TWI811184B - Genetically engineered bacterium comprising energy-generating fermentation pathway - Google Patents

Genetically engineered bacterium comprising energy-generating fermentation pathway Download PDF

Info

Publication number
TWI811184B
TWI811184B TW105134882A TW105134882A TWI811184B TW I811184 B TWI811184 B TW I811184B TW 105134882 A TW105134882 A TW 105134882A TW 105134882 A TW105134882 A TW 105134882A TW I811184 B TWI811184 B TW I811184B
Authority
TW
Taiwan
Prior art keywords
coa
acetyl
enzyme
clostridium
converts
Prior art date
Application number
TW105134882A
Other languages
Chinese (zh)
Other versions
TW201816109A (en
Inventor
麥可 蔻普其
詹森 雷斯瑪 歐福佳
詹姆士 布魯斯 亞恩頓 海考克 貝瑞恩道爾夫
萊恩 愛德華 希爾
Original Assignee
美商朗澤科技Nz有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商朗澤科技Nz有限公司 filed Critical 美商朗澤科技Nz有限公司
Priority to TW105134882A priority Critical patent/TWI811184B/en
Publication of TW201816109A publication Critical patent/TW201816109A/en
Application granted granted Critical
Publication of TWI811184B publication Critical patent/TWI811184B/en

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention relates to a genetically engineered bacterium comprising an energy-generating fermentation pathway and methods related thereto. In particular, the invention provides a bacterium comprising a phosphate butyryltransferase (Ptb) and a butyrate kinase (Buk) (Ptb-Buk) that act on non-native substrates to produce a wide variety of products and intermediates. In certain embodiments, the invention relates to the introduction of Ptb-Buk into a C1-fixing microoorgansim capable of producing products from a gaseous substrate.

Description

包括產能醱酵路徑之經基因工程改造之細菌 Genetically engineered bacteria including energy-producing fermentation pathways

隨著當前醱酵及代謝工程改造之發展,已鑑別及開發各種產物之醱酵途徑(Clomburg,《應用微生物學與生物技術(Appl Microbiol Biotechnol)》,86:419-434,2010;Peralta-Yahya,《生物技術期刊(Biotechnol J)》,5:147-162,2010;Cho,《生物技術進展(Biotechnol Adv)》,pii:S0734-9750(14)00181-5,2014)。然而,所有此等醱酵途徑均為耗能(ATP)或最多能量(ATP)平衡的,從而限制能量限制系統中之產物產量且將產物產生與微生物生長分開。本發明藉由提供獲得多種產物(包括酸、烯烴、醛、醇及二醇)之新穎醱酵途徑及路徑提供克服此等限制之產能(ATP)路徑。此等路徑直接與微生物生長偶合且提供高產物產量。 With the current development of fermentation and metabolic engineering, fermentation pathways for various products have been identified and developed (Clomburg, " Appl Microbiol Biotechnol " , 86: 419-434, 2010; Peralta-Yahya , " Biotechnol J ", 5: 147-162, 2010; Cho, " Biotechnol Adv ", pii: S0734-9750(14)00181-5, 2014). However, all such fermentation pathways are energy-consuming (ATP) or maximal-energy (ATP) balanced, thereby limiting product yield in energy-limited systems and separating product production from microbial growth. The present invention provides a capacity (ATP) pathway to overcome these limitations by providing novel fermentation pathways and pathways to obtain a variety of products, including acids, olefins, aldehydes, alcohols and glycols. These pathways directly couple to microbial growth and provide high product yields.

詳言之,本發明係關於涉及Ptb-Buk之醱酵路徑。磷酸丁醯基轉移酶(Ptb)(EC 2.3.1.19)天然催化丁醯基-CoA與磷酸酯之反應,形成CoA及丁醯基磷酸酯。丁酸激酶(Buk)(EC 2.7.2.7)天然催化丁醯基磷酸酯與ADP之反應,形成丁酸酯(butyrate/butanoate)及ATP。因此,此等酶一起(Ptb-Buk)天然催化丁醯基-CoA向丁酸酯之轉化且經由受質 層面磷酸化(SLP)產生一個ATP。 Specifically, the present invention relates to a fermentation pathway involving Ptb-Buk. Phosphate butyltransferase (Ptb) (EC 2.3.1.19) naturally catalyzes the reaction of butyl-CoA and phosphate to form CoA and butyl-phosphate. Butyrate kinase (Buk) (EC 2.7.2.7) naturally catalyzes the reaction of butyryl phosphate and ADP to form butyrate/butanoate and ATP. Thus, these enzymes together (Ptb-Buk) naturally catalyze the conversion of butyryl-CoA to butyrate and generate an ATP via substrate-level phosphorylation (SLP).

本發明者已發現Ptb為混雜的且能夠接受多種醯基-CoA及烯醯基-CoA作為受質,使得Ptb-Buk可用於將多種醯基-CoA及烯醯基-CoA分別轉化為其相應酸或烯酸酯,同時經由受質層面磷酸化產生ATP。 The inventors have discovered that Ptb is hybrid and can accept a variety of acyl-CoA and enyl-CoA as acceptors, so that Ptb-Buk can be used to convert a variety of acyl-CoA and enyl-CoA into their respective counterparts. acid or enoate, and simultaneously generates ATP through phosphorylation at the substrate level.

此外,與醛:鐵氧化還原蛋白氧化還原酶(AOR)及醇去氫酶組合,經由Ptb-Buk系統形成之酸可進一步轉化為其各別醛、醇或二醇。AOR(EC 1.2.7.5)催化酸與經還原鐵氧化還原蛋白(其可例如由氧化CO或氫氣產生)之反應,形成醛及經氧化鐵氧化還原蛋白。醇去氫酶(EC 1.1.1.1及EC 1.1.1.2)可將醛及NAD(P)H轉化為醇及NAD(P)。 Furthermore, in combination with aldehyde:ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase, the acid formed via the Ptb-Buk system can be further converted into its respective aldehyde, alcohol or glycol. AOR (EC 1.2.7.5) catalyzes the reaction of acid and reduced ferric redox protein (which can be produced, for example, by oxidation of CO or hydrogen) to form aldehydes and ferric redox protein. Alcohol dehydrogenase (EC 1.1.1.1 and EC 1.1.1.2) converts aldehydes and NAD(P)H into alcohols and NAD(P).

因此,將Ptb-Buk及/或AOR引入異源物質中提供一種以高產量形成天然及非天然產物(諸如酸、烯烴、酮、醛、醇及二醇)之新穎替代途徑,因此克服目前先進技術之限制。 Therefore, the introduction of Ptb-Buk and/or AOR into heterologous materials provides a novel alternative route to form natural and unnatural products (such as acids, alkenes, ketones, aldehydes, alcohols, and glycols) in high yields, thus overcoming the current state of the art. Technical limitations.

本發明提供一種經基因工程改造之細菌,其包括外源磷酸丁醯基轉移酶(Ptb)及外源丁酸激酶(Buk)(Ptb-Buk)。一般而言,Ptb-Buk作用於非天然受質,例如除丁醯基-CoA及/或丁醯基磷酸酯以外之受質,且產生非天然產物,例如除丁醯基磷酸酯或丁酸酯以外之產物。在某些實施例中,Ptb-Buk將乙醯乙醯基-CoA轉化為乙醯乙酸酯、將3-羥基異戊醯基-CoA轉化為3-羥基異戊酸酯,將3-羥基丁醯基-CoA轉化為3-羥基丁酸酯,或將2-羥基異丁醯基-CoA轉化為2-羥基異丁酸酯。 The invention provides a genetically engineered bacterium, which includes exogenous phosphobutyltransferase (Ptb) and exogenous butyrate kinase (Buk) (Ptb-Buk). Generally speaking, Ptb-Buk acts on non-natural substrates, such as substrates other than butyl-CoA and/or butyl phosphate, and produces unnatural products, such as products other than butyl phosphate or butyrate. In certain embodiments, Ptb-Buk converts acetyl acetyl-CoA to acetyl acetate, 3-hydroxyisovaleryl-CoA to 3-hydroxyisovalerate, and 3-hydroxyisovalerate. Butyryl-CoA is converted to 3-hydroxybutyrate, or 2-hydroxyisobutyryl-CoA is converted to 2-hydroxyisobutyrate.

所述細菌可產生酸、烯烴、酮、醛、醇或二醇中之一或多者。更特定言之,所述細菌可產生丙酮或其前驅物、異丙醇或其前驅物、異丁烯或其前驅物、3-羥基丁酸酯或其前驅物、1,3-丁二醇或其前驅物、2-羥基異丁酸酯或其前驅物、己二酸或其前驅物、1,3-己二醇或其前驅物、3-甲基-2-丁醇或其前驅物、2-丁烯-1-醇或其前驅物、異戊酸酯或其前驅物或異戊醇或其前驅物中之一或多者。所述細菌通常不產生丁醇。 The bacteria may produce one or more of acids, alkenes, ketones, aldehydes, alcohols or glycols. More specifically, the bacteria can produce acetone or its precursor, isopropanol or its precursor, isobutylene or its precursor, 3-hydroxybutyrate or its precursor, 1,3-butanediol or its precursor. Precursor, 2-hydroxyisobutyrate or its precursor, adipic acid or its precursor, 1,3-hexanediol or its precursor, 3-methyl-2-butanol or its precursor, 2 - one or more of buten-1-ol or its precursor, isovalerate or its precursor, or isoamyl alcohol or its precursor. The bacteria generally do not produce butanol.

所述細菌可進一步包括磷酸轉乙醯酶(Pta)及乙酸激酶(Ack)之斷裂性突變。所述細菌可進一步包括硫酯酶之斷裂性突變。在另一實施例中,本發明提供一種經基因工程改造之細菌,其包括外源Ptb-Buk及外源或內源醛:鐵氧化還原蛋白氧化還原酶。 The bacteria may further include disruptive mutations in phosphotransacetylase (Pta) and acetate kinase (Ack). The bacterium may further comprise a disrupting mutation of the thioesterase enzyme. In another embodiment, the present invention provides a genetically engineered bacterium that includes exogenous Ptb-Buk and exogenous or endogenous aldehyde:ferredoxin oxidoreductase.

本發明進一步提供一種產生產物之方法,其包括在受質存在下培養任一上述實施例之細菌。產物可為例如丙酮或其前驅物、異丙醇或其前驅物、異丁烯或其前驅物、3-羥基丁酸酯或其前驅物、1,3-丁二醇或其前驅物、2-羥基異丁酸酯或其前驅物、己二酸或其前驅物、1,3-己二醇或其前驅物、3-甲基-2-丁醇或其前驅物、2-丁烯-1-醇或其前驅物、異戊酸酯或其前驅物或異戊醇或其前驅物。通常,受質為氣體受質,包括例如CO、CO2及H2中之一或多者。在一個實施例中,氣體受質為合成氣。在另一實施例中,氣體受質為工業廢氣。 The present invention further provides a method of producing a product, which comprises culturing the bacterium of any of the above embodiments in the presence of a substrate. The product may be, for example, acetone or its precursor, isopropyl alcohol or its precursor, isobutylene or its precursor, 3-hydroxybutyrate or its precursor, 1,3-butanediol or its precursor, 2-hydroxyl Isobutyrate or its precursor, adipic acid or its precursor, 1,3-hexanediol or its precursor, 3-methyl-2-butanol or its precursor, 2-butene-1- Alcohol or its precursor, isovalerate or its precursor or isoamyl alcohol or its precursor. Typically, the substrate is a gaseous substrate, including, for example, one or more of CO, CO2 , and H2 . In one embodiment, the gas substrate is syngas. In another embodiment, the gas substrate is industrial waste gas.

圖1為自乙醯基-CoA產生各種產物(包含丙酮、異丙醇、 異丁烯、3-羥基丁酸酯、1,3-丁二醇及2-羥基異丁酸酯)之代謝路徑之圖。乙醯基-CoA可由任何適合受質產生,諸如碳水化合物(例如糖)受質或氣體受質。在本發明中,乙醯基-CoA通常由氣體受質產生。粗體箭頭指示可藉由Ptb-Buk催化之步驟。 Figure 1 is a diagram of the metabolic pathways that produce various products (including acetone, isopropyl alcohol, isobutylene, 3-hydroxybutyrate, 1,3-butanediol and 2-hydroxyisobutyrate) from acetyl-CoA. . Acetyl-CoA can be produced from any suitable substrate, such as a carbohydrate (eg, sugar) substrate or a gaseous substrate. In the present invention, acetyl-CoA is typically produced from a gaseous substrate. Bold arrows indicate steps that can be catalyzed by Ptb-Buk.

圖2為展示藉由Ptb-Buk天然催化之反應(亦即將丁醯基-CoA轉化為丁酸酯且產生一個ATP)的圖。 Figure 2 is a diagram showing the reaction naturally catalyzed by Ptb-Buk (ie, converting butyl-CoA to butyrate and producing an ATP).

圖3為比較CoA-轉移酶、硫酯酶及Ptb-Buk之活性的圖。 Figure 3 is a graph comparing the activities of CoA-transferase, thioesterase and Ptb-Buk.

圖4為展示用包括外源基因之質體修飾之大腸桿菌BL21(D3)中的平均丙酮產量的圖。此資料展現Ptb-Buk在大腸桿菌中將乙醯乙醯基-CoA活體內轉化為乙醯乙酸酯的能力。 Figure 4 is a graph showing average acetone production in E. coli BL21(D3) modified with plastids including foreign genes. This data demonstrates the ability of Ptb-Buk to convert acetyl acetyl-CoA to acetyl acetate in E. coli in vivo.

圖5為展示誘導帶有pACYC-ptb-buk與pCOLA-thlA-adc質體(表現硫解酶、Ptb-Buk及乙醯乙酸去羧酶)之大腸桿菌BL21(DE3)的作用的圖。 Figure 5 is a graph showing the effect of inducing E. coli BL21 (DE3) carrying pACYC-ptb-buk and pCOLA-thlA-adc plasmids (expressing thiolase, Ptb-Buk and acetoacetate decarboxylase).

圖6為如下路徑之圖,所述路徑經設計以使用Ptb-Buk產生丙酮,同時再循環在產生(R)-3-羥基丁醯基-CoA中所產生之還原等效物及由Ptb-Buk產生之ATP。 Figure 6 is a diagram of a pathway designed to produce acetone using Ptb-Buk while recycling the reducing equivalent produced in the production of (R)-3-hydroxybutyryl-CoA and produced from Ptb-Buk of ATP.

圖7為展示醛:鐵氧化還原蛋白氧化還原酶(AOR)、鐵氧化還原蛋白及Adh在於自產乙醇梭菌(C.autoethanogenum)中產生1,3-丁二醇中之作用的圖。更一般而言,可使用AOR催化酸向醛之轉化,且可使用Adh催化醛向醇/二醇之轉化。 Figure 7 is a graph showing the role of aldehyde: ferredoxin oxidoreductase (AOR), ferredoxin and Adh in the production of 1,3-butanediol in C. autoethanogenum . More generally, AOR can be used to catalyze the conversion of acids to aldehydes, and Adh can be used to catalyze the conversion of aldehydes to alcohols/diols.

圖8為展示用於產生(R)-3-羥基丁酸酯及2-羥基異丁酸酯之Ptb-Buk的立體特異性的圖。圖8中之術語「天然」係指天然硫酯酶。 Figure 8 is a graph showing the stereospecificity of Ptb-Buk for the production of (R)-3-hydroxybutyrate and 2-hydroxyisobutyrate. The term "native" in Figure 8 refers to native thioesterases.

圖9為展示經由使用替代性路徑1進行3-羥基異戊醯基 -CoA與3-羥基異戊酸酯之Ptb-Buk轉化產生異丁烯的圖。 Figure 9 is a graph showing the production of isobutylene via the Ptb-Buk conversion of 3-hydroxyisovaleryl-CoA and 3-hydroxyisovalerate using alternative pathway 1.

圖10為展示經由使用替代性路徑2進行3-羥基異戊醯基-CoA與3-羥基異戊酸酯之Ptb-Buk轉化產生異丁烯的圖。 Figure 10 is a graph showing the production of isobutylene via the Ptb-Buk conversion of 3-hydroxyisovaleryl-CoA and 3-hydroxyisovalerate using alternative route 2.

圖11為展示經由3-丁醛去氫酶(Bld)產生1,3-丁二醇之圖。 Figure 11 is a diagram showing the production of 1,3-butanediol via 3-butyraldehyde dehydrogenase (Bld).

圖12為展示相對於對照使用Ptb-Buk系統於自產乙醇梭菌中產生異丙醇的圖。○pMTL85147-thlA-adc,●pMTL85147-thlA-ptb-buk-adc。 Figure 12 is a graph showing isopropanol production in Clostridium autoethanogenogenum using the Ptb-Buk system relative to a control. ○pMTL85147-thlA-adc, ●pMTL85147-thlA-ptb-buk-adc.

圖13A-F為展示在不同濃度誘導劑IPTG(0、50、100μM)存在下用大腸桿菌中之模組質體產生3-羥基丁酸酯、乙酸酯、乙醇及丙酮的圖。圖13A:pACYC-ptb-buk、pCOLA-thlA-adc、pCDF-phaB。圖13B:pACYC-ptb-buk、pCOLA-thlA-adc、pCDF-phaB-bdh1。圖13C:pCOLA-thlA-adc、pCDF-phaB-bdh1。圖13D:pCOLA-thlA-adc。圖13E:pCDF-phaB-bdh1。圖13F:pCDF-phaB。 Figures 13A-F are graphs showing the production of 3-hydroxybutyrate, acetate, ethanol and acetone using modular plastids in E. coli in the presence of different concentrations of the inducer IPTG (0, 50, 100 μM). Figure 13A: pACYC-ptb-buk, pCOLA-thlA-adc, pCDF-phaB. Figure 13B: pACYC-ptb-buk, pCOLA-thlA-adc, pCDF-phaB-bdh1. Figure 13C: pCOLA-thlA-adc, pCDF-phaB-bdh1. Figure 13D: pCOLA-thlA-adc. Figure 13E: pCDF-phaB-bdh1. Figure 13F: pCDF-phaB.

圖14為質體pMTL8225-budA::thlA-phaB之質體圖。 Figure 14 is a plasmid diagram of pMTL8225-budA::thlA-phaB.

圖15為相較於野生型(W),自產乙醇梭菌之4個純系(1、4、7、9)中用硫解酶(thlA)及3-羥基丁醯基-CoA去氫酶(phaB)基因置換乙醯乳酸合成酶(budA)基因之PCR驗證的凝膠影像。如藉由相較於野生型PCR片段尺寸較大所見,所有純系為陽性。 Figure 15 shows the use of thiolase ( thlA ) and 3-hydroxybutyryl-CoA dehydrogenase ( phaB ) in four pure strains of Clostridium autoethanologenum (1, 4, 7, and 9) compared with the wild type (W). ) Gel image of PCR verification of gene replacement acetyl lactate synthase ( budA ) gene. All clones were positive as seen by the larger PCR fragment size compared to wild type.

圖16為展示分批醱酵自產乙醇梭菌budA::thlAphaB菌株之醱酵概況且展現自氣體形成3-羥基丁酸酯及1,3-丁二醇的圖。 Figure 16 is a diagram showing the fermentation profile of the batch fermentation of Clostridium autoethanologenum budA::thlAphaB strain and showing the formation of 3-hydroxybutyrate and 1,3-butanediol from gas.

圖17A為展示經由硫解酶、3-羥基丁醯基-CoA去氫酶 (Bld)及丁醛去氫酶產生1,3-BDO的圖。圖17B為展示bld表現對生長之影響的圖。 Figure 17A is a graph showing the production of 1,3-BDO via thiolase, 3-hydroxybutyryl-CoA dehydrogenase (Bld) and butyraldehyde dehydrogenase. Figure 17B is a graph showing the effect of bld expression on growth.

圖18A為展示自產乙醇梭菌pMTL8315-Pfdx-hbd1-thlA中自氣體受質形成3-羥基丁酸酯及1,3-丁二醇的圖。圖18B為展示相同培養物中乙酸酯還原為乙醇的圖。 Figure 18A is a graph showing the formation of 3-hydroxybutyrate and 1,3-butanediol from gas acceptors in Clostridium autoethanogenogenum pMTL8315-Pfdx-hbd1-thlA. Figure 18B is a graph showing the reduction of acetate to ethanol in the same culture.

圖19為展示菌株自產乙醇梭菌pMTL8315-Pfdx-hbd1-thlA之醱酵概況的圖,所述菌株展現於連續培養物(在指示時,用既定稀釋速率D連續補充培養基)中自氣體受質形成3-羥基丁酸酯及1,3-丁二醇。 Figure 19 is a graph showing the fermentation profile of the strain Clostridium ethanologenum pMTL8315-Pfdx-hbd1-thlA, which was displayed in a continuous culture (the medium was continuously replenished with an established dilution rate D when indicated) from a gas receiving The substance forms 3-hydroxybutyrate and 1,3-butanediol.

圖20A及圖20B為展示相較於野生型(WT),表現來自質體pMTL82256-Ptb-Buk之Ptb-Buk系統的自產乙醇梭菌中對一系列醯基-CoA(乙醯乙醯基-CoA、3-羥基丁醯基-CoA及2-羥基異丁醯基-CoA)之CoA水解活性增加的圖。 Figures 20A and 20B show the response to a series of acyl-CoA (acetyl-acetyl-CoA) in Clostridium autoethanologenum expressing the Ptb-Buk system from plastid pMTL82256-Ptb-Buk compared to the wild type (WT). -CoA, 3-hydroxybutyl-CoA and 2-hydroxyisobutyl-CoA) graph showing increased CoA hydrolysis activity.

圖21A及圖21B為展示相較於自產乙醇梭菌LZ1560或LZ1561中所見之醯基-CoA水解活性,具有不活化硫酯酶之自產乙醇梭菌菌株(CT2640=硫酯酶1,CT 1524=硫酯酶2,CT1780=硫酯酶3)的活性降低的圖。 Figures 21A and 21B show a C. autoethanogenum strain with an inactivated thioesterase (CT2640 = thioesterase 1, CT) compared to the acyl-CoA hydrolytic activity seen in C. autoethanogenum LZ1560 or LZ1561 1524 = thioesterase 2, CT1780 = thioesterase 3) activity reduction graph.

圖22為展示相較於野生型自產乙醇梭菌,具有斷裂硫酯酶3 CAETHG_1780之自產乙醇梭菌菌株中特定異丙醇產生增加的圖。 Figure 22 is a graph showing increased production of specific isopropanol in a C. autoethanogenum strain with cleaved thioesterase 3 CAETHG_1780 compared to wild-type C. autoethanogenum.

圖23A-D為展示野生型自產乙醇梭菌及具有斷裂硫酯酶3(CAETHG_1780)之菌株相較於野生型自產乙醇梭菌的生長(圖23A)及異丙醇(圖23B)、乙酸酯(圖23C)及乙醇(圖23D)產生概況的圖。 Figures 23A-D show the growth of wild-type Clostridium autoethanogenogenum and a strain with cleaved thioesterase 3 (CAETHG_1780) compared to wild-type Clostridium autoethanogenogenum (Figure 23A) and isopropyl alcohol (Figure 23B), Acetate (Figure 23C) and ethanol (Figure 23D) produced overview plots.

圖24為pMTL8225-pta-ack::ptb-buk之質體圖。 Figure 24 is a plasmid diagram of pMTL8225-pta-ack::ptb-buk.

圖25為指示用ptbbuk基因及ermB卡匣置換ptaack基因之凝膠影像。 Figure 25 is a gel image indicating the replacement of the pta and ack genes with the ptb and buk genes and the ermB cassette.

圖26為展示藉由過度表現醛:鐵氧化還原蛋白氧化還原酶基因aor1使3-羥基丁酸酯向1,3-BDO之轉化增加的圖。 Figure 26 is a graph showing increased conversion of 3-hydroxybutyrate to 1,3-BDO by overexpression of the aldehyde:ferredoxin oxidoreductase gene aor1 .

圖27為展示相較於對照(BL21菌株),硫酯酶TesB、Pta-Ack及Ptb-Buk系統對乙醯乙醯基-CoA、3-羥基丁醯基-CoA及2-羥基異丁醯基-CoA之CoA水解之活性的圖。Ptb-Buk展示最高活性,而Pta-Ack展示無活性。 Figure 27 shows the effects of thioesterase TesB, Pta-Ack and Ptb-Buk systems on acetyl acetyl-CoA, 3-hydroxybutyl-CoA and 2-hydroxyisobutyl-CoA compared to the control (BL21 strain). Plot of CoA hydrolysis activity. Ptb-Buk showed the highest activity, while Pta-Ack showed no activity.

圖28A及28B為展示經由Ptb-Buk以及(S)-特異性(Hbd)(圖28A)或(R)-特異性3-羥基丁酸酯(PhaB)(圖28B)去氫酶產生3-羥基丁酸酯的圖。 Figures 28A and 28B illustrate the production of 3- by Ptb-Buk and (S)-specific (Hbd) (Figure 28A) or (R)-specific 3-hydroxybutyrate (PhaB) (Figure 28B) dehydrogenases. Diagram of hydroxybutyrate.

圖29A-D為展示2-羥基異丁酸(2-HIB)及2-羥基丁酸酯(2-HB)之LC-MS/MS偵測的圖。圖29A:1mM 2-HIB標準物。圖29B:1mM 2-HB標準物。圖29C:0.5mM 2-HB及2-HIB標準物。圖29D:展示自氣體產生2-HIB及2-HB之自產乙醇梭菌樣品的重複樣。 Figures 29A-D are graphs showing LC-MS/MS detection of 2-hydroxyisobutyric acid (2-HIB) and 2-hydroxybutyrate (2-HB). Figure 29A: 1mM 2-HIB standard. Figure 29B: 1mM 2-HB standard. Figure 29C: 0.5mM 2-HB and 2-HIB standards. Figure 29D: Duplicates of C. autoethanogenum samples showing production of 2-HIB and 2-HB from gases.

圖30為展示2-羥基異丁酸(8.91分鐘)產生之GC-MS確認的一組圖。第一圖:自產乙醇梭菌+pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-tesB。第二圖:自產乙醇梭菌+pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk(光譜)。第三圖:大腸桿菌+pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-tesB。第四圖:大腸桿菌+pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk。 Figure 30 is a set of graphs showing GC-MS confirmation of the production of 2-hydroxyisobutyric acid (8.91 minutes). First panel: Clostridium autoethanogenogenum+pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-tesB. Second picture: Clostridium autoethanogenogenum+pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk (spectrum). Third panel: E. coli+pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-tesB. Figure 4: E. coli+pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk.

圖31為即時PCR之一組圖,其展示大腸桿菌、自產乙醇 梭菌LZ1561(30℃下)及自產乙醇梭菌LZ1561(37℃下)中2-HIBA路徑之基因(來自pta-ack啟動子及對應地Wood-Ljungdahl操縱子的啟動子的thlAhbameaBhcmAhcmB)的表現。 Figure 31 is a set of real-time PCR diagrams showing the genes of the 2-HIBA pathway in E. coli, Clostridium autoethanogenogenum LZ1561 (at 30°C) and Clostridium autoethanogenogenum LZ1561 (at 37°C) (from pta-ack The expression of thlA , hba , meaBhcmA , hcmB ) of the promoter and corresponding Wood-Ljungdahl operon promoter.

圖32為展示包括Ptb-Buk、AOR及Adh之微生物中各種產物之產生的圖。 Figure 32 is a graph showing the production of various products in microorganisms including Ptb-Buk, AOR and Adh.

圖33為展示螢火蟲螢光素酶(Luc)與Ptb-Buk系統偶合以特性化Ptb-Buk變異體的圖。 Figure 33 is a diagram showing coupling of firefly luciferase (Luc) to the Ptb-Buk system to characterize Ptb-Buk variants.

圖34為產生各種產物(包含己二酸)之代謝路徑的圖。粗體箭頭指示可藉由Ptb-Buk催化之步驟。 Figure 34 is a diagram of metabolic pathways that produce various products, including adipic acid. Bold arrows indicate steps that can be catalyzed by Ptb-Buk.

圖35為產生各種產物(包含1,3-己二醇、2-甲基-2-丁醇及2-丁烯-1-醇)之代謝路徑的圖。粗體箭頭指示可藉由Ptb-Buk催化之步驟。 Figure 35 is a diagram of metabolic pathways that produce various products including 1,3-hexanediol, 2-methyl-2-butanol, and 2-buten-1-ol. Bold arrows indicate steps that can be catalyzed by Ptb-Buk.

圖36為產生各種產物(包含異戊酸酯及異戊醇)之代謝路徑的圖。粗體箭頭指示可藉由Ptb-Buk催化之步驟。 Figure 36 is a diagram of metabolic pathways that produce various products, including isovalerate and isoamyl alcohol. Bold arrows indicate steps that can be catalyzed by Ptb-Buk.

圖37為各種生長點之含有質體pMTL82256-thlA-ctfAB之自產乙醇梭菌中3-HB產生的圖。 Figure 37 is a graph showing 3-HB production in Clostridium autoethanogenans containing plasmid pMTL82256-thlA-ctfAB at various growth points.

圖38A為展示菌株自產乙醇梭菌pta-ack::ptb-buk+pMTL85147-thlA-ptb-buk-adc之生長及乙醇及2,3-丁二醇產生概況的圖。圖38B為展示菌株自產乙醇梭菌pta-ack::ptb-buk+pMTL85147-thlA-ptb-buk-adc之異丙醇及3-HB產生概況的圖。 Figure 38A is a graph showing the growth and ethanol and 2,3-butanediol production profile of the strain Clostridium autoethanologenum pta-ack::ptb-buk+pMTL85147-thlA-ptb-buk-adc. Figure 38B is a graph showing the isopropyl alcohol and 3-HB production profile of the strain Clostridium ethanologenum pta-ack::ptb-buk+pMTL85147-thlA-ptb-buk-adc.

圖39為經由組合已知鏈伸長路徑(Hbd、Crt、Bcd-EtfAB、Thl)與Ptb-Buk+AOR/Adc-Adh產生一系列C4、C6、C8、C10、C12、C14醇、酮、烯醇或二醇之路徑流程的圖。 Figure 39 shows a series of C 4 , C 6 , C 8 , C 10 , C 12 , C14 generated by combining known chain elongation paths (Hbd, Crt, Bcd-EtfAB, Thl) with Ptb-Buk+AOR/Adc-Adh Diagram of the path flow of an alcohol, ketone, enol or diol.

圖40為展示藉由各種生長點之用質體pMTL83159-phaB-thlA轉型之自產乙醇梭菌產生3-HB及1,3-BDO的圖。 Figure 40 is a graph showing the production of 3-HB and 1,3-BDO by C. autoethanogenans transformed with plasmid pMTL83159-phaB-thlA at various growth points.

圖41為展示藉由各種生長點之包括budA基因剔除及pMTL-HBD-ThlA之自產乙醇梭菌產生3-HB及1,3-BDO的圖。 Figure 41 is a graph showing the production of 3-HB and 1,3-BDO by C. autoethanogenans at various growth points including budA knockout and pMTL-HBD-ThlA.

圖42A為展示自產乙醇梭菌pMTL83159-phaB-thlA+pMTL82256醱酵中3-HB之產生的圖。圖42B為展示自產乙醇梭菌pMTL83159-phaB-thlA+pMTL82256-buk-ptb醱酵中3-HB之產生的圖。 Figure 42A is a graph showing the production of 3-HB in fermentation of C. ethanologenum pMTL83159-phaB-thlA+pMTL82256. Figure 42B is a graph showing the production of 3-HB in fermentation of Clostridium autoethanologenum pMTL83159-phaB-thlA+pMTL82256-buk-ptb.

圖43為展示硫酯酶基因剔除(△CAETHG_1524)、表現質體pMTL83156-phaB-thlA且含有及不含Ptb-Buk表現質體pMTL82256-buk-ptb的自產乙醇梭菌菌株中3-HB之產生的圖。 Figure 43 shows 3-HB in Clostridium autoethanogenum strains showing thioesterase gene knockout (ΔCAETHG_1524), expression plasmid pMTL83156-phaB-thlA and with and without Ptb-Buk expression plasmid pMTL82256-buk-ptb. The resulting graph.

圖44為展示表現質體pMTL82256-hbd-thlA(2pf)且含有及不含AOR過度表現質體pMTL83159-aor1(+aor1)之自產乙醇梭菌菌株中乙醇及1,3-BDO產生的圖。 Figure 44 is a graph showing ethanol and 1,3-BDO production in a C. autoethanogenum strain expressing plasmid pMTL82256-hbd-thlA(2pf) with and without AOR overexpression plasmid pMTL83159-aor1(+aor1) .

圖1及圖34-36之代謝路徑Metabolic pathways in Figure 1 and Figures 34-36

圖1及圖34-36為自受質產生如下各種酸、烯烴、酮、醛、醇及二醇產物之代謝路徑的圖,包含丙酮、異丙醇、異丁烯、3-羥基丁酸酯(R及S-異構體)、1,3-丁二醇、2-羥基異丁酸酯、己二酸、1,3-己二醇、2-甲基-2-丁醇、2-丁烯-1-醇、異戊酸酯及異戊醇。粗體箭頭指示可藉由Ptb-Buk催化之步驟。對於圖1及圖34-36中詳述之各步驟及酶促路徑,提供例示性酶。然而,一般技術者可已知其他適合酶。 Figures 1 and 34-36 are diagrams of metabolic pathways that produce the following various acids, alkenes, ketones, aldehydes, alcohols and diol products from substrates, including acetone, isopropanol, isobutylene, 3-hydroxybutyrate (R and S-isomer), 1,3-butanediol, 2-hydroxyisobutyrate, adipic acid, 1,3-hexanediol, 2-methyl-2-butanol, 2-butene -1-ol, isovalerate and isopentyl alcohol. Bold arrows indicate steps that can be catalyzed by Ptb-Buk. Exemplary enzymes are provided for each of the steps and enzymatic pathways detailed in Figure 1 and Figures 34-36. However, other suitable enzymes will be known to the person skilled in the art.

步驟1展示乙醯基-CoA向乙醯乙醯基-CoA之轉化。此步驟可藉由硫解酶(亦即乙醯基-CoA乙醯基轉移酶)(EC 2.3.1.9)催化。硫解酶可為例如來自丙酮丁醇梭菌(Clostridium acetobutylicum)之ThlA(WP_010966157.1)(SEQ ID NO:1)、來自鉤蟲貪銅菌(Cupriavidus necator)之PhaA(WP_013956452.1)(SEQ ID NO:2)、來自鉤蟲貪銅菌之BktB(WP_011615089.1)(SEQ ID NO:3)或來自大腸桿菌(Escherichia coli)之AtoB(NP_416728.1)(SEQ ID NO:4)。自產乙醇梭菌、永達爾梭菌(Clostridium ljungdahlii)及拉氏梭菌(Clostridium ragsdalei)對此步驟不具有已知天然活性。大腸桿菌對此步驟具有天然活性。 Step 1 demonstrates the conversion of acetyl-CoA to acetyl-acetyl-CoA. This step can be catalyzed by the enzyme thiolase, acetyl-CoA acetyltransferase (EC 2.3.1.9). The thiolase may be, for example, ThlA (WP_010966157.1) (SEQ ID NO: 1) from Clostridium acetobutylicum , PhaA (WP_013956452.1) (SEQ ID) from Cupriavidus necator NO: 2), BktB (WP_011615089.1) from Cupria hookworm (SEQ ID NO: 3) or AtoB (NP_416728.1) from Escherichia coli (SEQ ID NO: 4). Clostridium autoethanogenum, Clostridium ljungdahlii and Clostridium ragsdalei have no known natural activity for this step. E. coli is naturally active for this step.

步驟2展示乙醯乙醯基-CoA向乙醯乙酸酯之轉化。此步驟可藉由CoA-轉移酶(亦即乙醯基-CoA:乙醯乙醯基-CoA轉移酶)(EC 2.8.3.9)催化。CoA-轉移酶可為例如CtfAB,一種雜二聚體,其包括來自拜氏梭菌(Clostridium beijerinckii)之次單位CtfA及CtfB(CtfA,WP_012059996.1)(SEQ ID NO:5)(CtfB,WP_012059997.1)(SEQ ID NO:6)。此步驟亦可藉由硫酯酶(EC 3.1.2.20)催化。硫酯酶可為例如來自大腸桿菌之TesB(NP_414986.1)(SEQ ID NO:7)。此步驟亦可藉由例如來自自產乙醇梭菌或永達爾梭菌之推定硫酯酶催化。詳言之,已鑑別自產乙醇梭菌中之三種推定硫酯酶:(1)「硫酯酶1」(AGY74947.1;標註為棕櫚醯基-CoA水解酶;SEQ ID NO:8),(2)「硫酯酶2」(AGY75747.1;標註為4-羥苯甲醯基-CoA硫酯酶;SEQ ID NO:9),及(3)「硫酯酶3」(AGY75999.1;標註為推定硫酯酶;SEQ ID NO:10)。 亦已鑑別永達爾梭菌中之三種推定硫酯酶:(1)「硫酯酶1」(ADK15695.1;標註為預測醯基-CoA硫酯酶1;SEQ ID NO:11),(2)「硫酯酶2」(ADK16655.1;標註為預測硫酯酶;SEQ ID NO:12),及(3)「硫酯酶3」(ADK16959.1;標註為預測硫酯酶;SEQ ID NO:13)。此步驟亦可藉由磷酸丁醯基轉移酶(EC 2.3.1.19)+丁酸激酶(EC 2.7.2.7)催化。磷酸丁醯基轉移酶及丁酸激酶之例示性來源描述在本申請案他處。自產乙醇梭菌、永達爾梭菌及拉氏梭菌(或大腸桿菌)中之天然酶(諸如來自自產乙醇梭菌之硫酯酶)可催化此步驟且產生一定量之下游產物。然而,可能需要引入外源酶或過度表現內源酶來產生所要水準之下游產物。另外,在某些實施例中,可能需要向內源酶(諸如內源硫酯酶)中引入斷裂性突變來降低或去除與所引入Ptb-Buk之競爭。 Step 2 demonstrates the conversion of acetyl acetyl-CoA to acetyl acetate. This step can be catalyzed by CoA-transferase (i.e. acetyl-CoA: acetyl-acetyl-CoA transferase) (EC 2.8.3.9). The CoA-transferase may be, for example, CtfAB, a heterodimer including the subunits CtfA and CtfB from Clostridium beijerinckii (CtfA, WP_012059996.1) (SEQ ID NO: 5) (CtfB, WP_012059997 .1) (SEQ ID NO: 6). This step can also be catalyzed by thioesterases (EC 3.1.2.20). The thioesterase may be, for example, TesB (NP_414986.1) from E. coli (SEQ ID NO: 7). This step can also be catalyzed by putative thioesterases from, for example, Clostridium autoethanogenogenum or Clostridium yongdalae. Specifically, three putative thioesterases have been identified in C. autoethanologenum: (1) "Thioesterase 1"(AGY74947.1; annotated as palmitoyl-CoA hydrolase; SEQ ID NO: 8), (2) "Thioesterase 2"(AGY75747.1; labeled as 4-hydroxybenzyl-CoA thioesterase; SEQ ID NO: 9), and (3) "Thioesterase 3"(AGY75999.1; Annotated as putative thioesterase; SEQ ID NO: 10). Three putative thioesterases have also been identified in C. yongdahl: (1) "Thioesterase 1"(ADK15695.1; annotated as predicted acyl-CoA thioesterase 1; SEQ ID NO: 11), (2 ) "Thioesterase 2"(ADK16655.1; annotated as a predicted thioesterase; SEQ ID NO: 12), and (3) "Thioesterase 3"(ADK16959.1; annotated as a predicted thioesterase; SEQ ID NO: 13). This step can also be catalyzed by phosphate butyryl transferase (EC 2.3.1.19) + butyrate kinase (EC 2.7.2.7). Exemplary sources of phosphobutyltransferase and butyrate kinase are described elsewhere in this application. Natural enzymes in Clostridium autoethanogenogenum, Clostridium yongdahlii, and Clostridium larsonii (or E. coli), such as thioesterases from Clostridium autoethanogenogenum, can catalyze this step and produce certain amounts of downstream products. However, it may be necessary to introduce exogenous enzymes or overexpress endogenous enzymes to produce desired levels of downstream products. Additionally, in certain embodiments, it may be necessary to introduce disruptive mutations into endogenous enzymes (such as endogenous thioesterases) to reduce or eliminate competition with the introduced Ptb-Buk.

步驟3展示乙醯乙酸酯向丙酮之轉化。此步驟可藉由乙醯乙酸去羧酶(EC 4.1.1.4)催化。乙醯乙酸去羧酶可為例如來自拜氏梭菌之Adc(WP_012059998.1)(SEQ ID NO:14)。此步驟亦可藉由α-酮基異戊酸去羧酶(EC 4.1.1.74)催化。α-酮基異戊酸去羧酶可為例如來自雷特氏乳球菌(Lactococcus lactis)之KivD(SEQ ID NO:15)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。另外,大腸桿菌對此步驟不具有已知天然活性。罕見地,乙醯乙酸酯向丙酮之轉化可自發發生。然而,自發轉化高度低效且不太可能產生所要水準之下游產物。 Step 3 shows the conversion of acetyl acetate to acetone. This step can be catalyzed by acetoacetate decarboxylase (EC 4.1.1.4). The acetoacetate decarboxylase can be, for example, Adc (WP_012059998.1) from Clostridium beijerinckii (SEQ ID NO: 14). This step can also be catalyzed by α-ketoisovalerate decarboxylase (EC 4.1.1.74). The alpha-ketoisovalerate decarboxylase may be, for example, KivD from Lactococcus lactis (SEQ ID NO: 15). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. Additionally, E. coli has no known natural activity for this step. Rarely, the conversion of acetoacetate to acetone can occur spontaneously. However, spontaneous transformation is highly inefficient and unlikely to produce desired levels of downstream products.

步驟4展示丙酮向異丙醇之轉化。此步驟可藉由一級:二級醇去氫酶(EC 1.1.1.2)催化。一級:二級醇去氫酶 可為例如來自自產乙醇梭菌之SecAdh(AGY74782.1)(SEQ ID NO:16)、來自永達爾梭菌之SecAdh(ADK15544.1)(SEQ ID NO:17)、來自拉氏梭菌之SecAdh(WP_013239134.1)(SEQ ID NO:18)或來自拜氏梭菌之SecAdh(WP_026889046.1)(SEQ ID NO:19)。此步驟亦可藉由一級:二級醇去氫酶(EC 1.1.1.80)催化,諸如來自布氏嗜熱厭氧桿菌(Thermoanaerobacter brokii)之SecAdh(3FSR_A)(SEQ ID NO:20)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟具有天然活性(Köpke,應用與環境微生物學(Appl Environ Microbiol),80:3394-3403,2014)。然而,大腸桿菌對此步驟不具有已知天然活性。將自產乙醇梭菌、永達爾梭菌或拉氏梭菌中此酶之基因含量下調或基因剔除使得丙酮而非異丙醇產生且聚積(WO 2015/085015)。 Step 4 shows the conversion of acetone to isopropyl alcohol. This step can be catalyzed by primary:secondary alcohol dehydrogenase (EC 1.1.1.2). Primary: Secondary alcohol dehydrogenase can be, for example, SecAdh (AGY74782.1) (SEQ ID NO: 16) from Clostridium autoethanogenogenum, SecAdh (ADK15544.1) (SEQ ID NO: 17) from Clostridium yungdalae ), SecAdh from Clostridium lascheri (WP_013239134.1) (SEQ ID NO: 18) or SecAdh from Clostridium beijerinckii (WP_026889046.1) (SEQ ID NO: 19). This step can also be catalyzed by a primary:secondary alcohol dehydrogenase (EC 1.1.1.80), such as SecAdh (3FSR_A) from Thermoanaerobacter brokii (SEQ ID NO: 20). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii are naturally active in this step (Köpke, Appl Environ Microbiol , 80: 3394-3403, 2014). However, E. coli has no known natural activity for this step. Down-regulating or genetically deleting the gene content of this enzyme in Clostridium autoethanogenogenum, Clostridium yondahlii or Clostridium larsonii causes the production and accumulation of acetone instead of isopropyl alcohol (WO 2015/085015).

步驟5展示丙酮向3-羥基異戊酸酯之轉化。此步驟可藉由羥基異戊酸合成酶催化,諸如來自小家鼠(Mus musculus)之羥甲基戊二醯基-CoA合成酶(HMG-CoA合成酶)(EC 2.3.3.10)(SEQ ID NO:21)(US 2012/0110001)。羥甲基戊二醯基-CoA合成酶可經工程改造以改良活性。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 5 shows the conversion of acetone to 3-hydroxyisovalerate. This step can be catalyzed by a hydroxyisovalerate synthase, such as hydroxymethylglutaryl-CoA synthetase (HMG-CoA synthetase) from Mus musculus (EC 2.3.3.10) (SEQ ID NO: 21) (US 2012/0110001). Hydroxymethylglutaryl-CoA synthetase can be engineered to improve activity. Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟6展示3-羥基異戊酸酯向異丁烯(isobutylene/isobutene)之轉化。此步驟可藉由羥基異戊酸磷酸化酶/去羧酶催化。此步驟亦可藉由甲羥戊酸二磷酸去羧酶(羥基異戊酸去羧酶)(EC 4.1.1.33)催化。甲羥戊酸二磷酸去羧酶可為例如來自釀酒酵母(Saccharomyces cerevisiae)之 Mdd(CAA96324.1)(SEQ ID NO:22)或來自乾熱嗜酸菌(Picrophilus torridus)之Mdd(WP_011178157.1)(SEQ ID NO:23)(US 2011/0165644;van Leeuwen,應用微生物學與生物技術(Appl Microbiol Biotechnol),93:1377-1387,2012)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 6 shows the conversion of 3-hydroxyisovalerate to isobutylene/isobutene. This step can be catalyzed by hydroxyisovalerate phosphorylase/decarboxylase. This step can also be catalyzed by mevalonate diphosphate decarboxylase (hydroxyisovalerate decarboxylase) (EC 4.1.1.33). The mevalonate diphosphate decarboxylase may be, for example, Mdd (CAA96324.1) (SEQ ID NO: 22) from Saccharomyces cerevisiae or Mdd (WP_011178157.1) from Picrophilus torridus ) (SEQ ID NO: 23) (US 2011/0165644; van Leeuwen, Appl Microbiol Biotechnol , 93: 1377-1387, 2012). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟7展示丙酮向3-羥基異戊醯基-CoA之轉化。此步驟可藉由3-羥基異戊醯基-CoA合成酶催化。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 7 shows the conversion of acetone to 3-hydroxyisovaleryl-CoA. This step can be catalyzed by 3-hydroxyisovaleryl-CoA synthetase. Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟8展示3-羥基異戊醯基-CoA向3-羥基異戊酸酯之轉化。此步驟可藉由CoA-轉移酶(亦即乙醯基-CoA:乙醯乙醯基-CoA轉移酶)(EC 2.8.3.9)催化。CoA-轉移酶可為例如CtfAB,一種雜二聚體,其包括來自拜氏梭菌之次單位CtfA及CtfB(CtfA,WP_012059996.1)(SEQ ID NO:5)(CtfB,WP_012059997.1)(SEQ ID NO:6)。此步驟亦可藉由硫酯酶(EC 3.1.2.20)催化。硫酯酶可為例如來自大腸桿菌之TesB(NP_414986.1)(SEQ ID NO:7)。此步驟亦可藉由例如來自自產乙醇梭菌或永達爾梭菌之推定硫酯酶催化。詳言之,已鑑別自產乙醇梭菌中之三種推定硫酯酶:(1)「硫酯酶1」(AGY74947.1;標註為棕櫚醯基-CoA水解酶;SEQ ID NO:8),(2)「硫酯酶2」(AGY75747.1;標註為4-羥苯甲醯基-CoA硫酯酶;SEQ ID NO:9),及(3)「硫酯酶3」(AGY75999.1;標註為推定硫酯酶;SEQ ID NO:10)。亦已鑑別永達爾梭菌中之三種推定硫酯酶:(1)「硫酯酶1」(ADK15695.1;標註 為預測醯基-CoA硫酯酶1;SEQ ID NO:11),(2)「硫酯酶2」(ADK16655.1;標註為預測硫酯酶;SEQ ID NO:12),及(3)「硫酯酶3」(ADK16959.1;標註為預測硫酯酶;SEQ ID NO:13)。此步驟亦可藉由磷酸丁醯基轉移酶(EC 2.3.1.19)+丁酸激酶(EC 2.7.2.7)催化。磷酸丁醯基轉移酶及丁酸激酶之例示性來源描述在本申請案他處。自產乙醇梭菌、永達爾梭菌及拉氏梭菌(或大腸桿菌)中之天然酶(諸如來自自產乙醇梭菌之硫酯酶)可催化此步驟且產生一定量之下游產物。然而,可能需要引入外源酶或過度表現內源酶來產生所要水準之下游產物。另外,在某些實施例中,可能需要向內源酶(諸如內源硫酯酶)中引入斷裂性突變來降低或去除與所引入Ptb-Buk之競爭。 Step 8 demonstrates the conversion of 3-hydroxyisovaleryl-CoA to 3-hydroxyisovalerate. This step can be catalyzed by CoA-transferase (i.e. acetyl-CoA: acetyl-acetyl-CoA transferase) (EC 2.8.3.9). The CoA-transferase can be, for example, CtfAB, a heterodimer including the subunits CtfA and CtfB from Clostridium beijerinckii (CtfA, WP_012059996.1) (SEQ ID NO: 5) (CtfB, WP_012059997.1) ( SEQ ID NO: 6). This step can also be catalyzed by thioesterases (EC 3.1.2.20). The thioesterase may be, for example, TesB (NP_414986.1) from E. coli (SEQ ID NO: 7). This step can also be catalyzed by putative thioesterases from, for example, Clostridium autoethanogenogenum or Clostridium yongdalae. Specifically, three putative thioesterases have been identified in C. autoethanologenum: (1) "Thioesterase 1" (AGY74947.1; annotated as palmitoyl-CoA hydrolase; SEQ ID NO: 8), (2) "Thioesterase 2" (AGY75747.1; labeled as 4-hydroxybenzyl-CoA thioesterase; SEQ ID NO: 9), and (3) "Thioesterase 3" (AGY75999.1 ; Annotated as putative thioesterase; SEQ ID NO: 10). Three putative thioesterases have also been identified in C. yongdahl: (1) "Thioesterase 1" (ADK15695.1; annotated as predicted acyl-CoA thioesterase 1; SEQ ID NO: 11), (2 ) "Thioesterase 2" (ADK16655.1; annotated as a predicted thioesterase; SEQ ID NO: 12), and (3) "Thioesterase 3" (ADK16959.1; annotated as a predicted thioesterase; SEQ ID NO: 13). This step can also be catalyzed by phosphate butyryl transferase (EC 2.3.1.19) + butyrate kinase (EC 2.7.2.7). Exemplary sources of phosphobutyltransferase and butyrate kinase are described elsewhere in this application. Natural enzymes in Clostridium autoethanogenogenum, Clostridium yongdahlii, and Clostridium larsonii (or E. coli), such as thioesterases from Clostridium autoethanogenogenum, can catalyze this step and produce certain amounts of downstream products. However, it may be necessary to introduce exogenous enzymes or overexpress endogenous enzymes to produce desired levels of downstream products. Additionally, in certain embodiments, it may be necessary to introduce disruptive mutations into endogenous enzymes (such as endogenous thioesterases) to reduce or eliminate competition with the introduced Ptb-Buk.

步驟9展示乙醯基-CoA向3-甲基-2-側氧基戊酸酯之轉化。此步驟涵蓋參與異白胺酸生物合成路徑之多個酶促反應,所述路徑天然存在於多種細菌中,包含自產乙醇梭菌、永達爾梭菌及拉氏梭菌(及大腸桿菌)。參與乙醯基-CoA向3-甲基-2-側氧基戊酸酯之轉化的酶可包含甲基蘋果酸合成酶(EC 2.3.1.182)、3-異丙基蘋果酸去水酶(EC 4.2.1.35)、3-異丙基蘋果酸去氫酶(EC 1.1.1.85)、乙醯乳酸合成酶(EC 2.2.1.6)、酮醇酸還原異構酶(EC 1.1.1.86)及/或二羥酸去水酶(EC 4.2.1.9)。甲基蘋果酸合成酶可為例如來自自產乙醇梭菌之CimA(AGY76958.1)(SEQ ID NO:24)或來自詹氏甲烷球菌(Methanocaldococcus jannaschii)之CimA(NP_248395.1)(SEQ ID NO:25)。3-異丙基蘋果酸去水酶可為例如來自自產乙醇梭菌之LeuCD(WP_023162955.1, LeuC;AGY77204.1,LeuD)(分別為SEQ ID NO:26及27)或來自大腸桿菌之LeuCD(NP_414614.1,LeuC;NP_414613.1,LeuD)(分別為SEQ ID NO:28及29)。3-異丙基蘋果酸去氫酶可為例如來自自產乙醇梭菌之LeuB(WP_023162957.1)(SEQ ID NO:30)或來自大腸桿菌之LeuB(NP_414615.4)(SEQ ID NO:31)。乙醯乳酸合成酶可為例如來自自產乙醇梭菌之IlvBN(AGY74359.1,IlvB;AGY74635.1,IlvB;AGY74360.1,IlvN)(分別為SEQ ID NO:32、33及34)或來自大腸桿菌之IlvBN(NP_418127.1,IlvB;NP_418126.1,IlvN)(分別為SEQ ID NO:35及36)。酮醇酸還原異構酶可為例如來自自產乙醇梭菌之IlvC(WP_013238693.1)(SEQ ID NO:37)或來自大腸桿菌之IlvC(NP_418222.1)(SEQ ID NO:38)。二羥酸去水酶可為例如來自自產乙醇梭菌之IlvD(WP_013238694.1)(SEQ ID NO:39)或來自大腸桿菌之IlvD(YP_026248.1)(SEQ ID NO:40)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟具有天然活性。 Step 9 shows the conversion of acetyl-CoA to 3-methyl-2-pentoxyvalerate. This step encompasses multiple enzymatic reactions involved in the isoleucine biosynthetic pathway, which occurs naturally in a variety of bacteria, including Clostridium autoethanologenum, Clostridium yongdahlii, and Clostridium larsonii (and E. coli). Enzymes involved in the conversion of acetyl-CoA to 3-methyl-2-pentoxyvalerate may include methylmalate synthase (EC 2.3.1.182), 3-isopropylmalate dehydratase ( EC 4.2.1.35), 3-isopropylmalate dehydrogenase (EC 1.1.1.85), acetyl lactate synthase (EC 2.2.1.6), ketol acid reductoisomerase (EC 1.1.1.86) and/ or dihydroxyacid dehydratase (EC 4.2.1.9). The methylmalate synthase may be, for example, CimA (AGY76958.1) (SEQ ID NO: 24) from Clostridium autoethanogenogenum or CimA (NP_248395.1) (SEQ ID NO. :25). The 3-isopropylmalate dehydratase can be, for example, LeuCD (WP_023162955.1, LeuC; AGY77204.1, LeuD) from Clostridium autoethanogenogenum (SEQ ID NO: 26 and 27, respectively) or from E. coli LeuCD (NP_414614.1, LeuC; NP_414613.1, LeuD) (SEQ ID NO: 28 and 29, respectively). The 3-isopropylmalate dehydrogenase may be, for example, LeuB from Clostridium autoethanogenogenum (WP_023162957.1) (SEQ ID NO: 30) or LeuB from E. coli (NP_414615.4) (SEQ ID NO: 31 ). The acetyl lactate synthase can be, for example, IlvBN (AGY74359.1, IlvB; AGY74635.1, IlvB; AGY74360.1, IlvN) from Clostridium autoethanogenogens (SEQ ID NOs: 32, 33 and 34, respectively) or from IlvBN of E. coli (NP_418127.1, IlvB; NP_418126.1, IlvN) (SEQ ID NO: 35 and 36, respectively). The ketol acid reductoisomerase may be, for example, IlvC (WP_013238693.1) from Clostridium autoethanogenogenes (SEQ ID NO:37) or IlvC (NP_418222.1) (SEQ ID NO:38) from E. coli. The dihydroxyacid dehydratase may be, for example, IlvD (WP_013238694.1) from Clostridium autoethanogenogenes (SEQ ID NO: 39) or IlvD (YP_026248.1) from E. coli (SEQ ID NO: 40). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii are naturally active for this step.

步驟10展示3-甲基-2-側氧基戊酸酯向2-甲基丁醯基-CoA之轉化。此步驟可藉由酮基異戊酸氧化還原酶(EC 1.2.7.7)催化。酮基異戊酸氧化還原酶可為例如來自熱自養甲烷熱桿菌(Methanothermobacter thermautotrophicus)之VorABCD(WP_010876344.1,VorA;WP_010876343.1,VorB;WP_010876342.1,VorC;WP_010876341.1,VorD)(分別為SEQ ID NO:41-44)或來自強烈火球菌(Pyrococcus furiosus)之VorABCD(WP_011012106.1,VorA;WP_011012105.1, VorB;WP_011012108.1,VorC;WP_011012107.1,VorD)(分別為SEQ ID NO:45-48)。VorABCD為4-次單位酶。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 10 shows the conversion of 3-methyl-2-pentoxyvalerate to 2-methylbutyl-CoA. This step is catalyzed by ketoisovalerate oxidoreductase (EC 1.2.7.7). The ketoisovalerate oxidoreductase may be, for example, VorABCD from Methanothermobacter thermautotrophicus (WP_010876344.1, VorA; WP_010876343.1, VorB; WP_010876342.1, VorC; WP_010876341.1, VorD) ( SEQ ID NO: 41-44, respectively) or VorABCD from Pyrococcus furiosus (WP_011012106.1, VorA; WP_011012105.1, VorB; WP_011012108.1, VorC; WP_011012107.1, VorD) (respectively SEQ ID NO: 45-48). VorABCD is a 4-unit enzyme. Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟11展示2-甲基丁醯基-CoA向2-甲基巴豆醯基-CoA之轉化。此步驟可藉由2-甲基丁醯基-CoA去氫酶(EC 1.3.99.12)催化。2-甲基丁醯基-CoA去氫酶可為例如來自除蟲鏈黴菌(Streptomyces avermitilis)之AcdH(AAD44196.1或BAB69160.1)(SEQ ID NO:49)或來自天藍色鏈黴菌(Streptomyces coelicolor)之AcdH(AAD44195.1)(SEQ ID NO:50)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 11 demonstrates the conversion of 2-methylbutyl-CoA to 2-methylcrotonyl-CoA. This step is catalyzed by 2-methylbutyl-CoA dehydrogenase (EC 1.3.99.12). The 2-methylbutyl-CoA dehydrogenase may be, for example, AcdH (AAD44196.1 or BAB69160.1) (SEQ ID NO: 49) from Streptomyces avermitilis or from Streptomyces coelicolor AcdH (AAD44195.1) (SEQ ID NO: 50). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟12展示2-甲基巴豆醯基-CoA向3-羥基異戊醯基基-CoA之轉化。此步驟可藉由巴豆酸酶/3-羥基丁醯基-CoA去水酶(EC 4.2.1.55)催化。巴豆酸酶/3-羥基丁醯基-CoA去水酶可為例如來自拜氏梭菌之Crt(ABR34202.1)(SEQ ID NO:51)、來自丙酮丁醇梭菌之Crt(NP_349318.1)(SEQ ID NO:52)或來自黃色黏球菌(Myxococcus xanthus)之LiuC(WP_011553770.1)。此步驟亦可藉由巴豆醯基-CoA羧化酶-還原酶(EC 1.3.1.86)催化。巴豆醯基-CoA羧化酶-還原酶可為例如來自齒垢密螺旋體(Treponema denticola)之Ccr(NP_971211.1)(SEQ ID NO:53)。此步驟亦可藉由巴豆醯基-CoA還原酶(EC 1.3.1.44)催化。巴豆醯基-CoA還原酶可為例如來自纖細裸藻(Euglena gracilis)之Ter(AAW66853.1)(SEQ ID NO:54)。此步驟亦可藉由3-羥基丙醯基-CoA去水 酶(EC 4.2.1.116)催化。此3-羥基丙醯基-CoA去水酶可為例如來自勤奮金屬球菌(Metallosphaera sedula)之Msed_2001(WP_012021928.1)。此步驟亦可藉由烯醯基-CoA水合酶催化。此烯醯基-CoA水合酶(4.2.1.17)可為例如來自炭疽芽孢桿菌(Bacillus anthracis)之YngF(WP_000787371.1)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 12 demonstrates the conversion of 2-methylcrotonyl-CoA to 3-hydroxyisovaleryl-CoA. This step can be catalyzed by crotonase/3-hydroxybutyryl-CoA dehydratase (EC 4.2.1.55). The crotonase/3-hydroxybutyryl-CoA dehydratase may be, for example, Crt (ABR34202.1) from Clostridium beijerinckii (SEQ ID NO: 51), Crt (NP_349318.1) from Clostridium acetobutylicum (NP_349318.1) SEQ ID NO: 52) or LiuC (WP_011553770.1) from Myxococcus xanthus . This step can also be catalyzed by crotonyl-CoA carboxylase-reductase (EC 1.3.1.86). The crotonyl-CoA carboxylase-reductase may be, for example, Ccr (NP_971211.1) from Treponema denticola (SEQ ID NO: 53). This step can also be catalyzed by crotonyl-CoA reductase (EC 1.3.1.44). The crotonyl-CoA reductase may be, for example, Ter (AAW66853.1) from Euglena gracilis (SEQ ID NO: 54). This step can also be catalyzed by 3-hydroxypropyl-CoA dehydratase (EC 4.2.1.116). The 3-hydroxypropyl-CoA dehydratase may be, for example, Msed_2001 (WP_012021928.1) from Metallosphaera sedula . This step can also be catalyzed by enyl-CoA hydratase. This enyl-CoA hydratase (4.2.1.17) can be, for example, YngF (WP_000787371.1) from Bacillus anthracis . Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟13展示乙醯乙醯基-CoA向3-羥基丁醯基-CoA之轉化。此步驟可藉由3-羥基丁醯基-CoA去氫酶(EC 1.1.1.157)催化。3-羥基丁醯基-CoA去氫酶可為例如來自拜氏梭菌之Hbd(WP_011967675.1)(SEQ ID NO:55)、來自丙酮丁醇梭菌之Hbd(NP_349314.1)(SEQ ID NO:56)或來自克氏梭菌(Clostridium kluyveri)之Hbd1(WP_011989027.1)(SEQ ID NO:57)。此步驟亦可藉由乙醯乙醯基-CoA還原酶(EC 4.2.1.36)催化。乙醯乙醯基-CoA還原酶可為例如來自鉤蟲貪銅菌之PhaB(WP_010810131.1)(SEQ ID NO:58)。此步驟亦可藉由乙醯乙醯基-CoA水合酶(EC 4.2.1.119)催化。值得注意的是,PhaB為R特異性且Hbd為S特異性的。另外,來自克氏梭菌之Hbd1具有NADPH依賴性,且來自丙酮丁醇梭菌及拜氏梭菌之Hbd具有NADH依賴性。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 13 demonstrates the conversion of acetyl acetyl-CoA to 3-hydroxybutyl-CoA. This step is catalyzed by 3-hydroxybutyl-CoA dehydrogenase (EC 1.1.1.157). The 3-hydroxybutyryl-CoA dehydrogenase may be, for example, Hbd (WP_011967675.1) from Clostridium beijerinckii (SEQ ID NO: 55), Hbd (NP_349314.1) from Clostridium acetobutylicum (SEQ ID NO: 56) or Hbd1 (WP_011989027.1) from Clostridium kluyveri (SEQ ID NO: 57). This step can also be catalyzed by acetyl-CoA reductase (EC 4.2.1.36). The acetoacetyl-CoA reductase can be, for example, PhaB (WP_010810131.1) (SEQ ID NO: 58) from Cupriaphila ancylostoma. This step can also be catalyzed by acetyl-CoA hydratase (EC 4.2.1.119). Notably, PhaB is R-specific and Hbd is S-specific. In addition, Hbd1 derived from Clostridium cruzi is NADPH-dependent, and Hbd derived from Clostridium acetobutylicum and Clostridium beijerinckii is NADH-dependent. Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟14展示3-羥基丁醯基-CoA向3-羥基丁酸酯之轉化。此步驟可藉由硫酯酶(EC 3.1.2.20)催化。硫酯酶可為例如來自大腸桿菌之TesB(NP_414986.1)(SEQ ID NO: 7)。此步驟亦可藉由例如來自自產乙醇梭菌或永達爾梭菌之推定硫酯酶催化。詳言之,已鑑別自產乙醇梭菌中之三種推定硫酯酶:(1)「硫酯酶1」(AGY74947.1;標註為棕櫚醯基-CoA水解酶;SEQ ID NO:8),(2)「硫酯酶2」(AGY75747.1;標註為4-羥苯甲醯基-CoA硫酯酶;SEQ ID NO:9),及(3)「硫酯酶3」(AGY75999.1;標註為推定硫酯酶;SEQ ID NO:10)。亦已鑑別永達爾梭菌中之三種推定硫酯酶:(1)「硫酯酶1」(ADK15695.1;標註為預測醯基-CoA硫酯酶1;SEQ ID NO:11),(2)「硫酯酶2」(ADK16655.1;標註為預測硫酯酶;SEQ ID NO:12),及(3)「硫酯酶3」(ADK16959.1;標註為預測硫酯酶;SEQ ID NO:13)。此步驟亦可藉由磷酸丁醯基轉移酶(EC 2.3.1.19)+丁酸激酶(EC 2.7.2.7)催化。磷酸丁醯基轉移酶及丁酸激酶之例示性來源描述在本申請案他處。自產乙醇梭菌、永達爾梭菌及拉氏梭菌(或大腸桿菌)中之天然酶(諸如來自自產乙醇梭菌之硫酯酶)可催化此步驟且產生一定量之下游產物。然而,可能需要引入外源酶或過度表現內源酶來產生所要水準之下游產物。另外,在某些實施例中,可能需要向內源酶(諸如內源硫酯酶)中引入斷裂性突變來降低或去除與所引入Ptb-Buk之競爭。 Step 14 demonstrates the conversion of 3-hydroxybutyl-CoA to 3-hydroxybutyrate. This step can be catalyzed by thioesterase (EC 3.1.2.20). The thioesterase may be, for example, TesB (NP_414986.1) from E. coli (SEQ ID NO: 7). This step can also be catalyzed by putative thioesterases from, for example, Clostridium autoethanogenogenum or Clostridium yongdalae. Specifically, three putative thioesterases have been identified in C. autoethanologenum: (1) "Thioesterase 1" (AGY74947.1; annotated as palmitoyl-CoA hydrolase; SEQ ID NO: 8), (2) "Thioesterase 2" (AGY75747.1; labeled as 4-hydroxybenzyl-CoA thioesterase; SEQ ID NO: 9), and (3) "Thioesterase 3" (AGY75999.1 ; Annotated as putative thioesterase; SEQ ID NO: 10). Three putative thioesterases have also been identified in C. yongdahl: (1) "Thioesterase 1" (ADK15695.1; annotated as predicted acyl-CoA thioesterase 1; SEQ ID NO: 11), (2 ) "Thioesterase 2" (ADK16655.1; annotated as a predicted thioesterase; SEQ ID NO: 12), and (3) "Thioesterase 3" (ADK16959.1; annotated as a predicted thioesterase; SEQ ID NO: 13). This step can also be catalyzed by phosphate butyryl transferase (EC 2.3.1.19) + butyrate kinase (EC 2.7.2.7). Exemplary sources of phosphobutyltransferase and butyrate kinase are described elsewhere in this application. Natural enzymes in Clostridium autoethanogenogenum, Clostridium yongdahlii, and Clostridium larsonii (or E. coli), such as thioesterases from Clostridium autoethanogenogenum, can catalyze this step and produce certain amounts of downstream products. However, it may be necessary to introduce exogenous enzymes or overexpress endogenous enzymes to produce desired levels of downstream products. Additionally, in certain embodiments, it may be necessary to introduce disruptive mutations into endogenous enzymes (such as endogenous thioesterases) to reduce or eliminate competition with the introduced Ptb-Buk.

