㎖ 시험관을 멸균 후 80℃ 이상에서 꺼내어 질소가스를 채운 후 혐기 챔버에서 실온까지 식힌 후 에리트로마이신(erythromycin) 40 ㎍/㎖를 첨가하고, 상기 변이 미생물을 접종하여 37℃에서 흡광도(600 nm)가 1.0이 될 때까지 혐기조건에서 전배양을 수행하였다. 상기 동일성분으로 구성된 CGM배지를 200 ㎖을 함유한 500 ㎖ 플라스크를 멸균 후 동일한 처리를 한 후, 상기 전배양액 10 ㎖을 접종하여, 흡광도(600 nm)가 1.0이 될 때까지 37℃, 혐기조건에서 2차 전배양 하였다. 그 후 상기 성분으로 구성된 배지 1.8 l를 함유한 5.0 l 발효기(LiFlus GX, Biotron Inc., Kyunggi-Do, Korea)를 멸균 후 80℃ 이상에서부터 질소를 0.5 vvm으로 10시간 공급하면서 실온까지 온도를 낮춘 후 에리트로마이신(erythromycin) 40 ㎍/ml을 첨가하고 상기 2차 전배양액 200 ㎖을 접종하여, 37℃ 또는 32℃, 200 rpm에서 60시간 배양하였다. pH 보정은 암모니아수를 이용하였으며 automatic feeding에 의해 5.0 이상으로 유지하였고, 배양 중에는 질소를 0.2 vvm (air volume/working volume/minute)으로 공급하였다. In the present invention, production ability of butanol, ethanol, acetone, and organic acid could be tested by using Clostridium acetobutylicum as a host. The butanol and ethanol production ability of the mutant microorganism ATCC 824-ACS / CODH prepared in the above example was confirmed. A 30 ml test tube containing 10 ml of CGM medium was sterilized and taken out at 80 DEG C or higher and filled with nitrogen gas. After cooling to room temperature in the anaerobic chamber, 40 .mu.g / ml of erythromycin was added and the mutant microorganism was inoculated to 37 The incubation was carried out under anaerobic conditions until the absorbance (600 nm) at 1.0 was reached to 1.0. A 500 ml flask containing 200 ml of CGM medium consisting of the same components was sterilized and treated in the same manner. 10 ml of the preculture was inoculated, and incubated at 37 ° C under anaerobic conditions (600 nm) until the absorbance Lt; / RTI > cells. After sterilization, the 5.0 L fermenter (LiFlus GX, Biotron Inc., Kyunggi-Do, Korea) containing 1.8 L of the above-mentioned components was sterilized and the temperature was lowered to room temperature 40 ㎍ / ml of erythromycin was added and 200 ml of the second preculture was inoculated and cultured at 37 캜 or 32 캜 for 60 hours at 200 rpm. Amount of pH was maintained at 5.0 or higher by automatic feeding using ammonia water, and nitrogen was supplied at 0.2 vvm (air volume / working volume / minute) during the culture.
상기 배지중의 glucose를 glucose analyzer(model2700 STAT, Yellow Springs Instrument, Yellow Springs, Ohio, USA)로 측정하였고, 시간별로 상기 배지를 채취하고, 이로부터 생성되는 아세톤의 농도를 packed column(Supelco CarbopackTM B AW/6.6% PEG 20M, 2 m × 2 mm ID, Bellefonte, PA, USA)이 장착된 gas chromatography(Agillent 6890N GC System, Agilent Technologies Inc., CA, USA)로 측정하였다.Glucose in the medium was measured with a glucose analyzer (Model 2700 STAT, Yellow Springs Instrument, Yellow Springs, Ohio, USA), and the medium was collected over time. The concentration of acetone produced therefrom was measured using a packed column (Supelco Carbopack TM B (Agilent 6890N GC System, Agilent Technologies Inc., CA, USA) equipped with a mechanical stirrer, AW / 6.6% PEG 20M, 2 m x 2 mm ID, Bellefonte, PA, USA)
그 결과, 변이 미생물 ATCC 824-ACS/CODH는 37℃ 발효에서, 최종농도 13.8 g/l의 부탄올, 2.6 g/l의 에탄올을 생산하였다 (표 2). 이는 대조군이 생산한 10.4 g/L 부탄올, 0.8 g/L 에탄올보다 우수한 결과이다. 특히, 부탄올에 대한 수율은 대조군의 0.16 g/g보다 높은 0.20 g/g을 나타내었고, 부탄올 생산성은 대조군의 0.26 보다 따른 0.40 g/L/h를 나타내었다. 또한, cell mass도 향상되는 결과를 보여 주었다. 한편, 자연적으로 Wood-Ljungdahl 경로를 가지는 균주인 Clostridium carboxidivorans P7 균주는 2.2 mg/L의 부탄올 생산에 그치고 있다. 본 발명의 실시예는 자연적으로 Wood-Ljungdahl 경로를 가지는 균주들 보다 더욱 우수한 결과로써, Wood-Ljungdahl 경로를 재조합을 통하여 다른 숙주에 도입이 제공해 주는 장점을 단적으로 보여주는 결과이다.
As a result, the mutant microorganism ATCC 824-ACS / CODH produced butanol at a final concentration of 13.8 g / l and ethanol at 2.6 g / l at 37 ° C fermentation (Table 2). This is better than the 10.4 g / L butanol and 0.8 g / L ethanol produced by the control group. In particular, the yield of butanol was 0.20 g / g, which was higher than that of the control group of 0.16 g / g, and the butanol productivity was 0.40 g / L / h as compared with that of the control group of 0.26. In addition, cell mass was also improved. On the other hand, Clostridium carboxidivorans strain P7, which has a natural Wood-Ljungdahl pathway, is still producing 2.2 mg / L butanol. The embodiment of the present invention is a result that is naturally superior to strains having the Wood-Ljungdahl pathway and shows the merit of introducing the Wood-Ljungdahl pathway to other hosts through recombination.
소비(g/L)
&
소비속도(g/h)Glucose
Consumption (g / L)
&
Consumption rate (g / h)
(g/L)BuOH
(g / L)
(g/L)EtOH
(g / L)
(g/L)Acetone
(g / L)
(g/L)Acetate
(g / L)
(g/L)Butyrate
(g / L)
(g/g)BuOH yield
(g / g)
(g/L/h)BuOH productivity
(g / L / h)
2.564.0
2.5
3.869.6
3.8
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the invention is not limited thereby. It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.
<110> Korea Advanced Institute of Science and Technology <120> Recombinant microorganism having ability to fix carbon dioxide and the method for producing useful substance using thereof <130> P11-B153 <160> 25 <170> KopatentIn 2.0 <210> 1 <211> 1386 <212> DNA <213> Clostridium difficile <220> <221> gene <222> (1)..(1386) <223> dihydrolipoamide dehydrogenase coding gene <400> 1 atgaagatag tagtagtagg tggtggacca ggaggatatg tagcagctat aaaagcttct 60 atgcttggtg cagatgtaac agttgttgaa aaaagaagag ttggaggaac ttgcttaaat 120 gcaggatgta taccaactaa agcacttctt gcttcttcag gagtattgaa tactgtaaaa 180 gaagcaaagg attttggtat agaaatagat ggtacagtta agccaaactt cactgccata 240 atggaaagaa aaaataaagt tgtaaaccaa ttaataagtg gtatagagtt cttatttgaa 300 aaaagaggag taaacttagt taatggtttt ggaaaattaa ttgataaaaa cactatagaa 360 gtaactaaag atgatggaac agtagaaact ataaaagcag ataagataat actagcaaat 420 ggttctgttc cagttgtacc aagaatgttc ccatatgatg gaaaagttgt aataactagt 480 gatgaagttc ttggacttga agagatacct gagtctatgt taatagtagg tggtggagtt 540 ataggatgtg agatagggca gttctttaga gccttaggaa cagaagtaac tatagttgag 600 atggttgacc aaatactatt aaatgaagac aaagatgtag ctaaacaact acttagacaa 660 tttaagaaag ataaaattaa ggttattaca ggtattggag tacaaacttg tgaagtagtt 720 gatggtaagg ctgttgcaac tctttctaat ggaaaggtta tagaagcaca atatgcatta 780 gtatgtgttg gtagaagacc taaccttgac aattctggag tagaagatat aggaattgaa 840 atggaaagag gaaaagtagt agttaatgaa catcttgaaa ctaatgtaga aggtatatac 900 gcaataggcg atataataga tactcctttc ctagcacatg ttgcttctaa agaaggtatc 960 gtagcagttg aaaatgcttt aggtaagact aaggtagtag attatagagc aattccaaga 1020 tgtgtttata ctgaacctga agttgctggt gttggtaaga ctgaaaagca acttgaagct 1080 gaaggtgtag aatacaatgt aggtcaattt gattttagag gtcttggaaa agcacaagct 1140 ataggacatt tccaaggatt tgtaaaagtt atagctgaca aagaaactga taagataata 1200 ggtgcagcag tagtaggacc tcatgctaca gatttattga cagagttgtc acttgctgtt 1260 catctaggat taacagtaga acaagtaggg gatgcaatac atccacatcc gagtttatct 1320 gaagggctaa tggaagcact tcatgatgta catggagaat gtgttcattc tgtacctaaa 1380 ttataa 1386 <210> 2 <211> 771 <212> DNA <213> Clostridium difficile <220> <221> gene <222> (1)..