步驟15展示3-羥基丁酸酯向乙醯乙酸酯之轉化。此步驟可藉由3-羥基丁酸去氫酶(EC 1.1.1.30)催化。3-羥基丁酸去氫酶可為例如來自皮氏羅爾斯頓菌(Ralstonia pickettii)之Bdh1(BAE72684.1)(SEQ ID NO:60)或來自皮氏羅爾斯頓菌之Bdh2(BAE72685.1)(SEQ ID NO:61)。逆向反應,即乙醯乙酸酯向3-羥基丁酸酯轉化,可藉由不同 3-羥基丁酸去氫酶(EC 1.1.1.30)催化。舉例而言,乙醯乙酸酯向3-羥基丁酸酯之轉化可藉由來自自產乙醇梭菌之Bdh(AGY75962)(SEQ ID NO:62)催化。永達爾梭菌及拉氏梭菌很可能含有具有類似活性之酶。大腸桿菌對此步驟不具有已知天然活性。 Step 15 demonstrates the conversion of 3-hydroxybutyrate to acetyl acetate. This step is catalyzed by 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30). The 3-hydroxybutyrate dehydrogenase may be, for example, Bdh1 from Ralstonia pickettii (BAE72684.1) (SEQ ID NO: 60) or Bdh2 from Ralstonia pickettii (BAE72685 .1) (SEQ ID NO: 61). The reverse reaction, the conversion of acetoacetate to 3-hydroxybutyrate, can be catalyzed by different 3-hydroxybutyrate dehydrogenases (EC 1.1.1.30). For example, the conversion of acetoacetate to 3-hydroxybutyrate can be catalyzed by Bdh (AGY75962) (SEQ ID NO: 62) from Clostridium autoethanogenogenum. Clostridium yongdahlii and Clostridium larsonii likely contain enzymes with similar activity. E. coli has no known natural activity for this step.

步驟16展示3-羥基丁酸酯向3-羥基丁醛之轉化。此步驟可藉由醛:鐵氧化還原蛋白氧化還原酶(EC 1.2.7.5)催化。醛:鐵氧化還原蛋白氧化還原酶(AOR)可為例如來自自產乙醇梭菌之AOR(WP_013238665.1;WP_013238675.1)(分別為SEQ ID NO:63及64)或來自永達爾梭菌之AOR(ADK15073.1;ADK15083.1)(分別為SEQ ID NO:65及66)。在其他實施例中,醛:鐵氧化還原蛋白氧化還原酶可來自或可源自例如以下來源中之任一者,其序列可公開獲得: Step 16 demonstrates the conversion of 3-hydroxybutyrate to 3-hydroxybutyraldehyde. This step is catalyzed by aldehyde:ferredoxin oxidoreductase (EC 1.2.7.5). The aldehyde:ferredoxin oxidoreductase (AOR) may be, for example, the AOR from Clostridium autoethanogenogenum (WP_013238665.1; WP_013238675.1) (SEQ ID NO: 63 and 64, respectively) or from Clostridium yungdalae AOR (ADK15073.1; ADK15083.1) (SEQ ID NO: 65 and 66, respectively). In other embodiments, the aldehyde:ferredoxin oxidoreductase may be from or may be derived from, for example, any of the following sources, the sequences of which are publicly available:

AOR催化酸與經還原鐵氧化還原蛋白之反應,形成醛及經氧化鐵氧化還原蛋白。在產乙酸菌中,此反應可與均產生經還原鐵氧化還原蛋白之氧化CO(經由CO去氫酶,EC 1.2.7.4)或氫氣(經由鐵氧化還原蛋白依賴性氫化酶,EC 1.12.7.2或1.12.1.4)偶合(Köpke,《生物技術新見(Curr Opin Biotechnol)》,22:320-325,2011;Köpke,《美國科學院院報(PNAS USA)》,107:13087-13092,2010)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟具有天然活性。然而,自產乙醇梭菌、永達爾梭菌或拉氏梭菌中可能需要過度表現內源AOR或引入外源AOR來提高產物產量。或者,可將外源AOR引入不天然包括AOR之微生物(例如大腸桿菌)中。詳言之,共表現Ptb-Buk與AOR(及視情況共表現Adh)可使得此類微生物能夠產生新穎非天然產物。 AOR catalyzes the reaction of acid and reduced ferric redox protein to form aldehyde and oxidized ferric redox protein. In acetogens, this reaction can be combined with either oxidized CO (via CO dehydrogenase, EC 1.2.7.4) or hydrogen (via ferredoxin-dependent hydrogenase, EC 1.12.7.2) to produce reduced ferredoxin. or 1.12.1.4) coupling (Köpke, "Curr Opin Biotechnol", 22: 320-325, 2011; Köpke, " Proceedings of the National Academy of Sciences ( PNAS USA )", 107: 13087-13092, 2010) . Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii are naturally active for this step. However, overexpression of endogenous AOR or introduction of exogenous AOR may be required to increase product yield in C. autoethanologenum, C. yongdahlii, or C. larsonii. Alternatively, exogenous AORs can be introduced into microorganisms that do not naturally include AORs (eg, E. coli). In particular, co-expression of Ptb-Buk with AOR (and optionally Adh) may enable such microorganisms to produce novel unnatural products.

步驟17展示3-羥基丁醛向1,3-丁二醇之轉化。此步驟可藉由醇去氫酶(EC 1.1.1.1.或1.1.1.2)催化。醇去氫酶可將醛及NAD(P)H轉化為醇及NAD(P)。醇去氫酶可為例如來自自產乙醇梭菌(AGY76060.1)(SEQ ID NO:67)、永達爾梭菌(ADK17019.1)(SEQ ID NO:68)或拉氏梭菌之Adh;來自丙酮丁醇梭菌之BdhB(NP_349891.1)(SEQ ID NO:69);來自拜氏梭菌之Bdh(WP_041897187.1)(SEQ ID NO:70);來自永達爾梭菌之Bdh1(YP_003780648.1)(SEQ ID NO:71);來自自產乙醇梭菌之Bdh1(AGY76060.1)(SEQ ID NO:72);來自永達爾梭菌之Bdh2(YP_003782121.1)(SEQ ID NO:73)、來自自產乙醇梭菌之Bdh2(AGY74784.1)(SEQ ID NO:74)、來自丙酮丁醇梭菌之AdhE1(NP_149325.1)(SEQ ID NO: 75)、來自丙酮丁醇梭菌之AdhE2(NP_149199.1)(SEQ ID NO:76)、來自拜氏梭菌之AdhE(WP_041893626.1)(SEQ ID NO:77)、來自自產乙醇梭菌之AdhE1(WP_023163372.1)(SEQ ID NO:78)或來自自產乙醇梭菌之AdhE2(WP_023163373.1)(SEQ ID NO:79)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟具有天然活性。然而,自產乙醇梭菌、永達爾梭菌或拉氏梭菌中可能需要過度表現內源醇去氫酶或引入外源醇去氫酶來提高產物產量。大腸桿菌對此步驟很可能不具有天然活性。 Step 17 demonstrates the conversion of 3-hydroxybutyraldehyde to 1,3-butanediol. This step can be catalyzed by alcohol dehydrogenase (EC 1.1.1.1. or 1.1.1.2). Alcohol dehydrogenase converts aldehydes and NAD(P)H into alcohols and NAD(P). The alcohol dehydrogenase may be, for example, Adh from Clostridium autoethanogenogenum (AGY76060.1) (SEQ ID NO: 67), Clostridium yongdahl (ADK17019.1) (SEQ ID NO: 68), or Clostridium lashanii; BdhB from Clostridium acetobutylicum (NP_349891.1) (SEQ ID NO: 69); Bdh from Clostridium beijerinckii (WP_041897187.1) (SEQ ID NO: 70); Bdh1 from Clostridium yongdahl (YP_003780648 .1) (SEQ ID NO: 71); Bdh1 (AGY76060.1) from Clostridium autoethanogenogenum (SEQ ID NO: 72); Bdh2 (YP_003782121.1) (SEQ ID NO: 73) from Clostridium yungdalae ), Bdh2 (AGY74784.1) (SEQ ID NO: 74) from Clostridium autoethanogenogenum, AdhE1 (NP_149325.1) (SEQ ID NO: 75) from Clostridium acetobutylicum, Clostridium acetobutylicum AdhE2 (NP_149199.1) (SEQ ID NO: 76), AdhE (WP_041893626.1) (SEQ ID NO: 77) from Clostridium beijerinckii, AdhE1 (WP_023163372.1) from Clostridium autoethanogenogenum (SEQ ID NO: 78) or AdhE2 (WP_023163373.1) from Clostridium autoethanogenogenum (SEQ ID NO: 79). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii are naturally active for this step. However, overexpression of endogenous alcohol dehydrogenases or introduction of exogenous alcohol dehydrogenases may be required to increase product yield in C. autoethanologenum, C. jungdahl, or C. larsonii. E. coli is most likely not naturally active for this step.

步驟18展示3-羥基丁醯基-CoA向3-羥基丁醛之轉化。此步驟可藉由丁醛去氫酶(EC 1.2.1.57)催化。丁醛去氫酶可為例如來自糖乙酸多丁醇梭菌(Clostridium saccharoperbutylacetonicum)之Bld(AAP42563.1)(SEQ ID NO:80)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 18 demonstrates the conversion of 3-hydroxybutyryl-CoA to 3-hydroxybutyraldehyde. This step is catalyzed by butyraldehyde dehydrogenase (EC 1.2.1.57). The butyraldehyde dehydrogenase may be, for example, Bld (AAP42563.1) from Clostridium saccharoperbutylacetonicum (SEQ ID NO: 80). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟19展示3-羥基丁醯基-CoA向2-羥基異丁醯基-CoA之轉化。此步驟可藉由2-羥基異丁醯基-CoA變位酶(EC 5.4.99.-)催化。2-羥基異丁醯基-CoA變位酶可為例如來自三碳變形菌(Aquincola tertiaricarbonis)之HcmAB(AFK77668.1,大次單位;AFK77665.1,小次單位)(分別為SEQ ID NO:81及82)或來自Kyrpidia tusciae之HcmAB(WP_013074530.1,大次單位;WP_013074531.1,小次單位)(分別為SEQ ID NO:83及84)。儘管伴隨蛋白MeaB(AFK77667.1,三碳變形菌;WP_013074529.1,Kyrpidia tusciae)(分別為SEQ ID NO:85及86)不為HcmAB功能所 要,但已描述MeaB藉由再活化HcmAB改良HcmAB之活性(Yaueva,生物化學雜誌(J Biol Chem),287:15502-15511,2012)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 19 demonstrates the conversion of 3-hydroxybutyl-CoA to 2-hydroxyisobutyl-CoA. This step can be catalyzed by 2-hydroxyisobutyl-CoA mutase (EC 5.4.99.-). The 2-hydroxyisobutyl-CoA mutase may be, for example, HcmAB (AFK77668.1, major unit; AFK77665.1, minor unit) from Aquincola tertiaricarbonis (SEQ ID NO: 81 and AFK77665.1, respectively) 82) or HcmAB (WP_013074530.1, major subunit; WP_013074531.1, minor subunit) from Kyrpidia tusciae (SEQ ID NO: 83 and 84, respectively). Although the chaperone MeaB (AFK77667.1, three-carbon Proteobacteria; WP_013074529.1, Kyrpidia tusciae ) (SEQ ID NOs: 85 and 86, respectively) is not required for HcmAB function, MeaB has been described to modify HcmAB by reactivating HcmAB. Activity (Yaueva, J Biol Chem , 287: 15502-15511, 2012). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟20展示2-羥基異丁醯基-CoA向2-羥基異丁酸酯之轉化。此步驟可藉由磷酸丁醯基轉移酶(EC 2.3.1.19)+丁酸激酶(EC 2.7.2.7)催化。磷酸丁醯基轉移酶及丁酸激酶之例示性來源描述在本申請案他處。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 20 demonstrates the conversion of 2-hydroxyisobutyryl-CoA to 2-hydroxyisobutyrate. This step can be catalyzed by phosphate butyltransferase (EC 2.3.1.19) + butyrate kinase (EC 2.7.2.7). Exemplary sources of phosphobutyltransferase and butyrate kinase are described elsewhere in this application. Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟21展示乙醯基-CoA向丁二醯基-CoA之轉化。此步驟涵蓋參與還原TCA路徑中之多個酶促反應,所述路徑天然存在於多種細菌中,包含自產乙醇梭菌、永達爾梭菌及拉氏梭菌(及大腸桿菌)(Brown,《生物燃料生物技術(Biotechnol Biofuels)》,7:40,2014;美國專利9,297,026)。參與乙醯基-CoA向丁二醯基-CoA之轉化的酶可包含丙酮酸:鐵氧化還原蛋白氧化還原酶(PFOR)(EC 1.2.7.1)、丙酮酸羧化酶(PYC)(EC 6.4.1.1)、蘋果酸酶/蘋果酸去氫酶(EC 1.1.1.38、EC 1.1.1.40)、丙酮酸磷酸二激酶(PPDK)(EC:2.7.9.1)、PEP羧激酶(PCK)(EC 4.1.1.49)、反丁烯二酸水合酶/反丁烯二酸酶(EC 4.2.1.2)、反丁烯二酸還原酶(EC 1.3.5.1)/丁二酸去氫酶(EC 1.3.5.4)及丁二醯基-CoA合成酶(EC 6.2.1.5)。丙酮酸:鐵氧化還原蛋白氧化還原酶可例如來自自產乙醇梭菌(AGY75153,AGY77232)或大腸桿菌(NP_415896)。丙酮酸羧化酶可例如來自自產乙醇梭菌 (AGY75817)。蘋果酸酶/蘋果酸去氫酶可例如來自自產乙醇梭菌(AGY76687)或大腸桿菌(NP_416714、NP_417703)。丙酮酸磷酸二激酶(PPDK)可例如來自自產乙醇梭菌(AGY76274、AGY77114)。PEP羧激酶(PCK)可例如來自自產乙醇梭菌(AGY76928)或大腸桿菌(NP_417862)。反丁烯二酸水合酶/反丁烯二酸酶可例如來自自產乙醇梭菌(AGY76121、AGY76122)或大腸桿菌(NP_416128、NP_416129、NP_418546)。反丁烯二酸還原酶/丁二酸去氫酶可例如來自自產乙醇梭菌(AGY74573、AGY74575、AGY75257、AGY77166)或大腸桿菌(NP_415249、NP_415250、NP_415251、NP_415252、NP_418575、NP_418576、NP_418577、NP_418578)。丁二醯基-CoA合成酶可例如來自大腸桿菌(NP_415256、NP_415257)。 Step 21 shows the conversion of acetyl-CoA to succinyl-CoA. This step encompasses multiple enzymatic reactions involved in the TCA-reducing pathway that occurs naturally in a variety of bacteria, including Clostridium autoethanologenum, Clostridium yongdalae, and Clostridium larsonii (and E. coli) (Brown, " Biotechnol Biofuels , 7: 40, 2014; U.S. Patent 9,297,026). Enzymes involved in the conversion of acetyl-CoA to succinyl-CoA may include pyruvate: ferredoxin oxidoreductase (PFOR) (EC 1.2.7.1), pyruvate carboxylase (PYC) (EC 6.4 .1.1), malic enzyme/malate dehydrogenase (EC 1.1.1.38, EC 1.1.1.40), pyruvate phosphate dikinase (PPDK) (EC: 2.7.9.1), PEP carboxykinase (PCK) (EC 4.1 .1.49), fumarate hydratase/fumarase (EC 4.2.1.2), fumarate reductase (EC 1.3.5.1)/succinate dehydrogenase (EC 1.3.5.4 ) and succinyl-CoA synthetase (EC 6.2.1.5). The pyruvate:ferredoxin oxidoreductase can be from, for example, Clostridium autoethanogenans (AGY75153, AGY77232) or E. coli (NP_415896). Pyruvate carboxylase may, for example, be from Clostridium autoethanogenogenum (AGY75817). Malic enzyme/malate dehydrogenase may be derived, for example, from Clostridium autoethanologenum (AGY76687) or E. coli (NP_416714, NP_417703). Pyruvate phosphodikinase (PPDK) can be derived, for example, from Clostridium autoethanogenogenum (AGY76274, AGY77114). PEP carboxykinase (PCK) can be derived, for example, from Clostridium autoethanogenogenum (AGY76928) or E. coli (NP_417862). The fumarate hydratase/fumarase may for example be from Clostridium autoethanogenans (AGY76121, AGY76122) or E. coli (NP_416128, NP_416129, NP_418546). Fumarate reductase/succinate dehydrogenase may be derived, for example, from Clostridium autoethanogenans (AGY74573, AGY74575, AGY75257, AGY77166) or E. coli (NP_415249, NP_415250, NP_415251, NP_415252, NP_418575, NP_418576, NP_418577, NP_418578 ). Succinyl-CoA synthetase may, for example, be from E. coli (NP_415256, NP_415257).

步驟22展示乙醯基-CoA及丁二醯基-CoA向3-側氧基-己二醯基-CoA之轉化。此步驟可藉由β-酮基己二醯基-CoA硫解酶(EC 2.3.1.16)催化。酮基異戊酸酯氧化還原酶可為例如來自大腸桿菌之PaaJ(WP_001206190.1)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 22 shows the conversion of acetyl-CoA and succinyl-CoA to 3-side oxy-adipyl-CoA. This step can be catalyzed by β-ketoadipyl-CoA thiolase (EC 2.3.1.16). The ketoisovalerate oxidoreductase may be, for example, PaaJ from E. coli (WP_001206190.1). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟23展示3-側氧基-己二醯基-CoA向3-羥基己二醯基-CoA之轉化。此步驟可藉由3-羥基丁醯基-CoA去氫酶(EC 1.1.1.157)或乙醯乙醯基-CoA水合酶(EC 4.2.1.119)催化。3-羥基丁醯基-CoA去氫酶或乙醯乙醯基-CoA水合酶可為例如來自拜氏梭菌之Hbd(WP_011967675.1)(SEQ ID NO:55)、來自丙酮丁醇梭菌之Hbd(NP_349314.1)(SEQ ID NO: 56)、來自克氏梭菌之Hbd1(WP_011989027.1)(SEQ ID NO:57)或來自鉤蟲貪銅菌之PaaH1(WP_010814882.1)。值得注意的是,PhaB為R特異性的且Hbd為S特異性的。另外,來自克氏梭菌之Hbd1具有NADPH依賴性且來自丙酮丁醇梭菌及拜氏梭菌之Hbd具有NADH依賴性。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 23 demonstrates the conversion of 3-side oxy-adipyl-CoA to 3-hydroxyadipyl-CoA. This step can be catalyzed by 3-hydroxybutyl-CoA dehydrogenase (EC 1.1.1.157) or acetyl-CoA hydratase (EC 4.2.1.119). The 3-hydroxybutyryl-CoA dehydrogenase or acetoacetyl-CoA hydratase may be, for example, Hbd from Clostridium beijerinckii (WP_011967675.1) (SEQ ID NO: 55), Hbd from Clostridium acetobutylicum (NP_349314.1) (SEQ ID NO: 56), Hbd1 (WP_011989027.1) (SEQ ID NO: 57) from Clostridium cruzi or PaaH1 (WP_010814882.1) from Cupriaphila hookworm. Notably, PhaB is R-specific and Hbd is S-specific. In addition, Hbd1 derived from Clostridium cruzi is NADPH-dependent and Hbd derived from Clostridium acetobutylicum and Clostridium beijerinckii is NADH-dependent. Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟24展示羥基己二醯基-CoA向2,3-去氫己二醯基-CoA之轉化。此步驟可藉由烯醯基-CoA水合酶(EC:4.2.1.17)或烯醯基-CoA還原酶(EC:1.3.1.38)催化。烯醯基-CoA水合酶或烯醯基-CoA還原酶可為例如來自丙酮丁醇梭菌之Crt(NP_349318.1)或來自豚鼠氣單胞菌(Aeromonas caviae)之PhaJ(032472)(Seq.ID No.52)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 24 shows the conversion of hydroxyadipate-CoA to 2,3-dehydroadipate-CoA. This step can be catalyzed by enyl-CoA hydratase (EC: 4.2.1.17) or enyl-CoA reductase (EC: 1.3.1.38). The enyl-CoA hydratase or enyl-CoA reductase may be, for example, Crt (NP_349318.1) from Clostridium acetobutylicum or PhaJ (032472) from Aeromonas caviae (Seq. ID No.52). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟25展示2,3-去氫己二醯基-CoA向己二醯基-CoA之轉化。此步驟可藉由反-2-烯醯基-CoA還原酶(EC 1.3.8.1、EC 1.3.1.86、EC 1.3.1.85、EC 1.3.1.44)催化。反-2-烯醯基-CoA還原酶可為例如來自丙酮丁醇梭菌之Bcd(NP_349317.1),其與電子黃素蛋白EtfAB(NP_349315、NP_349316)形成複合物;來自山丘鏈黴菌(Streptomyces collinus)之Ccr(AAA92890);來自類球紅細菌(Rhodobacter sphaeroides)之Ccr(YP_354044.1);來自齒垢密螺旋體之Ter(NP_971211.1)或來自纖細裸藻之Ter(AY741582.1)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知 天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 25 demonstrates the conversion of 2,3-dehydrohexanediyl-CoA to hexadecyl-CoA. This step can be catalyzed by trans-2-enyl-CoA reductase (EC 1.3.8.1, EC 1.3.1.86, EC 1.3.1.85, EC 1.3.1.44). Trans-2-enyl-CoA reductase can be, for example, Bcd (NP_349317.1) from Clostridium acetobutylicum, which forms a complex with the electron flavoprotein EtfAB (NP_349315, NP_349316); Ccr (AAA92890) from Streptomyces collinus; Ccr (YP_354044.1) from Rhodobacter sphaeroides; Ter (NP_971211.1) from Treponema denticola or Ter (AY741582.1) from Euglena gracilis . Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟26展示己二醯基-CoA向己二酸之轉化。此步驟可藉由磷酸丁醯基轉移酶(EC 2.3.1.19)+丁酸激酶(EC 2.7.2.7)催化。磷酸丁醯基轉移酶及丁酸激酶之例示性來源描述在本申請案他處。自產乙醇梭菌、永達爾梭菌及拉氏梭菌(或大腸桿菌)中之天然酶(諸如來自自產乙醇梭菌之硫酯酶)可催化此步驟且產生一定量之下游產物。然而,可能需要引入外源酶或過度表現內源酶來產生所要水準之下游產物。另外,在某些實施例中,可能需要向內源酶(諸如內源硫酯酶)中引入斷裂性突變來降低或去除與所引入Ptb-Buk之競爭。 Step 26 shows the conversion of adipyl-CoA to adipic acid. This step can be catalyzed by phosphate butyltransferase (EC 2.3.1.19) + butyrate kinase (EC 2.7.2.7). Exemplary sources of phosphobutyltransferase and butyrate kinase are described elsewhere in this application. Natural enzymes in Clostridium autoethanogenogenum, Clostridium yongdahlii, and Clostridium larsonii (or E. coli), such as thioesterases from Clostridium autoethanogenogenum, can catalyze this step and produce certain amounts of downstream products. However, it may be necessary to introduce exogenous enzymes or overexpress endogenous enzymes to produce desired levels of downstream products. Additionally, in certain embodiments, it may be necessary to introduce disruptive mutations into endogenous enzymes (such as endogenous thioesterases) to reduce or eliminate competition with the introduced Ptb-Buk.

步驟27展示3-羥基丁醯基-CoA向巴豆醯基-CoA之轉化。此步驟可藉由巴豆醯基-CoA水合酶(巴豆酸酶)(EC 4.2.1.17)或巴豆醯基-CoA還原酶(EC 1.3.1.38)催化。巴豆醯基-CoA水合酶(巴豆酸酶)或巴豆醯基-CoA還原酶可為例如來自丙酮丁醇梭菌之Crt(NP_349318.1)(SEQ ID NO:52)或來自豚鼠氣單胞菌之PhaJ(O32472)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 27 demonstrates the conversion of 3-hydroxybutyl-CoA to crotonyl-CoA. This step can be catalyzed by crotonyl-CoA hydratase (crotonase) (EC 4.2.1.17) or crotonyl-CoA reductase (EC 1.3.1.38). The crotonyl-CoA hydratase (crotonase) or crotonyl-CoA reductase may be, for example, Crt (NP_349318.1) (SEQ ID NO: 52) from Clostridium acetobutylicum or from Aeromonas caviae of PhaJ(O32472). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟28展示巴豆醯基-CoA向巴豆酸酯之轉化。此步驟可藉由磷酸丁醯基轉移酶(EC 2.3.1.19)+丁酸激酶(EC 2.7.2.7)催化。磷酸丁醯基轉移酶及丁酸激酶之例示性來源描述在本申請案他處。自產乙醇梭菌、永達爾梭菌及拉氏梭菌(或大腸桿菌)中之天然酶(諸如來自自產乙醇梭菌之硫酯酶)可催化此步驟且產生一定量之下游產物。然而,可能 需要引入外源酶或過度表現內源酶來產生所要水準之下游產物。另外,在某些實施例中,可能需要向內源酶(諸如內源硫酯酶)中引入斷裂性突變來降低或去除與所引入Ptb-Buk之競爭。 Step 28 demonstrates the conversion of crotonyl-CoA to crotonate. This step can be catalyzed by phosphate butyltransferase (EC 2.3.1.19) + butyrate kinase (EC 2.7.2.7). Exemplary sources of phosphobutyltransferase and butyrate kinase are described elsewhere in this application. Natural enzymes in Clostridium autoethanogenogenum, Clostridium yongdahlii, and Clostridium larsonii (or E. coli), such as thioesterases from Clostridium autoethanogenogenum, can catalyze this step and produce certain amounts of downstream products. However, it may be necessary to introduce exogenous enzymes or overexpress endogenous enzymes to produce desired levels of downstream products. Additionally, in certain embodiments, it may be necessary to introduce disruptive mutations into endogenous enzymes (such as endogenous thioesterases) to reduce or eliminate competition with the introduced Ptb-Buk.

步驟29展示巴豆酸酯向巴豆醛之轉化。此步驟可藉由醛:鐵氧化還原蛋白氧化還原酶(EC 1.2.7.5)催化。醛:鐵氧化還原蛋白氧化還原酶之例示性來源描述在本申請案他處。AOR催化酸與經還原鐵氧化還原蛋白之反應,形成醛及經氧化鐵氧化還原蛋白。在產乙酸菌中,此反應可與均產生經還原鐵氧化還原蛋白之氧化CO(經由CO去氫酶,EC 1.2.7.4)或氫氣(經由鐵氧化還原蛋白依賴性氫化酶,EC 1.12.7.2或1.12.1.4)偶合(Köpke,《生物技術新見》,22:320-325,2011;Köpke,《美國科學院院報》,107:13087-13092,2010)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟具有天然活性。然而,自產乙醇梭菌、永達爾梭菌或拉氏梭菌中可能需要過度表現內源AOR或引入外源AOR來提高產物產量。強烈火球菌之AOR已展現轉化巴豆醛及巴豆酸酯之活性(Loes,細菌學雜誌(J Bacteriol),187:7056-7061,2005)。或者,可將外源AOR引入不天然包括AOR之微生物(例如大腸桿菌)中。詳言之,共表現Ptb-Buk與AOR(及視情況共表現Adh)可使得此類微生物能夠產生新穎非天然產物。 Step 29 shows the conversion of crotonate to crotonaldehyde. This step is catalyzed by aldehyde:ferredoxin oxidoreductase (EC 1.2.7.5). Aldehydes: Exemplary sources of ferredoxin oxidoreductases are described elsewhere in this application. AOR catalyzes the reaction of acid and reduced ferric redox protein to form aldehyde and oxidized ferric redox protein. In acetogens, this reaction can be combined with either oxidized CO (via CO dehydrogenase, EC 1.2.7.4) or hydrogen (via ferredoxin-dependent hydrogenase, EC 1.12.7.2) to produce reduced ferredoxin. or 1.12.1.4) coupling (Köpke, "New Opinions in Biotechnology", 22: 320-325, 2011; Köpke, " Proceedings of the National Academy of Sciences , 107: 13087-13092, 2010"). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii are naturally active for this step. However, overexpression of endogenous AOR or introduction of exogenous AOR may be required to increase product yield in C. autoethanologenum, C. yongdahlii, or C. larsonii. The AOR of Pyrococcus furiosus has demonstrated activity in converting crotonaldehyde and crotonate (Loes, J Bacteriol , 187: 7056-7061, 2005). Alternatively, exogenous AORs can be introduced into microorganisms that do not naturally include AORs (eg, E. coli). In particular, co-expression of Ptb-Buk with AOR (and optionally Adh) may enable such microorganisms to produce novel unnatural products.

步驟30展示巴豆醛向2-丁烯-1-醇之轉化。此步驟可藉由醇去氫酶(EC 1.1.1.1.或1.1.1.2)催化。醇去氫酶可將醛及NAD(P)H轉化為醇及NAD(P)。醇去氫酶可為例如來自自產乙醇梭菌(AGY76060.1)(SEQ ID NO:67)、永達 爾梭菌(ADK17019.1)(SEQ ID NO:68)或拉氏梭菌之Adh;來自丙酮丁醇梭菌之BdhB(NP_349891.1)(SEQ ID NO:69);來自拜氏梭菌之Bdh(WP_041897187.1)(SEQ ID NO:70);來自永達爾梭菌之Bdh1(YP_003780648.1)(SEQ ID NO:71);來自自產乙醇梭菌之Bdh1(AGY76060.1)(SEQ ID NO:72);來自永達爾梭菌之Bdh2(YP_003782121.1)(SEQ ID NO:73)、來自自產乙醇梭菌之Bdh2(AGY74784.1)(SEQ ID NO:74)、來自丙酮丁醇梭菌之AdhE1(NP_149325.1)(SEQ ID NO:75)、來自丙酮丁醇梭菌之AdhE2(NP_149199.1)(SEQ ID NO:76)、來自拜氏梭菌之AdhE(WP_041893626.1)(SEQ ID NO:77)、來自自產乙醇梭菌之AdhE1(WP_023163372.1)(SEQ ID NO:78)或來自自產乙醇梭菌之AdhE2(WP_023163373.1)(SEQ ID NO:79)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟具有天然活性。然而,自產乙醇梭菌、永達爾梭菌或拉氏梭菌中可能需要過度表現內源醇去氫酶或引入外源醇去氫酶來提高產物產量。大腸桿菌對此步驟很可能不具有天然活性。 Step 30 shows the conversion of crotonaldehyde to 2-buten-1-ol. This step can be catalyzed by alcohol dehydrogenase (EC 1.1.1.1. or 1.1.1.2). Alcohol dehydrogenase converts aldehydes and NAD(P)H into alcohols and NAD(P). The alcohol dehydrogenase may be, for example, Adh from Clostridium autoethanogenogenum (AGY76060.1) (SEQ ID NO: 67), Clostridium yongdahl (ADK17019.1) (SEQ ID NO: 68), or Clostridium lashanii; BdhB from Clostridium acetobutylicum (NP_349891.1) (SEQ ID NO: 69); Bdh from Clostridium beijerinckii (WP_041897187.1) (SEQ ID NO: 70); Bdh1 from Clostridium yongdahl (YP_003780648 .1) (SEQ ID NO: 71); Bdh1 (AGY76060.1) from Clostridium autoethanogenogenum (SEQ ID NO: 72); Bdh2 (YP_003782121.1) (SEQ ID NO: 73) from Clostridium yungdalae ), Bdh2 (AGY74784.1) (SEQ ID NO: 74) from Clostridium autoethanogenogenum, AdhE1 (NP_149325.1) (SEQ ID NO: 75) from Clostridium acetobutylicum, Clostridium acetobutylicum AdhE2 (NP_149199.1) (SEQ ID NO: 76), AdhE (WP_041893626.1) (SEQ ID NO: 77) from Clostridium beijerinckii, AdhE1 (WP_023163372.1) from Clostridium autoethanogenogenum (SEQ ID NO: 78) or AdhE2 (WP_023163373.1) from Clostridium autoethanogenogenum (SEQ ID NO: 79). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii are naturally active for this step. However, overexpression of endogenous alcohol dehydrogenases or introduction of exogenous alcohol dehydrogenases may be required to increase product yield in C. autoethanologenum, C. jungdahl, or C. larsonii. E. coli is most likely not naturally active for this step.

步驟31展示巴豆醯基-CoA向丁醯基-CoA之轉化。此步驟可藉由丁醯基-CoA去氫酶或反-2-烯醯基-CoA還原酶(EC 1.3.8.1、EC 1.3.1.86、EC 1.3.1.85、EC 1.3.1.44)催化。丁醯基-CoA去氫酶或反-2-烯醯基-CoA還原酶可為例如來自丙酮丁醇梭菌之Bcd(NP_349317.1),其與電子黃素蛋白EtfAB(NP_349315、NP_349316)形成複合物;來自山丘鏈黴菌之Ccr(AAA92890);來自類球紅細菌之Ccr(YP_354044.1);來自齒垢密螺旋體之Ter(NP_971211.1); 或來自纖細裸藻之Ter(AY741582.1)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 31 shows the conversion of crotonyl-CoA to butyl-CoA. This step can be catalyzed by butyl-CoA dehydrogenase or trans-2-enyl-CoA reductase (EC 1.3.8.1, EC 1.3.1.86, EC 1.3.1.85, EC 1.3.1.44). Butyl-CoA dehydrogenase or trans-2-enyl-CoA reductase can be, for example, Bcd from Clostridium acetobutylicum (NP_349317.1), which forms a complex with the electron flavoprotein EtfAB (NP_349315, NP_349316) ; Ccr from Streptomyces capilans (AAA92890); Ccr from Rhodobacter sphaeroides (YP_354044.1); Ter (NP_971211.1) from Treponema denticola; or Ter (AY741582.1) from Euglena gracilis . Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟32展示丁醯基-CoA向乙醯丁醯基-CoA之轉化。此步驟可藉由硫解酶或醯基-CoA乙醯基轉移酶(EC 2.3.1.9)催化。硫解酶可為例如來自丙酮丁醇梭菌之ThlA(WP_010966157.1)(SEQ ID NO:1)、來自克氏梭菌之ThlA1(EDK35681)、來自克氏梭菌之ThlA2(EDK35682)、來自克氏梭菌之ThlA3(EDK35683)、來自鉤蟲貪銅菌之PhaA(WP_013956452.1)(SEQ ID NO:2)、來自鉤蟲貪銅菌之BktB(WP_011615089.1)(SEQ ID NO:3)或來自大腸桿菌之AtoB(NP_416728.1)(SEQ ID NO:4)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟具有天然活性。 Step 32 shows the conversion of butyl-CoA to acetyl-butyl-CoA. This step can be catalyzed by thiolase or acyl-CoA acetyltransferase (EC 2.3.1.9). The thiolase may be, for example, ThlA from Clostridium acetobutylicum (WP_010966157.1) (SEQ ID NO: 1), ThlA1 from Clostridium kludii (EDK35681), ThlA2 from Clostridium kludii (EDK35682), ThlA3 (EDK35683) from Clostridium cruzi, PhaA (WP_013956452.1) from Cupria ancylostoma (SEQ ID NO: 2), BktB (WP_011615089.1) (SEQ ID NO: 3) from Cupria ancytosoma or AtoB (NP_416728.1) from E. coli (SEQ ID NO: 4). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli is naturally active for this step.

步驟33展示乙醯丁醯基-CoA向乙醯丁酸酯之轉化。此步驟可藉由磷酸丁醯基轉移酶(EC 2.3.1.19)+丁酸激酶(EC 2.7.2.7)催化。磷酸丁醯基轉移酶及丁酸激酶之例示性來源描述在本申請案他處。自產乙醇梭菌、永達爾梭菌及拉氏梭菌(或大腸桿菌)中之天然酶(諸如來自自產乙醇梭菌之硫酯酶)可催化此步驟且產生一定量之下游產物。然而,可能需要引入外源酶或過度表現內源酶來產生所要水準之下游產物。另外,在某些實施例中,可能需要向內源酶(諸如內源硫酯酶)中引入斷裂性突變來降低或去除與所引入Ptb-Buk之競爭。 Step 33 shows the conversion of acetylbutyryl-CoA to acetylbutyrate. This step can be catalyzed by phosphate butyltransferase (EC 2.3.1.19) + butyrate kinase (EC 2.7.2.7). Exemplary sources of phosphobutyltransferase and butyrate kinase are described elsewhere in this application. Natural enzymes in Clostridium autoethanogenogenum, Clostridium yongdahlii, and Clostridium larsonii (or E. coli), such as thioesterases from Clostridium autoethanogenogenum, can catalyze this step and produce certain amounts of downstream products. However, it may be necessary to introduce exogenous enzymes or overexpress endogenous enzymes to produce desired levels of downstream products. Additionally, in certain embodiments, it may be necessary to introduce disruptive mutations into endogenous enzymes (such as endogenous thioesterases) to reduce or eliminate competition with the introduced Ptb-Buk.

步驟34展示乙醯丁酸酯向乙醯基丙酮之轉化。 此步驟可藉由乙醯乙酸去羧酶(EC 4.1.1.4)催化。乙醯乙酸去羧酶可為例如來自拜氏梭菌之Adc(WP_012059998.1)(SEQ ID NO:14)。此步驟亦可藉由α-酮基異戊酸去羧酶(EC 4.1.1.74)催化。α-酮基異戊酸去羧酶可為例如來自雷特氏乳球菌之KivD(SEQ ID NO:15)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。此外,大腸桿菌對此步驟不具有已知天然活性。罕見地,乙醯乙酸酯向丙酮之轉化可自發發生。然而,自發轉化高度低效且不太可能產生所要水準之下游產物。 Step 34 shows the conversion of acetylbutyrate to acetylacetone. This step can be catalyzed by acetoacetate decarboxylase (EC 4.1.1.4). The acetoacetate decarboxylase can be, for example, Adc (WP_012059998.1) from Clostridium beijerinckii (SEQ ID NO: 14). This step can also be catalyzed by α-ketoisovalerate decarboxylase (EC 4.1.1.74). The alpha-ketoisovalerate decarboxylase may be, for example, KivD from Lactococcus reuteri (SEQ ID NO: 15). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. Furthermore, E. coli has no known natural activity for this step. Rarely, the conversion of acetoacetate to acetone can occur spontaneously. However, spontaneous transformation is highly inefficient and unlikely to produce desired levels of downstream products.

步驟35展示乙醯基丙酮向3-甲基-2-丁醇之轉化。此步驟可藉由一級:二級醇去氫酶(EC 1.1.1.2)催化。一級:二級醇去氫酶可為例如來自自產乙醇梭菌之SecAdh(AGY74782.1)(SEQ ID NO:16)、來自永達爾梭菌之SecAdh(ADK15544.1)(SEQ ID NO:17)、來自拉氏梭菌之SecAdh(WP_013239134.1)(SEQ ID NO:18)或來自拜氏梭菌之SecAdh(WP_026889046.1)(SEQ ID NO:19)。此步驟亦可藉由一級:二級醇去氫酶(EC 1.1.1.80)催化,諸如來自布氏嗜熱厭氧桿菌之SecAdh(3FSR_A)(SEQ ID NO:20)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟具有天然活性(Köpke,《應用與環境微生物學(Appl Environ Microbiol)》,80:3394-3403,2014)。然而,大腸桿菌對此步驟不具有已知天然活性。將自產乙醇梭菌、永達爾梭菌或拉氏梭菌中此酶之基因含量下調或基因剔除使得乙醯基丙酮而非3-甲基-2-丁醇產生且聚積(WO 2015/085015)。 Step 35 shows the conversion of acetylacetone to 3-methyl-2-butanol. This step can be catalyzed by primary:secondary alcohol dehydrogenase (EC 1.1.1.2). Primary: Secondary alcohol dehydrogenase can be, for example, SecAdh (AGY74782.1) (SEQ ID NO: 16) from Clostridium autoethanogenogenum, SecAdh (ADK15544.1) (SEQ ID NO: 17) from Clostridium yungdalae ), SecAdh from Clostridium lascheri (WP_013239134.1) (SEQ ID NO: 18) or SecAdh from Clostridium beijerinckii (WP_026889046.1) (SEQ ID NO: 19). This step can also be catalyzed by a primary:secondary alcohol dehydrogenase (EC 1.1.1.80), such as SecAdh (3FSR_A) from Thermoanaerobacter brucei (SEQ ID NO: 20). Clostridium autoethanologenum, Clostridium yongdahl and Clostridium larsonii are naturally active in this step (Köpke, Appl Environ Microbiol , 80: 3394-3403, 2014). However, E. coli has no known natural activity for this step. Down-regulating or genetically deleting the gene content of this enzyme in Clostridium autoethanogenogenum, Clostridium yongdalae or Clostridium larsonii causes the production and accumulation of acetylacetone instead of 3-methyl-2-butanol (WO 2015/085015 ).

步驟36展示乙醯丁醯基-CoA向3-羥基己醯基 -CoA之轉化。此步驟可藉由3-羥基丁醯基-CoA去氫酶(EC 1.1.1.157)或乙醯乙醯基-CoA水合酶(EC 4.2.1.119)催化。3-羥基丁醯基-CoA去氫酶或乙醯乙醯基-CoA可為例如來自拜氏梭菌之Hbd(WP_011967675.1)(SEQ ID NO:55)、來自丙酮丁醇梭菌之Hbd(NP_349314.1)(SEQ ID NO:56)、來自克氏梭菌之Hbd1(WP_011989027.1)(SEQ ID NO:57)、來自克氏梭菌之Hbd2(EDK34807)或來自鉤蟲貪銅菌之PaaH1(WP_010814882.1)。值得注意的是,PhaB為R特異性的且Hbd為S特異性的。另外,來自克氏梭菌之Hbd1具有NADPH依賴性且來自丙酮丁醇梭菌及拜氏梭菌之Hbd具有NADH依賴性。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 36 shows the conversion of acetylbutyl-CoA to 3-hydroxyhexyl-CoA. This step can be catalyzed by 3-hydroxybutyl-CoA dehydrogenase (EC 1.1.1.157) or acetyl-CoA hydratase (EC 4.2.1.119). 3-Hydroxybutyl-CoA dehydrogenase or acetoacetyl-CoA can be, for example, Hbd from Clostridium beijerinckii (WP_011967675.1) (SEQ ID NO: 55), Hbd from Clostridium acetobutylicum (NP_349314 .1) (SEQ ID NO: 56), Hbd1 from Clostridium cruzi (WP_011989027.1) (SEQ ID NO: 57), Hbd2 from Clostridium cruzi (EDK34807) or PaaH1 ( WP_010814882.1). Notably, PhaB is R-specific and Hbd is S-specific. In addition, Hbd1 derived from Clostridium cruzi is NADPH-dependent and Hbd derived from Clostridium acetobutylicum and Clostridium beijerinckii is NADH-dependent. Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟37展示3-羥基丁醯基-CoA向3-羥基己酸酯之轉化。此步驟可藉由磷酸丁醯基轉移酶(EC 2.3.1.19)+丁酸激酶(EC 2.7.2.7)催化。磷酸丁醯基轉移酶及丁酸激酶之例示性來源描述在本申請案他處。自產乙醇梭菌、永達爾梭菌及拉氏梭菌(或大腸桿菌)中之天然酶(諸如來自自產乙醇梭菌之硫酯酶)可催化此步驟且產生一定量之下游產物。然而,可能需要引入外源酶或過度表現內源酶來產生所要水準之下游產物。另外,在某些實施例中,可能需要向內源酶(諸如內源硫酯酶)中引入斷裂性突變來降低或去除與所引入Ptb-Buk之競爭。 Step 37 shows the conversion of 3-hydroxybutyl-CoA to 3-hydroxycaproate. This step can be catalyzed by phosphate butyltransferase (EC 2.3.1.19) + butyrate kinase (EC 2.7.2.7). Exemplary sources of phosphobutyltransferase and butyrate kinase are described elsewhere in this application. Natural enzymes in Clostridium autoethanogenogenum, Clostridium yongdahlii, and Clostridium larsonii (or E. coli), such as thioesterases from Clostridium autoethanogenogenum, can catalyze this step and produce certain amounts of downstream products. However, it may be necessary to introduce exogenous enzymes or overexpress endogenous enzymes to produce desired levels of downstream products. Additionally, in certain embodiments, it may be necessary to introduce disruptive mutations into endogenous enzymes (such as endogenous thioesterases) to reduce or eliminate competition with the introduced Ptb-Buk.

步驟38展示3-羥基己酸酯向1,3-己醛之轉化。此步驟可藉由醛:鐵氧化還原蛋白氧化還原酶(EC 1.2.7.5)催 化。醛:鐵氧化還原蛋白氧化還原酶之例示性來源描述在本申請案他處。AOR催化酸與經還原鐵氧化還原蛋白之反應,形成醛及經氧化鐵氧化還原蛋白。在產乙酸菌中,此反應可與均產生經還原鐵氧化還原蛋白之氧化CO(經由CO去氫酶,EC 1.2.7.4)或氫氣(經由鐵氧化還原蛋白依賴性氫化酶,EC 1.12.7.2或1.12.1.4)偶合(Köpke,《生物技術新見》,22:320-325,2011;Köpke,《美國科學院院報》,107:13087-13092,2010)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟具有天然活性。然而,自產乙醇梭菌、永達爾梭菌或拉氏梭菌中可能需要過度表現內源AOR或引入外源AOR來提高產物產量。或者,可將外源AOR引入不天然包括AOR之微生物(例如大腸桿菌)中。詳言之,共表現Ptb-Buk與AOR(及視情況共表現Adh)可使得此類微生物能夠產生新穎非天然產物。 Step 38 shows the conversion of 3-hydroxycaproate to 1,3-hexanal. This step is catalyzed by aldehyde:ferredoxin oxidoreductase (EC 1.2.7.5). Aldehydes: Exemplary sources of ferredoxin oxidoreductases are described elsewhere in this application. AOR catalyzes the reaction of acid and reduced ferric redox protein to form aldehyde and oxidized ferric redox protein. In acetogens, this reaction can be combined with either oxidized CO (via CO dehydrogenase, EC 1.2.7.4) or hydrogen (via ferredoxin-dependent hydrogenase, EC 1.12.7.2) to produce reduced ferredoxin. or 1.12.1.4) coupling (Köpke, "New Opinions in Biotechnology", 22: 320-325, 2011; Köpke, " Proceedings of the National Academy of Sciences , 107: 13087-13092, 2010"). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii are naturally active for this step. However, overexpression of endogenous AOR or introduction of exogenous AOR may be required to increase product yield in C. autoethanologenum, C. yongdahlii, or C. larsonii. Alternatively, exogenous AORs can be introduced into microorganisms that do not naturally include AORs (eg, E. coli). In particular, co-expression of Ptb-Buk with AOR (and optionally Adh) may enable such microorganisms to produce novel unnatural products.

步驟39展示1,3-己醛向1,3-己二醇之轉化。此步驟可藉由醇去氫酶(EC 1.1.1.1或1.1.1.2)催化。醇去氫酶可將醛及NAD(P)H轉化為醇及NAD(P)。醇去氫酶可為例如來自自產乙醇梭菌(AGY76060.1)(SEQ ID NO:67)、永達爾梭菌(ADK17019.1)(SEQ ID NO:68)或拉氏梭菌之Adh;來自丙酮丁醇梭菌之BdhB(NP_349891.1)(SEQ ID NO:69);來自拜氏梭菌之Bdh(WP_041897187.1)(SEQ ID NO:70);來自永達爾梭菌之Bdh1(YP_003780648.1)(SEQ ID NO:71);來自自產乙醇梭菌之Bdh1(AGY76060.1)(SEQ ID NO:72);來自永達爾梭菌之Bdh2(YP_003782121.1)(SEQ ID NO:73)、來自自產乙醇梭菌之Bdh2(AGY74784.1)(SEQ ID NO:74)、來自丙酮丁醇梭菌之AdhE1(NP_149325.1)(SEQ ID NO: 75)、來自丙酮丁醇梭菌之AdhE2(NP_149199.1)(SEQ ID NO:76)、來自拜氏梭菌之AdhE(WP_041893626.1)(SEQ ID NO:77)、來自自產乙醇梭菌之AdhE1(WP_023163372.1)(SEQ ID NO:78)或來自自產乙醇梭菌之AdhE2(WP_023163373.1)(SEQ ID NO:79)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟具有天然活性。然而,自產乙醇梭菌、永達爾梭菌或拉氏梭菌中可能需要過度表現內源醇去氫酶或引入外源醇去氫酶來提高產物產量。大腸桿菌對此步驟很可能不具有天然活性。 Step 39 demonstrates the conversion of 1,3-hexanal to 1,3-hexanediol. This step can be catalyzed by alcohol dehydrogenase (EC 1.1.1.1 or 1.1.1.2). Alcohol dehydrogenase converts aldehydes and NAD(P)H into alcohols and NAD(P). The alcohol dehydrogenase may be, for example, Adh from Clostridium autoethanogenogenum (AGY76060.1) (SEQ ID NO: 67), Clostridium yongdahl (ADK17019.1) (SEQ ID NO: 68), or Clostridium lashanii; BdhB from Clostridium acetobutylicum (NP_349891.1) (SEQ ID NO: 69); Bdh from Clostridium beijerinckii (WP_041897187.1) (SEQ ID NO: 70); Bdh1 from Clostridium yongdahl (YP_003780648 .1) (SEQ ID NO: 71); Bdh1 (AGY76060.1) from Clostridium autoethanogenogenum (SEQ ID NO: 72); Bdh2 (YP_003782121.1) (SEQ ID NO: 73) from Clostridium yungdalae ), Bdh2 (AGY74784.1) (SEQ ID NO: 74) from Clostridium autoethanogenogenum, AdhE1 (NP_149325.1) (SEQ ID NO: 75) from Clostridium acetobutylicum, Clostridium acetobutylicum AdhE2 (NP_149199.1) (SEQ ID NO: 76), AdhE (WP_041893626.1) (SEQ ID NO: 77) from Clostridium beijerinckii, AdhE1 (WP_023163372.1) from Clostridium autoethanogenogenum (SEQ ID NO: 78) or AdhE2 (WP_023163373.1) from Clostridium autoethanogenogenum (SEQ ID NO: 79). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii are naturally active for this step. However, overexpression of endogenous alcohol dehydrogenases or introduction of exogenous alcohol dehydrogenases may be required to increase product yield in C. autoethanologenum, C. jungdahl, or C. larsonii. E. coli is most likely not naturally active for this step.

步驟40展示乙醯乙醯基-CoA向3-羥基-3-甲基戊二醯基-CoA之轉化。此步驟可藉由羥甲基戊二醯基-CoA合成酶(HMG-CoA合成酶)(EC 2.3.3.10)催化。HMG-CoA合成酶廣泛包括多個屬及生物界且包括例如來自金黃色葡萄球菌(Staphylococcus aureus)之MvaS(WP_053014863.1)、來自釀酒酵母之ERG13(NP_013580.1)、來自小家鼠之HMGCS2(NP_032282.2)及EC 2.3.3.10類酶之多種其他成員。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 40 shows the conversion of acetyl acetyl-CoA to 3-hydroxy-3-methylglutaryl-CoA. This step can be catalyzed by hydroxymethylglutaryl-CoA synthase (HMG-CoA synthase) (EC 2.3.3.10). HMG-CoA synthases broadly include multiple genera and biological kingdoms and include, for example, MvaS from Staphylococcus aureus (WP_053014863.1), ERG13 from Saccharomyces cerevisiae (NP_013580.1), HMGCS2 from Mus musculus (NP_032282.2) and various other members of the EC 2.3.3.10 enzyme class. Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟41展示3-羥基-3-甲基戊二醯基-CoA向3-甲基葡糖基-CoA之轉化。此步驟可藉由3-羥基丁醯基-CoA去水酶(EC 4.2.1.55)催化。3-羥基丁醯基-CoA去水酶可為例如來自黃色黏球菌之LiuC(WP_011553770.1)。此步驟亦可藉由短鏈-烯醯基-CoA水合酶(EC 4.2.1.150)或烯醯基-CoA水合酶(EC 4.2.1.17)催化。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟 不具有已知天然活性。 Step 41 shows the conversion of 3-hydroxy-3-methylglutaryl-CoA to 3-methylglucosyl-CoA. This step can be catalyzed by 3-hydroxybutyl-CoA dehydratase (EC 4.2.1.55). The 3-hydroxybutyl-CoA dehydratase may be, for example, LiuC from Myxococcus xanthus (WP_011553770.1). This step can also be catalyzed by short-chain enyl-CoA hydratase (EC 4.2.1.150) or enyl-CoA hydratase (EC 4.2.1.17). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟42展示3-甲基葡糖基-CoA向2-甲基巴豆醯基-CoA之轉化。此步驟可藉由甲基巴豆醯基-CoA去羧酶(與戊烯二酸酯-CoA轉移酶(EC 2.8.3.12)具有高結構類似性)(例如來自黃色黏球菌之aibAB(WP_011554267.1及WP_011554268.1))催化。此步驟亦可藉由甲基巴豆醯基-CoA羧化酶(EC 6.4.1.4)催化,例如來自綠膿桿菌(Pseudomonas aeruginosa)之LiuDB(NP_250702.1及NP_250704.1)或來自阿拉伯芥(Arabidopsis thaliana)之MCCA及MCCB(NP_563674.1及NP_567950.1)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 42 shows the conversion of 3-methylglucosyl-CoA to 2-methylcrotonyl-CoA. This step can be accomplished by methylcrotonyl-CoA decarboxylase with high structural similarity to glutaconate-CoA transferase (EC 2.8.3.12) (e.g. aibAB from Myxococcus xanthus (WP_011554267.1) and WP_011554268.1)) catalysis. This step can also be catalyzed by methylcrotonyl-CoA carboxylase (EC 6.4.1.4), such as LiuDB (NP_250702.1 and NP_250704.1) from Pseudomonas aeruginosa or from Arabidopsis ( thaliana ) MCCA and MCCB (NP_563674.1 and NP_567950.1). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟43展示甲基巴豆醯基-CoA向異戊醯基-CoA之轉化。此步驟可藉由氧化還原酶(鋅結合去氫酶)催化。此氧化還原酶(鋅結合去氫酶)可為例如來自黃色黏球菌之AibC(WP_011554269.1)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有已知天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 43 shows the conversion of methylcrotonyl-CoA to isopentyl-CoA. This step can be catalyzed by oxidoreductase (zinc-binding dehydrogenase). This oxidoreductase (zinc-binding dehydrogenase) can be, for example, AibC from Myxococcus xanthus (WP_011554269.1). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii have no known natural activity for this step. E. coli has no known natural activity for this step.

步驟44展示異戊醯基-CoA向異戊酸酯之轉化。此步驟可藉由CoA-轉移酶(亦即乙醯基-CoA:乙醯乙醯基-CoA轉移酶)(EC 2.8.3.9)催化。CoA-轉移酶可為例如CtfAB,一種雜二聚體,其包括來自拜氏梭菌之次單位CtfA及CtfB(CtfA,WP_012059996.1)(SEQ ID NO:5)(CtfB,WP_012059997.1)(SEQ ID NO:6)。此步驟亦可藉由硫酯酶(EC 3.1.2.20)催化。硫酯酶可為例如來自大腸桿菌之TesB (NP_414986.1)(SEQ ID NO:7)。此步驟亦可藉由例如來自自產乙醇梭菌或永達爾梭菌之推定硫酯酶催化。詳言之,已鑑別自產乙醇梭菌中之三種推定硫酯酶:(1)「硫酯酶1」(AGY74947.1;標註為棕櫚醯基-CoA水解酶;SEQ ID NO:8),(2)「硫酯酶2」(AGY75747.1;標註為4-羥苯甲醯基-CoA硫酯酶;SEQ ID NO:9),及(3)「硫酯酶3」(AGY75999.1;標註為推定硫酯酶;SEQ ID NO:10)。亦已鑑別永達爾梭菌中之三種推定硫酯酶:(1)「硫酯酶1」(ADK15695.1;標註為預測醯基-CoA硫酯酶1;SEQ ID NO:11),(2)「硫酯酶2」(ADK16655.1;標註為預測硫酯酶;SEQ ID NO:12),及(3)「硫酯酶3」(ADK16959.1;標註為預測硫酯酶;SEQ ID NO:13)。此步驟亦可藉由磷酸丁醯基轉移酶(EC 2.3.1.19)+丁酸激酶(EC 2.7.2.7)催化。磷酸丁醯基轉移酶及丁酸激酶之例示性來源描述在本申請案他處。自產乙醇梭菌、永達爾梭菌及拉氏梭菌(或大腸桿菌)中之天然酶(諸如來自自產乙醇梭菌之硫酯酶)可催化此步驟且產生一定量之下游產物。然而,可能需要引入外源酶或過度表現內源酶來產生所要水準之下游產物。另外,在某些實施例中,可能需要向內源酶(諸如內源硫酯酶)中引入斷裂性突變來降低或去除與所引入Ptb-Buk之競爭。 Step 44 shows the conversion of isopentyl-CoA to isovalerate. This step can be catalyzed by CoA-transferase (i.e. acetyl-CoA: acetyl-acetyl-CoA transferase) (EC 2.8.3.9). The CoA-transferase can be, for example, CtfAB, a heterodimer including the subunits CtfA and CtfB from Clostridium beijerinckii (CtfA, WP_012059996.1) (SEQ ID NO: 5) (CtfB, WP_012059997.1) ( SEQ ID NO: 6). This step can also be catalyzed by thioesterases (EC 3.1.2.20). The thioesterase may be, for example, TesB (NP_414986.1) from E. coli (SEQ ID NO: 7). This step can also be catalyzed by putative thioesterases from, for example, Clostridium autoethanogenogenum or Clostridium yongdalae. Specifically, three putative thioesterases have been identified in C. autoethanologenum: (1) "Thioesterase 1" (AGY74947.1; annotated as palmitoyl-CoA hydrolase; SEQ ID NO: 8), (2) "Thioesterase 2" (AGY75747.1; labeled as 4-hydroxybenzyl-CoA thioesterase; SEQ ID NO: 9), and (3) "Thioesterase 3" (AGY75999.1 ; Annotated as putative thioesterase; SEQ ID NO: 10). Three putative thioesterases have also been identified in C. yongdahl: (1) "Thioesterase 1" (ADK15695.1; annotated as predicted acyl-CoA thioesterase 1; SEQ ID NO: 11), (2 ) "Thioesterase 2" (ADK16655.1; annotated as a predicted thioesterase; SEQ ID NO: 12), and (3) "Thioesterase 3" (ADK16959.1; annotated as a predicted thioesterase; SEQ ID NO: 13). This step can also be catalyzed by phosphate butyryl transferase (EC 2.3.1.19) + butyrate kinase (EC 2.7.2.7). Exemplary sources of phosphobutyltransferase and butyrate kinase are described elsewhere in this application. Natural enzymes in Clostridium autoethanogenogenum, Clostridium yongdahlii, and Clostridium larsonii (or E. coli), such as thioesterases from Clostridium autoethanogenogenum, can catalyze this step and produce certain amounts of downstream products. However, it may be necessary to introduce exogenous enzymes or overexpress endogenous enzymes to produce desired levels of downstream products. Additionally, in certain embodiments, it may be necessary to introduce disruptive mutations into endogenous enzymes (such as endogenous thioesterases) to reduce or eliminate competition with the introduced Ptb-Buk.

步驟45展示異戊酸酯向異戊醛之轉化。此步驟可藉由醛:鐵氧化還原蛋白氧化還原酶(EC 1.2.7.5)催化。醛:鐵氧化還原蛋白氧化還原酶(AOR)可為例如來自自產乙醇梭菌之AOR(WP_013238665.1;WP_013238675.1)(分別為SEQ ID NO:63及64)或來自永達爾梭菌之AOR (ADK15073.1;ADK15083.1)(分別為SEQ ID NO:65及66)。醛:鐵氧化還原蛋白氧化還原酶之其他例示性來源描述在本申請案他處。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟具有天然活性。然而,自產乙醇梭菌、永達爾梭菌或拉氏梭菌中可能需要過度表現內源AOR或引入外源AOR來提高產物產量。或者,可將外源AOR引入不天然包括AOR之微生物(例如大腸桿菌)中。詳言之,共表現Ptb-Buk與AOR(及視情況共表現Adh)可使得此類微生物能夠產生新穎非天然產物。 Step 45 shows the conversion of isovalerate to isovaleraldehyde. This step is catalyzed by aldehyde:ferredoxin oxidoreductase (EC 1.2.7.5). The aldehyde:ferredoxin oxidoreductase (AOR) may be, for example, the AOR from Clostridium autoethanogenogenum (WP_013238665.1; WP_013238675.1) (SEQ ID NO: 63 and 64, respectively) or from Clostridium yungdalae AOR (ADK15073.1; ADK15083.1) (SEQ ID NO: 65 and 66, respectively). Aldehydes: Other exemplary sources of ferredoxin oxidoreductases are described elsewhere in this application. Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii are naturally active for this step. However, overexpression of endogenous AOR or introduction of exogenous AOR may be required to increase product yield in C. autoethanologenum, C. yongdahlii, or C. larsonii. Alternatively, exogenous AORs can be introduced into microorganisms that do not naturally include AORs (eg, E. coli). In particular, co-expression of Ptb-Buk with AOR (and optionally Adh) may enable such microorganisms to produce novel unnatural products.

步驟46展示異戊醛向異戊醇之轉化。此步驟可藉由醇去氫酶(EC 1.1.1.1.或1.1.1.2)催化。醇去氫酶可將醛及NAD(P)H轉化為醇及NAD(P)。醇去氫酶可為例如來自自產乙醇梭菌(AGY76060.1)(SEQ ID NO:67)、永達爾梭菌(ADK17019.1)(SEQ ID NO:68)或拉氏梭菌之Adh;來自丙酮丁醇梭菌之BdhB(NP_349891.1)(SEQ ID NO:69);來自拜氏梭菌之Bdh(WP_041897187.1)(SEQ ID NO:70);來自永達爾梭菌之Bdh1(YP_003780648.1)(SEQ ID NO:71);來自自產乙醇梭菌之Bdh1(AGY76060.1)(SEQ ID NO:72);來自永達爾梭菌之Bdh2(YP_003782121.1)(SEQ ID NO:73)、來自自產乙醇梭菌之Bdh2(AGY74784.1)(SEQ ID NO:74)、來自丙酮丁醇梭菌之AdhE1(NP_149325.1)(SEQ ID NO:75)、來自丙酮丁醇梭菌之AdhE2(NP_149199.1)(SEQ ID NO:76)、來自拜氏梭菌之AdhE(WP_041893626.1)(SEQ ID NO:77)、來自自產乙醇梭菌之AdhE1(WP_023163372.1)(SEQ ID NO:78)或來自自產乙醇梭菌之AdhE2(WP_023163373.1) (SEQ ID NO:79)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟具有天然活性。然而,自產乙醇梭菌、永達爾梭菌或拉氏梭菌中可能需要過度表現內源醇去氫酶或引入外源醇去氫酶來提高產物產量。大腸桿菌對此步驟很可能不具有天然活性。 Step 46 shows the conversion of isovaleraldehyde to isopentyl alcohol. This step can be catalyzed by alcohol dehydrogenase (EC 1.1.1.1. or 1.1.1.2). Alcohol dehydrogenase converts aldehydes and NAD(P)H into alcohols and NAD(P). The alcohol dehydrogenase may be, for example, Adh from Clostridium autoethanogenogenum (AGY76060.1) (SEQ ID NO: 67), Clostridium yongdahl (ADK17019.1) (SEQ ID NO: 68), or Clostridium lashanii; BdhB from Clostridium acetobutylicum (NP_349891.1) (SEQ ID NO: 69); Bdh from Clostridium beijerinckii (WP_041897187.1) (SEQ ID NO: 70); Bdh1 from Clostridium yongdahl (YP_003780648 .1) (SEQ ID NO: 71); Bdh1 (AGY76060.1) from Clostridium autoethanogenogenum (SEQ ID NO: 72); Bdh2 (YP_003782121.1) (SEQ ID NO: 73) from Clostridium yungdalae ), Bdh2 (AGY74784.1) (SEQ ID NO: 74) from Clostridium autoethanogenogenum, AdhE1 (NP_149325.1) (SEQ ID NO: 75) from Clostridium acetobutylicum, Clostridium acetobutylicum AdhE2 (NP_149199.1) (SEQ ID NO: 76), AdhE (WP_041893626.1) (SEQ ID NO: 77) from Clostridium beijerinckii, AdhE1 (WP_023163372.1) from Clostridium autoethanogenogenum (SEQ ID NO: 78) or AdhE2 (WP_023163373.1) from Clostridium autoethanogenogenum (SEQ ID NO: 79). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii are naturally active for this step. However, overexpression of endogenous alcohol dehydrogenases or introduction of exogenous alcohol dehydrogenases may be required to increase product yield in C. autoethanologenum, C. jungdahl, or C. larsonii. E. coli is most likely not naturally active for this step.

步驟47展示異戊醯基-CoA向異戊醛之轉化。此步驟可藉由丁醛去氫酶(EC 1.2.1.57)催化。丁醛去氫酶可為例如來自糖乙酸多丁醇梭菌之Bld(AAP42563.1)(SEQ ID NO:80)。自產乙醇梭菌、永達爾梭菌及拉氏梭菌對此步驟不具有天然活性。大腸桿菌對此步驟不具有已知天然活性。 Step 47 demonstrates the conversion of isopentyl-CoA to isovaleraldehyde. This step is catalyzed by butyraldehyde dehydrogenase (EC 1.2.1.57). The butyraldehyde dehydrogenase may be, for example, Bld (AAP42563.1) from Clostridium glycoacetate (SEQ ID NO: 80). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium larsonii are not naturally active for this step. E. coli has no known natural activity for this step.

Ptb-Buk之概述Overview of Ptb-Buk

本發明提供利用Ptb-Buk酶系統之新穎路徑。自然界中,在一系列丁酸酯產生微生物中發現此酶系統,諸如產生丁酸酯之梭菌屬(Clostridia)或丁酸弧菌屬(Butyrivibrio)。詳言之,磷酸丁醯基轉移酶(Ptb)(EC 2.3.1.19)天然催化丁醯基-CoA+磷酸酯之反應,形成CoA+丁醯基磷酸酯,且丁酸激酶(Buk)(EC 2.7.2.7)天然催化丁醯基磷酸酯與ADP之反應,形成丁酸酯及ATP。因此,此等酶一起(Ptb-Buk)天然催化丁醯基-CoA向丁酸酯之轉化且經由受質層面磷酸化產生一個ATP(圖2)。然而,本發明者已發現Ptb為混雜的且能夠接受多種醯基-CoA及烯醯基-CoA作為受質,使得可使用Ptb-Buk分別將多種醯基-CoA及烯醯基-CoA轉化為其相應酸或烯酸酯,而同時產生ATP。已報導Ptb在活體外對一系列醯基-CoA(包含乙醯乙醯基-CoA)具有活性(Thompson,《應用與環境微生物學》,56:607-613,1990)。 先前未展示乙醯乙醯基-磷酸酯可作為Buk之受質。儘管已知Buk接受寬受質範圍(Liu,《應用微生物學與生物技術(Appl Microbiol Biotechnol)》,53:545-552,2000),但活體內未展示活性。 The present invention provides novel pathways utilizing the Ptb-Buk enzyme system. In nature, this enzyme system is found in a range of butyrate-producing microorganisms, such as butyrate-producing Clostridia or Butyrivibrio . Specifically, phosphate butyltransferase (Ptb) (EC 2.3.1.19) naturally catalyzes the reaction of butyl-CoA+ phosphate to form CoA+ butyl phosphate, and butyrate kinase (Buk) (EC 2.7.2.7) naturally catalyzes the reaction of butyl-butyl phosphate. The reaction of ester and ADP forms butyrate and ATP. Therefore, these enzymes together (Ptb-Buk) naturally catalyze the conversion of butyryl-CoA to butyrate and generate an ATP via phosphorylation at the substrate level (Figure 2). However, the inventors have discovered that Ptb is hybrid and can accept a variety of acyl-CoA and enyl-CoA as acceptors, so that Ptb-Buk can be used to convert a variety of acyl-CoA and enyl-CoA into Its corresponding acid or enoate ester produces ATP at the same time. Ptb has been reported to be active in vitro against a range of acyl-CoA, including acetyl-acetyl-CoA (Thompson, Applied & Environmental Microbiology , 56: 607-613, 1990). Acetoacetyl-phosphate has not previously been shown to serve as an acceptor for Buk. Although Buk is known to accept a wide substrate range (Liu, Appl Microbiol Biotechnol , 53:545-552, 2000), it does not exhibit activity in vivo.

另外,本發明者已發現引入外源Ptb-Buk使得特定微生物能夠產生有用產物,包含丙酮、異丙醇、異丁烯、3-羥基丁酸酯、1,3-丁二醇及2-羥基異丁酸酯,以及其他產物,諸如丙酸酯、己酸酯及辛酸酯。 In addition, the inventors have discovered that the introduction of exogenous Ptb-Buk enables specific microorganisms to produce useful products, including acetone, isopropanol, isobutylene, 3-hydroxybutyrate, 1,3-butanediol and 2-hydroxyisobutyrate. acid esters, as well as other products such as propionate, caproate, and octanoate.

依賴於Ptb-Buk之新穎路徑相較於依賴於CoA-轉移酶產生產物之其他已知及現有路徑(如在典型梭菌丙酮-丁醇-乙醇(ABE)醱酵路徑中)或依賴於硫酯酶產生產物之其他已知及現有路徑提供幾大優勢(Jones,《微生物學評論(Microbiol Rev)》,50:484-524,1986;Matsumoto,《應用微生物學與生物技術》,97:205-210,2013;May,《代謝工程(Metabol Eng)》,15:218-225,2013)(圖3)。詳言之,此等新穎路徑(1)不依賴於CoA-轉移酶反應所要之特定分子(諸如有機酸,例如丁酸酯或乙酸酯)之存在或產生,且(2)使得可經由受質層面磷酸化產生硫酯酶或CoA-轉移酶反應中不守恆之ATP。在將Ptb-Buk系統用於其他反應(諸如3-羥基丁醯基-CoA向3-羥基丁酸酯之轉化)時,相同優勢亦適用。因此,此等新穎路徑可產生高得多的生產效價及速率,其藉由在不共產生非所要副產物(諸如乙酸酯)下產生額外能量及產生標靶產物達成。 The novel pathway that relies on Ptb-Buk is compared to other known and existing pathways that rely on CoA-transferase to produce products (such as in the typical Clostridial acetone-butanol-ethanol (ABE) fermentation pathway) or that rely on sulfur. Other known and existing routes to product production from esterases offer several advantages (Jones, Microbiol Rev , 50: 484-524, 1986; Matsumoto, Applied Microbiology and Biotechnology , 97: 205 -210, 2013; May, " Metabol Eng ", 15: 218-225, 2013) (Figure 3). In particular, these novel pathways (1) do not rely on the presence or production of specific molecules required for the CoA-transferase reaction (such as organic acids, such as butyrate or acetate), and (2) enable Phosphorylation at the plasma membrane produces ATP that is not conserved in thioesterase or CoA-transferase reactions. The same advantages apply when using the Ptb-Buk system for other reactions such as the conversion of 3-hydroxybutyl-CoA to 3-hydroxybutyrate. Therefore, these novel pathways can produce much higher production titers and rates by generating additional energy and producing target products without co-producing undesirable by-products such as acetate.

特定言之,在市售規模下,微生物產生乙酸酯(或CoA轉移酶反應所要之其他有機酸)作為副產物為不適宜 的,因為乙酸酯自標靶產物轉移碳,因此影響標靶產物之效率及產率。另外,乙酸酯可能對微生物具有毒性及/或可充當污染性微生物之生長的受質。此外,乙酸酯之存在使得較難回收及分離標靶產物及控制醱酵條件以促進標靶產物之產生。 Specifically, it is undesirable for microorganisms to produce acetate (or other organic acids required for the CoA transferase reaction) as a by-product at commercial scales because acetate transfers carbon from the target product and therefore affects the target. Product efficiency and yield. Additionally, acetate may be toxic to microorganisms and/or may serve as a substrate for the growth of contaminating microorganisms. In addition, the presence of acetate makes it difficult to recover and isolate the target product and control fermentation conditions to promote the production of the target product.

經由受質層面磷酸化產生ATP可用作產物合成之動力,尤其在ATP限制性系統中。詳言之,已知產乙酸細菌依靠熱力學生命邊緣生存(Schuchmann,《自然評論:微生物(Nat Rev Microbiol)》,12:809-821,2014)。因此,已描述迄今分離之所有產乙酸微生物產生乙酸酯(Drake,《產乙酸原核生物(Acetogenic Prokaryotes)》,於《原核生物(The Prokaryotes)》中,第3版,第354-420頁,New York,NY,Springer,2006),因為產生乙酸酯向微生物提供經由Pta(磷酸轉乙醯酶)(EC 2.3.1.8)及Ack(乙酸激酶)(EC 2.7.2.1)自受質層面磷酸化直接產生ATP的選擇。儘管諸如膜梯度及與離子或質子易位系統(例如Rnf複合物)(Schuchmann,《自然評論:微生物》,12:809-821,2014)偶合之電分叉酶之機制使此等微生物中之ATP守恆,但直接ATP產生仍對其存活很關鍵。因而,在引入不允許ATP產生之異源路徑時,乙酸酯作為副產物產生(Schiel-Bengelsdorf,《歐洲生化學會聯合會快報(FEBS Lett)》,586:2191-2198,2012)。然而,本文所述之Ptb-Buk路徑向微生物提供替代機制以經由受質層面磷酸化產生ATP,因此,避免乙酸酯產生。詳言之,在其他方面為必需之乙酸酯形成酶(諸如Pta-Ack)(Nagarajan,《微生物細胞工廠(Microb Cell Factories)》,12:118,2013)可 用Ptb-Buk替換以作為ATP產生之替代方式。由於微生物可隨後依賴於經由Ptb-Buk產生ATP,故此系統提供確保最大通量通過使用Ptb-Buk之新穎路徑的動力。產生ATP亦可能對於需要ATP之下游路徑很關鍵。舉例而言,自丙酮醱酵產生異丁烯需要ATP。在使用CoA-轉移酶或硫酯酶時乙醯基-CoA向異丁烯之整個路徑耗費ATP,而在使用Ptb-Buk時所述路徑為能量平衡的。 The generation of ATP through phosphorylation at the substrate level can be used as a driving force for product synthesis, especially in ATP-limited systems. In detail, acetogenic bacteria are known to survive on the edge of thermodynamic life (Schuchmann, Nat Rev Microbiol , 12:809-821, 2014). Thus, all acetogenic microorganisms isolated to date have been described to produce acetate (Drake, "Acetogenic Prokaryotes", in The Prokaryotes , 3rd ed., pp. 354-420, New York, NY, Springer, 2006), because the production of acetate provides microorganisms with phosphate from the substrate via Pta (phosphotransacetylase) (EC 2.3.1.8) and Ack (acetate kinase) (EC 2.7.2.1) ation directly produces ATP. Although mechanisms such as membrane gradients and electrobifurcating enzymes coupled to ion or proton translocation systems (e.g., Rnf complexes) (Schuchmann, Nature Reviews: Microbiology , 12:809-821, 2014) make these microorganisms ATP is conserved, but direct ATP production is still critical for its survival. Thus, when introducing a heterologous pathway that does not allow ATP production, acetate is produced as a by-product (Schiel-Bengelsdorf, FEBS Lett , 586: 2191-2198, 2012). However, the Ptb-Buk pathway described herein provides microorganisms with an alternative mechanism to generate ATP via phosphorylation at the substrate level, thus avoiding acetate production. Specifically, an otherwise essential acetate-forming enzyme such as Pta-Ack (Nagarajan, Microb Cell Factories , 12:118, 2013) can be replaced with Ptb-Buk for ATP production alternative way. Since microorganisms can then rely on ATP production via Ptb-Buk, this system provides the power to ensure maximum flux through novel pathways using Ptb-Buk. The production of ATP may also be critical for downstream pathways that require ATP. For example, the production of isobutylene from acetone fermentation requires ATP. The entire path from acetyl-CoA to isobutylene consumes ATP when using CoA-transferase or thioesterase, whereas the path is energy balanced when using Ptb-Buk.

提供Ptb及Buk之例示性來源。然而,應瞭解,可使用Ptb及Buk之其他合適來源。另外,Ptb及Buk可經工程改造以改良活性及/或編碼Ptb-Buk之基因可經密碼子優化以表現於特定宿主微生物中。 Provides illustrative sources for Ptb and Buk. However, it is understood that other suitable sources of Ptb and Buk may be used. In addition, Ptb and Buk can be engineered to improve activity and/or the gene encoding Ptb-Buk can be codon-optimized for expression in a specific host microorganism.

磷酸丁醯基轉移酶可來自或可源自例如以下來源,其序列可公開獲得: The phosphobutyltransferase enzyme may be or may be derived from, for example, the following sources, the sequences of which are publicly available:

在一較佳實施例中,磷酸丁醯基轉移酶為來自丙酮丁醇梭菌(WP_010966357;SEQ ID NO:87)或拜氏梭菌(WP_026886639;SEQ ID NO:88)(WP_041893500;SEQ ID NO:89)之Ptb。自產乙醇梭菌、永達爾梭菌及拉氏梭菌天然不含磷酸丁醯基轉移酶。 In a preferred embodiment, the phosphate butyltransferase is from Clostridium acetobutylicum (WP_010966357; SEQ ID NO: 87) or Clostridium beijerinckii (WP_026886639; SEQ ID NO: 88) (WP_041893500; SEQ ID NO: 89 ) of Ptb. Clostridium autoethanologenum, Clostridium yongdalae and Clostridium lashoni naturally do not contain phosphate butyl transferase.

丁酸激酶可來自或可源自例如以下來源,其序列可公開獲得: Butyrate kinase may be derived from or may be derived from sources such as:

在一較佳實施例中,丁酸激酶為來自丙酮丁醇梭菌(WP_010966356;SEQ ID NO:90)或拜氏梭菌(WP_011967556;SEQ ID NO:91)(WP_017209677;SEQ ID NO:92)(WP_026886638;SEQ ID NO:93)(WP_041893502;SEQ ID NO:94)之Buk。自產乙醇梭菌、永達爾梭菌及拉氏梭菌天然不含丁酸激酶。 In a preferred embodiment, butyrate kinase is derived from Clostridium acetobutylicum (WP_010966356; SEQ ID NO: 90) or Clostridium beijerinckii (WP_011967556; SEQ ID NO: 91) (WP_017209677; SEQ ID NO: 92) (WP_026886638; SEQ ID NO:93) Buk of (WP_041893502; SEQ ID NO:94). Clostridium autoethanologenum, Clostridium yongdalae and Clostridium lashanii naturally do not contain butyrate kinase.

由於Ptb-Buk已展示作用於大量受質,故可合理地假定若Ptb-Buk對所要受質不展現任何活性,則其可經工程改造以對所述受質達成活性。一種策略可為(但不限於)基於與或未與受質結合之Ptb及Buk的可獲得晶體結構的合理設計,其中改變結合袋以容納新穎受質,或經由飽和突變誘發進行。在獲得活性時,其可進一步經由反覆酶工程改造循環改良。此等工程改造操作將與測試酶活性之分析組合。此等類型之策略先前已證實有效(參見例如Huang,《自然(Nature)》,537:320-327,2016;Khoury,《生物技術趨勢(Trends Biotechnol)》,32:99-109,2014;Packer,《自然綜述:遺傳學(Nature Rev Genetics)》,16:379-394,2015;Privett,《美國科學院院報》,109:3790-3795,2012)。 Since Ptb-Buk has been shown to act on a large number of substrates, it is reasonable to assume that if Ptb-Buk does not exhibit any activity on a desired substrate, it can be engineered to achieve activity on that substrate. One strategy could be, but is not limited to, rational design based on available crystal structures of Ptb and Buk with or without substrates, where the binding pocket is altered to accommodate novel substrates, or via saturation mutagenesis. Once activity is achieved, it can be further improved through repeated enzyme engineering cycles. These engineering operations will be combined with assays to test enzyme activity. These types of strategies have previously proven effective (see, e.g., Huang, Nature , 537:320-327, 2016 ; Khoury, Trends Biotechnol , 32:99-109, 2014; Packer , "Nature Rev Genetics ", 16: 379-394, 2015; Privett, " Proceedings of the National Academy of Sciences , 109: 3790-3795, 2012").

為改良Ptb-Buk對特定醯基-CoA受質之受質特異性,來自公共資料庫之Ptb-Buk變異體或所產生之Ptb-Buk突變體(例如由定向進化)可使用高通量分析篩選,亦即在大腸桿菌中過度表現Ptb-Buk酶對,添加測試受質及用生物發光分析篩選ATP產生。所述分析可使用關聯ATP濃度與螢火蟲螢光素酶生物發光的公認實踐。此分析對多孔盤形式之順應性將有助於較佳跨越新穎Ptb-Buk組合有效篩選受質(圖33)。 To improve the substrate specificity of Ptb-Buk for a specific acyl-CoA substrate, high-throughput analysis of Ptb-Buk variants from public databases or generated Ptb-Buk mutants (e.g., by directed evolution) Screening, that is, overexpressing the Ptb-Buk enzyme pair in E. coli, adding test substrates and screening for ATP production using bioluminescence assays. The assay may use accepted practices of correlating ATP concentration with firefly luciferase bioluminescence. The adaptability of this assay to a porous disk format will facilitate better efficient screening of substrates across novel Ptb-Buk combinations (Figure 33).

藉由篩選ATP產生而非受質消除或產物聚積,所述分析避免CoA基團之量測自發性水解。然而,文獻中所述 之替代方法為使用游離CoA,可使用已確立分析使用愛爾曼氏試劑(5,5'-二硫基雙-(2-硝基苯甲酸)或DTNB)(Thompson,應用與環境微生物學,56:607-613,1990.)量測以評估Ptb-Buk反應之偶合效率(圖33)。醯基-CoA及相應游離酸及磷酸化中間物亦可在驗證階段使用LC-MS/MS期間量測。 The assay avoids the measurement of spontaneous hydrolysis of CoA groups by screening for ATP production rather than substrate elimination or product accumulation. However, an alternative approach described in the literature is the use of free CoA using established assays using Ellman's reagent (5,5'-disulfobis-(2-nitrobenzoic acid) or DTNB) (Thompson, Applied and Environmental Microbiology, 56: 607-613, 1990.) were measured to evaluate the coupling efficiency of the Ptb-Buk reaction (Figure 33). Cyl-CoA and the corresponding free acid and phosphorylated intermediate can also be measured during the validation phase using LC-MS/MS.

在高通量篩選方法中,由於蛋白質定量中涉及之勞力,難以收集動力學資料。替代地,對於含有Ptb-Buk酶之大腸桿菌溶解物之各製劑,可將對各相關受質之活性(以每單位時間之發光的形式量測)與對陽性對照受質(丁醯基-CoA)及對乙醯基-CoA(生理學受質,其很可能提供針對標靶醯基-CoA的酶活性位點之最大競爭)之活性比較。 In high-throughput screening methods, it is difficult to collect kinetic data due to the labor involved in protein quantification. Alternatively, for each preparation of an E. coli lysate containing the Ptb-Buk enzyme, the activity of each relevant substrate (measured as luminescence per unit time) can be compared with that of a positive control substrate (butyl-CoA) and a comparison of activity against acetyl-CoA, a physiological substrate that is likely to provide the greatest competition for the enzyme active site of the target acetyl-CoA.

為確保所述分析不會因為天然磷酸轉乙醯酶(Pta)及/或乙酸激酶(Ack)活性而產生偏倚,分析亦可在已剔除pta及/或ack基因之大腸桿菌菌株中評估。 To ensure that the assay is not biased by native phosphotransacetylase (Pta) and/or acetate kinase (Ack) activity, the assay can also be evaluated in E. coli strains in which the pta and/or ack genes have been deleted.

產生丙酮及異丙醇Produce acetone and isopropyl alcohol

丙酮及異丙醇為重要工業溶劑,其中合併市場規模為8百萬噸且總市場值為$85-110億。另外,丙酮及異丙醇為如下有價值之下游產物的前驅物,包含聚甲基丙烯酸甲酯(PMMA),其總市場值為$70億;異丁烯,其總市場值為$250-290億;及丙烯,其總市場值為$1250億。另外,近年來已報導自丙酮噴出燃料之途徑。當前,工業丙酮生產直接關聯石化酚生產,因為其為異丙苯製程之副產物。約92體積%丙酮輸出為自異丙苯產生酚之副產物。此對環境與市場均具有顯著影響。在異丙苯製程中,每莫耳酚產生一莫耳亞硫酸鈉積聚,從而造成嚴重廢料處理問題及對自然環境及人類健 康之挑戰。酚之世界市場需求預期減少或減退,而對丙酮之需求預測上升。正開發由直接氧化苯產生酚之替代途徑且預期不久即商業化;此可使丙酮產生完全去除。 Acetone and isopropyl alcohol are important industrial solvents, with a combined market size of 8 million tons and a total market value of $8.5-11 billion. In addition, acetone and isopropyl alcohol are precursors to the following valuable downstream products, including polymethylmethacrylate (PMMA), with a total market value of $7 billion; isobutylene, with a total market value of $25-29 billion; and Propylene has a total market value of $125 billion. In addition, fuel ejection pathways from acetone have been reported in recent years. Currently, industrial acetone production is directly linked to petrochemical phenol production as it is a by-product of the cumene process. Approximately 92% by volume of the acetone output is a by-product of phenol production from cumene. This has significant impacts on both the environment and the market. During the cumene production process, one mole of sodium sulfite accumulates for each mole of phenol, causing serious waste disposal problems and challenges to the natural environment and human health. World market demand for phenol is expected to decrease or decline, while demand for acetone is forecast to increase. An alternative route to phenol production by direct oxidation of benzene is being developed and is expected to be commercialized soon; this would allow the complete elimination of acetone production.

丙酮已以工業規模生產約100年,其作為ABE醱酵中丁醇之副產物。儘管在20世紀下半葉,工業ABE醱酵由於低油價及高糖成本而衰退,但近年來其已復蘇,其中在近幾年建造了數個商業工廠。多個群體亦已展現在異源宿主中自糖產生丙酮,藉由數個學術群體證實,所述宿主經由代謝工程改造及合成生物方法表現來自ABE醱酵生物體、尤其大腸桿菌及酵母菌之相應酶。然而,與釋放生物質之多醣組分所要的預處理相關的低產量及高成本使得經由標準醱酵產生丙酮並不經濟,因為當前生物化學轉化技術不利用生物質之木質素組分,木質素組分可構成此物質之高達40%。 Acetone has been produced on an industrial scale for about 100 years as a by-product of butanol in ABE fermentation. Although industrial ABE fermentation declined in the second half of the 20th century due to low oil prices and high sugar costs, it has recovered in recent years, with several commercial plants built in recent years. Acetone production from sugars has also been demonstrated by several academic groups in heterologous hosts using metabolic engineering and synthetic biology approaches to express acetone from ABE fermentation organisms, especially E. coli and yeast. corresponding enzyme. However, the low yields and high costs associated with the pretreatment required to release the polysaccharide component of biomass make the production of acetone via standard fermentation uneconomical because current biochemical conversion technologies do not utilize the lignin component of biomass, lignin. Components may constitute up to 40% of this substance.

本發明提供一種微生物,其能夠自受質產生丙酮或其前驅物。本發明進一步提供一種藉由在受質存在下培養此類微生物產生丙酮或其前驅物之方法。在較佳實施例中,所述微生物源自選自由自產乙醇梭菌、永達爾梭菌或拉氏梭菌組成之群的親本微生物。然而,微生物亦可源自完全不同微生物,例如大腸桿菌。對於產生丙酮所述之酶促路徑可包括內源酶,及在內源酶活性不存在或低的情況下,外源酶。 The present invention provides a microorganism capable of producing acetone or its precursor from a substrate. The present invention further provides a method for producing acetone or a precursor thereof by culturing such microorganisms in the presence of a substrate. In a preferred embodiment, the microorganism is derived from a parent microorganism selected from the group consisting of Clostridium ethanologenum, Clostridium yongdahlii, or Clostridium larsonii. However, the microorganisms can also originate from completely different microorganisms, such as E. coli. The enzymatic pathways described for the production of acetone may include endogenous enzymes and, in the case where endogenous enzyme activity is absent or low, exogenous enzymes.

經由步驟1、2及3獲得丙酮:在一個實施例中,本發明提供一種微生物,其包括步驟1、2及3之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生丙酮或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟2藉由Ptb-Buk催化。步驟1、2及 3之酶的例示性類型及來源描述在本申請案他處。若微生物源自天然含有能夠將丙酮轉化為異丙醇(步驟4)之一級:二級醇去氫酶的親本微生物(例如自產乙醇梭菌、永達爾梭菌或拉氏梭菌),則所述微生物可經修飾以阻斷或剔除一級:二級醇去氫酶之表現(例如藉由破壞編碼一級:二級醇去氫酶之基因),使得微生物產生丙酮,而不將其轉化為異丙醇(WO 2015/085015)。 Obtaining acetone via steps 1, 2 and 3: In one embodiment, the present invention provides a microorganism comprising the enzymes of steps 1, 2 and 3, by which the microorganism is able to obtain acetone from a substrate (such as a gas substrate). substance) to produce acetone or its precursors. Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 2 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 2, and 3 are described elsewhere in this application. If the microorganism is derived from a parent microorganism that naturally contains a primary: secondary alcohol dehydrogenase capable of converting acetone to isopropyl alcohol (step 4) (e.g. Clostridium autoethanologenum, Clostridium yongdahl or Clostridium larsonii), The microorganism can then be modified to block or eliminate the expression of primary:secondary alcohol dehydrogenase (e.g., by disrupting the gene encoding primary:secondary alcohol dehydrogenase), allowing the microorganism to produce acetone without converting it is isopropyl alcohol (WO 2015/085015).

經由步驟1、13、14、15及3獲得丙酮:在一個實施例中,本發明提供一種微生物,其包括步驟1、13、14、15及3之外源酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生丙酮或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟14藉由Ptb-Buk催化。步驟1、13、14、15及3之酶的例示性類型及來源描述在本申請案他處。若微生物源自天然含有能夠將丙酮轉化為異丙醇(步驟4)之一級:二級醇去氫酶的親本微生物(例如自產乙醇梭菌、永達爾梭菌或拉氏梭菌),則所述微生物可經修飾以阻斷或剔除一級:二級醇去氫酶之表現(例如藉由破壞編碼一級:二級醇去氫酶之基因),使得微生物產生丙酮,而不將其轉化為異丙醇(WO 2015/085015)。 Obtaining acetone through steps 1, 13, 14, 15 and 3: In one embodiment, the invention provides a microorganism comprising steps 1, 13, 14, 15 and 3 exogenous enzymes, by which the The microorganism is capable of producing acetone or its precursors from a substrate such as a gaseous substrate. Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 14 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, 14, 15, and 3 are described elsewhere in this application. If the microorganism is derived from a parent microorganism that naturally contains a primary: secondary alcohol dehydrogenase capable of converting acetone to isopropyl alcohol (step 4) (e.g. Clostridium autoethanologenum, Clostridium yongdahl or Clostridium larsonii), The microorganism can then be modified to block or eliminate the expression of primary:secondary alcohol dehydrogenase (e.g., by disrupting the gene encoding primary:secondary alcohol dehydrogenase), allowing the microorganism to produce acetone without converting it is isopropyl alcohol (WO 2015/085015).

在一個實施例中,微生物可包括超過一種產生丙酮之路徑。 In one embodiment, the microorganism may include more than one pathway for producing acetone.

本發明提供一種微生物,其能夠自受質產生異丙醇或其前驅物。本發明進一步提供一種藉由在受質存在下培養此類微生物產生異丙醇或其前驅物之方法。在較佳實施例中,所述微生物源自選自由自產乙醇梭菌、永達爾梭菌或拉 氏梭菌組成之群的親本微生物。然而,微生物亦可源自完全不同微生物,例如大腸桿菌。對於產生異丙醇所述之酶促路徑可包括內源酶,及在內源酶活性不存在或低的情況下,外源酶。 The present invention provides a microorganism capable of producing isopropyl alcohol or its precursor from a substrate. The present invention further provides a method for producing isopropanol or a precursor thereof by culturing such microorganisms in the presence of a substrate. In preferred embodiments, the microorganism is derived from a parent microorganism selected from the group consisting of Clostridium ethanologenum, Clostridium yongdahlii, or Clostridium larsonii. However, the microorganisms can also originate from completely different microorganisms, such as E. coli. The enzymatic pathways described for the production of isopropanol may include endogenous enzymes and, in the case where endogenous enzyme activity is absent or low, exogenous enzymes.

經由步驟1、2、3及4獲得異丙醇:在一個實施例中,本發明提供一種微生物,其包括步驟1、2、3及4之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生異丙醇或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟2藉由Ptb-Buk催化。步驟1、2、3及4之酶的例示性類型及來源描述在本申請案他處。若微生物源自天然含有能夠將丙酮轉化為異丙醇(步驟4)之一級:二級醇去氫酶的親本微生物(例如自產乙醇梭菌、永達爾梭菌或拉氏梭菌),則步驟4不需要引入外源酶來產生異丙醇。然而,調節微生物例如以過度表現天然一級:二級醇去氫酶可增加異丙醇產生。 Obtaining isopropyl alcohol through steps 1, 2, 3 and 4: In one embodiment, the invention provides a microorganism comprising the enzymes of steps 1, 2, 3 and 4, by which the microorganism can self- A substrate, such as a gaseous substrate, produces isopropanol or a precursor thereof. Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 2 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 2, 3, and 4 are described elsewhere in this application. If the microorganism is derived from a parent microorganism that naturally contains a primary: secondary alcohol dehydrogenase capable of converting acetone to isopropyl alcohol (step 4) (e.g. Clostridium autoethanologenum, Clostridium yongdahl or Clostridium larsonii), Then step 4 does not require the introduction of exogenous enzymes to produce isopropanol. However, conditioning microorganisms such as overexpression of natural primary:secondary alcohol dehydrogenases can increase isopropanol production.

經由步驟1、13、14、15、3及4獲得異丙醇:在一個實施例中,本發明提供一種微生物,其包括步驟1、13、14、15、3及4之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生異丙醇或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟14藉由Ptb-Buk催化。步驟1、13、14、15、3及4之酶的例示性類型及來源描述在本申請案他處。若微生物源自天然含有能夠將丙酮轉化為異丙醇(步驟4)之一級:二級醇去氫酶的親本微生物(例如自產乙醇梭菌、永達爾梭菌或拉氏梭菌),則步驟4不需要引入外源酶來產生異丙醇。然而,調節微生物 例如以過度表現天然一級:二級醇去氫酶可增加異丙醇產生。 Obtaining isopropyl alcohol through steps 1, 13, 14, 15, 3 and 4: In one embodiment, the invention provides a microorganism comprising the enzymes of steps 1, 13, 14, 15, 3 and 4, by Described enzyme, described microorganism can produce isopropanol or its precursor from substrate (such as gaseous substrate). Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 14 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, 14, 15, 3, and 4 are described elsewhere in this application. If the microorganism is derived from a parent microorganism that naturally contains a primary: secondary alcohol dehydrogenase capable of converting acetone to isopropyl alcohol (step 4) (e.g. Clostridium autoethanologenum, Clostridium yongdahl or Clostridium larsonii), Then step 4 does not require the introduction of exogenous enzymes to produce isopropanol. However, modulating microorganisms, such as by overexpressing natural primary:secondary alcohol dehydrogenases, can increase isopropanol production.

在一個實施例中,微生物可包括超過一種產生異丙醇之路徑。 In one embodiment, the microorganism may include more than one pathway for producing isopropanol.

產生異丁烯produces isobutylene

異丁烯為重要化學構築嵌段,其中市場規模為超過1500萬噸且總市場值為$250-290億。除異丁烯於化學方法中及作為燃料添加劑之用途(15 Mt/yr)以外,其亦可轉化為異辛烷,一種用於汽油車之可直接使用之高效燃料。全球生物能源(Global Bioenergies)已提交關於自丙酮醱酵產生異丁烯之專利申請案,但所揭示途徑均不包括Ptb-Buk(WO 2010/001078;EP 2295593;WO 2011/076691;van Leeuwen,《應用微生物學與生物技術》,93:1377-1387,2012)。 Isobutylene is an important chemical building block, with a market size of more than 15 million tons and a total market value of $25-29 billion. In addition to isobutylene's use in chemical processes and as a fuel additive (15 Mt/yr), it can also be converted into isooctane, a drop-in, high-efficiency fuel for gasoline vehicles. Global Bioenergies has submitted a patent application for the production of isobutylene from acetone fermentation, but the disclosed pathways do not include Ptb-Buk (WO 2010/001078; EP 2295593; WO 2011/076691; van Leeuwen, " Applications " Microbiology and Biotechnology , 93: 1377-1387, 2012).

本發明提供一種微生物,其能夠自受質產生異丁烯或其前驅物。本發明進一步提供一種藉由在受質存在下培養此類微生物產生異丁烯或其前驅物之方法。在較佳實施例中,所述微生物源自選自由自產乙醇梭菌、永達爾梭菌或拉氏梭菌組成之群的親本微生物。然而,微生物亦可源自完全不同微生物,例如大腸桿菌。對於產生異丁烯所述之酶促路徑可包括內源酶,及在內源酶活性不存在或低的情況下,外源酶。 The present invention provides a microorganism capable of producing isobutylene or its precursor from a substrate. The present invention further provides a method for producing isobutylene or a precursor thereof by culturing such microorganisms in the presence of a substrate. In a preferred embodiment, the microorganism is derived from a parent microorganism selected from the group consisting of Clostridium ethanologenum, Clostridium yongdahlii, or Clostridium larsonii. However, the microorganisms can also originate from completely different microorganisms, such as E. coli. The enzymatic pathways described for the production of isobutylene may include endogenous enzymes and, in the case where endogenous enzyme activity is absent or low, exogenous enzymes.

圖1展示獲得異丁烯之兩種替代途徑。第一種途徑包括經由步驟1、2、3、5及6產生異丁烯。第二種途徑包括經由步驟1、2、3、7、8及6產生異丁烯。步驟2及8可藉由Ptb-Buk催化。因此,各途徑可涉及Ptb-Buk。 Figure 1 shows two alternative routes to isobutylene. The first pathway involves the production of isobutylene via steps 1, 2, 3, 5 and 6. The second pathway includes the production of isobutylene via steps 1, 2, 3, 7, 8 and 6. Steps 2 and 8 can be catalyzed by Ptb-Buk. Therefore, each pathway may involve Ptb-Buk.

經由步驟1、2、3、5及6獲得異丁烯:在一個 實施例中,本發明提供一種微生物,其包括步驟1、2、3、5及6之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生異丁烯或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟2藉由Ptb-Buk催化。步驟1、2、3、5及6之酶的例示性類型及來源描述在本申請案他處。若微生物源自天然含有能夠將丙酮轉化為異丙醇(步驟4)之一級:二級醇去氫酶的親本微生物(例如自產乙醇梭菌、永達爾梭菌或拉氏梭菌),則所述微生物可經修飾以阻斷或剔除一級:二級醇去氫酶之表現(例如藉由破壞編碼一級:二級醇去氫酶之基因),以阻止丙酮轉化為異丙醇且使丙酮向異丁烯之轉化達最大。 Obtaining isobutylene through steps 1, 2, 3, 5 and 6: In one embodiment, the invention provides a microorganism comprising the enzymes of steps 1, 2, 3, 5 and 6, by which the microorganism Isobutylene or its precursors can be produced from a substrate such as a gaseous substrate. Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 2 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 2, 3, 5, and 6 are described elsewhere in this application. If the microorganism is derived from a parent microorganism that naturally contains a primary: secondary alcohol dehydrogenase capable of converting acetone to isopropyl alcohol (step 4) (e.g. Clostridium autoethanologenum, Clostridium yongdahl or Clostridium larsonii), The microorganism can then be modified to block or eliminate the expression of primary:secondary alcohol dehydrogenase (e.g., by disrupting the gene encoding primary:secondary alcohol dehydrogenase) to prevent the conversion of acetone to isopropyl alcohol and allow The conversion of acetone to isobutylene reaches the maximum.

經由步驟1、2、3、7、8及6獲得異丁烯:在一個實施例中,本發明提供一種微生物,其包括步驟1、2、3、7、8及6之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生異丁烯或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟2及/或步驟8藉由Ptb-Buk催化。步驟1、2、3、7、8及6之酶的例示性類型及來源描述在本申請案他處。若微生物源自天然含有能夠將丙酮轉化為異丙醇(步驟4)之一級:二級醇去氫酶的親本微生物(例如自產乙醇梭菌、永達爾梭菌或拉氏梭菌),則所述微生物可經修飾以阻斷或剔除一級:二級醇去氫酶之表現(例如藉由破壞編碼一級:二級醇去氫酶之基因),以阻止丙酮轉化為異丙醇且使丙酮向異丁烯之轉化達最大。 Obtaining isobutylene via steps 1, 2, 3, 7, 8 and 6: In one embodiment, the invention provides a microorganism comprising the enzymes of steps 1, 2, 3, 7, 8 and 6, by which the enzyme , the microorganism is capable of producing isobutylene or its precursor from a substrate (such as a gas substrate). Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 2 and/or step 8 are catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 2, 3, 7, 8, and 6 are described elsewhere in this application. If the microorganism is derived from a parent microorganism that naturally contains a primary: secondary alcohol dehydrogenase capable of converting acetone to isopropyl alcohol (step 4) (e.g. Clostridium autoethanologenum, Clostridium yongdahl or Clostridium larsonii), The microorganism can then be modified to block or eliminate the expression of primary:secondary alcohol dehydrogenase (e.g., by disrupting the gene encoding primary:secondary alcohol dehydrogenase) to prevent the conversion of acetone to isopropyl alcohol and allow The conversion of acetone to isobutylene reaches the maximum.

產生3-羥基丁酸酯Produces 3-hydroxybutyrate

3-羥基丁酸酯(3-HB)為β-羥基酸家族中之四碳 羧酸。3-羥基丁酸酯為油性皮膚清潔之美容成分,一種抗衰老乳膏調配物之中間物,一種聚羥基丁酸酯(PHB)之中間物,一種可生物降解聚合物樹脂,及用於新穎生物塑膠之與其他聚羥基酸之共單體。另外,3-羥基丁酸酯特別用於生物相容性及可生物降解奈米複合物,尤其用於醫學植入物,C3/C4化學品之中間物,對掌性構築嵌段及精細化學品。儘管藉由生長於葡萄糖上之重組大腸桿菌產生(R)-及(S)-3-羥基丁酸酯,但尚未展現自生長於氣體受質上之微生物產生3-羥基丁酸酯(Tseng,《應用與環境微生物學》,75:3137-3145,2009)。值得注意的是,先前展現於大腸桿菌中之所述系統不可直接轉移至產乙酸菌(包含自產乙醇梭菌)中,因為產乙酸菌中存在天然硫酯酶。儘管大腸桿菌亦具有可作用於3-HB-CoA之硫酯酶TesB,但Tseng展示背景活性極小(<0.1g/L)。儘管已報導大腸桿菌中立體純異構體之產生,但本發明者意外發現可在自產乙醇梭菌中產生異構體之混合物。在不受限於此理論的情況下,此很可能歸因於天然異構酶活性。此使得(S)-特異性3-羥基丁醯基-CoA去氫酶(Hbd)之組合能夠與(R)-特異性Ptb-Buk組合而使產量最佳化。為產生立體純異構體,此活性可剔除。綜合而言,本發明使得能夠相較於大腸桿菌中之低產量產生數公克/公升3-HB,且可使用Ptb-Buk與(R)或(S)-特異性3-羥基丁醯基-CoA去氫酶及天然自產乙醇梭菌硫酯酶之任何組合。 3-Hydroxybutyrate (3-HB) is a four-carbon carboxylic acid in the β-hydroxy acid family. 3-Hydroxybutyrate is a cosmetic ingredient for oily skin cleansing, an intermediate in anti-aging cream formulations, an intermediate in polyhydroxybutyrate (PHB), a biodegradable polymer resin, and in novel Co-monomer of bioplastics with other polyhydroxy acids. In addition, 3-hydroxybutyrate is particularly used in biocompatible and biodegradable nanocomposites, especially in medical implants, intermediates of C3/C4 chemicals, chiral building blocks and fine chemicals. Taste. Although (R)- and (S)-3-hydroxybutyrate are produced by recombinant E. coli grown on glucose, the production of 3-hydroxybutyrate from microorganisms grown on gaseous substrates has not been demonstrated (Tseng, " Applied and Environmental Microbiology , 75: 3137-3145, 2009). Notably, the system previously demonstrated in E. coli cannot be directly transferred to acetogens (including Clostridium autoethanogenans) due to the presence of native thioesterases in acetogens. Although E. coli also has a thioesterase TesB that can act on 3-HB-CoA, Tseng shows very little background activity (<0.1g/L). Although the production of stereopure isomers has been reported in E. coli , the inventors unexpectedly discovered that a mixture of isomers can be produced in Clostridium autoethanogenogenum. Without being bound by this theory, this is most likely due to natural isomerase activity. This enables the combination of (S)-specific 3-hydroxybutyl-CoA dehydrogenase (Hbd) with (R)-specific Ptb-Buk to optimize yields. To produce stereopure isomers, this activity can be eliminated. Taken together, the present invention enables the production of several grams/liter of 3-HB compared to the low yields in E. coli and the use of Ptb-Buk with (R) or (S)-specific 3-hydroxybutyryl-CoA. Any combination of hydrogenase and natural autoethanogenic Clostridial thioesterase.

本發明提供一種微生物,其能夠自受質產生3-羥基丁酸酯或其前驅物。本發明進一步提供一種藉由在受質存在下培養此類微生物產生3-羥基丁酸酯或其前驅物之方 法。在較佳實施例中,所述微生物源自選自由自產乙醇梭菌、永達爾梭菌或拉氏梭菌組成之群的親本微生物。然而,微生物亦可源自完全不同微生物,例如大腸桿菌。對於產生3-羥基丁酸酯所述之酶促路徑可包括內源酶,及在內源酶活性不存在或低的情況下,外源酶。 The present invention provides a microorganism capable of producing 3-hydroxybutyrate or its precursor from a substrate. The present invention further provides a method for producing 3-hydroxybutyrate or a precursor thereof by culturing such microorganisms in the presence of a substrate. In a preferred embodiment, the microorganism is derived from a parent microorganism selected from the group consisting of Clostridium ethanologenum, Clostridium yongdahlii, or Clostridium larsonii. However, the microorganisms can also originate from completely different microorganisms, such as E. coli. The enzymatic pathways described for the production of 3-hydroxybutyrate may include endogenous enzymes and, in the case where endogenous enzyme activity is absent or low, exogenous enzymes.

圖1展示獲得3-羥基丁酸酯之兩種替代途徑。第一種途徑包括經由步驟1、2及15產生3-羥基丁酸酯。第二種途徑包括經由步驟1、13及14產生3-羥基丁酸酯。步驟2及14可藉由Ptb-Buk催化。因此,各途徑可涉及Ptb-Buk。在一個實施例中,微生物可包括超過一種產生3-羥基丁酸酯之路徑,其中Ptb-Buk可催化超過一個步驟(例如步驟2及14)。 Figure 1 shows two alternative routes to 3-hydroxybutyrate. The first pathway involves the production of 3-hydroxybutyrate via steps 1, 2 and 15. The second route involves the production of 3-hydroxybutyrate via steps 1, 13 and 14. Steps 2 and 14 can be catalyzed by Ptb-Buk. Therefore, each pathway may involve Ptb-Buk. In one embodiment, the microorganism may include more than one pathway to produce 3-hydroxybutyrate, where Ptb-Buk may catalyze more than one step (eg, steps 2 and 14).

經由步驟1、2及15獲得3-羥基丁酸酯:在一個實施例中,本發明提供一種微生物,其包括步驟1、2及15之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生3-羥基丁酸酯或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟2藉由Ptb-Buk催化。步驟1、2及15之酶的例示性類型及來源描述在本申請案他處。 Obtaining 3-hydroxybutyrate through steps 1, 2 and 15: In one embodiment, the invention provides a microorganism comprising the enzymes of steps 1, 2 and 15, by which the microorganism is capable of being subjected to A substrate (such as a gaseous substrate) produces 3-hydroxybutyrate or a precursor thereof. Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 2 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 2, and 15 are described elsewhere in this application.

經由步驟1、13及14獲得3-羥基丁酸酯:在一個實施例中,本發明提供一種微生物,其包括步驟1、13及14之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生3-羥基丁酸酯或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟14藉由Ptb-Buk催化。步驟1、13及14之酶的例示性類型及來源描 述在本申請案他處。 Obtaining 3-hydroxybutyrate through steps 1, 13 and 14: In one embodiment, the invention provides a microorganism comprising the enzymes of steps 1, 13 and 14, by which the microorganism is able to undergo A substrate (such as a gaseous substrate) produces 3-hydroxybutyrate or a precursor thereof. Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 14 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, and 14 are described elsewhere in this application.

產生1,3-丁二醇Produce 1,3-butanediol

1,3-丁二醇(1,3-BDO)常用作食品調味劑之溶劑且為用於特定聚胺基甲酸酯及聚酯樹脂中之共單體。更重要的是,1,3-丁二醇可以催化方式轉化為1,3-丁二烯(Makshina,《化學會評論(Chem Soc Rev)》,43:7917-7953,2014)。丁二烯用於製造橡膠、塑膠、潤滑劑、乳膠及其他產品。儘管現今生產之大量丁二烯用於汽車輪胎中之橡膠,但其亦可用於生產己二腈,其可用於製備耐綸6,6。丁二烯之總需求正在上升。在2011年,估算需要1050萬噸,價值$400億。 1,3-Butanediol (1,3-BDO) is commonly used as a solvent in food flavorings and is a comonomer used in certain polyurethane and polyester resins. More importantly, 1,3-butanediol can be catalytically converted to 1,3-butadiene (Makshina, Chem Soc Rev , 43:7917-7953, 2014). Butadiene is used in the manufacture of rubber, plastics, lubricants, latex and other products. Although a large amount of butadiene is produced today for use in rubber in automobile tires, it is also used to produce adiponitrile, which is used to make nylon 6,6. Overall demand for butadiene is rising. In 2011, it was estimated that 10.5 million tons would be needed, worth $40 billion.

本發明提供一種微生物,其能夠自受質產生1,3-丁二醇或其前驅物。本發明進一步提供一種藉由在受質存在下培養此類微生物產生1,3-丁二醇或其前驅物之方法。在較佳實施例中,所述微生物源自選自由自產乙醇梭菌、永達爾梭菌或拉氏梭菌組成之群的親本微生物。然而,微生物亦可源自完全不同微生物,例如大腸桿菌。對於產生1,3-丁二醇所述之酶促路徑可包括內源酶,及在內源酶活性不存在或低的情況下,外源酶。 The present invention provides a microorganism capable of producing 1,3-butanediol or its precursor from a substrate. The present invention further provides a method for producing 1,3-butanediol or a precursor thereof by culturing such microorganisms in the presence of a substrate. In a preferred embodiment, the microorganism is derived from a parent microorganism selected from the group consisting of Clostridium ethanologenum, Clostridium yongdahlii, or Clostridium larsonii. However, the microorganisms can also originate from completely different microorganisms, such as E. coli. The enzymatic pathways described for the production of 1,3-butanediol may include endogenous enzymes and, in the case where endogenous enzyme activity is absent or low, exogenous enzymes.

在某些實施例中,微生物可產生1,3-丁二醇,且不共產生乙醇(或僅產生少量乙醇,例如少於0.1-1.0g/L乙醇或少於1-10g/L乙醇)。 In certain embodiments, the microorganism can produce 1,3-butanediol without co-producing ethanol (or only producing a small amount of ethanol, such as less than 0.1-1.0 g/L ethanol or less than 1-10 g/L ethanol) .

圖1展示獲得1,3-丁二醇之三種替代途徑。第一途徑包括經由步驟1、2、15、16及17產生1,3-丁二醇。第二途徑包括經由步驟1、13、14、16及17產生1,3-丁二醇。 第三途徑包括經由步驟1、13、18及17產生1,3-丁二醇。步驟2及14可藉由Ptb-Buk催化。因此,至少第一及第二途徑可涉及Ptb-Buk在一個實施例中,微生物可包括超過一種產生1,3-丁二醇之路徑。在一相關實施例中,Ptb-Buk可催化超過一個步驟(例如步驟2及14)。 Figure 1 shows three alternative routes to 1,3-butanediol. The first pathway includes the production of 1,3-butanediol via steps 1, 2, 15, 16 and 17. The second pathway includes the production of 1,3-butanediol via steps 1, 13, 14, 16 and 17. The third pathway includes the production of 1,3-butanediol via steps 1, 13, 18 and 17. Steps 2 and 14 can be catalyzed by Ptb-Buk. Thus, at least the first and second pathways may involve Ptb-Buk. In one embodiment, the microorganism may include more than one pathway for producing 1,3-butanediol. In a related embodiment, Ptb-Buk can catalyze more than one step (eg, steps 2 and 14).

經由步驟1、2、15、16及17獲得1,3-丁二醇:在一個實施例中,本發明提供一種微生物,其包括步驟1、2、15、16及17之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生1,3-丁二醇或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟2藉由Ptb-Buk催化。步驟1、2、15、16及17之酶的例示性類型及來源描述在本申請案他處。 Obtain 1,3-butanediol through steps 1, 2, 15, 16 and 17: In one embodiment, the invention provides a microorganism comprising the enzymes of steps 1, 2, 15, 16 and 17, by The enzyme is capable of producing 1,3-butanediol or a precursor thereof from a substrate such as a gaseous substrate. Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 2 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 2, 15, 16, and 17 are described elsewhere in this application.

經由步驟1、13、14、16及17獲得1,3-丁二醇:在一個實施例中,本發明提供一種微生物,其包括步驟1、13、14、16及17之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生1,3-丁二醇或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟14藉由Ptb-Buk催化。步驟1、13、14、16及17之酶的例示性類型及來源描述在本申請案他處。 Obtain 1,3-butanediol through steps 1, 13, 14, 16 and 17: In one embodiment, the invention provides a microorganism comprising the enzymes of steps 1, 13, 14, 16 and 17, by The enzyme is capable of producing 1,3-butanediol or a precursor thereof from a substrate such as a gaseous substrate. Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 14 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, 14, 16, and 17 are described elsewhere in this application.

經由步驟1、13、18及17獲得1,3-丁二醇:在一個實施例中,本發明提供一種微生物,其包括步驟1、13、18及17之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生1,3-丁二醇或其前驅物(圖11)。通常,此路徑中之至少一種酶為微生物之外源酶。步驟1、13、18及17之酶的例示性類型及來源描述在本申請案他處。類似途徑展現 於大腸桿菌中,但未展現於產乙酸菌(諸如自產乙醇梭菌、永達爾梭菌及拉氏梭菌)中(Kataoka,《生物學與生物工程雜誌(J Biosci Bioeng)》,115:475-480,2013)。儘管使用Ptb-Buk可產生(R)-1,3-丁二醇,但不需要使用Ptb-Buk之此途徑可產生(S)-1,3-丁二醇。 Obtain 1,3-butanediol through steps 1, 13, 18 and 17: In one embodiment, the present invention provides a microorganism comprising the enzymes of steps 1, 13, 18 and 17, by which the enzyme The microorganisms are capable of producing 1,3-butanediol or its precursors from substrates such as gaseous substrates (Figure 11). Typically, at least one enzyme in this pathway is exogenous to the microorganism. Exemplary types and sources of enzymes for steps 1, 13, 18, and 17 are described elsewhere in this application. Similar pathways are shown in E. coli but not in acetogens such as Clostridium autoethanologenum, Clostridium yongdallii and Clostridium larsonii (Kataoka, J Biosci Bioeng ) , 115:475-480, 2013). Although Ptb-Buk can be used to produce (R)-1,3-butanediol, this pathway does not require the use of Ptb-Buk to produce (S)-1,3-butanediol.

產生2-羥基異丁酸酯produces 2-hydroxyisobutyrate

2-羥基異丁酸酯(2-HIB)為一種四碳羧酸,其可充當多種聚合物之構築嵌段。甲基丙烯酸之甲酯(其可藉由2-羥基異丁酸酯去水或經由相應醯胺合成)聚合形成聚甲基丙烯酸甲酯(PMMA)以製造丙烯酸玻璃、耐久塗層及油墨。對於單獨之此化合物,總市場超過3百萬噸。其他分支鏈C4羧酸(例如2-羥基異丁酸酯之氯及胺基衍生物)以及異丁烯二醇及其氧化物亦用於聚合物中及用於諸多其他應用。 2-Hydroxyisobutyrate (2-HIB) is a four-carbon carboxylic acid that can serve as a building block in a variety of polymers. Methyl methacrylate (which can be synthesized by dehydration of 2-hydroxyisobutyrate or via the corresponding amide) is polymerized to form polymethyl methacrylate (PMMA) to produce acrylic glass, durable coatings and inks. For this compound alone, the total market exceeds 3 million tons. Other branched C4 carboxylic acids (such as the chlorine and amine derivatives of 2-hydroxyisobutyrate) and isobutylene glycol and its oxides are also used in polymers and in many other applications.

Ptb-Buk系統之立體特異性尤其適用於克服當前先進技術對於2-羥基異丁酸酯製備之限制。Ptb-Buk與硫酯酶均為混雜的,使得對3-羥基丁醯基-CoA之側向活性可自標靶路徑分流資源而產生2-羥基異丁醯基-CoA(參見例如圖1及圖8)。然而,Ptb-Buk能夠在立體異構體之間進行區分且作用於(R)-3-羥基丁醯基-CoA,而非(S)-3-羥基丁醯基-CoA。相比之下,硫酯酶不能在3-羥基丁醯基-CoA立體異構體之間進行區分。在一較佳實施例中,(S)-特異性乙醯乙醯基-CoA水合酶(EC 4.2.1.119)(步驟13)經選擇與Ptb-Buk(步驟20)組合以避免產生3-羥基丁酸酯所造成之損失且使2-羥基異丁酸酯產量達最大(圖8)。3-羥基丁醯基-CoA之(S)-特定形式亦為2-羥基異丁醯基-CoA變位酶(EC 5.4.99.-)(步驟19) 之較佳受質(Yaneva,《生物化學雜誌》,287:15502-15511,2012)。 The stereospecificity of the Ptb-Buk system is particularly suitable for overcoming the limitations of current advanced technology for the preparation of 2-hydroxyisobutyrate. Both Ptb-Buk and thioesterases are promiscuous, allowing lateral activity on 3-hydroxybutyl-CoA to divert resources from the target pathway to produce 2-hydroxyisobutyl-CoA (see, eg, Figures 1 and 8). However, Ptb-Buk is able to distinguish between stereoisomers and acts on (R)-3-hydroxybutyl-CoA but not (S)-3-hydroxybutyl-CoA. In contrast, thioesterases cannot differentiate between 3-hydroxybutyryl-CoA stereoisomers. In a preferred embodiment, (S)-specific acetoacetyl-CoA hydratase (EC 4.2.1.119) (step 13) is selected to be combined with Ptb-Buk (step 20) to avoid the generation of 3-hydroxyl The loss caused by butyrate resulted in the maximum production of 2-hydroxyisobutyrate (Figure 8). The (S)-specific form of 3-hydroxybutyl-CoA is also a preferred substrate for 2-hydroxyisobutyl-CoA mutase (EC 5.4.99.-) (step 19) (Yaneva, Journal of Biochemistry , 287:15502-15511, 2012).

本發明提供一種微生物,其能夠自受質產生2-羥基異丁酸酯或其前驅物。本發明進一步提供一種藉由在受質存在下培養此類微生物產生2-羥基異丁酸酯或其前驅物之方法。在較佳實施例中,所述微生物源自選自由自產乙醇梭菌、永達爾梭菌或拉氏梭菌組成之群的親本微生物。然而,微生物亦可源自完全不同微生物,例如大腸桿菌。對於產生2-羥基異丁酸酯所述之酶促路徑可包括內源酶,及在內源酶活性不存在或低的情況下,外源酶。 The present invention provides a microorganism capable of producing 2-hydroxyisobutyrate or a precursor thereof from a substrate. The present invention further provides a method for producing 2-hydroxyisobutyrate or a precursor thereof by culturing such microorganisms in the presence of a substrate. In a preferred embodiment, the microorganism is derived from a parent microorganism selected from the group consisting of Clostridium ethanologenum, Clostridium yongdahlii, or Clostridium larsonii. However, the microorganisms can also originate from completely different microorganisms, such as E. coli. The enzymatic pathways described for the production of 2-hydroxyisobutyrate may include endogenous enzymes and, in the case where endogenous enzyme activity is absent or low, exogenous enzymes.

經由步驟1、13、19及20獲得2-羥基丁酸酯:在一個實施例中,本發明提供一種微生物,其包括步驟1、13、19及20之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生2-羥基丁酸酯或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟20藉由Ptb-Buk催化。步驟1、13、19及20之酶的例示性類型及來源描述在本申請案他處。 Obtaining 2-hydroxybutyrate through steps 1, 13, 19 and 20: In one embodiment, the present invention provides a microorganism comprising the enzyme of steps 1, 13, 19 and 20, by which the enzyme, Microorganisms are capable of producing 2-hydroxybutyrate or precursors thereof from substrates such as gaseous substrates. Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 20 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, 19, and 20 are described elsewhere in this application.

在某些實施例中,本發明亦提供一種能夠自受質產生2-羥基丁酸酯(2-HB)或其前驅物之微生物。本發明進一步提供一種藉由在受質存在下培養此類微生物產生2-羥基丁酸酯或其前驅物之方法。在不欲受限於任何特定理論之情況下,本發明者認為所觀測到之2-羥基丁酸酯之產生可歸因於微生物(諸如自產乙醇梭菌、永達爾梭菌及拉氏梭菌)中之非特異性變位酶活性。 In certain embodiments, the invention also provides a microorganism capable of producing 2-hydroxybutyrate (2-HB) or a precursor thereof from a substrate. The present invention further provides a method for producing 2-hydroxybutyrate or a precursor thereof by culturing such microorganisms in the presence of a substrate. Without wishing to be bound by any particular theory, the inventors believe that the observed production of 2-hydroxybutyrate is attributable to microorganisms such as Clostridium autoethanologenum, Clostridium yundalis and Clostridium larvae non-specific mutase activity in bacteria).

產生己二酸produce adipic acid

己二酸為最重要的二羧酸,其估算市場大於US $45億,其中每年生產約25億公斤。超過60%之所生產己二酸正用作生產耐綸之單體前驅物,且直至2019年,己二酸之總市場預期達到US $75億。當前,己二酸幾乎僅藉由石化法生產,例如藉由羰基化丁二烯。 Adipic acid is the most important dicarboxylic acid, with an estimated market greater than US$4.5 billion, of which approximately 2.5 billion kilograms are produced annually. More than 60% of the adipic acid produced is being used as a monomer precursor for the production of nylon, and by 2019, the total market for adipic acid is expected to reach US$7.5 billion. Currently, adipic acid is produced almost exclusively by petrochemical processes, for example by carbonylation of butadiene.

本發明提供一種微生物,其能夠自受質產生己二酸或其前驅物(圖34)。本發明進一步提供一種藉由在受質存在下培養此類微生物產生己二酸或其前驅物之方法。在較佳實施例中,所述微生物源自選自由自產乙醇梭菌、永達爾梭菌或拉氏梭菌組成之群的親本微生物。然而,微生物亦可源自完全不同微生物,例如大腸桿菌。對於產生己二酸所述之酶促路徑可包括內源酶,及在內源酶活性不存在或低的情況下,外源酶。 The present invention provides a microorganism capable of producing adipic acid or its precursor from a substrate (Fig. 34). The present invention further provides a method for producing adipic acid or a precursor thereof by culturing such microorganisms in the presence of a substrate. In a preferred embodiment, the microorganism is derived from a parent microorganism selected from the group consisting of Clostridium ethanologenum, Clostridium yongdahlii, or Clostridium larsonii. However, the microorganisms can also originate from completely different microorganisms, such as E. coli. The enzymatic pathways described for the production of adipic acid may include endogenous enzymes and, in the case where endogenous enzyme activity is absent or low, exogenous enzymes.

經由步驟22、23、24、25及26獲得己二酸:在一個實施例中,本發明提供一種微生物,其包括步驟22、23、24、25及26之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生己二酸或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟26藉由Ptb-Buk催化。步驟22、23、24、25及26之酶的例示性類型及來源描述在本申請案他處。 Obtaining adipic acid through steps 22, 23, 24, 25 and 26: In one embodiment, the invention provides a microorganism comprising the enzymes of steps 22, 23, 24, 25 and 26, by which the enzyme The microorganism is capable of producing adipic acid or its precursors from a substrate, such as a gaseous substrate. Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 26 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 22, 23, 24, 25, and 26 are described elsewhere in this application.

經由步驟21、22、23、24、25及26獲得己二酸:在一個實施例中,本發明提供一種微生物,其包括步驟21、22、23、24、25及26之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生己二酸或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中, 步驟26藉由Ptb-Buk催化。步驟21、22、23、24、25及26之酶的例示性類型及來源描述在本申請案他處。 Obtaining adipic acid through steps 21, 22, 23, 24, 25 and 26: In one embodiment, the invention provides a microorganism comprising the enzymes of steps 21, 22, 23, 24, 25 and 26, by The enzyme is capable of producing adipic acid or a precursor thereof from a substrate, such as a gaseous substrate. Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 26 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 21, 22, 23, 24, 25, and 26 are described elsewhere in this application.

在一個實施例中,微生物可包括超過一種產生己二酸之路徑。 In one embodiment, the microorganism may include more than one pathway for producing adipic acid.

產生1,3-己二醇Produce 1,3-hexanediol

本發明提供一種微生物,其能夠自受質產生1,3-己二醇或其前驅物(圖35)。本發明進一步提供一種藉由在受質存在下培養此類微生物產生1,3-己二醇或其前驅物之方法。在較佳實施例中,所述微生物源自選自由自產乙醇梭菌、永達爾梭菌或拉氏梭菌組成之群的親本微生物。然而,微生物亦可源自完全不同微生物,例如大腸桿菌。對於產生1,3-己二醇所述之酶促路徑可包括內源酶,及在內源酶活性不存在或低的情況下,外源酶。 The present invention provides a microorganism capable of producing 1,3-hexanediol or its precursor from a substrate (Fig. 35). The present invention further provides a method for producing 1,3-hexanediol or a precursor thereof by culturing such microorganisms in the presence of a substrate. In a preferred embodiment, the microorganism is derived from a parent microorganism selected from the group consisting of Clostridium ethanologenum, Clostridium yongdahlii, or Clostridium larsonii. However, the microorganisms can also originate from completely different microorganisms, such as E. coli. The enzymatic pathways described for the production of 1,3-hexanediol may include endogenous enzymes and, in the case where endogenous enzyme activity is absent or low, exogenous enzymes.

圖35中描繪之路徑以3-羥基丁醯基-CoA開始,如圖1中所描繪,其可經由步驟1及13產生。 The pathway depicted in Figure 35 begins with 3-hydroxybutyl-CoA, which can be generated via steps 1 and 13 as depicted in Figure 1 .

經由步驟1、13、27、31、32、36、37、38及39獲得1,3-己二醇:在一個實施例中,本發明提供一種微生物,其包括步驟1、13、27、31、32、36、37、38及39之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生1,3-己二醇或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟37藉由Ptb-Buk催化。步驟1、13、27、31、32、36、37、38及39之酶的例示性類型及來源描述在本申請案他處。 Obtain 1,3-hexanediol via steps 1, 13, 27, 31, 32, 36, 37, 38 and 39: In one embodiment, the invention provides a microorganism comprising steps 1, 13, 27, 31 , 32, 36, 37, 38 and 39 enzymes, by which the microorganism can produce 1,3-hexanediol or its precursor from a substrate (such as a gas substrate). Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 37 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, 27, 31, 32, 36, 37, 38, and 39 are described elsewhere in this application.

產生3-甲基-2-丁醇Produces 3-methyl-2-butanol

本發明提供一種微生物,其能夠自受質產生3- 甲基-2-丁醇或其前驅物(圖35)。本發明進一步提供一種藉由在受質存在下培養此類微生物產生3-甲基-2-丁醇或其前驅物之方法。在較佳實施例中,所述微生物源自選自由自產乙醇梭菌、永達爾梭菌或拉氏梭菌組成之群的親本微生物。然而,微生物亦可源自完全不同微生物,例如大腸桿菌。對於產生3-甲基-2-丁醇所述之酶促路徑可包括內源酶,及在內源酶活性不存在或低的情況下,外源酶。 The present invention provides a microorganism capable of producing 3-methyl-2-butanol or its precursor from a substrate (Fig. 35). The present invention further provides a method for producing 3-methyl-2-butanol or a precursor thereof by culturing such microorganisms in the presence of a substrate. In a preferred embodiment, the microorganism is derived from a parent microorganism selected from the group consisting of Clostridium ethanologenum, Clostridium yongdahlii, or Clostridium larsonii. However, the microorganisms can also originate from completely different microorganisms, such as E. coli. The enzymatic pathways described for the production of 3-methyl-2-butanol may include endogenous enzymes and, in the case where endogenous enzyme activity is absent or low, exogenous enzymes.

圖35中描繪之路徑以3-羥基丁醯基-CoA開始,如圖1中所描繪,其可經由步驟1及13產生。 The pathway depicted in Figure 35 begins with 3-hydroxybutyl-CoA, which can be generated via steps 1 and 13 as depicted in Figure 1 .

經由步驟1、13、27、31、32、33、34及35獲得3-甲基-2-丁醇:在一個實施例中,本發明提供一種微生物,其包括步驟1、13、27、31、32、33、34及35之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生3-甲基-2-丁醇或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟33藉由Ptb-Buk催化。步驟1、13、27、31、32、33、34及35之酶的例示性類型及來源描述在本申請案他處。 Obtain 3-methyl-2-butanol via steps 1, 13, 27, 31, 32, 33, 34 and 35: In one embodiment, the invention provides a microorganism comprising steps 1, 13, 27, 31 , 32, 33, 34 and 35 enzymes, by which the microorganism can produce 3-methyl-2-butanol or its precursor from a substrate (such as a gas substrate). Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 33 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, 27, 31, 32, 33, 34, and 35 are described elsewhere in this application.