(771) <223> carbon monooxide dehydrogenase chaperone coding gene <400> 2 atgggataca atatagctgt tgcaggaaaa ggtggaactg gtaaaacaag tctcacaggg 60 cttttgattg attatttggt taaggacaaa aagggaccag tattagttgt agatgctgat 120 gccaatgcta acataaatga agtattaggt atcgaagttg aagcaacaat aggagaaata 180 agagaagaag taaatcaaag agaaaagtta ggcaatgcat tccctggtgg tatgacaaag 240 gcacaatatc ttcaatttag attaaattct ataattgaag aaggcgaagg atatgactta 300 ttagtaatgg gtaggtcaga aggtgaagga tgttactgtt ttgtaaatgg gatacttaga 360 gaacaagtaa acaaaatatc tggtcattac aaatacttag tcatggacaa cgaagctggt 420 atggaacatc taagtagaaa agtcactaga catgttgata cacttttatt ggttagtgat 480 tgctcaagac gtagcataca agctgttgct agaataagag atttagctga ggaactaaag 540 ttaagtgttg gaagaatact tttgattgta aataaagttc caaatggggt tatgaatgat 600 ggtgttaaag aagaaattga aaagcataac ctagagctaa tcggtgttgt acctatggat 660 gaattgatat atgaatatga ttctacaggt attcctttag ttaatttacc tgaagattca 720 aaatctaaag tggctatgaa agaaattttt gctaaattag aattaaaata g 771 <210> 3 <211> 945 <212> DNA <213> Clostridium difficile <220> <221> gene <222> (1)..(945) <223> corrinoid iron sulfur protein small subunit coding gene <400> 3 atggcattta aaatgtctac tcaaaaatat tctggaaaaa tatcagaagt tgaagtagga 60 ataggggaaa aagcaattaa attaggtggg gaaaatgtat taccttttta tagttttgat 120 ggagaagtag gtaattctcc aaaaataggt atacaaatat cagacgttta tcctgaaagc 180 tggactgatt catataagga attatacaaa gatgtagcta attgtccagt agagtgggct 240 aaatatgttg aagctaatac acaagcagat tttatttgtt taaaatttga tggttctgac 300 ccaaatggat tagataagtc agttgatgaa tgtgctgatg tagctaaggc agtaattgaa 360 gcaataaaat tacctttagt tgtagctggt tcaggaaatc atgaaaaaga tggtaaatta 420 tttgaaaaat tagctcaaac attggatgga cataactgct tatttatgtc agcagtagaa 480 gataactaca aaggagtagg agcatcagct ggtatggctt atgcacataa agtaggagct 540 gaatcttctg ttgatataaa cctagctaaa caattaaacg tattgttaac tcaactaggc 600 gttaaaggtg aaaatatagt tatgaatgtt ggatgttcag cagttggtta tggatatgag 660 tacgttgcat ctactatgga tagaattaga cttgcagcat ttggtcaaaa tgataagaca 720 ttacaaatgc ctatcataac accagtagct tttgaagtag gtcatgttaa agaagctata 780 gctccaatag aagatgagcc agattggggt tgtccagaag aaagaactat agcaatggaa 840 gtttcaactg cagcaagtgt tttagtaggt ggttcaaacg cagttatact tcgtcatcca 900 aaatcaatag aaactataaa agaattggtt aacgcattag cttaa 945 <210> 4 <211> 1368 <212> DNA <213> Clostridium difficile <220> <221> gene <222> (1)..(1368) <223> corrinoid iron sulfur protein large subunit coding gene <400> 4 atggcattaa aagctttaga tatatttaaa ttaacaccaa agaaaaactg taaggattgt 60 ggattcccaa cttgtatggc tttctctatg aaggttgctt caggagctgt agaagtaggt 120 aaatgcccac atatgtctga tgacgctata gcaaaattat cagaggctac tgcaccttta 180 atgaaagctt taaaagttgg tgctggtgca tctgagtatg aactaggtgg agaaacagta 240 ttatttagac atgaaaaaac attagtaagt agaaatagat atgcagtttc attctgtact 300 tgtatgagtg atgaagcagt agatgctaaa atagctaaca tgaaaaaagt tgactatgta 360 agaattggtg aacaaatgaa agttgaaatg gctgttttag agtattgtgg agataaagat 420 gcgtatttaa aattaataga taaaataaaa ggcagtggat tagaagtagc ttatatttta 480 gcttgtgatg atgcacaagt agttaaagaa gctgttgaag tattaaaaga tgctagacca 540 atggtatatg gagcaactaa agagaactac aaagatatga tagaagtagt taaaggagca 600 agtttaccat taggtgtaaa agctggtagc ttagaagaat tatatgaaac agttgaatta 660 attcaagctg ctggatataa agaattagta ttagatgtaa caggagaaaa cataaaagat 720 acttacacta atgctataca agttagaaga acagctttaa aagagcaaga tagaacattt 780 ggatatcctt caatagtatt tgcaaataga ttatctaatt caaaccctat gatggaagtt 840 gctttatcat caatattcac tataaaatac ggttctataa tagtaataga tgatattagt 900 tatgctaagg cattaccatt atttgcacta agacaaaaca tatacactga cccacaaaga 960 ccaatgagag ttgaaccaaa gatttatcca atcaacaacc cagatgaaaa ttctccagta 1020 ttagttactg ttgactttgc attaacttac ttcatagttg ctggtgatat agaaagatca 1080 aaagttccag tatggttagt aataccagat gcaggtggat attcagttct tacatcttgg 1140 gctgctggta aatttggtgg aaactcaatc tctgctttca ttaaagaaag taaggtagaa 1200 gaagtaacta attgtaaaga ccttatcatt ccaggaaaag ttgcagtact taaaggtgat 1260 atagaagata acttaccagg atggaatgta gttataggac cagaggaatc tatggaatta 1320 cctaagttct taaaaggata ccaagaaaaa gcatgccaaa caaactaa 1368 <210> 5 <211> 807 <212> DNA <213> Clostridium difficile <220> <221> gene <222> (1)..(807) <223> methyltransferase subunit coding gene <400> 5 atggaaaaat ttatgattat aggtgagaga atacattgta tatcaccttc aataagaaaa 60 gcattagcag aaagagaccc agctccaatc ttaaaaagag caaaagagca attagaagca 120 ggagcacact atatagattt taatatagga cctgccgaaa gagatggcga agaaataatg 180 acatggggaa tcaaattact tcaatctgag ttcaacaatg ttcctatagc attagataca 240 gctaataaaa aagctatcga agctggactt aaagtttatg atagaactaa tgcaaaacca 300 ataataaact ctgctgatgc tggctcaaga tttgatttaa tagatatagc agctgaatac 360 gaagcaatgg ttataggttt atgtgcaaaa gaaggtattc caagagataa tgatgagcgt 420 atggcttact gccaagaaat attagaaaaa ggcttaatgt taggaatgga gccaactgat 480 atactatttg acccattatg cttagttata aaaggtatgc aagaaaaaca agtagaagtt 540 ttagaagcta taaaaatgat gactgagatg ggacttttaa ctacaggagg attatctaac 600 gtatctaatg gatgtcctaa gcatgttaga cctgttttag atagtgcatt cttagcaatg 660 gcaatggcta atggatttag ttcagctata atgaatccat gtgacccaga attaatgaaa 720 actgtaaaat cttgtgacat aatcaacggg gcatctttat atgcagactc tttcttagag 780 ttaaatgaag gtggatttgc tttctag 807 <210> 6 <211> 2127 <212> DNA <213> Clostridium difficile <220> <221> gene <222> (1)..(2127) <223> ACS or ACSCODH subunit alpha coding gene <400> 6 atgaatctat ataatataat ctttacaggg tcagaacaag ctttaggtgc ggctcaagct 60 atgttagctg aagctataga aaagaatgga aaagagcata aagttgcttt ccctgataca 120 gcatattcat taccttgtat atatgctgca acaggacaaa agatgaacac tttaggggac 180 ttagaaggtg ctttagaagt agtaaaatct ttaataaata gaactcattt actagaacat 240 gcttttaatg ctggtttagc tacagcttta gcagcagaag taattgaagc attaaaatat 300 tcaactatgg atgctccata tagtgagcca tgtgcaggtc atataactga ccctataatc 360 agatcacttg gtgtaccatt agttacagga gatatacctg gtgttgcagt tgttcttggt 420 gagtgtccag atgcagaatc agcagcaaaa gttataaaag attaccaatc taaaggttta 480 ctaactttct tagttggtaa agttatagac caagctatag aagctggagt aaaaatgggt 540 cttgagctaa gagttatacc tctaggatat gatgtaactt ctgttataca cgttgtatct 600 gttgcagtaa gagcagcatt aatattcggt ggattaactc ctggtgattt aaacggatta 660 ttagagtaca cagctaatag agttcctgca tttgttaatg catttggacc attaagtgaa 720 ttagttgtat ctgcaggtgc tggagcaata gctttaggat tcccagttat aactgaccaa 780 acagttcttg aagttccaat gaacctatta actcaaaaag attacgataa gatagtagct 840 acttcattag aagctagagg aataaaaata aaagttactg aaatacctat cccagtttca 900 tttgcagcag catttgaagg tgagagaatt agaaagagcg atatgtttgc tgagtttggt 960 ggaaacagaa ctgaagcttg ggagcttgtt gttaagaaag aagcaacaga agttgaagac 1020 cataagatag aaataatagg accaaatata gatgaagttg atgcagatgg tgtattaaga 1080 ttaccacttg ctgtaatagt taaaatagct ggtaaaaata tgcaagaaga tttcgagcca 1140 gttcttgaaa gacgtttcca ctacttctta aactatatag aaggtgtaat gcacgttgga 1200 caaagagata tggcttgggt aagaatctct aaagatgcat ttgataaagg atttagactt 1260 gagcatatag gagaagtttt atatgctaag atgttagatg aatttgaatc agtagttgat 1320 aagtgtgaaa taactataat tacagatgct gaaaaagttt ctgaattaaa aggtgaagca 1380 atagctaagt acaatgctag agatgaaaga ttagcttcat tagttgatga aagtgttgac 1440 actttctatt cttgtaactt atgtcaatca tttgcaccag ctcacgtttg tgttgttact 1500 cctgaaagac ttggtctttg tggagcagtt agctggttag atgctaaggc tactaaagaa 1560 ttagacccaa caggtccttg tcaaccaata gaaaaaggcg agtgcttaga tgatagaaca 1620 ggtgtatgga attcagtaaa tgaaactgta aaccaaatat ctcaaggtgc agttgaatct 1680 gttacattat actctatact agaagaccca atgacttctt gtggatgctt cgaatgtatc 1740 tgtggtataa tgccagaagc aaatggattt gttgtagtta acagagaatt tgcaagtgtt 1800 actccagttg gtatgacttt cggagaactt gcttctatga caggtggagg agttcaaact 1860 ccaggattta tgggacacgg aagacatttc atatcttcta aaaaattcgc ttatgcagaa 1920 ggtggaccag aaagaatagt ttggatgcca aaagaattaa aagattatgt agctgataaa 1980 ttaaatgcta cagttaaaga aatgactgga atagaaaact tctgtgatat ggtttgtgat 2040 gaaactatag ctgacgattc tgaaggagta ttagctttct tagaagaaaa aggtcatcca 2100 gcattagcta tggaaagtgt aatgtaa 2127 <210> 7 <211> 378 <212> DNA <213> Clostridium difficile <220> <221> gene <222> (1)..