產生2-丁烯-1-醇Produces 2-buten-1-ol

本發明提供一種微生物,其能夠自受質產生2-丁烯-1-醇或其前驅物(圖35)。本發明進一步提供一種藉由在受質存在下培養此類微生物產生2-丁烯-1-醇或其前驅物之方法。在較佳實施例中,所述微生物源自選自由自產乙醇梭菌、永達爾梭菌或拉氏梭菌組成之群的親本微生物。然而,微生物亦可源自完全不同微生物,例如大腸桿菌。對於產生2-丁烯-1-醇所述之酶促路徑可包括內源酶,及在內源酶活性 不存在或低的情況下,外源酶。 The present invention provides a microorganism capable of producing 2-buten-1-ol or a precursor thereof from a substrate (Fig. 35). The present invention further provides a method for producing 2-buten-1-ol or a precursor thereof by culturing such microorganisms in the presence of a substrate. In a preferred embodiment, the microorganism is derived from a parent microorganism selected from the group consisting of Clostridium ethanologenum, Clostridium yongdahlii, or Clostridium larsonii. However, the microorganisms can also originate from completely different microorganisms, such as E. coli. The enzymatic pathways described for the production of 2-buten-1-ol may include endogenous enzymes and, in the case where endogenous enzyme activity is absent or low, exogenous enzymes.

圖35中描繪之路徑以3-羥基丁醯基-CoA開始,如圖1中所描繪,其可經由步驟1及13產生。 The pathway depicted in Figure 35 begins with 3-hydroxybutyl-CoA, which can be generated via steps 1 and 13 as depicted in Figure 1 .

經由步驟1、13、27、28、29及30獲得2-丁烯-1-醇:在一個實施例中,本發明提供一種微生物,其包括步驟1、13、27、28、29及30之酶,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生2-丁烯-1-醇或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟28藉由Ptb-Buk催化。步驟1、13、27、28、29及30之酶的例示性類型及來源描述在本申請案他處。 Obtain 2-buten-1-ol through steps 1, 13, 27, 28, 29 and 30: In one embodiment, the invention provides a microorganism comprising steps 1, 13, 27, 28, 29 and 30 An enzyme by which the microorganism is capable of producing 2-buten-1-ol or a precursor thereof from a substrate, such as a gaseous substrate. Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 28 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 13, 27, 28, 29, and 30 are described elsewhere in this application.

產生異戊酸酯produces isovalerate

本發明提供一種微生物,其能夠自受質產生異戊酸酯或其前驅物(圖36)。本發明進一步提供一種藉由在受質存在下培養此類微生物產生異戊酸酯或其前驅物之方法。在較佳實施例中,所述微生物源自選自由自產乙醇梭菌、永達爾梭菌或拉氏梭菌組成之群的親本微生物。然而,微生物亦可源自完全不同微生物,例如大腸桿菌。對於產生異戊酸酯所述之酶促路徑可包括內源酶,及在內源酶活性不存在或低的情況下,外源酶。 The present invention provides a microorganism capable of producing isovalerate or its precursor from a substrate (Fig. 36). The present invention further provides a method for producing isovalerate or a precursor thereof by culturing such microorganisms in the presence of a substrate. In a preferred embodiment, the microorganism is derived from a parent microorganism selected from the group consisting of Clostridium ethanologenum, Clostridium yongdahlii, or Clostridium larsonii. However, the microorganisms can also originate from completely different microorganisms, such as E. coli. The enzymatic pathways described for the production of isovalerate may include endogenous enzymes and, in the case where endogenous enzyme activity is absent or low, exogenous enzymes.

經由步驟1、40、41、42、43及44獲得異戊酸酯:在一個實施例中,本發明提供一種微生物,其包括步驟1、40、41、42、43及44之微生物,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生異戊酸酯或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟44藉由Ptb-Buk催化。步驟1、40、41、42、43及 44之酶的例示性類型及來源描述在本申請案他處。 Obtaining isovalerate through steps 1, 40, 41, 42, 43 and 44: In one embodiment, the present invention provides a microorganism comprising the microorganisms of steps 1, 40, 41, 42, 43 and 44, by The enzyme, the microorganism is capable of producing isovalerate or a precursor thereof from a substrate, such as a gaseous substrate. Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 44 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 40, 41, 42, 43, and 44 are described elsewhere in this application.

產生異戊醇produces isoamyl alcohol

本發明提供一種微生物,其能夠自受質產生異戊醇或其前驅物(圖36)。本發明進一步提供一種藉由在受質存在下培養此類微生物產生異戊醇或其前驅物之方法。在較佳實施例中,所述微生物源自選自由自產乙醇梭菌、永達爾梭菌或拉氏梭菌組成之群的親本微生物。然而,微生物亦可源自完全不同微生物,例如大腸桿菌。對於產生異戊醇所述之酶促路徑可包括內源酶,及在內源酶活性不存在或低的情況下,外源酶。 The present invention provides a microorganism capable of producing isoamyl alcohol or its precursor from a substrate (Fig. 36). The present invention further provides a method for producing isoamyl alcohol or a precursor thereof by culturing such microorganisms in the presence of a substrate. In a preferred embodiment, the microorganism is derived from a parent microorganism selected from the group consisting of Clostridium ethanologenum, Clostridium yongdahlii, or Clostridium larsonii. However, the microorganisms can also originate from completely different microorganisms, such as E. coli. The enzymatic pathways described for the production of isoamyl alcohol may include endogenous enzymes and, in the case where endogenous enzyme activity is absent or low, exogenous enzymes.

經由步驟1、40、41、42、43、44、45及46獲得異戊醇:在一個實施例中,本發明提供一種微生物,其包括步驟1、40、41、42、43、44、45及46之微生物,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生異戊醇或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。在一較佳實施例中,步驟44藉由Ptb-Buk催化。步驟1、40、41、42、43、44、45及46之酶的例示性類型及來源描述在本申請案他處。 Isoamyl alcohol is obtained via steps 1, 40, 41, 42, 43, 44, 45 and 46: In one embodiment, the invention provides a microorganism comprising steps 1, 40, 41, 42, 43, 44, 45 and 46. A microorganism capable of producing isoamyl alcohol or a precursor thereof from a substrate (such as a gaseous substrate) via the enzyme. Typically, at least one enzyme in this pathway is exogenous to the microorganism. In a preferred embodiment, step 44 is catalyzed by Ptb-Buk. Exemplary types and sources of enzymes for steps 1, 40, 41, 42, 43, 44, 45, and 46 are described elsewhere in this application.

經由步驟1、40、41、42、43、47及46獲得異戊醇:在一個實施例中,本發明提供一種微生物,其包括步驟1、40、41、42、43、47及46之微生物,藉由所述酶,所述微生物能夠自受質(諸如氣體受質)產生異戊醇或其前驅物。通常,此路徑中之至少一種酶為微生物之外源酶。步驟1、40、41、42、43、47及46之酶的例示性類型及來源描述在本申請案他處。 Obtaining isoamyl alcohol through steps 1, 40, 41, 42, 43, 47 and 46: In one embodiment, the invention provides a microorganism comprising the microorganisms of steps 1, 40, 41, 42, 43, 47 and 46 , by means of the enzyme, the microorganism is able to produce isoamyl alcohol or its precursor from a substrate (such as a gas substrate). Typically, at least one enzyme in this pathway is exogenous to the microorganism. Exemplary types and sources of enzymes for steps 1, 40, 41, 42, 43, 47, and 46 are described elsewhere in this application.

在一個實施例中,微生物可包括超過一種產生異戊醇之路徑。 In one embodiment, the microorganism may include more than one pathway for producing isoamyl alcohol.

產生其他產物produce other products

本發明提供一種微生物,其包括外源Ptb-Buk及外源或內源醛:鐵氧化還原蛋白氧化還原酶(AOR)。此類微生物可自產自例如氣體受質之乙醯基-CoA產生例如1-丙醇、1-丁醇、1-己醇及1-辛醇或其前驅物(圖32)。本發明進一步提供一種藉由在氣體受質存在下培養此類微生物產生1-丙醇、1-丁醇、1-己醇及1-辛醇或其前驅物之方法。自產乙醇梭菌、永達爾梭菌及拉氏梭菌天然包括AOR。然而,AOR可與表現外源Ptb-Buk組合過度表現於此類微生物中。或者,外源AOR及外源Ptb-Buk可表現於除自產乙醇梭菌、永達爾梭菌及拉氏梭菌以外之微生物(諸如大腸桿菌)中。 The present invention provides a microorganism, which includes exogenous Ptb-Buk and exogenous or endogenous aldehyde: ferredoxin oxidoreductase (AOR). Such microorganisms can produce, for example, 1-propanol, 1-butanol, 1-hexanol, and 1-octanol or precursors thereof from acetyl-CoA produced, for example, from gaseous substrates (Figure 32). The present invention further provides a method for producing 1-propanol, 1-butanol, 1-hexanol and 1-octanol or precursors thereof by cultivating such microorganisms in the presence of gaseous substrates. Clostridium autoethanologenum, Clostridium yongdahlii, and Clostridium larsonii naturally include AOR. However, AOR can be overexpressed in such microorganisms in combination with expression of exogenous Ptb-Buk. Alternatively, exogenous AOR and exogenous Ptb-Buk may be expressed in microorganisms other than Clostridium autoethanologenum, Clostridium yongdahlii, and Clostridium larsonii, such as E. coli.

產生前驅物及中間物Produce precursors and intermediates

圖1、34、35及36中所描繪之路徑可經修改以產生上述產物之前驅物或中間物。詳言之,可於宿主微生物中插入本文所述任一路徑之部分酶促路徑以獲得前驅物或中間物之產生。 The pathways depicted in Figures 1, 34, 35 and 36 can be modified to produce precursors or intermediates to the products described above. In particular, part of the enzymatic pathway of any of the pathways described herein can be inserted into a host microorganism to obtain the production of precursors or intermediates.

定義及背景Definition and background

術語「遺傳修飾」或「遺傳工程改造」泛指對微生物之基因組或核酸之操作。同樣,術語「經基因工程改造」係指微生物包括所操作之基因組或核酸。遺傳修飾方法包含例如異源基因表現、基因或啟動子插入或缺失、核酸突變、經改變之基因表現或不活化、酶工程改造、定向進化、基於知識之設計、隨機突變誘發方法、基因改組及密碼子最佳化。 The term "genetic modification" or "genetic engineering" generally refers to the manipulation of the genome or nucleic acid of microorganisms. Likewise, the term "genetically engineered" refers to the microorganism including the genome or nucleic acid upon which it has been manipulated. Genetic modification methods include, for example, heterologous gene expression, gene or promoter insertion or deletion, nucleic acid mutation, altered gene expression or inactivation, enzyme engineering, directed evolution, knowledge-based design, random mutation induction methods, gene shuffling, and Codon optimization.

「重組」指示核酸、蛋白質或微生物為遺傳修飾、工程改造或重組之產物。一般而言,術語「重組」係指核酸、蛋白質或微生物含有來源於多個來源之遺傳物質或由來源於多個來源(諸如兩種或更多種不同品系或種屬的微生物)之遺傳物質編碼。如本文所用,術語「重組」亦可用於描述微生物包括突變核酸或蛋白質,包含突變形式之內源性核酸或蛋白質。 "Recombinant" indicates that nucleic acids, proteins or microorganisms are the product of genetic modification, engineering or recombination. Generally speaking, the term "recombinant" refers to a nucleic acid, protein or microorganism that contains genetic material derived from multiple sources or consists of genetic material derived from multiple sources, such as two or more different strains or species of microorganisms. Encoding. As used herein, the term "recombinant" may also be used to describe a microorganism that includes mutated nucleic acids or proteins, including mutated forms of endogenous nucleic acids or proteins.

「內源」係指核酸或蛋白質存在或表現於產生本發明微生物之野生型或親本微生物中。舉例而言,內源性基因為天然地存在於產生本發明微生物之野生型或親本微生物中之基因。在一個實施例中,內源性基因之表現可藉由諸如外源性啟動子之外源性調控元件控制。 "Endogenous" means that a nucleic acid or protein is present or expressed in the wild-type or parent microorganism from which the microorganism of the invention originates. By way of example, endogenous genes are genes naturally present in the wild-type or parent microorganism from which the microorganism of the invention arises. In one embodiment, expression of endogenous genes can be controlled by exogenous regulatory elements, such as exogenous promoters.

「外源」係指核酸或蛋白質不存在於產生本發明微生物之野生型或親本微生物中。在一個實施例中,外源基因或酶可源自異源(亦即不同)品系或種屬且引入或表現於本發明微生物中。在另一實施例中,外源性基因或酶可以人工方式或以重組方式形成且引入或表現於本發明微生物中。外源性核酸可經改適以整合至本發明微生物之基因組中或保持於本發明微生物中之額外染色體態(例如質體)中。 "Foreign" refers to a nucleic acid or protein that is not present in the wild-type or parent microorganism from which the microorganism of the invention arises. In one embodiment, foreign genes or enzymes may be derived from a heterologous (ie, different) strain or species and introduced or expressed in the microorganism of the invention. In another embodiment, exogenous genes or enzymes may be formed artificially or recombinantly and introduced or expressed in the microorganism of the invention. The exogenous nucleic acid can be adapted to be integrated into the genome of the microorganism of the invention or to be maintained in an additional chromosomal state (eg, a plastid) in the microorganism of the invention.

「酶活性」或簡單地「活性」泛指酶活性,包含(但不限於)酶之活性、酶之量或酶催化反應之可利用性。因此,「提高」酶活性包含提高酶之活性、提高酶之量或提高酶催化反應之可利用性。類似地,「降低」酶活性包含降低酶之活性、降低酶之量或降低酶催化反應之可利用性。 "Enzymatic activity" or simply "activity" refers broadly to enzyme activity, including (but not limited to) the activity of an enzyme, the amount of enzyme, or the availability of enzyme-catalyzed reactions. Therefore, "increasing" enzyme activity includes increasing enzyme activity, increasing enzyme amount, or increasing the availability of enzyme-catalyzed reactions. Similarly, "reducing" enzyme activity includes reducing the activity of the enzyme, reducing the amount of the enzyme, or reducing the availability of the enzyme for a reaction catalyzed by the enzyme.

關於酶活性,「受質」為酶所作用之分子且「產 物」為藉由酶之作用產生的分子。因此,「天然受質」為野生型微生物中酶天然作用之分子,且「天然產物」為野生型微生物中藉由酶之作用天然產生的分子。舉例而言,丁醯基-CoA為Ptb及丁醯基磷酸酯之天然受質且為Buk之天然受質。另外,丁醯基磷酸酯為Ptb之天然產物且丁酸酯為Buk之天然產物。同樣,「非天然受質」為在野生型微生物中酶不天然作用之分子,且「非天然產物」為野生型微生物中不藉由酶之作用天然產生之分子。天然或非天然的能夠作用於多種不同受質之酶通常稱為「混雜」酶。本發明者已發現Ptb為混雜的且能夠接受多種醯基-CoA及烯醯基-CoA作為受質,使得可使用Ptb-Buk分別將多種醯基-CoA及烯醯基-CoA轉化為其相應酸或烯酸酯,而同時產生ATP。因此,在較佳實施例中,本發明之Ptb-Buk作用於非天然受質(亦即除丁醯基-CoA及/或丁醯基磷酸酯以外之受質)而產生非天然產物(亦即除丁醯基磷酸酯及/或丁酸酯以外之產物)。 Regarding enzyme activity, the "substrate" is the molecule the enzyme acts on and the "product" is the molecule produced by the action of the enzyme. Therefore, a "natural substrate" is a molecule on which an enzyme in a wild-type microorganism naturally acts, and a "natural product" is a molecule on which an enzyme in a wild-type microorganism naturally acts. For example, butyl-CoA is a natural acceptor for Ptb and butyl phosphate and is a natural acceptor for Buk. In addition, butyryl phosphate is a natural product of Ptb and butyrate is a natural product of Buk. Likewise, an "unnatural substrate" is a molecule on which an enzyme does not naturally act in a wild-type microorganism, and an "unnatural product" is a molecule on which an enzyme does not naturally occur in a wild-type microorganism. Enzymes, whether natural or non-natural, that act on a variety of different substrates are often referred to as "hybrid" enzymes. The inventors have discovered that Ptb is hybrid and can accept a variety of acyl-CoA and enyl-CoA as acceptors, so that Ptb-Buk can be used to convert multiple acyl-CoA and enyl-CoA into their respective counterparts. acid or enoate, while producing ATP. Therefore, in a preferred embodiment, the Ptb-Buk of the present invention acts on a non-natural substrate (i.e., a substrate other than butyl-CoA and/or butyl phosphate) to produce a non-natural product (i.e., except butyl phosphate). products other than esters and/or butyrate esters).

術語「丁醯基-CoA(butyryl-CoA)」可在本文中與「丁醯基-CoA(butanoyl-CoA)」互換使用。 The term "butyryl-CoA" may be used interchangeably herein with "butanoyl-CoA".

術語「產能」或其類似術語可在本文中與「能量守恆」或其類似術語互換使用。此等術語均常用於文獻中。 The term "capacity" or similar terms may be used interchangeably herein with "energy conservation" or similar terms. These terms are commonly used in the literature.

「突變」係指本發明微生物中之核酸或蛋白質相較於產生本發明微生物之野生型或親本微生物經修飾。在一個實施例中,突變可為編碼酶之基因的缺失、插入或取代。在另一實施例中,突變可為酶中一或多種胺基酸之缺失、插入或取代。 "Mutation" refers to a modification of a nucleic acid or protein in a microorganism of the invention compared to the wild-type or parent microorganism from which the microorganism of the invention arises. In one embodiment, the mutation may be a deletion, insertion, or substitution of the gene encoding the enzyme. In another embodiment, the mutation may be a deletion, insertion or substitution of one or more amino acids in the enzyme.

詳言之,「斷裂性突變」為減少或去除(亦即「干 擾」)基因或酶之表現或活性的突變。斷裂性突變可使基因或酶部分失活、完全失活或缺失。斷裂性突變可為基因剔除(KO)突變。斷裂性突變可為減少、阻止或阻斷藉由酶產生之產物之生物合成的任何突變。斷裂性突變可包含例如編碼酶之基因的突變、參與編碼酶之基因之表現的遺傳調控元件的突變、引入產生降低或抑制酶之活性的蛋白質的核酸或引入抑制酶之表現的核酸(例如反義RNA、siRNA、CRISPR)或蛋白質。可使用此項技術中已知之任何方法引入斷裂性突變。 Specifically, "disruptive mutations" are mutations that reduce or eliminate (i.e., "interfere with") the expression or activity of a gene or enzyme. Breaking mutations can partially inactivate a gene or enzyme, completely inactivate it, or delete it. Breaking mutations can be knockout (KO) mutations. A disruptive mutation may be any mutation that reduces, prevents, or blocks the biosynthesis of a product produced by an enzyme. Disruptive mutations may include, for example, mutations in a gene encoding an enzyme, mutations in a genetic regulatory element involved in the expression of a gene encoding an enzyme, introduction of a nucleic acid that produces a protein that reduces or inhibits the activity of an enzyme, or introduction of a nucleic acid that inhibits the expression of an enzyme (e.g., reverse sense RNA, siRNA, CRISPR) or protein. Breaking mutations can be introduced using any method known in the art.

引入斷裂性突變產生如下本發明之微生物,其不產生標靶產物或實質上不產生標靶產物或相較於產生本發明微生物之親本微生物產生減少量之標靶產物。舉例而言,本發明之微生物可不產生標靶產物或比親本微生物所產生之標靶產物少至少約1%、3%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或95%。舉例而言,本發明之微生物可產生少於約0.001、0.01、0.10、0.30、0.50或1.0g/L標靶產物。 Introduction of disruptive mutations produces microorganisms of the invention that produce no target product, substantially no target product, or a reduced amount of the target product compared to the parent microorganism that produced the microorganism of the invention. For example, the microorganism of the invention may produce no target product or at least about 1%, 3%, 5%, 10%, 20%, 30%, 40%, 50% less than the target product produced by the parent microorganism. , 60%, 70%, 80%, 90% or 95%. For example, the microorganisms of the invention can produce less than about 0.001, 0.01, 0.10, 0.30, 0.50, or 1.0 g/L of the target product.

「密碼子最佳化」係指核酸(諸如基因)突變以使特定品系或種屬之核酸的轉譯最佳化或改良。密碼子最佳化可產生較快的轉譯速率或較高的轉譯準確性。在一較佳實施例中,本發明基因針對梭菌、尤其自產乙醇梭菌、永達爾梭菌或拉氏梭菌中之表現進行密碼子最佳化。在另一較佳實施例中,本發明基因針對自產乙醇梭菌LZ1561中之表現進行密碼子最佳化,自產乙醇梭菌LZ1561以DSMZ寄存編號DSM23693寄存。 "Codon optimization" refers to the mutation of a nucleic acid, such as a gene, to optimize or improve translation of a particular strain or species of nucleic acid. Codon optimization can result in faster translation rates or higher translation accuracy. In a preferred embodiment, the gene of the present invention is codon-optimized for expression in Clostridium autoethanogenans, Clostridium autoethanologenum, Clostridium yongdahlii or Clostridium larsonii . In another preferred embodiment, the gene of the present invention is codon-optimized for performance in Clostridium autoethanologenum LZ1561, which is registered with DSMZ registration number DSM23693.

「過度表現」係指本發明微生物中核酸或蛋白質 之表現相較於產生本發明微生物之野生型或親本微生物增加。過度表現可藉由此項技術中已知的任何手段達成,包含改變基因複本數、基因轉錄率、基因轉譯率或酶降解率。 "Overexpression" refers to increased expression of nucleic acids or proteins in a microorganism of the invention compared to the wild-type or parent microorganism from which the microorganism of the invention arises. Overexpression can be achieved by any means known in the art, including altering gene copy number, gene transcription rate, gene translation rate, or enzyme degradation rate.

術語「變異體」包含序列不同於參考核酸及蛋白質之序列(諸如先前技術中所揭示或本文中所例示之參考核酸及蛋白質之序列)的核酸及蛋白質。本發明可使用變異核酸或蛋白質實施,所述變異核酸或蛋白質之功能與參考核酸或蛋白質實質上相同。舉例而言,變異蛋白可執行與參考蛋白質實質上相同的功能或催化與參考蛋白質實質上相同的反應。變異基因可編碼與參考基因相同或實質上相同的蛋白質。變異啟動子啟動一或多個基因之表現的能力可與參考啟動子實質上相同。 The term "variant" includes nucleic acids and proteins whose sequences differ from those of reference nucleic acids and proteins, such as those disclosed in the prior art or exemplified herein. The invention can be practiced using variant nucleic acids or proteins that function substantially the same as a reference nucleic acid or protein. For example, a variant protein may perform substantially the same function or catalyze substantially the same reaction as the reference protein. A variant gene may encode the same or substantially the same protein as the reference gene. A variant promoter can have substantially the same ability to drive expression of one or more genes as a reference promoter.

此類核酸或蛋白質在本文中可稱為「功能等效變異體」。舉例而言,核酸之功能等效變異體可包括對偶基因變異體、基因片段、突變基因、多形現象及其類似者。來自其他微生物之同源基因亦為功能等效變異體之實例。其包含諸如丙酮丁醇梭菌、拜氏梭菌或永達爾梭菌之種屬中之同源基因,其詳情在諸如基因庫或NCBI之網站上可公開獲得。功能等效變異體亦包含由於針對特定微生物之密碼子最佳化而引起序列變化之核酸。核酸之功能等效變異體較佳與參考核酸具有至少約70%、約80%、約85%、約90%、約95%、約98%或更大的核酸序列一致性(同源性百分比)。蛋白質之功能等效變異體較佳與參考蛋白質具有至少約70%、約80%、約85%、約90%、約95%、約98%或更大的胺基酸一致性(同源性百分比)。變異核酸或蛋白質之功能等效性可以使用此項技 術中已知之任何方法評估。 Such nucleic acids or proteins may be referred to herein as "functionally equivalent variants." For example, functionally equivalent variants of nucleic acids may include allelogenic variants, gene fragments, mutant genes, polymorphisms, and the like. Homologous genes from other microorganisms are also examples of functionally equivalent variants. It contains homologous genes in species such as Clostridium acetobutylicum, Clostridium beijerinckii or Clostridium yongdahl, details of which are publicly available on websites such as GenBank or NCBI. Functionally equivalent variants also include nucleic acids that result in sequence changes due to codon optimization for a particular microorganism. Functionally equivalent variants of nucleic acids preferably have at least about 70%, about 80%, about 85%, about 90%, about 95%, about 98% or greater nucleic acid sequence identity (percent homology) with the reference nucleic acid. ). Functionally equivalent variants of a protein preferably have at least about 70%, about 80%, about 85%, about 90%, about 95%, about 98% or greater amino acid identity (homology) with the reference protein. percentage). The functional equivalence of variant nucleic acids or proteins can be assessed using any method known in the art.

核酸可使用此項技術中已知之任何方法傳遞至本發明之微生物。舉例而言,核酸可以裸核酸形式傳遞,或可用一或多種試劑(諸如脂質體)調配。核酸可視情況為DNA、RNA、cDNA或其組合。限制抑制劑可用於特定實施例中。其他載體可包含質體、病毒、噬菌體、黏質體及人工染色體。在一較佳實施例中,使用質體將核酸傳遞至本發明之微生物。舉例而言,轉型(包含轉導或轉染)可藉由電穿孔、超音波處理、聚乙二醇介導之轉型、化學或天然感受態、原生質體轉型、原噬菌體誘導或結合達成。在具有活性限制酶系統之某些實施例中,可能需要在將核酸引入微生物中之前甲基化所述核酸。 Nucleic acids can be delivered to the microorganisms of the invention using any method known in the art. For example, the nucleic acid may be delivered as naked nucleic acid, or may be formulated with one or more reagents, such as liposomes. The nucleic acid may be DNA, RNA, cDNA or a combination thereof, as appropriate. Limiting inhibitors may be used in certain embodiments. Other vectors may include plastids, viruses, phages, myxoplasts, and artificial chromosomes. In a preferred embodiment, plasmids are used to deliver nucleic acids to the microorganisms of the invention. For example, transformation (including transduction or transfection) can be achieved by electroporation, sonication, polyethylene glycol-mediated transformation, chemical or natural competence, protoplast transformation, prophage induction or conjugation. In certain embodiments with active restriction enzyme systems, it may be necessary to methylate the nucleic acid before introducing it into the microorganism.

此外,核酸可經設計以包括調控元件,諸如啟動子,以提高或以其他方式控制特定核酸之表現。啟動子可為組成性啟動子或誘導性啟動子。理想地,啟動子為Wood-Ljungdahl路徑啟動子、鐵氧化還原蛋白啟動子、丙酮酸:鐵氧化還原蛋白氧化還原酶啟動子、Rnf複合物操縱子之啟動子、ATP合成酶操縱子之啟動子或磷酸轉乙醯酶/乙酸激酶操縱子之啟動子。 In addition, nucleic acids can be designed to include regulatory elements, such as promoters, to enhance or otherwise control the expression of a particular nucleic acid. A promoter can be a constitutive promoter or an inducible promoter. Ideally, the promoter is a Wood-Ljungdahl pathway promoter, a ferredoxin promoter, a pyruvate:ferredoxin oxidoreductase promoter, a promoter of the Rnf complex operon, a promoter of the ATP synthase operon or the promoter of the phosphotransacetylase/acetate kinase operon.

「微生物」為微觀生物,尤其為細菌、古細菌、病毒或真菌。本發明微生物通常為細菌。如本文所用,「微生物」之敍述應理解為涵蓋「細菌」。 "Microorganisms" are microscopic organisms, especially bacteria, archaea, viruses or fungi. The microorganisms of the present invention are usually bacteria. As used herein, the reference to "microorganisms" should be understood to include "bacteria."

「親本微生物」為用於產生本發明微生物之微生物。親本微生物可為天然存在之微生物(亦即,野生型微生物)或先前經修飾之微生物(亦即,突變或重組微生物)。本 發明細菌可經修飾以表現或過度表現一或多種在親本微生物中不表現或不過度表現之酶。類似地,本發明微生物可經修飾以含有一或多個親本微生物不含之基因。本發明之微生物亦可經修飾以不表現或表現較少量之一或多種表現於親本微生物中之酶。在一個實施例中,親本微生物為自產乙醇梭菌、永達爾梭菌或拉氏梭菌。在一較佳實施例中,親本微生物為自產乙醇梭菌LZ1561,其以DSMZ寄存編號DSM23693寄存。 A "parent microorganism" is a microorganism used to produce the microorganism of the invention. The parent microorganism can be a naturally occurring microorganism (ie, a wild-type microorganism) or a previously modified microorganism (ie, a mutant or recombinant microorganism). The bacteria of the invention can be modified to express or overexpress one or more enzymes that are not expressed or overexpressed in the parent microorganism. Similarly, microorganisms of the invention may be modified to contain one or more genes that are not present in the parent microorganism. Microorganisms of the invention may also be modified to express none or a lower amount of one or more of the enzymes expressed in the parent microorganism. In one embodiment, the parent microorganism is Clostridium autoethanogenogenum, Clostridium yongdahlii, or Clostridium larsonii. In a preferred embodiment, the parent microorganism is Clostridium autoethanogenogenum LZ1561, which is registered under DSMZ registration number DSM23693.

術語「源自」指示核酸、蛋白質或微生物自不同(例如,親本或野生型)核酸、蛋白質或微生物進行修飾或改適,以便產生新穎核酸、蛋白質或微生物。此類修飾或改適通常包含核酸或基因之插入、缺失、突變或取代。一般而言,本發明微生物源自親本微生物。在一個實施例中,本發明微生物源自自產乙醇梭菌、永達爾梭菌或拉氏梭菌。在一較佳實施例中,本發明之微生物源自以DSMZ寄存編號DSM23693寄存之自產乙醇梭菌LZ1561。 The term "derived from" indicates that a nucleic acid, protein or microorganism is modified or adapted from a different (eg, parent or wild-type) nucleic acid, protein or microorganism in order to produce a novel nucleic acid, protein or microorganism. Such modifications or adaptations typically include insertion, deletion, mutation or substitution of nucleic acids or genes. Generally speaking, the microorganisms of the invention are derived from a parent microorganism. In one embodiment, the microorganism of the present invention is derived from Clostridium autoethanogenogenum, Clostridium yongdahlii or Clostridium larsonii. In a preferred embodiment, the microorganism of the present invention is derived from Clostridium autoethanogenogenum LZ1561 registered under DSMZ registration number DSM23693.

本發明之微生物可基於功能特徵進一步分類。舉例而言,本發明之微生物可為或可源自固定C1之微生物、厭氧菌、產乙酸菌、產乙醇菌、羧基氧化菌及/或甲烷氧化菌。表1提供微生物之代表性清單且鑑別其功能特徵。 The microorganisms of the present invention can be further classified based on functional characteristics. For example, the microorganisms of the present invention may be or may be derived from C1-fixing microorganisms, anaerobic bacteria, acetogens, ethanologens, carboxyl-oxidizing bacteria and/or methanotrophic bacteria. Table 1 provides a representative list of microorganisms and identifies their functional characteristics.

「C1」係指一碳分子,例如CO、CO2、CH4或CH3OH。「C1-氧合物」係指亦包括至少一個氧原子之一碳分子,例如CO、CO2或CH3OH。「C1--碳源」係指充當本發明微生物之部分或唯一碳源之一碳分子。舉例而言,C1碳源可包括中CO、CO2、CH4、CH3OH或CH2O2之一或多者。較佳地,C1-碳源包括CO及CO2中之一者或兩者。「固定C1之微生物」為能夠自C1-碳源產生一或多種產物的微生物。通常, 本發明之微生物為固定C1之細菌。在一較佳實施例中,本發明之微生物源自表1中鑑別之固定C1之微生物。 "C1" refers to a one-carbon molecule, such as CO, CO 2 , CH 4 or CH 3 OH. "C1-oxygenate" refers to a carbon molecule that also includes at least one oxygen atom, such as CO, CO2 , or CH3OH . "C1--carbon source" refers to a carbon molecule that serves as part or the only carbon source for the microorganism of the present invention. For example, the C1 carbon source may include one or more of CO, CO2 , CH4 , CH3OH , or CH2O2 . Preferably, the C1-carbon source includes one or both of CO and CO2 . A "C1-fixing microorganism" is a microorganism capable of producing one or more products from a C1-carbon source. Typically, the microorganisms of the present invention are C1-fixing bacteria. In a preferred embodiment, the microorganism of the present invention is derived from the C1-fixed microorganism identified in Table 1.

「厭氧菌」為生長不需要氧氣之微生物。若氧氣以高於某一臨限值存在,則厭氧菌可消極反應或甚至死亡。通常,本發明之微生物為厭氧菌。在一較佳實施例中,本發明之微生物源自表1中鑑別之厭氧菌。 "Anaerobic bacteria" are microorganisms that do not require oxygen to grow. If oxygen is present above a certain threshold, anaerobic bacteria can react negatively or even die. Typically, the microorganisms of the present invention are anaerobic bacteria. In a preferred embodiment, the microorganism of the present invention is derived from the anaerobic bacteria identified in Table 1.

「產乙酸菌」為產生或能夠產生乙酸酯(或乙酸)作為厭氧呼吸之產物的微生物。通常,產乙酸菌為使用Wood-Ljungdahl路徑作為其能量守恆及合成乙醯CoA及乙醯CoA衍生產物(諸如乙酸酯)之主要機制的絕對厭氧細菌(Ragsdale,《生物化學與生物物理學學報》,1784:1873-1898,2008)。產乙酸菌使用乙醯基-CoA路徑作為(1)自CO2還原合成乙醯基-CoA之機制,(2)接受電子、能量守恆之最終過程,(3)固定(同化)合成細胞碳中之CO2的機制(Drake,《產乙酸原核生物》,於《原核生物》中,第3版,第354頁,New York,NY,2006)。所有天然存在之產乙酸菌為固定C1、厭氧、自養及非甲烷氧化的。通常,本發明之微生物為產乙酸菌。在一較佳實施例中,本發明之微生物源自表1中鑑別之產乙酸菌。 "Acetogens" are microorganisms that produce or are capable of producing acetate (or acetic acid) as a product of anaerobic respiration. Typically, acetogens are absolutely anaerobic bacteria that use the Wood-Ljungdahl pathway as their primary mechanism for energy conservation and synthesis of acetyl-CoA and acetyl-CoA-derived products such as acetate (Ragsdale, " Biochemistry and Biophysics" Acta Sinica Sinica , 1784: 1873-1898, 2008). Acetogens use the acetyl-CoA pathway as (1) the mechanism to synthesize acetyl-CoA from CO 2 reduction, (2) the final process of electron acceptance and energy conservation, and (3) fixation (assimilation) of synthesized cellular carbon The mechanism of CO 2 (Drake, "Acetogenic Prokaryotes", in "Prokaryotes", 3rd edition, p. 354, New York, NY, 2006). All naturally occurring acetogens are C1-fixed, anaerobic, autotrophic and non-methanotrophic. Typically, the microorganisms of the present invention are acetogenic bacteria. In a preferred embodiment, the microorganism of the present invention is derived from the acetogenic bacteria identified in Table 1.

「產乙醇菌」為產生或能夠產生乙醇之微生物。通常,本發明之微生物為產乙醇菌。在一較佳實施例中,本發明之微生物源自表1中鑑別之產乙醇菌。 "Ethanologenic bacteria" are microorganisms that produce or are capable of producing ethanol. Typically, the microorganisms of the present invention are ethanologenic bacteria. In a preferred embodiment, the microorganism of the present invention is derived from the ethanologenic bacteria identified in Table 1.

「自養生物」為能夠在不存在有機碳的情況下生長之微生物。取而代之,自養生物使用無機碳源,諸如CO及/或CO2。通常,本發明之微生物為自養生物。在一較佳實施 例中,本發明之微生物源自表1中鑑別之產自養生物。 "Autotrophs" are microorganisms that can grow in the absence of organic carbon. Instead, autotrophs use inorganic carbon sources such as CO and/or CO2 . Typically, the microorganisms of the present invention are autotrophs. In a preferred embodiment, the microorganism of the present invention is derived from the autotrophic organism identified in Table 1.

「一氧化碳氧化菌」為能夠使用CO作為唯一碳源之微生物。通常,本發明之微生物為一氧化碳氧化菌。在一較佳實施例中,本發明之微生物源自表1中鑑別之羧基氧化菌。 "Carbon monoxide oxidizing bacteria" are microorganisms that can use CO as the sole carbon source. Typically, the microorganisms of the present invention are carbon monoxide oxidizing bacteria. In a preferred embodiment, the microorganism of the present invention is derived from the carboxy-oxidizing bacteria identified in Table 1.

「甲烷氧化菌」為能夠使用甲烷作為唯一碳源及能量來源之微生物。在某些實施例中,本發明之微生物源自甲烷氧化菌。 "Methanotrophs" are microorganisms that can use methane as their sole source of carbon and energy. In certain embodiments, the microorganisms of the invention are derived from methanotrophs.

更廣泛地,本發明之微生物可源自表1中鑑別之任何屬或種屬。 More broadly, the microorganisms of the invention may be derived from any genus or species identified in Table 1.

在一較佳實施例中,本發明微生物源自包括自產乙醇梭菌、永達爾梭菌及拉氏梭菌種屬之梭菌的叢集。此等種屬首先藉由Abrini,《微生物學檔案(Arch Microbiol)》,161:345-351,1994(自產乙醇梭菌),Tanner,《國際系統細菌學雜誌(Int J System Bacteriol)》,43:232-236,1993(永達爾梭菌)及Huhnke,WO 2008/028055(拉氏梭菌)報導及表徵。 In a preferred embodiment, the microorganism of the present invention is derived from a cluster of Clostridium species including Clostridium autoethanologenum, Clostridium yongdahlii and Clostridium larsonii. These species were first identified by Abrini, Arch Microbiol, 161: 345-351, 1994 (Clostridium autoethanologenum), Tanner, Int J System Bacteriol , 43: 232-236, 1993 (Clostridium jungdalae) and Huhnke, WO 2008/028055 (Closobacter larsonii) reported and characterized.

此三種種屬具有諸多類似性。詳言之,此等物種均為梭菌屬之固定C1、厭氧、產乙酸、產乙醇及一氧化碳營養型成員。此等種屬具有類似基因型、表現型、能量守恆及醱酵代謝模式。此外,此等物種叢集於16S rRNA DNA具有大於99%一致性之梭菌rRNA同源組I中,具有約22-30mol%之DNA G+C含量,為革蘭氏陽性的,具有類似形態及大小(0.5-0.7×3-5μm之間的對數生長細胞),為嗜溫性的(最佳生長於30-37℃下),具有約4-7.5之類似pH範圍(其中最佳pH為約5.5-6),不具有細胞色素且經由Rnf錯合物使能量守恆。 另外,已在此等種屬中展示羧酸還原為其對應醇(Perez,《生物技術與生物工程(Biotechnol Bioeng)》,110:1066-1077,2012)。重要的是,此等種屬亦全部展示在含CO氣體下強力自養生長、產生乙醇及乙酸酯(或乙酸)作為主要醱酵產物,且在某些條件下產生少量2,3-丁二醇及乳酸。 These three species have many similarities. Specifically, these species are C1-fixed, anaerobic, acetogenic, ethanologenic, and carbon monoxide trophic members of the genus Clostridium. These species have similar genotypes, phenotypes, energy conservation and fermentation metabolism patterns. In addition, these species cluster in Clostridium rRNA homology group I with greater than 99% identity in 16S rRNA DNA, have a DNA G+C content of approximately 22-30 mol%, are Gram-positive, and have similar morphology and size (logarithmically growing cells between 0.5-0.7 × 3-5 μm), are mesophilic (optimally grown at 30-37°C), have a similar pH range of approximately 4-7.5 (where the optimal pH is approximately 5.5-6), does not possess cytochromes and conserves energy via the Rnf complex. Additionally, reduction of carboxylic acids to their corresponding alcohols has been demonstrated in these species (Perez, Biotechnol Bioeng , 110:1066-1077, 2012). Importantly, these species also all display strong autotrophic growth under CO-containing gases, produce ethanol and acetate (or acetic acid) as the main fermentation products, and produce small amounts of 2,3-butyrate under certain conditions. Glycol and lactic acid.

然而,此三種種屬亦具有多種差異。此等種屬分離自不同來源:自產乙醇梭菌分離自兔腸道,永達爾梭菌分離自雞舍廢棄物,且拉氏梭菌分離自淡水沈積物。此等物種在各種糖(例如鼠李糖、阿拉伯糖)、酸(例如葡糖酸鹽、檸檬酸鹽)、胺基酸(例如精胺酸、組胺酸)以及其他受質(例如甜菜鹼、丁醇)之利用方面不同。此外,此等種屬在對某些維生素(例如硫胺素、生物素)之營養缺陷性方面不同。此等種屬在Wood-Ljungdahl路徑基因及蛋白質之核酸及胺基酸序列方面不同,但已發現此等基因及蛋白質之一般組織及數目在所有種屬中相同(Köpke,《生物技術新見》,22:320-325,2011)。 However, these three species also have many differences. These species were isolated from different sources: Clostridium autoethanologenum was isolated from rabbit intestines, Clostridium yongdahl was isolated from chicken house waste, and Clostridium lashanii was isolated from freshwater sediments. These species are present in various sugars (e.g. rhamnose, arabinose), acids (e.g. gluconate, citrate), amino acids (e.g. arginine, histidine) and other substrates (e.g. betaine , butanol) are different in their utilization. In addition, these species differ in their auxotrophy of certain vitamins (eg, thiamine, biotin). The species differ in the nucleic acid and amino acid sequences of the Wood-Ljungdahl pathway genes and proteins, but the general organization and number of these genes and proteins have been found to be the same in all species (Köpke, " New Insights in Biotechnology " , 22: 320-325, 2011).

因此,總體而言,自產乙醇梭菌、永達爾梭菌或拉氏梭菌之許多特徵並非為所述種屬所特異性的,而是梭菌屬之固定C1、厭氧、產乙酸、產乙醇及一氧化碳營養型成員之此叢集之一般特徵。然而,由於此等種屬實際上為相異的,故此等種屬中之一者之基因修飾或操作可在此等種屬中之另一者中具有不同作用。舉例而言,可觀測到生長、效能或產物產生之差異。 Thus, in general, many of the characteristics of C. autoethanologenum, C. jungdahl, or C. larsonii are not specific to the species in question, but are C1-fixed, anaerobic, acetogenic, General characteristics of ethanologenic and carbonotrophic members of this cluster. However, because these species are actually distinct, genetic modifications or manipulations in one of these species may have different effects in another of these species. For example, differences in growth, potency, or product production may be observed.

本發明之微生物亦可源自自產乙醇梭菌、永達爾梭菌或拉氏梭菌之分離株或突變體。自產乙醇梭菌之分離株 及突變體包含JA1-1(DSM10061)(Abrini,《微生物學檔案》,161:345-351,1994)、LBS1560(DSM19630)(WO 2009/064200)及LZ1561(DSM23693)。永達爾梭菌之分離株及突變體包含ATCC 49587(Tanner,《國際系統細菌學雜誌》,43:232-236,1993)、PETCT(DSM13528,ATCC 55383)、ERI-2(ATCC 55380)(US 5,593,886)、C-01(ATCC 55988)(US 6,368,819)、O-52(ATCC 55989)(US 6,368,819)及OTA-1(Tirado-Acevedo,《使用永達爾梭菌自合成氣產生生物乙醇(Production of bioethanol from synthesis gas using Clostridium ljungdahlii)》,《博士畢業論文(PhD thesis)》,North Carolina State University,2010)。拉氏梭菌之分離株及突變體包含PI 1(ATCC BAA-622,ATCC PTA-7826)(WO 2008/028055)。 The microorganisms of the present invention may also be derived from isolates or mutants of Clostridium ethanologenum, Clostridium yongdahlii or Clostridium larsonii. Isolates and mutants of C. autoethanogenum include JA1-1 (DSM10061) (Abrini, Archives of Microbiology, 161:345-351, 1994), LBS1560 (DSM19630) (WO 2009/064200) and LZ1561 (DSM23693 ). Isolates and mutants of Clostridium yongdahl include ATCC 49587 (Tanner, " International Journal of Systematic Bacteriology ", 43: 232-236, 1993), PETCT (DSM13528, ATCC 55383), ERI-2 (ATCC 55380) (US 5,593,886), C-01 (ATCC 55988) (US 6,368,819), O-52 (ATCC 55989) (US 6,368,819) and OTA-1 (Tirado-Acevedo, "Production of bioethanol from self-synthesis gas using Clostridium yungdalae" (Production of bioethanol from synthesis gas using Clostridium ljungdahlii)", "PhD thesis", North Carolina State University, 2010). Isolates and mutants of Clostridium larsonii include PI 1 (ATCC BAA-622, ATCC PTA-7826) (WO 2008/028055).

然而,在一些實施例中,本發明之微生物為除自產乙醇梭菌、永達爾梭菌或拉氏梭菌以外的微生物。舉例而言,微生物可選自由以下組成之群:大腸桿菌、釀酒酵母、丙酮丁醇梭菌、拜氏梭菌、糖丁酸梭菌(Clostridium saccharbutyricum)、糖乙酸多丁醇梭菌、丁酸梭菌、帝奧梭菌、克氏梭菌、巴斯德梭菌、水腫梭菌(Clostridium novyi)、艱難梭菌、熱纖梭菌(Clostridium thetmocellum)、解纖維梭菌、嗜纖維梭菌、植物醱酵梭菌(Clostridium phytofermentans)、雷特氏乳球菌、枯草桿菌、地衣芽孢桿菌、運動醱酵單胞菌(Zymomonas mobilis)、產酸克雷伯氏菌(Klebsiella oxytoca)、肺炎克雷伯氏菌(Klebsiella pneumonia)、穀胺酸棒狀桿菌(Corynebacterium glutamicum)、里氏木菌(Trichoderma reesei)、鉤蟲貪銅菌、惡臭假單胞菌(Pseudomonas putida)、 胚芽乳桿菌(Lactobacillus plantarum)及扭脫甲基桿菌(Methylobacterium extorquens)。 However, in some embodiments, the microorganism of the present invention is a microorganism other than Clostridium autoethanologenum, Clostridium yongdahlii, or Clostridium larsonii. For example, the microorganism may be selected from the group consisting of: Escherichia coli, Saccharomyces cerevisiae, Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium saccharbutyricum , Clostridium saccharbutylicum, butyricum Clostridium difficile, Clostridium thetmocellum, Clostridium cellulolyticum, Clostridium cellulolyticum , Clostridium cellulolytica, Clostridium phytofermentans, Lactococcus reuteri, Bacillus subtilis, Bacillus licheniformis, Zymomonas mobilis , Klebsiella oxytoca , Klebsiella pneumoniae Klebsiella pneumonia , Corynebacterium glutamicum , Trichoderma reesei , Cupria hookworm, Pseudomonas putida , Lactobacillus plantarum and Methylobacterium extorquens .

「受質」係指本發明微生物之碳源及/或能量來源。通常,受質為氣體受質,且包括C1-碳源,例如CO、CO2及/或CH4。較佳地,受質包括含有CO或CO+CO2之C1-碳源。受質可進一步包括其他非碳組分,諸如H2、N2或電子。 "Substrate" refers to the carbon source and/or energy source of the microorganism of the present invention. Typically, the substrate is a gaseous substrate and includes a C1-carbon source, such as CO, CO2 and/or CH4 . Preferably, the substrate includes a C1-carbon source containing CO or CO+ CO2 . The acceptor may further include other non-carbon components such as H 2 , N 2 or electrons.

受質一般包括至少一定量之CO,諸如約1、2、5、10、20、30、40、50、60、70、80、90或100mol%CO。受質可包括一定範圍之CO,諸如約20-80、30-70或40-60mol%CO。較佳地,受質包括約40-70mol%CO(例如鋼鐵廠或高爐氣體)、約20-30mol%CO(例如鹼性氧氣轉爐氣體)或約15-45mol%CO(例如合成氣)。在一些實施例中,受質可包括相對低量之CO,諸如約1-10或1-20mol%CO。本發明之微生物通常將受質中之至少一部分CO轉化為產物。在一些實施例中,受質不包括或實質上不包括CO。 The substrate generally includes at least some amount of CO, such as about 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 mol% CO. The substrate may include a range of CO, such as about 20-80, 30-70, or 40-60 mol% CO. Preferably, the substrate includes about 40-70 mol% CO (such as steel plant or blast furnace gas), about 20-30 mol% CO (such as basic oxygen converter gas), or about 15-45 mol% CO (such as syngas). In some embodiments, the substrate may include relatively low amounts of CO, such as about 1-10 or 1-20 mol% CO. The microorganisms of the present invention typically convert at least a portion of the CO in the substrate into products. In some embodiments, the substrate does not include or does not include substantially CO.

受質可包括一定量之H2。舉例而言,受質可包括約1、2、5、10、15、20或30mol%H2。在一些實施例中,受質可包括相對高量之H2,諸如約60、70、80或90mol%H2。在其他實施例中,受質不包括或實質上不包括H2The substrate may include a certain amount of H 2 . For example, the substrate may include about 1, 2, 5, 10, 15, 20, or 30 mol% H2 . In some embodiments, the substrate may include relatively high amounts of H2 , such as about 60, 70, 80, or 90 mol% H2 . In other embodiments, the substrate does not include or does not include substantially H2 .

受質可包括一定量之CO2。舉例而言,受質可包括約1-80或1-30mol%CO2。在一些實施例中,受質可包括小於約20、15、10或5mol%CO2。在另一實施例中,受質不包括或實質上不包括CO2The substrate may include a certain amount of CO 2 . For example, the substrate may include about 1-80 or 1-30 mol% CO2 . In some embodiments, the substrate may include less than about 20, 15, 10, or 5 mol% CO2 . In another embodiment, the substrate does not include or does not include substantially CO2 .

儘管受質通常為氣態,但受質亦可以替代形式提供。舉例而言,受質可使用微泡分散發生器溶解於含CO氣體 飽和液體中。另外舉例而言,受質可吸附至固體載體上。 Although substrates are usually in the gaseous state, substrates may be provided in alternative forms. For example, the substrate can be dissolved in a CO gas-saturated liquid using a microbubble dispersion generator. For another example, the substrate can be adsorbed onto a solid support.

受質及/或C1-碳源可為作為工業製程之副產物獲得或來自一些其他來源(諸如來自汽車排出之煙或生物質氣化)的廢氣。在某些實施例中,工業製程選自由以下各者組成之群:含鐵金屬產品製造(諸如鋼鐵廠製造)、非鐵產品製造、石油精煉製程、煤炭氣化、電力生產、碳黑生產、氨生產、甲醇生產及焦炭製造。在此等實施例中,受質及/或C1-碳源可在排放至大氣中之前使用任何便利方法自工業製程捕獲。 The substrate and/or C1-carbon source may be exhaust gas obtained as a by-product of an industrial process or from some other source such as smoke from automobile exhaust or biomass gasification. In certain embodiments, the industrial process is selected from the group consisting of: ferrous metal product manufacturing (such as steel plant manufacturing), non-ferrous product manufacturing, petroleum refining processes, coal gasification, electricity production, carbon black production, Ammonia production, methanol production and coke manufacturing. In these embodiments, the substrate and/or C1-carbon source may be captured from an industrial process using any convenient method before being emitted to the atmosphere.

受質及/或C1-碳源可為合成氣,諸如藉由煤炭或精煉廠殘餘物氣化、生物質或木質纖維素材料氣化或天然氣重整獲得的合成氣。在另一實施例中,合成氣可獲自城市固體廢物或工業固體廢物之氣化。 The substrate and/or C1-carbon source may be a syngas, such as that obtained by gasification of coal or refinery residues, gasification of biomass or lignocellulosic materials, or reforming of natural gas. In another embodiment, syngas may be obtained from the gasification of municipal solid waste or industrial solid waste.

受質之組成可對反應效率及/或成本具有顯著影響。舉例而言,氧氣(O2)之存在可降低厭氧醱酵製程之效率。視受質之組成而定,可能需要處理、擦洗或過濾受質以移除任何非所需雜質,諸如毒素、非所需組分或粉塵粒子及/或增加所需組分之濃度。 The composition of the substrate can have a significant impact on reaction efficiency and/or cost. For example, the presence of oxygen (O 2 ) can reduce the efficiency of anaerobic fermentation processes. Depending on the composition of the substrate, it may be necessary to treat, scrub or filter the substrate to remove any undesirable impurities, such as toxins, undesirable components or dust particles and/or to increase the concentration of the desired components.

本發明之微生物可經培養以產生一或多種產物。舉例而言,自產乙醇梭菌產生或可經工程改造以產生乙醇(WO 2007/117157)、乙酸酯(WO 2007/117157)、丁醇(WO 2008/115080及WO 2012/053905)、丁酸酯(WO 2008/115080)、2,3-丁二醇(WO 2009/151342)、乳酸酯(WO 2011/112103)、丁烯(WO 2012/024522)、丁二烯(WO 2012/024522)、甲基乙基酮(2-丁酮)(WO 2012/024522及 WO 2013/185123)、乙烯(WO 2012/026833)、丙酮(WO 2012/115527)、異丙醇(WO 2012/115527)、脂質(WO 2013/036147)、3-羥基丙酸酯(3-HP)(WO 2013/180581)、異戊二烯(WO 2013/180584)、脂肪酸(WO 2013/191567)、2-丁醇(WO 2013/185123)、1,2-丙二醇(WO 2014/0369152)及1-丙醇(WO 2014/0369152)。除一或多種目標產物以外,本發明之微生物亦可產生乙醇、乙酸及/或2,3-丁二醇。在某些實施例中,微生物生物質自身可視為產物。 Microorganisms of the invention can be cultured to produce one or more products. For example, Clostridium ethanologenum produces or can be engineered to produce ethanol (WO 2007/117157), acetate (WO 2007/117157), butanol (WO 2008/115080 and WO 2012/053905), butanol (WO 2008/115080 and WO 2012/053905), butanol acid ester (WO 2008/115080), 2,3-butanediol (WO 2009/151342), lactic acid ester (WO 2011/112103), butene (WO 2012/024522), butadiene (WO 2012/024522 ), methyl ethyl ketone (2-butanone) (WO 2012/024522 and WO 2013/185123), ethylene (WO 2012/026833), acetone (WO 2012/115527), isopropyl alcohol (WO 2012/115527) , lipid (WO 2013/036147), 3-hydroxypropionate (3-HP) (WO 2013/180581), isoprene (WO 2013/180584), fatty acid (WO 2013/191567), 2-butanol (WO 2013/185123), 1,2-propanediol (WO 2014/0369152) and 1-propanol (WO 2014/0369152). In addition to one or more target products, the microorganisms of the invention can also produce ethanol, acetic acid and/or 2,3-butanediol. In certain embodiments, the microbial biomass itself can be considered the product.

「天然產物」為藉由未經遺傳修飾之微生物產生之產物。、舉例而言,乙醇、乙酸酯及2,3-丁二醇為自產乙醇梭菌、永達爾梭菌及拉氏梭菌之天然產物。「非天然產物」為由經遺傳修飾微生物產生而非由產生經遺傳修飾微生物的未經遺傳修飾微生物產生的產物。 "Natural products" are products produced by microorganisms that have not been genetically modified. , for example, ethanol, acetate, and 2,3-butanediol are natural products of Clostridium ethanologenum, Clostridium yongdahlii, and Clostridium larsonii. "Non-natural products" are products produced by a genetically modified microorganism other than the non-genetically modified microorganism that produced the genetically modified microorganism.

在本文中可互換提及之術語「中間物」及「前驅物」係指所觀測或標靶產物之上游的酶促路徑中的分子實體。 The terms "intermediate" and "precursor" as used interchangeably herein refer to molecular entities in the enzymatic pathway upstream of the observed or target product.

「選擇性」係指標靶產物之產量與藉由微生物產生的所有醱酵產物之產量的比率。本發明之微生物可經工程改造而以特定選擇性或最小選擇性產生產物。在一個實施例中,標靶產物占藉由本發明微生物產生之所有醱酵產物之至少約5%、10%、15%、20%、30%、50%或75%。在一個實施例中,標靶產物占藉由本發明微生物產生之所有醱酵產物之至少10%,使得本發明之微生物對標靶產物之選擇性為至少10%。在另一實施例中,標靶產物占藉由本發明微生物產生之所有醱酵產物的至少30%,使得本發明之微生物對標靶產物之選擇性為至少30%。 "Selectivity" refers to the ratio of the yield of the target product to the yield of all fermentation products produced by the microorganism. Microorganisms of the present invention can be engineered to produce products with specific selectivity or minimal selectivity. In one embodiment, the target product accounts for at least about 5%, 10%, 15%, 20%, 30%, 50% or 75% of all fermentation products produced by the microorganism of the invention. In one embodiment, the target product accounts for at least 10% of all fermentation products produced by the microorganism of the present invention, such that the selectivity of the microorganism of the present invention to the target product is at least 10%. In another embodiment, the target product accounts for at least 30% of all fermentation products produced by the microorganism of the present invention, such that the selectivity of the microorganism of the present invention to the target product is at least 30%.

「提高效率」及其類似物術語包含(但不限於)提高增長率、產物產生速率或體積、每消耗單位體積之受質的產物體積或產物選擇性。效率可相對於產生本發明微生物之親本微生物之效能量測。 The terms "increased efficiency" and the like include, but are not limited to, increasing growth rate, product production rate or volume, product volume per unit volume of substrate consumed, or product selectivity. Efficiency can be measured relative to the efficacy of the parent microorganism that produced the microorganism of the invention.

通常,在生物反應器中進行培養。術語「生物反應器」包含培養/醱酵裝置,其由一或多個容器、塔或管道配置組成,諸如連續攪拌槽反應器(CSTR)、固定細胞反應器(ICR)、滴流床反應器(TBR)、氣泡柱、氣升式醱酵罐、靜態混合器或適合於氣-液接觸之其他容器或其他裝置。在一些實施例中,生物反應器可包括第一生長反應器及第二培養/醱酵反應器。可將受質提供給此等反應器中之一者或兩者。如本文所用,術語「培養」及「醱酵」可互換使用。此等術語涵蓋培養/醱酵製程之生長階段及產物生物合成階段。 Typically, cultivation is performed in bioreactors. The term "bioreactor" includes culture/fermentation units consisting of one or more vessels, towers or pipe configurations, such as continuously stirred tank reactors (CSTR), immobilized cell reactors (ICR), trickle bed reactors (TBR), bubble column, air lift fermentation tank, static mixer or other containers or other devices suitable for gas-liquid contact. In some embodiments, a bioreactor may include a first growth reactor and a second culture/fermentation reactor. The substrate can be provided to one or both of these reactors. As used herein, the terms "culture" and "fermentation" are used interchangeably. These terms cover the growth phase and product biosynthesis phase of the culture/fermentation process.

通常在含有足以允許微生物生長之營養物、維生素及/或礦物質之水性培養基中維持培養物。較佳地,水性培養基為厭氧微生物生長培養基,諸如最小厭氧微生物生長培養基。適合培養基為此項技術中所熟知。 Cultures are typically maintained in an aqueous medium containing sufficient nutrients, vitamins and/or minerals to allow growth of the microorganisms. Preferably, the aqueous medium is an anaerobic microbial growth medium, such as a minimal anaerobic microbial growth medium. Suitable media are well known in the art.

培養/醱酵有利地應該在適用於產生標靶產物之條件下進行。通常,培養/醱酵在厭氧條件下執行。應考慮到的反應條件包含壓力(或分壓)、溫度、氣體流速、液體流速、培養基pH、培養基氧化還原電位、攪拌速率(若使用連續攪拌槽反應器)、接種物水準、確保液相中之氣體不會變成限制因素的最大氣體受質濃度及避免產物抑制的最大產物濃度。詳言之,可控制受質之引入速率以確保液相中之氣體之濃度不會變成限制因素,因為在氣體限制條件下,培養物可能消 耗產物。 Culture/fermentation should advantageously be carried out under conditions suitable for the production of the target product. Typically, culture/fermentation is performed under anaerobic conditions. Reaction conditions that should be considered include pressure (or partial pressure), temperature, gas flow rate, liquid flow rate, medium pH, medium redox potential, stirring rate (if using a continuously stirred tank reactor), inoculum level, ensuring liquid phase neutralization. The maximum gas substrate concentration at which the gas does not become the limiting factor and the maximum product concentration at which product inhibition is avoided. In particular, the rate of substrate introduction can be controlled to ensure that the concentration of gas in the liquid phase does not become a limiting factor, since under gas-limiting conditions the culture may consume product.

在高壓下操作生物反應器允許增加自氣相至液相之氣體質量轉移速率。因此,在高於大氣壓之壓力下執行培養/醱酵通常較佳。此外,因為指定氣體轉化率在某種程度上為受質滯留時間之函數,且滯留時間指示生物反應器之所需體積,所以使用加壓系統可以大大減小所需生物反應器之體積,因此降低培養/醱酵設備之資金成本。此又意謂當生物反應器維持在高壓而非大氣壓下時,滯留時間(定義為生物反應器中之液體體積除以輸入氣體流速)可減少。最佳反應條件將部分地視所用特定微生物而定。然而,一般而言,較佳在高於大氣壓之壓力下操作醱酵。此外,由於既定氣體轉化速率部分為受質滯留時間之函數,且獲得所需滯留時間又規定生物反應器之所需體積,故使用加壓系統可極大地減小所需生物反應器之體積,因此降低醱酵設備之資金成本。 Operating the bioreactor at high pressure allows for increased gas mass transfer rates from the gas phase to the liquid phase. Therefore, it is usually better to perform culture/fermentation at a pressure higher than atmospheric pressure. Furthermore, because a given gas conversion rate is in part a function of substrate residence time, and residence time dictates the required bioreactor volume, the use of a pressurized system can significantly reduce the required bioreactor volume, thus Reduce the capital cost of culture/fermentation equipment. This in turn means that the residence time (defined as the volume of liquid in the bioreactor divided by the input gas flow rate) can be reduced when the bioreactor is maintained at high pressure rather than atmospheric pressure. Optimal reaction conditions will depend in part on the specific microorganism used. Generally speaking, however, it is better to operate fermentation at a pressure above atmospheric pressure. In addition, since the given gas conversion rate is partly a function of the substrate residence time, and obtaining the required residence time also stipulates the required volume of the bioreactor, the use of a pressurized system can greatly reduce the required volume of the bioreactor. Therefore, the capital cost of fermentation equipment is reduced.

標靶產物可使用任何方法或此項技術中已知方法之組合自醱酵培養液分離或純化,包括例如分餾、蒸發、滲透蒸發、氣體汽提、相分離及萃取醱酵,包含例如液-液萃取。在某些實施例中,標靶產物藉由以下步驟自醱酵培養液回收:自生物反應器連續移除培養液之一部分,分離微生物細胞與培養液(藉由過濾便利地進行)及自培養液回收一或多種標靶產物。醇及/或丙酮可例如藉由蒸餾回收。酸可例如藉由吸附於活性炭上回收。較佳將所分離微生物細胞返回生物反應器。亦較佳將移除標靶產物後剩餘之不含細胞之滲透物返回生物反應器。可將其他營養物(諸如B維生素)添加至不含細胞之滲透物中以在培養基返回生物反應器前進行補 充。 The target product may be isolated or purified from the fermentation broth using any method or combination of methods known in the art, including, for example, fractionation, evaporation, pervaporation, gas stripping, phase separation, and extractive fermentation, including, for example, liquid- liquid extraction. In certain embodiments, the target product is recovered from the fermentation broth by continuously removing a portion of the culture broth from the bioreactor, separating the microbial cells from the culture broth (conveniently performed by filtration), and self-cultivation Liquid recovery of one or more target products. The alcohol and/or acetone can be recovered, for example, by distillation. The acid can be recovered, for example, by adsorption onto activated carbon. The separated microbial cells are preferably returned to the bioreactor. It is also preferred to return the cell-free permeate remaining after removal of the target product to the bioreactor. Other nutrients, such as B vitamins, can be added to the cell-free permeate to replenish the culture medium before returning to the bioreactor.

實例 Example

以下實例進一步說明本發明,但當然不應視為以任何方式限制其範疇。 The following examples further illustrate the invention, but of course should not be construed as limiting its scope in any way.

實例1Example 1

此實例展現Ptb-Buk在大腸桿菌中將乙醯乙醯基-CoA活體內轉化為乙醯乙酸酯之能力及其產生丙酮、異丙醇、3-羥基丁酸酯及異丁烯之用途。 This example demonstrates the ability of Ptb-Buk to convert acetyl acetyl-CoA to acetyl acetate in vivo in E. coli and its use to produce acetone, isopropanol, 3-hydroxybutyrate and isobutylene.

設計且建構依賴於Ptb-Buk系統自乙醯乙醯基-CoA產生乙醯乙酸酯之路徑。此以模組方式使用pDUET載體系統(Novagen)進行。一個模組在質體pACYC上含有來自拜氏梭菌NCIMB8052之ptb-buk基因(基因庫NC_009617,位置232027..234147;Cbei_0203-204;NCBI-GeneID 5291437-38)。另一模組在質體pCOLA上含有丙酮丁醇梭菌之硫解酶基因thlA(基因庫NC_001988,位置82040..83218;CA_P0078;NCBI-GeneID 1116083)及拜氏梭菌NCIMB8052之乙醯乙酸去羧酶基因adc(基因庫NC_009617,位置4401916..4402656;Cbei_3835;NCBI-GeneID 5294996)。ptbbuk基因擴增自拜氏梭菌NCIMB8052之基因組DNA且thlAadc擴增自現有丙酮質體pMTL85147-thlA-ctfAB-adc(WO 2012/115527),且在pDUET載體中所存在之T7啟動子控制下經由不依賴於限制之選殖用環形聚合酶延伸選殖(CPEC)方法(Quan,《公共科學圖書館(PloS One)》,4:e6441,2009)進行選殖。 The design and construction relied on the Ptb-Buk system's pathway to generate acetoacetate from acetoacetyl-CoA. This was performed in a modular fashion using the pDUET vector system (Novagen). One module contains the ptb-buk gene from C. beijerinckii NCIMB8052 (GenBank NC_009617, positions 232027..234147; Cbei_0203-204; NCBI-GeneID 5291437-38) on plastid pACYC. Another module contains the thiolase gene thlA of Clostridium acetobutylicum (GenBank NC_001988, position 82040..83218; CA_P0078; NCBI-GeneID 1116083) and the acetoacetic acid removal gene of Clostridium beijerinckii NCIMB8052 on plastid pCOLA. Carboxylase gene adc (GenBank NC_009617, positions 4401916..4402656; Cbei_3835; NCBI-GeneID 5294996). The ptb and buk genes were amplified from the genomic DNA of Clostridium beijerinckii NCIMB8052 and thlA and adc were amplified from the existing acetone plasmid pMTL85147-thlA-ctfAB-adc (WO 2012/115527), and were initiated by T7 present in the pDUET vector Selection was carried out via restriction-independent selection under sub-control using the Circular Polymerase Extension Selection (CPEC) method (Quan, PLoS One , 4: e6441, 2009).