(378) <223> glycine cleavage system H protein coding gene <400> 7 atgaaattat taccagaatt aaaatactct aaagatcatg agtgggtaaa agtaattgat 60 ggagatgttg tatatatagg tataacagac tatgctcaag atcaattagg agaaatattg 120 tttgttgaaa caccagaagt agaagatact gtaactaagg gagtagattt tggagtagtt 180 gagtcttcta aagtagcttc tgatttaata tctcctgtta atggtgaggt attggaagtt 240 aatgaaaaat tagaagatga gccagaatgt ataaatgaag acccatatga aaactggata 300 ttaaaagtaa aactagctga tgtggctgaa cttgatacgt tattaagtga taaagaatac 360 gaggctggat tagaataa 378 <210> 8 <211> 1890 <212> DNA <213> Clostridium acetobutylicum <220> <221> gene <222> (1)..(1890) <223> carbon monooxide dehydrogenase coding gene <400> 8 atgagtgaat gtcaaaattg tcatgtttgc gatgatgcag acaaaactct tcgtgatttt 60 atatgtgggt taaataatgt tgaaacgtca gaacatagag tggaaagtca aaagaataaa 120 tgtaagtttg gtaaagatgg tgtctgttgt aagctttgtg ctaatggacc atgtagaata 180 acaccaaagt caccaagagg tatttgtggt gcagatgctg acactatagt agctagaaac 240 tttttaagag cagttgcagc aggaacagca tgctatgttc acgttgtgga gactactgct 300 agaaacttaa aggctttagg agaaaacaag aagcctataa aaggaatgta tactcttaat 360 aagctagcaa atatgtttaa aatagatgaa aaagatgatc acaaaaaagc agttatgata 420 gcagatagag tactttctga tttatataaa ccaagatttg aaaaagcaga attagtaagc 480 gaaatagcat atgcaccaag attaaaaaaa tggcaggaac ttaatatact tccaggagga 540 gcaaaatcag aagtatttga tgctatagta aaaacttcaa caaatttaaa tagtgatcct 600 gtagatatga ctgtaaattg tcttactctt ggaatatcaa caggactata tggtcttact 660 ttaactaact tattaaatga tgttatactt ggtgaaccag taataagaca ggcaaatgtt 720 ggtttcaagg tagtagatcc ggattatata aatataatga taacaggaca tcaacattca 780 gtaatagaac atcttcaaga aagattaata gatgaagata ttactaagaa agctcaggct 840 ataggagcta aaggatttaa attagtggga tgtacatgtg ttggtcaaga tcttcaacta 900 agaggagaac attataagga agtattttca ggtcatgcag gaaataactt tacaagtgaa 960 gctttaattg caacaggtgg aatagacctt attatgtcag agtttaactg tactcttcca 1020 ggtatagaac ctattgccga agaatttgaa gttaaaatga tttgtgttga tgatgttgct 1080 aaaaagaaaa atgctgattt tataaagtat agttatgaag agagagaaaa tataactgat 1140 agtataatag aagaagctct taagagttat gaaaatagaa gaaaagatgt aacaattaat 1200 atacctaaag atcatggata tgatgatgtt gtaactggag tcagtgaaaa atctcttaaa 1260 gattttcttg gaggcacttg gaagccactt gtagatttga ttgcatctgg caaaatcaaa 1320 ggtgttgctg gagtagtagg atgttctaac cttacagcaa aaggtcatga tgtatttaca 1380 gtagaactta caaaagaact tataaaaagg aatataatag ttctttcagc aggatgctcc 1440 agtggtggac ttgaaaatgt agggcttatg tctccttcag cagctgatct tgcaggagat 1500 agtctaaaag aagtatgtaa atctcttggt attcccccag tacttaattt tggaccatgc 1560 cttgctatag gaagacttga gattgttgct acagaacttg ctgaatactt aggaatagat 1620 ataccacaac ttcctctagt actttctgca ccacaatggt tagaagaaca agcattagct 1680 gatggagctt ttggactttc attaggactt cctcttcatc ttgcaatttc accatttata 1740 gatggaagtg ctgttgtttc taagcttcta aaagaggatc ttactgatat tacaggaggt 1800 aagcttataa tagaagaaga tgtaataaaa gcagcagata agcttgagag ggaaattatt 1860 gatagaagag aaaaattagg gcttaattag 1890 <210> 9 <211> 1920 <212> DNA <213> Clostridium acetobutylicum <220> <221> gene <222> (1)..(1920) <223> carbon monooxide dehydrogenase coding gene <400> 9 atgagtgaaa ccatatcaga aaagtcagag ggaagggtaa gctaccatga ttctgtagaa 60 gaaatggtaa aaaaaattag agaagatgga atgtctaatg tttttgatag atatgccctt 120 caagagaaaa tacgatgtaa gttttgtcta gaaggtttaa gctgtcagct ttgctctaat 180 ggtccttgta gaataagtga aaaaacaggc caagagaaag gagtttgcgg tataggccca 240 gatgcaatgg caatgagaaa ttttcttcta aaaaatataa tgggtgctgg tacatatagc 300 catcatgctt atgaagccta tagaacctta aaggctactg ctgaaggaag aacacctttt 360 aaaataacag atgaaaacaa acttaaatgg atgtgtgaaa agcttggcat tgatacagct 420 caatctataa acgatatggc ctttgagctt gctgtaatcc ttgaggatca acaaagaatt 480 ggagttgaag atcaaaatgt tatggttgag gcctttgctc caaagaaaag aatagaagct 540 tggaaaaaac taggcatata tcctgctgga acagttcatg aagagcaaaa ctgtgttgca 600 agctgcctta caaacgtaga tggaagtcat atatctcttg ctatgaaagc cttaagactt 660 ggaatagcta caatatataa cactcaaata ggtcttgaaa tggttcagga tatattgttt 720 ggaacaccaa cacctcatga agttaatatg gatttaggca taatggatcc tgaatatgtc 780 aacatagtat tcaatggtca tcaaccttgg ataggtgctg ccactatttt aaaagccaaa 840 actcctgaaa ttcaagatat ggcaaagcag gctggtgcta aaggtttaag ggttgtaggt 900 tccatcgaaa caggtcaaga gcttctacaa agattccctg ttgacgaagt atttgtaggt 960 catatgggaa attggcttgc aatagaaccc cttttagcta caggtactgt tgatatattt 1020 gcaatggaag aaaactgctc tcctccagct attgatatgt atgctgaaaa atatcaagta 1080 accttggcag ctgtaagtac tattatagat ttgcctggag ttaattataa atttccatac 1140 gatcctgcac aagctgatga aacagcacaa agattaattg aactcggaat agaaaacttt 1200 aaaaagagaa aagaaagaca gataaaacct cacgttcctc aaaaaataca aaaggctata 1260 gctggattct ctaccgaagc agttcttgga gctcttggca acaaacttga tccactagtt 1320 gatgtaatag ctaagggtca gattaaggga gttgttgctc ttgctaactg ttcaacttta 1380 cgaaatggtc ctcaagattg ggtaacaatt aaccttacaa aggaacttat taaaagagat 1440 attttagttg taagcggcgg ctgtggtaat catgctcttg aggttgcagg actttgtact 1500 ctcgatgctg caaataatat tgctggtaat ggtctaaaag cagtttgtaa tgcacttaag 1560 atacctcctg ttttaagttt tggaacctgc acagatacag gaagaatttc tatgcttgtt 1620 acagcattag ctgaacactt aaacgtagat gttccacaac ttcctattgc agtaacagct 1680 cctgagtgga tggaacagaa agctactata gacggtattt ttgctttagc ttatggtgcc 1740 tacactcatt tatcacctac tccttttatg actggagcta gacagctagt tgatttactt 1800 actaataaag ctgaggatgt aactggaggt aaaatagctc ttggcgatga ccctatgaag 1860 gttgcaaatg acattgagga tcacataatg agaaaaagga aagaattagg tttaagctaa 1920 1920 <210> 10 <211> 1671 <212> DNA <213> Clostridium acetobutylicum <220> <221> gene <222> (1)..(1671) <223> formyl-H4folate synthase coding gene <400> 10 atgaaaactg atattgaaat agctcaagaa gctaaaatgg aacctatagt aaaaatagca 60 gagaagattg gtttaaatga agacgatatt gatttatatg gtaaatataa gtgtaaaata 120 tcgctagatg tattgaaaca aaacaagaac aaacaagatg gtaaattggt gttggttact 180 gctataaatc ctacaccagc tggtgaggga aaatctacag ttacagtggg acttggggaa 240 gccctatgca aaatgaacaa gaatacagtg attgcactta gagaaccttc tcttggacct 300 gtttttggta ttaaaggagg agctgctgga ggcggttacg ctcaagtagt accaatggaa 360 gatataaatc ttcattttac tggagatatg catgctataa cttcagcaaa caatttactc 420 tgcgcagcta tagataacca tattcaccaa ggaaatagtt tgaaaataga ccaaagaaga 480 atagtattta aaagagttat ggatatgaat gatagagctc ttagaagtat agtagttggt 540 cttggaggaa aagtaaatgg ttttccaaga gaagacggtt ttatgataac agttgcttct 600 gaaataatgg ctatactttg tttggcaaat gatcttatgg atttaaaaga gagaatggga 660 aagatactaa tagcctatga tttggatggg aatccagtat attgtaggga tctcaaagtt 720 gaaggtgcta tggctatgct tatgaaagac gcaatgaagc ctaatttggt tcaaacgctt 780 gagaatactc cagctataat tcatggtgga ccttttgcaa atatagccca tggatgcaac 840 agtatcttag ctacaaagat ggcgttgaag cttggagatt atgttattac agaggcaggt 900 ttcggtgcag atttaggagc tgaaaaattc ttagatataa aatgtaggta cggaaactta 960 aaccctgatt gcgttgtatt agttgcaaca attagagcac ttaaacatca cggtggtgca 1020 ctaaaggagg atttaagtaa accaaatgca aaggttcttg aaaaaggact atcaaattta 1080 ggtaaacaaa tagagaatat aaagaaatac ggtgtgcctg ttgttgttgc aataaataaa 1140 tttataacag acagtgaaga agaaataaaa tgcatcgaag aatactgtag taaacaggga 1200 gtaaaggtat cgcttacaga agtttgggaa aaaggcggag aaggtggaac agatcttgca 1260 aataaggttt tagacacttt agaaaatgaa aagagcaatt ttaagtatct atatgatgaa 1320 aagctaagta taaaagaaaa aatggatata atagctaaag aaatatatgg agcagatgga 1380 gttcagtata ctcctcaagc aaacaaacag ataaaagaaa ttgagaaatt taatttggat 1440 aaactcccta tatgtgttgc gaaaacacag tattctttat ctgataatcc agctctttta 1500 ggaagaccaa ctaactttac tataaatgtt aaggaagtaa gagtatctaa tggagcaggt 1560 tttgtggtag ttcaaaccgg aaatatcatg actatgccag gacttccaaa gactccagct 1620 gcaaataaaa tggatatatt tgaagatggc tctatagtag gtttatttta a 1671 <210> 11 <211> 636 <212> DNA <213> Clostridium acetobutylicum <220> <221> gene <222> (1)..(636) <223> formimido-H4folate cyclodeaminase coding gene <400> 11 atgttacagg atatatctat agaggaattt ataaaagaac ttgcatcgga aaaaccaact 60 cctggcggcg gtggagcggc agcactttca gcagcacttt cagcagcgct taattgtatg 120 gtgtttaact ttaccgtagg aaaaaaagtt tatgaaaatt atgataaaga aactaaaaaa 180 ttaatcaata gcagtctaga aaaatcagac aagcttaagg attatttctt atgtggtata 240 gataaagatg cggaggcttt ctcaaaaata ataaatagtt acaaacttcc ccaaagtaca 300 gaagaagaaa aagcatatag gcataaatgt atacaagaag cttcaaaatt tgcagcaaaa 360 gtaccagaag atgtagccaa taatgcacgt gaactttttg aattgatttg gatttcagca 420 aagttaggaa ataaaaatct tataacagat gctggggcag ctgcaataat ggctgaagca 480 gctattgaaa catcaatatt gaatataaag ataaacatag gatctataga ggataaggag 540 ttaaaagcaa gacttgaaaa aacttgcaga gatttacttt tagatagtaa agaatggaaa 600 gataaaatat taagtgaagt atattcgaat atatag 636 <210> 12 <211> 837 <212> DNA <213> Clostridium acetobutylicum <220> <221> gene <222> (1)..(837) <223> formimido H4folate cyclodeaminase coding gene <400> 12 atgggagata taattaatgg aaaagcggaa tctcaaaagt ataaagataa aataattgaa 60 tttattaatg aaagaaagaa acaggggtta gatattccat gcatagccag tataacagtt 120 ggagatgatg ggggctcatt atactatgtt aacaatcaaa aaaaagtatc agaaagtctt 180 ggaattgagt ttaagagtat atttttagat gaaagtatac gagaggaaga actaataaag 240 ttaattgaag gtctaaacgt agataataaa attcatggaa ttatgcttca attaccgctg 300 cctaatcaca ttgatgcaaa actagtcaca tctaaaatag atgctaataa agatatagat 360 agtcttacag atataaatac aggaaaattt tacaagggtg aaaaatcatt tataccatgc 420 acgccaagaa gtattataaa tcttataaag agtttaaatg tggatatttg tgggaaaaat 480 gcagttgtaa tagggagaag taacattgta ggtaaaccta cagcgcagct tttactaaat 540 gaaaatgcaa cggttacaat atgccactct agaacacaaa acttaaaaga tatatgtaaa 600 aaagctgata ttattgtaag tgctattgga agaccaggtt ttataacaga tgaatttgtt 660 aatgaaaaat ctattgtaat tgatgttgga actacagtag tagatggtaa acttcgtgga 720 gatgtggttt ttgatgaggt tataaaaaag gcagcttacg taactccagt tcctggggga 780 gtaggggcga tgacaaccac aatgttaata ttaaatgttt gtgaggcatt gaaataa 837 <210> 13 <211> 198 <212> DNA <213> Clostridium acetobutylicum <220> <221> gene <222> (1)..(198) <223> formyl H4folate cyclohydrolase methylene H4folate dehydrogenase coding gene, methylene H4folate reductase coding gene <400> 13 ttgcttgata tatcgctttt atttaaaatt gcgggagttg gaattcttac tataattata 60 gataaaatac ttaaatccag tggaaaagat gattttgcag tagtaacaaa tttggcaggc 120 atagtgatcc tcctcttgat ggtaataagc ctaataagta aattgtttga ggctgtaaag 180 actatgtttc aactttag 198 <210> 14 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 ggccccaagc ttagaatgaa gtttcttatg cacaag 36 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 aaactgcagt ctaactaacc tcctaaattt tgatac 36 <210> 16 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 ccaagcttcg actttttaac aaaatatatt g 31 <210> 17 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 aaaactgcag ccatggtcta actaacctcc taaattttga tac 43 <210> 18 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 catgccatgg tctagactgc agttaccaca tgggaataac agc 43 <210> 19 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 tacgcgtcga cgcatgcggt accgttgatc caaatctagg gtgc 44 <210> 20 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 catgccatgg atgaagatag tagtagtagg tggtgg 36 <210> 21 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 gtttgaacca cctactaaaa cac 23 <210> 22 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 catttggacc attaagtgaa ttag 24 <210> 23 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 cccccggggg ctatgaatat atctgcattt cttgc 35 <210> 24 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 cagaagaaag aactatagca atgg 24 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 tgggaatcct aaagctattg c 21 <110> Korea Advanced Institute of Science and Technology <120> Recombinant microorganism having the ability to fix carbon dioxide and the method for producing useful substance using thereof <130> P11-B153 <160> 25 <170> Kopatentin 2.0 <210> 1 <211> 1386 <212> DNA <213> Clostridium difficile <220> <221> gene ≪ 222 > (1) .. (1386) <223> dihydrolipoamide dehydrogenase coding gene <400> 1 atgaagatag tagtagtagg tggtggacca ggaggatatg tagcagctat aaaagcttct 60 atgcttggtg cagatgtaac agttgttgaa aaaagaagag ttggaggaac ttgcttaaat 120 gcaggatgta taccaactaa agcacttctt gcttcttcag gagtattgaa tactgtaaaa 180 gaagcaaagg attttggtat agaaatagat ggtacagtta agccaaactt cactgccata 240 atggaaagaa aaaataaagt tgtaaaccaa ttaataagtg gtatagagtt cttatttgaa 300 aaaagaggag taaacttagt taatggtttt ggaaaattaa ttgataaaaa cactatagaa 360 gtaactaaag atgatggaac agtagaaact ataaaagcag ataagataat actagcaaat 420 ggttctgttc cagttgtacc aagaatgttc ccatatgatg gaaaagttgt aataactagt 480 gatgaagttc ttggacttga agagatacct gagtctatgt taatagtagg tggtggagtt 540 ataggatgtg agatagggca gttctttaga gccttaggaa cagaagtaac tatagttgag 600 atggttgacc aaatactatt aaatgaagac aaagatgtag ctaaacaact acttagacaa 660 tttaagaaag ataaaattaa ggttattaca ggtattggag tacaaacttg tgaagtagtt 720 gatggtaagg ctgttgcaac tctttctaat ggaaaggtta tagaagcaca atatgcatta 780 gtatgtgttg gtagaagacc taaccttgac aattctggag tagaagatat aggaattgaa 840 atggaaagag gaaaagtagt agttaatgaa catcttgaaa ctaatgtaga aggtatatac 900 gcaataggcg atataataga tactcctttc ctagcacatg ttgcttctaa agaaggtatc 960 gtagcagttg aaaatgcttt aggtaagact aaggtagtag attatagagc aattccaaga 1020 tgtgtttata ctgaacctga agttgctggt gttggtaaga ctgaaaagca acttgaagct 1080 gaaggtgtag aatacaatgt aggtcaattt gattttagag gtcttggaaa agcacaagct 1140 ataggacatt tccaaggatt tgtaaaagtt atagctgaca aagaaactga taagataata 1200 ggtgcagcag tagtaggacc tcatgctaca gatttattga cagagttgtc acttgctgtt 1260 catctaggat taacagtaga acaagtaggg gatgcaatac atccacatcc gagtttatct 1320 gaagggctaa tggaagcact tcatgatgta catggagaat gtgttcattc tgtacctaaa 1380 ttataa 1386 <210> 2 <211> 771 <212> DNA <213> Clostridium difficile <220> <221> gene ≪ 222 > (1) .. (771) <223> carbon monooxide dehydrogenase chaperone coding gene <400> 2 atgggataca atatagctgt tgcaggaaaa ggtggaactg gtaaaacaag tctcacaggg 60 cttttgattg attatttggt taaggacaaa aagggaccag tattagttgt agatgctgat 120 gccaatgcta acataaatga agtattaggt atcgaagttg aagcaacaat aggagaaata 180 agagaagaag taaatcaaag agaaaagtta ggcaatgcat tccctggtgg tatgacaaag 240 gcacaatatc ttcaatttag attaaattct ataattgaag aaggcgaagg atatgactta 300 ttagtaatgg gtaggtcaga aggtgaagga tgttactgtt ttgtaaatgg gatacttaga 360 gaacaagtaa acaaaatatc tggtcattac aaatacttag tcatggacaa cgaagctggt 420 atggaacatc taagtagaaa agtcactaga catgttgata cacttttatt ggttagtgat 480 tgctcaagac gtagcataca agctgttgct agaataagag atttagctga ggaactaaag 540 ttaagtgttg gaagaatact tttgattgta aataaagttc