用於擴增ptbbuk基因之寡核苷酸: Oligonucleotides used to amplify ptb and buk genes:

用於擴增thlAadc基因之寡核苷酸: Oligonucleotides used to amplify thlA and adc genes:

建構質體pACYC-ptb-buk(SEQ ID NO:105)及pCOLA-thlA-adc(SEQ ID NO:106)後,將其個別地一起轉型至大腸桿菌BL21(DE3)(Novagen)中,且在28℃下,於1.5mL培養物中於12孔盤中在160rpm迴旋搖動下使用含葡萄糖之M9基本培養基(Sambrook,《分子選殖:實驗室手冊(Molecular Cloning:A Laboratory Manual)》,第3卷,Cold Spring Harbour Press,1989)一式四份進行生長實驗(圖4)。以0.1之OD600nm接種培養物,且在生長2小時後用不同濃度IPTG(0、50、100μM)誘導。使用培養盤膠帶密封培養盤且用綠色尖針刺穿各孔以提供微好氧條件。進行生長以再進行64小時誘導。實驗重複三次。 After constructing plastids pACYC-ptb-buk (SEQ ID NO: 105) and pCOLA-thlA-adc (SEQ ID NO: 106), they were individually transformed together into E. coli BL21 (DE3) (Novagen), and in M9 minimal medium containing glucose was used in 1.5 mL cultures in 12-well dishes at 28°C with gyroscopic shaking at 160 rpm (Sambrook, Molecular Cloning: A Laboratory Manual, 3 Volume, Cold Spring Harbor Press, 1989) Growth experiments were performed in quadruplicate (Fig. 4). Cultures were inoculated at an OD600nm of 0.1 and induced with different concentrations of IPTG (0, 50, 100 μM) after 2 hours of growth. The plates were sealed with plate tape and the wells were pierced with a green-tipped needle to provide microaerobic conditions. Growth was allowed to proceed for an additional 64 hours of induction. The experiment was repeated three times.

使用氣相層析(GC)分析,使用配備有Supelco聚乙二醇(PEG)60μm固相微提取纖維、Restek Rtx-1(30m ×0.32μm×5μm)管柱及火焰電離偵測器(FID)之Agilent 6890N頂空GC量測丙酮濃度以及其他代謝物(諸如異丁烯)濃度。將樣品(4mL)轉移至20-ml頂空小瓶中,接著在50℃下培育(暴露)纖維10分鐘。使樣品在250℃下在注射器中歷時9分鐘解吸附。用如下烘箱程式進行層析:40℃(保持5分鐘),且以10℃/分鐘直至200℃,繼而在220℃下保持5分鐘。管柱流速為1mL/min,其中使用氫氣作為載氣。將FID保持在250℃下,其中使用40ml/min之氫氣、450ml/min之空氣及15ml/min之氮氣作為補充氣體。 Gas chromatography (GC) analysis was performed using Supelco polyethylene glycol (PEG) 60μm solid-phase microextraction fiber, Restek Rtx-1 (30m × 0.32μm × 5μm) column and flame ionization detector (FID). ), the Agilent 6890N headspace GC measures acetone concentration and the concentration of other metabolites (such as isobutylene). The sample (4 mL) was transferred to a 20-ml headspace vial, and the fibers were incubated (exposed) at 50°C for 10 minutes. The sample was allowed to desorb in a syringe at 250°C for 9 minutes. Chromatography was performed using the following oven program: 40°C (hold 5 min), and 10°C/min up to 200°C, followed by 5 min hold at 220°C. The column flow rate was 1 mL/min, and hydrogen was used as the carrier gas. The FID was maintained at 250°C with 40 ml/min hydrogen, 450 ml/min air and 15 ml/min nitrogen as supplementary gases.

立即顯而易見在帶有pACYC-ptb-buk與pCOLA-thlA-adc質體之菌株(表現硫解酶、Ptb-Buk及乙醯乙酸去羧酶)中產生丙酮。量測到平均最終丙酮產量為0.19g/L,而在無質體對照、培養基對照及單一質體對照pACYC-ptb-buk(表現Ptb-Buk)或pCOLA-thlA-adc質體(表現硫解酶及乙醯乙酸去羧酶)中無丙酮產生(低於可信賴偵測極限)。帶有pACYC-ptb-buk與pCOLA-thlA-adc質體之菌株(表現硫解酶、Ptb-Buk及乙醯乙酸去羧酶)的未誘導培養物不產生顯著量之丙酮。 The production of acetone in the strain harboring pACYC-ptb-buk and pCOLA-thlA-adc plastids (expressing thiolase, Ptb-Buk and acetoacetate decarboxylase) was immediately apparent. The average final acetone production was measured to be 0.19g/L, while in the plastid-free control, medium control and single plastid control pACYC-ptb-buk (expressing Ptb-Buk) or pCOLA-thlA-adc plastid (expressing thiolysis enzyme and acetoacetate decarboxylase), no acetone is produced (below the reliable detection limit). Uninduced cultures of strains harboring pACYC-ptb-buk and pCOLA-thlA-adc plasmids (expressing thiolase, Ptb-Buk and acetoacetate decarboxylase) did not produce significant amounts of acetone.

大腸桿菌BL21(DE3)中之平均丙酮產量: Average acetone production in E. coli BL21(DE3):

此實驗明確展現Ptb-Buk能夠進行乙醯乙醯基-CoA向乙醯乙酸酯之轉化,可替代CoA-轉移酶或硫酯酶用於 產生丙酮,其使用圖1之包括步驟1、2及3之途徑例示。 This experiment clearly demonstrates that Ptb-Buk can convert acetoacetyl-CoA to acetoacetate and can replace CoA-transferase or thioesterase for the production of acetone. Its use includes steps 1 and 2 in Figure 1. and 3 examples of pathways.

熟知異丙醇可由丙酮藉由添加一級:二級醇去氫酶製備(Köpke,《應用與環境微生物學》,80:3394-3403,2014)(圖1中之步驟4),且異丁烯可由丙酮經由添加羥基異戊酸合成酶(圖1中之步驟5)及去羧酶(圖1中之步驟6)製備(van Leeuwen,《應用微生物學與生物技術》,93:1377-1387,2012)。可建構如下路徑,其包含以上所展現之具有基因thlAptb-bukadc及一級:二級醇去氫酶基因(例如基因庫寄存編號NC_022592,pos.609711..610766;CAETHG_0553;NCBI-GeneID:17333984)經由Ptb-Buk進行之丙酮途徑,所述路徑使得可在大腸桿菌中經由Ptb-Buk系統產生異丙醇,其包括圖1之步驟1、2、3及4。類似地,可建構如下路徑,其包含以上所展現之具有基因thlAptb-bukadc及羥基異戊酸合成酶及去羧酶之基因經由Ptb-Buk將乙醯乙醯基-CoA轉化為乙醯乙酸酯的丙酮途徑,所述路徑使得可在大腸桿菌中經由Ptb-Buk系統產生異丁烯,其包括圖1之步驟1、2、3、5及6。乙醯乙酸酯亦可經由3-羥基丁酸去氫酶Bdh轉化為3-羥基丁酸酯。其可與Ptb-Buk將乙醯乙醯基-CoA轉化為乙醯乙酸酯組合用於在表現基因thlAptb-bukbdh之菌株中產生3-羥基丁酸酯,從而產生包括圖1之步驟1、2及15之路徑。 It is well known that isopropanol can be produced from acetone by adding primary:secondary alcohol dehydrogenases (Köpke, Applied and Environmental Microbiology , 80: 3394-3403, 2014) (step 4 in Figure 1), and isobutylene can be produced from acetone. Prepared by adding hydroxyisovalerate synthase (step 5 in Figure 1) and decarboxylase (step 6 in Figure 1) (van Leeuwen, Applied Microbiology and Biotechnology , 93: 1377-1387, 2012) . The following path can be constructed, which includes the genes thlA , ptb-buk and adc shown above and the first-level: secondary alcohol dehydrogenase gene (for example, GenBank accession number NC_022592, pos.609711..610766; CAETHG_0553; NCBI-GeneID : 17333984) an acetone pathway via Ptb-Buk, which pathway enables the production of isopropanol in E. coli via the Ptb-Buk system, which includes steps 1, 2, 3 and 4 of Figure 1 . Similarly, a pathway can be constructed that includes the genes shown above with genes thlA , ptb-buk and adc and hydroxyisovalerate synthase and decarboxylase to convert acetyl acetyl-CoA via Ptb-Buk. The acetone pathway of acetoacetate, which allows the production of isobutene in E. coli via the Ptb-Buk system, includes steps 1, 2, 3, 5 and 6 of Figure 1 . Acetoacetate can also be converted to 3-hydroxybutyrate via 3-hydroxybutyrate dehydrogenase Bdh. It can be used in combination with Ptb-Buk to convert acetyl acetyl-CoA to acetyl acetate to produce 3-hydroxybutyrate in strains expressing the genes thlA , ptb-buk and bdh , resulting in products including Figure 1 The path of steps 1, 2 and 15.

實例2Example 2

此實例展現Ptb-Buk在自產乙醇梭菌中將乙醯乙醯基-CoA活體內轉化為乙醯乙酸酯之能力及Ptb-Buk在自氣體受質產生丙酮、異丙醇、3-羥基丁酸酯及異丁烯中之用途。 This example demonstrates the ability of Ptb-Buk to convert acetoacetyl-CoA into acetoacetate in vivo in Clostridium autoethanologenum and the ability of Ptb-Buk to produce acetone, isopropanol, 3- Uses in hydroxybutyrate and isobutylene.

為展示Ptb-Buk系統亦可自氣體受質合成丙酮、異丙醇或異丁烯,建構如下質體,其在梭菌啟動子控制下在穿梭載體上含有與實例1相同之基因,thl+ptb-buk+adc,使得所述質體可表現於產乙酸菌(諸如自產乙醇梭菌、永達爾梭菌或拉氏梭菌)中。 In order to demonstrate that the Ptb-Buk system can also synthesize acetone, isopropanol or isobutylene from gas substrates, the following plasmid was constructed, which contained the same gene as in Example 1 on a shuttle vector under the control of a Clostridial promoter, thl + ptb- buk + adc , such that the plastids may be expressed in acetogens such as Clostridium autoethanologenum, Clostridium yongdahlii or Clostridium larsonii .

pMTL質體為用於將環形dna經由大腸桿菌結合引入梭菌中的穿梭質體系統(Heap,《微生物學方法雜誌(J Microbiol Methods)》,78:79-85,2009)。使用分子生物學中之常見技術將相關基因(亦即hbd、phaB、thlA、ptb、buk及aor1)選殖於質體之lacZ區中,所述技術包含dna限制消化,繼而接合,且在超過一片dna片段同時選殖於質體中時使用金門dna組裝技術(golden gate dna assembly technology)。所建構質體藉由DNA測序檢驗。 The pMTL plasmid is a shuttle plastid system used to introduce circular DNA into Clostridium via E. coli conjugation (Heap, J Microbiol Methods , 78: 79-85, 2009). The genes of interest (i.e., hbd, phaB, thlA, ptb, buk, and aor1) were selected in the lacZ region of the plastids using common techniques in molecular biology, including DNA restriction digestion followed by conjugation, and in Golden gate DNA assembly technology is used when a DNA fragment is simultaneously selected and colonized in the plastid. The constructed plasmids were verified by DNA sequencing.

產生丙酮及異丙醇先前展現於在來自Wood-Ljungdahl基因叢集之梭菌啟動子之控制下使用編碼thl+ctfAB+adc之質體pMTL85147-thlA-ctfAB-adc(WO 2012/115527)的自產乙醇梭菌中。在此質體中,編碼CoA轉移酶之ctfAB基因直接用編碼Ptb-Buk系統之ptb-buk基因置換。此如實例1中所述使用CPEC方法進行。所得質體為pMTL85147-thlA-ptb-buk-adc。 Production of acetone and isopropanol was previously demonstrated using the plasmid pMTL85147-thlA-ctfAB-adc (WO 2012/115527) encoding thl + ctfAB + adc under the control of a Clostridial promoter from the Wood-Ljungdahl gene cluster. in Clostridium ethanolum. In this plastid, the ctfAB gene encoding CoA transferase is directly replaced with the ptb -buk gene encoding the Ptb-Buk system. This was performed as described in Example 1 using the CPEC method. The resulting plasmid was pMTL85147-thlA-ptb-buk-adc.

下文描述用於擴增ptb-buk及選殖於pMTL8317-thl-ptb-buk-adc中之寡核苷酸。 The oligonucleotides used to amplify ptb-buk and select for colonization in pMTL8317-thl-ptb-buk-adc are described below.

自產乙醇梭菌DSM10061及DSM23693(DSM10061之衍生物)源自DSMZ(德國微生物及細胞培養物收集中心(The German Collection of Microorganisms and Cell Cultures),Inhoffenstraße 7 B,38124 Braunschweig,Germany)。 Clostridium autoethanogenogens DSM10061 and DSM23693 (derivatives of DSM10061) were obtained from DSMZ (The German Collection of Microorganisms and Cell Cultures), Inhoffenstraße 7 B, 38124 Braunschweig, Germany.

使用標準厭氧技術(Hungate,《微生物學方法(Meth Microbiol)》,3B:117-132,1969;Wolfe,《微生物生理學進展(Adv Microb Physiol)》,6:107-146,1971)使菌株在37℃下於pH 5.6之PETC培養基中生長。將30psi含CO鋼鐵廠氣體(自紐西蘭鋼鐵站(New Zealand Steel site)(Glenbrook,NZ)收集)或具有44%CO、32%N2、22%CO2、2%H2之相同組成之合成氣體摻合物用作自養生長之受質。對於固體培養基,添加1.2%細菌瓊脂(BD,Franklin Lakes,NJ 07417,USA)。 strains using standard anaerobic techniques (Hungate, Meth Microbiol , 3B: 117-132, 1969; Wolfe, Adv Microb Physiol , 6: 107-146, 1971) Grow in PETC medium pH 5.6 at 37°C. 30 psi of steel plant gas containing CO (collected from New Zealand Steel site (Glenbrook, NZ)) or the same composition with 44% CO, 32% N 2 , 22% CO 2 , 2% H 2 The synthetic gas blend serves as a substrate for autotrophic growth. For solid media, add 1.2% bacterial agar (BD, Franklin Lakes, NJ 07417, USA).

合成構築體,隨後經由結合轉型至自產乙醇中。對此,首先使用標準熱衝擊轉型將表現載體引入所述結合供體菌株大腸桿菌HB101+R702(CA434)(Williams,《普通微生物學雜誌(J Gen Microbiol)》,1136:819-826,1990)(供體)中。在37℃下於SOC培養基(Sambrook,《分子選殖:實驗室手冊》,第3卷,Cold Spring Harbour Press,1989)中回收供體細胞歷時1小時,隨後塗佈於含有100μg/ml大觀黴素(spectinomycin)及25μg/ml氯黴素(chloramphenicol)之LB培養基(Sambrook,《分子選殖:實驗室手冊》,第3卷,Cold Spring Harbour Press,1989)盤上。在37℃下培育 LB盤隔夜。第二天,用數個供體群落接種5ml含有100μg/ml大觀黴素及25μg/ml氯黴素之LB等分試樣,且在37℃下培育,震盪約4小時或直至密集可見培養物但尚未進入固定相為止。在室溫下藉由在4000rpm下離心2分鐘於微型離心管中收集1.5ml供體培養物,且丟棄上清液。將供體細胞輕輕再懸浮於500μl無菌PBS緩衝液(Sambrook,《分子選殖:實驗室手冊》,第3卷,Cold Spring Harbour Press,1989)中,在4000rpm下離心2分鐘且丟棄PBS上清液。將集結粒引入厭氧腔室中且輕輕再懸浮於200μl指數期後期之自產乙醇梭菌培養物(接受者)中。將結合混合物(供體與接受者細胞之混合物)點樣於PETC-MES+果糖瓊脂盤上且使其乾燥。在點不再可見濕潤時,將培養盤引入用合成氣加壓至25-30psi的壓力罐中且在37℃下培育約24小時。培育24小時後,藉由使用10μl接種環輕輕刮擦自培養盤移出結合混合物。將所移出混合物懸浮於200-300μl PETC培養基中。將100μl結合混合物之等分試樣塗佈於補充15μg/ml甲碸黴素(thiamphenicol)之PETC培養基瓊脂盤上以選擇具有質體之轉型體,所述質體經由表現氯黴素乙醯基轉移酶賦予對甲碸黴素之耐藥性。 The construct is synthesized and subsequently transformed via conjugation into self-produced ethanol. To do this, the expression vector was first introduced into the conjugate donor strain E. coli HB101+R702 (CA434) using standard heat shock transformation (Williams, J Gen Microbiol , 1136:819-826, 1990) (donor). Donor cells were recovered in SOC medium (Sambrook, Molecular Selection: A Laboratory Manual, Vol. 3, Cold Spring Harbor Press, 1989) for 1 hour at 37°C and subsequently plated on plates containing 100 μg/ml Spectidium LB medium containing spectinomycin and 25 μg/ml chloramphenicol (Sambrook, "Molecular Selection: Laboratory Manual," Vol. 3, Cold Spring Harbor Press, 1989) was placed on the plate. Incubate LB plates at 37 °C overnight. The next day, inoculate several donor colonies with 5 ml aliquots of LB containing 100 μg/ml spectinomycin and 25 μg/ml chloramphenicol and incubate at 37°C, shaking for approximately 4 hours or until dense cultures are visible But it has not yet entered the stationary phase. Collect 1.5 ml of donor culture in a microcentrifuge tube by centrifugation at 4000 rpm for 2 minutes at room temperature and discard the supernatant. Gently resuspend the donor cells in 500 μl of sterile PBS buffer (Sambrook, Molecular Selection: A Laboratory Manual, Vol. 3, Cold Spring Harbor Press, 1989), centrifuge at 4000 rpm for 2 min and discard the PBS Clear liquid. The aggregate pellets were introduced into the anaerobic chamber and gently resuspended in 200 μl of late exponential phase C. autoethanogenum culture (recipient). The binding mixture (mixture of donor and recipient cells) was spotted on PETC-MES+fructose agar plates and allowed to dry. When moisture is no longer visible at the spots, the culture plates are introduced into a pressure tank pressurized with syngas to 25-30 psi and incubated at 37°C for approximately 24 hours. After 24 hours of incubation, remove the binding mixture from the culture plate by gently scraping with a 10 μl inoculation loop. The removed mixture was suspended in 200-300 μl PETC medium. Aliquots of 100 μl of the binding mixture were spread on agar plates of PETC medium supplemented with 15 μg/ml thiamphenicol to select for transformants with plasmids expressing chloramphenicol acetyl Transferase confers resistance to tetracycline.

將具有pMTL85147-thlA-ptb-buk-adc質體之自產乙醇梭菌之三個獨特群落接種於2mL含有15μg/ml甲碸黴素之PETC-MES培養基中且在37℃下在100rpm迴旋震盪下自養生長三天。用10mL含15μg/ml甲碸黴素之PETC-MES培養基於血清瓶中稀釋培養物至OD600nm=0.05,且在37℃下在100rpm迴旋震盪下自養生長五天,每天取樣量測生物質 及代謝物。同時,檢驗對照菌株,其中表現質體在Wood-Ljungdahl叢集啟動子控制下僅編碼thl及adc,不含催化自乙醯乙醯基-CoA形成乙醯乙酸酯的ctfABptb-buk基因(pMTL85147-thlA-adc)。將培養物進行取樣歷時五天以監測代謝物及生物質聚積。 Three unique colonies of Clostridium autoethanogenogens with pMTL85147-thlA-ptb-buk-adc plasmids were inoculated into 2 mL of PETC-MES medium containing 15 μg/ml of capricillin and shaken at 100 rpm at 37°C. Grow autotrophically for three days. The culture was diluted to OD 600nm = 0.05 in a serum-based bottle using 10 mL of PETC-MES containing 15 μg/ml formamycin, and grown autotrophically for five days at 37°C with gyroscopic shaking at 100 rpm. Samples were taken every day to measure biomass. and metabolites. At the same time, a control strain was examined, in which the expressoplast encoded only thl and adc under the control of the Wood-Ljungdahl cluster promoter and did not contain the ctfAB or ptb-buk genes that catalyze the formation of acetyl acetate from acetyl acetyl-CoA ( pMTL85147-thlA-adc). Cultures were sampled over five days to monitor metabolite and biomass accumulation.

異丙醇濃度以及乙醇、乙酸、2,3-丁二醇及乳酸之濃度藉由高效液相層析(HPLC)於Agilent LC上在35℃下用折射率(RI)偵測來量測。藉由用100μL 5-磺基水楊酸溶液(1 w/v%,於1M硫酸中)稀釋400μL製備樣品,繼而在14,000rpm下離心3分鐘;將上清液轉移至玻璃瓶中以進行分析。藉由以0.7mL/min及在65℃下在等度條件下使用5mM硫酸移動相於Alltech IOA-2000管柱(150mm×6.5mm×8μm)上注射10μL進行分離。 Isopropyl alcohol concentration and the concentrations of ethanol, acetic acid, 2,3-butanediol and lactic acid were measured by high performance liquid chromatography (HPLC) on an Agilent LC at 35°C with refractive index (RI) detection. Prepare samples by diluting 400 μL of 5-sulfosalicylic acid solution (1 w/v% in 1 M sulfuric acid) with 100 μL of 5-sulfosalicylic acid solution (1 w/v% in 1 M sulfuric acid), followed by centrifugation at 14,000 rpm for 3 minutes; transfer the supernatant to a glass bottle for analysis . Separation was performed by injecting 10 μL onto an Alltech IOA-2000 column (150 mm × 6.5 mm × 8 μm) at 0.7 mL/min and 65°C under isocratic conditions using 5 mM sulfuric acid mobile phase.

在一些情況下,使用較長HPLC方法改良峰分離。在此方法中,異丙醇、乙醇、乙酸酯、2,3-丁二醇以及3-羥基丁酸酯(其不使用較短方法分離)濃度藉由高效液相層析(HPLC)在35℃下在Agilent 1260 Infinity LC上用折射率(RI)偵測量測。藉由用100μL 5-磺基水楊酸溶液(1 w/v%,於1M硫酸中)稀釋400μL製備樣品,繼而在14,000rpm下離心3分鐘;將上清液轉移至玻璃瓶中以進行分析。藉由以0.6mL/min及在35℃下在等度條件下使用5mM硫酸移動相於Aminex HPX-87H管柱(300mm×7.8mm×9μm)上注射10μL進行分離。 In some cases, longer HPLC methods were used to improve peak separation. In this method, the concentrations of isopropanol, ethanol, acetate, 2,3-butanediol, and 3-hydroxybutyrate (which are not separated using the shorter method) are determined by high performance liquid chromatography (HPLC) in Measured on an Agilent 1260 Infinity LC at 35°C with refractive index (RI) detection. Prepare samples by diluting 400 μL of 5-sulfosalicylic acid solution (1 w/v% in 1 M sulfuric acid) with 100 μL of 5-sulfosalicylic acid solution (1 w/v% in 1 M sulfuric acid), followed by centrifugation at 14,000 rpm for 3 minutes; transfer the supernatant to a glass bottle for analysis . Separation was performed by injecting 10 μL onto an Aminex HPX-87H column (300 mm × 7.8 mm × 9 μm) at 0.6 mL/min and at 35°C under isocratic conditions using 5 mM sulfuric acid mobile phase.

具有pMTL85147-thlA-ptb-buk-adc之自產乙醇梭菌每公克生物質產生高達0.804g異丙醇之IPA,而具有 pMTL85147-thlA-adc且不含Ptb-Buk之對照自產乙醇梭菌不產生IPA(圖12)。 C. autoethanogenum with pMTL85147-thlA-ptb-buk-adc produced up to 0.804 g of isopropanol IPA per gram of biomass, whereas the control C. autoethanogenum with pMTL85147-thlA-adc and no Ptb-Buk No IPA was produced (Fig. 12).

此實驗明確展現在使用氣體受質時Ptb-Buk能夠進行異丙醇路徑中乙醯乙醯基-CoA向乙醯乙酸酯之轉化。在氣體醱酵產乙酸菌(諸如自產乙醇梭菌)中可使用Ptb-Buk替代CoA轉移酶或硫酯酶,使用包括圖1之步驟1、2、3及4之途徑例示。 This experiment clearly demonstrates that Ptb-Buk is capable of performing the conversion of acetyl acetyl-CoA to acetyl acetate in the isopropanol pathway when using a gaseous substrate. Ptb-Buk can be used in place of CoA transferase or thioesterase in gas fermentation acetogens such as Clostridium autoethanogenogens, exemplified using a pathway including steps 1, 2, 3 and 4 of Figure 1 .

自產乙醇梭菌含有天然一級:二級醇去氫酶,其將丙酮轉化為異丙醇(Köpke,《應用與環境微生物學》,80:3394-3403,2014)。已展現,剔除此基因去除自產乙醇梭菌中丙酮向異丙醇之轉化(WO 2015/085015)。在此基因剔除之背景下,可使用包括圖1之步驟1、2及3之相同基因經由Ptb-Buk系統自氣體原料產生丙酮(而非異丙醇)。向此菌株添加羥基異戊酸合成酶及去羧酶基因(van Leeuwen,《應用微生物學與生物技術》,93:1377-1387,2012)將使得自產乙醇梭菌或類似細菌中能夠自氣體產生異丁烯,其包括圖1之步驟1、2、3、5及6。 Clostridium autoethanogenum contains natural primary:secondary alcohol dehydrogenase enzymes that convert acetone to isopropyl alcohol (Köpke, Applied & Environmental Microbiology , 80: 3394-3403, 2014). It has been shown that deletion of this gene eliminates the conversion of acetone to isopropanol in Clostridium ethanologenum (WO 2015/085015). In the context of this gene knockout, the same genes including steps 1, 2 and 3 of Figure 1 can be used to generate acetone (instead of isopropanol) from the gas feed via the Ptb-Buk system. Adding hydroxyisovalerate synthase and decarboxylase genes to this strain (van Leeuwen, Applied Microbiology and Biotechnology , 93:1377-1387, 2012) would allow C. autoethanologenum or similar bacteria to Isobutylene is produced, which includes steps 1, 2, 3, 5 and 6 of Figure 1.

乙醯乙酸酯亦可經由3-羥基丁酸去氫酶Bdh轉化為3-羥基丁酸酯。3-羥基丁酸去氫酶在自產乙醇梭菌(AGY75962)及如永達爾梭菌(ADK16920.1)之其他產乙酸菌之基因組中鑑別。此活性可與Ptb-Buk(或CoA轉移酶)將乙醯乙醯基-CoA轉化為乙醯乙酸酯組合以在表現基因thlAptb-buk(或ctfAB)及bdh之菌株中產生3-羥基丁酸酯,得到包括圖1之步驟1、2及15之路徑。自產乙醇梭菌中展現經由此途徑形成低水準之3-羥基丁酸酯(至多2g/L)。此 等水準可藉由過度表現Bdh基因提高,Bdh基因僅以低水準天然表現。 Acetoacetate can also be converted to 3-hydroxybutyrate via 3-hydroxybutyrate dehydrogenase Bdh. 3-Hydroxybutyrate dehydrogenase was identified in the genomes of Clostridium autoethanologenum (AGY75962) and other acetogens such as Clostridium yongdahl (ADK16920.1). This activity can be combined with Ptb-Buk (or CoA transferase) conversion of acetoacetyl-CoA to acetoacetate to produce 3- in strains expressing the genes thlA , ptb-buk (or ctfAB ), and bdh Hydroxybutyrate, resulting in a route including steps 1, 2 and 15 of Figure 1. Clostridium autoethanogenum has been shown to form low levels of 3-hydroxybutyrate (up to 2 g/L) via this pathway. These levels can be increased by overexpression of the Bdh gene, which is naturally expressed only at low levels.

在一個實驗中,如實例2中所述用質體pMTL82256-thlA-ctfAB將自產乙醇梭菌轉型。自六個生物學複本在如實例2中所述之自養條件下監測產生10天。10天後3-HB之平均值為1.86±0.14g/L。在第10天,產生1,3-丁二醇(自3-HB),平均效價為0.38±0.05g/L(圖37)。不形成丙酮或異丙醇。此展現3-HB可經由乙醯乙酸酯用天然酶有效產生。 In one experiment, C. autoethanogenum was transformed with plasmid pMTL82256-thlA-ctfAB as described in Example 2. Generation was monitored for 10 days from six biological replicates under autotrophic conditions as described in Example 2. The average value of 3-HB after 10 days was 1.86±0.14g/L. On day 10, 1,3-butanediol (from 3-HB) was produced with an average titer of 0.38 ± 0.05 g/L (Figure 37). No acetone or isopropyl alcohol is formed. This demonstrates that 3-HB can be efficiently produced with natural enzymes via acetoacetate.

在某些實施例中,可能需要剔除或阻斷3-羥基丁酸去氫酶(諸如Bdh)之表現以阻止消耗碳而獲得3-HB,因此提高產物(諸如丙酮、異丙醇及異丁烯)產量。 In certain embodiments, it may be necessary to knock out or block the performance of 3-hydroxybutyrate dehydrogenase (such as Bdh) to prevent the consumption of carbon to obtain 3-HB, thereby increasing the product (such as acetone, isopropanol and isobutylene) Yield.

實例3Example 3

此實例展現在大腸桿菌中Ptb-Buk將(R)-3-羥基丁醯基-CoA活體內轉化為(R)-3-羥基丁酸酯以製備(R)-羥基丁酸酯、丙酮、異丙醇或異丁烯之能力。 This example demonstrates the in vivo conversion of (R)-3-hydroxybutyryl-CoA to (R)-3-hydroxybutyrate in E. coli by Ptb-Buk to prepare (R)-hydroxybutyrate, acetone, isopropyl alcohol or isobutylene.

設計且建構如下路徑,其依賴於Ptb-Buk系統自(R)-3-羥基丁醯基-CoA產生(R)-3-羥基丁酸酯。另外,3-羥基丁酸去氫酶(Bdh)可用於將(R)-3-HB轉化為乙醯乙酸酯。已報導皮氏羅爾斯頓菌具有兩種3-羥基丁酸去氫酶Bdh1及Bdh2,其能夠將3-羥基丁酸酯活體外轉化為乙醯乙酸酯(Takanashi,《生物學與生物工程雜誌》,101:501-507,2006)。設計一種路徑,其利用此酶產生丙酮(圖1之步驟1、13、14、15、3),同時將產生(R)-3-羥基丁醯基-CoA中所產生之還原等效物及由Ptb-Buk產生的ATP再循環(圖6)。 The following pathway was designed and constructed to generate (R)-3-hydroxybutyrate from (R)-3-hydroxybutyryl-CoA relying on the Ptb-Buk system. Additionally, 3-hydroxybutyrate dehydrogenase (Bdh) can be used to convert (R)-3-HB to acetoacetate. Ralstonia picketii has been reported to have two 3-hydroxybutyrate dehydrogenases, Bdh1 and Bdh2, which can convert 3-hydroxybutyrate into acetyl acetate in vitro (Takanashi, " Biology and Biology" Journal of Engineering , 101: 501-507, 2006). Design a pathway that utilizes this enzyme to produce acetone (steps 1, 13, 14, 15, 3 in Figure 1), while simultaneously producing the reducing equivalents produced in (R)-3-hydroxybutyl-CoA and the production of Ptb -Recycling of ATP produced by Buk (Figure 6).

以模組方式使用pDUET載體系統(Novagen)建構路徑。將以上實例中所述之兩個模組(表現Ptb-Buk之pACYC-ptb-buk及表現硫解酶及乙醯乙酸去羧酶之pCOLA-thlA-adc)與兩個單獨含有鉤蟲貪銅菌之任一(R)-特異性3-羥基丁酸去氫酶phaB(WP_010810131.1)之額外模組(pCDF-phaB)及一個具有皮氏羅爾斯頓菌之3-羥基丁酸去氫酶bdh1基因(BAE72684.1)的模組(pCDF-phaB-bdh1)在載體pCDF中一起使用。phaBbdh1基因均合成自GeneArt且經由限制非依賴性選殖用環形聚合酶延伸選殖(CPEC)方法(Quan,公共科學圖書館,4:e6441,2009)在T7啟動子控制下選殖。 Pathways were constructed using the pDUET vector system (Novagen) in a modular manner. The two modules described in the above examples (pACYC-ptb-buk expressing Ptb-Buk and pCOLA-thlA-adc expressing thiolase and acetoacetate decarboxylase) were combined with two separate modules containing the hookworm Copper. An additional module (pCDF-phaB) for any (R)-specific 3-hydroxybutyrate dehydrogenase phaB (WP_010810131.1) and a 3-hydroxybutyrate dehydrogenase with Ralstonia picketii The module (pCDF-phaB-bdh1) of the enzyme bdh1 gene (BAE72684.1) is used together in the vector pCDF. Both phaB and bdh1 genes were synthesized from GeneArt and cloned under the control of the T7 promoter via restriction-independent selection using the circular polymerase extension selection (CPEC) method (Quan, PLoS 4: e6441, 2009).

用於擴增bdh1基因之寡核苷酸: Oligonucleotides used to amplify the bdh1 gene:

用於擴增phaB基因之寡核苷酸: Oligonucleotides used to amplify the phaB gene:

建構質體pACYC-ptb-buk(SEQ ID NO:105)、pCOLA-thlA-adc(SEQ ID NO:106)、pCDF-phaB(SEQ ID NO:119)及pCDF-phaB-bdh1(SEQ ID NO:120)後,將其個別地轉型及組合於大腸桿菌BL21(DE3)(Novagen)中,且在28 ℃下,在160rpm迴旋震盪下,於1.5mL 12孔盤中之培養物中使用含葡萄糖之M9基本培養基一式四份進行生長實驗。以0.1之OD600nm接種培養物,且在生長2小時後用不同濃度IPTG(0、50、100μM)誘導。使用BioRad培養盤膠帶密封培養盤且用綠色尖針刺穿各孔以提供微好氧條件。進行生長以再進行64小時誘導。實驗重複3次。如先前實例中所述量測代謝物。 Construct plasmids pACYC-ptb-buk (SEQ ID NO: 105), pCOLA-thlA-adc (SEQ ID NO: 106), pCDF-phaB (SEQ ID NO: 119) and pCDF-phaB-bdh1 (SEQ ID NO: 120), they were individually transformed and combined in Escherichia coli BL21 (DE3) (Novagen), and at 28°C, under gyroscopic shaking at 160 rpm, glucose-containing solution was used in a culture in a 1.5 mL 12-well plate. Growth experiments were performed in quadruplicate in M9 minimal medium. Cultures were inoculated at an OD600nm of 0.1 and induced with different concentrations of IPTG (0, 50, 100 μM) after 2 hours of growth. The plates were sealed with BioRad plate tape and each well was pierced with a green-tipped needle to provide microaerobic conditions. Growth was allowed to proceed for an additional 64 hours of induction. The experiment was repeated three times. Metabolites were measured as described in the previous example.

含有質體pACYC-ptb-buk、pCOLA-thlA-adc及pCDF-phaB之組合的培養物產生1.65-2.4g/L(R)-3-羥基丁酸酯(視誘導劑水準而定)以及僅極小量之副產物(圖13A-F),從而展現所述Ptb-Buk系統將(R)-3-羥基丁醯基-CoA轉化為(R)-3-羥基丁酸酯且支持生長之效率(圖13A-F)。在亦表現bdh1之培養物(含有質體pACYC-ptb-buk、pCOLA-thlA-adc及pCDF-phaB-bdh1之組合)中,僅在培養基中發現少量(R)-3-羥基丁酸酯,同時發現0.89-1.16g/L丙酮(視誘導劑水準而定),從而指示bdh1基因有效將(R)-3-羥基丁酸酯轉化為乙醯乙酸酯且進一步轉化為丙酮。在缺乏Ptb-Buk之所有質體組合中,未發現3-羥基丁酸酯或丙酮(圖13A-F)。在此等培養物中,乙酸酯水準顯著較高。 Cultures containing the combination of plastid pACYC-ptb-buk, pCOLA-thlA-adc and pCDF-phaB produced 1.65-2.4g/L (R)-3-hydroxybutyrate (depending on inducer level) and only Minimal amounts of by-products (Fig. 13A-F), demonstrating the efficiency of the Ptb-Buk system in converting (R)-3-hydroxybutyryl-CoA to (R)-3-hydroxybutyrate and supporting growth (Fig. 13A-F). In cultures that also expressed bdh1 (a combination containing plasmids pACYC-ptb-buk, pCOLA-thlA-adc, and pCDF-phaB-bdh1), only small amounts of (R)-3-hydroxybutyrate were found in the culture medium, 0.89-1.16g/L acetone (depending on inducer level) was also found, indicating that the bdh1 gene efficiently converts (R)-3-hydroxybutyrate to acetoacetate and further to acetone. No 3-hydroxybutyrate or acetone was found in all plastid combinations lacking Ptb-Buk (Figure 13A-F). Acetate levels were significantly higher in these cultures.

此實驗明確展現Ptb-Buk能夠進行(R)-3-羥基丁酸酯-CoA向3-羥基丁酸酯之轉化,以及Bdh1能夠藉由再循環產生(R)-3-羥基丁醯基-CoA中所產生之還原等效物將3-羥基丁酸酯活體內進一步轉化為乙醯乙酸酯。所述實驗亦突顯了Ptb-Buk能夠支持生長,因此乙酸酯產生變得不必要。在包括圖1之步驟1、13及14之菌株中例示(R)-3-羥基丁酸酯形 成之產生。經由包括圖1之步驟1、13、14、15及3之途徑例示丙酮產生。 This experiment clearly demonstrates that Ptb-Buk can perform the conversion of (R)-3-hydroxybutyrate-CoA to 3-hydroxybutyrate, and that Bdh1 can be recycled to produce (R)-3-hydroxybutyryl-CoA. The resulting reducing equivalent further converts 3-hydroxybutyrate to acetyl acetate in vivo. The experiments also highlighted the ability of Ptb-Buk to support growth such that acetate production became unnecessary. The production of (R)-3-hydroxybutyrate formation is exemplified in the strains comprising steps 1, 13 and 14 of Figure 1. Acetone production is exemplified via a pathway including steps 1, 13, 14, 15 and 3 of Figure 1.

熟知異丙醇可由丙酮藉由添加一級:二級醇去氫酶製備(圖1中之步驟4)(Köpke,《應用與環境微生物學》,80:3394-3403,2014),且異丁烯可由丙酮經由添加羥基異戊酸合成酶(圖1中之步驟5)及去羧酶(圖1中之步驟6)製備(van Leeuwen,《應用微生物學生物技術》,93:1377-1387,2012)。可建構如下路徑,其包含以上所展現之具有基因thlAptb-bukadc及一級:二級醇去氫酶基因(例如基因庫寄存編號NC_022592,pos.609711..610766;CAETHG_0553;NCBI-GeneID:17333984)經由Ptb-Buk進行之丙酮途徑,所述路徑使得可在大腸桿菌中經由Ptb-Buk系統產生異丙醇(圖1之步驟1、13、14、15、3及4)。類似地,可建構如下路徑,其包含以上展現之具有基因thlA、ptb-buk及adc及羥基異戊酸合成酶及去羧酶之基因經由Ptb-Buk進行的丙酮途徑,所述路徑使得可在大腸桿菌中經由Ptb-Buk系統產生異丁烯(圖1之步驟1、13、14、15、3、5及6)。 It is well known that isopropyl alcohol can be produced from acetone by adding primary:secondary alcohol dehydrogenases (step 4 in Figure 1) (Köpke, Applied and Environmental Microbiology , 80: 3394-3403, 2014), and that isobutylene can be produced from acetone. Prepared by adding hydroxyisovalerate synthase (step 5 in Figure 1) and decarboxylase (step 6 in Figure 1) (van Leeuwen, Appl Microbiol Biotechnology , 93: 1377-1387, 2012). The following path can be constructed, which includes the genes thlA , ptb-buk and adc shown above and the first-level: secondary alcohol dehydrogenase gene (for example, GenBank accession number NC_022592, pos.609711..610766; CAETHG_0553; NCBI-GeneID : 17333984) acetone pathway via Ptb-Buk, which pathway enables the production of isopropanol via the Ptb-Buk system in E. coli (steps 1, 13, 14, 15, 3 and 4 of Figure 1). Similarly, a pathway can be constructed that includes the acetone pathway shown above with the genes thlA, ptb-buk and adc and the genes for hydroxyisovalerate synthase and decarboxylase via Ptb-Buk, which pathway allows for Isobutylene is produced via the Ptb-Buk system in E. coli (steps 1, 13, 14, 15, 3, 5 and 6 of Figure 1).

實例4Example 4

此實例展現自產乙醇梭菌中(R)-3-羥基丁酸酯及1,3-丁二醇之產生。其亦展現在不存在2,3-丁二醇時1,3-丁二醇之產生。 This example demonstrates the production of (R)-3-hydroxybutyrate and 1,3-butanediol from Clostridium ethanologenum. It also demonstrates the production of 1,3-butanediol in the absence of 2,3-butanediol.

建構自產乙醇梭菌之菌株,其中2,3-丁二醇產生之天然路徑失活且經(R)-3-羥基丁醯基-CoA形成之基因置換。此藉由用硫解酶(丙酮丁醇梭菌之thlA;GenBank NC_001988,位置82040..83218;CA_P0078;NCBI-GeneID 1116083)及(R)-特異性3-羥基丁酸去氫酶(鉤蟲貪銅菌之phaB;基因庫WP_010810131.1)之基因置換自產乙醇梭菌之基因組上的乙醯乳酸去羧酶基因(budA)達成,得到菌株自產乙醇梭菌budA::thlAphaB。 A strain from Clostridium ethanologenum was constructed in which the natural pathway for 2,3-butanediol production was inactivated and the gene for (R)-3-hydroxybutyryl-CoA formation was replaced. This is achieved by using a thiolase ( thlA of Clostridium acetobutylicum; GenBank NC_001988, positions 82040..83218; CA_P0078; NCBI-GeneID 1116083) and (R)-specific 3-hydroxybutyrate dehydrogenase (Ancylostoma spp. The gene replacement of the acetyl lactate decarboxylase gene ( budA ) on the genome of Clostridium ethanologenum was achieved, and the strain budA::thlAphaB of Clostridium ethanologenum was obtained .

為用thlAphaB基因置換budA基因,將在tet3n0四環素誘導性啟動子下含大腸桿菌毒素基因mazF(用於逆向選擇)之質體pMTL8225-budA::thlA-phaB(圖14)、budA基因之約1kb上游同源臂、loxP位點側接之thlAphaBermB卡匣及budA基因之約1kb下游同源臂組裝於質體pMTL-tet3no上。 To replace the budA gene with the thlA and phaB genes, the plasmid pMTL8225-budA::thlA-phaB (Fig. 14) containing the E. coli toxin gene mazF (for counter selection) under the tet3n0 tetracycline-inducible promoter, and the budA gene The approximately 1 kb upstream homology arm, the thlA , phaB , ermB cassette flanked by the loxP site, and the approximately 1 kb downstream homology arm of the budA gene were assembled on plastid pMTL-tet3no.

budA之約1kb上游及下游同源臂自自產乙醇梭菌用引子SN01/SN02及SN07/SN08 PCR擴增。thlAphaB基因自鉤蟲貪銅菌之基因組DNA使用引子SN03/SN04mod PCR擴增。側接loxP位點之ermB卡匣使用引子SN05mod/SN06 PCR擴增。合成側接FseI及PmeI之tet3no啟動子且用限制酶FseI及PmeI處理且清洗。使用GeneArt無縫選殖套組(來自Life Technologies)組裝PCR產物及經消化載體,且使用插入片段中無突變之質體pMTL8225-budA::thlA-phaB(SEQ ID NO:121)藉由如先前實例中所述結合轉型自產乙醇梭菌。 Approximately 1 kb of the upstream and downstream homology arms of budA were PCR amplified from Clostridium autoethanogenogens using primers SN01/SN02 and SN07/SN08. The thlA and phaB genes were PCR amplified from the genomic DNA of Cupriaphila hookworm using primers SN03/SN04mod. The ermB cassette flanked by loxP sites was PCR amplified using primers SN05mod/SN06. The tet3no promoter flanked by FseI and Pmel was synthesized and treated with restriction enzymes FseI and Pmel and washed. The PCR product and digested vector were assembled using the GeneArt Seamless Selection Kit (from Life Technologies), and the plasmid pMTL8225-budA::thlA-phaB (SEQ ID NO: 121) without mutations in the insert was used as previously described The combined transformation of Clostridium ethanologenum is described in the Examples.

結合及於甲氧苄啶(trimethoprim)及克拉黴素(clarithromycin)上選擇後,將9個群落於PETC-MES瓊脂盤上劃線兩次,其中使用克拉黴素及無水四環素誘導mazF基因表現。來自克拉黴素及無水四環素之群落的budA基因應已經thlAphaB基因及ermB卡匣置換。此藉由PCR使用側接同 源臂及KAPA聚合酶之引子Og31f/Og32r檢驗(圖15)。 After combination and selection on trimethoprim and clarithromycin, 9 colonies were streaked twice on PETC-MES agar plates, in which clarithromycin and anhydrotetracycline were used to induce mazF gene expression. The budA gene from the clarithromycin and anhydrotetracycline community should have been replaced by thlA and phaB genes and the ermB cassette. This was tested by PCR using primers Og31f/Og32r flanked by homology arms and KAPA polymerase (Fig. 15).

約3.3kb條帶擴增自野生型菌株,而約5.7kb條帶擴增自群落1、4、7及9,指示budA基因經thlAphaBermB卡匣置換。以上事件藉由將所有4個純系之PCR產物測序進一步確認。在所得修飾下,藉由budA基因上游之啟動子驅使thlAphaB基因表現。 Approximately 3.3 kb bands were amplified from the wild-type strain, while approximately 5.7 kb bands were amplified from communities 1, 4, 7, and 9, indicating that the budA gene was replaced by thlA , phaB , and ermB cassettes. The above events were further confirmed by sequencing the PCR products of all four pure lines. Under the obtained modification, the expression of th1A and phaB genes is driven through the promoter upstream of the budA gene.

進行用自產乙醇梭菌budA::thlA-phaB菌株醱酵。在37℃下,在合成氣體(50%CO、18%CO2、2%H2及30%N2)下,使培養物生長,將其連續饋入生物反應器中。最初將氣體流速設定在50ml/min下,在實驗過程中增至400ml/min,同時將攪拌自200rpm增至500rpm。進行醱酵接近5天。如以上實例中所述量測代謝物。 Fermentation was performed with Clostridium autoethanologenum budA::thlA-phaB strain. Cultures were grown at 37°C under synthesis gas (50% CO, 18% CO 2 , 2% H 2 and 30% N 2 ), which was continuously fed into the bioreactor. The gas flow rate was initially set at 50 ml/min and increased to 400 ml/min during the experiment, while stirring was increased from 200 to 500 rpm. Fermentation is carried out for approximately 5 days. Metabolites were measured as described in the examples above.

1,3-丁二醇及其他代謝物(諸如2-羥基異丁酸)之濃度使用氣相層析(GC)分析使用配備有Agilent CP-SIL 5CB-MS(50m×0.25μm×0.25μm)管柱、自動進樣器及火焰電離偵測器(FID)之Agilent 6890N GC量測。樣品藉由如 下步驟製備:用400μL乙腈稀釋400μL樣品,繼而在14,000rpm下3分鐘離心;將上清液轉移至玻璃瓶中且於Thermo SpeedVac中乾燥樣品。乾燥後,隨後將樣品懸浮於400μL N,O-雙三氟乙醯胺(BSTFA)及吡啶(3:1比率)之溶液中且在60℃下於密封玻璃瓶中加熱60分鐘。使用1μL注射量、30比1之分離比及250℃之入口溫度將樣品轉移至自動進樣器中以供分析。用如下烘箱程式執行層析:70℃(不保持)至3℃/分鐘勻變至110℃至15℃/min勻變至230℃,繼而40℃/min最終勻變至310℃,保持3分鐘。管柱流速為1.8mL/min,其中使用氦氣作為載氣。將FID保持在320℃下,其中使用40ml/min之氫氣、400ml/min之空氣及20ml/min之氦氣作為補充氣體。 The concentration of 1,3-butanediol and other metabolites (such as 2-hydroxyisobutyric acid) was analyzed using gas chromatography (GC) using an Agilent CP-SIL 5CB-MS (50m×0.25μm×0.25μm). Agilent 6890N GC measurement of column, autosampler and flame ionization detector (FID). Samples were prepared by diluting 400 μL of sample with 400 μL of acetonitrile and centrifuging at 14,000 rpm for 3 minutes; transferring the supernatant to a glass bottle and drying the sample in a Thermo SpeedVac. After drying, the sample was then suspended in 400 μL of a solution of N,O-bistrifluoroacetamide (BSTFA) and pyridine (3:1 ratio) and heated in a sealed glass bottle at 60°C for 60 minutes. Samples were transferred to the autosampler for analysis using a 1 μL injection volume, a separation ratio of 30 to 1, and an inlet temperature of 250°C. Chromatography was performed using the following oven program: 70°C (no hold) to 3°C/min ramp to 110°C to 15°C/min ramp to 230°C, then 40°C/min final ramp to 310°C, hold for 3 minutes . The column flow rate was 1.8 mL/min, and helium was used as the carrier gas. The FID was maintained at 320°C with 40 ml/min hydrogen, 400 ml/min air and 20 ml/min helium as supplementary gases.

意外地,表現thlAphaB之自產乙醇梭菌budA::thlA-phaB菌株中自氣體產生多達1.55g/L 3-羥基丁酸酯(圖16)。天然硫酯酶可將所形成之3-羥基丁醯基-CoA轉化為3-羥基丁酸酯。在基因組序列中,鑑別三種推定硫酯酶。 Unexpectedly, C. autoethanogenum budA::thlA-phaB strain expressing thlA and phaB produced as much as 1.55g/L 3-hydroxybutyrate from gas (Fig. 16). Natural thioesterase can convert the formed 3-hydroxybutyryl-CoA into 3-hydroxybutyrate. In the genome sequence, three putative thioesterases were identified.

甚至更驚訝地,亦發現隨著3-羥基丁酸酯形成,亦存在多達150mg/L之1,3-丁二醇形成(圖16)。此可歸因於天然醛:鐵氧化還原蛋白氧化還原酶(AOR)及醇去氫酶活性。兩個AOR基因及數個醇去氫酶存在於自產乙醇梭菌之基因組中(Mock,《細菌學雜誌》,197:2965-2980,2015)。3-羥基丁酸酯之此還原藉由經還原鐵氧化還原蛋白提供能量,因此可與提供經還原鐵氧化還原蛋白之CO氧化(CO+Fdox□CO2+Fdred)直接偶合(圖7)。 Even more surprisingly, it was also found that along with 3-hydroxybutyrate formation, up to 150 mg/L of 1,3-butanediol was formed (Figure 16). This can be attributed to natural aldehydes: ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase activities. Two AOR genes and several alcohol dehydrogenases are present in the genome of Clostridium autoethanogenogenum (Mock, Journal of Bacteriology , 197: 2965-2980, 2015). This reduction of 3-hydroxybutyrate is powered by reduced ferredoxin and can therefore be directly coupled to CO oxidation (CO+Fd ox □CO 2 +Fd red ) providing reduced ferredoxin (Fig. 7 ).

亦展現自氣體經由替代途徑使用來自糖乙酸多 丁醇梭菌之丁醛去氫酶Bld(AAP42563.1)(SEQ ID NO:80)產生1,3-BDO。合成bld基因且與相同硫解酶(丙酮丁醇梭菌之thlA)及(R)-特異性3-羥基丁酸去氫酶(鉤蟲貪銅菌之phaB)一起選殖於質體pMTL8315-Pfdx-thlA-phaB-bld(SEQ ID NO:132)中。自以上質體經由下表中之引子擴增Bld及phaB基因且選殖於現有質體pMTL85147-thlA(WO 2012/115527)中。 It has also been shown that 1,3-BDO is produced from gas via an alternative pathway using butyraldehyde dehydrogenase Bld (AAP42563.1) (SEQ ID NO:80) from Clostridium glycoacetate. The bld gene was synthesized and colonized in plastid pMTL8315-Pfdx together with the same thiolase ( thlA from Clostridium acetobutylicum) and (R)-specific 3-hydroxybutyrate dehydrogenase ( phaB from Cupriaphila ancytoides). -thlA-phaB-bld (SEQ ID NO: 132). The Bld and phaB genes were amplified from the above plasmid using the primers in the table below and cloned into the existing plasmid pMTL85147-thlA (WO 2012/115527).

將所得構築體轉型至上述自產乙醇梭菌中且於含50-mL PETC培養基且在30psi下用含CO鋼鐵廠氣體(自紐西蘭鋼鐵站(Glenbrook,NZ)收集)或具有44%CO、32%N2、22%CO2、2%H2之相同組成之合成氣體摻合物加壓的血清瓶中進行生長實驗。 The resulting constructs were transformed into C. autoethanogenum as described above and cultured in 50-mL PETC medium at 30 psi with CO-containing steel plant gas (collected from the New Zealand Steel Station (Glenbrook, NZ)) or with 44% CO The growth experiment was carried out in a serum bottle pressurized by a synthetic gas mixture of the same composition, 32% N 2 , 22% CO 2 and 2% H 2 .

展現經由此途徑自氣體產生1,3-BDO(圖17A),但產量低於(至多67mg/L 1,3-BDO)經由AOR途徑所得,且與AOR途徑相比,在表現bld基因時相較於野生型自產乙醇梭菌生長受影響(圖17B)。 Demonstrated production of 1,3-BDO from gases via this pathway (Figure 17A), but the yield was lower (up to 67 mg/L 1,3-BDO) than via the AOR pathway, and compared to the AOR pathway, when the bld gene was expressed Growth of C. autoethanogenogenum was affected compared to wild type (Fig. 17B).

在另一實驗中,在如實例2中所述之自養條件下進行瓶實驗中,用如實例2中所述之質體pMTL83159-phaB-thlA轉型的自產乙醇梭菌分別產生0.33及0.46g/L 3-HB(圖40)。 In another experiment, C. autoethanogenum transformed with plasmid pMTL83159-phaB-thlA as described in Example 2 produced 0.33 and 0.46, respectively, in bottle experiments performed under autotrophic conditions as described in Example 2. g/L 3-HB (Figure 40).

實例5Example 5

此實例展現自產乙醇梭菌中(S)-3-羥基丁酸酯及 1,3-丁二醇之產生。 This example demonstrates the production of (S)-3-hydroxybutyrate and 1,3-butanediol from Clostridium ethanologenum.

建構如下質體,其在鐵氧化還原蛋白啟動子(自自產乙醇梭菌分離之Pfdx;SEQ ID NO:138)或丙酮酸-鐵氧化還原蛋白氧化還原酶啟動子(自自產乙醇梭菌分離之Ppfor;SEQ ID NO:139)下表現硫解酶(來自丙酮丁醇梭菌之thlA;SEQ ID NO:136)及(S)-特異性3-羥基丁酸去氫酶(來自克氏梭菌之hbd1;SEQ ID NO:137)。如下建構質體:將P-hbd1-rbs2-thlA拼裝在一起且藉由分子選殖中之如下常規方法選殖於pMTL83151載體(Heap,《微生物學方法雜誌》,78:79-85,2009)中,包含限定性酶消化繼而接合、重疊延伸聚合酶鏈反應、無縫選殖(Thermo Fisher Scientific)及GeneArt IIs型(Thermo Fisher Scientific)。將操縱子P-hbd1-rbs2-thlA選殖於質體之多個選殖區中所見之限制位點NotI與XhoI之間。P為組成性啟動子,其含有完整核糖體結合位點(rbs)。rbs2(SEQ ID NO:140)為表現thlA之核糖體結合位點。逐步程序為自現有模板擴增P、hbd1及thlA,其中引子如下所列。 Plasmids were constructed in which the ferredoxin promoter ( Pfdx isolated from C. autoethanogenum; SEQ ID NO: 138) or the pyruvate-ferredoxin oxidoreductase promoter (P fdx isolated from C. autoethanogenum) was constructed. The bacterial isolate P pfor ; SEQ ID NO: 139) exhibits thiolase ( thlA from Clostridium acetobutylicum; SEQ ID NO: 136) and (S)-specific 3-hydroxybutyrate dehydrogenase (from hbd1 of Clostridium cruzi; SEQ ID NO: 137). The following plasmid was constructed: P-hbd1-rbs2-thlA was assembled together and cloned into the pMTL83151 vector by the following conventional methods in molecular selection (Heap, Journal of Microbiological Methods , 78: 79-85, 2009) , including restriction enzyme digestion followed by ligation, overlap extension polymerase chain reaction, seamless cloning (Thermo Fisher Scientific), and GeneArt IIs (Thermo Fisher Scientific). The operon P-hbd1-rbs2-thlA was selected between the restriction sites NotI and XhoI found in multiple selection regions of the plastids. P is a constitutive promoter, which contains a complete ribosome binding site (rbs). rbs2 (SEQ ID NO: 140) is the ribosome binding site expressing thlA. The step-by-step procedure is to amplify P, hbd1 and thlA from existing templates with the primers listed below.

聚合酶鏈反應如下使用Kapa Taq PCR套組(Kapa Biosystems)執行。退火溫度設定在56℃,且延伸1分鐘。重複PCR反應30個循環。之後,使用DNA Clean & Concentrator套組(Zymo Research Corporation)將PCR產物去鹽。 Polymerase chain reaction was performed using the Kapa Taq PCR kit (Kapa Biosystems) as follows. The annealing temperature was set at 56°C and the extension was 1 minute. Repeat the PCR reaction for 30 cycles. Afterwards, the PCR products were desalted using the DNA Clean & Concentrator Kit (Zymo Research Corporation).

藉由遵循所提供之方案使用FastDigest NotI及FastDigest XhoI(Thermo Fisher Scientific)進行NotI/XhoI雙重消化,繼而使用FastAP鹼性磷酸酶(Thermo Fisher Scientific)及所提供之方案用鹼性磷酸酯處理製備pMTL83151質體主鏈。隨後,用DNA Clean & Concentrator套組(Zymo Research Corporation)將經消化主鏈去鹽。 pMTL83151 was prepared by NotI/XhoI double digestion using FastDigest NotI and FastDigest XhoI (Thermo Fisher Scientific) following the protocol provided, followed by alkaline phosphate treatment using FastAP alkaline phosphatase (Thermo Fisher Scientific) and the protocol provided Plastid backbone. Subsequently, the digested backbone was desalted using a DNA Clean & Concentrator Kit (Zymo Research Corporation).

使用GeneArt IIs型套組(Thermo Fisher Scientific)進行PCR產物及質體主鏈之組裝。隨後自大腸桿菌質體表現宿主使用QIAprep Spin Miniprep套組(Qiagen)分離所得質體。 GeneArt IIs type kit (Thermo Fisher Scientific) was used for assembly of PCR products and plastid backbones. The resulting plastids were then isolated from the E. coli plastid expression host using the QIAprep Spin Miniprep Kit (Qiagen).

為引入由所述操縱子組成之經組裝之質體pMTL8315-Pfdx-hbd1-thlA及pMTL8315-Ppfor-hbd1-thlA,首先藉由化學轉型將質體引入大腸桿菌CA434菌株中。之後,藉由將經轉型CA434菌株與自產乙醇梭菌生產宿主於固體LB-瓊脂培養基上混合,且在壓力下在實例2中所述之由一氧化碳及氫氣組成的混合物存在下於厭氧環境中培育進行結合。自產乙醇梭菌在結合後藉由在厭氧條件下連續生長於含有適當抗生素及甲氧苄氨嘧啶(trimethroprim)之固體培養基上選擇以移除剩餘大腸桿菌CA434菌株。 To introduce the assembled plasmids pMTL8315-Pfdx-hbd1-thlA and pMTL8315-Ppfor-hbd1-thlA composed of the operon, the plastids were first introduced into E. coli CA434 strain by chemical transformation. Thereafter, by mixing the transformed CA434 strain with the Clostridium autoethanogenogen production host on solid LB-agar medium and in an anaerobic environment under pressure in the presence of a mixture consisting of carbon monoxide and hydrogen as described in Example 2 Cultivation is carried out in combination. C. autoethanogenans were selected after conjugation to remove remaining E. coli CA434 strains by continuous growth under anaerobic conditions on solid media containing appropriate antibiotics and trimethroprim.

使帶有所引入之由操縱子P-hbd1-rbs2-thlA組成之pMTL8315-Pfdx-hbd1-thlA或pMTL8315-Ppfor-hbd1-thlA 質體之自產乙醇梭菌菌株於用橡膠隔膜緊密密封且封蓋且在30psi下用含CO鋼鐵廠氣體(自紐西蘭鋼鐵站(Glenbrook, NZ)收集)或具有44%CO、32%N2、22%CO2、2%H2之相同組成之合成氣體摻合物加壓的250-mL Schott瓶中於10-mL PETC培養基中生長。如先前實例中所述量測代謝物。 The Clostridium autoethanogenum strain carrying the introduced pMTL8315-Pfdx-hbd1-thlA or pMTL8315-Ppfor-hbd1-thlA plasmid consisting of the operon P-hbd1-rbs2-thlA was tightly sealed with a rubber septum and sealed Lid and synthesized at 30 psi with CO containing steelworks gas (collected from New Zealand Steel Station (Glenbrook, NZ)) or the same composition with 44% CO, 32% N 2 , 22% CO 2 , 2% H 2 The gas blend was grown in 10-mL PETC medium in a pressurized 250-mL Schott bottle. Metabolites were measured as described in the previous example.

意外地,表現thlAhbd1之自產乙醇梭菌培養物中由氣體產生3-羥基丁酸酯(圖18A)。天然硫酯酶可將所形成之3-羥基丁醯基-CoA轉化為3-羥基丁酸酯。在基因組序列中,鑑別三種推定硫酯酶。在帶有pMTL8315-Pfdx-hbd1-thlA之菌株中,發現多達2.55g/L 3-羥基丁酸酯(圖18A)。 Unexpectedly, 3-hydroxybutyrate was produced from gas in C. autoethanogenum cultures expressing thlA and hbd1 (Figure 18A). Natural thioesterase can convert the formed 3-hydroxybutyryl-CoA into 3-hydroxybutyrate. In the genome sequence, three putative thioesterases were identified. In the strain harboring pMTL8315-Pfdx-hbd1-thlA, up to 2.55 g/L 3-hydroxybutyrate was found (Figure 18A).

甚至更驚人地,亦發現3-羥基丁酸酯隨時間轉化為1,3-丁二醇,在生長結束時,帶有質體pMTL8315-Pfdx-hbd1-thlA之菌株中產生多達1.1g/L 1,3-丁二醇(圖18A)。此可歸因於天然醛:鐵氧化還原蛋白氧化還原酶(AOR)及醇去氫酶活性。兩個AOR基因及數個醇去氫酶存在於自產乙醇梭菌之基因組中(Mock,《細菌學雜誌》,197:2965-2980,2015)。3-羥基丁酸酯之此還原(及乙酸酯還原為乙醇;圖18B)藉由經還原鐵氧化還原蛋白提供能量,因此可與提供經還原鐵氧化還原蛋白之CO氧化(CO+Fdox□CO2+Fdred)直接偶合(圖7)。 Even more strikingly, 3-hydroxybutyrate was also found to be converted to 1,3-butanediol over time, producing as much as 1.1g/ L 1,3-butanediol (Figure 18A). This can be attributed to natural aldehydes: ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase activities. Two AOR genes and several alcohol dehydrogenases are present in the genome of Clostridium autoethanogenogenum (Mock, Journal of Bacteriology , 197: 2965-2980, 2015). This reduction of 3-hydroxybutyrate (and the reduction of acetate to ethanol; Figure 18B) is powered by reduced ferredoxin and thus can be coupled with the CO oxidation (CO+ Fdox) that provides reduced ferredoxin. □CO 2 +Fd red ) direct coupling (Figure 7).

帶有質體pMTL8315-Pfdx-hbd1-thlA之自產乙醇梭菌之相同菌株亦在連續醱酵中測試。如先前實例中所述進行醱酵,但培養物隨著用新鮮培養基之稀釋率連續變化,在第2天約0.05,隨後在第3天增加至1.0。觀測到多達7g/L之高3-羥基丁酸酯產量,且1,3-BDO產量為0.5g/L。 The same strain of C. autoethanogenans harboring plasmid pMTL8315-Pfdx-hbd1-thlA was also tested in continuous fermentation. Fermentation was performed as described in the previous example, but the culture was continuously varied with dilution rates with fresh medium, approximately 0.05 on day 2, and subsequently increased to 1.0 on day 3. High 3-hydroxybutyrate production of up to 7 g/L was observed, and 1,3-BDO production of 0.5 g/L.

為改良(S)-3-羥基丁酸酯及1,3-丁二醇之產生且避免丁二醇之另一形式(2,3-丁二醇)合成,將質體pMTL-HBD-ThlA引入具有失活之2,3-丁二醇路徑之菌株中,在所述菌株中乙醯乳酸去羧酶基因BudA缺失(U.S.9,297,026)。此budA剔除去除獲得2,3-BDO之主要路徑,從而提高對3-HB及1,3-BDO產生之特異性。當pMTL-HBD-ThlA表現於budA缺失菌株中時,對於3-HB與1,3-BDO獲得總共15mol%C(圖41)。 In order to improve the production of (S)-3-hydroxybutyrate and 1,3-butanediol and avoid the synthesis of another form of butanediol (2,3-butanediol), plasmid pMTL-HBD-ThlA A strain with an inactivated 2,3-butanediol pathway in which the acetyl lactate decarboxylase gene BudA was deleted (U.S. 9,297,026) was introduced. This budA deletion removes the main pathway to obtain 2,3-BDO, thereby improving the specificity for 3-HB and 1,3-BDO production. When pMTL-HBD-ThlA was expressed in the budA deletion strain, a total of 15 mol% C was obtained for 3-HB and 1,3-BDO (Figure 41).