caaatggggt tatgaatgat 600 ggtgttaaag aagaaattga aaagcataac ctagagctaa tcggtgttgt acctatggat 660 gaattgatat atgaatatga ttctacaggt attcctttag ttaatttacc tgaagattca 720 aaatctaaag tggctatgaa agaaattttt gctaaattag aattaaaata g 771 <210> 3 <211> 945 <212> DNA <213> Clostridium difficile <220> <221> gene <222> (1). (945) <223> corrinoid iron sulfur protein small subunit coding gene <400> 3 atggcattta aaatgtctac tcaaaaatat tctggaaaaa tatcagaagt tgaagtagga 60 ataggggaaa aagcaattaa attaggtggg gaaaatgtat taccttttta tagttttgat 120 ggagaagtag gtaattctcc aaaaataggt atacaaatat cagacgttta tcctgaaagc 180 tggactgatt catataagga attatacaaa gatgtagcta attgtccagt agagtgggct 240 aaatatgttg aagctaatac acaagcagat tttatttgtt taaaatttga tggttctgac 300 ccaaatggat tagataagtc agttgatgaa tgtgctgatg tagctaaggc agtaattgaa 360 gcaataaaat tacctttagt tgtagctggt tcaggaaatc atgaaaaaga tggtaaatta 420 tttgaaaaat tagctcaaac attggatgga cataactgct tatttatgtc agcagtagaa 480 gataactaca aaggagtagg agcatcagct ggtatggctt atgcacataa agtaggagct 540 gaatcttctg ttgatataaa cctagctaaa caattaaacg tattgttaac tcaactaggc 600 gttaaaggtg aaaatatagt tatgaatgtt ggatgttcag cagttggtta tggatatgag 660 tacgttgcat ctactatgga tagaattaga cttgcagcat ttggtcaaaa tgataagaca 720 ttacaaatgc ctatcataac accagtagct tttgaagtag gtcatgttaa agaagctata 780 gctccaatag aagatgagcc agattggggt tgtccagaag aaagaactat agcaatggaa 840 gtttcaactg cagcaagtgt tttagtaggt ggttcaaacg cagttatact tcgtcatcca 900 aaatcaatag aaactataaa agaattggtt aacgcattag cttaa 945 <210> 4 <211> 1368 <212> DNA <213> Clostridium difficile <220> <221> gene ≪ 222 > (1) .. (1368) <223> corrinoid iron sulfur protein large subunit coding gene <400> 4 atggcattaa aagctttaga tatatttaaa ttaacaccaa agaaaaactg taaggattgt 60 ggattcccaa cttgtatggc tttctctatg aaggttgctt caggagctgt agaagtaggt 120 aaatgcccac atatgtctga tgacgctata gcaaaattat cagaggctac tgcaccttta 180 atgaaagctt taaaagttgg tgctggtgca tctgagtatg aactaggtgg agaaacagta 240 ttatttagac atgaaaaaac attagtaagt agaaatagat atgcagtttc attctgtact 300 tgtatgagtg atgaagcagt agatgctaaa atagctaaca tgaaaaaagt tgactatgta 360 agaattggtg aacaaatgaa agttgaaatg gctgttttag agtattgtgg agataaagat 420 gcgtatttaa aattaataga taaaataaaa ggcagtggat tagaagtagc ttatatttta 480 gcttgtgatg atgcacaagt agttaaagaa gctgttgaag tattaaaaga tgctagacca 540 atggatatatg gagcaactaa agagaactac aaagatatga tagaagtagt taaaggagca 600 agtttaccat taggtgtaaa agctggtagc ttagaagaat tatatgaaac agttgaatta 660 attcaagctg ctggatataa agaattagta ttagatgtaa caggagaaaa cataaaagat 720 acttacacta atgctataca agttagaaga acagctttaa aagagcaaga tagaacattt 780 ggatatcctt caatagtatt tgcaaataga ttatctaatt caaaccctat gatggaagtt 840 gctttatcat caatattcac tataaaatac ggttctataa tagtaataga tgatattagt 900 tatgctaagg cattaccatt atttgcacta agacaaaaca tatacactga cccacaaaga 960 ccaatgagag ttgaaccaaa gatttatcca atcaacaacc cagatgaaaa ttctccagta 1020 ttagttactg ttgactttgc attaacttac ttcatagttg ctggtgatat agaaagatca 1080 aaagttccag tatggttagt aataccagat gcaggtggat attcagttct tacatcttgg 1140 gctgctggta aatttggtgg aaactcaatc tctgctttca ttaaagaaag taaggtagaa 1200 gaagtaacta attgtaaaga ccttatcatt ccaggaaaag ttgcagtact taaaggtgat 1260 atagaagata acttaccagg atggaatgta gttataggac cagaggaatc tatggaatta 1320 cctaagttct taaaaggata ccaagaaaaa gcatgccaaa caaactaa 1368 <210> 5 <211> 807 <212> DNA <213> Clostridium difficile <220> <221> gene ≪ 222 > (1) .. (807) <223> methyltransferase subunit coding gene <400> 5 atggaaaaat ttatgattat aggtgagaga atacattgta tatcaccttc aataagaaaa 60 gcattagcag aaagagaccc agctccaatc ttaaaaagag caaaagagca attagaagca 120 ggagcacact atatagattt taatatagga cctgccgaaa gagatggcga agaaataatg 180 acatggggaa tcaaattact tcaatctgag ttcaacaatg ttcctatagc attagataca 240 gctaataaaa aagctatcga agctggactt aaagtttatg atagaactaa tgcaaaacca 300 ataataaact ctgctgatgc tggctcaaga tttgatttaa tagatatagc agctgaatac 360 gaagcaatgg ttataggttt atgtgcaaaa gaaggtattc caagagataa tgatgagcgt 420 atggcttact gccaagaaat attagaaaaa ggcttaatgt taggaatgga gccaactgat 480 atactatttg acccattatg cttagttata aaaggtatgc aagaaaaaca agtagaagtt 540 ttagaagcta taaaaatgat gactgagatg ggacttttaa ctacaggagg attatctaac 600 gtatctaatg gatgtcctaa gcatgttaga cctgttttag atagtgcatt cttagcaatg 660 gcaatggcta atggatttag ttcagctata atgaatccat gtgacccaga attaatgaaa 720 actgtaaaat cttgtgacat aatcaacggg gcatctttat atgcagactc tttcttagag 780 ttaaatgaag gtggatttgc tttctag 807 <210> 6 <211> 2127 <212> DNA <213> Clostridium difficile <220> <221> gene ≪ 222 > (1) .. (2127) <223> ACS or ACSCODH subunit alpha coding gene <400> 6 atgaatctat ataatataat ctttacaggg tcagaacaag ctttaggtgc ggctcaagct 60 atgttagctg aagctataga aaagaatgga aaagagcata aagttgcttt ccctgataca 120 gcatattcat taccttgtat atatgctgca acaggacaaa agatgaacac tttaggggac 180 ttagaaggtg ctttagaagt agtaaaatct ttaataaata gaactcattt actagaacat 240 gcttttaatg ctggtttagc tacagcttta gcagcagaag taattgaagc attaaaatat 300 tcaactatgg atgctccata tagtgagcca tgtgcaggtc atataactga ccctataatc 360 agatcacttg gtgtaccatt agttacagga gatatacctg gtgttgcagt tgttcttggt 420 gagtgtccag atgcagaatc agcagcaaaa gttataaaag attaccaatc taaaggttta 480 ctaactttct tagttggtaa agttatagac caagctatag aagctggagt aaaaatgggt 540 cttgagctaa gagttatacc tctaggatat gatgtaactt ctgttataca cgttgtatct 600 gttgcagtaa gagcagcatt aatattcggt ggattaactc ctggtgattt aaacggatta 660 ttagagtaca cagctaatag agttcctgca tttgttaatg catttggacc attaagtgaa 720 ttagttgtat ctgcaggtgc tggagcaata gctttaggat tcccagttat aactgaccaa 780 acagttcttg aagttccaat gaacctatta actcaaaaag attacgataa gatagtagct 840 acttcattag aagctagagg aataaaaata aaagttactg aaatacctat cccagtttca 900 tttgcagcag catttgaagg tgagagaatt agaaagagcg atatgtttgc tgagtttggt 960 ggaaacagaa ctgaagcttg ggagcttgtt gttaagaaag aagcaacaga agttgaagac 1020 cataagatag aaataatagg accaaatata gatgaagttg atgcagatgg tgtattaaga 1080 ttaccacttg ctgtaatagt taaaatagct ggtaaaaata tgcaagaaga tttcgagcca 1140 gttcttgaaa gacgtttcca ctacttctta aactatatag aaggtgtaat gcacgttgga 1200 caaagagata tggcttgggt aagaatctct aaagatgcat ttgataaagg atttagactt 1260 gagcatatag gagaagtttt atatgctaag atgttagatg aatttgaatc agtagttgat 1320 aagtgtgaaa taactataat tacagatgct gaaaaagttt ctgaattaaa aggtgaagca 1380 atagctaagt acaatgctag agatgaaaga ttagcttcat tagttgatga aagtgttgac 1440 actttctatt cttgtaactt atgtcaatca tttgcaccag ctcacgtttg tgttgttact 1500 cctgaaagac ttggtctttg tggagcagtt agctggttag atgctaaggc tactaaagaa 1560 ttagacccaa caggtccttg tcaaccaata gaaaaaggcg agtgcttaga tgatagaaca 1620 ggtgtatgga attcagtaaa tgaaactgta aaccaaatat ctcaaggtgc agttgaatct 1680 gttacattat actctatact agaagaccca atgacttctt gtggatgctt cgaatgtatc 1740 tgtggtataa tgccagaagc aaatggattt gttgtagtta acagagaatt tgcaagtgtt 1800 actccagttg gtatgacttt cggagaactt gcttctatga caggtggagg agttcaaact 1860 ccaggattta tgggacacgg aagacatttc atatcttcta aaaaattcgc ttatgcagaa 1920 ggtggaccag aaagaatagt ttggatgcca aaagaattaa aagattatgt agctgataaa 1980 ttaaatgcta cagttaaaga aatgactgga atagaaaact tctgtgatat ggtttgtgat 2040 gaaactatag ctgacgattc tgaaggagta ttagctttct tagaagaaaa aggtcatcca 2100 gcattagcta tggaaagtgt aatgtaa 2127 <210> 7 <211> 378 <212> DNA <213> Clostridium difficile <220> <221> gene ≪ 222 > (1) .. (378) <223> glycine cleavage system H protein coding gene <400> 7 atgaaattat taccagaatt aaaatactct aaagatcatg agtgggtaaa agtaattgat 60 ggagatgttg tatatatagg tataacagac tatgctcaag atcaattagg agaaatattg 120 tttgttgaaa caccagaagt agaagatact gtaactaagg gagtagattt tggagtagtt 180 gagtcttcta aagtagcttc tgatttaata tctcctgtta atggtgaggt attggaagtt 240 aatgaaaaat tagaagatga gccagaatgt ataaatgaag acccatatga aaactggata 300 ttaaaagtaa aactagctga tgtggctgaa cttgatacgt tattaagtga taaagaatac 360 gaggctggat tagaataa 378 <210> 8 <211> 1890 <212> DNA <213> Clostridium acetobutylicum <220> <221> gene <222> (1) .. (1890) <223> carbon monooxide dehydrogenase coding gene <400> 8 atgagtgaat gtcaaaattg tcatgtttgc gatgatgcag acaaaactct tcgtgatttt 60 atatgtgggt taaataatgt tgaaacgtca gaacatagag tggaaagtca aaagaataaa 120 tgtaagtttg gtaaagatgg tgtctgttgt aagctttgtg ctaatggacc atgtagaata 180 acaccaaagt caccaagagg tatttgtggt gcagatgctg acactatagt agctagaaac 240 tttttaagag cagttgcagc aggaacagca tgctatgttc acgttgtgga gactactgct 300 agaaacttaa aggctttagg agaaaacaag aagcctataa aaggaatgta tactcttaat 360 aagctagcaa atatgtttaa aatagatgaa aaagatgatc acaaaaaagc agttatgata 420 gcagatagag tactttctga tttatataaa ccaagatttg aaaaagcaga attagtaagc 480 gaaatagcat atgcaccaag attaaaaaaa tggcaggaac ttaatatact tccaggagga 540 gcaaaatcag aagtatttga tgctatagta aaaacttcaa caaatttaaa tagtgatcct 600 gtagatatga ctgtaaattg tcttactctt ggaatatcaa caggactata tggtcttact 660 ttaactaact tattaaatga tgttatactt ggtgaaccag taataagaca ggcaaatgtt 720 ggtttcaagg tagtagatcc ggattatata aatataatga taacaggaca tcaacattca 780 gtaatagaac atcttcaaga aagattaata gatgaagata ttactaagaa agctcaggct 840 ataggagcta aaggatttaa attagtggga tgtacatgtg ttggtcaaga tcttcaacta 900 agaggagaac attataagga agtattttca ggtcatgcag gaaataactt tacaagtgaa 960 gctttaattg caacaggtgg aatagacctt attatgtcag agtttaactg tactcttcca 1020 ggtatagaac ctattgccga agaatttgaa gttaaaatga tttgtgttga tgatgttgct 1080 aaaaagaaaa atgctgattt tataaagtat agttatgaag agagagaaaa tataactgat 1140 agatataatag aagaagctct taagagttat gaaaatagaa gaaaagatgt aacaattaat 1200 atacctaaag atcatggata tgatgatgtt gtaactggag tcagtgaaaa atctcttaaa 1260 gattttcttg gaggcacttg gaagccactt gtagatttga ttgcatctgg caaaatcaaa 1320 ggtgttgctg gagtagtagg atgttctaac cttacagcaa aaggtcatga tgtatttaca 1380 gtagaactta caaaagaact tataaaaagg aatataatag ttctttcagc aggatgctcc 1440 agtggtggac ttgaaaatgt agggcttatg tctccttcag cagctgatct tgcaggagat 1500 agtctaaaag aagtatgtaa atctcttggt attcccccag tacttaattt tggaccatgc 1560 cttgctatag gaagacttga gattgttgct acagaacttg ctgaatactt aggaatagat 1620 ataccacaac ttcctctagt actttctgca ccacaatggt tagaagaaca agcattagct 1680 gatggagctt ttggactttc attaggactt cctcttcatc ttgcaatttc accatttata 1740 gatggaagtg ctgttgtttc taagcttcta aaagaggatc ttactgatat tacaggaggt 1800 aagcttataa tagaagaaga tgtaataaaa gcagcagata agcttgagag ggaaattatt 1860 gatagaagag aaaaattagg gcttaattag 1890 <210> 9 <211> 1920 <212> DNA <213> Clostridium acetobutylicum <220> <221> gene <222> (1) (1920) <223> carbon monooxide dehydrogenase coding gene <400> 9 atgagtgaaa ccatatcaga aaagtcagag ggaagggtaa gctaccatga ttctgtagaa 60 gaaatggtaa aaaaaattag agaagatgga atgtctaatg tttttgatag atatgccctt 120 caagagaaaa tacgatgtaa gttttgtcta gaaggtttaa gctgtcagct ttgctctaat 180 ggtccttgta gaataagtga aaaaacaggc caagagaaag gagtttgcgg tataggccca 240 gatgcaatgg caatgagaaa ttttcttcta aaaaatataa tgggtgctgg tacatatagc 300 catcatgctt atgaagccta tagaacctta aaggctactg ctgaaggaag aacacctttt 360 aaaataacag atgaaaacaa acttaaatgg atgtgtgaaa agcttggcat tgatacagct 420 caatctataa acgatatggc ctttgagctt gctgtaatcc ttgaggatca acaaagaatt 480 ggagttgaag atcaaaatgt tatggttgag gcctttgctc caaagaaaag aatagaagct 540 tggaaaaaac taggcatata tcctgctgga acagttcatg aagagcaaaa ctgtgttgca 600 agctgcctta caaacgtaga tggaagtcat atatctcttg ctatgaaagc cttaagactt 660 ggaatagcta caatatataa cactcaaata ggtcttgaaa tggttcagga tatattgttt 720 ggaacaccaa cacctcatga agttaatatg gatttaggca taatggatcc tgaatatgtc 780 aacatagtat tcaatggtca tcaaccttgg ataggtgctg ccactatttt aaaagccaaa 840 actcctgaaa ttcaagatat ggcaaagcag gctggtgcta aaggtttaag ggttgtaggt 900 tccatcgaaa caggtcaaga gcttctacaa agattccctg ttgacgaagt atttgtaggt 960 catatgggaa attggcttgc aatagaaccc cttttagcta caggtactgt tgatatattt 1020 gcaatggaag aaaactgctc tcctccagct attgatatgt atgctgaaaa atatcaagta 1080 accttggcag ctgtaagtac tattatagat ttgcctggag ttaattataa atttccatac 1140 gatcctgcac aagctgatga aacagcacaa agattaattg aactcggaat agaaaacttt 1200 aaaaagagaa aagaaagaca gataaaacct cacgttcctc aaaaaataca aaaggctata 1260 gctggattct ctaccgaagc agttcttgga gctcttggca acaaacttga tccactagtt 1320 gatgtaatag ctaagggtca gattaaggga gttgttgctc ttgctaactg ttcaacttta 1380 cgaaatggtc ctcaagattg ggtaacaatt aaccttacaa aggaacttat taaaagagat 1440 attttagttg taagcggcgg ctgtggtaat catgctcttg aggttgcagg actttgtact 1500 ctcgatgctg caaataatat tgctggtaat ggtctaaaag cagtttgtaa tgcacttaag 1560 atacctcctg ttttaagttt tggaacctgc acagatacag gaagaatttc tatgcttgtt 1620 acagcattag ctgaacactt aaacgtagat gttccacaac ttcctattgc agtaacagct 1680 cctgagtgga tggaacagaa agctactata gacggtattt ttgctttagc ttatggtgcc 1740 tacactcatt tatcacctac tccttttatg actggagcta gacagctagt tgatttactt 1800 actaataaag ctgaggatgt aactggaggt aaaatagctc ttggcgatga ccctatgaag 1860 gttgcaaatg acattgagga tcacataatg agaaaaagga aagaattagg tttaagctaa 1920 1920 <210> 10 <211> 1671 <212> DNA <213> Clostridium acetobutylicum <220> <221> gene ≪ 222 > (1) .. (1671) <223> formyl-H4folate synthase coding gene <400> 10 atgaaaactg atattgaaat agctcaagaa gctaaaatgg aacctatagt aaaaatagca 60 gagaagattg gtttaaatga agacgatatt gatttatatg gtaaatataa gtgtaaaata 120 tcgctagatg tattgaaaca aaacaagaac aaacaagatg gtaaattggt gttggttact 180 gctataaatc ctacaccagc tggtgaggga aaatctacag ttacagtggg acttggggaa 240 gccctatgca aaatgaacaa gaatacagtg attgcactta gagaaccttc tcttggacct 300 gtttttggta ttaaaggagg agctgctgga ggcggttacg ctcaagtagt accaatggaa 360 gatataaatc ttcattttac tggagatatg catgctataa cttcagcaaa caatttactc 420 tgcgcagcta tagataacca tattcaccaa ggaaatagtt tgaaaataga ccaaagaaga 480 atagtattta aaagagttat ggatatgaat gatagagctc ttagaagtat agtagttggt 540 cttggaggaa aagtaaatgg ttttccaaga gaagacggtt ttatgataac agttgcttct 600 gaaataatgg ctatactttg tttggcaaat gatcttatgg atttaaaaga gagaatggga 660 aagatactaa tagcctatga tttggatggg aatccagtat attgtaggga tctcaaagtt 720 gaaggtgcta tggctatgct tatgaaagac gcaatgaagc ctaatttggt tcaaacgctt 780 gagaatactc cagctataat tcatggtgga ccttttgcaa atatagccca tggatgcaac 840 agtatcttag ctacaaagat ggcgttgaag cttggagatt atgttattac agaggcaggt 900 ttcggtgcag atttaggagc tgaaaaattc ttagatataa aatgtaggta cggaaactta 960 aaccctgatt gcgttgtatt agttgcaaca attagagcac ttaaacatca cggtggtgca 1020 ctaaaggagg atttaagtaa accaaatgca aaggttcttg aaaaaggact atcaaattta 1080 ggtaaacaaa tagagaatat aaagaaatac ggtgtgcctg ttgttgttgc aataaataaa 1140 tttataacag acagtgaaga agaaataaaa tgcatcgaag aatactgtag taaacaggga 1200 gtaaaggtat cgcttacaga agtttgggaa aaaggcggag aaggtggaac agatcttgca 1260 aataaggttt tagacacttt agaaaatgaa aagagcaatt ttaagtatct atatgatgaa 1320 aagctaagta taaaagaaaa aatggatata atagctaaag aaatatatgg agcagatgga 1380 gttcagtata ctcctcaagc aaacaaacag ataaaagaaa ttgagaaatt taatttggat 1440 aaactcccta tatgtgttgc gaaaacacag tattctttat ctgataatcc