作為比較,在表現相同質體pMTL83159-hbd-thlA但不剔除budA之菌株中,在穩態下產生3-HB及1,3-BDO之總特異性僅為6.9%。 For comparison, in a strain expressing the same plasmid pMTL83159-hbd-thlA but without deletion of budA, the overall specificity for the production of 3-HB and 1,3-BDO at steady state was only 6.9%.

實例6Example 6

此實例展現在自產乙醇梭菌中Ptb-Buk系統對一系列醯基-CoA有效,包含乙醯乙醯基-CoA、3-羥基丁醯基-CoA及2-羥基異丁醯基-CoA。 This example shows that the Ptb-Buk system in Clostridium autoethanologenum is effective for a series of acyl-CoA, including acetoacetyl-CoA, 3-hydroxybutyryl-CoA and 2-hydroxyisobutyryl-CoA.

Ptb-Buk系統自自產乙醇梭菌中之質體表現且使用CoA水解分析量測其活性。對此,將來自拜氏梭菌 NCIMB8052之ptb-buk基因(基因庫NC_009617,位置232027..234147;Cbei_0203-204;NCBI-GeneID 5291437-38)自拜氏梭菌NCIMB8052之基因組DNA擴增,且藉由分子選殖中之如下常規方法在丙酮酸-鐵氧化還原蛋白氧化還原酶啟動子(自自產乙醇梭菌分離之Ppfor;SEQ ID NO:139)控制下選殖於pMTL83151載體(Heap,《微生物學方法雜誌》,78:79-85,2009)中,包含如實例5中所述之限定性酶消化繼而接合、重疊延伸聚合酶鏈反應、無縫選殖(Thermo Fisher Scientific)及GeneArt IIs型(Thermo Fisher Scientific)。下文描述寡核苷酸。 The Ptb-Buk system was expressed from plastids in Clostridium autoethanogenogenum and its activity was measured using a CoA hydrolysis assay. For this, the ptb-buk gene from C. beijerinckii NCIMB8052 (GenBank NC_009617, positions 232027..234147; Cbei_0203-204; NCBI-GeneID 5291437-38) was amplified from the genomic DNA of C. beijerinckii NCIMB8052, and By the following conventional method in molecular selection, the pMTL83151 vector (Heap , Journal of Methods in Microbiology , 78:79-85, 2009), including restriction enzyme digestion followed by ligation, overlap extension polymerase chain reaction, seamless selection (Thermo Fisher Scientific) and GeneArt type IIs (Thermo Fisher Scientific). Oligonucleotides are described below.

如先前實例中所述將所得質體pMTL82256-ptb-buk(SEQ ID NO:153)引入自產乙醇梭菌中。 The resulting plasmid pMTL82256-ptb-buk (SEQ ID NO: 153) was introduced into C. autoethanogenans as described in the previous example.

如下執行醯基-CoA水解分析。藉由離心(在4℃下,14,000rpm,1分鐘)收集OD 2(指數期後期)之自產乙醇梭菌細胞。將細胞再懸浮於500μl溶解緩衝液(磷酸鉀緩衝液,pH 8)中。使用凍融循環(視情況選用),以振幅20於冰上音波處理6×30秒溶解細胞。將樣品在4℃下以14,000rpm離心10分鐘且移出具有可溶性蛋白質之上清液。量測蛋白濃度,例如用Bradford分析。 Carboxyl-CoA hydrolysis analysis was performed as follows. OD 2 (late exponential phase) C. autoethanogenic cells were collected by centrifugation (14,000 rpm, 1 min at 4°C). Cells were resuspended in 500 μl of lysis buffer (potassium phosphate buffer, pH 8). Lyse cells by sonicating on ice for 6 × 30 seconds at an amplitude of 20 using a freeze-thaw cycle (optional). The sample was centrifuged at 14,000 rpm for 10 minutes at 4°C and the supernatant with soluble protein was removed. Measure protein concentration, e.g. using Bradford assay.

分析混合物含有:484μl磷酸鉀緩衝液(pH 8.0)、1μl DTNB(最終濃度0.1mM)、10μl細胞溶解物及5μl CoA(最終濃度500μM)。除蛋白質外,將所有組分混合於石 英比色管(1ml比色管,讀取長度為1cm)中。藉由添加細胞溶解物開始分析,繼而在30℃下在分光光度計中在405nm下反應3分鐘。操作無溶解物之對照以量測醯基-CoA之自分解。 The assay mixture contained: 484 μl potassium phosphate buffer (pH 8.0), 1 μl DTNB (final concentration 0.1 mM), 10 μl cell lysate, and 5 μl CoA (final concentration 500 μM). All components, except protein, were mixed in a quartz colorimetric tube (1 ml colorimetric tube, 1 cm reading length). The analysis was started by adding cell lysates, followed by reaction in a spectrophotometer at 405 nm for 3 minutes at 30°C. A control without dissolved matter was run to measure the autodecomposition of acyl-CoA.

為測定活性,計算曲線之線性部分(通常在前30秒)的斜率。標準化蛋白質量且將斜率除以蛋白質量。使用消光係數(14,150M-1 cm-1)計算比活性(M/s/mg)。扣除陰性對照之活性。 To determine activity, the slope of the linear portion of the curve (usually the first 30 seconds) is calculated. Normalize the protein amount and divide the slope by the protein amount. Specific activity (M/s/mg) was calculated using the extinction coefficient (14,150M -1 cm -1 ). Subtract the activity of the negative control.

所述分析用乙醯乙醯基-CoA執行,一種3-羥基丁醯基-CoA(3-HB-CoA)與2-羥基異丁醯基-CoA(2-HB-CoA)之外消旋混合物。潛在受質限制所致的3-HB-CoA及2-HIB-CoA之人工低水解速率之可能性藉由使用不同濃度(500μM及200μM)之醯基-CoA進行自產乙醇梭菌溶解物之重複分析解決。 The analysis was performed with acetoacetyl-CoA, a racemic mixture of 3-hydroxybutyryl-CoA (3-HB-CoA) and 2-hydroxyisobutyryl-CoA (2-HB-CoA). The possibility of artificially low hydrolysis rates of 3-HB-CoA and 2-HIB-CoA due to potential substrate limitations was investigated by using different concentrations (500 μM and 200 μM) of acyl-CoA in autoethanogenic Clostridium lysates. Repeat analysis to resolve.

分析結果展示對於一系列醯基-CoA(包含乙醯乙醯基-CoA、3-羥基丁醯基-CoA及2-羥基異丁醯基-CoA),表現Ptb-Buk系統之帶有質體pMTL82256-ptb-buk之自產乙醇梭菌的溶解物中的CoA水解顯著增加(圖20A-B)。值得注意的是,對於野生型自產乙醇梭菌不水解之2-羥基異丁醯基-CoA形式之醯基-CoA,亦存在CoA水解。對於乙醯乙醯基-CoA及3-羥基丁醯基-CoA,觀測到一些天然CoA水解活性。 The analysis results show that for a series of acyl-CoA (including acetyl-acetyl-CoA, 3-hydroxybutyl-CoA and 2-hydroxyisobutyl-CoA), the pMTL82256-ptb-bearing plasmid representing the Ptb-Buk system CoA hydrolysis was significantly increased in lysates of C. autoethanogenogenum buk (Figure 20A-B). It is worth noting that CoA hydrolysis also occurs for acyl-CoA in the form of 2-hydroxyisobutyl-CoA, which is not hydrolyzed by wild-type C. autoethanologenum. Some native CoA hydrolytic activity was observed for acetoacetyl-CoA and 3-hydroxybutyryl-CoA.

實例7Example 7

此實例展現破壞所鑑別天然硫酯酶基因藉由增加可獲得之醯基-CoA(諸如乙醯乙醯基-CoA、3-羥基丁醯基-CoA或2-羥基異丁醯基-CoA)之彙集改良Ptb-Buk及CoA 轉移酶系統之效率。 This example demonstrates that disruption of the identified native thioesterase gene improves Ptb by increasing the pool of available acyl-CoA, such as acetyl-acetyl-CoA, 3-hydroxybutyl-CoA, or 2-hydroxyisobutyl-CoA. -Efficiency of Buk and CoA transferase systems.

與在醯基-CoA轉化為其各別酸期間能量以ATP形式守恆的Ptb-Buk系統相比,若CoA簡單水解,則能量不守恆。 In contrast to the Ptb-Buk system where energy is conserved in the form of ATP during the conversion of acyl-CoA to its respective acid, energy is not conserved if CoA is simply hydrolyzed.

在水解酶分析中,發現在自產乙醇梭菌中,對於乙醯乙醯基-CoA及3-羥基丁醯基-CoA存在天然水解活性。 In the hydrolase analysis, it was found that Clostridium autoethanologenum has natural hydrolytic activity for acetoacetyl-CoA and 3-hydroxybutyryl-CoA.

用乙醯乙醯基-CoA(一種3-羥基丁醯基-CoA(3-HB-CoA)與2-羥基異丁醯基-CoA(2-HB-CoA)之外消旋混合物)進行醯基-CoA水解分析如先前實例中所述進行。分析結果展示乙醯乙醯基-CoA及3-HB-CoA裂解,而非2-HIB-CoA,且證實天然活性存在於自產乙醇梭菌中(圖11)。 Hydrolysis of Acetyl-CoA with Acetyl-CoA, a racemic mixture of 3-hydroxybutyl-CoA (3-HB-CoA) and 2-hydroxyisobutyl-CoA (2-HB-CoA) The analysis was performed as described in the previous example. The analysis showed cleavage of acetoacetyl-CoA and 3-HB-CoA, but not 2-HIB-CoA, and confirmed that the native activity is present in C. autoethanologenum (Figure 11).

分析自產乙醇梭菌之基因組可鑑別三種推定CoA-硫酯酶(硫酯-水解酶),其可引起乙醯乙醯基-CoA或3-羥基丁醯基-CoA硫酯鍵之裂解。其亦存在於其他產乙酸菌(諸如永達爾梭菌)中。 Analysis of the genome of Clostridium autoethanologenum identified three putative CoA-thioesterases (thioester-hydrolases) that can cause cleavage of acetoacetyl-CoA or 3-hydroxybutyryl-CoA thioester bonds. It is also present in other acetogenic bacteria, such as Clostridium yungdalae.

此等三種推定CoA硫酯酶失活產生較高產物效價,從而改良Ptb-Buk系統之效率。三種推定硫酯酶使用ClosTron技術失活。簡言之,II型Ltr之靶向域使用ClosTron網站再程式化且再靶向ClosTron質體定購自DNA 2.0。使用結合將靶向硫酯酶1之ClosTron剔除載體 pMTL007C-E2-Cau-2640-571s(CAETHG_0718)、靶向硫酯酶2之pMTL007C-E2-PBor3782-166s(CAETHG_1524)及靶向硫酯酶3之pMTL007C-E2-PBor4039-199s(CAETHG_1780)引入自產乙醇梭菌中。 Inactivation of these three putative CoA thioesterases resulted in higher product titers, thereby improving the efficiency of the Ptb-Buk system. Three putative thioesterases were inactivated using ClosTron technology. Briefly, the targeting domain of type II Ltr was reprogrammed using the ClosTron website and the retargeting ClosTron plasmid was ordered from DNA 2.0. The ClosTron knockout vector pMTL007C-E2-Cau-2640-571s (CAETHG_0718) targeting thioesterase 1, pMTL007C-E2-PBor3782-166s (CAETHG_1524) targeting thioesterase 2 and thioesterase 3 were used. pMTL007C-E2-PBor4039-199s (CAETHG_1780) was introduced into Clostridium autoethanogenogenum.

藉由選擇補充有5μg/ml克拉黴素之PETC進行用於整合之選擇且藉由整合II型內含子成功失活藉由跨越插入位點PCR確認。 Selection for integration was performed by selecting PETC supplemented with 5 μg/ml clarithromycin and successful inactivation by integrating the type II intron was confirmed by PCR across the insertion site.

使用上述分析量測對野生型自產乙醇梭菌與推定基因中之一者失活之各自產乙醇梭菌的乙醯乙醯基-CoA的CoA水解酶活性。經展示,具有失活之推定硫酯酶的所有三種菌株對乙醯乙醯基-CoA及3-羥基丁醯基-CoA展示較低水解活性(圖21A-B)。 The assay described above was used to measure CoA hydrolase activity of acetyl-CoA against wild-type C. autoethanogenogenum and C. autoethanogenogenum with one of the putative genes inactivated. It was shown that all three strains with inactivated putative thioesterases exhibited lower hydrolytic activity towards acetyl acetyl-CoA and 3-hydroxybutyl-CoA (Figure 21A-B).

為展示降低之CoA水解酶活性從而增加之乙醯乙醯基-CoA彙集有益於乙醯乙醯基-CoA衍生產物之產生,將編碼thl+ctfAB+adc之異丙醇質體pMTL85147-thlA-ctfAB-adc(WO 2012/115527)引入野生型自產乙醇梭菌菌株及具有失活之硫酯酶1的菌株中。在37℃下,在110rpm震盪下,在1L Schott瓶中,在40ml PETC培養基中,用Co氣體技術性一式三份地進行生長實驗。合成氣體(50%CO、18%CO2、2%H2及30%N2)用作唯一能量及碳源。進行一次頂空交換且在37℃下在合成氣體(50%CO、18%CO2、2%H2及30%N2)下充氣至21psi(1.5巴)。一天兩次採集用於OD及分析之樣品。 To demonstrate that reduced CoA hydrolase activity and thus increased acetyl-CoA pooling is beneficial for the production of acetyl-CoA derivatives, the isopropanol plasmid pMTL85147-thlA- encoding thl + ctfAB + adc ctfAB-adc (WO 2012/115527) was introduced into a wild-type C. autoethanogenum strain and a strain with inactivated thioesterase 1. Growth experiments were performed in technical triplicate with Co gas in 40 ml PETC medium in 1 L Schott bottles at 37 °C with shaking at 110 rpm. Synthesis gas (50% CO, 18% CO 2 , 2% H 2 and 30% N 2 ) is used as the sole energy and carbon source. A headspace exchange was performed and aerated to 21 psi (1.5 bar) at 37°C under synthesis gas (50% CO, 18% CO2 , 2% H2 and 30% N2 ). Samples for OD and analysis were collected twice a day.

相較於野生型,具有失活之硫酯酶3 CAETHG_1780的菌株產生顯著較高水準之異丙醇(圖22及 圖23A-D)。 The strain with inactivated thioesterase 3 CAETHG_1780 produced significantly higher levels of isopropyl alcohol compared to the wild type (Figure 22 and Figure 23A-D).

類似地,剔除自產乙醇梭菌中之硫酯酶將提高3-羥基丁醯基-CoA之彙集,從而使得Ptb-Buk可更有效地利用3-羥基丁醯基-CoA且引起丙酮、異丙醇、異丁烯、(R)-3-羥基丁酸酯、1,3-丁二醇及/或2-羥基異丁酸之較高產生。當將實例5之pMTL8315-Pfdx-hbd1-thlA引入具有中斷之硫酯酶2CAETHG_1524之自產乙醇梭菌菌株中時,消除3-羥基丁酸酯合成(相較於當在自產乙醇梭菌野生型菌株中表現此質體時發現的多達2.55g/L3-羥基丁酸酯)。此菌株中不存在對3-羥基丁醯基-CoA之競爭活性。 Similarly, deletion of thioesterase in Clostridium autoethanogenum will increase the recruitment of 3-hydroxybutyl-CoA, allowing Ptb-Buk to more efficiently utilize 3-hydroxybutyl-CoA and induce acetone, isopropanol, isobutylene , higher production of (R)-3-hydroxybutyrate, 1,3-butanediol and/or 2-hydroxyisobutyric acid. When pMTL8315-Pfdx-hbd1-thlA of Example 5 was introduced into a C. autoethanogenum strain with disrupted thioesterase 2CAETHG_1524, 3-hydroxybutyrate synthesis was eliminated (compared to when in C. autoethanogenum wild-type As much as 2.55g/L 3-hydroxybutyrate) was found in strains expressing this plasmid. There is no competitive activity for 3-hydroxybutyl-CoA in this strain.

此等結果展示藉由降低硫酯酶活性,可獲得Ptb-Buk系統及產物合成之較高CoA彙集。 These results demonstrate that by reducing thioesterase activity, higher CoA pooling of the Ptb-Buk system and product synthesis can be obtained.

另外,3-HB及1,3-BDO之產生可藉由過度表現Ptb-Buk增加。在對照實驗中,藉由所述實驗如實例2中所述之自產乙醇梭菌用來自實例4之質體pMTL83159-phaB-thlA加上pMTL82256轉型(Heap,《微生物學方法雜誌》,78:79-85,2009),其中pMTL82256為用作背景對照之空質體,此類菌株之醱酵使得在第10天以最高效價產生1.68g/L之3-HB(圖42A)。當pMTL82256-buk-ptb替代空質體pMTL82256與pMTL83159-phaB-thlA共表現於自產乙醇梭菌中時,醱酵在較早時間-第4天產生4.76g/L的較高效價3-HB(圖42B)。 In addition, the production of 3-HB and 1,3-BDO can be increased by overexpression of Ptb-Buk. In a control experiment, C. autoethanologenum was transformed with plasmid pMTL83159-phaB-thlA from Example 4 plus pMTL82256 as described in Example 2 (Heap, Journal of Methods in Microbiology , 78: 79-85, 2009), in which pMTL82256 is an empty plasmid used as a background control. Fermentation of this strain resulted in the production of 1.68g/L 3-HB at the highest efficiency on day 10 (Figure 42A). When pMTL82256-buk-ptb replaced empty plasmid pMTL82256 and pMTL83159-phaB-thlA was co-expressed in Clostridium autoethanogenogenum, the fermentation produced a higher titer of 3-HB of 4.76g/L at an earlier time - day 4 (Figure 42B).

缺失天然硫酯酶提高Ptb-Buk系統之效率,其偏好(R)-3-HB-CoA。基因組中硫酯酶基因之基因座缺失且經由稱為同源重組之常見分子生物學技術用buk-ptb dna片段置 換。藉由buk-ptb取代硫酯酶基因藉由PCR,繼而瓊脂糖凝膠電泳及dna測序確認。 Deletion of the native thioesterase improves the efficiency of the Ptb-Buk system, which prefers (R)-3-HB-CoA. The locus of the thioesterase gene in the genome was deleted and replaced with a buk-ptb DNA fragment via a common molecular biology technique called homologous recombination. Replacement of the thioesterase gene by buk-ptb was confirmed by PCR, followed by agarose gel electrophoresis and DNA sequencing.

在瓶實驗中,當在上述硫酯酶缺失突變體中表現pMTL83156-phaB-thlA而不表現ptb-buk時,所產生之3-HB之平均最大效價為0.50±0.05g/L,類似於使用未經修飾自產乙醇梭菌菌株獲得的效價。當pMTL82256-buk-ptb與pMTL83156-phaB-thlA質體共表現於硫酯酶基因剔除菌株中時,3-HB之產量增至1.29±0.10g/L(圖43)。 In bottle experiments, when expressing pMTL83156-phaB-thlA but not ptb-buk in the above thioesterase deletion mutant, the average maximum titer of 3-HB produced was 0.50±0.05g/L, similar to Titers obtained using unmodified C. ethanologenum strains. When pMTL82256-buk-ptb and pMTL83156-phaB-thlA plasmids were co-expressed in the thioesterase gene knockout strain, the production of 3-HB increased to 1.29±0.10g/L (Figure 43).

實例8Example 8

此實例展現可用Ptb-buk系統去除產乙酸菌自產乙醇梭菌乙酸酯產生系統。 This example demonstrates that the Ptb-buk system can be used to remove the acetogenic bacteria Clostridium ethanologenum from the acetate-producing system.

經描述,所有產乙酸微生物均產生乙酸酯(Drake,《產乙酸原核生物》,於《原核生物》中,第3版,第354-420頁,New York,NY,Springer,2006),因為產生乙酸酯向微生物提供經由Pta(磷酸轉乙醯酶)及Ack(磷酸轉乙醯酶-乙酸激酶)自受質層面磷酸化直接產生ATP的選擇。因此,認為天然乙酸形成酶(諸如Pta-Ack)在產乙酸菌中是必需的(Nagarajan,《微生物細胞工廠》,12:118,2013)。由於Ptb-Buk提供一種產生能量之替代方式,故可用Ptb-Buk置換天然Pta-Ack系統。 All acetogenic microorganisms have been described to produce acetate (Drake, "Acetogenic Prokaryotes," in Prokaryotes , 3rd ed., pp. 354-420, New York, NY, Springer, 2006) because The production of acetate provides microorganisms with the option of directly producing ATP from phosphorylation at the substrate level via Pta (phosphotransacetylase) and Ack (phosphotransacetylase-acetate kinase). Therefore, natural acetate-forming enzymes such as Pta-Ack are believed to be essential in acetogens (Nagarajan, Microbial Cell Factory , 12:118, 2013). Since Ptb-Buk provides an alternative way to generate energy, Ptb-Buk can be used to replace the natural Pta-Ack system.

自產乙醇梭菌中之ptaack基因在一個操縱子中。為用ptbbuk基因置換pta及ack基因,將在四環素誘導性啟動子下含mazF逆向選擇標記物之質體pMTL8225-pta-ack::ptb-buk(圖24)、約1kb上游同源臂、loxP位點側接之ptbbukermB卡匣及約1kb下游同源臂組裝(SEQ ID NO:160)。 The pta and ack genes in Clostridium autoethanogenogens are in one operon. In order to replace the pta and ack genes with the ptb and buk genes, the plasmid pMTL8225-pta-ack::ptb-buk (Fig. 24) containing the mazF counter-selection marker under the tetracycline-inducible promoter and about 1 kb of the upstream homology arm was , loxP site flanked by ptb , buk , ermB cassette and about 1kb downstream homology arm assembly (SEQ ID NO: 160).

約1kb上游及下游同源臂自自產乙醇梭菌用引子SN22f/SN23r及SN28f/SN29r PCR擴增。ptbbuk基因自pIPA_16質體使用引子SN24f/SN25r PCR擴增。將具有loxP位點之ermB卡匣使用引子SN26f/SN27r PCR擴增。將質體主鏈用引子SN30f/SN31r PCR擴增。將KAPA聚合酶用於所有PCR擴增。使用GeneArt無縫選殖套組(來自Life Technologies)組裝PCR產物,且使用插入片段中無突變之質體藉由如先前所述結合轉型自產乙醇梭菌。 Approximately 1 kb of upstream and downstream homology arms were PCR amplified from Clostridium autoethanogenogens using primers SN22f/SN23r and SN28f/SN29r. The ptb and buk genes were PCR amplified from pIPA_16 plasmid using primers SN24f/SN25r. The ermB cassette with loxP site was PCR amplified using primers SN26f/SN27r. The plastid backbone was PCR amplified using primers SN30f/SN31r. KAPA polymerase was used for all PCR amplifications. PCR products were assembled using the GeneArt seamless cloning kit (from Life Technologies), and C. ethanologenum was transformed by conjugation as previously described using plasmids without mutations in the insert.

結合及於甲氧苄啶及克拉黴素上選擇後,將7個群落於PETC-MES瓊脂盤上劃線兩次,其中使用克拉黴素及無水四環素誘導mazF基因表現。來自克拉黴素及無水四環素之群落之ptaack基因應已經ptbbuk基因及ermB卡匣置換。此藉由PCR使用側接同源臂及KAPA聚合酶之引子Og29f/Og30r檢驗(圖25)。約4.6kb條帶擴增自野生型菌株,而約5.7kb條帶擴增自群落1及4-7,指示ptaack基因經ptbbuk基因及ermB卡匣置換。以上事件藉由將來自純系4-7之PCR產物測序進一步確認。 After combination and selection on trimethoprim and clarithromycin, 7 colonies were streaked twice on PETC-MES agar plates, in which clarithromycin and anhydrotetracycline were used to induce mazF gene expression. The pta and ack genes from the clarithromycin and anhydrotetracycline communities should have been replaced by the ptb and buk genes and the ermB cassette. This was tested by PCR using primers Og29f/Og30r flanked by homology arms and KAPA polymerase (Figure 25). The approximately 4.6 kb band was amplified from the wild-type strain, while the approximately 5.7 kb band was amplified from communities 1 and 4-7, indicating that the pta and ack genes were replaced by the ptb and buk genes and the ermB cassette. The above events were further confirmed by sequencing the PCR products from pure lines 4-7.

在所得修飾下,ptb及buk基因之表現藉由pta基因上游之啟動子驅使。 Under the resulting modification, the expression of ptb and buk genes is driven by the promoter upstream of the pta gene.

如上所述用實例2之異丙醇產生質體pMTL85147-thlA-adc轉型所得菌株自產乙醇梭菌pta-ack::ptb-buk,其中pta-ack操縱子經ptb-buk操縱子置換。在自養條件下進行生長研究且分析代謝最終產物。未觀測到乙酸酯產生,而除乙醇及2,3-丁二醇以外,仍產生異丙醇(多達0.355g/L)及3-HB(多達0.29g/L)(圖39A及39B)。此展現使用Ptb-Buk系統可在不產生乙酸酯的情況下自氣體受質CO及/或CO2及H2產生異丙醇及3-HB。 The strain obtained by transforming the isopropanol-producing plasmid pMTL85147-thlA-adc of Example 2 was pta-ack::ptb-buk from Clostridium ethanologenum as described above, in which the pta-ack operon was replaced by the ptb-buk operon. Growth studies were performed under autotrophic conditions and metabolic end products were analyzed. No acetate production was observed, but in addition to ethanol and 2,3-butanediol, isopropanol (up to 0.355g/L) and 3-HB (up to 0.29g/L) were still produced (Figure 39A and 39B). This demonstrates the use of a Ptb-Buk system to produce isopropanol and 3-HB from the gaseous substrates CO and/or CO and H without the production of acetate.

若丙酮而非異丙醇為標靶產物,則可使用以上所述且WO 2015/085015中詳細描述之方法將一級:二級醇去氫酶基因(SEQ ID NO:17)自此菌株自產乙醇梭菌pta-ack::ptb-buk進一步剔除。向此菌株中引入質體pMTL85147-thlA-adc使得以上文對於異丙醇所述類似之水準產生丙酮,且不共產生乙酸酯。乙醇、2,3-丁二醇及3-HB可為進一步產物。 If acetone instead of isopropanol is the target product, the primary:secondary alcohol dehydrogenase gene (SEQ ID NO: 17) can be produced from this strain using the method described above and detailed in WO 2015/085015 Clostridium ethanolum pta-ack::ptb-buk was further eliminated. Introduction of plasmid pMTL85147-thlA-adc into this strain resulted in the production of acetone at similar levels as described above for isopropanol, without co-production of acetate. Ethanol, 2,3-butanediol and 3-HB can be further products.

藉由進一步剔除,亦可去除此等產物,例如剔除乙醯乳酸去羧酶基因BudA得到不能產生2,3-丁二醇之菌株(U.S.9,297,026)。3-HB產生可藉由缺失3-羥基丁酸去氫酶基因Bdh(SEQ ID NO:62)減少或去除。 These products can also be eliminated by further deletion, for example, deleting the acetolactate decarboxylase gene BudA to obtain a strain that cannot produce 2,3-butanediol (U.S. 9,297,026). 3-HB production can be reduced or eliminated by deleting the 3-hydroxybutyrate dehydrogenase gene Bdh (SEQ ID NO: 62).

實例9Example 9

此實例展現藉由過度表現醛:鐵氧化還原蛋白氧化還原酶基因aor1改良3-羥基丁酸酯向1,3-BDO之轉化。 This example demonstrates improved conversion of 3-hydroxybutyrate to 1,3-BDO by overexpression of the aldehyde:ferredoxin oxidoreductase gene aor1 .

使用pMTL82251質體主鏈過度表現自產乙醇梭菌aor1基因。選擇pMTL82251質體,因為其具有不同複製來源及抗生素標記物,而且可與含有hbd1thlA之實例5中所用之質體共表現。質體主鏈之製備及組裝反應遵循上列程序進行,首先藉由將自產乙醇梭菌鐵氧化還原蛋白啟動子引入質體pMTL82251中產生質體pMTL82256,隨後添加aor1基因,形成質體pMTL82256-aor1。使用以下引子。 Overexpression of the C. autoethanogenogenum aor1 gene using the pMTL82251 plastid backbone. The pMTL82251 plasmid was chosen because it has a different origin of replication and antibiotic markers and can be co-expressed with the plasmid used in Example 5 containing hbd1 and thlA . The preparation and assembly reaction of the plastid backbone followed the above procedures. First, the Clostridium autoethanogenum ferredoxin promoter was introduced into plastid pMTL82251 to generate plastid pMTL82256, and then the aor1 gene was added to form plastid pMTL82256- aor1. Use the following primer.

將所得質體pMTL82256-aor1轉型於大腸桿菌CA434菌株中後,對先前自產乙醇梭菌1,3-BDO產生宿主執行結合。因此,在不同複製來源及選擇標記物下,所得自產乙醇梭菌菌株帶有兩個質體,一個用於過度表現hbd1thlA,且另一個用於過度表現aor1。遵循以上程序將1,3-BDO之產生表徵且定量。 After the resulting plasmid pMTL82256-aor1 was transformed into E. coli CA434 strain, conjugation was performed to the previous C. ethanologenum 1,3-BDO production host. Thus, under different replication sources and selection markers, the resulting C. autoethanogenogens strains harbored two plasmids, one for overexpression of hbd1 and thlA and the other for overexpression of aor1 . Follow the above procedure to characterize and quantify the production of 1,3-BDO.

結果明確展示1,3-BDO產生可藉由過度表現aor1改良。同樣,其他醛:鐵氧化還原蛋白氧化還原酶基因可表現於自產乙醇梭菌中以促進3-羥基丁酸酯向1,3-丁二醇轉化。 The results clearly demonstrate that 1,3-BDO production can be improved by overexpression of aor1 . Likewise, other aldehyde:ferredoxin oxidoreductase genes may be expressed in C. autoethanogenum to promote the conversion of 3-hydroxybutyrate to 1,3-butanediol.

為改良1,3-BDO產生,過度表現AOR以改良3-HB向3-HB-醛之轉化。為進行此操作,將pMTL82256-hbd-thlA 及pMTL83159-aor1共表現於自產乙醇梭菌中。相較於僅帶有pMTL82256-hbd-thlA之菌株,aor1共表現菌株產生較多乙醇及1,3-BDO(圖44)。 To improve 1,3-BDO production, AOR is overexpressed to improve the conversion of 3-HB to 3-HB-aldehyde. To do this, pMTL82256-hbd-thlA and pMTL83159-aor1 were co-expressed in C. autoethanogenogenum. Compared with the strain carrying only pMTL82256-hbd-thlA, the aor1 co-expressing strain produced more ethanol and 1,3-BDO (Figure 44).

實例10Example 10

此實例展現允許2-羥基異丁酸產生而不產生非所需副產物的Ptb-Buk之立體特異性。 This example demonstrates the stereospecificity of Ptb-Buk that allows the production of 2-hydroxyisobutyric acid without generating undesired by-products.

2-羥基異丁酸可在大腸桿菌及自產乙醇梭菌中藉由引入將乙醯基-CoA轉化為3-羥基丁醯基-CoA之硫解酶及3-羥基丁醯基-CoA去氫酶、將3-羥基丁醯基-CoA轉化為2-羥基異丁醯基-CoA之2-羥基異丁醯基-CoA變位酶及可水解CoA酶以形成2-羥基異丁酸產生。3-羥基丁醯基-CoA去氫酶可為(R)或(S)-特異性的,且所述酶根據圖1之步驟1、13、19及20將2-羥基異丁醯基-CoA轉化為2-羥基丁酸酯。此最後一個步驟可經由硫酯酶或Ptb-Buk系統進行。 2-Hydroxyisobutyric acid can be converted into Escherichia coli and Clostridium autoethanologenum by introducing thiolase and 3-hydroxybutyryl-CoA dehydrogenase that convert acetyl-CoA into 3-hydroxybutyryl-CoA. 2-Hydroxyisobutyl-CoA mutase converts 3-hydroxybutyl-CoA into 2-hydroxyisobutyl-CoA and an enzyme that hydrolyzes CoA to form 2-hydroxyisobutyric acid. The 3-hydroxybutyryl-CoA dehydrogenase may be (R) or (S)-specific, and the enzyme converts 2-hydroxyisobutyl-CoA to 2 according to steps 1, 13, 19 and 20 of Figure 1 -Hydroxybutyrate. This last step can be performed via thioesterase or Ptb-Buk systems.

將三種潛在候選基因大腸桿菌硫酯酶II型TesB、自產乙醇梭菌磷酸乙醯基轉移酶/乙酸激酶對及拜氏梭菌丁醯基轉移酶/丁酸激酶對經由上述方法及以下引子選殖於大腸桿菌pDUET T7表現載體中。 Three potential candidate genes, Escherichia coli thioesterase type II TesB, Clostridium autoethanologenum phosphoacetyltransferase/acetate kinase pair, and Clostridium beijerinckii butyryltransferase/butyrate kinase pair, were cloned using the above method and the following primers. in the E. coli pDUET T7 expression vector.

將所得質體pDUET-pta-ack(SEQ ID NO:185)、pDUET-ptb-buk(SEQ ID NO:186)、pDUET-tesB(SEQ ID NO:187)引入大腸桿菌BL21(DE3)中進行表現,隨後測定其對乙醯乙醯基-CoA、3-羥基丁醯基-CoA及2-羥基異丁醯基-CoA活性。結果展示於圖27中。大腸桿菌BL21對所有三種受質具有小但可量測活性量。Pta-Ack不產生高於背景值之活性,而硫酯酶TesB與Ptb-Buk對所有三種受質(包含2-羥基異丁醯基-CoA)展示高活性。 The obtained plasmids pDUET-pta-ack (SEQ ID NO: 185), pDUET-ptb-buk (SEQ ID NO: 186), and pDUET-tesB (SEQ ID NO: 187) were introduced into E. coli BL21 (DE3) for expression. , and then measured its activity towards acetyl acetyl-CoA, 3-hydroxybutyl-CoA and 2-hydroxyisobutyl-CoA. The results are shown in Figure 27. E. coli BL21 has small but measurable amounts of activity on all three substrates. Pta-Ack produced no activity above background, while thioesterases TesB and Ptb-Buk showed high activity against all three substrates (including 2-hydroxyisobutyl-CoA).

硫酯酶TesB與Ptb-Buk對線性乙醯乙醯基-CoA、3-羥基丁醯基-CoA之活性高於分支鏈2-羥基異丁醯基-CoA。此在路徑中產生問題,因為其造成路徑在3-羥基丁醯基-CoA處提早封端,尤其當活性高於對2-羥基異丁醯基-CoA變位酶活性時。 Thioesterases TesB and Ptb-Buk are more active towards linear acetyl acetyl-CoA and 3-hydroxybutyl-CoA than branched chain 2-hydroxyisobutyl-CoA. This creates a problem in the pathway as it causes the pathway to end prematurely at 3-hydroxybutyl-CoA, especially when the activity is higher than the mutase activity towards 2-hydroxyisobutyl-CoA.

然而,與硫酯酶相比,Ptb-Buk能夠在立體異構體之間區分且僅(或偏好)作用於(R)-3-羥基丁醯基-CoA而非(S)-3-羥基丁醯基-CoA。此藉由在大腸桿菌中表現Ptb-Buk系統以及pDuet系統中之ThlA及(S)-特異性Hbd(圖28A)或(R)-特異性phaB(圖28B)展現。如實例1及3中所述建構構築體。生長研究確認僅在Ptb-Buk與(S)-特異性Hbd但非(R)-特異性phaB組合表現時形成顯著量之3-羥基丁酸酯。 However, in contrast to thioesterases, Ptb-Buk is able to distinguish between stereoisomers and acts only (or preferentially) on (R)-3-hydroxybutyl-CoA rather than (S)-3-hydroxybutyl-CoA. CoA. This was demonstrated by expressing the Ptb-Buk system in E. coli and ThlA and (S)-specific Hbd (Figure 28A) or (R)-specific phaB (Figure 28B) in the pDuet system. Constructs were constructed as described in Examples 1 and 3. Growth studies confirmed the formation of significant amounts of 3-hydroxybutyrate only when Ptb-Buk was expressed in combination with (S)-specific Hbd but not (R)-specific phaB.

因此,經由(S)-特異性3-羥基丁醯基-CoA去氫酶及Ptb-Buk之途徑提供顯著優勢,因為Ptb-Buk系統(不同於硫酯酶)對(S)-3-羥基丁醯基-CoA無活性,但(S)-3-羥基丁醯 基-CoA亦為2-羥基異丁醯基-CoA變位酶之較佳異構體(Yaueva,《生物化學雜誌》,287:15502-15511,2012)。所產生之2-羥基異丁醯基-CoA可隨後經由Ptb-Buk使用以產生2-羥基異丁酸且(不同於硫酯酶)2-羥基異丁醯基-CoA水解提供額外能量(圖8)。 Therefore, the pathway via (S)-specific 3-hydroxybutyl-CoA dehydrogenase and Ptb-Buk offers significant advantages because the Ptb-Buk system (unlike thioesterases) CoA is inactive, but (S)-3-hydroxybutyl-CoA is also the preferred isomer of 2-hydroxyisobutyl-CoA mutase (Yaueva, Journal of Biochemistry , 287: 15502-15511, 2012) . The produced 2-hydroxyisobutyl-CoA can then be used via Ptb-Buk to produce 2-hydroxyisobutyric acid and (unlike thioesterases) hydrolysis of 2-hydroxyisobutyl-CoA provides additional energy (Figure 8).

模組構築體經設計以比較路徑之效能。將在基因meaBhcmAhcmB前含有Wood-Ljnngdahl啟動子之基因卡匣進行密碼子最佳化且合成(SEQ ID NO:188)。HcmAhcmB編碼2-羥基異丁醯基-CoA變位酶且meaB編碼來自三碳變形菌之伴隨蛋白,在所述構築體中,hcmAmeaB基因以所述一種蛋白質(SEQ ID NO:189)形式融合在一起(Yaneva,《生物化學雜誌》,287:15502-15511,2012)。使用限制酶KpnI及NcoI將基因卡匣選殖於含有硫解酶(來自丙酮丁醇梭菌之thlA;SEQ ID NO:136)及(S)-特異性3-羥基丁酸去氫酶(來自丙酮丁醇梭菌之hbd;SEQ ID NO:190)之質體(pMTL83155-thlA-hbd)或含有(R)-特異性3-羥基丁酸(來自富養羅爾斯頓菌(R.eutropha)之phaB)之質體(pMTL83155-thlA-phaB)中,分別形成質體pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB(SEQ ID NO:191)及pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB(SEQ ID NO:192)。將經密碼子最佳化之2-羥基異丁醯基-CoA變位酶卡匣次選殖於大腸桿菌Top-10中僅在一些初始選殖併發情況後成功;發現2-羥基異丁醯基-CoA變位酶卡匣僅可在較低溫度(28℃)下選殖於質體中。 Modular constructs are designed to compare the performance of paths. A gene cassette containing the Wood-Ljnngdahl promoter in front of the genes meaB , hcmA and hcmB was codon optimized and synthesized (SEQ ID NO: 188). HcmA and hcmB encode 2-hydroxyisobutyl-CoA mutase and meaB encodes a chaperone protein from three-carbon Proteobacteria. In the construct, the hcmA and meaB genes are in the form of one protein (SEQ ID NO: 189) fused together (Yaneva, Journal of Biochemistry , 287:15502-15511, 2012). The gene cassette was selected using the restriction enzymes KpnI and NcoI to contain thiolase ( thlA from Clostridium acetobutylicum; SEQ ID NO: 136) and (S)-specific 3-hydroxybutyrate dehydrogenase (from hbd of Clostridium acetobutylicum; SEQ ID NO: 190) plasmid (pMTL83155-thlA-hbd) or containing (R)-specific 3-hydroxybutyric acid (from R. eutropha ) of phaB ) in the plasmid (pMTL83155-thlA-phaB), pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB (SEQ ID NO: 191) and pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB were formed respectively. (SEQ ID NO: 192). Colonization of the codon-optimized 2-hydroxyisobutyl-CoA mutase cassette into E. coli Top-10 was successful only after some initial colonization complications; discovery of the 2-hydroxyisobutyl-CoA mutase cassette The enzyme cassette can only be colonized in plastids at a lower temperature (28°C).

藉由首先擴增自產乙醇梭菌之磷酸乙醯基轉移 酶(SEQ ID NO:193)之啟動子區,且使用NotI及NdeI限制位點選殖於載體pMTL83151(FJ797647.1;Heap,《微生物學方法雜誌》,78:79-85,2009)中,隨後在雙重接合反應中經由NdeIKpnI引入基因thlAhbd或對應地引入phaB產生載體pMTL83155-thlA-hbd及pMTL83155-thlA-phaB。 By first amplifying the promoter region of phosphoacetyltransferase (SEQ ID NO: 193) from Clostridium ethanologenum, and using NotI and NdeI restriction sites to select and colonize the vector pMTL83151 (FJ797647.1; Heap, " Journal of Microbiological Methods , 78: 79-85, 2009), the genes thlA and hbd or correspondingly the phaB generation vectors pMTL83155-thlA-hbd and pMTL83155-thlA-phaB were subsequently introduced via NdeI and KpnI in a double ligation reaction.

另外,建構用於表現ptb-buktesB之相容質體模組。對此,自基因組DNA擴增各別基因且引入實例9中所述之質體pMTL82256中,隨後使用NdeI及NcoI及無縫選殖套組(Life technologies)引入ptb-bukphaB,形成質體pMTL82256-ptb-buk(SEQ ID NO:194)及pMTL82256-tesB(SEQ ID NO:195)。 In addition, construct compatible plasmid modules for representing ptb-buk or tesB . For this, the respective genes were amplified from genomic DNA and introduced into the plastid pMTL82256 as described in Example 9, followed by introduction of ptb-buk or phaB using NdeI and NcoI and the Seamless Selection Kit (Life technologies) to form plastids pMTL82256-ptb-buk (SEQ ID NO: 194) and pMTL82256-tesB (SEQ ID NO: 195).

藉由如先前實例中所述以如下組合轉型將質體pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB、pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB、pMTL82256-ptb-buk及pMTL82256-tesB引入大腸桿菌Top-10(所有步驟在28℃下)及自產乙醇梭菌中:pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk、pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-tesB、pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk及pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB+pMTL82256-tesB。 Plasmids pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB, pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB, pMTL82256-ptb-buk and pMTL82256-tesB were introduced into the large intestine by transformation in the following combinations as described in the previous examples Bacillus Top-10 (all steps at 28°C) and Clostridium autoethanogenum: pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk, pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+ pMTL82256-tesB, pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk and pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB+pMTL82256-tesB.

在30℃下用大腸桿菌在LB培養基中進行生長實驗4天,且在30及37℃下在30psi含CO-鋼鐵廠氣體(自紐西蘭鋼鐵站(Glenbrook,NZ)收集)存在下用自產乙醇梭菌在PETC培養基中進行生長實驗6天。如上所述量測代謝物。除藉由GC-MS量測以外,亦使用液相層析串聯質譜 (LC-MS/MS)及1H核磁共振(NMR)光譜法確認2-羥基異丁酸產生。 Growth experiments were performed with E. coli in LB medium at 30°C for 4 days and in the presence of 30 psi of CO-containing steelworks gas (collected from the New Zealand Steel Station (Glenbrook, NZ)) at 30 and 37°C. Clostridium ethanologenum was grown in PETC medium for 6 days. Metabolites were measured as described above. In addition to measurement by GC-MS, liquid chromatography tandem mass spectrometry (LC-MS/MS) and 1 H nuclear magnetic resonance (NMR) spectroscopy were also used to confirm the production of 2-hydroxyisobutyric acid.

於耦接至ABSciex 4000 QTRAP質譜儀(ABSciex,Concord,Canada)之Dionex UltiMate 3000液相層析系統(Dionex,California,USA)上獲得液相層析串聯質譜(LC-MS/MS)資料。液相層析系統藉由Chromeleon軟體(Dionex)控制,且層析分離藉由於配備有預柱Security Guard Gemini-NX C18 4mm×2mm I.D.柱之Gemini-NX C18 150mm×2mm I.D.,3μm 110Å粒子管柱(Phenomenex,Aschaffenburg,Germany)上注射10μL達成。控制管柱烘箱溫度,在整個採集中維持在55℃下且移動相為如下:7.5mM用冰醋酸調節至pH 4.95(±0.05)之三丁胺水溶液(溶離劑A)及乙腈(溶離劑B)。在整個梯度分佈中維持移動相流速在300μL/min下且不經分離直接引入質譜儀中。質譜儀藉由Analyst 1.5.2軟體(ABSciex)控制且配備有以負電離模式操作之TurboV電噴射源。使用以下經先前最佳化(因此通用)參數採集預定多反應監測(MRM)資料:離子噴霧電壓-4500V,噴霧劑(GS1)、助劑(GS2)、簾幕(CUR)氣體及碰撞(CAD)氣體分別為60、60、20及平均數(任意單位),經由N300DR氮氣發生器(Peak Scientific,Massachusetts,USA)產生。助劑氣體溫度維持在350℃下。入口電位(EP)為-10伏。此方法亦能夠偵測及分離2-羥基丁酸。 Liquid chromatography tandem mass spectrometry (LC-MS/MS) data were acquired on a Dionex UltiMate 3000 liquid chromatography system (Dionex, California, USA) coupled to an ABSciex 4000 QTRAP mass spectrometer (ABSciex, Concord, Canada). The liquid chromatography system was controlled by Chromeleon software (Dionex), and the chromatography separation was performed by a Gemini-NX C18 150mm×2mm I.D., 3μm 110Å particle column equipped with a pre-column Security Guard Gemini-NX C18 4mm×2mm I.D. column. (Phenomenex, Aschaffenburg, Germany) was achieved by injecting 10 μL. Control the column oven temperature and maintain it at 55°C during the entire collection, and the mobile phase is as follows: 7.5mM tributylamine aqueous solution (eluent A) adjusted to pH 4.95 (±0.05) with glacial acetic acid and acetonitrile (eluent B) ). The mobile phase flow rate was maintained at 300 μL/min throughout the gradient profile and introduced directly into the mass spectrometer without separation. The mass spectrometer was controlled by Analyst 1.5.2 software (ABSciex) and was equipped with a TurboV electrospray source operating in negative ionization mode. Predetermined multiple reaction monitoring (MRM) data were collected using the following previously optimized (and therefore universal) parameters: ion spray voltage -4500V, spray (GS1), auxiliary (GS2), curtain (CUR) gas and collision (CAD ) gases are 60, 60, 20 and the average (arbitrary unit), respectively, generated by an N300DR nitrogen generator (Peak Scientific, Massachusetts, USA). The additive gas temperature is maintained at 350°C. The entrance potential (EP) is -10 volts. This method can also detect and separate 2-hydroxybutyric acid.

1H核磁共振(NMR)光譜法場強為400MHz。樣品藉由用400μL用D2O製備之20mM磷酸酯緩衝液稀釋400μL樣品且含有三甲基矽烷基丙酸(TMSP)作為內標製備 (pH值為7)。隨後將樣品轉移至玻璃NMR管(5mm×8吋),且藉由1H NMR,在27℃之溫度下,用30°激發脈衝、15秒鬆弛延遲及64次掃描使用針對水抑制之預飽和分析。採集後,使用Agilent VnmrJ軟體將光譜轉換、平化及積分。使用已知濃度之TMSP使用在1.36ppm(單峰)下共振進行2-羥基異丁酸定量。 The field strength of 1 H nuclear magnetic resonance (NMR) spectroscopy is 400MHz. Samples were prepared by diluting 400 μL of sample with 400 μL of 20 mM phosphate buffer prepared with D 2 O and containing trimethylsilylpropionic acid (TMSP) as internal standard (pH 7). The samples were then transferred to glass NMR tubes (5 mm x 8 inches) and analyzed by 1 H NMR at 27°C with a 30° excitation pulse, 15 sec relaxation delay and 64 scans using presaturation for water suppression. analyze. After acquisition, the spectra were converted, flattened and integrated using Agilent VnmrJ software. Quantification of 2-hydroxyisobutyric acid was performed using TMSP of known concentration using resonance at 1.36 ppm (single peak).

在異養生長之大腸桿菌以及自養生長之自產乙醇梭菌中,可在構築體pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-tesB(在自產乙醇梭菌中,在LC-MS/MS方法中1.5mg/L,且在GC-MS中8mg/L;在大腸桿菌中,在LC-MS/MS方法中0.5mg/L,且在GC-MS中2mg/L)及pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk(在自產乙醇梭菌中,在LC-MS/MS方法中15mg/L,且在GC-MS中75mg/L;在大腸桿菌中,在LC-MS/MS方法中1.1mg/L,且在GC-MS中8.5mg/L)中偵測到2-羥基異丁酸,但在包含對照之所有其他構築體中未偵測到。迄今為止,最高產量發生在帶有質體pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk之菌株(比所有其他途徑高10倍)中,所述菌株具有最佳路徑,其含有硫解酶、(S)-特異性(S)-特異性3-羥基丁醯基-CoA去氫酶、2-羥基異丁醯基-CoA變位酶及Ptb-Buk系統(圖29A-D)。意外地,發現此菌株中亦產生2-羥基丁酸酯(2-HB)(在自產乙醇梭菌中,藉由LC-MS/MS多達64mg/L,且藉由GC-MS多達50mg/L;在大腸桿菌中,藉由LC-MS/MS多達12mg/L,且藉由GC-MS多達9.5mg/L),指示非特異性變位酶活性(圖30)。tesB菌 株中亦發現此現象,但同樣具有顯著較低之水準(在自產乙醇梭菌中,在LC-MS-MS中18mg/L,且在GC-MS中9mg/L)。亦藉由NMR確認2-羥基異丁酸之產生。 In heterotrophically growing E. coli and in autotrophically growing C. autoethanogenum, the construct pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-tesB (in C. autoethanogenum, in LC- 1.5 mg/L in the MS/MS method and 8 mg/L in the GC-MS; in E. coli 0.5 mg/L in the LC-MS/MS method and 2 mg/L in the GC-MS) and pMTL83155 -thlA-phaB-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk (in Clostridium autoethanogenogenum, 15 mg/L in the LC-MS/MS method, and 75 mg/L in the GC-MS; in E. coli 2-Hydroxyisobutyric acid was detected in 1.1 mg/L in the LC-MS/MS method and 8.5 mg/L in the GC-MS) but not in all other constructs including controls arrive. The highest yields so far occurred in the strain harboring the plasmid pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB+pMTL82256-ptb-buk (10-fold higher than all other pathways), which had the optimal pathway, which Contains thiolase, (S)-specific (S)-specific 3-hydroxybutyl-CoA dehydrogenase, 2-hydroxyisobutyl-CoA mutase and Ptb-Buk system (Figure 29A-D). Unexpectedly, it was found that 2-hydroxybutyrate (2-HB) was also produced in this strain (up to 64 mg/L by LC-MS/MS and up to 64 mg/L by GC-MS in Clostridium autoethanologenum 50 mg/L; in E. coli , up to 12 mg/L by LC-MS/MS, and up to 9.5 mg/L by GC-MS), indicating non-specific mutase activity (Figure 30). This phenomenon was also found in the tesB strain, but again at significantly lower levels (18 mg/L in LC-MS-MS and 9 mg/L in GC-MS in C. autoethanogenogenum). The production of 2-hydroxyisobutyric acid was also confirmed by NMR.

另外,亦進行qRT-PCR以證實基因thlAhbdmeaBhcmAhcmB之表現(圖31)。 In addition, qRT-PCR was also performed to confirm the expression of genes thlA , hbd , meaBhcmA and hcmB (Fig. 31).

RT-PCR圖展示在P pta-ack 啟動子下,thlA基因產物表現水準略高於hbd(如所期望,在操縱子中具有第二基因),且hmcB展示表現量微低於meaBhcmA。自產乙醇梭菌中在30℃下之表現亦低於37℃下及大腸桿菌30℃下之表現。對於特定循環數,參見下文。 The RT-PCR plot shows that under the P pta-ack promoter, thlA gene product expression level is slightly higher than hbd (as expected, with a second gene in the operon), and hmcB shows slightly lower expression level than meaBhcmA . The performance of Clostridium autoethanologenum at 30°C was also lower than that at 37°C and E. coli at 30°C. For specific cycle numbers, see below.

(S)-3-羥基丁酸與(R)-3-羥基丁酸之比率藉由於Agilent 1260 Infinity LC上高效液相層析(HPLC)量測,其中在210nm下進行UV偵測。樣品藉由在14,000rpm下離心3分鐘,繼而蒸發200μL上清液至乾製備。隨後將集結粒再懸浮於100%異丙醇中且在加熱下音波處理1小時。重複離心且將上清液轉移至HPLC小瓶以供分析。藉由以1.5mL/min且在40℃下在等度條件下使用95-5含有0.1%三氟乙酸之己烷-異丙醇移動相注射5μL於TCI對掌性MB-S管柱(250 mm×4.6mm×3μm)上達成分離。 The ratio of (S)-3-hydroxybutyric acid to (R)-3-hydroxybutyric acid was measured by high performance liquid chromatography (HPLC) on an Agilent 1260 Infinity LC with UV detection at 210 nm. Samples were prepared by centrifugation at 14,000 rpm for 3 minutes, followed by evaporation of 200 μL of supernatant to dryness. The aggregated pellets were then resuspended in 100% isopropyl alcohol and sonicated with heat for 1 hour. Centrifugation was repeated and the supernatant transferred to HPLC vials for analysis. By injecting 5 μL into a TCI Chiral MB-S column (250 mm×4.6mm×3μm).

已進行產生3-HB之立體特異性分析。意外地發現在自產乙醇梭菌中產生異構體之混合物。酶Hbd及PhaB經描述為立體特異性的,PhaB為R-特異性的且Hbd為S-特異性的,且在大腸桿菌中表現此等酶時,觀測到立體純產物(Tseng,《應用與環境微生物學》1,75:3137-3145,2009)。 Stereospecific analysis of the production of 3-HB has been performed. It was unexpectedly found that a mixture of isomers is produced in Clostridium autoethanogenum. The enzymes Hbd and PhaB are described to be stereospecific, PhaB to be R-specific and Hbd to be S-specific, and when these enzymes are expressed in E. coli , a stereopure product is observed (Tseng, " Applications and Environmental Microbiology 1, 75: 3137-3145, 2009).

下表指示平衡時3-HB之(R)及(S)-形式的分佈經由自產乙醇梭菌中之三種不同途徑產生。此等資料表明自產乙醇梭菌中存在異構酶。 The table below indicates the distribution of the (R) and (S)-forms of 3-HB at equilibrium produced by three different pathways in C. autoethanogenogenum. These data indicate the presence of an isomerase in C. autoethanogenogenum.

剔除天然異構酶可防止3-HB之(R)形式與(S)形式相互轉化。或者,表現或過度表現異構酶可產生新穎ptb-buk途徑。舉例而言,可使用Hbd產生(S)-3-HB,異構酶可將(S)-3-HB轉化為(R)-3-HB,且ptb-buk可作用於(R)-3-HB以產生相關產物。 Eliminating the natural isomerase prevents the interconversion of the (R) and (S) forms of 3-HB. Alternatively, expression or overexpression of isomerase could generate novel PTB-Buk pathways. For example, Hbd can be used to produce (S)-3-HB, an isomerase can convert (S)-3-HB to (R)-3-HB, and ptb-buk can act on (R)-3 -HB to produce related products.

實例11Example 11

此實例展現經由Ptb-Buk轉化3-羥基異戊醯基-CoA及3-羥基異戊酸酯產生異丁烯。 This example demonstrates the conversion of 3-hydroxyisovaleryl-CoA and 3-hydroxyisovalerate via Ptb-Buk to produce isobutylene.

已描述產生異丁烯之不同途徑,例如經由羥基異戊酸合成酶及去羧酶將丙酮轉化為異丁烯(van Leeuwen,《應用微生物學生物技術》,93:1377-1387,2012)。然而,羥基異戊酸去羧酶步驟為需要ATP之步驟且此酶之動力學可能並不理想。已鑑別兩個使用Ptb-Buk系統獲得異丁烯之替代途徑,其經由3-羥基異戊醯基-CoA進行,活體外已展示3-羥基異戊 醯基-CoA為Ptb-Buk系統之可用受質(Liu,《應用微生物學生物技術》,53:545-552,2000)。 Different pathways for the production of isobutylene have been described, such as the conversion of acetone to isobutylene via hydroxyisovalerate synthase and decarboxylase (van Leeuwen, Appl Microbiol Biotechnol 93: 1377-1387, 2012). However, the hydroxyisovalerate decarboxylase step is an ATP-requiring step and the kinetics of this enzyme may not be ideal. Two alternative pathways to isobutylene using the Ptb-Buk system have been identified via 3-hydroxyisovaleryl-CoA, which has been shown to be a usable acceptor of the Ptb-Buk system in vitro (Liu, " Applied Microbiology Biotechnology ", 53: 545-552, 2000).

替代路徑1由將丙酮轉化為3-羥基異戊醯基-CoA之合成酶組成(圖9)。 Alternative pathway 1 consists of a synthetase that converts acetone to 3-hydroxyisovaleryl-CoA (Figure 9).

替代性路徑2經由細菌(諸如大腸桿菌或自產乙醇梭菌)常見之異白胺酸生物合成的已知中間物3-甲基-2-側氧基戊酸酯進行(圖10)。 Alternative pathway 2 proceeds via 3-methyl-2-pentoxyvalerate, a known intermediate in isoleucine biosynthesis common in bacteria such as E. coli or Clostridium autoethanogenans (Figure 10).

實例12Example 12

此實例描述表徵Ptb-Buk變異體之方法。 This example describes methods for characterizing Ptb-Buk variants.

鑒於Ptb-Buk之受質混雜性,很可能不同胺基酸序列之Ptb-Buk系統對既定受質具有不同偏好。為鑑別有利於所要受質(例如乙醯乙醯基-CoA、3-羥基丁醯基-CoA、2-羥基異丁醯基-CoA、乙醯基-CoA及/或丁醯基-CoA)之Ptb-Buk系統,需要高通量篩選。此類篩選可藉由使螢火蟲螢光素酶(Luc)與Ptb-Buk系統偶合來完成(圖33)。Luc與D-螢光素反應,從而產生氧化螢光素、二氧化碳及光。除鎂及分子氧以外,Luc需要ATP以使反應進行。ATP為由Ptb-Buk在提供適當醯基-CoA或烯醯基-CoA受質時產生的產物。因此,Ptb-Buk對不同受質之反應速率及偏好可藉由定量由含有Ptb-Buk、Luc、d-螢光素、鎂、分子氧、磷酸酯、ADP及醯基-CoA或烯醯基-CoA之反應產生的光之量比較。 In view of the promiscuous nature of Ptb-Buk acceptors, it is likely that Ptb-Buk systems with different amino acid sequences have different preferences for a given acceptor. To identify Ptb-Buk systems favoring the desired acceptor (e.g., acetyl-acetyl-CoA, 3-hydroxybutyl-CoA, 2-hydroxyisobutyl-CoA, acetyl-CoA, and/or butyl-CoA), High-throughput screening is required. Such screening can be accomplished by coupling firefly luciferase (Luc) to the Ptb-Buk system (Figure 33). Luc reacts with D-luciferin to produce oxyluciferin, carbon dioxide and light. In addition to magnesium and molecular oxygen, Luc requires ATP for the reaction to proceed. ATP is the product produced by Ptb-Buk when provided with an appropriate acyl-CoA or enyl-CoA substrate. Therefore, the reaction rate and preference of Ptb-Buk to different substrates can be quantified by measuring the reaction rate and preference of Ptb-Buk, Luc, d-luciferin, magnesium, molecular oxygen, phosphate, ADP and acyl-CoA or enyl group. -Comparison of the amount of light produced by the reaction of CoA.

實例13Example 13

此實例使用基因組規模模型化以展示非天然產物高選擇性可使用Ptb-Buk達成。此外,經展示使用Ptb-Buk可准許細胞生長與產物產生偶合,從而使得可建構穩定及高 產量之醱酵菌株。 This example uses genome-scale modeling to demonstrate that high selectivity for unnatural products can be achieved using Ptb-Buk. In addition, the use of Ptb-Buk has been shown to allow coupling of cell growth to product production, allowing the construction of stable and high-yielding fermentation strains.

使用類似於Marcellin,《綠合化學(Green Chem)》,18:3020-3028,2006所述之自產乙醇梭菌之基因組規模代謝模型。產生併入額外代謝反應之此模型之變異體,其各呈現不同遺傳修飾微生物以形成非天然產物。對於各非天然產物路徑產生三種模型型式,其併入硫酯酶、乙酸酯CoA-轉移酶或Ptb-Buk反應。 A genome-scale metabolic model similar to that described by Marcellin, Green Chem , 18:3020-3028, 2006, was used. Variants of this model were generated that incorporated additional metabolic reactions, each presenting a different genetically modified microorganism to form unnatural products. Three model versions were generated for each unnatural product pathway, incorporating thioesterase, acetate CoA-transferase or Ptb-Buk reactions.

最大選擇性使用通量平衡分析(FBA)使用來自MATLAB R2014a(Mathworks,Inc.)之COBRA Toolbox v2.0的指令碼計算,其中Gurobi6.0.4版作為求解程序(Gurobi Optimization,Inc.)。交換反應限定為表示用CO作為碳源及能量之化學上定義最小生長培養基。使用演化算法搜尋併入多達十個基因剔除的菌株設計之存在,所述基因剔除使標靶非天然化學產生與生長偶合。 The maximum selectivity was calculated using flux balance analysis (FBA) using the instruction code of COBRA Toolbox v2.0 from MATLAB R2014a (Mathworks, Inc.), with Gurobi version 6.0.4 as the solver (Gurobi Optimization, Inc.). Exchange reactions are defined to represent chemically defined minimal growth media using CO as carbon source and energy. Evolutionary algorithms were used to search for the presence of strain designs incorporating up to ten genetic knockouts that couple the target's unnatural chemical production to growth.

FBA預測使用Ptb-Buk或CoA轉移酶之路徑由於經由受質層面磷酸化獲得ATP而提供最高產物選擇性。結果在表2中說明。然而,應注意基因組規模模型及FBA分析之一個限制為不能捕獲酶動力學。CoA轉移酶反應需要特定基礎水準之乙酸酯以產生官能性,因此由於需要存在基礎水準之乙酸酯,故使用CoA轉移酶之實際上最大選擇性少於100%。 FBA predicted that pathways using Ptb-Buk or CoA transferases would provide the highest product selectivity due to ATP acquisition via phosphorylation at the substrate level. The results are illustrated in Table 2. However, it should be noted that one limitation of genome-scale models and FBA analyzes is the inability to capture enzyme kinetics. The CoA transferase reaction requires a specific base level of acetate to produce functionality, so the actual maximum selectivity using CoA transferase is less than 100% due to the need for a base level of acetate to be present.

需要建構如下菌株,其中必須產生標靶非天然化學物質以用於細胞生長。FBA預測在大多數情況下,在使用硫酯酶或CoA轉移酶時難以將標靶化學物質產生與生長偶合;而天然產物乙酸酯及乙醇將有助於此。然而,在使用Ptb-Buk時,存在多種生長偶合化學物質產生菌株設計,其通常併入對磷酸轉乙醯酶-乙酸激酶反應之破壞。表3概括各菌株之生長偶合能力。 It is necessary to construct strains in which targeted non-natural chemicals must be produced for cell growth. FBA predicts that in most cases it will be difficult to couple target chemical production to growth when using thioesterases or CoA transferases; the natural products acetate and ethanol will facilitate this. However, when using Ptb-Buk, there are a variety of growth-coupling chemical-producing strain designs that often incorporate disruption of the phosphotransacetylase-acetate kinase reaction. Table 3 summarizes the growth coupling ability of each strain.

儘管Ptb-Buk與CoA轉移酶均可支持高選擇性,但通量平衡分析預測在大多數情況下,僅Ptb-Buk可建構偶合非天然化學物質產生與生長之穩定、高產量醱酵菌株。 Although both Ptb-Buk and CoA transferases can support high selectivity, flux balance analysis predicts that in most cases only Ptb-Buk can construct stable, high-yield fermentation strains that couple the production and growth of unnatural chemicals.

實例14Example 14

此實例展現經由Ptb-Buk自氣體原料產生己二酸。 This example demonstrates the generation of adipic acid from a gas feed via Ptb-Buk.

大腸桿菌中自糖產生己二酸已藉由利用Ptb-Buk 之路徑描述(Yu,《生物技術與生物工程》,111:2580-2586,2014)。但產量很低,在μg/L範圍內。在不欲受限於任何特定理論之情況下,本發明者認為此很可能由形成還原力及剩餘ATP中缺乏驅動力所致。使用如CO及H2之經還原氣體受質及產乙酸細菌(諸如自產乙醇梭菌),可克服此當前限制。與於較多經氧化糖上異養生長之大腸桿菌相比,CO及H2氧化提供足夠驅動力以藉由3-羥基丁醯基-CoA去氫酶或乙醯乙醯基-CoA水合酶將3-側氧基-己二醯基-CoA還原為3-羥基己二醯基-CoA及藉由烯醯基-CoA水解酶或烯醯基-CoA還原酶將2,3-去氫己二醯基-CoA還原為己二醯基-CoA(圖34,步驟23及25)。與異養生長於糖上由糖酵解產生剩餘ATP之大腸桿菌相比,產乙酸細菌依靠高能生命極限生存,因此如Ptb-Buk系統之ATP產生反應具有強驅動力,從而保證己二醯基-CoA有效轉化為己二酸(圖34步驟26)。 The production of adipic acid from sugars in E. coli has been described by utilizing the Ptb-Buk pathway (Yu, Biotechnology and Bioengineering , 111: 2580-2586, 2014). But the yield is very low, in the μg/L range. Without wishing to be bound by any particular theory, the inventors believe that this is likely due to the lack of driving force in the formation of reducing power and remaining ATP. This current limitation can be overcome using reduced gas substrates such as CO and H2 and acetogenic bacteria such as Clostridium autoethanogenans. In contrast to E. coli growing heterotrophically on more oxidized sugars, CO and H oxidation provide sufficient driving force to convert 3 - Reduction of the pendant oxy-adipadiyl-CoA to 3-hydroxyadipyl-CoA and 2,3-dehydroadipidyl-CoA by enyl-CoA hydrolase or enyl-CoA reductase -CoA is reduced to adipyl-CoA (Figure 34, steps 23 and 25). Compared with E. coli, which grows heterotrophically on sugar and produces excess ATP through glycolysis, acetogenic bacteria rely on high-energy life limits to survive. Therefore, the ATP production reaction of the Ptb-Buk system has a strong driving force to ensure that adipyl- CoA is efficiently converted to adipic acid (Figure 34 step 26).

為在自產乙醇梭菌中自氣體產生己二酸,將來自大腸桿菌之編碼丁二醯基-CoA合成酶的基因(NP_415256、NP_415257)、來自大腸桿菌之酮基異戊酸氧化還原酶PaaJ(WP_001206190.1)、來自拜氏梭菌之3-羥基丁醯基-CoA去氫酶(WP_011967675.1)、來自丙酮丁醇梭菌之反-2-烯醯基-CoA還原酶Crt(NP_349318.1)、來自丙酮丁醇梭菌之反-2-烯醯基-CoA還原酶Bcd(NP_349317.1)及電子黃素蛋白EtfAB(NP_349315、NP_349316)選殖於表現質體上,隨後如上所述轉型於來自先前實例之自產乙醇梭菌菌株pta-ack::ptb-buk或CAETHG_1524::ptb-buk中。根據圖34中描繪之步驟產生己二酸。 To produce adipic acid from gas in Clostridium autoethanogenum, genes encoding succinyl-CoA synthetase from Escherichia coli (NP_415256, NP_415257), ketoisovalerate oxidoreductase PaaJ from Escherichia coli (WP_001206190.1), 3-hydroxybutyl-CoA dehydrogenase from Clostridium beijerinckii (WP_011967675.1), trans-2-enyl-CoA reductase Crt from Clostridium acetobutylicum (NP_349318.1 ), trans-2-enyl-CoA reductase Bcd (NP_349317.1) and electronic flavoprotein EtfAB (NP_349315, NP_349316) from Clostridium acetobutylicum were selected and colonized on the expression plasmid, and then transformed as described above In the C. autoethanogenum strain pta-ack::ptb-buk or CAETHG_1524::ptb-buk from the previous example. Adipic acid is produced according to the steps depicted in Figure 34.

實例15Example 15

此實例展現經由Ptb-Buk及AOR產生包含2-丁烯-1-醇、3-甲基-2-丁醇、1,3-己二醇(HDO)之各種產物。 This example demonstrates the production of various products including 2-buten-1-ol, 3-methyl-2-butanol, 1,3-hexanediol (HDO) via Ptb-Buk and AOR.

如實例6中展現,Ptb-Buk為高度混雜的且作用於作為受質之各種CoA或可經工程改造以使用一系列非天然CoA作為受質。同樣,AOR酶已展示作用於各種受質。此兩種酶一起可將各種CoA經由其酸轉化為醛,隨後可經由醇去氫酶進一步轉化為醇、酮或烯醇,對於醇去氫酶,自然界中存在各種變體。儘管在標準條件下,經由AOR用鐵氧化還原蛋白將酸還原為醛為吸能的(Thauer,《細菌學評論(Bacteriol Rev)》,41:100-180,1977)且因此不可行,意外地,在一氧化碳營養型產乙酸菌(諸如在低pH下操作且用CO或H2作為受質之自產乙醇梭菌)中為此情形(Mock,《細菌學雜誌》,197:2965-2980,2015)。對於產乙酸菌之一個常見限制為其為ATP限制性的,依靠熱力學生命邊緣生存(Schuchmann,《自然評論:微生物》,12:809-821,2014),其可藉由偶合此酸還原與經由Ptb-Buk系統自CoA以ATP相關形式形成酸克服。 As shown in Example 6, Ptb-Buk is highly promiscuous and operates on a variety of CoAs as acceptors or can be engineered to use a range of non-natural CoAs as acceptors. Likewise, AOR enzymes have been shown to act on a variety of substrates. Together, these two enzymes can convert various CoAs via their acids to aldehydes, which can then be further converted to alcohols, ketones or enols via alcohol dehydrogenases, for which various variants exist in nature. Although the reduction of acids to aldehydes via the AOR with ferredoxin is endergonic under standard conditions (Thauer, Bacteriol Rev. 41:100-180, 1977) and therefore not feasible, unexpectedly This is the case in carboxytrophic acetogens such as Clostridium autoethanogenogens that operate at low pH and use CO or H2 as substrate (Mock, Journal of Bacteriology , 197: 2965-2980, 2015 ). A common limitation for acetogens is that they are ATP-limited and survive on the edge of thermodynamic life (Schuchmann, Nature Reviews Microbiology , 12:809-821, 2014), which can be reduced by coupling this acid with via The Ptb-Buk system is overcome by acid formation from CoA in an ATP-related form.

Ptb-Buk系統及AOR系統已展現於以上用於獲得數種不同產物之實例中,但可延伸至其他產物,例如產生2-丁烯-1-醇、3-甲基-2-丁醇、1,3-己二醇(HDO)。2-丁烯-1-醇可經由Ptb-Buk、AOR及醇去氫酶自巴豆醯基-CoA產生(圖35)。1,3-己二醇可經由Ptb-Buk、AOR及醇去氫酶自3-羥基-己醯基-CoA產生(圖35)。藉由組合Ptb-Buk、Adc及醇去氫酶(諸如天然一級:二級醇去氫酶),可由乙醯丁醯基-CoA形成3-甲基-2-丁醇。 The Ptb-Buk system and the AOR system have been shown in the above examples for obtaining several different products, but can be extended to other products, such as producing 2-buten-1-ol, 3-methyl-2-butanol, 1,3-hexanediol (HDO). 2-Buten-1-ol can be produced from crotonyl-CoA via Ptb-Buk, AOR and alcohol dehydrogenase (Figure 35). 1,3-Hexanediol can be produced from 3-hydroxy-hexanediol-CoA via Ptb-Buk, AOR, and alcohol dehydrogenase (Figure 35). By combining Ptb-Buk, Adc, and an alcohol dehydrogenase (such as a natural primary:secondary alcohol dehydrogenase), 3-methyl-2-butanol can be formed from acetylbutyl-CoA.

所有此等前驅物,即巴豆醯基-CoA、3-羥基-己醯基-CoA或乙醯丁醯基-CoA可藉由經由例如克氏梭菌(Barker,《美國科學院院報》,31:373-381,1945;Seedorf,《美國科學院院報》,105:2128-2133,2008)及其他梭菌之已知醱酵路徑還原及延長先前實例中所述之乙醯基-CoA、乙醯乙醯基-CoA及3-HB-CoA形成。所涉及之酶包含巴豆醯基-CoA水合酶(巴豆酸酶)或巴豆醯基-CoA還原酶、丁醯基-CoA去氫酶或反-2-烯醯基-CoA還原酶、硫解酶或醯基-CoA乙醯基轉移酶及3-羥基丁醯基-CoA去氫酶或乙醯乙醯基-CoA水合酶(圖35)。將來自克氏梭菌或其他梭菌之各別基因選殖於表現質體上(U.S.2011/0236941),隨後如上所述轉型於來自先前實例之自產乙醇梭菌菌株pta-ack::ptb-buk或CAETHG_1524::ptb-buk中以產生2-丁烯-1-醇、3-甲基-2-丁醇、1,3-己二醇(HDO)。2-丁烯-1-醇、3-甲基-2-丁醇及1,3-己二醇(HDO)可為其他下游產物之前驅物。 All such precursors, i.e. crotonyl-CoA, 3-hydroxy-hexanoyl-CoA or acetylbutyl-CoA, can be synthesized by, for example, C. -381, 1945; Seedorf, Proceedings of the National Academy of Sciences , 105: 2128-2133, 2008) and other Clostridium known fermentation pathways reduce and elongate acetyl-CoA, acetyl-B as described in the previous examples. Formation of acyl-CoA and 3-HB-CoA. The enzymes involved include crotonyl-CoA hydratase (crotonic enzyme) or crotonyl-CoA reductase, butyl-CoA dehydrogenase or trans-2-enyl-CoA reductase, thiolase or thiolase -CoA acetyltransferase and 3-hydroxybutyryl-CoA dehydrogenase or acetyl-CoA hydratase (Figure 35). Individual genes from C. cruzi or other Clostridium species were selected on expressoplasts (US2011/0236941) and subsequently transformed into the C. autoethanogenogenum strain pta-ack::ptb- from the previous example as described above. buk or CAETHG_1524::ptb-buk to produce 2-buten-1-ol, 3-methyl-2-butanol, 1,3-hexanediol (HDO). 2-Buten-1-ol, 3-methyl-2-butanol and 1,3-hexanediol (HDO) can be precursors of other downstream products.

儘管其僅為少數實例,但應顯而易見此路徑可使用相同酶或其經工程改造之對較長鏈長具有特異性之變異體進一步延長而產生一系列C4、C6、C8、C10、C12、C14醇、酮、烯醇或二醇(圖39)。亦可藉由在硫解酶步驟中使用別處所述之不同於乙醯基-CoA之引子或增量劑單元獲得不同類型之分子(Cheong,《自然生物技術(Nature Biotechnol)》,34:556-561,2016)。 Although this is only a few examples, it should be apparent that this pathway can be further extended to produce a series of C4, C6, C8, C10, C12, C14 using the same enzyme or its engineered variants specific for longer chain lengths Alcohols, ketones, enols or diols (Figure 39). Different types of molecules can also be obtained by using primers or extender units other than acetyl-CoA in the thiolase step as described elsewhere (Cheong, Nature Biotechnol , 34:556 -561, 2016).

本文中所引用之所有參考文獻(包括公開案、專利申請案及專利)特此以引用之方式併入,其引用程度如同個別及特定地指示各參考文獻以引用之方式併入且於本文中 全文闡述一般。在本說明書中對任何先前技術之提及並非且不應視為承認先前技術形成任何國家所致力領域之公共常識的一部分。 All references (including publications, patent applications, and patents) cited herein are hereby incorporated by reference to the same extent as if each reference was individually and specifically indicated to be incorporated by reference and were fully incorporated herein by reference. The exposition is general. Reference to any prior art in this specification is not and shall not be taken as an admission that prior art forms part of the common general knowledge in any country's field of endeavor.

除非本文中另外指示或明顯與上下文相矛盾,否則在描述本發明之情況下(尤其在以下申請專利範圍之情況下),使用術語「一」及「所述」及類似指示物應理解為涵蓋單數與複數。除非另外說明,否則術語「包括」、「具有」、「包含」及「含有」應理解為開放性術語(亦即意謂「包含(但不限於)」)。除非本文中另外指示,否則本文中數值範圍之敍述僅意欲充當個別提及屬於該範圍之各獨立值之速記方法,且各獨立值併入本說明書中,如同在本文中個別敍述一般。除非本文另外指示或與上下文明顯矛盾,否則本文中描述之所有方法可以任何適合順序進行。除非另外主張,否則本文所提供之任何及所有實例或例示性語言(例如,「諸如」)之使用僅意欲更好地說明本發明而非限制本發明之範疇。本說明書中之語言不應解釋為指示實踐本發明所必需之任何未主張要素。 Unless otherwise indicated herein or clearly contradicted by the context, in describing the invention (especially in the context of the following claims), the use of the terms "a", "said" and similar referents shall be understood to encompass Singular and plural. Unless stated otherwise, the terms "includes," "has," "includes," and "contains" are to be understood as open-ended terms (i.e., meaning "including (but not limited to)"). Unless otherwise indicated herein, recitation of numerical ranges herein is intended only to serve as a shorthand method for individually referring to each individual value falling within that range, and each individual value is incorporated into this specification as if individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (eg, "such as") provided herein is intended merely to better illuminate the invention and does not limit the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.

本文中描述本發明之較佳實施例。在閱讀以上描述之後,彼等較佳實施例之變化形式對於一般技術者可變得顯而易見。本發明者期望熟習此項技術者適當時採用此等變化,且本發明者意欲以不同於本文中特定所述之方式實踐本發明。相應地,若適用法律允許,則本發明包括在此隨附之申請專利範圍中所陳述之標的物的所有修改及等效物。此外,除非本文中另外指示或另外上下文明顯矛盾,否則本發明涵蓋上述要素以其所有可能變化形式之任何組合。 Preferred embodiments of the invention are described herein. Variations of the preferred embodiments may become apparent to those of ordinary skill upon reading the above description. The inventors expect those skilled in the art to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter set forth in the appended claims hereto, as permitted by applicable law. Furthermore, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

<110> 紐西蘭商藍瑟科技紐西蘭有限公司(LANZATECH NEW ZEALAND LIMITED) <110> New Zealand Business Lanser Technology New Zealand Co., Ltd. (LANZATECH NEW ZEALAND LIMITED)

<120> 包括產能醱酵路徑之經基因工程改造之細菌 <120> Genetically engineered bacteria including energy-producing fermentation pathways

<140> TW 105134882 <140>TW 105134882

<141> 2016-10-27 <141> 2016-10-27

<160> 195 <160> 195

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 392 <211> 392

<212> PRT <212> PRT

<213> 丙酮丁醇梭菌 <213> Clostridium acetobutylicum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> ThlA,WP_010966157.1 <223> ThlA,WP_010966157.1

<400> 1

Figure 105134882-A0305-02-0136-2
Figure 105134882-A0305-02-0137-3
Figure 105134882-A0305-02-0138-4
<400> 1
Figure 105134882-A0305-02-0136-2
Figure 105134882-A0305-02-0137-3
Figure 105134882-A0305-02-0138-4

<210> 2 <210> 2

<211> 393 <211> 393

<212> PRT <212> PRT

<213> 鉤蟲貪銅菌 <213> Hookworm Cupriaphila

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> PhaA,WP_013956452.1 <223> PhaA,WP_013956452.1

<400> 2

Figure 105134882-A0305-02-0138-5
Figure 105134882-A0305-02-0139-7
Figure 105134882-A0305-02-0140-8
<400> 2
Figure 105134882-A0305-02-0138-5
Figure 105134882-A0305-02-0139-7
Figure 105134882-A0305-02-0140-8

<210> 3 <210> 3

<211> 394 <211> 394

<212> PRT <212> PRT

<213> 鉤蟲貪銅菌 <213> Hookworm Cupriaphila

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> BktB,WP_011615089.1 <223> BktB,WP_011615089.1

<400> 3

Figure 105134882-A0305-02-0141-9
Figure 105134882-A0305-02-0142-10
<400> 3
Figure 105134882-A0305-02-0141-9
Figure 105134882-A0305-02-0142-10

<210> 4 <210> 4

<211> 394 <211> 394

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> AtoB,NP_416728.1 <223> AtoB,NP_416728.1

<400> 4

Figure 105134882-A0305-02-0143-11
Figure 105134882-A0305-02-0144-12
Figure 105134882-A0305-02-0145-13
<400> 4
Figure 105134882-A0305-02-0143-11
Figure 105134882-A0305-02-0144-12
Figure 105134882-A0305-02-0145-13

<210> 5 <210> 5

<211> 217 <211> 217

<212> PRT <212> PRT

<213> 拜氏梭菌 <213> Clostridium beijerinckii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> CtfA,WP_012059996.1 <223> CtfA,WP_012059996.1

<400> 5

Figure 105134882-A0305-02-0145-14
Figure 105134882-A0305-02-0146-15
<400> 5
Figure 105134882-A0305-02-0145-14
Figure 105134882-A0305-02-0146-15

<210> 6 <210> 6

<211> 221 <211> 221

<212> PRT <212> PRT

<213> 拜氏梭菌 <213> Clostridium beijerinckii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> CtfB,WP_012059997.1 <223> CtfB,WP_012059997.1

<400> 6

Figure 105134882-A0305-02-0146-16
Figure 105134882-A0305-02-0147-17
<400> 6
Figure 105134882-A0305-02-0146-16
Figure 105134882-A0305-02-0147-17

<210> 7 <210> 7

<211> 286 <211> 286

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> TesB,NP_414986.1 <223> TesB,NP_414986.1

<400> 7

Figure 105134882-A0305-02-0148-18
Figure 105134882-A0305-02-0149-20
<400> 7
Figure 105134882-A0305-02-0148-18
Figure 105134882-A0305-02-0149-20

<210> 8 <210> 8

<211> 436 <211> 436

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> 推定硫酯酶1,AGY74947.1 <223> Putative thioesterase 1, AGY74947.1

<400> 8

Figure 105134882-A0305-02-0149-21
Figure 105134882-A0305-02-0150-22
Figure 105134882-A0305-02-0151-23
Figure 105134882-A0305-02-0152-24
<400> 8
Figure 105134882-A0305-02-0149-21
Figure 105134882-A0305-02-0150-22
Figure 105134882-A0305-02-0151-23
Figure 105134882-A0305-02-0152-24

<210> 9 <210> 9

<211> 137 <211> 137

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> 推定硫酯酶2,AGY75747.1 <223> Putative thioesterase 2, AGY75747.1

<400> 9

Figure 105134882-A0305-02-0152-25
Figure 105134882-A0305-02-0153-26
<400> 9
Figure 105134882-A0305-02-0152-25
Figure 105134882-A0305-02-0153-26

<210> 10 <210> 10

<211> 128 <211> 128

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> 推定硫酯酶3,AGY75999.1 <223> Putative thioesterase 3, AGY75999.1

<400> 10

Figure 105134882-A0305-02-0153-27
<400> 10
Figure 105134882-A0305-02-0153-27

<210> 11 <210> 11

<211> 436 <211> 436

<212> PRT <212> PRT

<213> 永達爾梭菌 <213> Clostridium yungdalae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> 推定硫酯酶1,ADK15695.1 <223> Putative thioesterase 1, ADK15695.1

<400> 11

Figure 105134882-A0305-02-0154-28
Figure 105134882-A0305-02-0155-29
Figure 105134882-A0305-02-0156-30
<400> 11
Figure 105134882-A0305-02-0154-28
Figure 105134882-A0305-02-0155-29
Figure 105134882-A0305-02-0156-30

<210> 12 <210> 12

<211> 137 <211> 137

<212> PRT <212> PRT

<213> 永達爾梭菌 <213> Clostridium yungdalae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> 推定硫酯酶2,ADK16655.1 <223> Putative thioesterase 2, ADK16655.1

<400> 12

Figure 105134882-A0305-02-0156-31
Figure 105134882-A0305-02-0157-32
<400> 12
Figure 105134882-A0305-02-0156-31
Figure 105134882-A0305-02-0157-32

<210> 13 <210> 13

<211> 128 <211> 128

<212> PRT <212> PRT

<213> 永達爾梭菌 <213> Clostridium yungdalae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> 推定硫酯酶3,ADK16959.1 <223> Putative thioesterase 3, ADK16959.1

<400> 13

Figure 105134882-A0305-02-0157-33
Figure 105134882-A0305-02-0158-34
<400> 13
Figure 105134882-A0305-02-0157-33
Figure 105134882-A0305-02-0158-34

<210> 14 <210> 14

<211> 246 <211> 246

<212> PRT <212> PRT

<213> 拜氏梭菌 <213> Clostridium beijerinckii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Adc,WP_012059998.1 <223> Adc,WP_012059998.1

<400> 14

Figure 105134882-A0305-02-0158-35
Figure 105134882-A0305-02-0159-36
<400> 14
Figure 105134882-A0305-02-0158-35
Figure 105134882-A0305-02-0159-36

<210> 15 <210> 15

<211> 548 <211> 548

<212> PRT <212> PRT

<213> 雷特氏乳球菌 <213> Lactococcus reuteri

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> KivD <223> KivD

<400> 15

Figure 105134882-A0305-02-0160-37
Figure 105134882-A0305-02-0161-38
Figure 105134882-A0305-02-0162-39
<400> 15
Figure 105134882-A0305-02-0160-37
Figure 105134882-A0305-02-0161-38
Figure 105134882-A0305-02-0162-39

<210> 16 <210> 16

<211> 351 <211> 351

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> SecAdh,AGY74782.1 <223>SecAdh,AGY74782.1

<400> 16

Figure 105134882-A0305-02-0163-40
Figure 105134882-A0305-02-0164-41
<400> 16
Figure 105134882-A0305-02-0163-40
Figure 105134882-A0305-02-0164-41

<210> 17 <210> 17

<211> 351 <211> 351

<212> PRT <212> PRT

<213> 永達爾梭菌 <213> Clostridium yungdalae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> SecAdh,ADK15544.1 <223> SecAdh,ADK15544.1

<400> 17

Figure 105134882-A0305-02-0165-42
Figure 105134882-A0305-02-0166-43
<400> 17
Figure 105134882-A0305-02-0165-42
Figure 105134882-A0305-02-0166-43

<210> 18 <210> 18

<211> 351 <211> 351

<212> PRT <212> PRT

<213> 拉氏梭菌 <213> Clostridium rashii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> SecAdh,WP_013239134.1 <223> SecAdh,WP_013239134.1

<400> 18

Figure 105134882-A0305-02-0167-44
Figure 105134882-A0305-02-0168-45
<400> 18
Figure 105134882-A0305-02-0167-44
Figure 105134882-A0305-02-0168-45

<210> 19 <210> 19

<211> 351 <211> 351

<212> PRT <212> PRT

<213> 拜氏梭菌 <213> Clostridium beijerinckii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> SecAdh,WP_026889046.1 <223> SecAdh,WP_026889046.1

<400> 19

Figure 105134882-A0305-02-0169-46
Figure 105134882-A0305-02-0170-47
<400> 19
Figure 105134882-A0305-02-0169-46
Figure 105134882-A0305-02-0170-47

<210> 20 <210> 20

<211> 352 <211> 352

<212> PRT <212> PRT

<213> 布氏嗜熱厭氧桿菌 <213> Thermoanaerobacter brucei

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> SecAdh,3FSR_A <223>SecAdh,3FSR_A

<400> 20

Figure 105134882-A0305-02-0171-48
Figure 105134882-A0305-02-0172-49
<400> 20
Figure 105134882-A0305-02-0171-48
Figure 105134882-A0305-02-0172-49

<210> 21 <210> 21

<211> 520 <211> 520

<212> PRT <212> PRT

<213> 小家鼠 <213> Mus musculus

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> HMG-CoA合成酶 <223> HMG-CoA synthase

<400> 21

Figure 105134882-A0305-02-0173-50
Figure 105134882-A0305-02-0174-51
Figure 105134882-A0305-02-0175-54
<400> 21
Figure 105134882-A0305-02-0173-50
Figure 105134882-A0305-02-0174-51
Figure 105134882-A0305-02-0175-54

<210> 22 <210> 22

<211> 396 <211> 396

<212> PRT <212> PRT

<213> 釀酒酵母 <213> Saccharomyces cerevisiae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Mdd,CAA96324.1 <223> Mdd,CAA96324.1

<400> 22

Figure 105134882-A0305-02-0175-55
Figure 105134882-A0305-02-0176-56
Figure 105134882-A0305-02-0177-57
<400> 22
Figure 105134882-A0305-02-0175-55
Figure 105134882-A0305-02-0176-56
Figure 105134882-A0305-02-0177-57

<210> 23 <210> 23

<211> 324 <211> 324

<212> PRT <212> PRT

<213> 乾熱嗜酸菌 <213> Dry-heat acidophilus

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Mdd,WP_011178157.1 <223> Mdd,WP_011178157.1

<400> 23

Figure 105134882-A0305-02-0178-58
Figure 105134882-A0305-02-0179-59
<400> 23
Figure 105134882-A0305-02-0178-58
Figure 105134882-A0305-02-0179-59

<210> 24 <210> 24

<211> 460 <211> 460

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> CimA,AGY76958.1 <223> CimA,AGY76958.1

<400> 24

Figure 105134882-A0305-02-0180-60
Figure 105134882-A0305-02-0181-61
Figure 105134882-A0305-02-0182-62
<400> 24
Figure 105134882-A0305-02-0180-60
Figure 105134882-A0305-02-0181-61
Figure 105134882-A0305-02-0182-62

<210> 25 <210> 25

<211> 491 <211> 491

<212> PRT <212> PRT

<213> 詹氏甲烷球菌 <213> Methanococcus jannaschii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> CimA,NP_248395.1 <223> CimA,NP_248395.1

<400> 25

Figure 105134882-A0305-02-0182-63
Figure 105134882-A0305-02-0183-64
Figure 105134882-A0305-02-0184-65
Figure 105134882-A0305-02-0185-66
<400> 25
Figure 105134882-A0305-02-0182-63
Figure 105134882-A0305-02-0183-64
Figure 105134882-A0305-02-0184-65
Figure 105134882-A0305-02-0185-66

<210> 26 <210> 26

<211> 421 <211> 421

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> LeuC,WP_023162955.1 <223> LeuC,WP_023162955.1

<400> 26

Figure 105134882-A0305-02-0185-67
Figure 105134882-A0305-02-0186-69
Figure 105134882-A0305-02-0187-71
<400> 26
Figure 105134882-A0305-02-0185-67
Figure 105134882-A0305-02-0186-69
Figure 105134882-A0305-02-0187-71

<210> 27 <210> 27

<211> 164 <211> 164

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> LeuD,AGY77204.1 <223> LeuD,AGY77204.1

<400> 27

Figure 105134882-A0305-02-0187-72
Figure 105134882-A0305-02-0188-73
<400> 27
Figure 105134882-A0305-02-0187-72
Figure 105134882-A0305-02-0188-73

<210> 28 <210> 28

<211> 466 <211> 466

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> LeuC,NP_414614.1 <223> LeuC,NP_414614.1

<400> 28

Figure 105134882-A0305-02-0188-74
Figure 105134882-A0305-02-0189-75
Figure 105134882-A0305-02-0190-76
Figure 105134882-A0305-02-0191-77
<400> 28
Figure 105134882-A0305-02-0188-74
Figure 105134882-A0305-02-0189-75
Figure 105134882-A0305-02-0190-76
Figure 105134882-A0305-02-0191-77

<210> 29 <210> 29

<211> 201 <211> 201

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> LeuD,NP_414613.1 <223> LeuD,NP_414613.1

<400> 29

Figure 105134882-A0305-02-0191-78
Figure 105134882-A0305-02-0192-79
<400> 29
Figure 105134882-A0305-02-0191-78
Figure 105134882-A0305-02-0192-79

<210> 30 <210> 30

<211> 354 <211> 354

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> LeuB,WP_023162957.1 <223> LeuB,WP_023162957.1

<400> 30

Figure 105134882-A0305-02-0192-80
Figure 105134882-A0305-02-0193-81
Figure 105134882-A0305-02-0194-82
<400> 30
Figure 105134882-A0305-02-0192-80
Figure 105134882-A0305-02-0193-81
Figure 105134882-A0305-02-0194-82

<210> 31 <210> 31

<211> 363 <211> 363

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> LeuB,NP_414615.4 <223> LeuB,NP_414615.4

<400> 31

Figure 105134882-A0305-02-0194-83
Figure 105134882-A0305-02-0195-84
Figure 105134882-A0305-02-0196-85
<400> 31
Figure 105134882-A0305-02-0194-83
Figure 105134882-A0305-02-0195-84
Figure 105134882-A0305-02-0196-85

<210> 32 <210> 32

<211> 536 <211> 536

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> IlvB,AGY74359.1 <223> IlvB,AGY74359.1

<400> 32

Figure 105134882-A0305-02-0197-86
Figure 105134882-A0305-02-0198-87
Figure 105134882-A0305-02-0199-88
<400> 32
Figure 105134882-A0305-02-0197-86
Figure 105134882-A0305-02-0198-87
Figure 105134882-A0305-02-0199-88

<210> 33 <210> 33

<211> 558 <211> 558

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> IlvB,AGY74635.1 <223> IlvB,AGY74635.1

<400> 33

Figure 105134882-A0305-02-0199-89
Figure 105134882-A0305-02-0200-90
Figure 105134882-A0305-02-0201-91
Figure 105134882-A0305-02-0202-92
<400> 33
Figure 105134882-A0305-02-0199-89
Figure 105134882-A0305-02-0200-90
Figure 105134882-A0305-02-0201-91
Figure 105134882-A0305-02-0202-92

<210> 34 <210> 34

<211> 158 <211> 158

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> IlvN,AGY74360.1 <223> IlvN,AGY74360.1

<400> 34

Figure 105134882-A0305-02-0203-93
<400> 34
Figure 105134882-A0305-02-0203-93

<210> 35 <210> 35

<211> 562 <211> 562

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> IlvB,NP_418127.1 <223> IlvB,NP_418127.1

<400> 35

Figure 105134882-A0305-02-0204-94
Figure 105134882-A0305-02-0205-95
Figure 105134882-A0305-02-0206-96
<400> 35
Figure 105134882-A0305-02-0204-94
Figure 105134882-A0305-02-0205-95
Figure 105134882-A0305-02-0206-96

<210> 36 <210> 36

<211> 96 <211> 96

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> IlvN,NP_418126.1 <223> IlvN,NP_418126.1

<400> 36

Figure 105134882-A0305-02-0207-97
<400> 36
Figure 105134882-A0305-02-0207-97

<210> 37 <210> 37

<211> 337 <211> 337

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> IlvC,WP_013238693.1 <223> IlvC,WP_013238693.1

<400> 37

Figure 105134882-A0305-02-0207-98
Figure 105134882-A0305-02-0208-99
Figure 105134882-A0305-02-0209-100
<400> 37
Figure 105134882-A0305-02-0207-98
Figure 105134882-A0305-02-0208-99
Figure 105134882-A0305-02-0209-100

<210> 38 <210> 38

<211> 491 <211> 491

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> IlvC,NP_418222.1 <223> IlvC,NP_418222.1

<400> 38

Figure 105134882-A0305-02-0209-101
Figure 105134882-A0305-02-0210-102
Figure 105134882-A0305-02-0211-103
Figure 105134882-A0305-02-0212-104
<400> 38
Figure 105134882-A0305-02-0209-101
Figure 105134882-A0305-02-0210-102
Figure 105134882-A0305-02-0211-103
Figure 105134882-A0305-02-0212-104

<210> 39 <210> 39

<211> 552 <211> 552

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> IlvD,WP_013238694.1 <223> IlvD,WP_013238694.1

<400> 39

Figure 105134882-A0305-02-0212-105
Figure 105134882-A0305-02-0213-106
Figure 105134882-A0305-02-0214-107
Figure 105134882-A0305-02-0215-108
<400> 39
Figure 105134882-A0305-02-0212-105
Figure 105134882-A0305-02-0213-106
Figure 105134882-A0305-02-0214-107
Figure 105134882-A0305-02-0215-108

<210> 40 <210> 40

<211> 616 <211> 616

<212> PRT <212> PRT

<213> 大腸桿菌 <213> E. coli

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> IlvD,YP_026248.1 <223> IlvD,YP_026248.1

<400> 40

Figure 105134882-A0305-02-0215-109
Figure 105134882-A0305-02-0216-110
Figure 105134882-A0305-02-0217-111
Figure 105134882-A0305-02-0218-113
<400> 40
Figure 105134882-A0305-02-0215-109
Figure 105134882-A0305-02-0216-110
Figure 105134882-A0305-02-0217-111
Figure 105134882-A0305-02-0218-113

<210> 41 <210> 41

<211> 477 <211> 477

<212> PRT <212> PRT

<213> 熱自養甲烷熱桿菌 <213> Methanothermobacter thermoautotrophicum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> VorA,WP_010876344.1 <223> VorA,WP_010876344.1

<400> 41

Figure 105134882-A0305-02-0219-114
Figure 105134882-A0305-02-0220-115
Figure 105134882-A0305-02-0221-116
<400> 41
Figure 105134882-A0305-02-0219-114
Figure 105134882-A0305-02-0220-115
Figure 105134882-A0305-02-0221-116

<210> 42 <210> 42

<211> 352 <211> 352

<212> PRT <212> PRT

<213> 熱自養甲烷熱桿菌 <213> Methanothermobacter thermoautotrophicum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> VorB,WP_010876343.1 <223> VorB,WP_010876343.1

<400> 42

Figure 105134882-A0305-02-0221-117
Figure 105134882-A0305-02-0222-120
Figure 105134882-A0305-02-0223-122
<400> 42
Figure 105134882-A0305-02-0221-117
Figure 105134882-A0305-02-0222-120
Figure 105134882-A0305-02-0223-122

<210> 43 <210> 43

<211> 79 <211> 79

<212> PRT <212> PRT

<213> 熱自養甲烷熱桿菌 <213> Methanothermobacter thermoautotrophicum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> VorC,WP_010876342.1 <223> VorC,WP_010876342.1

<400> 43

Figure 105134882-A0305-02-0223-123
<400> 43
Figure 105134882-A0305-02-0223-123

<210> 44 <210> 44

<211> 124 <211> 124

<212> PRT <212> PRT

<213> 熱自養甲烷熱桿菌 <213> Methanothermobacter thermoautotrophicum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> VorD,WP_010876341.1 <223> VorD,WP_010876341.1

<400> 44

Figure 105134882-A0305-02-0224-124
<400> 44
Figure 105134882-A0305-02-0224-124

<210> 45 <210> 45

<211> 394 <211> 394

<212> PRT <212> PRT

<213> 強烈火球菌 <213> Pyrococcus fulminantis

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> VorA,WP_011012106.1 <223> VorA,WP_011012106.1

<400> 45

Figure 105134882-A0305-02-0225-125
Figure 105134882-A0305-02-0226-126
Figure 105134882-A0305-02-0227-127
<400> 45
Figure 105134882-A0305-02-0225-125
Figure 105134882-A0305-02-0226-126
Figure 105134882-A0305-02-0227-127

<210> 46 <210> 46

<211> 311 <211> 311

<212> PRT <212> PRT

<213> 強烈火球菌 <213> Pyrococcus fulminantis

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> VorB,WP_011012105.1 <223> VorB,WP_011012105.1

<400> 46

Figure 105134882-A0305-02-0227-128
Figure 105134882-A0305-02-0228-129
<400> 46
Figure 105134882-A0305-02-0227-128
Figure 105134882-A0305-02-0228-129

<210> 47 <210> 47

<211> 185 <211> 185

<212> PRT <212> PRT

<213> 強烈火球菌 <213> Pyrococcus fulminantis

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> VorC,WP_011012108.1 <223> VorC,WP_011012108.1

<400> 47

Figure 105134882-A0305-02-0229-130
Figure 105134882-A0305-02-0230-131
<400> 47
Figure 105134882-A0305-02-0229-130
Figure 105134882-A0305-02-0230-131

<210> 48 <210> 48

<211> 105 <211> 105

<212> PRT <212> PRT

<213> 強烈火球菌 <213> Pyrococcus fulminantis

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> VorD,WP_011012107.1 <223> VorD,WP_011012107.1

<400> 48

Figure 105134882-A0305-02-0230-132
<400> 48
Figure 105134882-A0305-02-0230-132

<210> 49 <210> 49

<211> 386 <211> 386

<212> PRT <212> PRT

<213> 除蟲鏈黴菌 <213> Streptomyces anthemicidum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> AcdH,AAD44196.1或BAB69160.1 <223> AcdH,AAD44196.1 or BAB69160.1

<400> 49

Figure 105134882-A0305-02-0231-133
Figure 105134882-A0305-02-0232-134
Figure 105134882-A0305-02-0233-136
<400> 49
Figure 105134882-A0305-02-0231-133
Figure 105134882-A0305-02-0232-134
Figure 105134882-A0305-02-0233-136

<210> 50 <210> 50

<211> 386 <211> 386

<212> PRT <212> PRT

<213> 天藍色鏈黴菌 <213> Streptomyces coelicolor

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> AcdH,AAD44195.1 <223> AcdH,AAD44195.1

<400> 50

Figure 105134882-A0305-02-0233-137
Figure 105134882-A0305-02-0234-138
Figure 105134882-A0305-02-0235-139
<400> 50
Figure 105134882-A0305-02-0233-137
Figure 105134882-A0305-02-0234-138
Figure 105134882-A0305-02-0235-139

<210> 51 <210> 51

<211> 261 <211> 261

<212> PRT <212> PRT

<213> 拜氏梭菌 <213> Clostridium beijerinckii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Crt,ABR34202.1 <223> Crt,ABR34202.1

<400> 51

Figure 105134882-A0305-02-0235-140
Figure 105134882-A0305-02-0236-142
Figure 105134882-A0305-02-0237-144
<400> 51
Figure 105134882-A0305-02-0235-140
Figure 105134882-A0305-02-0236-142
Figure 105134882-A0305-02-0237-144

<210> 52 <210> 52

<211> 261 <211> 261

<212> PRT <212> PRT

<213> 丙酮丁醇梭菌 <213> Clostridium acetobutylicum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Crt,NP_349318.1 <223> Crt,NP_349318.1

<400> 52

Figure 105134882-A0305-02-0237-145
Figure 105134882-A0305-02-0238-146
<400> 52
Figure 105134882-A0305-02-0237-145
Figure 105134882-A0305-02-0238-146

<210> 53 <210> 53

<211> 397 <211> 397

<212> PRT <212> PRT

<213> 齒垢密螺旋體 <213> Treponema denticola

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Ccr,NP_971211.1 <223> Ccr,NP_971211.1

<400> 53

Figure 105134882-A0305-02-0238-147
Figure 105134882-A0305-02-0239-148
Figure 105134882-A0305-02-0240-149
<400> 53
Figure 105134882-A0305-02-0238-147
Figure 105134882-A0305-02-0239-148
Figure 105134882-A0305-02-0240-149

<210> 54 <210> 54

<211> 539 <211> 539

<212> PRT <212> PRT

<213> 纖細裸藻 <213> Euglena gracilis

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Ter,AAW66853.1 <223> Ter,AAW66853.1

<400> 54

Figure 105134882-A0305-02-0241-150
Figure 105134882-A0305-02-0242-151
Figure 105134882-A0305-02-0243-152
<400> 54
Figure 105134882-A0305-02-0241-150
Figure 105134882-A0305-02-0242-151
Figure 105134882-A0305-02-0243-152

<210> 55 <210> 55

<211> 282 <211> 282

<212> PRT <212> PRT

<213> 拜氏梭菌 <213> Clostridium beijerinckii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Hbd,WP_011967675.1 <223> Hbd,WP_011967675.1

<400> 55

Figure 105134882-A0305-02-0244-153
Figure 105134882-A0305-02-0245-154
<400> 55
Figure 105134882-A0305-02-0244-153
Figure 105134882-A0305-02-0245-154

<210> 56 <210> 56

<211> 282 <211> 282

<212> PRT <212> PRT

<213> 丙酮丁醇梭菌 <213> Clostridium acetobutylicum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Hbd,NP_349314.1 <223> Hbd,NP_349314.1

<400> 56

Figure 105134882-A0305-02-0245-156
Figure 105134882-A0305-02-0246-157
Figure 105134882-A0305-02-0247-158
<400> 56
Figure 105134882-A0305-02-0245-156
Figure 105134882-A0305-02-0246-157
Figure 105134882-A0305-02-0247-158

<210> 57 <210> 57

<211> 282 <211> 282

<212> PRT <212> PRT

<213> 克氏梭菌 <213> Clostridium cruzi

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Hbd1,WP_011989027.1 <223> Hbd1,WP_011989027.1

<400> 57

Figure 105134882-A0305-02-0247-159
Figure 105134882-A0305-02-0248-160
<400> 57
Figure 105134882-A0305-02-0247-159
Figure 105134882-A0305-02-0248-160

<210> 58 <210> 58

<211> 246 <211> 246

<212> PRT <212> PRT

<213> 鉤蟲貪銅菌 <213> Hookworm Cupriaphila

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> PhaB,WP_010810131.1 <223> PhaB,WP_010810131.1

<400> 58

Figure 105134882-A0305-02-0249-161
Figure 105134882-A0305-02-0250-164
<400> 58
Figure 105134882-A0305-02-0249-161
Figure 105134882-A0305-02-0250-164

<210> 59 <210> 59

<211> 134 <211> 134

<212> PRT <212> PRT

<213> 豚鼠氣單胞菌 <213> Aeromonas guinea pig

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> PhaJ,O32472 <223> PhaJ,O32472

<400> 59

Figure 105134882-A0305-02-0250-165
Figure 105134882-A0305-02-0251-166
<400> 59
Figure 105134882-A0305-02-0250-165
Figure 105134882-A0305-02-0251-166

<210> 60 <210> 60

<211> 260 <211> 260

<212> PRT <212> PRT

<213> 皮氏羅爾斯頓菌 <213> Ralstonia picketii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Bdh1,BAE72684.1 <223> Bdh1,BAE72684.1

<400> 60

Figure 105134882-A0305-02-0251-167
Figure 105134882-A0305-02-0252-168
<400> 60
Figure 105134882-A0305-02-0251-167
Figure 105134882-A0305-02-0252-168

<210> 61 <210> 61

<211> 256 <211> 256

<212> PRT <212> PRT

<213> 皮氏羅爾斯頓菌 <213> Ralstonia picketii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Bdh2,BAE72685.1 <223> Bdh2,BAE72685.1

<400> 61

Figure 105134882-A0305-02-0253-169
Figure 105134882-A0305-02-0254-170
<400> 61
Figure 105134882-A0305-02-0253-169
Figure 105134882-A0305-02-0254-170

<210> 62 <210> 62

<211> 254 <211> 254

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Bdh,AGY75962 <223> Bdh,AGY75962

<400> 62

Figure 105134882-A0305-02-0254-171
Figure 105134882-A0305-02-0255-172
<400> 62
Figure 105134882-A0305-02-0254-171
Figure 105134882-A0305-02-0255-172

<210> 63 <210> 63

<211> 607 <211> 607

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> AOR,WP_013238665.1 <223> AOR,WP_013238665.1

<400> 63

Figure 105134882-A0305-02-0256-173
Figure 105134882-A0305-02-0257-175
Figure 105134882-A0305-02-0258-176
Figure 105134882-A0305-02-0259-177
<400> 63
Figure 105134882-A0305-02-0256-173
Figure 105134882-A0305-02-0257-175
Figure 105134882-A0305-02-0258-176
Figure 105134882-A0305-02-0259-177

<210> 64 <210> 64

<211> 607 <211> 607

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> AOR,WP_013238675.1 <223> AOR,WP_013238675.1

<400> 64

Figure 105134882-A0305-02-0259-178
Figure 105134882-A0305-02-0260-179
Figure 105134882-A0305-02-0261-180
Figure 105134882-A0305-02-0262-181
<400> 64
Figure 105134882-A0305-02-0259-178
Figure 105134882-A0305-02-0260-179
Figure 105134882-A0305-02-0261-180
Figure 105134882-A0305-02-0262-181

<210> 65 <210> 65

<211> 607 <211> 607

<212> PRT <212> PRT

<213> 永達爾梭菌 <213> Clostridium yungdalae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> AOR,ADK15073.1 <223> AOR,ADK15073.1

<400> 65

Figure 105134882-A0305-02-0262-182
Figure 105134882-A0305-02-0263-183
Figure 105134882-A0305-02-0264-184
Figure 105134882-A0305-02-0265-185
<400> 65
Figure 105134882-A0305-02-0262-182
Figure 105134882-A0305-02-0263-183
Figure 105134882-A0305-02-0264-184
Figure 105134882-A0305-02-0265-185

<210> 66 <210> 66

<211> 607 <211> 607

<212> PRT <212> PRT

<213> 永達爾梭菌 <213> Clostridium yungdalae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> AOR,ADK15083.1 <223> AOR,ADK15083.1

<400> 66

Figure 105134882-A0305-02-0266-186
Figure 105134882-A0305-02-0267-187
Figure 105134882-A0305-02-0268-188
Figure 105134882-A0305-02-0269-189
<400> 66
Figure 105134882-A0305-02-0266-186
Figure 105134882-A0305-02-0267-187
Figure 105134882-A0305-02-0268-188
Figure 105134882-A0305-02-0269-189

<210> 67 <210> 67

<211> 405 <211> 405

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Adh,AGY76060.1 <223> Adh,AGY76060.1

<400> 67

Figure 105134882-A0305-02-0269-190
Figure 105134882-A0305-02-0270-191
Figure 105134882-A0305-02-0271-192
<400> 67
Figure 105134882-A0305-02-0269-190
Figure 105134882-A0305-02-0270-191
Figure 105134882-A0305-02-0271-192

<210> 68 <210> 68

<211> 388 <211> 388

<212> PRT <212> PRT

<213> 永達爾梭菌 <213> Clostridium yungdalae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Adh,ADK17019.1 <223> Adh,ADK17019.1

<400> 68

Figure 105134882-A0305-02-0271-193
Figure 105134882-A0305-02-0272-194
Figure 105134882-A0305-02-0273-195
<400> 68
Figure 105134882-A0305-02-0271-193
Figure 105134882-A0305-02-0272-194
Figure 105134882-A0305-02-0273-195

<210> 69 <210> 69

<211> 390 <211> 390

<212> PRT <212> PRT

<213> 丙酮丁醇梭菌 <213> Clostridium acetobutylicum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> BdhB,NP_349891.1 <223> BdhB,NP_349891.1

<400> 69

Figure 105134882-A0305-02-0273-196
Figure 105134882-A0305-02-0274-197
Figure 105134882-A0305-02-0275-198
<400> 69
Figure 105134882-A0305-02-0273-196
Figure 105134882-A0305-02-0274-197
Figure 105134882-A0305-02-0275-198

<210> 70 <210> 70

<211> 387 <211> 387

<212> PRT <212> PRT

<213> 拜氏梭菌 <213> Clostridium beijerinckii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Bdh,WP_041897187.1 <223> Bdh,WP_041897187.1

<400> 70

Figure 105134882-A0305-02-0276-200
Figure 105134882-A0305-02-0277-201
Figure 105134882-A0305-02-0278-202
<400> 70
Figure 105134882-A0305-02-0276-200
Figure 105134882-A0305-02-0277-201
Figure 105134882-A0305-02-0278-202

<210> 71 <210> 71

<211> 388 <211> 388

<212> PRT <212> PRT

<213> 永達爾梭菌 <213> Clostridium yungdalae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Bdh1,YP_003780648.1 <223> Bdh1,YP_003780648.1

<400> 71

Figure 105134882-A0305-02-0278-203
Figure 105134882-A0305-02-0279-204
Figure 105134882-A0305-02-0280-205
<400> 71
Figure 105134882-A0305-02-0278-203
Figure 105134882-A0305-02-0279-204
Figure 105134882-A0305-02-0280-205

<210> 72 <210> 72

<211> 405 <211> 405

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Bdh1,AGY76060.1 <223> Bdh1,AGY76060.1

<400> 72

Figure 105134882-A0305-02-0280-208
Figure 105134882-A0305-02-0281-209
Figure 105134882-A0305-02-0282-210
<400> 72
Figure 105134882-A0305-02-0280-208
Figure 105134882-A0305-02-0281-209
Figure 105134882-A0305-02-0282-210

<210> 73 <210> 73

<211> 388 <211> 388

<212> PRT <212> PRT

<213> 永達爾梭菌 <213> Clostridium yungdalae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Bdh2,YP_003782121.1 <223> Bdh2,YP_003782121.1

<400> 73

Figure 105134882-A0305-02-0283-211
Figure 105134882-A0305-02-0284-212
<400> 73
Figure 105134882-A0305-02-0283-211
Figure 105134882-A0305-02-0284-212

<210> 74 <210> 74

<211> 388 <211> 388

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Bdh2,AGY74784.1 <223> Bdh2,AGY74784.1

<400> 74

Figure 105134882-A0305-02-0285-213
Figure 105134882-A0305-02-0286-215
Figure 105134882-A0305-02-0287-216
<400> 74
Figure 105134882-A0305-02-0285-213
Figure 105134882-A0305-02-0286-215
Figure 105134882-A0305-02-0287-216

<210> 75 <210> 75

<211> 862 <211> 862

<212> PRT <212> PRT

<213> 丙酮丁醇梭菌 <213> Clostridium acetobutylicum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> AdhE1,NP_149325.1 <223> AdhE1,NP_149325.1

<400> 75

Figure 105134882-A0305-02-0287-217
Figure 105134882-A0305-02-0288-219
Figure 105134882-A0305-02-0289-220
Figure 105134882-A0305-02-0290-221
Figure 105134882-A0305-02-0291-222
<400> 75
Figure 105134882-A0305-02-0287-217
Figure 105134882-A0305-02-0288-219
Figure 105134882-A0305-02-0289-220
Figure 105134882-A0305-02-0290-221
Figure 105134882-A0305-02-0291-222

<210> 76 <210> 76

<211> 858 <211> 858

<212> PRT <212> PRT

<213> 丙酮丁醇梭菌 <213> Clostridium acetobutylicum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> AdhE2,NP_149199.1 <223> AdhE2,NP_149199.1

<400> 76

Figure 105134882-A0305-02-0292-223
Figure 105134882-A0305-02-0293-224
Figure 105134882-A0305-02-0294-225
Figure 105134882-A0305-02-0295-226
Figure 105134882-A0305-02-0296-227
<400> 76
Figure 105134882-A0305-02-0292-223
Figure 105134882-A0305-02-0293-224
Figure 105134882-A0305-02-0294-225
Figure 105134882-A0305-02-0295-226
Figure 105134882-A0305-02-0296-227

<210> 77 <210> 77

<211> 860 <211> 860

<212> PRT <212> PRT

<213> 拜氏梭菌 <213> Clostridium beijerinckii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> AdhE,WP_041893626.1 <223> AdhE,WP_041893626.1

<400> 77

Figure 105134882-A0305-02-0296-228
Figure 105134882-A0305-02-0297-229
Figure 105134882-A0305-02-0298-231
Figure 105134882-A0305-02-0299-232
Figure 105134882-A0305-02-0300-233
<400> 77
Figure 105134882-A0305-02-0296-228
Figure 105134882-A0305-02-0297-229
Figure 105134882-A0305-02-0298-231
Figure 105134882-A0305-02-0299-232
Figure 105134882-A0305-02-0300-233

<210> 78 <210> 78

<211> 870 <211> 870

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> AdhE1,WP_023163372.1 <223> AdhE1,WP_023163372.1

<400> 78

Figure 105134882-A0305-02-0301-234
Figure 105134882-A0305-02-0302-235
Figure 105134882-A0305-02-0303-237
Figure 105134882-A0305-02-0304-238
Figure 105134882-A0305-02-0305-239
<400> 78
Figure 105134882-A0305-02-0301-234
Figure 105134882-A0305-02-0302-235
Figure 105134882-A0305-02-0303-237
Figure 105134882-A0305-02-0304-238
Figure 105134882-A0305-02-0305-239

<210> 79 <210> 79

<211> 877 <211> 877

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> AdhE2,WP_023163373.1 <223> AdhE2,WP_023163373.1

<400> 79

Figure 105134882-A0305-02-0305-240
Figure 105134882-A0305-02-0306-242
Figure 105134882-A0305-02-0307-243
Figure 105134882-A0305-02-0308-244
Figure 105134882-A0305-02-0309-245
Figure 105134882-A0305-02-0310-246
<400> 79
Figure 105134882-A0305-02-0305-240
Figure 105134882-A0305-02-0306-242
Figure 105134882-A0305-02-0307-243
Figure 105134882-A0305-02-0308-244
Figure 105134882-A0305-02-0309-245
Figure 105134882-A0305-02-0310-246

<210> 80 <210> 80

<211> 468 <211> 468

<212> PRT <212> PRT

<213> 糖乙酸多丁醇梭菌 <213> Clostridium glycoacetate

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Bld,AAP42563.1 <223> Bld,AAP42563.1

<400> 80

Figure 105134882-A0305-02-0310-247
Figure 105134882-A0305-02-0311-248
Figure 105134882-A0305-02-0312-249
<400> 80
Figure 105134882-A0305-02-0310-247
Figure 105134882-A0305-02-0311-248
Figure 105134882-A0305-02-0312-249

<210> 81 <210> 81

<211> 562 <211> 562

<212> PRT <212> PRT

<213> 三碳變形菌 <213> Three-carbon Proteobacteria

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> HcmAB,大次單位,AFK77668.1 <223> HcmAB, major subunit, AFK77668.1

<400> 81

Figure 105134882-A0305-02-0313-250
Figure 105134882-A0305-02-0314-251
Figure 105134882-A0305-02-0315-252
<400> 81
Figure 105134882-A0305-02-0313-250
Figure 105134882-A0305-02-0314-251
Figure 105134882-A0305-02-0315-252

<210> 82 <210> 82

<211> 136 <211> 136

<212> PRT <212> PRT

<213> 三碳變形菌 <213> Three-carbon Proteobacteria

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> HcmAB,小次單位,AFK77665.1 <223> HcmAB, small subunit, AFK77665.1

<400> 82

Figure 105134882-A0305-02-0316-253
<400> 82
Figure 105134882-A0305-02-0316-253

<210> 83 <210> 83

<211> 563 <211> 563

<212> PRT <212> PRT

<213> Kyrpidia tusciae <213> Kyrpidia tusciae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> HcmAB,大次單位,WP_013074530.1 <223> HcmAB, major subunit, WP_013074530.1

<400> 83

Figure 105134882-A0305-02-0317-254
Figure 105134882-A0305-02-0318-255
Figure 105134882-A0305-02-0319-256
<400> 83
Figure 105134882-A0305-02-0317-254
Figure 105134882-A0305-02-0318-255
Figure 105134882-A0305-02-0319-256

<210> 84 <210> 84

<211> 132 <211> 132

<212> PRT <212> PRT

<213> Kyrpidia tusciae <213> Kyrpidia tusciae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> HcmAB,小次單位,WP_013074531.1 <223> HcmAB, small subunit, WP_013074531.1

<400> 84

Figure 105134882-A0305-02-0320-257
<400> 84
Figure 105134882-A0305-02-0320-257

<210> 85 <210> 85

<211> 327 <211> 327

<212> PRT <212> PRT

<213> 三碳變形菌 <213> Three-carbon Proteobacteria

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> MeaB,AFK77667.1 <223> MeaB,AFK77667.1

<400> 85

Figure 105134882-A0305-02-0321-258
Figure 105134882-A0305-02-0322-259
<400> 85
Figure 105134882-A0305-02-0321-258
Figure 105134882-A0305-02-0322-259

<210> 86 <210> 86

<211> 312 <211> 312

<212> PRT <212> PRT

<213> Kyrpidia tusciae <213> Kyrpidia tusciae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> MeaB,WP_013074529.1 <223> MeaB,WP_013074529.1

<400> 86

Figure 105134882-A0305-02-0323-260
Figure 105134882-A0305-02-0324-263
<400> 86
Figure 105134882-A0305-02-0323-260
Figure 105134882-A0305-02-0324-263

<210> 87 <210> 87

<211> 301 <211> 301

<212> PRT <212> PRT

<213> 丙酮丁醇梭菌 <213> Clostridium acetobutylicum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Ptb,WP_010966357.1 <223> Ptb,WP_010966357.1

<400> 87

Figure 105134882-A0305-02-0325-264
Figure 105134882-A0305-02-0326-265
<400> 87
Figure 105134882-A0305-02-0325-264
Figure 105134882-A0305-02-0326-265

<210> 88 <210> 88

<211> 302 <211> 302

<212> PRT <212> PRT

<213> 拜氏梭菌 <213> Clostridium beijerinckii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Ptb <223> Ptb

<400> 88

Figure 105134882-A0305-02-0326-266
Figure 105134882-A0305-02-0327-267
Figure 105134882-A0305-02-0328-268
<400> 88
Figure 105134882-A0305-02-0326-266
Figure 105134882-A0305-02-0327-267
Figure 105134882-A0305-02-0328-268

<210> 89 <210> 89

<211> 302 <211> 302

<212> PRT <212> PRT

<213> 拜氏梭菌 <213> Clostridium beijerinckii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Ptb,WP_041893500.1 <223> Ptb,WP_041893500.1

<400> 89

Figure 105134882-A0305-02-0328-269
Figure 105134882-A0305-02-0329-270
<400> 89
Figure 105134882-A0305-02-0328-269
Figure 105134882-A0305-02-0329-270

<210> 90 <210> 90

<211> 355 <211> 355

<212> PRT <212> PRT

<213> 丙酮丁醇梭菌 <213> Clostridium acetobutylicum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Buk,WP_010966356.1 <223> Buk,WP_010966356.1

<400> 90

Figure 105134882-A0305-02-0330-271
Figure 105134882-A0305-02-0331-272
Figure 105134882-A0305-02-0332-273
<400> 90
Figure 105134882-A0305-02-0330-271
Figure 105134882-A0305-02-0331-272
Figure 105134882-A0305-02-0332-273

<210> 91 <210> 91

<211> 355 <211> 355

<212> PRT <212> PRT

<213> 拜氏梭菌 <213> Clostridium beijerinckii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Buk,WP_011967556 <223> Buk,WP_011967556

<400> 91

Figure 105134882-A0305-02-0332-274
Figure 105134882-A0305-02-0333-275
Figure 105134882-A0305-02-0334-276
<400> 91
Figure 105134882-A0305-02-0332-274
Figure 105134882-A0305-02-0333-275
Figure 105134882-A0305-02-0334-276

<210> 92 <210> 92

<211> 355 <211> 355

<212> PRT <212> PRT

<213> 拜氏梭菌 <213> Clostridium beijerinckii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Buk,WP_017209677 <223> Buk,WP_017209677

<400> 92

Figure 105134882-A0305-02-0334-277
Figure 105134882-A0305-02-0335-278
Figure 105134882-A0305-02-0336-279
<400> 92
Figure 105134882-A0305-02-0334-277
Figure 105134882-A0305-02-0335-278
Figure 105134882-A0305-02-0336-279

<210> 93 <210> 93

<211> 355 <211> 355

<212> PRT <212> PRT

<213> 拜氏梭菌 <213> Clostridium beijerinckii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Buk,WP_026886638 <223> Buk,WP_026886638

<400> 93

Figure 105134882-A0305-02-0336-280
Figure 105134882-A0305-02-0337-281
Figure 105134882-A0305-02-0338-282
<400> 93
Figure 105134882-A0305-02-0336-280
Figure 105134882-A0305-02-0337-281
Figure 105134882-A0305-02-0338-282

<210> 94 <210> 94

<211> 355 <211> 355

<212> PRT <212> PRT

<213> 拜氏梭菌 <213> Clostridium beijerinckii

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> Buk,WP_041893502 <223> Buk,WP_041893502

<400> 94

Figure 105134882-A0305-02-0338-283
Figure 105134882-A0305-02-0339-284
Figure 105134882-A0305-02-0340-285
<400> 94
Figure 105134882-A0305-02-0338-283
Figure 105134882-A0305-02-0339-284
Figure 105134882-A0305-02-0340-285

<210> 95 <210> 95

<211> 40 <211> 40

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pACYCDuet-ptb-buk-pACYC-ptb-R1,反向 <223> pACYCDuet-ptb-buk-pACYC-ptb-R1, reverse

<400> 95

Figure 105134882-A0305-02-0340-286
<400> 95
Figure 105134882-A0305-02-0340-286

<210> 96 <210> 96

<211> 40 <211> 40

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pACYCDuet-ptb-buk-ptb-pACYC-F1,正向 <223> pACYCDuet-ptb-buk-ptb-pACYC-F1, forward

<400> 96

Figure 105134882-A0305-02-0341-287
<400> 96
Figure 105134882-A0305-02-0341-287

<210> 97 <210> 97

<211> 38 <211> 38

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pACYCDuet-ptb-buk-buk-pACYC-R1,反向 <223> pACYCDuet-ptb-buk-buk-pACYC-R1, reverse

<400> 97

Figure 105134882-A0305-02-0341-288
<400> 97
Figure 105134882-A0305-02-0341-288

<210> 98 <210> 98

<211> 38 <211> 38

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pACYCDuet-ptb-buk-pACYC-buk-F1,正向 <223> pACYCDuet-ptb-buk-pACYC-buk-F1, forward

<400> 98

Figure 105134882-A0305-02-0341-289
<400> 98
Figure 105134882-A0305-02-0341-289

<210> 99 <210> 99

<211> 45 <211> 45

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pCOLADuet-thlA-adc-thlA-adc-R1,反向 <223> pCOLADuet-thlA-adc-thlA-adc-R1, reverse

<400> 99

Figure 105134882-A0305-02-0342-291
<400> 99
Figure 105134882-A0305-02-0342-291

<210> 100 <210> 100

<211> 45 <211> 45

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pCOLADuet-thlA-adc-adc-ThlA-F1,正向 <223> pCOLADuet-thlA-adc-adc-ThlA-F1, forward

<400> 100

Figure 105134882-A0305-02-0342-292
<400> 100
Figure 105134882-A0305-02-0342-292

<210> 101 <210> 101

<211> 43 <211> 43

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pCOLADuet-thlA-adc-adc-pCOLA-R1,反向 <223> pCOLADuet-thlA-adc-adc-pCOLA-R1, reverse

<400> 101

Figure 105134882-A0305-02-0342-293
<400> 101
Figure 105134882-A0305-02-0342-293

<210> 102 <210> 102

<211> 42 <211> 42

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pCOLADuet-thlA-adc-pCOLA-adc-F1,正向 <223> pCOLADuet-thlA-adc-pCOLA-adc-F1, forward

<400> 102

Figure 105134882-A0305-02-0343-294
<400> 102
Figure 105134882-A0305-02-0343-294

<210> 103 <210> 103

<211> 40 <211> 40

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pCOLADuet-thlA-adc-thlA-pCOLA-F1,正向 <223> pCOLADuet-thlA-adc-thlA-pCOLA-F1, forward

<400> 103

Figure 105134882-A0305-02-0343-295
<400> 103
Figure 105134882-A0305-02-0343-295

<210> 104 <210> 104

<211> 40 <211> 40

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pCOLADuet-thlA-adc-pCOLA-thlA-R1,反向 <223> pCOLADuet-thlA-adc-pCOLA-thlA-R1, reverse

<400> 104

Figure 105134882-A0305-02-0343-296
<400> 104
Figure 105134882-A0305-02-0343-296

<210> 105 <210> 105

<211> 5791 <211> 5791

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pACYC-ptb-buk,質體 <223> pACYC-ptb-buk, plasmid

<400> 105

Figure 105134882-A0305-02-0344-299
Figure 105134882-A0305-02-0345-300
Figure 105134882-A0305-02-0346-301
Figure 105134882-A0305-02-0347-302
<400> 105
Figure 105134882-A0305-02-0344-299
Figure 105134882-A0305-02-0345-300
Figure 105134882-A0305-02-0346-301
Figure 105134882-A0305-02-0347-302

<210> 106 <210> 106

<211> 5609 <211> 5609

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pCOLA-thlA-adc,質體 <223> pCOLA-thlA-adc, plasmid

<400> 106

Figure 105134882-A0305-02-0348-304
Figure 105134882-A0305-02-0349-305
Figure 105134882-A0305-02-0350-306
Figure 105134882-A0305-02-0351-307
Figure 105134882-A0305-02-0352-308
<400> 106
Figure 105134882-A0305-02-0348-304
Figure 105134882-A0305-02-0349-305
Figure 105134882-A0305-02-0350-306
Figure 105134882-A0305-02-0351-307
Figure 105134882-A0305-02-0352-308

<210> 107 <210> 107

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> thlA-ptb-R1,反向 <223> thlA-ptb-R1, reverse

<400> 107

Figure 105134882-A0305-02-0352-309
<400> 107
Figure 105134882-A0305-02-0352-309

<210> 108 <210> 108

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> adc-buk-F1,正向 <223> adc-buk-F1, forward

<400> 108

Figure 105134882-A0305-02-0352-310
<400> 108
Figure 105134882-A0305-02-0352-310

<210> 109 <210> 109

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> thlA-ptb-F1,正向 <223> thlA-ptb-F1, forward

<400> 109

Figure 105134882-A0305-02-0353-311
<400> 109
Figure 105134882-A0305-02-0353-311

<210> 110 <210> 110

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Buk-adc-R1,反向 <223> Buk-adc-R1, reverse

<400> 110

Figure 105134882-A0305-02-0353-312
<400> 110
Figure 105134882-A0305-02-0353-312

<210> 111 <210> 111

<211> 29 <211> 29

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pDuet-insert2-R1,正向 <223> pDuet-insert2-R1, forward

<400> 111

Figure 105134882-A0305-02-0353-313
<400> 111
Figure 105134882-A0305-02-0353-313

<210> 112 <210> 112

<211> 29 <211> 29

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> insert2-pDuet-F1,正向 <223> insert2-pDuet-F1, forward

<400> 112

Figure 105134882-A0305-02-0354-314
<400> 112
Figure 105134882-A0305-02-0354-314

<210> 113 <210> 113

<211> 21 <211> 21

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pDuet-insert2-F1,正向 <223> pDuet-insert2-F1, forward

<400> 113

Figure 105134882-A0305-02-0354-315
<400> 113
Figure 105134882-A0305-02-0354-315

<210> 114 <210> 114

<211> 21 <211> 21

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> insert2-pDuet-R1,正向 <223> insert2-pDuet-R1, forward

<400> 114

Figure 105134882-A0305-02-0354-316
<400> 114
Figure 105134882-A0305-02-0354-316

<210> 115 <210> 115

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pCDF-phaB-pACYC-phaB-R1,正向 <223> pCDF-phaB-pACYC-phaB-R1, forward

<400> 115

Figure 105134882-A0305-02-0355-317
<400> 115
Figure 105134882-A0305-02-0355-317

<210> 116 <210> 116

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pCDF-phaB-phaB-pACYC-F1,正向 <223> pCDF-phaB-phaB-pACYC-F1, forward

<400> 116

Figure 105134882-A0305-02-0355-318
<400> 116
Figure 105134882-A0305-02-0355-318

<210> 117 <210> 117

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pcdf-phab-pacyc-phab-f1,正向 <223> pcdf-phab-pacyc-phab-f1, forward

<400> 117

Figure 105134882-A0305-02-0355-320
<400> 117
Figure 105134882-A0305-02-0355-320

<210> 118 <210> 118

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pCDF-phaB-phaB-pACYC-R1,正向 <223> pCDF-phaB-phaB-pACYC-R1, forward

<400> 118

Figure 105134882-A0305-02-0356-321
<400> 118
Figure 105134882-A0305-02-0356-321

<210> 119 <210> 119

<211> 4486 <211> 4486

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pCDF-phaB,質體 <223> pCDF-phaB, plastid

<400> 119

Figure 105134882-A0305-02-0356-323
Figure 105134882-A0305-02-0357-324
Figure 105134882-A0305-02-0358-325
Figure 105134882-A0305-02-0359-326
<400> 119
Figure 105134882-A0305-02-0356-323
Figure 105134882-A0305-02-0357-324
Figure 105134882-A0305-02-0358-325
Figure 105134882-A0305-02-0359-326

<210> 120 <210> 120

<211> 5221 <211> 5221

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pCDF-phaB-bdh1,質體 <223> pCDF-phaB-bdh1, plastid

<400> 120

Figure 105134882-A0305-02-0359-327
Figure 105134882-A0305-02-0360-328
Figure 105134882-A0305-02-0361-329
Figure 105134882-A0305-02-0362-330
Figure 105134882-A0305-02-0363-331
<400> 120
Figure 105134882-A0305-02-0359-327
Figure 105134882-A0305-02-0360-328
Figure 105134882-A0305-02-0361-329
Figure 105134882-A0305-02-0362-330
Figure 105134882-A0305-02-0363-331

<210> 121 <210> 121

<211> 10922 <211> 10922

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pMTL8225-budA::thlA-phaB,質體 <223> pMTL8225-budA::thlA-phaB, plastid

<400> 121

Figure 105134882-A0305-02-0363-332
Figure 105134882-A0305-02-0364-333
Figure 105134882-A0305-02-0365-334
Figure 105134882-A0305-02-0366-335
Figure 105134882-A0305-02-0367-336
Figure 105134882-A0305-02-0368-337
Figure 105134882-A0305-02-0369-338
Figure 105134882-A0305-02-0370-340
<400> 121
Figure 105134882-A0305-02-0363-332
Figure 105134882-A0305-02-0364-333
Figure 105134882-A0305-02-0365-334
Figure 105134882-A0305-02-0366-335
Figure 105134882-A0305-02-0367-336
Figure 105134882-A0305-02-0368-337
Figure 105134882-A0305-02-0369-338
Figure 105134882-A0305-02-0370-340

<210> 122 <210> 122

<211> 43 <211> 43

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN01 <223> SN01

<400> 122

Figure 105134882-A0305-02-0371-341
<400> 122
Figure 105134882-A0305-02-0371-341

<210> 123 <210> 123

<211> 43 <211> 43

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN02 <223> SN02

<400> 123

Figure 105134882-A0305-02-0371-342
<400> 123
Figure 105134882-A0305-02-0371-342

<210> 124 <210> 124

<211> 43 <211> 43

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN03 <223> SN03

<400> 124

Figure 105134882-A0305-02-0371-343
<400> 124
Figure 105134882-A0305-02-0371-343

<210> 125 <210> 125

<211> 49 <211> 49

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN04mod <223> SN04mod

<400> 125

Figure 105134882-A0305-02-0372-344
<400> 125
Figure 105134882-A0305-02-0372-344

<210> 126 <210> 126

<211> 48 <211> 48

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN05mod <223>SN05mod

<400> 126

Figure 105134882-A0305-02-0372-345
<400> 126
Figure 105134882-A0305-02-0372-345

<210> 127 <210> 127

<211> 46 <211> 46

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN06 <223> SN06

<400> 127

Figure 105134882-A0305-02-0372-346
<400> 127
Figure 105134882-A0305-02-0372-346

<210> 128 <210> 128

<211> 46 <211> 46

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN07 <223> SN07

<400> 128

Figure 105134882-A0305-02-0373-347
<400> 128
Figure 105134882-A0305-02-0373-347

<210> 129 <210> 129

<211> 40 <211> 40

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN08 <223> SN08

<400> 129

Figure 105134882-A0305-02-0373-349
<400> 129
Figure 105134882-A0305-02-0373-349

<210> 130 <210> 130

<211> 25 <211> 25

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Og31f <223> Og31f

<400> 130

Figure 105134882-A0305-02-0373-350
<400> 130
Figure 105134882-A0305-02-0373-350

<210> 131 <210> 131

<211> 25 <211> 25

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Og32r <223> Og32r

<400> 131

Figure 105134882-A0305-02-0374-351
<400> 131
Figure 105134882-A0305-02-0374-351

<210> 132 <210> 132

<211> 7951 <211> 7951

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pMTL8315-Pfdx-thlA-phaB-bld,質體 <223> pMTL8315-Pfdx-thlA-phaB-bld, plastid

<400> 132

Figure 105134882-A0305-02-0374-352
Figure 105134882-A0305-02-0375-353
Figure 105134882-A0305-02-0376-354
Figure 105134882-A0305-02-0377-355
Figure 105134882-A0305-02-0378-356
Figure 105134882-A0305-02-0379-357
<400> 132
Figure 105134882-A0305-02-0374-352
Figure 105134882-A0305-02-0375-353
Figure 105134882-A0305-02-0376-354
Figure 105134882-A0305-02-0377-355
Figure 105134882-A0305-02-0378-356
Figure 105134882-A0305-02-0379-357

<210> 133 <210> 133

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> bld-phaB-F1,正向 <223> bld-phaB-F1, forward

<400> 133

Figure 105134882-A0305-02-0380-358
<400> 133
Figure 105134882-A0305-02-0380-358

<210> 134 <210> 134

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> bld-pMTL-R1,正向 <223> bld-pMTL-R1, forward

<400> 134

Figure 105134882-A0305-02-0380-359
<400> 134
Figure 105134882-A0305-02-0380-359

<210> 135 <210> 135

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pMTL-bld-F1,正向 <223> pMTL-bld-F1, forward

<400> 135

Figure 105134882-A0305-02-0380-361
<400> 135
Figure 105134882-A0305-02-0380-361

<210> 136 <210> 136

<211> 1179 <211> 1179

<212> DNA <212> DNA

<213> 丙酮丁醇梭菌 <213> Clostridium acetobutylicum

<220> <220>

<221> misc_feature <221> misc_feature

<223> thlA <223> thlA

<400> 136

Figure 105134882-A0305-02-0381-363
<400> 136
Figure 105134882-A0305-02-0381-363

<210> 137 <210> 137

<211> 849 <211> 849

<212> DNA <212> DNA

<213> 克氏梭菌 <213> Clostridium cruzi

<220> <220>

<221> misc_feature <221> misc_feature

<223> hbd1 <223> hbd1

<400> 137

Figure 105134882-A0305-02-0382-364
<400> 137
Figure 105134882-A0305-02-0382-364

<210> 138 <210> 138

<211> 176 <211> 176

<212> DNA <212> DNA

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> misc_feature <221> misc_feature

<223> 鐵氧化還原蛋白啟動子 <223> ferredoxin promoter

<400> 138

Figure 105134882-A0305-02-0383-365
<400> 138
Figure 105134882-A0305-02-0383-365

<210> 139 <210> 139

<211> 474 <211> 474

<212> DNA <212> DNA

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> misc_feature <221> misc_feature

<223> 丙酮酸-鐵氧化還原蛋白氧化還原酶啟動子 <223> Pyruvate-ferredoxin oxidoreductase promoter

<400> 139

Figure 105134882-A0305-02-0383-366
<400> 139
Figure 105134882-A0305-02-0383-366

<210> 140 <210> 140

<211> 22 <211> 22

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> 核糖體結合位點rbs2 <223> Ribosome binding site rbs2

<400> 140

Figure 105134882-A0305-02-0384-367
<400> 140
Figure 105134882-A0305-02-0384-367

<210> 141 <210> 141

<211> 35 <211> 35

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Pfdx-F1,正向 <223> Pfdx-F1, forward

<400> 141

Figure 105134882-A0305-02-0384-368
<400> 141
Figure 105134882-A0305-02-0384-368

<210> 142 <210> 142

<211> 38 <211> 38

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Pfdx-R1,反向 <223> Pfdx-R1, reverse

<400> 142

Figure 105134882-A0305-02-0384-369
<400> 142
Figure 105134882-A0305-02-0384-369

<210> 143 <210> 143

<211> 40 <211> 40

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Ppfor-F1,正向 <223> Ppfor-F1, forward

<400> 143

Figure 105134882-A0305-02-0385-370
<400> 143
Figure 105134882-A0305-02-0385-370

<210> 144 <210> 144

<211> 35 <211> 35

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Ppfor-R1,反向 <223> Ppfor-R1, reverse

<400> 144

Figure 105134882-A0305-02-0385-371
<400> 144
Figure 105134882-A0305-02-0385-371

<210> 145 <210> 145

<211> 45 <211> 45

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> hbd1-F1,正向 <223> hbd1-F1, forward

<400> 145

Figure 105134882-A0305-02-0385-374
<400> 145
Figure 105134882-A0305-02-0385-374

<210> 146 <210> 146

<211> 47 <211> 47

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> hbd1-R1,反向 <223> hbd1-R1, reverse

<400> 146

Figure 105134882-A0305-02-0386-376
<400> 146
Figure 105134882-A0305-02-0386-376

<210> 147 <210> 147

<211> 49 <211> 49

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> thlA-F1,正向 <223> thlA-F1, forward

<400> 147

Figure 105134882-A0305-02-0386-377
<400> 147
Figure 105134882-A0305-02-0386-377

<210> 148 <210> 148

<211> 48 <211> 48

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> thlA-R1,反向 <223> thlA-R1, reverse

<400> 148

Figure 105134882-A0305-02-0386-380
<400> 148
Figure 105134882-A0305-02-0386-380

<210> 149 <210> 149

<211> 30 <211> 30

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Ppfor-F2,正向 <223> Ppfor-F2, forward

<400> 149

Figure 105134882-A0305-02-0387-381
<400> 149
Figure 105134882-A0305-02-0387-381

<210> 150 <210> 150

<211> 24 <211> 24

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Ppfor-R2,反向 <223> Ppfor-R2, reverse

<400> 150

Figure 105134882-A0305-02-0387-383
<400> 150
Figure 105134882-A0305-02-0387-383

<210> 151 <210> 151

<211> 29 <211> 29

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Ptb-Buk-F2,正向 <223> Ptb-Buk-F2, forward

<400> 151

Figure 105134882-A0305-02-0387-384
<400> 151
Figure 105134882-A0305-02-0387-384

<210> 152 <210> 152

<211> 37 <211> 37

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Ptb-Buk-F2,反向 <223> Ptb-Buk-F2, reverse

<400> 152

Figure 105134882-A0305-02-0388-385
<400> 152
Figure 105134882-A0305-02-0388-385

<210> 153 <210> 153

<211> 7884 <211> 7884

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pMTL82256-ptb-buk,質體 <223> pMTL82256-ptb-buk, plasmid

<400> 153

Figure 105134882-A0305-02-0388-386
Figure 105134882-A0305-02-0389-387
Figure 105134882-A0305-02-0390-388
Figure 105134882-A0305-02-0391-390
Figure 105134882-A0305-02-0392-391
Figure 105134882-A0305-02-0393-392
<400> 153
Figure 105134882-A0305-02-0388-386
Figure 105134882-A0305-02-0389-387
Figure 105134882-A0305-02-0390-388
Figure 105134882-A0305-02-0391-390
Figure 105134882-A0305-02-0392-391
Figure 105134882-A0305-02-0393-392

<210> 154 <210> 154

<211> 436 <211> 436

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> 硫酯酶1 <223> Thioesterase 1

<400> 154

Figure 105134882-A0305-02-0393-393
Figure 105134882-A0305-02-0394-394
Figure 105134882-A0305-02-0395-395
Figure 105134882-A0305-02-0396-396
<400> 154
Figure 105134882-A0305-02-0393-393
Figure 105134882-A0305-02-0394-394
Figure 105134882-A0305-02-0395-395
Figure 105134882-A0305-02-0396-396

<210> 155 <210> 155

<211> 60 <211> 60

<212> PRT <212> PRT

<213> 永達爾梭菌 <213> Clostridium yungdalae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> 硫酯酶2 <223> Thioesterase 2

<400> 155

Figure 105134882-A0305-02-0396-397
<400> 155
Figure 105134882-A0305-02-0396-397

<210> 156 <210> 156

<211> 128 <211> 128

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> 硫酯酶3 <223> Thioesterase 3

<400> 156

Figure 105134882-A0305-02-0397-398
<400> 156
Figure 105134882-A0305-02-0397-398

<210> 157 <210> 157

<211> 436 <211> 436

<212> PRT <212> PRT

<213> 永達爾梭菌 <213> Clostridium yungdalae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> 硫酯酶1 <223> Thioesterase 1

<400> 157

Figure 105134882-A0305-02-0397-399
Figure 105134882-A0305-02-0398-400
Figure 105134882-A0305-02-0399-401
Figure 105134882-A0305-02-0400-402
<400> 157
Figure 105134882-A0305-02-0397-399
Figure 105134882-A0305-02-0398-400
Figure 105134882-A0305-02-0399-401
Figure 105134882-A0305-02-0400-402

<210> 158 <210> 158

<211> 137 <211> 137

<212> PRT <212> PRT

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> 硫酯酶2 <223> Thioesterase 2

<400> 158

Figure 105134882-A0305-02-0400-403
Figure 105134882-A0305-02-0401-404
<400> 158
Figure 105134882-A0305-02-0400-403
Figure 105134882-A0305-02-0401-404

<210> 159 <210> 159

<211> 128 <211> 128

<212> PRT <212> PRT

<213> 永達爾梭菌 <213> Clostridium yungdalae

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> 硫酯酶3 <223> Thioesterase 3

<400> 159

Figure 105134882-A0305-02-0401-405
<400> 159
Figure 105134882-A0305-02-0401-405

<210> 160 <210> 160

<211> 11184 <211> 11184

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pMTL8225-pta-ack::ptb-buk,質體 <223> pMTL8225-pta-ack::ptb-buk, plastid

<400> 160

Figure 105134882-A0305-02-0402-406
Figure 105134882-A0305-02-0403-407
Figure 105134882-A0305-02-0404-408
Figure 105134882-A0305-02-0405-409
Figure 105134882-A0305-02-0406-410
Figure 105134882-A0305-02-0407-411
Figure 105134882-A0305-02-0408-412
Figure 105134882-A0305-02-0409-413
<400> 160
Figure 105134882-A0305-02-0402-406
Figure 105134882-A0305-02-0403-407
Figure 105134882-A0305-02-0404-408
Figure 105134882-A0305-02-0405-409
Figure 105134882-A0305-02-0406-410
Figure 105134882-A0305-02-0407-411
Figure 105134882-A0305-02-0408-412
Figure 105134882-A0305-02-0409-413

<210> 161 <210> 161

<211> 42 <211> 42

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN22f <223> SN22f

<400> 161

Figure 105134882-A0305-02-0410-414
<400> 161
Figure 105134882-A0305-02-0410-414

<210> 162 <210> 162

<211> 43 <211> 43

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN23r <223> SN23r

<400> 162

Figure 105134882-A0305-02-0410-415
<400> 162
Figure 105134882-A0305-02-0410-415

<210> 163 <210> 163

<211> 46 <211> 46

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN24f <223> SN24f

<400> 163

Figure 105134882-A0305-02-0410-418
<400> 163
Figure 105134882-A0305-02-0410-418

<210> 164 <210> 164

<211> 50 <211> 50

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN25r <223> SN25r

<400> 164

Figure 105134882-A0305-02-0411-419
<400> 164
Figure 105134882-A0305-02-0411-419

<210> 165 <210> 165

<211> 50 <211> 50

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN26f <223> SN26f

<400> 165

Figure 105134882-A0305-02-0411-420
<400> 165
Figure 105134882-A0305-02-0411-420

<210> 166 <210> 166

<211> 45 <211> 45

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN27r <223> SN27r

<400> 166

Figure 105134882-A0305-02-0411-421
<400> 166
Figure 105134882-A0305-02-0411-421

<210> 167 <210> 167

<211> 45 <211> 45

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN28f <223> SN28f

<400> 167

Figure 105134882-A0305-02-0412-422
<400> 167
Figure 105134882-A0305-02-0412-422

<210> 168 <210> 168

<211> 47 <211> 47

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN29r <223> SN29r

<400> 168

Figure 105134882-A0305-02-0412-423
<400> 168
Figure 105134882-A0305-02-0412-423

<210> 169 <210> 169

<211> 47 <211> 47

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN30f <223> SN30f

<400> 169

Figure 105134882-A0305-02-0412-425
<400> 169
Figure 105134882-A0305-02-0412-425

<210> 170 <210> 170

<211> 42 <211> 42

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> SN31r <223> SN31r

<400> 170

Figure 105134882-A0305-02-0413-426
<400> 170
Figure 105134882-A0305-02-0413-426

<210> 171 <210> 171

<211> 25 <211> 25

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Og29f <223> Og29f

<400> 171

Figure 105134882-A0305-02-0413-427
<400> 171
Figure 105134882-A0305-02-0413-427

<210> 172 <210> 172

<211> 25 <211> 25

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Og30r <223> Og30r

<400> 172

Figure 105134882-A0305-02-0413-428
<400> 172
Figure 105134882-A0305-02-0413-428

<210> 173 <210> 173

<211> 35 <211> 35

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Pfdx-F1,正向 <223> Pfdx-F1, forward

<400> 173

Figure 105134882-A0305-02-0414-429
<400> 173
Figure 105134882-A0305-02-0414-429

<210> 174 <210> 174

<211> 38 <211> 38

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> Pfdx-R1,反向 <223> Pfdx-R1, reverse

<400> 174

Figure 105134882-A0305-02-0414-430
<400> 174
Figure 105134882-A0305-02-0414-430

<210> 175 <210> 175

<211> 52 <211> 52

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> aor1-F1,正向 <223> aor1-F1, forward

<400> 175

Figure 105134882-A0305-02-0414-431
<400> 175
Figure 105134882-A0305-02-0414-431

<210> 176 <210> 176

<211> 54 <211> 54

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> aor1-R1,反向 <223> aor1-R1, reverse

<400> 176

Figure 105134882-A0305-02-0415-432
<400> 176
Figure 105134882-A0305-02-0415-432

<210> 177 <210> 177

<211> 37 <211> 37

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pETDuet-pta-ack-ack-DuetI2-R1 <223> pETDuet-pta-ack-ack-DuetI2-R1

<400> 177

Figure 105134882-A0305-02-0415-433
<400> 177
Figure 105134882-A0305-02-0415-433

<210> 178 <210> 178

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pETDuet-pta-ack-DuetI2-ack-F1 <223> pETDuet-pta-ack-DuetI2-ack-F1

<400> 178

Figure 105134882-A0305-02-0415-434
<400> 178
Figure 105134882-A0305-02-0415-434

<210> 179 <210> 179

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pETDuet-pta-ack-DuetI2-pta-R1 <223> pETDuet-pta-ack-DuetI2-pta-R1

<400> 179

Figure 105134882-A0305-02-0416-435
<400> 179
Figure 105134882-A0305-02-0416-435

<210> 180 <210> 180

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pETDuet-pta-ack-pta-DuetI2-F1 <223> pETDuet-pta-ack-pta-DuetI2-F1

<400> 180

Figure 105134882-A0305-02-0416-436
<400> 180
Figure 105134882-A0305-02-0416-436

<210> 181 <210> 181

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pETDuet-tesB-DuetI2-tesB-F1 <223> pETDuet-tesB-DuetI2-tesB-F1

<400> 181

Figure 105134882-A0305-02-0416-437
<400> 181
Figure 105134882-A0305-02-0416-437

<210> 182 <210> 182

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pETDuet-tesB-DuetI2-tesB-R1 <223> pETDuet-tesB-DuetI2-tesB-R1

<400> 182

Figure 105134882-A0305-02-0417-438
<400> 182
Figure 105134882-A0305-02-0417-438

<210> 183 <210> 183

<211> 36 <211> 36

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pETDuet-tesB-tesB-DuetI2-F1 <223> pETDuet-tesB-tesB-DuetI2-F1

<400> 183

Figure 105134882-A0305-02-0417-439
<400> 183
Figure 105134882-A0305-02-0417-439

<210> 184 <210> 184

<211> 35 <211> 35

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pETDuet-tesB-testB-DuetI2-R1 <223> pETDuet-tesB-testB-DuetI2-R1

<400> 184

Figure 105134882-A0305-02-0417-440
<400> 184
Figure 105134882-A0305-02-0417-440

<210> 185 <210> 185

<211> 7606 <211> 7606

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pDUET-pta-ack,質體 <223> pDUET-pta-ack, plasmid

<400> 185

Figure 105134882-A0305-02-0418-441
Figure 105134882-A0305-02-0419-443
Figure 105134882-A0305-02-0420-444
Figure 105134882-A0305-02-0421-447
Figure 105134882-A0305-02-0422-448
Figure 105134882-A0305-02-0423-449
<400> 185
Figure 105134882-A0305-02-0418-441
Figure 105134882-A0305-02-0419-443
Figure 105134882-A0305-02-0420-444
Figure 105134882-A0305-02-0421-447
Figure 105134882-A0305-02-0422-448
Figure 105134882-A0305-02-0423-449

<210> 186 <210> 186

<211> 7492 <211> 7492

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pDUET-ptb-buk,質體 <223> pDUET-ptb-buk, plasmid

<400> 186

Figure 105134882-A0305-02-0423-450
Figure 105134882-A0305-02-0424-451
Figure 105134882-A0305-02-0425-452
Figure 105134882-A0305-02-0426-453
Figure 105134882-A0305-02-0427-454
Figure 105134882-A0305-02-0428-455
<400> 186
Figure 105134882-A0305-02-0423-450
Figure 105134882-A0305-02-0424-451
Figure 105134882-A0305-02-0425-452
Figure 105134882-A0305-02-0426-453
Figure 105134882-A0305-02-0427-454
Figure 105134882-A0305-02-0428-455

<210> 187 <210> 187

<211> 6233 <211> 6233

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pDUET-tesB,質體 <223> pDUET-tesB, plasmid

<400> 187

Figure 105134882-A0305-02-0428-456
Figure 105134882-A0305-02-0429-457
Figure 105134882-A0305-02-0430-458
Figure 105134882-A0305-02-0431-459
Figure 105134882-A0305-02-0432-460
Figure 105134882-A0305-02-0433-461
<400> 187
Figure 105134882-A0305-02-0428-456
Figure 105134882-A0305-02-0429-457
Figure 105134882-A0305-02-0430-458
Figure 105134882-A0305-02-0431-459
Figure 105134882-A0305-02-0432-460
Figure 105134882-A0305-02-0433-461

<210> 188 <210> 188

<211> 3120 <211> 3120

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> 基因meaB、hcmA及hcmB前含有Wood-Ljungdahl啟動子之經密碼子最佳化基因卡匣 promoter in front of the genes meaB,hcmA and hcmB <223> Codon-optimized gene cassette containing Wood-Ljungdahl promoter before genes meaB, hcmA and hcmB promoter in front of the genes meaB,hcmA and hcmB

<400> 188

Figure 105134882-A0305-02-0433-462
Figure 105134882-A0305-02-0434-463
Figure 105134882-A0305-02-0435-464
<400> 188
Figure 105134882-A0305-02-0433-462
Figure 105134882-A0305-02-0434-463
Figure 105134882-A0305-02-0435-464

<210> 189 <210> 189

<211> 894 <211> 894

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic peptides

<220> <220>

<221> MISC_FEATURE <221> MISC_FEATURE

<223> hcmA及meaB融合物 <223> hcmA and meaB fusion

<400> 189

Figure 105134882-A0305-02-0435-465
Figure 105134882-A0305-02-0436-466
Figure 105134882-A0305-02-0437-467
Figure 105134882-A0305-02-0438-468
Figure 105134882-A0305-02-0439-469
Figure 105134882-A0305-02-0440-470
<400> 189
Figure 105134882-A0305-02-0435-465
Figure 105134882-A0305-02-0436-466
Figure 105134882-A0305-02-0437-467
Figure 105134882-A0305-02-0438-468
Figure 105134882-A0305-02-0439-469
Figure 105134882-A0305-02-0440-470

<210> 190 <210> 190

<211> 849 <211> 849

<212> DNA <212> DNA

<213> 丙酮丁醇梭菌 <213> Clostridium acetobutylicum

<220> <220>

<221> misc_feature <221> misc_feature

<223> hbd <223> hbd

<400> 190

Figure 105134882-A0305-02-0440-473
Figure 105134882-A0305-02-0441-474
<400> 190
Figure 105134882-A0305-02-0440-473
Figure 105134882-A0305-02-0441-474

<210> 191 <210> 191

<211> 10647 <211> 10647

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB <223> pMTL83155-thlA-hbd-Pwl-meaBhcmA-hcmB

<400> 191

Figure 105134882-A0305-02-0441-476
Figure 105134882-A0305-02-0442-477
Figure 105134882-A0305-02-0443-478
Figure 105134882-A0305-02-0444-479
Figure 105134882-A0305-02-0445-482
Figure 105134882-A0305-02-0446-483
Figure 105134882-A0305-02-0447-484
Figure 105134882-A0305-02-0448-485
<400> 191
Figure 105134882-A0305-02-0441-476
Figure 105134882-A0305-02-0442-477
Figure 105134882-A0305-02-0443-478
Figure 105134882-A0305-02-0444-479
Figure 105134882-A0305-02-0445-482
Figure 105134882-A0305-02-0446-483
Figure 105134882-A0305-02-0447-484
Figure 105134882-A0305-02-0448-485

<210> 192 <210> 192

<211> 10539 <211> 10539

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB <223> pMTL83155-thlA-phaB-Pwl-meaBhcmA-hcmB

<400> 192

Figure 105134882-A0305-02-0448-486
Figure 105134882-A0305-02-0449-487
Figure 105134882-A0305-02-0450-488
Figure 105134882-A0305-02-0451-489
Figure 105134882-A0305-02-0452-490
Figure 105134882-A0305-02-0453-491
Figure 105134882-A0305-02-0454-492
Figure 105134882-A0305-02-0455-493
<400> 192
Figure 105134882-A0305-02-0448-486
Figure 105134882-A0305-02-0449-487
Figure 105134882-A0305-02-0450-488
Figure 105134882-A0305-02-0451-489
Figure 105134882-A0305-02-0452-490
Figure 105134882-A0305-02-0453-491
Figure 105134882-A0305-02-0454-492
Figure 105134882-A0305-02-0455-493

<210> 193 <210> 193

<211> 487 <211> 487

<212> DNA <212> DNA

<213> 自產乙醇梭菌 <213> Clostridium autoethanologenum

<220> <220>

<221> misc_feature <221> misc_feature

<223> 磷酸乙醯基轉移酶之啟動子區 <223> Promoter region of phosphoacetyltransferase

<400> 193

Figure 105134882-A0305-02-0456-495
<400> 193
Figure 105134882-A0305-02-0456-495

<210> 194 <210> 194

<211> 7884 <211> 7884

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pMTL82256-ptb-buk <223> pMTL82256-ptb-buk

<400> 194

Figure 105134882-A0305-02-0456-496
Figure 105134882-A0305-02-0457-497
Figure 105134882-A0305-02-0458-498
Figure 105134882-A0305-02-0459-499
Figure 105134882-A0305-02-0460-500
Figure 105134882-A0305-02-0461-501
<400> 194
Figure 105134882-A0305-02-0456-496
Figure 105134882-A0305-02-0457-497
Figure 105134882-A0305-02-0458-498
Figure 105134882-A0305-02-0459-499
Figure 105134882-A0305-02-0460-500
Figure 105134882-A0305-02-0461-501

<210> 195 <210> 195

<211> 6624 <211> 6624

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成聚核苷酸 <223> Synthetic polynucleotide

<220> <220>

<221> misc_feature <221> misc_feature

<223> pMTL82256-tesB <223> pMTL82256-tesB

<400> 195

Figure 105134882-A0305-02-0462-502
Figure 105134882-A0305-02-0463-504
Figure 105134882-A0305-02-0464-505
Figure 105134882-A0305-02-0465-506
Figure 105134882-A0305-02-0466-507
<400> 195
Figure 105134882-A0305-02-0462-502
Figure 105134882-A0305-02-0463-504
Figure 105134882-A0305-02-0464-505
Figure 105134882-A0305-02-0465-506
Figure 105134882-A0305-02-0466-507

Claims (41)

一種經基因工程改造之一氧化碳營養型產乙酸菌,其包括外源磷酸丁醯基轉移酶(Ptb)及外源丁酸激酶(Buk)(Ptb-Buk),其中所述Ptb-Buk能夠轉化非天然受質以產生非天然產物。 A genetically engineered carbonotrophic acetogenic bacterium, which includes exogenous phosphobutyryl transferase (Ptb) and exogenous butyrate kinase (Buk) (Ptb-Buk), wherein the Ptb-Buk can transform non-natural receptors quality to produce unnatural products. 如請求項1所述之細菌,其中所述Ptb-Buk作用於除丁醯基-CoA及/或丁醯基磷酸酯以外之受質。 The bacterium according to claim 1, wherein the Ptb-Buk acts on substrates other than butyl-CoA and/or butyl-phosphate. 如請求項1所述之細菌,其中所述Ptb-Buk產生除丁醯基磷酸酯或丁酸酯以外的產物。 The bacterium of claim 1, wherein the Ptb-Buk produces products other than butyl phosphate or butyrate. 如請求項1所述之細菌,其中所述細菌不產生丁醇。 The bacterium according to claim 1, wherein the bacterium does not produce butanol. 如請求項1所述之細菌,其中所述細菌產生酸、烯烴、酮、醛、醇或二醇中之一或多者。 The bacterium of claim 1, wherein the bacterium produces one or more of acids, alkenes, ketones, aldehydes, alcohols or glycols. 如請求項1所述之細菌,其中所述細菌產生丙酮或其前驅物、異丙醇或其前驅物、異丁烯或其前驅物、3-羥基丁酸酯或其前驅物、1,3-丁二醇或其前驅物、2-羥基異丁酸酯或其前驅物、己二酸或其前驅物、1,3-己二醇或其前驅物、3-甲基-2-丁醇或其前驅物、2-丁烯-1-醇或其前驅物、異戊酸酯或其前驅物或異戊醇或其前驅物中之一或多者。 The bacterium according to claim 1, wherein the bacterium produces acetone or its precursor, isopropyl alcohol or its precursor, isobutylene or its precursor, 3-hydroxybutyrate or its precursor, 1,3-butyrate Diol or its precursor, 2-hydroxyisobutyrate or its precursor, adipic acid or its precursor, 1,3-hexanediol or its precursor, 3-methyl-2-butanol or its precursor One or more of precursors, 2-buten-1-ol or its precursors, isovalerate or its precursors, or isoamyl alcohol or its precursors. 如請求項1所述之細菌,其中所述Ptb-Buk將乙醯乙醯基-CoA轉化為乙醯乙酸酯(步驟2),將3-羥基異戊醯基-CoA轉化為3-羥基異戊酸酯(步驟8),將3-羥基丁醯基-CoA轉化為3-羥基丁酸酯(步驟14),將2-羥基異丁醯基-CoA轉化為2-羥基異丁酸酯(步驟20),將巴豆醯基-CoA轉化為巴豆酸酯(步驟28),將乙醯丁醯基-CoA轉化為乙醯丁酸酯(步驟33)或將異戊醯基-CoA轉化為異戊酸酯(步驟44)。 The bacterium of claim 1, wherein the Ptb-Buk converts acetyl acetyl-CoA into acetyl acetate (step 2), and converts 3-hydroxyisovaleryl-CoA into 3-hydroxyl Isovalerate (step 8), convert 3-hydroxybutyl-CoA to 3-hydroxybutyrate (step 14), convert 2-hydroxyisobutyl-CoA to 2-hydroxyisobutyrate (step 20) , convert crotonyl-CoA to crotonate (step 28), convert acetylbutyryl-CoA to acetylbutyrate (step 33) or convert isopentyl-CoA to isovalerate (step 44). 如請求項1所述之細菌,其中所述細菌產生1-丙醇、1-己醇及1-辛醇中之一或多者。 The bacterium of claim 1, wherein the bacterium produces one or more of 1-propanol, 1-hexanol and 1-octanol. 如請求項1所述之細菌,其中所述細菌源自選自由以下組成之群的親本細菌:自產乙醇梭菌(Clostridium autoethanogenum)、永達爾梭菌(Clostridium ljungdahlii)、拉氏梭菌(Clostridium ragsdalei)、大腸桿菌(Escherichia coli)、釀酒酵母(Saccharomyces cerevisiae)、丙酮丁醇梭菌(Clostridium acetobutylicum)、拜氏梭菌(Clostridium beijerinckii)、糖丁酸梭菌(Clostridium saccharbutyricum)、糖乙酸多丁醇梭菌(Clostridium saccharoperbutylacetonicum)、丁酸梭菌(Clostridium butyricum)、帝奧梭菌(Clostridium diolis)、克氏梭菌(Clostridium kluyveri)、巴斯德梭菌(Clostridium pasterianium)、水腫梭菌(Clostridium novyi)、艱難梭菌(Clostridium difficile)、熱纖梭菌(Clostridium thermocellum)、解纖維梭菌(Clostridium cellulolyticum)、嗜 纖維梭菌(Clostridium cellulovorans)、植物醱酵梭菌(Clostridium phytofermentans)、雷特氏乳球菌(Lactococcus lactis)、枯草桿菌(Bacillus subtilis)、地衣芽孢桿菌(Bacillus licheniformis)、運動醱酵單胞菌(Zymomonas mobilis)、產酸克雷伯氏菌(Klebsiella oxytoca)、肺炎克雷伯氏菌(Klebsiella pneumonia)、穀胺酸棒狀桿菌(Corynebacterium glutamicum)、里氏木菌(Trichoderma reesei)、鉤蟲貪銅菌(Cupriavidus necator)、惡臭假單胞菌(Pseudomonas putida)、胚芽乳桿菌(Lactobacillus plantarum)及扭脫甲基桿菌(Methylobacterium extorquens)。 The bacterium as described in claim 1, wherein the bacterium is derived from a parent bacterium selected from the group consisting of: Clostridium autoethanogenum , Clostridium ljungdahlii , Clostridium ljungdahlii Clostridium ragsdalei , Escherichia coli , Saccharomyces cerevisiae , Clostridium acetobutylicum , Clostridium beijerinckii, Clostridium saccharbutyricum , glycoacetate poly Clostridium saccharoperbutylacetonicum , Clostridium butyricum , Clostridium diolis , Clostridium kluyveri , Clostridium pasterianium , Clostridium edema ( Clostridium novyi , Clostridium difficile , Clostridium thermocellum, Clostridium cellulolyticum , Clostridium cellulovorans, Clostridium phytofermentans , Lactococcus lactis, Bacillus subtilis , Bacillus licheniformis , Zymomonas mobilis , Klebsiella oxytoca , Klebsiella pneumoniae Klebsiella pneumonia , Corynebacterium glutamicum , Trichoderma reesei , Cupriavidus necator , Pseudomonas putida , Lactobacillus plantarum ( Lactobacillus plantarum ) and Methylobacterium extorquens . 如請求項1所述之細菌,其中所述細菌進一步包括外源或內源醛:鐵氧化還原蛋白氧化還原酶(AOR)。 The bacterium of claim 1, wherein the bacterium further includes exogenous or endogenous aldehyde: ferredoxin oxidoreductase (AOR). 如請求項1所述之細菌,其中所述細菌進一步包括磷酸轉乙醯酶(Pta)及乙酸激酶(Ack)之斷裂性突變。 The bacterium according to claim 1, wherein the bacterium further includes disruptive mutations of phosphotransacetylase (Pta) and acetate kinase (Ack). 如請求項1所述之細菌,其中所述細菌進一步包括硫酯酶之斷裂性突變。 The bacterium of claim 1, wherein the bacterium further includes a disruptive mutation of thioesterase. 一種經基因工程改造之一氧化碳營養型產乙酸菌,其用於產生丙酮或其前驅物,所述細菌包括:(a)將乙醯基-CoA轉化為乙醯乙醯基-CoA(步驟1)之酶、將乙醯乙醯基-CoA轉化為乙醯乙酸酯(步驟2)之酶及 將乙醯乙酸酯轉化為丙酮(步驟3)之酶,其中將乙醯乙醯基-CoA轉化為乙醯乙酸酯(步驟2)之所述酶為Ptb-Buk,或(b)將乙醯基-CoA轉化為乙醯乙醯基-CoA(步驟1)之酶、將乙醯乙醯基-CoA轉化為3-羥基丁醯基-CoA(步驟13)之酶、將3-羥基丁醯基-CoA轉化為3-羥基丁酸酯(步驟14)之酶、將3-羥基丁酸酯轉化為乙醯乙酸酯(步驟15)之酶及將乙醯乙酸酯轉化為丙酮(步驟3)之酶,其中將3-羥基丁醯基-CoA轉化為3-羥基丁酸酯(步驟14)之所述酶為Ptb-Buk。 A genetically engineered carbonotrophic acetogenic bacterium for producing acetone or its precursor, the bacterium comprising: (a) converting acetyl-CoA into acetyl-acetyl-CoA (step 1) enzyme, an enzyme that converts acetyl acetyl-CoA to acetyl acetate (step 2), and An enzyme that converts acetyl acetate to acetone (step 3), wherein the enzyme that converts acetyl acetyl-CoA to acetyl acetate (step 2) is Ptb-Buk, or (b) Enzyme that converts acetyl-CoA to acetyl-acetyl-CoA (step 1), enzyme that converts acetyl-acetyl-CoA to 3-hydroxybutyl-CoA (step 13), enzyme that converts 3-hydroxybutyl-CoA Enzymes that convert CoA to 3-hydroxybutyrate (step 14), 3-hydroxybutyrate to acetyl acetate (step 15), and acetyl acetate to acetone (step 3) The enzyme, wherein the enzyme that converts 3-hydroxybutyryl-CoA into 3-hydroxybutyrate (step 14) is Ptb-Buk. 如請求項13所述之細菌,其中所述細菌產生丙酮或其前驅物。 The bacterium as claimed in claim 13, wherein the bacterium produces acetone or its precursor. 如請求項13所述之細菌,其中所述細菌進一步包括一級:二級醇去氫酶之斷裂性突變。 The bacterium as claimed in claim 13, wherein the bacterium further comprises a primary:secondary alcohol dehydrogenase disruptive mutation. 一種經基因工程改造之一氧化碳營養型產乙酸菌,其用於產生異丙醇或其前驅物,所述細菌包括:(a)將乙醯基-CoA轉化為乙醯乙醯基-CoA(步驟1)之酶、將乙醯乙醯基-CoA轉化為乙醯乙酸酯(步驟2)之酶、將乙醯乙酸酯轉化為丙酮(步驟3)之酶及將丙酮轉化為異丙醇(步驟4)之酶,其中將乙醯乙醯基-CoA轉化為乙醯乙酸酯(步驟2)之所述酶為Ptb-Buk,或(b)將乙醯基-CoA轉化為乙醯乙醯基-CoA(步驟1)之酶、將乙醯乙醯基-CoA轉化為3-羥基丁醯基-CoA(步驟13)之酶、將3-羥基丁醯基-CoA轉化為3-羥基丁酸酯(步驟14) 之酶、將3-羥基丁酸酯轉化為乙醯乙酸酯(步驟15)之酶、將乙醯乙酸酯轉化為丙酮(步驟3)之酶及將丙酮轉化為異丙醇(步驟4)之酶,其中將3-羥基丁醯基-CoA轉化為3-羥基丁酸酯(步驟14)之所述酶為Ptb-Buk。 A genetically engineered carbonotrophic acetogenic bacterium for producing isopropanol or a precursor thereof, the bacterium comprising: (a) converting acetyl-CoA into acetyl-acetyl-CoA (step 1), an enzyme that converts acetyl acetyl-CoA to acetyl acetate (step 2), an enzyme that converts acetyl acetate to acetone (step 3), and an enzyme that converts acetone to isopropanol The enzyme of (step 4), wherein the enzyme that converts acetyl acetyl-CoA into acetyl acetate (step 2) is Ptb-Buk, or (b) converts acetyl-CoA into acetyl acetate Enzyme that converts acetyl-CoA (step 1), enzyme that converts acetyl-acetyl-CoA to 3-hydroxybutyryl-CoA (step 13), that converts 3-hydroxybutyryl-CoA to 3-hydroxybutyrate (Step 14) enzyme, an enzyme that converts 3-hydroxybutyrate to acetyl acetate (step 15), an enzyme that converts acetyl acetate to acetone (step 3), and an enzyme that converts acetone to isopropanol (step 4) ), wherein the enzyme that converts 3-hydroxybutyryl-CoA into 3-hydroxybutyrate (step 14) is Ptb-Buk. 如請求項16所述之細菌,其中所述細菌產生異丙醇或其前驅物。 The bacterium according to claim 16, wherein the bacterium produces isopropyl alcohol or its precursor. 一種經基因工程改造之一氧化碳營養型產乙酸菌,其用於產生異丁烯或其前驅物,所述細菌包括:(a)將乙醯基-CoA轉化為乙醯乙醯基-CoA(步驟1)之酶、將乙醯乙醯基-CoA轉化為乙醯乙酸酯(步驟2)之酶、將乙醯乙酸酯轉化為丙酮(步驟3)之酶、將丙酮轉化為3-羥基異戊酸酯(步驟5)之酶及將3-羥基異戊酸酯轉化為異丁烯(步驟6)之酶,其中將乙醯乙醯基-CoA轉化為乙醯乙酸酯(步驟2)之所述酶為Ptb-Buk,或(b)將乙醯基-CoA轉化為乙醯乙醯基-CoA(步驟1)之酶、將乙醯乙醯基-CoA轉化為乙醯乙酸酯(步驟2)之酶、將乙醯乙酸酯轉化為丙酮(步驟3)之酶、將丙酮轉化為3-羥基異戊醯基-CoA(步驟7)之酶、將3-羥基異戊醯基-CoA轉化為3-羥基異戊酸酯(步驟8)之酶及將3-羥基異戊酸酯轉化為異丁烯(步驟6)之酶,其中將乙醯乙醯基-CoA轉化為乙醯乙酸酯(步驟2)之所述酶及/或將3-羥基異戊醯基-CoA轉化為3-羥基異戊酸酯(步驟8)之所述酶為Ptb-Buk。 A genetically engineered carbonotrophic acetogenic bacterium for producing isobutylene or its precursor, the bacterium comprising: (a) converting acetyl-CoA into acetyl-acetyl-CoA (step 1) enzyme, enzyme that converts acetyl acetyl-CoA to acetyl acetate (step 2), enzyme that converts acetyl acetate to acetone (step 3), enzyme that converts acetone to 3-hydroxyisoamyl Enzymes for converting acetyl acetyl-CoA to acetyl acetate (step 2) and enzymes for converting 3-hydroxyisovalerate to isobutylene (step 6) The enzyme is Ptb-Buk, or (b) an enzyme that converts acetyl-CoA to acetyl acetyl-CoA (step 1), an enzyme that converts acetyl acetyl-CoA to acetyl acetate (step 2) ), an enzyme that converts acetyl acetate to acetone (step 3), an enzyme that converts acetone to 3-hydroxyisovaleryl-CoA (step 7), an enzyme that converts 3-hydroxyisovaleryl-CoA Enzyme for conversion to 3-hydroxyisovalerate (step 8) and enzyme for conversion of 3-hydroxyisovalerate to isobutylene (step 6), wherein acetyl acetyl-CoA is converted to acetyl acetate The enzyme (step 2) and/or the enzyme converting 3-hydroxyisovaleryl-CoA into 3-hydroxyisovalerate (step 8) is Ptb-Buk. 如請求項18所述之細菌,其中所述細菌產生異丁烯或其前驅物。 The bacterium of claim 18, wherein the bacterium produces isobutylene or its precursor. 一種經基因工程改造之一氧化碳營養型產乙酸菌,其用於產生3-羥基丁酸酯或其前驅物,所述細菌包括:(a)將乙醯基-CoA轉化為乙醯乙醯基-CoA(步驟1)之酶、將乙醯乙醯基-CoA轉化為乙醯乙酸酯(步驟2)之酶及將乙醯乙酸酯轉化為3-羥基丁酸酯(步驟15)之酶,其中將乙醯乙醯基-CoA轉化為乙醯乙酸酯(步驟2)之所述酶為Ptb-Buk,或(b)將乙醯基-CoA轉化為乙醯乙醯基-CoA(步驟1)之酶、將乙醯乙醯基-CoA轉化為3-羥基丁醯基-CoA(步驟13)之酶及將3-羥基丁醯基-CoA轉化為3-羥基丁酸酯(步驟14)之酶,其中將3-羥基丁醯基-CoA轉化為3-羥基丁酸酯(步驟14)之所述酶為Ptb-Buk。 A genetically engineered carbonotrophic acetogenic bacterium for producing 3-hydroxybutyrate or its precursor, the bacterium comprising: (a) converting acetyl-CoA into acetyl-acetyl- Enzymes for CoA (step 1), enzymes that convert acetyl acetyl-CoA to acetyl acetate (step 2), and enzymes that convert acetyl acetate to 3-hydroxybutyrate (step 15) , wherein the enzyme that converts acetyl acetyl-CoA into acetyl acetate (step 2) is Ptb-Buk, or (b) converts acetyl acetyl-CoA into acetyl acetyl-CoA ( The enzyme of step 1), the enzyme that converts acetyl acetyl-CoA into 3-hydroxybutyryl-CoA (step 13), and the enzyme that converts 3-hydroxybutyryl-CoA into 3-hydroxybutyrate (step 14) , wherein the enzyme that converts 3-hydroxybutyryl-CoA into 3-hydroxybutyrate (step 14) is Ptb-Buk. 如請求項20所述之細菌,其中所述細菌產生3-羥基丁酸酯或其前驅物。 The bacterium according to claim 20, wherein the bacterium produces 3-hydroxybutyrate or its precursor. 一種經基因工程改造之一氧化碳營養型產乙酸菌,其用於產生1,3-丁二醇或其前驅物,所述細菌包括:(a)將乙醯基-CoA轉化為乙醯乙醯基-CoA(步驟1)之酶、將乙醯乙醯基-CoA轉化為乙醯乙酸酯(步驟2)之酶、將乙醯乙酸酯轉化為3-羥基丁酸酯(步驟15)之酶、將3-羥基丁酸酯轉化為3-羥基丁醛(步驟16)之酶及將3-羥基丁醛 轉化為1,3-丁二醇(步驟17)之酶,其中將乙醯乙醯基-CoA轉化為乙醯乙酸酯(步驟2)之所述酶為Ptb-Buk,或(b)將乙醯基-CoA轉化為乙醯乙醯基-CoA(步驟1)之酶、將乙醯乙醯基-CoA轉化為3-羥基丁醯基-CoA(步驟13)之酶、將3-羥基丁醯基-CoA轉化為3-羥基丁酸酯(步驟14)之酶、將3-羥基丁酸酯轉化為3-羥基丁醛(步驟16)之酶及將3-羥基丁醛轉化為1,3-丁二醇(步驟17)之酶,其中將3-羥基丁醯基-CoA轉化為3-羥基丁酸酯(步驟14)之所述酶為Ptb-Buk。 A genetically engineered carbonotrophic acetogenic bacterium for producing 1,3-butanediol or its precursor, the bacterium comprising: (a) converting acetyl-CoA into acetyl-acetyl -Enzyme for CoA (step 1), enzyme for converting acetyl acetyl-CoA to acetyl acetate (step 2), enzyme for converting acetyl acetate to 3-hydroxybutyrate (step 15) Enzyme, enzyme that converts 3-hydroxybutyrate to 3-hydroxybutyraldehyde (step 16) and 3-hydroxybutyraldehyde The enzyme that converts acetyl acetyl-CoA to acetyl acetyl-CoA (step 2) is Ptb-Buk, or (b) Enzyme that converts acetyl-CoA to acetyl-acetyl-CoA (step 1), enzyme that converts acetyl-acetyl-CoA to 3-hydroxybutyl-CoA (step 13), enzyme that converts 3-hydroxybutyl-CoA Enzymes that convert CoA to 3-hydroxybutyrate (step 14), 3-hydroxybutyrate to 3-hydroxybutyraldehyde (step 16), and 3-hydroxybutyraldehyde to 1,3-butanal An enzyme for diol (step 17), wherein the enzyme for converting 3-hydroxybutyryl-CoA to 3-hydroxybutyrate (step 14) is Ptb-Buk. 如請求項22所述之細菌,其中所述細菌產生1,3-丁二醇或其前驅物。 The bacterium according to claim 22, wherein the bacterium produces 1,3-butanediol or its precursor. 一種經基因工程改造之一氧化碳營養型產乙酸菌,其用於產生2-羥基異丁酸酯或其前驅物,所述細菌包括:(a)將乙醯基-CoA轉化為乙醯乙醯基-CoA(步驟1)之酶、將乙醯乙醯基-CoA轉化為3-羥基丁醯基-CoA(步驟13)之酶、將3-羥基丁醯基-CoA轉化為2-羥基異丁醯基-CoA(步驟19)之酶及將2-羥基異丁醯基-CoA轉化為2-羥基異丁酸酯(步驟20)之酶,其中將2-羥基異丁醯基-CoA轉化為2-羥基異丁酸酯(步驟20)之所述酶為Ptb-Buk。 A genetically engineered carbonotrophic acetogenic bacterium for producing 2-hydroxyisobutyrate or its precursor, the bacterium comprising: (a) converting acetyl-CoA into acetyl-acetyl - Enzyme for CoA (step 1), enzyme for converting acetyl acetyl-CoA to 3-hydroxybutyl-CoA (step 13), enzyme for converting 3-hydroxybutyl-CoA to 2-hydroxyisobutyl-CoA (step 13) 19) The enzyme and the enzyme that converts 2-hydroxyisobutyl-CoA into 2-hydroxyisobutyrate (step 20), wherein 2-hydroxyisobutyl-CoA is converted into 2-hydroxyisobutyrate (step 20) ) is Ptb-Buk. 如請求項24所述之細菌,其中所述細菌產生2-羥基異丁酸酯或其前驅物。 The bacterium according to claim 24, wherein the bacterium produces 2-hydroxyisobutyrate or its precursor. 一種經基因工程改造之一氧化碳營養型產乙酸菌,其用於產生己二酸或其前驅物,所述細菌包括:(a)將乙醯基-CoA轉化為丁二醯基-CoA(步驟21)之酶、將丁二醯基-CoA轉化為3-側氧基-己二醯基-CoA(步驟22)之酶、將3-側氧基-己二醯基-CoA轉化為3-羥基己二醯基-CoA(步驟23)之酶、將3-羥基己二醯基-CoA轉化為2,3-去氫己二醯基-CoA(步驟24)之酶、將2,3-去氫己二醯基-CoA轉化為己二醯基-CoA(步驟25)之酶及將己二醯基-CoA轉化為己二酸(步驟26)之酶,其中將己二醯基-CoA轉化為己二酸(步驟26)之所述酶為Ptb-Buk,或(b)將乙醯基-CoA轉化為3-側氧基-己二醯基-CoA(步驟22)之酶、將3-側氧基-己二醯基-CoA轉化為3-羥基己二醯基-CoA(步驟23)之酶、將3-羥基己二醯基-CoA轉化為2,3-去氫己二醯基-CoA(步驟24)之酶、將2,3-去氫己二醯基-CoA轉化為己二醯基-CoA(步驟25)之酶及將己二醯基-CoA轉化為己二酸(步驟26)之酶,其中將己二醯基-CoA轉化為己二酸(步驟26)之所述酶為Ptb-Buk。 A genetically engineered carbonotrophic acetogenic bacterium for producing adipic acid or a precursor thereof, the bacterium comprising: (a) converting acetyl-CoA into succinyl-CoA (step 21 ), an enzyme that converts succinyl-CoA to 3-Pendantoxy-adipacyl-CoA (step 22), an enzyme that converts 3-Pendantoxy-adipacyl-CoA to 3-hydroxy Enzyme for adipidyl-CoA (step 23), enzyme for converting 3-hydroxyadipyl-CoA to 2,3-dehydroadipidyl-CoA (step 24), enzyme for converting 2,3-dehydradipidyl-CoA Enzymes for converting hydrogen adipyl-CoA to adipidyl-CoA (step 25) and enzymes for converting adipidyl-CoA to adipic acid (step 26), wherein adipidyl-CoA is converted The enzyme for adipate (step 26) is Ptb-Buk, or (b) the enzyme for converting acetyl-CoA into 3-side oxy-adipyl-CoA (step 22), converting 3 - Enzyme that converts side oxy-adipadiyl-CoA to 3-hydroxyadipadiyl-CoA (step 23), converts 3-hydroxyadipadiyl-CoA into 2,3-dehydradipidyl-CoA Enzyme for converting 2,3-dehydroadipyl-CoA (step 24), converting 2,3-dehydroadipyl-CoA to adipidyl-CoA (step 25), and converting adipidyl-CoA to adipic acid (step 26), wherein the enzyme that converts adipyl-CoA into adipic acid (step 26) is Ptb-Buk. 如請求項26所述之細菌,其中所述細菌產生己二酸或其前驅物。 The bacterium of claim 26, wherein the bacterium produces adipic acid or its precursor. 一種經基因工程改造之一氧化碳營養型產乙酸菌,其用於自3-羥基丁醯基-CoA產生3-甲基-2-丁醇或其前驅物,所述細菌包括: (a)將3-羥基丁醯基-CoA轉化為巴豆醯基-CoA(步驟27)之酶、將巴豆醯基-CoA轉化為丁醯基基-CoA(步驟31)之酶、將丁醯基-CoA轉化為乙醯丁醯基-CoA(步驟32)之酶、將乙醯丁醯基-CoA轉化為乙醯丁酸酯(步驟33)之酶、將乙醯丁酸酯轉化為乙醯基丙酮(步驟34)之酶及將乙醯基丙酮轉化為3-甲基-2-丁醇(步驟35)之酶,其中將乙醯丁醯基-CoA轉化為乙醯丁酸酯(步驟33)之所述酶為Ptb-Buk。 A genetically engineered carbonotrophic acetogenic bacterium for producing 3-methyl-2-butanol or its precursor from 3-hydroxybutyl-CoA, the bacterium includes: (a) An enzyme that converts 3-hydroxybutyryl-CoA into crotonyl-CoA (step 27), an enzyme that converts crotonyl-CoA into butyryl-CoA (step 31), an enzyme that converts butyryl-CoA into ethyl an enzyme that converts acetylbutyryl-CoA (step 32), an enzyme that converts acetylbutyryl-CoA to acetylbutyrate (step 33), an enzyme that converts acetylbutyrate to acetylacetone (step 34), and The enzyme that converts acetyl acetone to 3-methyl-2-butanol (step 35), wherein the enzyme that converts acetyl butyryl-CoA to acetyl butyrate (step 33) is Ptb-Buk. 如請求項28所述之細菌,其中所述細菌產生3-甲基-2-丁醇或其前驅物。 The bacterium according to claim 28, wherein the bacterium produces 3-methyl-2-butanol or its precursor. 一種經基因工程改造之一氧化碳營養型產乙酸菌,其用於自3-羥基丁醯基-CoA產生2-丁烯-1-醇或其前驅物,所述細菌包括:(a)將3-羥基丁醯基-CoA轉化為巴豆醯基-CoA(步驟27)之酶、將巴豆醯基-CoA轉化為巴豆酸酯(步驟28)之酶、將巴豆酸酯轉化為巴豆醛(步驟29)之酶及將巴豆醛轉化為2-丁烯-1-醇(步驟30)之酶,其中將巴豆醯基-CoA轉化為巴豆酸酯(步驟28)之所述酶為Ptb-Buk。 A genetically engineered carbonotrophic acetogenic bacterium for producing 2-buten-1-ol or its precursor from 3-hydroxybutyryl-CoA, the bacterium comprising: (a) converting 3-hydroxybutyryl-CoA The enzyme that converts -CoA to crotonyl-CoA (step 27), the enzyme that converts crotonyl-CoA to crotonate (step 28), the enzyme that converts crotonate to crotonaldehyde (step 29), and the The enzyme that converts crotonaldehyde to 2-buten-1-ol (step 30), wherein the enzyme that converts crotonyl-CoA to crotonate (step 28) is Ptb-Buk. 如請求項30所述之細菌,其中所述細菌產生3-甲基-2-丁醇或其前驅物。 The bacterium according to claim 30, wherein the bacterium produces 3-methyl-2-butanol or its precursor. 一種經基因工程改造之一氧化碳營養型產乙酸菌,其用 於產生異戊酸酯或其前驅物,所述細菌包括:(a)將乙醯基-CoA轉化為乙醯乙醯基-CoA(步驟1)之酶、將乙醯乙醯基-CoA轉化為3-羥基-3-甲基戊二醯基-CoA(步驟40)之酶、將3-羥基-3-甲基戊二醯基-CoA轉化為3-羥基-3-甲基葡糖基-CoA(步驟41)之酶、將3-羥基-3-甲基葡糖基-CoA轉化為2-甲基巴豆醯基-CoA(步驟42)之酶、將2-甲基巴豆醯基-CoA轉化為異戊醯基-CoA(步驟43)之酶及將異戊醯基-CoA轉化為異戊酸酯(步驟44)之酶,其中將異戊醯基-CoA轉化為異戊酸酯(步驟44)之所述酶為Ptb-Buk。 A genetically engineered carbonotrophic acetogenic bacterium, which is used In producing isovalerate or its precursor, the bacteria include: (a) an enzyme that converts acetyl-CoA into acetyl-acetyl-CoA (step 1), converting acetyl-acetyl-CoA Enzyme that is 3-hydroxy-3-methylglutaryl-CoA (step 40), converts 3-hydroxy-3-methylglutaryl-CoA into 3-hydroxy-3-methylglucosyl -Enzyme for CoA (step 41), enzyme for converting 3-hydroxy-3-methylglucosyl-CoA into 2-methylcrotonyl-CoA (step 42), enzyme for converting 2-methylcrotonyl-CoA Enzyme that converts CoA to isopentyl-CoA (step 43) and enzyme that converts isopentyl-CoA to isovalerate (step 44), wherein isopentyl-CoA is converted to isovalerate The enzyme in (step 44) is Ptb-Buk. 如請求項32所述之細菌,其中所述細菌產生異戊酸酯或其前驅物。 The bacterium of claim 32, wherein the bacterium produces isovalerate or its precursor. 一種經基因工程改造之一氧化碳營養型產乙酸菌,其用於產生異戊醇或其前驅物,所述細菌包括:(a)將乙醯基-CoA轉化為乙醯乙醯基-CoA(步驟1)之酶、將乙醯乙醯基-CoA轉化為3-羥基-3-甲基戊二醯基-CoA(步驟40)之酶、將3-羥基-3-甲基戊二醯基-CoA轉化為3-羥基-3-甲基葡糖基-CoA(步驟41)之酶、將3-羥基-3-甲基葡糖基-CoA轉化為2-甲基巴豆醯基-CoA(步驟42)之酶、將2-甲基巴豆醯基-CoA轉化為異戊醯基-CoA(步驟43)之酶、將異戊醯基-CoA轉化為異戊酸酯(步驟44)之酶、將異戊醯基轉化為異戊醛(步驟45)之酶及將異戊醛轉化為異戊醇(步驟46)之酶,其中將異戊醯基-CoA轉化為異戊酸酯(步 驟44)之所述酶為Ptb-Buk。 A genetically engineered carbonotrophic acetogenic bacterium for producing isoamyl alcohol or a precursor thereof, the bacterium comprising: (a) converting acetyl-CoA into acetyl-acetyl-CoA (step The enzyme of 1), the enzyme that converts acetyl acetyl-CoA into 3-hydroxy-3-methylglutaryl-CoA (step 40), the enzyme that converts 3-hydroxy-3-methylglutaryl-CoA Enzyme that converts CoA to 3-hydroxy-3-methylglucosyl-CoA (step 41), converts 3-hydroxy-3-methylglucosyl-CoA to 2-methylcrotonyl-CoA (step 41) 42), an enzyme that converts 2-methylcrotonyl-CoA into isopentyl-CoA (step 43), an enzyme that converts isopentyl-CoA into isovalerate (step 44), Enzymes that convert isopentyl-CoA to isovaleraldehyde (step 45) and enzymes that convert isovaleraldehyde to isopentyl alcohol (step 46), wherein isopentyl-CoA is converted to isovalerate (step 46) The enzyme in step 44) is Ptb-Buk. 如請求項34所述之細菌,其中所述細菌產生異戊醇或其前驅物。 The bacterium of claim 34, wherein the bacterium produces isoamyl alcohol or a precursor thereof. 一種產生產物之方法,其包括在受質存在下培養如請求項1所述之細菌,藉由所述方法所述細菌產生所述產物。 A method of producing a product, which includes culturing the bacterium of claim 1 in the presence of a substrate, and the bacterium produces the product by the method. 如請求項36所述之方法,其中所述細菌產生丙酮或其前驅物、異丙醇或其前驅物、異丁烯或其前驅物、3-羥基丁酸酯或其前驅物、1,3-丁二醇或其前驅物、2-羥基異丁酸酯或其前驅物、己二酸或其前驅物、1,3-己二醇或其前驅物、3-甲基-2-丁醇或其前驅物、2-丁烯-1-醇或其前驅物、異戊酸酯或其前驅物或異戊醇或其前驅物中之一或多者。 The method of claim 36, wherein the bacterium produces acetone or its precursor, isopropyl alcohol or its precursor, isobutylene or its precursor, 3-hydroxybutyrate or its precursor, 1,3-butyrate Diol or its precursor, 2-hydroxyisobutyrate or its precursor, adipic acid or its precursor, 1,3-hexanediol or its precursor, 3-methyl-2-butanol or its precursor One or more of precursors, 2-buten-1-ol or its precursors, isovalerate or its precursors, or isoamyl alcohol or its precursors. 如請求項36所述之方法,其中所述Ptb-Buk將乙醯乙醯基-CoA轉化為乙醯乙酸酯(步驟2),將3-羥基異戊醯基-CoA轉化為3-羥基異戊酸酯(步驟8),將3-羥基丁醯基-CoA轉化為3-羥基丁酸酯(步驟14),將2-羥基異丁醯基-CoA轉化為2-羥基異丁酸酯(步驟20),將巴豆醯基-CoA轉化為巴豆酸酯(步驟28),將乙醯丁醯基-CoA轉化為乙醯丁酸酯(步驟33)或將異戊醯基-CoA轉化為異戊酸酯(步驟44)。 The method of claim 36, wherein the Ptb-Buk converts acetyl acetyl-CoA into acetyl acetate (step 2), and converts 3-hydroxyisovaleryl-CoA into 3-hydroxyl Isovalerate (step 8), convert 3-hydroxybutyl-CoA to 3-hydroxybutyrate (step 14), convert 2-hydroxyisobutyl-CoA to 2-hydroxyisobutyrate (step 20) , convert crotonyl-CoA to crotonate (step 28), convert acetylbutyryl-CoA to acetylbutyrate (step 33) or convert isopentyl-CoA to isovalerate (step 44). 如請求項36所述之方法,其中所述受質為包括CO、CO2 及H2中之一或多者的氣體受質。 The method of claim 36, wherein the substrate is a gaseous substrate including one or more of CO, CO 2 and H 2 . 如請求項36所述之方法,其中所述氣體受質為合成氣。 The method of claim 36, wherein the gas substrate is synthesis gas. 如請求項36所述之方法,其中所述氣體受質為工業廢氣。 The method according to claim 36, wherein the gas substrate is industrial waste gas.
TW105134882A 2016-10-27 2016-10-27 Genetically engineered bacterium comprising energy-generating fermentation pathway TWI811184B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105134882A TWI811184B (en) 2016-10-27 2016-10-27 Genetically engineered bacterium comprising energy-generating fermentation pathway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105134882A TWI811184B (en) 2016-10-27 2016-10-27 Genetically engineered bacterium comprising energy-generating fermentation pathway

Publications (2)

Publication Number Publication Date
TW201816109A TW201816109A (en) 2018-05-01
TWI811184B true TWI811184B (en) 2023-08-11

Family

ID=62949291

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105134882A TWI811184B (en) 2016-10-27 2016-10-27 Genetically engineered bacterium comprising energy-generating fermentation pathway

Country Status (1)

Country Link
TW (1) TWI811184B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262037B2 (en) * 2002-01-04 2007-08-28 Guoqiang Chen Method for the production of D-(-)-3-hydroxybutyric acid by recombinant Escherichia coli

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262037B2 (en) * 2002-01-04 2007-08-28 Guoqiang Chen Method for the production of D-(-)-3-hydroxybutyric acid by recombinant Escherichia coli

Also Published As

Publication number Publication date
TW201816109A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
US10316337B2 (en) Genetically engineered bacterium for the production of isobutylene
Shen et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli
AU2011318676B2 (en) Production of butanol from carbon monoxide by a recombinant microorganism
AU2012221176B2 (en) Recombinant microorganisms and uses therefor
US20090111154A1 (en) Butanol production by recombinant microorganisms
CA3079761A1 (en) Microorganisms and methods for the biological production of ethylene glycol
US20160024532A1 (en) Atp driven direct photosynthetic production of fuels and chemicals
WO2012135731A2 (en) Alcohol production from recombinant microorganisms
TWI824995B (en) Arginine supplementation to improve efficiency in gas fermenting acetogens
US9434963B2 (en) Process for butanol production
TWI811184B (en) Genetically engineered bacterium comprising energy-generating fermentation pathway
US20160138049A1 (en) OXYGEN-TOLERANT CoA-ACETYLATING ALDEHYDE DEHYDROGENASE CONTAINING PATHWAY FOR BIOFUEL PRODUCTION
TW202128984A (en) Genetically engineered bacterium comprising energy-generating fermentation pathway
EA043734B1 (en) GENETICALLY ENGINEERED BACTERIA CONTAINING AN ENERGY-GENERATING ENZYMATIVE PATHWAY
CA3228407A1 (en) Microbial fermentation for the production of isoprenoid alcohols and derivatives
Liu et al. Functional expression of the thiolase