agctctttta 1500 ggaagaccaa ctaactttac tataaatgtt aaggaagtaa gagtatctaa tggagcaggt 1560 tttgtggtag ttcaaaccgg aaatatcatg actatgccag gacttccaaa gactccagct 1620 gcaaataaaa tggatatatt tgaagatggc tctatagtag gtttatttta a 1671 <210> 11 <211> 636 <212> DNA <213> Clostridium acetobutylicum <220> <221> gene ≪ 222 > (1) .. (636) <223> formimido-H4folate cyclodeaminase coding gene <400> 11 atgatacagg atatatctat agaggaattt ataaaagaac ttgcatcgga aaaaccaact 60 cctggcggcg gtggagcggc agcactttca gcagcacttt cagcagcgct taattgtatg 120 gtgtttaact ttaccgtagg aaaaaaagtt tatgaaaatt atgataaaga aactaaaaaa 180 ttaatcaata gcagtctaga aaaatcagac aagcttaagg attatttctt atgtggtata 240 gataaagatg cggaggcttt ctcaaaaata ataaatagtt acaaacttcc ccaaagtaca 300 gaagaagaaa aagcatatag gcataaatgt atacaagaag cttcaaaatt tgcagcaaaa 360 gtaccagaag atgtagccaa taatgcacgt gaactttttg aattgatttg gatttcagca 420 aagttaggaa ataaaaatct tataacagat gctggggcag ctgcaataat ggctgaagca 480 gctattgaaa catcaatatt gaatataaag ataaacatag gatctataga ggataaggag 540 ttaaaagcaa gacttgaaaa aacttgcaga gatttacttt tagatagtaa agaatggaaa 600 gataaaatat taagtgaagt atattcgaat atatag 636 <210> 12 <211> 837 <212> DNA <213> Clostridium acetobutylicum <220> <221> gene <222> (1). (837) <223> formimido H4folate cyclodeaminase coding gene <400> 12 atgggagata taattaatgg aaaagcggaa tctcaaaagt ataaagataa aataattgaa 60 tttattaatg aaagaaagaa acaggggtta gatattccat gcatagccag tataacagtt 120 ggagatgatg ggggctcatt atactatgtt aacaatcaaa aaaaagtatc agaaagtctt 180 ggaattgagt ttaagagtat atttttagat gaaagtatac gagaggaaga actaataaag 240 ttaattgaag gtctaaacgt agataataaa attcatggaa ttatgcttca attaccgctg 300 cctaatcaca ttgatgcaaa actagtcaca tctaaaatag atgctaataa agatatagat 360 agtcttacag atataaatac aggaaaattt tacaagggtg aaaaatcatt tataccatgc 420 acgccaagaa gtattataaa tcttataaag agtttaaatg tggatatttg tgggaaaaat 480 gcagttgtaa tagggagaag taacattgta ggtaaaccta cagcgcagct tttactaaat 540 gaaaatgcaa cggttacaat atgccactct agaacacaaa acttaaaaga tatatgtaaa 600 aaagctgata ttattgtaag tgctattgga agaccaggtt ttataacaga tgaatttgtt 660 aatgaaaaat ctattgtaat tgatgttgga actacagtag tagatggtaa acttcgtgga 720 gatgtggttt ttgatgaggt tataaaaaag gcagcttacg taactccagt tcctggggga 780 gtaggggcga tgacaaccac aatgttaata ttaaatgttt gtgaggcatt gaaataa 837 <210> 13 <211> 198 <212> DNA <213> Clostridium acetobutylicum <220> <221> gene ≪ 222 > (1) .. (198) <223> formyl H4folate cyclohydrolase methylene H4folate dehydrogenase coding gene, methylene H4folate reductase coding gene <400> 13 ttgcttgata tatcgctttt atttaaaatt gcgggagttg gaattcttac tataattata 60 gataaaatac ttaaatccag tggaaaagat gattttgcag tagtaacaaa tttggcaggc 120 atagtgatcc tcctcttgat ggtaataagc ctaataagta aattgtttga ggctgtaaag 180 actatgtttc aactttag 198 <210> 14 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 ggccccaagc ttagaatgaa gtttcttatg cacaag 36 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 aaactgcagt ctaactaacc tcctaaattt tgatac 36 <210> 16 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 ccaagcttcg actttttaac aaaatatatt g 31 <210> 17 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 aaaactgcag ccatggtcta actaacctcc taaattttga tac 43 <210> 18 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 catgccatgg tctagactgc agttaccaca tgggaataac agc 43 <210> 19 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 tacgcgtcga cgcatgcggt accgttgatc caaatctagg gtgc 44 <210> 20 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 catgccatgg atgaagatag tagtagtagg tggtgg 36 <210> 21 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 gtttgaacca cctactaaaa cac 23 <210> 22 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 catttggacc attaagtgaa ttag 24 <210> 23 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 cccccggggg ctatgaatat atctgcattt cttgc 35 <210> 24 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 cagaagaaag aactatagca atgg 24 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 tgggaatcct aaagctattg c 21
Claims (22)
상기 ACS/CODH 복합체를 코딩하는 유전자는 i) 디히드로리포아미드 디히드로게나아제(dihydrolipoamide dehydrogenase), ii) 카본 모노옥사이드 디히드로게나아제 셰프론(carbon monooxide dehydrogenase chaperone), iii) 코리노이드 철-황 단백질 소단위(corrinoid iron-sulfur protein small subunit), iv) 코리노이드 철-황 단백질 대단위(corrinoid iron-sulfur protein large subunit), v) 메틸트랜스퍼라아제 서브유닛(methyltransferase subunit), vi) 아세틸-CoA 합성효소(ACS) 또는 ACS/CODH 서브유닛 알파 및 vii) 글리신 절단 시스템 H 단백질(glycine cleavage system H protein)을 코딩하는 유전자를 포함하는 것을 특징으로 하는, 이산화탄소 고정능을 가지는 재조합 미생물.
A gene encoding an acetyl-CoA synthase / carbon monooxide dehydrogenase (ACS / CODH) complex is added to a host microorganism having a gene encoding an enzyme involved in the Wood-Ljungdahl pathway. Or a recombinant vector containing the gene is introduced,
The gene coding for the ACS / CODH complex is preferably selected from the group consisting of i) dihydrolipoamide dehydrogenase, ii) carbon monooxide dehydrogenase chaperone, iii) cornoid iron-sulfur (V) Methyltransferase subunit; (vi) Acetyl-CoA synthase; (v) Methyltransferase subunit; (c) An enzyme (ACS) or an ACS / CODH subunit alpha; and vii) a gene encoding glycine cleavage system H protein.
2. The method according to claim 1, wherein the gene encoding dihydrolipoamide dehydrogenase is a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1, wherein the carbon monooxide dehydrogenase chaperone is a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 2 is a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 2, and a gene encoding a corrinoid iron-sulfur protein small subunit is a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 3, The gene encoding the cornino iron-sulfur protein large subunit is a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: 4 and the gene encoding the methyltransferase subunit is the nucleotide sequence of SEQ ID NO: (Acetyl-CoA synthetase (ACS), < / RTI >< RTI ID = The gene coding for the ACS / CODH subunit alpha is a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: 6, and the gene coding for the glycine cleavage system H protein is a nucleic acid having the nucleotide sequence of SEQ ID NO: Wherein the recombinant microorganism has the ability to fix carbon dioxide.
2. The recombinant microorganism having the ability to fix carbon dioxide according to claim 1, wherein the gene encoding the ACS / CODH complex is obtained from acetogen or methanogen.
The recombinant microorganism having the ability to fix carbon dioxide according to claim 1, wherein the host microorganism is different from the microorganism that obtained the gene encoding the ACS / CODH complex.
The recombinant microorganism according to claim 1, wherein the host microorganism is derived from Clostridium sp.
2. The method according to claim 1, wherein the gene coding for the enzymes involved in the Wood-Lung pathway is selected from the group consisting of carbon monooxide dehydrogenase, formyl-H4folate synthase, Formyl-H4folate cyclodeaminase, formyl-tetrahydrofolate cyclohydrolase / methylene-tetrahydrofolate dehydrogenase, and the like. Wherein the recombinant microorganism is one or more genes selected from the group consisting of genes coding for methylene-tetrahydrofolate reductase.
9. The method according to claim 8, wherein the gene encoding carbon monooxide dehydrogenase is a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: 8 or SEQ ID NO: 9, and formyl-tetrahydrofolate synthetase, H4folate synthase) is a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: 10, and the gene encoding formimido-H4folate cyclodeaminase is a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: 11 or SEQ ID NO: 12 Nucleotide sequence, and the gene encoding formyl-tetrahydrofolate cyclohydrolase / methylene-tetrahydrofolate dehydrogenase (SEQ ID NO: 13) is a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: Is a nucleic acid molecule having a nucleotide sequence, and methylene-tetrahydropoly Reductase gene coding for (methylene-H4folate reductase) is a recombinant microorganism having a carbon dioxide fixing capacity characterized in that the nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 13.
상기 ACS/CODH 복합체를 코딩하는 유전자는 i) 디히드로리포아미드 디히드로게나아제(dihydrolipoamide dehydrogenase), ii) 카본 모노옥사이드 디히드로게나아제 셰프론(carbon monooxide dehydrogenase chaperone), iii) 코리노이드 철-황 단백질 소단위(corrinoid iron-sulfur protein small subunit), iv) 코리노이드 철-황 단백질 대단위(corrinoid iron-sulfur protein large subunit), v) 메틸트랜스퍼라아제 서브유닛(methyltransferase subunit), vi) 아세틸-CoA 합성효소(ACS) 또는 ACS/CODH 서브유닛 알파 및 vii) 글리신 절단 시스템 H 단백질(glycine cleavage system H protein)을 코딩하는 유전자를 포함하는 것을 특징으로 하는, 이산화탄소 고정능을 가지는 재조합 미생물 제조방법.
A gene encoding an acetyl-CoA synthase / carbon monooxide dehydrogenase (ACS / CODH) complex is added to a host microorganism having a gene encoding an enzyme involved in the Wood-Ljungdahl pathway. Or a recombinant vector containing the gene is introduced,
The gene coding for the ACS / CODH complex is preferably selected from the group consisting of i) dihydrolipoamide dehydrogenase, ii) carbon monooxide dehydrogenase chaperone, iii) cornoid iron-sulfur (V) Methyltransferase subunit; (vi) Acetyl-CoA synthase; (v) Methyltransferase subunit; (c) An enzyme (ACS) or an ACS / CODH subunit alpha; and vii) a gene encoding glycine cleavage system H protein.
11. The method according to claim 10, wherein the gene encoding dihydrolipoamide dehydrogenase is a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1, wherein the carbon monooxide dehydrogenase chaperone is a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 2 is a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 2, and a gene encoding a corrinoid iron-sulfur protein small subunit is a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 3, The gene encoding the cornino iron-sulfur protein large subunit is a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: 4 and the gene encoding the methyltransferase subunit is the nucleotide sequence of SEQ ID NO: (Acetyl-CoA synthetase (ACS), < / RTI >< RTI ID = The gene coding for the ACS / CODH subunit alpha is a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: 6, and the gene coding for the glycine cleavage system H protein is a nucleic acid having the nucleotide sequence of SEQ ID NO: Wherein the recombinant microorganism has the ability to fix carbon dioxide.
11. The method according to claim 10, wherein the gene encoding the ACS / CODH complex is obtained from acetogen or methanogen.
[Claim 11] The method according to claim 10, wherein the host microorganism is different from the microorganism that obtained the gene encoding the ACS / CODH complex.
11. The method according to claim 10, wherein the host microorganism is derived from Clostridium sp.
11. The method according to claim 10, wherein the gene coding for the enzymes involved in the Wood-Ljungdahl pathway is selected from the group consisting of carbon monooxide dehydrogenase, formyl-H4folate synthase, Formyl-H4folate cyclodeaminase, formyl-tetrahydrofolate cyclohydrolase / methylene-tetrahydrofolate dehydrogenase, and the like. Wherein the recombinant microorganism is one or more genes selected from the group consisting of genes coding for methylene-tetrahydrofolate reductase.
18. The method of claim 17, wherein the gene encoding carbon monooxide dehydrogenase is a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: 8 or SEQ ID NO: 9, and formyl-tetrahydrofolate synthetase, H4folate synthase) is a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: 10, and the gene encoding formimido-H4folate cyclodeaminase is a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: 11 or SEQ ID NO: 12 Nucleotide sequence, and the gene encoding formyl-tetrahydrofolate cyclohydrolase / methylene-tetrahydrofolate dehydrogenase (SEQ ID NO: 13) is a nucleic acid molecule having the nucleotide sequence of SEQ ID NO: Is a nucleic acid molecule having a nucleotide sequence, and methylene-tetrahydropoly Reductase gene coding for (methylene-H4folate reductase) is a method of producing a recombinant microorganism having a carbon dioxide fixing capacity characterized in that the nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 13.
Of claim 1, claim 3 to claim 6, claim 8 and claim 9, wherein in any one of, CO 2 fixation, comprising a step of culturing a recombinant microorganism under CO 2 present.
The recombinant microorganism of any one of claims 1 to 10, wherein the recombinant microorganism is cultivated with CO 2 as a carbon source to produce a useful substance, and then the produced useful substance is recovered Or a mixture thereof.
21. The method according to claim 20, wherein the useful substance is an alcohol.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110119420A KR101865779B1 (en) | 2011-11-16 | 2011-11-16 | Recombinant microorganism having ability to fix carbon dioxide and the method for producing useful substance using thereof |
PCT/KR2012/009655 WO2013073860A1 (en) | 2011-11-16 | 2012-11-15 | Recombinant microorganism capable of fixing carbon dioxides and method for preparing useful material using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110119420A KR101865779B1 (en) | 2011-11-16 | 2011-11-16 | Recombinant microorganism having ability to fix carbon dioxide and the method for producing useful substance using thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130055048A KR20130055048A (en) | 2013-05-28 |
KR101865779B1 true KR101865779B1 (en) | 2018-06-12 |
Family
ID=48429862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110119420A KR101865779B1 (en) | 2011-11-16 | 2011-11-16 | Recombinant microorganism having ability to fix carbon dioxide and the method for producing useful substance using thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101865779B1 (en) |
WO (1) | WO2013073860A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT3180421T (en) * | 2014-08-11 | 2019-06-07 | Lanzatech New Zealand Ltd | Genetically engineered bacterium with decreased carbon monoxide dehydrogenase (codh) activity |
WO2019165418A1 (en) * | 2018-02-26 | 2019-08-29 | William Marsh Rice University | Improved acetyl-coa-derived biosynthesis |
KR102571636B1 (en) * | 2019-10-23 | 2023-08-29 | 한국과학기술원 | Microorganisms with enhanced carbon monoxide availability and use thereof |
KR102393114B1 (en) * | 2020-07-24 | 2022-05-02 | 울산과학기술원 | Carbon monoxide dehydrogenase having oxygen resistance and increased enzyme activity and uses thereof |
CN112920984A (en) * | 2021-02-05 | 2021-06-08 | 南京工业大学 | Construction is based on formic acid and CO2Method and application of growing recombinant strain |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109136161A (en) * | 2009-12-10 | 2019-01-04 | 基因组股份公司 | Synthesis gas or other gaseous carbon sources and methanol are converted into the method and organism of 1,3 butylene glycol |
-
2011
- 2011-11-16 KR KR1020110119420A patent/KR101865779B1/en active IP Right Grant
-
2012
- 2012-11-15 WO PCT/KR2012/009655 patent/WO2013073860A1/en active Application Filing
Non-Patent Citations (6)
Title |
---|
PLoS ONE, vol.5(9), e13033,pp.1-11(2010) * |
PLoS ONE, vol.5(9), e13033,pp.1-11(2010). * |
PLoS ONE, vol.5(9), e13033,pp.1-11(2010).* |
The Journal of Biological Chemistry, vol.268(8), pp.5605-5614(1993) * |
The Journal of Biological Chemistry, vol.268(8), pp.5605-5614(1993). * |
The Journal of Biological Chemistry, vol.268(8), pp.5605-5614(1993).* |
Also Published As
Publication number | Publication date |
---|---|
KR20130055048A (en) | 2013-05-28 |
WO2013073860A1 (en) | 2013-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6905518B2 (en) | Genetically engineered bacteria, including energy-generating fermentation pathways | |
US11142761B2 (en) | Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves | |
US20090111154A1 (en) | Butanol production by recombinant microorganisms | |
ES2399943T3 (en) | Procedure to produce isobutanol | |
Hou et al. | Engineering Clostridium acetobutylicum for alcohol production | |
AU2008310573A1 (en) | Microorganism engineered to produce isopropanol | |
CA2813431A1 (en) | Production of butanol from carbon monoxide by a recombinant microorganism | |
KR101865779B1 (en) | Recombinant microorganism having ability to fix carbon dioxide and the method for producing useful substance using thereof | |
JP2011510611A (en) | Biofuel production by recombinant microorganisms | |
Arantes et al. | Enrichment of anaerobic syngas-converting communities and isolation of a novel carboxydotrophic Acetobacterium wieringae strain JM | |
Li et al. | Derepressive effect of NH on hydrogen production by deleting the glnA1 gene in Rhodobacter sphaeroides | |
CN101748069A (en) | recombinant blue-green algae | |
KR101506137B1 (en) | Cloning and expression of the genes encoding key clostridial catalyzing mechanisms for syngas to ethanol production and functional characterization thereof | |
KR101921678B1 (en) | An engineered cell having improved serine biosynthesis ability | |
TWI811184B (en) | Genetically engineered bacterium comprising energy-generating fermentation pathway | |
TW202128984A (en) | Genetically engineered bacterium comprising energy-generating fermentation pathway | |
EA043734B1 (en) | GENETICALLY ENGINEERED BACTERIA CONTAINING AN ENERGY-GENERATING ENZYMATIVE PATHWAY | |
JP2014161252A (en) | Recombinant cells | |
JP2017192369A (en) | Recombinant cell and method for producing isobutyric acid | |
BR122024008827A2 (en) | GENETICALLY MODIFIED MICROORGANISM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |