KR101837130B1 - Novel lipase from yeast Candida butyri SH-14 and the Use thereof - Google Patents

Novel lipase from yeast Candida butyri SH-14 and the Use thereof Download PDF

Info

Publication number
KR101837130B1
KR101837130B1 KR1020160032857A KR20160032857A KR101837130B1 KR 101837130 B1 KR101837130 B1 KR 101837130B1 KR 1020160032857 A KR1020160032857 A KR 1020160032857A KR 20160032857 A KR20160032857 A KR 20160032857A KR 101837130 B1 KR101837130 B1 KR 101837130B1
Authority
KR
South Korea
Prior art keywords
ala
ser
seq
thr
leu
Prior art date
Application number
KR1020160032857A
Other languages
Korean (ko)
Other versions
KR20170108635A (en
Inventor
손정훈
이선희
배정훈
성봉현
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020160032857A priority Critical patent/KR101837130B1/en
Publication of KR20170108635A publication Critical patent/KR20170108635A/en
Application granted granted Critical
Publication of KR101837130B1 publication Critical patent/KR101837130B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/649Biodiesel, i.e. fatty acid alkyl esters
    • C12R1/72
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

본 발명은 리파아제 (lipase) 활성을 가지는 캔디다 뷰티리 (Candida butyri) 균주, 상기 균주 유래 리파아제, 상기 리파아제를 코딩하는 핵산 및 단백질 분비 융합 인자 (Translational fusion partner, TFP)를 코딩하는 핵산을 포함하는 리파아제 분비 발현 카세트, 상기 분비 발현 카세트를 포함하는 벡터, 상기 리파아제 또는 분비 발현 카세트를 포함하는 형질전환 미생물, 상기 리파아제의 제조방법, 상기 리파아제를 이용한 바이오디젤의 제조방법에 관한 것이다.
본 발명의 리파아제를 포함하는 형질전환 미생물을 이용하여 리파아제를 대량 생산할 수 있으며, 상기 리파아제는 바이오디젤의 경제적 생산에 널리 활용될 수 있다.
The present invention relates to a Candida butyri strain having lipase activity, a nucleic acid encoding said lipase, a nucleic acid encoding said lipase, and a nucleic acid encoding a translational fusion partner (TFP) A secretory expression cassette, a vector containing the secretory expression cassette, a transformant microorganism including the lipase or secretory expression cassette, a method for producing the lipase, and a method for producing biodiesel using the lipase.
The transformant microorganism including the lipase of the present invention can be used to mass produce lipase, and the lipase can be widely used for the economical production of biodiesel.

Description

효모 캔디다 뷰티리 SH-14 유래의 신규 리파아제 및 그의 용도 {Novel lipase from yeast Candida butyri SH-14 and the Use thereof}Novel lipase from yeast Candida butyri SH-14 and the Use thereof < RTI ID = 0.0 >

본 발명은 리파아제 (lipase) 활성을 가지는 캔디다 뷰티리 (Candida butyri) 균주, 상기 균주 유래 리파아제, 상기 리파아제를 코딩하는 핵산 및 단백질 분비 융합 인자 (Translational fusion partner, TFP)를 코딩하는 핵산을 포함하는 리파아제 분비 발현 카세트, 상기 분비 발현 카세트를 포함하는 벡터, 상기 리파아제 또는 분비 발현 카세트를 포함하는 형질전환 미생물, 상기 리파아제의 제조방법, 상기 리파아제를 이용한 바이오디젤의 제조방법에 관한 것이다.The present invention relates to a Candida butyri strain having lipase activity, a nucleic acid encoding said lipase, a nucleic acid encoding said lipase, and a nucleic acid encoding a translational fusion partner (TFP) A secretory expression cassette, a vector containing the secretory expression cassette, a transformant microorganism including the lipase or secretory expression cassette, a method for producing the lipase, and a method for producing biodiesel using the lipase.

리파아제 (Lipase, triacylglycerol acyl hydrolases, E.C. 3.1.1.3)는 지방 (lipid)을 분해 및 변환하는 효소로서 산업적인 활용가치가 매우 높은 효소이다. 리파아제는 1834년 담낭 (pancreas)에서 처음 발견되었으며 수용액상에서 지방 (triacylglycerol)과의 계면에서 지방을 분해하는 세린 하이드롤라제 (serine hydrolases)로서 보조 인자 (cofactor)가 필요 없는 효소이다 (Rajendran et al., 2008). 이러한 반응은 수용액이 최소화된 유기용매에서도 에스테르 반응 (esterification)과 트란스에스테르 반응 (transesterification)이 가능하다. 리파아제 연구는 주로 기질특이성의 확대와 위치 선택성 (regioselectivity), 화학 선택성 (chemoselectivity), 그리고 키랄 선택성 (chiral selectivity)에 집중되어 왔다. Lipase (Lipase, triacylglycerol acyl hydrolases, E.C. 3.1.1.3) is an enzyme that degrades and converts lipids and is highly industrially useful. Lipase was first found in pancreas in 1834 and is an enzyme that does not require a cofactor as serine hydrolases that break down fat at the interface with fat (triacylglycerol) in aqueous solution (Rajendran et al. , 2008). This reaction is also capable of esterification and transesterification in organic solvents with minimal aqueous solution. Lipase studies have mainly focused on the expansion of substrate specificity, regioselectivity, chemoselectivity, and chiral selectivity.

한편, 리파아제의 지방분해 능력과 유기용매 상에서의 반응 특성으로 인해 세제산업, 유지가공산업, 바이오연료, 식품 및 낙농산업, 농화학, 제지산업, 향장 및 의약산업 등의 다양한 산업군에서 생물촉매로 활용되어 왔다 (Grazia 등, Int. J. Nol. Sci 2015, 16:20774). 리파아제는 박테리아, 효모, 곰팡이, 식물에서 고등 생물에 이르기 까지 다양한 생명체에서 발견되는 필수 효소이지만 박테리아와 효모 유래의 리파아제가 가장 많이 연구되었다. 특히 효모 캔디다 루고사 (Candida rugosa)와 캔디다 안타르티카 (Candida antarctica) 유래의 리파아제가 가장 많이 연구되고 산업적으로 활용되어 왔다. 특히 C. 안타르티카 (C. antarctica) 리파아제 B (CalB)는 세계적인 효소회사인 노보자임사에서 Novozym435 고정화 효소를 시판하여 다양한 산업적 용도로 사용되고 있다. 이외에도 다양한 지방분해 효모가 유지성분이 포함된 환경시료로부터 확보되어 리파아제에 대한 연구가 진행되어 다양한 캔디다 (Candida) 속의 효모, 갈락토마이세스 지오트리쿰 (Galactomyces geotricum), 아르슐라 아데니니보란스 (Arxula adeninivorans), 야로위아 리폴리티카 (Yarrowia lipolytica), 트리코스포론 (Trichosporon) 속, 로도토룰라 (Rhodotorula) 속, 아우레오바시디움 풀루란스 (Aureobasidium pullulans), 크립토코커스 (Cryptococcus) 속 등에서 보고되었으나 산업적으로 활용 가능한 효소는 매우 제한적이다. 현재 전세계적으로 상용화된 리파아제는 약 10 여개로 대부분 효모, 곰팡이 유래의 효소이며 다양한 산업적 활용을 위해서는 추가적인 신규효소의 발굴과 산업적 대량생산 기술이 요구된다 (Gupta 등, Progress in lipid Research 2015, 57:40). On the other hand, due to the lipolytic ability of lipase and the reaction characteristics in organic solvents, it is utilized as a biocatalyst in various industries such as detergent industry, oil processing industry, biofuels, food and dairy industry, agricultural chemical industry, paper industry, (Grazia et al., Int. J. Nol. Sci 2015, 16: 20774). Lipase is an essential enzyme found in a wide range of organisms, from bacteria, yeast, fungi, plants to higher organisms, but the most studied of bacterial and yeast-derived lipases. In particular, yeast Candida rugosa and Candida antarctica , Derived lipase has been the most studied and industrially utilized. In particular, C. antarctica lipase B (CalB) is marketed by Novozymes, a global enzyme company, for the use of Novozym435 immobilized enzyme for a variety of industrial applications. In addition, a variety of lipolytic yeasts were obtained from environmental samples containing a maintenance ingredient, and research on lipase was carried out, and various yeast of Candida genus, Galactomyces geotricum , ( Arxula adeninivorans ), Yarowiari Polytica ( Yarrowia lipolytica , Trichosporon , Rhodotorula genus, Aureobasidium pullulans , and Cryptococcus , but industrially available enzymes are very limited. Lipase, which is commercially available worldwide, is an enzyme derived mainly from yeast and fungi, and it requires additional new enzymes and industrial mass production techniques for various industrial applications (Gupta et al., Progress in lipid Research 2015, 57: 40).

이러한 배경하에 본 발명자들은 신규 리파아제를 발굴하고 이를 대량 생산할 수 있는 기술을 개발하기 위해 예의 노력한 결과, 우수한 리파아제 활성을 가지는 신규한 캔디다 뷰티리 균주를 동정하였고, 이로부터 신규한 리파아제를 분리하였다. 또한, 상기 리파아제 자체를 미생물에서 발현시키거나 또는 단백질 분비 융합 인자를 이용하여 분비 발현시켜 리파아제를 대량 생산할 수 있고, 이를 통해 바이오디젤을 생산할 수 있음을 확인하여 본 발명을 완성하였다.Under these circumstances, the present inventors have made intensive efforts to develop new lipase and technology for mass production thereof, and as a result, a novel Candida bacterium strain having excellent lipase activity was identified and a novel lipase was isolated therefrom. Also, it has been confirmed that the lipase itself can be produced in a microorganism, or secreted and expressed using a protein secretion fusion factor, and mass production of lipase, thereby producing biodiesel. Thus, the present invention has been completed.

본 발명의 하나의 목적은 리파아제 (lipase) 활성을 가지는, 수탁번호 KCTC18455P의 캔디다 뷰티리 (Candida butyri) 균주를 제공하는 것이다.One object of the present invention is a lipase (lipase) which is active, the accession number of Candida KCTC18455P beauty Li (Candida butyri ) strain.

본 발명의 다른 목적은 상기 균주에서 유래될 수 있는 분리된 리파아제를 제공하는 것이다.Another object of the present invention is to provide a separate lipase which can be derived from said strain.

본 발명의 또 다른 목적은 상기 리파아제를 코딩하는 핵산 및 단백질 분비 융합 인자 (Translational fusion partner, TFP)를 코딩하는 핵산을 포함하는, 리파아제 분비 발현 카세트를 제공하는 것이다.It is another object of the present invention to provide a lipase secretion expression cassette comprising a nucleic acid encoding said lipase and a nucleic acid encoding a translational fusion partner (TFP).

본 발명의 또 다른 목적은 상기 리파아제 분비 발현 카세트를 포함하는 벡터를 제공하는 것이다.It is another object of the present invention to provide a vector comprising the lipase secretion expression cassette.

본 발명의 또 다른 목적은 상기 리파아제, 또는 상기 분비 발현 카세트를 포함하는 형질전환 미생물을 제공하는 것이다.It is another object of the present invention to provide a transgenic microorganism comprising the lipase or the secretory expression cassette.

본 발명의 또 다른 목적은 상기 형질전환 미생물을 배양하는 단계; 및 상기 배양된 미생물 또는 이의 배양 상등액으로부터 리파아제를 회수하는 단계를 포함하는, 리파아제의 제조방법을 제공하는 것이다.It is still another object of the present invention to provide a method for culturing a transformed microorganism, And recovering the lipase from the cultured microorganism or culture supernatant thereof.

본 발명의 또 다른 목적은 상기 리파아제를 유지 및 알콜과 반응시키는 단계를 포함하는, 바이오디젤의 제조방법을 제공하는 것이다.It is another object of the present invention to provide a process for producing biodiesel comprising the step of reacting the lipase with a solvent and an alcohol.

상기 목적을 달성하기 위한 본 발명의 하나의 양태는 리파아제 (lipase) 활성을 가지는, 수탁번호 KCTC18455P의 캔디다 뷰티리 (Candida butyri) 균주이다.One aspect of the present invention for achieving the above object is a lipase (lipase) which is active, the accession number of Candida KCTC18455P beauty Li (Candida butyri ).

이를 구체적으로 설명하면 다음과 같다. 한편, 본 발명에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.This will be described in detail as follows. On the other hand, each description and embodiment disclosed in the present invention can be applied to each other description and embodiment. That is, all combinations of various elements disclosed in the present invention fall within the scope of the present invention. Further, the scope of the present invention is not limited by the detailed description described below.

본 발명에서는 리파아제 활성을 나타내는 신규 균주를 분리하기 위하여, 팜유를 회수하고 남은 EFB (empty fruit bunch) 샘플로부터 분리된 효모 균주의 리파제 활성을 확인하였다 (도 2). 그 결과, 리파아제 활성이 가장 우수한 캔디다 뷰티리 (Candida butyri) 균주를 동정하였고, 이를 캔디다 뷰티리 SH-14로 명명하였다. 나아가 상기 균주를 부다페스트 조약 하의 국제기탁기관인 한국생명공학연구원 생물자원센터 (Korea Collection for Type Culture; KCTC)에 2016년 03월 04일자로 기탁하고, 수탁번호 KCTC18455P를 부여받았다.In the present invention, in order to isolate a new strain exhibiting lipase activity, palm oil was recovered and lipase activity of the yeast strain isolated from the remaining EFB (empty fruit bunch) sample was confirmed (FIG. 2). As a result, the best lipase activity was found in Candida butyri ) was identified and named Candida beautiferi SH-14. Furthermore, the above-mentioned strain was deposited with the Korea Collection for Type Culture (KCTC), an international depository organization under the Budapest Treaty, on Mar. 04, 2014, and received the accession number KCTC18455P.

본 발명에서 용어, “리파아제 (lipase)”는 지방을 분해하는 효소를 의미하며, 구체적으로 중성 지방에 작용하여 트라이아실글리세리드에서 다이아실글리세리드와 모노아실글리세리드를 거쳐서 지방산과 글리세린으로 분해하는 효소를 의미한다. 따라서, 리파아제 활성은 지방을 분해하는 활성을 의미한다.In the present invention, the term " lipase " refers to an enzyme that degrades fat, and specifically refers to an enzyme that acts on triglycerides and degrades fatty acids and glycerin through triacylglycerides and diacylglycerides and monoacylglycerides do. Therefore, the lipase activity means an activity to decompose fat.

본 발명에서 “리파아제 활성을 가지는 균주”는 지방을 분해하는 생물학적 활성을 지닌 균주를 모두 포함할 수 있으며, 일 예로 수탁번호 KCTC18455P의 캔디다 뷰티리 SH-14 균주를 포함할 수 있다. 상기 균주는 하나 이상의 리파아제를 생산할 수 있어 리파아제 활성을 가지는 것일 수 있다.In the present invention, the " strain having lipase activity " may include all strains having biologically active lipid-degrading activity, for example, Candida bacterium strain SH-14 of Accession No. KCTC18455P. The strain may produce one or more lipases and may have lipase activity.

본 발명의 다른 하나의 양태는, 서열번호 5, 서열번호 8, 서열번호 10 또는 서열번호 92의 아미노산 서열을 가지는 리파아제이다. 상기 서열번호 5, 서열번호 8 및 서열번호 10의 아미노산 서열을 가지는 리파아제는 본 발명에서 각각 LIP2, LIP5 및 LIP7 단백질, 또는 CBLIP2, CBLIP5 및 CBLIP7 단백질과 혼용되어 사용될 수 있고, 또한 LIP2, LIP5LIP7 유전자, 또는 CBLIP2, CBLIP5CBLIP7 유전자에 의해 코딩되는 단백질과 혼용되어 사용될 수 있다. 상기 서열번호 92의 아미노산 서열을 가지는 리파아제는 서열번호 8의 아미노산 서열을 가지는 리파아제에서 CTG 코돈을 TCT 코돈으로 치환함으로써 그 위치의 류신이 세린으로 치환된 것일 수 있으며, 상기 위치가 세린으로 치환된 것이라면 이를 코딩하는 뉴클레오티드 코돈의 종류는 제한되지 않는다.Another aspect of the present invention is a lipase having an amino acid sequence of SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 92. The SEQ ID NO: 5, SEQ ID NO: lipase has the amino acid sequence of 8 and SEQ ID NO: 10 may be used interchangeably with each LIP2, LIP5 and LIP7 protein, or CBLIP2, CBLIP5 and CBLIP7 protein in the present invention, also LIP2, LIP5 and LIP7 Gene, or a protein encoded by the CBLIP2 , CBLIP5, and CBLIP7 genes. The lipase having the amino acid sequence of SEQ ID NO: 92 may be a lipase having the amino acid sequence of SEQ ID NO: 8, wherein the CTG codon is replaced with a TCT codon, whereby the leucine at that position is substituted with serine, The kind of the nucleotide codon that encodes it is not limited.

또한, 상기 리파아제는 서열번호 5, 서열번호 8, 서열번호 10 또는 서열번호 92의 아미노산 서열과 적어도 80 %, 90 %, 95 %, 96 %, 97 %, 98 % 또는 99 % 상동성 또는 서열 동일성을 가지는 폴리펩티드를 포함할 수 있다. 예를 들어, 이러한 상동성 혹은 서열 동일성을 가지며, 상기 서열번호 5, 서열번호 8, 서열번호 10 또는 서열번호 92의 아미노산 서열을 포함하는 리파아제와 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 가지더라도 본 발명의 범위 내에 포함됨은 자명하다.The lipase may also have at least 80%, 90%, 95%, 96%, 97%, 98% or 99% homology or sequence identity with the amino acid sequence of SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: Lt; / RTI > polypeptide. For example, if the amino acid sequence has this homology or sequence identity and exhibits the corresponding effect of lipase comprising the amino acid sequence of SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 92, , Modified, substituted or added amino acid sequences are included within the scope of the present invention.

또한, 서열번호 5, 서열번호 8, 서열번호 10 또는 서열번호 92의 아미노산 서열을 가지는 단백질, 서열번호 5, 서열번호 8, 서열번호 10 또는 서열번호 92의 아미노산 서열로 필수적으로 구성되는 단백질, 혹은 서열번호 5, 서열번호 8, 서열번호 10 또는 서열번호 92의 아미노산 서열로 구성되는 단백질이라는 표현은 서열번호 5, 서열번호 8, 서열번호 10 또는 서열번호 92의 아미노산 서열 앞뒤의 무의미한 서열 추가 또는 자연적으로 발생할 수 있는 돌연변이, 혹은 이의 잠재성 돌연변이 (silent mutation)를 제외하는 것이 아니며, 서열번호 5, 서열번호 8, 서열번호 10 또는 서열번호 92의 아미노산 서열을 가지는 단백질의 활성을 가지는 경우라면 상기 기술된 경우에 해당되는 경우에도 본 발명의 '서열번호 5, 서열번호 8, 서열번호 10 또는 서열번호 92의 아미노산 서열을 가지는 단백질, 서열번호 5, 서열번호 8, 서열번호 10 또는 서열번호 92의 아미노산 서열로 필수적으로 구성되는 단백질, 혹은 서열번호 5, 서열번호 8, 서열번호 10 또는 서열번호 92의 아미노산 서열로 구성되는 단백질'의 범주에 속한다.Also, a protein having an amino acid sequence of SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 92, a protein consisting essentially of the amino acid sequence of SEQ ID NO: 5, SEQ ID NO: The expression of a protein consisting of an amino acid sequence of SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 92 is intended to include addition of a nonsense sequence or an unnatural sequence before or after the amino acid sequence of SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10, or SEQ ID NO: 92, as long as it does not exclude a mutation or silent mutation that may occur in the above- The amino acid sequence of SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 92 of the present invention A protein consisting essentially of the amino acid sequence of SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 92 or a protein consisting essentially of the amino acid sequence of SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: Which is a category of proteins.

나아가, 이에 제한되는 것은 아니나 상기 리파아제를 코딩하는 유전자, 즉 LIP2, LIP5LIP7 유전자, 및 서열번호 92의 리파아제를 코딩하는 폴리뉴클레오티드는 각각 서열번호 13, 서열번호 16, 서열번호 18 및 서열번호 93의 뉴클레오티드 서열을 포함하는 폴리뉴클레오티드일 수 있고, 서열번호 13, 서열번호 16, 서열번호 18 또는 서열번호 93의 뉴클레오티드 서열과 적어도 80 %, 90 %, 95 %, 96 %, 97 %, 98 % 또는 99 % 상동성 혹은 서열 동일성을 가지는 폴리뉴클레오티드일 수 있다. 코돈 축퇴성 (codon degeneracy)에 의해 상기 서열번호 5, 서열번호 8, 서열번호 10 또는 서열번호 92의 아미노산 서열을 포함하는 단백질 또는 이와 상동성 혹은 서열 동일성을 가지는 단백질로 번역될 수 있는 폴리뉴클레오티드 역시 포함될 수 있음은 자명하다.Further, although not limited thereto, the genes coding for the lipase, namely the LIP2 , LIP5 and LIP7 genes, and the polynucleotides encoding the lipase of SEQ ID NO: 92 are SEQ ID NO: 13, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: Or at least 80%, 90%, 95%, 96%, 97%, 98% or more of the nucleotide sequence of SEQ ID NO: 13, SEQ ID NO: 16, SEQ ID NO: 0.0 > 99% < / RTI > homology or sequence identity. A polynucleotide capable of being translated into a protein comprising the amino acid sequence of SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 92 or a protein having homology or sequence identity thereto by codon degeneracy It is obvious that it can be included.

상기에서 용어 "상동성"은 주어진 아미노산 서열 또는 뉴클레오티드 서열과 일치하는 정도를 의미하며 백분율로 표시될 수 있다. 본 명세서에서, 주어진 아미노산 서열 또는 뉴클레오티드 서열과 동일하거나 유사한 활성을 가지는 그의 상동성 서열이 "% 상동성"으로 표시된다. 예를 들면, 점수(score), 동일성(identity) 및 유사도(similarity) 등의 매개 변수(parameter)들을 계산하는 표준 소프트웨어, 구체적으로 BLAST 2.0을 이용하거나, 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다. 상기에서 용어 “엄격한 조건”이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 예를 들어, 이러한 조건은 문헌 (예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다.In the above, the term "homology" means the degree to which a given amino acid sequence matches a nucleotide sequence and can be expressed as a percentage. In the present specification, its homologous sequence having the same or similar activity as a given amino acid sequence or nucleotide sequence is indicated as "% homology ". For example, standard software for calculating parameters such as score, identity and similarity, specifically BLAST 2.0, or by sequential hybridization experiments under defined stringent conditions, And the appropriate hybridization conditions to be defined are within the skill of the art and can be determined by methods well known to those skilled in the art (e.g., J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989; FM Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York). The term " stringent conditions " as used herein refers to conditions that allow specific hybridization between polynucleotides. For example, these conditions are specifically described in the literature (e.g., J. Sambrook et al., Same as above).

또한, 상기 리파아제는 본 발명의 캔디다 뷰티리 SH-14 균주 유래일 수 있으나, 이에 제한되지 않고 상기 설명한 바와 같이 서열 상동성을 가지면서 동일, 유사한 활성을 나타내는 한 모두 본 발명의 범위에 포함될 수 있다.In addition, the lipase may be derived from the Candida albicile strain SH-14 of the present invention, but is not limited thereto and may be included in the scope of the present invention as long as it exhibits the same or similar activity while having the same homology as described above .

본 발명의 구체적인 일 실시예에서는 상기 신규 리파아제 활성을 가지는 캔디다 뷰티리 SH-14 균주의 전체 유전자를 분석하고, 선별된 유전자를 효모 균주에서 발현시켜 우수한 리파제 활성을 가지는 신규 리파아제인 CBLIP2, CBLIP5 및 CBLIP7 단백질을 규명하였다 (도 5 내지 도 7).In a specific embodiment of the present invention, the entire gene of the Candida albicile strain SH-14 having the novel lipase activity was analyzed, and the selected genes were expressed in yeast strains to obtain novel lipases CBLIP2, CBLIP5 and CBLIP7 (Fig. 5 to Fig. 7).

본 발명의 또 다른 하나의 양태는 상기 리파아제 (lipase)를 코딩하는 핵산 및 단백질 분비 융합 인자 (Translational fusion partner, TFP)를 코딩하는 핵산을 포함하는, 리파아제 분비 발현 카세트이다.Another embodiment of the present invention is a lipase secretion expression cassette comprising a nucleic acid encoding said lipase and a nucleic acid encoding a translational fusion partner (TFP).

본 발명에서 용어 “단백질 분비 융합 인자 (translational fusion partner: TFP)”는 목적 단백질의 분비에 유용한 인자를 말한다. 상기 단백질 분비 융합 인자는 한국공개특허 제10-2008-0042823호에 개시된 것일 수 있고, 구체적으로 서열번호 38의 TFP 1, 서열번호 39의 TFP 2, 서열번호 40의 TFP 3, 서열번호 41의 TFP 4, 서열번호 42의 TFP 5, 서열번호 43의 TFP 6, 서열번호 44의 TFP 7, 서열번호 45의 TFP 8, 서열번호 46의 TFP 9, 서열번호 47의 TFP 10, 서열번호 48의 TFP 11, 서열번호 49의 TFP 12, 서열번호 50의 TFP 13, 서열번호 51의 TFP 14, 서열번호 52의 TFP 15, 서열번호 53의 TFP 16, 서열번호 54의 TFP 17, 서열번호 55의 TFP 18, 서열번호 56의 TFP 19, 서열번호 57의 TFP 20, 서열번호 58의 TFP 21, 서열번호 59의 TFP 22, 서열번호 60의 TFP 23, 또는 서열번호 61의 TFP 24일 수 있으나, 목적 단백질의 분비 발현을 향상시킬 수 있는 인자라면 제한 없이 포함될 수 있다.In the present invention, the term " translational fusion partner (TFP) " refers to a factor useful for secretion of a target protein. The protein secretion fusion factor may be one disclosed in Korean Patent Laid-Open No. 10-2008-0042823, and more specifically, TFP 1 of SEQ ID NO: 38, TFP 2 of SEQ ID NO: 39, TFP 3 of SEQ ID NO: 40, TFP 4, TFP 5 of SEQ ID NO: 42, TFP 7 of SEQ ID NO: 44, TFP 8 of SEQ ID NO: 45, TFP 9 of SEQ ID NO: 46, TFP 10 of SEQ ID NO: 47, TFP 11 of SEQ ID NO: TFP 14 of SEQ ID NO: 51, TFP 14 of SEQ ID NO: 51, TFP 15 of SEQ ID NO: 52, TFP 16 of SEQ ID NO: 53, TFP 17 of SEQ ID NO: 54, TFP 18 of SEQ ID NO: 55, The TFP 19 of SEQ ID NO: 56, TFP 20 of SEQ ID NO: 57, TFP 21 of SEQ ID NO: 58, TFP 22 of SEQ ID NO: 59, TFP 23 of SEQ ID NO: 60 or TFP 24 of SEQ ID NO: Any factor capable of improving expression can be included without limitation.

따라서 서열번호 38, 서열번호 39, 서열번호 40, 서열번호 41, 서열번호 42, 서열번호 43, 서열번호 44, 서열번호 45, 서열번호 46, 서열번호 47, 서열번호 48, 서열번호 49, 서열번호 50, 서열번호 51, 서열번호 52, 서열번호 53, 서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 60 또는 서열번호 61의 아미노산 서열을 포함하거나, 또는 상기 서열번호 38, 서열번호 39, 서열번호 40, 서열번호 41, 서열번호 42, 서열번호 43, 서열번호 44, 서열번호 45, 서열번호 46, 서열번호 47, 서열번호 48, 서열번호 49, 서열번호 50, 서열번호 51, 서열번호 52, 서열번호 53, 서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 60 또는 서열번호 61의 아미노산 서열의 보존서열을 포함하고 하나 이상의 위치에서 1 개 또는 다수 개 (단백질의 아미노산 잔기의 입체 구조에 있어서의 위치나 종류에 따라서 상이하지만, 구체적으로는 2 내지 20 개, 보다 구체적으로는 2 내지 10 개, 보다 더 구체적으로는 2 내지 5 개)의 아미노산이 치환, 결실, 삽입, 첨가 또는 역위된 아미노산 서열을 포함할 수 있는데, 상기 목적 단백질의 분비 발현을 향상시킬 수 있는 한, 서열번호 38, 서열번호 39, 서열번호 40, 서열번호 41, 서열번호 42, 서열번호 43, 서열번호 44, 서열번호 45, 서열번호 46, 서열번호 47, 서열번호 48, 서열번호 49, 서열번호 50, 서열번호 51, 서열번호 52, 서열번호 53, 서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 60 또는 서열번호 61의 아미노산 서열에 대하여, 80 % 이상, 구체적으로는 90 % 이상, 보다 구체적으로는 95 % 이상, 특히 구체적으로는 97 % 이상의 상동성을 갖는 아미노산 서열을 포함할 수 있고, 상기 아미노산의 치환, 결실, 삽입, 첨가 또는 역위 등에는 상기 TFP의 활성을 함유하는 미생물에서 천연적으로 생기는 돌연변이 서열 또는 인위적인 변이 서열까지도 포함할 수 있다.Thus, the nucleotide sequence of SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 46, SEQ ID NO: 47, SEQ ID NO: SEQ ID NO: 52, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60 or SEQ ID NO: 61, SEQ ID NO: Lt; RTI ID = 0.0 > and / or < / RTI > one or more (Specifically, 2 to 20 amino acid residues, more specifically 2 to 10 amino acid residues, and more particularly 2 to 5 amino acid residues) of the amino acid residues of the protein are substituted SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, and SEQ ID NO: 40 as long as it can improve the secretory expression of the target protein. SEQ ID NO: 44, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 46, 80% or more, specifically 90% or more, more particularly 95% or more, more preferably 95% or more, more preferably 90% or more, more preferably 95% or more, More specifically, 97% or more The substitution, deletion, insertion, addition, or inversion of the amino acid may include a naturally occurring mutant or artificial mutation sequence in the microorganism containing the activity of the TFP. have.

나아가, 상기 리파아제가, 서열번호 5의 아미노산 서열을 가지는 리파아제인 경우 리파아제와 서열번호 48의 TFP 11, 서열번호 50의 TFP 13, 서열번호 56의 TFP 19 또는 서열번호 60의 TFP 23이 연결된 것일 수 있고, 서열번호 8의 아미노산 서열을 가지는 리파아제인 경우 리파아제와 서열번호 45의 TFP 8, 서열번호 46의 TFP 9, 서열번호 50의 TFP 13 또는 서열번호 56의 TFP 19와 연결된 것일 수 있다. 또한 서열번호 10의 아미노산 서열을 가지는 리파아제인 경우 리파아제와 서열번호 41의 TFP 4, 서열번호 45의 TFP 8, 서열번호 50의 TFP 13, 서열번호 57의 TFP 20, 서열번호 58의 TFP 21, 서열번호 59의 TFP 22, 서열번호 60의 TFP 23 또는 서열번호 61의 TFP 24와 연결된 것일 수 있고, 서열번호 92의 아미노산 서열을 가지는 리파아제인 경우 리파아제와 서열번호 45의 TFP 8, 서열번호 46의 TFP 9, 서열번호 50의 TFP 13 또는 서열번호 56의 TFP 19가 연결된 것일 수 있으나, 이에 제한되는 것은 아니다.Further, when the lipase is a lipase having the amino acid sequence of SEQ ID NO: 5, TFP 11 of SEQ ID NO: 48, TFP 13 of SEQ ID NO: 50, TFP 19 of SEQ ID NO: 56, or TFP 23 of SEQ ID NO: In the case of a lipase having the amino acid sequence of SEQ ID NO: 8, TFP8 of SEQ ID NO: 45, TFP 9 of SEQ ID NO: 46, TFP 13 of SEQ ID NO: 50 or TFP 19 of SEQ ID NO: 56. Also, in the case of lipase having the amino acid sequence of SEQ ID NO: 10, TFP 4 of SEQ ID NO: 41, TFP 8 of SEQ ID NO: 45, TFP 13 of SEQ ID NO: 50, TFP 20 of SEQ ID NO: 57, TFP 21 of SEQ ID NO: 58, SEQ ID NO: 60, TFP 22 of SEQ ID NO: 60 or TFP 24 of SEQ ID NO: 61, Lipase having the amino acid sequence of SEQ ID NO: 92, TFP 8 of SEQ ID NO: 45, TFP 9, TFP 13 of SEQ ID NO: 50, or TFP 19 of SEQ ID NO: 56 may be linked, but the present invention is not limited thereto.

상기 리파아제 분비 발현 카세트에 있어서, 포함되는 리파아제를 코딩하는 핵산 및 단백질 분비 융합 인자를 코딩하는 핵산은 링커 (linker)로 서로 연결된 것일 수 있다.In the lipase secretion expression cassette, the nucleic acid encoding the contained lipase and the nucleic acid encoding the protein secretion fusion factor may be linked to each other by a linker.

상기 링커는 프로테아제 인식 서열 또는 친화성 태그 (affinity tag)를 포함하는 것일 수 있다.The linker may comprise a protease recognition sequence or an affinity tag.

또한, 본 발명에서 사용되는 리파아제를 코딩하는 핵산 서열은 본 발명의 선형 벡터와 세포 내에서 재조합 시키는데 사용되는 링커 DNA를 포함할 수 있다. 이러한 링커 서열을 리파아제를 코딩하는 핵산 서열에 부가하는 것은 일반적인 DNA 기술, 예컨대 PCR 및/또는 제한효소 절단 및 연결로 수행할 수 있다.In addition, the nucleic acid sequence encoding the lipase used in the present invention may include the linker DNA used for recombination in the cell with the linear vector of the present invention. Addition of such a linker sequence to a nucleic acid sequence encoding a lipase can be performed by conventional DNA techniques such as PCR and / or restriction enzyme cleavage and linkage.

본 발명의 링커 DNA는 충분한 길이여야 하고, 숙주 세포 내로 도입되어 세포 내에서 리파아제를 코딩하는 핵산 서열이 TFP를 코딩하는 핵산 서열을 포함하는 선형 벡터안에 재조합을 일으킬 수 있도록 선형 벡터의 핵산 서열 일부와 충분한 상동성을 가지는 것일 수 있다. 구체적으로, 링커 DNA는 20 bp 이상의 길이, 예컨대 30 또는 40 bp 이상의 길이를 갖는다. 보다 구체적으로, 링커 DNA는 선형 벡터와 최소 80 % 정도 상동성을 가지며, 85 %, 90 %, 95 % 또는 99 %의 상동성을 가질 수 있다.The linker DNA of the present invention should be of sufficient length and introduced into a host cell such that the nucleic acid sequence encoding the lipase in the cell is part of the nucleic acid sequence of the linear vector so that it can be recombined into a linear vector containing the nucleic acid sequence encoding TFP It may have sufficient homology. Specifically, the linker DNA has a length of 20 bp or more, such as 30 or 40 bp or more. More specifically, the linker DNA is at least 80% homologous to the linear vector and may have 85%, 90%, 95% or 99% homology.

일례로서, 링커 DNA는 프로테아제 인식 서열을 코딩하여 TFP와 목적 단백질 간의 접합 부위에서 절단을 일으킬 수 있다. 예컨대, 링커 DNA는 효모 kex2p 프로테아제 인식 서열 (Lys-Arg를 포함하는 아미노산 서열), 포유동물 퓨린 인식 서열 (Arg-X-X-Arg를 포함하는 아미노산 서열), Factor-Xa 인식 서열 (Ile-Glu-Gly-Arg를 포함하는 아미노산 서열), 엔테로키나제-인식 서열 (Asp-Asp-Lys를 포함하는 아미노산 서열), 서브틸리신 인식 서열 (Ala-Ala-His-Tyr를 포함하는 아미노산 서열), 담배식각바이러스 인식 서열 (Glu-Asn-Leu-Tyr-Phe-Gln-Gly를 포함하는 아미노산 서열), 유비퀴틴 가수분해효소 인식 서열 (Arg-Gly-Gly를 포함하는 아미노산 서열) 또는 트롬빈 인식 서열 (Arg-Gly-Pro-Arg를 포함하는 아미노산 서열)을 코딩할 수 있다.As an example, the linker DNA can encode a protease recognition sequence to cause cleavage at the junction between TFP and the target protein. For example, the linker DNA comprises a yeast kex2p protease recognition sequence (amino acid sequence comprising Lys-Arg), a mammal purine recognition sequence (amino acid sequence comprising Arg-XX-Arg), a Factor-Xa recognition sequence (Ile-Glu-Gly -Ag), an enterokinase-recognition sequence (amino acid sequence containing Asp-Asp-Lys), a subtilisin recognition sequence (amino acid sequence comprising Ala-His-Tyr) (Amino acid sequence containing Glu-Asn-Leu-Tyr-Phe-Gln-Gly), ubiquitin hydrolase recognition sequence (amino acid sequence containing Arg-Gly-Gly) or thrombin recognition sequence (Arg- Pro-Arg). ≪ / RTI >

본 발명에서 용어 “친화성 태그”는 재조합 융합 단백질 또는 이를 코딩하는 핵산에 도입될 수 있는 펩타이드 또는 핵산 서열로서 다양한 목적으로 사용될 수 있으며, 예를 들어 목적 단백질의 정제 효율을 높이기 위한 것일 수 있다. 상기 친화성 태그는 GST, MBP, NusA, 티오레독신(thioredoxin), 유비퀴틴, FLAG, BAP, His, STREP, CBP, CBD, 또는 S-태그일 수 있고, 구체적으로는 His-tag일 수 있으나, 이에 제한되는 것은 아니다.The term " affinity tag " in the present invention can be used for various purposes as a peptide or nucleic acid sequence that can be introduced into a recombinant fusion protein or a nucleic acid encoding the same, for example, to enhance purification efficiency of a target protein. The affinity tag may be GST, MBP, NusA, thioredoxin, ubiquitin, FLAG, BAP, His, STREP, CBP, CBD or S-tag, But is not limited thereto.

상기 친화성 태그는 리파아제의 카르복시 말단 또는 아미노 말단에 연결된 것일 수 있고, 특히 카르복시 말단에 연결된 것일 수 있으나 이에 제한되는 것은 아니다.The affinity tag may be linked to the carboxy terminal or the amino terminal of the lipase, and in particular, it may be connected to the carboxy terminal but is not limited thereto.

본 발명에서 용어 “핵산”은, DNA (gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 가지며, 핵산 분자에서 기본 구성단위인 뉴클레오티드는 자연의 뉴클레오티드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체 (analogue)도 포함한다. 본 발명에서는 리파아제를 코딩하는 핵산 및 단백질 분비 융합 인자를 코딩하는 핵산을 포함하는 리파아제 분비 발현 카세트를 제공한다.The term " nucleic acid " in the present invention has the meaning that it encompasses DNA (gDNA and cDNA) and RNA molecules, and nucleotides which are basic constituent units in nucleic acid molecules include not only natural nucleotides but also analogs and an analogue. The present invention provides a lipase secretion expression cassette comprising a nucleic acid encoding a lipase and a nucleic acid encoding a protein secretion fusion factor.

본 발명의 용어, “발현 카세트”는 세포 내에서 구조 유전자의 발현에 영향을 줄 수 있는 핵산 요소를 지닌다. 자연적으로 발생되거나 합성된 핵산구조로서 일반적으로 발현 카세트는 전사되는 핵산과 프로모터를 포함한다. 본 발명의 목적상 상기 발현 카세트는 단백질 분비 융합 인자를 코딩하는 핵산 및 리파아제를 코딩하는 핵산을 포함할 수 있으며, 특히 리파아제의 분비를 유도하는 “리파아제 분비 발현 카세트”로서, 리파아제를 발현하여 분비시킬 수 있다.The term " expression cassette " of the present invention has a nucleic acid element capable of affecting the expression of a structural gene in a cell. Naturally occurring or synthesized nucleic acid constructs generally include an expression cassette that contains a transcribed nucleic acid and a promoter. For the purpose of the present invention, the expression cassette may comprise a nucleic acid encoding a protein secretion fusion factor and a nucleic acid encoding a lipase, and in particular a " lipase secretion expression cassette " which induces the secretion of a lipase, .

본 발명의 또 다른 하나의 양태는 상기 카세트를 포함하는 벡터이다.Another embodiment of the present invention is a vector comprising said cassette.

카세트에 대하여는 상기 설명한 바와 같다.The cassette is as described above.

본 발명에서 용어 “벡터”는, 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 암호화하는 핵산의 염기서열을 함유하는 DNA 생산물을 의미하며, 특히 본 발명에서 상기 목적 단백질은 리파아제 및 단백질 분비 융합 인자를 포함하는 재조합 융합 단백질을 의미한다. The term " vector " in the present invention means a DNA product containing a nucleotide sequence encoding a desired protein operably linked to a suitable regulatory sequence so as to be able to express the desired protein in a suitable host, , The target protein refers to a recombinant fusion protein comprising a lipase and a protein secretion fusion factor.

상기 벡터에는, 목적 유전자의 발현의 억제 또는 증폭, 또는 유도를 위한 각종의 기능을 가진 발현 조절용 단편이나, 형질전환체의 선택을 위한 마커나 항생물질에 대한 내성 유전자, 난발현성 단백질의 분비 발현에 적합한 맞춤형 융합인자 등을 추가로 포함할 수 있다. 특히, 상기 난발현성 단백질에 적합한 맞춤형 융합 인자로서, 상기 단백질 분비 융합 인자를 사용함이 바람직할 수 있으나, 이에 제한되지 않는다.These vectors include expression-regulating fragments having various functions for suppressing, amplifying, or inducing expression of a target gene, genes encoding a marker for selection of a transformant, a gene resistant to antibiotics, A suitable customized fusion factor, and the like. In particular, it may be preferable to use the protein secretion fusion factor as a customized fusion factor suitable for the above-mentioned hairless protein, but the present invention is not limited thereto.

본 발명의 구체적인 일실시예에서는 리파아제를 고분비 생산하는 발현 벡터로, TFP 19 및 CBLIP2 유전자를 포함하는 YGaST19-CBLIP2 벡터를 제작하였으며, 이를 효모 균주에 형질전환하여 배양 48 시간에 약 230 KU/L/min의 활성으로 고농도로 리파아제를 생산할 수 있음을 확인하였다 (도 11).In a specific embodiment of the present invention, a YGaST19- CBLIP2 vector containing TFP 19 and CBLIP2 gene was prepared as an expression vector for producing high secretion of lipase, and transformed into a yeast strain and cultured at about 230 KU / L / min, it was confirmed that lipase could be produced at a high concentration (Fig. 11).

본 발명의 또 다른 하나의 양태는, 리파아제를 포함하거나, 또는 리파아제를 코딩하는 핵산 및 단백질 분비 융합 인자를 코딩하는 핵산을 포함하는 리파아제 분비 발현 카세트를 포함하는, 형질전환 미생물이다.Another aspect of the present invention is a transforming microorganism comprising a lipase secretion expression cassette comprising or consisting of a nucleic acid encoding a lipase and a nucleic acid encoding a protein secretion factor.

리파아제, 단백질 분비 융합 인자, 핵산, 및 리파아제 분비 발현 카세트에 대해서는 상기 설명한 바와 같다.The lipase, the protein secretion fusion factor, the nucleic acid, and the lipase secretion expression cassette are as described above.

본 발명의 구체적인 일 실시예에서는 상기 CBLIP2, CBLIP5 및 CBLIP7 유전자가 단백질 분비 융합 인자와 연결되어 발현되는 경우뿐만 아니라, 상기 유전자의 자체 분비 시그널 또는 MFa (mating factor alpha) 분비 시그널을 이용하여 발현시키는 경우에도 높은 수준으로 분비 발현될 수 있음을 확인하였다 (표 7). 따라서 본 발명의 리파아제는 MFa 분비 시그널 또는 단백질 분비 융합 인자를 이용하여 분비 발현될 수도 있고, 리파아제 그 자체로 형질전환된 미생물에서도 자체 분비 시그널에 의해 분비 발현될 수 있다. 따라서, 상기 리파아제를 포함하는 형질전환 미생물도 본 발명의 범위에 포함되는 것은 자명하다.In a specific embodiment of the present invention, when the CBLIP2, CBLIP5 and CBLIP7 genes are expressed in association with a protein secretion fusion factor as well as when expressed using self-secretion signals or MFa (mating factor alpha) secretion signals of the genes (Table 7). Therefore, the lipase of the present invention may be secreted by using an MFa secretion signal or a protein secretion fusion factor, and secreted by a self-secretory signal even in a microorganism transformed with lipase itself. Therefore, it is obvious that the transformed microorganism containing the lipase is also included in the scope of the present invention.

본 발명의 용어, “형질전환”은 DNA를 숙주세포로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다.The term " transformed " of the present invention means that DNA is introduced into a host cell so that the DNA can be replicated as an extrachromosomal factor or by chromosomal integration.

본 발명의 형질전환 방법은 임의의 형질전환 방법이 사용될 수 있으며, 당업계의 통상적인 방법에 따라 용이하게 수행할 수 있다.Any transformation method of the present invention can be used, and can be easily carried out according to a conventional method in the art.

본 발명에 따른 형질전환에 사용되는 숙주 세포는 당업계에 널리 알려져 있는 숙주 세포라면 어떤 것이나 사용할 수 있으나, 본 발명의 리파아제 유전자의 도입효율과 발현효율이 높은 숙주를 사용할 수 있는데, 예를 들면 박테리아, 곰팡이, 효모를 포함할 수 있다. 구체적으로 상기 형질전환 미생물은 효모일 수 있고, 더 구체적으로 상기 효모는 캔디다 (Candida), 디베리오마이세스 (Debaryomyces), 한세눌라 (Hansenula), 클루이베로마이세스 (Kluyveromyces), 피키아 (Pichia), 스키조사카로마이세스 (Schizosaccharomyces), 야로이야 (Yarrowia), 사카로마이시스 (Saccharomyces), 슈완니오마이세스 (Schwanniomyces) 또는 아르술라 (Arxula) 속에 속하는 것일 수 있으며, 보다 더 구체적으로는 캔디다 뷰티리 (Candida butyri), 캔디다 유틸리스 (Candida utilis), 캔디다 보이디니 (Candida boidinii), 캔디다 알비칸스 (Candida albicans), 클루이베로마이세스 락티스 (Kluyveromyces lactis), 피키아 파스토리스 (Pichia pastoris), 피키아 스티피티스 (Pichia stipitis), 스키조사카로마이세스 폼베 (Schizosaccharomyces pombe), 사카로마이시스 세레비지에 (Saccharomyces cerevisiae), 한세눌라 폴리모르파 (Hansenula polymorpha), 야로이야 리폴리티카 (Yarrowia lipolytica), 슈완니오마이세스 옥시덴탈리스 (Schwanniomyces occidentalis) 또는 아르술라 아데니니보란스 (Arxula adeninivorans)일 수 있으나, 이에 제한되는 것은 아니다.The host cell used for transformation according to the present invention may be any host cell well-known in the art. However, it is possible to use a host having a high efficiency of introduction and expression of the lipase gene of the present invention. For example, , Fungi, yeast. May be the transformed microorganism The specifically yeasts, more specifically, the yeast is Candida (Candida), di berry Oh, my process (Debaryomyces), Hanse Cronulla (Hansenula), Cluj Vero My process (Kluyveromyces), Pichia (Pichia) Schizosaccharomyces , Yarrowia , Saccharomyces , Schwanniomyces , or Arxula , and more specifically, Candida bacterium , which belongs to the genus Schizosaccharomyces , Yarrowia , Saccharomyces , Schwanniomyces or Arxula , Candida butyri , Candida utilis), Candida seems dini (Candida boidinii), Candida albicans (Candida albicans , Kluyveromyces lactis , Pichia < RTI ID = 0.0 > pastoris , Pichia stipitis ), skiing investigation Schizosaccharomyces pombe ), Saccharomyces ( Saccharomyces cerevisiae , Hansenula polymorpha , Yarrowia lipolytica , Schwanniomyces < RTI ID = 0.0 > Occidentalis or Arxula < RTI ID = 0.0 > adeninivorans ), but are not limited thereto.

본 발명에서 일례로, 리파아제 발현에 사용한 GAL10 프로모터는 갈락토스에 의하여 전사가 유도되는 프로모터이지만, GAL80 유전자가 불활성화된 균주에서는 고가의 인듀서인 갈락토스 존재 여부와 관계없이 높은 유전자 발현을 유지할 수 있다. 상기와 같은 이유로 본 발명의 구체적인 일실시예에서는 GAL80 유전자가 불활성화된 균주를 이용하여 리파아제를 발현하였다. For example, in the present invention, the GAL10 promoter used for expression of lipase is a promoter that is transcribed by galactose, but a strain in which GAL80 gene is inactivated can maintain high gene expression regardless of the presence or absence of galactose, which is an expensive inducer. For the above-mentioned reasons, a specific example of the present invention expresses lipase using a strain in which the GAL80 gene is inactivated.

본 발명의 또 다른 하나의 양태는 (i) 상기 형질전환 미생물을 배양하는 단계; 및 (ii) 상기 배양된 미생물 또는 이의 배양 상등액으로부터 리파아제 (lipase)를 회수하는 단계를 포함하는, 리파아제의 제조방법이다.Another aspect of the present invention is a method for producing a transformed microorganism, comprising: (i) culturing the transformed microorganism; And (ii) recovering the lipase from the cultured microorganism or culture supernatant thereof.

형질전환 미생물 및 리파아제에 대하여는 상기 설명한 바와 같다.The transforming microorganism and the lipase are as described above.

상기 형질전환 미생물을 배양하기 위한 배지 및 배양 조건은 숙주 세포에 따라 적절히 선택 이용할 수 있다. 구체적으로는 탄소원으로 포도당이 포함된 YPD 액체배지 (2 % 포도당, 1 % 효모 추출물, 2 % 펩톤)에서 배양하며, 세포 성장 속도에 따라 유가 배양식 배지 (30 % 포도당, 15 % 효모 추출물)를 추가하면서 48 시간 배양하는 것일 수 있으나, 이에 제한되는 것은 아니다.The medium for culturing the transformed microorganism and the culture conditions may be appropriately selected depending on the host cell. Specifically, the cells were cultured in a YPD liquid medium (2% glucose, 1% yeast extract, 2% peptone) containing glucose as a carbon source, and the culture medium (30% glucose, 15% yeast extract) For 48 hours, but not limited thereto.

본 발명의 구체적인 일실시예에서는, 상기 형질전환 미생물을 이용해 유가식 배양을 수행하여, 리파아제를 확보하였다.In a specific embodiment of the present invention, a fed-batch culture is carried out using the above-mentioned transforming microorganism to obtain a lipase.

본 발명의 용어, “유가식 배양”은 생산물의 높은 최종 농도와 생산성을 가지는 배양 방법으로서, 고농도 세포 배양에 매우 자주 이용되며, 초기에 한 번 배지를 채운 후, 새로운 배양액이나 성장 제한 기질 용액 또는 생산물의 전구체 등을 추가로 공급하지만 반응 생성물은 발효조에 남아있게 하는 방법일 수 있다.The term " fed-batch cultivation " of the present invention is a method of culturing having high final concentration and productivity of a product, and is very often used for culturing high-concentration cells. After initially filling the culture medium with a new culture medium, A precursor of the product, etc., but the reaction product may remain in the fermenter.

예를 들어, 이에 제한되는 것은 아니나, 상기 유가식 배양의 바람직한 방법은 50 ㎖의 최소 액체 배지 (0.67 % 아미노산이 결여된 효모 질소원 기질, 0.5 % 카사미노산, 2 % 포도당)에 1 단계 종균 배양한 후, 다시 200 ㎖의 YPD 액체배지에서 배양하여 활성화시킨 후, 본 배양액에 접종하여 30 ℃에서 48 시간 동안 배양하면서 세포 성장 속도에 따라 유가 배양식 배지 (15 % 효모 추출물, 30 % 포도당)를 추가 공급하는 것이다.For example, but not by way of limitation, the preferred method of fed-batch cultivation is a one-step seed culture in 50 ml of minimal liquid medium (yeast nitrogen source substrate lacking 0.67% amino acid, 0.5% casamino acid, 2% glucose) After culturing in 200 ml of YPD liquid medium, the cells were inoculated into the culture medium and cultured at 30 ° C for 48 hours. Then, the medium (15% yeast extract, 30% glucose) was added according to the cell growth rate Supply.

본 발명의 또 다른 하나의 양태는 상기 리파아제를 유지 및 알콜과 반응시키는 단계를 포함하는, 바이오디젤의 제조방법이다.Another embodiment of the present invention is a method for producing biodiesel comprising the step of reacting the lipase with a solvent and an alcohol.

상기 리파아제는 이에 제한되지는 않으나, 구체적으로는 자유로운 형태 또는 고정화된 형태로 사용할 수 있으며, 보다 구체적으로는 고정화된 형태로 사용할 수 있다. 상기 리파아제의 고정화는 당업계에서 통상적으로 사용하는 다양한 방법을 사용할 수 있으며, 이에 제한되지 않는 다양한 응용이 가능하다. 예를 들어, 흡착법, 포괄법 등의 물리적인 방법 및 공유결합법, 가교연결방법 등의 화학적인 방법을 사용할 수 있다.The lipase is not limited thereto, but it can be used in a free form or immobilized form, and more specifically, it can be used in a fixed form. Immobilization of the lipase can be performed by various methods commonly used in the art, and various applications are possible without limitation. For example, physical methods such as an adsorption method and an inclusion method, and chemical methods such as a covalent bonding method and a crosslinking method can be used.

본 발명의 구체적인 일 실시예에서는 고정화 흡착 담체로서 Lewatit VP OC 1600 (Bayer)을 이용하여 재조합 대량생산된 CBLIP2를 고정화하였다 (도 19).In one specific embodiment of the present invention, recombinant mass-produced CBLIP2 was immobilized using Lewatit VP OC 1600 (Bayer) as the immobilized adsorption carrier (FIG. 19).

상기 유지는 이에 제한되지는 않으나, 구체적으로는 천연유지, 가공유지 및 폐유지 중에서 선택된 것을 사용할 수 있고, 보다 구체적으로는 대두유, 채종유, 팜유 등을 사용할 수 있다.More specifically, soybean oil, rapeseed oil, palm oil, etc. may be used, although the oil is not limited thereto. Specifically, natural oil, processed oil and lung oil may be used.

상기 알콜은 이에 제한되지는 않으나, 구체적으로는 탄소 수가 2 개 내지 8 개인 알콜을 사용할 수 있고, 보다 구체적으로는 탄소 수가 2 개 내지 4 개인 알콜을 사용할 수 있으며, 더욱 구체적으로는 에탄올, 메탄올, 1-프로판올, 이소-프로판올, 1-부탄올, 2-부탄올, 이소-부탄올 또는 테르-부탄올 등을 사용할 수 있다. 상기 알콜은 당업계에 공지된 다양한 공급 방식을 이용하여 공급할 수 있으며, 여러 단계에 걸쳐서 공급하거나 연속적으로 공급하는 방식을 이용할 수 있으며, 구체적으로는 연속적으로 공급하는 방식을 이용할 수 있다.More specifically, alcohols having 2 to 4 carbon atoms can be used. More specifically, alcohols having 2 to 8 carbon atoms can be used, and more specifically, ethanol, methanol, 1-propanol, iso-propanol, 1-butanol, 2-butanol, iso-butanol or ter-butanol. The alcohol may be supplied in various feeding methods known in the art, and may be supplied in several steps or continuously. In this case, a continuous feeding method may be used.

본 발명의 리파아제를 포함하는 형질전환 미생물을 이용하여 리파아제를 대량 생산할 수 있으며, 상기 리파아제는 바이오디젤의 경제적 생산에 널리 활용될 수 있다.The transformant microorganism including the lipase of the present invention can be used to mass produce lipase, and the lipase can be widely used for the economical production of biodiesel.

도 1은 부숙된 EFB샘플로부터 순수분리된 효모균주들의 사진이다.
도 2는 분리된 효모들의 리파아제 활성을 트리뷰티린 (tributyrin) 배지에서 투명환을 통하여 확인한 사진이다.
도 3은 캔디다 뷰티리 SH-14 균주의 전체 유전체 분석 결과이다.
도 4는 캔디다 뷰티리 SH-14 균주 유래의 리파아제 유전자를 사카로마이세스 세레비지에 분비융합인자 함유 벡터에 생체 내 재조합 (in vivo recombiantion)을 통해 클로닝하는 과정을 나타낸 것이다.
도 5는 사카로마이세스 세레비지에 균주 24 종에서 발현되어 세포 밖으로 분비된 캔디다 뷰티리 SH-14 균주 유래의 CBLIP2 단백질을 SDS-PAGE로 분석한 결과를 나타내는 전기영동 사진이며, 이로부터 선별된 4 종의 균주 (ST11, 13, 19, 23)에서 발현된 CBLIP2 단백질을 endo-H 처리 전후를 비교한 결과이다.
도 6은 사카로마이세스 세레비지에 균주 24 종에서 발현되어 세포 밖으로 분비된 캔디다 뷰티리 SH-14 균주 유래의 CBLIP5 단백질을 SDS-PAGE로 분석한 결과를 나타내는 전기영동 사진이다. Endo-H 처리 전후를 비교하였다.
도 7은 사카로마이세스 세레비지에 균주 24 종에서 발현되어 세포 밖으로 분비된 캔디다 뷰티리 SH-14 균주 유래의 CBLIP7 단백질을 SDS-PAGE로 분석한 결과를 나타내는 전기영동 사진이다. Endo-H 처리 전후를 비교하였다.
도 8은 사카로마이세스 세레비지에 균주 24 종에서 발현되어 세포 밖으로 분비된 캔디다 뷰티리 SH-14 균주 유래의 CBLIP2 리파아제의 기질 별 활성을 나타내는 그래프이다.
도 9는 사카로마이세스 세레비지에 균주 24 종에서 발현되어 세포 밖으로 분비된 캔디다 뷰티리 SH-14 균주 유래의 CBLIP5 리파아제의 기질 별 활성을 나타내는 그래프이다.
도 10은 사카로마이세스 세레비지에 균주 24 종에서 발현되어 세포 밖으로 분비된 캔디다 뷰티리 SH-14 균주 유래의 CBLIP7 리파아제의 기질 별 활성을 나타내는 그래프이다.
도 11은 캔디다 뷰티리 SH-14 균주 유래의 리파아제 유전자를 포함하는 재조합 벡터로 형질전환된 사카로마이세스 세레비지에 균주를 5 L 발효조에서 유가식 발효하여 시간 별로 취한 배지를 SDS-PAGE로 분석한 결과를 나타내는 전기영동사진 (상단) 및 각 시간 별 세포 세포성장과 리파아제의 활성을 측정한 결과를 나타내는 그래프이다 (하단).
도 12는 재조합 리파아제 정제를 위한 이온 교환 크로마토그래피를 통해 얻은 정제 분획 (a)에 대한 단백질을 SDS-PAGE로 분석한 결과를 나타내는 전기영동사진 (b) 및 각 분획 별 리파아제 활성을 투명환을 통하여 본 사진이다 (c).
도 13은 정제된 리파아제의 온도에 대한 영향을 나타내는 그래프이다.
도 14는 정제된 리파아제의 pH에 대한 영향과 안정성을 나타내는 그래프이다.
도 15는 정제된 리파아제의 금속 이온 (a), 억제제 및 계면활성제 (b), 및 용매 (c)에 대한 영향을 확인한 그래프이다.
도 16은 정제된 리파아제의 탄소 수에 따른 기질 특이성을 나타낸 것이다.
도 17은 캔디다 뷰티리 균주 유래의 CBLIP5 리파아제의 CTG 코돈을 나타내는 서열분석 결과이다.
도 18은 캔디다 뷰티리 균주 유래의 CBLIP5 리파아제의 CTG 코돈의 치환 전과 치환 후의 단백질 발현을 SDS-PAGE로 분석한 결과를 나타내는 전기영동 사진 (a) 및 리파아제 활성을 나타내는 그래프 (b)이다.
도 19는 CBLIP2 리파아제를 흡착 담체에 고정화시키면서 시간에 따른 잔여 활성을 나타낸 것이다.
도 20은 수분 함량에 따른 지방산 메틸 에스터의 전환율을 나타낸 것이다.
Figure 1 is a photograph of the yeast strains isolated pure from the composted EFB sample.
Fig. 2 is a photograph showing the lipase activity of the isolated yeasts through a transparent ring in a tributyrin medium.
Fig. 3 shows the result of a total genome analysis of Candida buttery SH-14 strain.
Fig. 4 shows a process of cloning a recombinant gene derived from Candida buttery SH-14 strain into a vector containing secretory fusion factor in Saccharomyces cerevisiae via in vivo recombination.
FIG. 5 is an electrophoresis image showing the result of SDS-PAGE analysis of CBLIP2 protein derived from Candida buttery SH-14 strain which was expressed in 24 strains of Saccharomyces cerevisiae and secreted out of the cell. The results of comparing CBLIP2 protein expressed in four strains (ST11, 13, 19, 23) before and after endo-H treatment.
6 is an electrophoresis image showing the result of SDS-PAGE analysis of CBLIP5 protein derived from Candida buttery SH-14 strain which was expressed in 24 strains of Saccharomyces cerevisiae and secreted out of the cell. Before and after Endo-H treatment.
FIG. 7 is an electrophoresis image showing the result of SDS-PAGE analysis of CBLIP7 protein derived from Candida buttery SH-14 strain which was expressed in 24 strains of Saccharomyces cerevisiae and secreted out of the cell. Before and after Endo-H treatment.
8 is a graph showing the activity of CBLIP2 lipase derived from Candida buttery SH-14 strain secreted from Saccharomyces cerevisiae in 24 strains and secreted out of the cell by substrate.
9 is a graph showing the activity of CBLIP5 lipase derived from Candida albicile SH-14 strain expressed in 24 strains of Saccharomyces cerevisiae and secreted out of the cells by substrate.
10 is a graph showing the activity of CBLIP7 lipase derived from Candida buttery SH-14 strain expressed in 24 strains of Saccharomyces cerevisiae and secreted out of the cell by substrate.
Fig. 11 is a graph showing the results of SDS-PAGE analysis of the medium obtained by fermenting the fermented product in Saccharomyces cerevisiae transformed with a recombinant vector containing the lipase gene derived from Candida buttery SH-14 strain in a 5 L fermenter, (Top), and graphs showing cell cell growth and activity of lipase at each time (bottom).
FIG. 12 shows electrophoresis (b) and SDS-PAGE analysis of the protein of the purified fraction (a) obtained through ion exchange chromatography for purification of recombinant lipase, and the lipase activity of each fraction This is the picture (c).
13 is a graph showing the effect of the purified lipase on the temperature.
14 is a graph showing the influence and stability of the purified lipase on the pH.
15 is a graph showing the effect of the purified lipase on the metal ion (a), the inhibitor, the surfactant (b), and the solvent (c).
Figure 16 shows the substrate specificity according to the number of carbons of the purified lipase.
Fig. 17 is a sequence analysis result showing the CTG codon of CBLIP5 lipase derived from Candida butterybird strain.
FIG. 18 is a graph (a) showing electrophoresis (a) and a graph (b) showing the activity of lipase, showing the results of SDS-PAGE analysis of protein expression before and after substitution of the CTG codon of CBLIP5 lipase derived from Candida buttery.
Figure 19 shows the residual activity over time while immobilizing CBLIP2 lipase on the adsorbent carrier.
20 shows the conversion of fatty acid methyl ester to water content.

이하 본 발명을 실시예에 의해 보다 상세하게 설명한다. 그러나 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로, 본 출원의 범위가 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. However, these embodiments are for illustrative purposes only, and the scope of the present application is not limited to these embodiments.

실시예1Example 1 . 리파아제 활성 (Lipase activity)을 나타내는 신규 . New < RTI ID = 0.0 > 효모균주의Yeast caution 분리 및 동정 Isolation and identification

리파아제 활성을 나타내는 신규 효모 균주를 분리하기 위하여, 본 발명자들은 말레이시아에서부터 팜유를 회수하고 남은 EFB (empty fruit bunch) 샘플을 이용하여 한국생명공학연구원 토양에서 50 일간 부숙한 후, 부숙된 EFB 샘플 10 g을 50 ㎖ 코니칼 튜브 (cornical tube)에 40 ㎖의 멸균 증류수와 함께 넣고 한 시간 동안 볼텍스 (vortex)를 이용하여 섞어주었다. 이 후 상등액을 1 ㎖ 취하여 계열희석법으로 희석하여 이 시료를 YPDPS (1 L 당 효모 추출물 10 g, 펩톤 20 g, 포도당 20 g 및 항생제 (페니실린/스트렙토마이신 50 mg)) 배지에 도말하여 30 ℃에서 36 시간 동안 배양 하였다. 효모 균주 분리에 이용한 배지는 박테리아를 저해하기 위하여 박테리아 항생제를 포함한 배지를 이용하였다. 그 후, 곰팡이 포자 형태가 아닌 불투명하고 매끈한 효모 형태의 콜로니를 생성하는 표현형이 다른 효모 균주를 여러 종 확보하였다 (도 1). 분리된 미생물 콜로니의 리파아제 활성을 확인하기 위하여 YPT (1 L 당 효모 추출물 10 g, 펩톤 20 g, 트리뷰티린 10 g) 배지에 점적하여 30 ℃에서 일주일간 배양하여 투명환을 제일 크게 지니는 균주를 선발하였다 (도 2). 이 중 가장 우수한 리파아제 활성을 갖는 14 번 균주를 SH-14로 명명하고, 부다페스트 조약 하의 국제기탁기관인 한국생명공학연구원 생물자원센터 (Korea Collection for Type Culture; KCTC)에 2016년 3월 4일자로 기탁하고, 수탁번호 KCTC18455P를 부여받았다.In order to isolate new yeast strains exhibiting lipase activity, we resuscitated for 50 days in Korea Biotechnology Research Institute using an empty fruit bunch (EFB) sample from which the palm oil was recovered from Malaysia and then harvested 10 g of the inoculated EFB sample Were placed in a 50 ml cornical tube with 40 ml of sterile distilled water and mixed for one hour using a vortex. 1 ml of the supernatant was diluted by the series dilution method and the sample was plated on YPDPS (10 g yeast extract, 10 g of peptone, 20 g of glucose, 50 g of antibiotic (penicillin / streptomycin 50 mg) And cultured for 36 hours. The medium used for the isolation of yeast strains was a medium containing a bacterial antibiotic to inhibit the bacteria. Thereafter, a variety of yeast strains of different phenotype producing opaque and smooth yeast-type colonies instead of mold spores were obtained (Fig. 1). To confirm the lipase activity of the isolated microorganism colonies, the strain was added to the medium of YPT (10 g of yeast extract per liter, 20 g of peptone, 10 g of trivitilin) and cultured at 30 ° C for one week to obtain a strain having the largest transparency (Fig. 2). The 14th strain with the best lipase activity was designated as SH-14 and deposited on March 4, 2016 in the Korea Collection for Type Culture (KCTC), an international depository organization under the Budapest Treaty And received grant number KCTC18455P.

상기 SH-14 균주의 종 분석을 위하여, 균주를 3 ㎖ YPDPS 액체 배지로 30 ℃에서 180 rpm으로 48 시간 동안 진탕배양하였다. 그 다음, 원심분리하여 세포만을 회수하여, YeaStar™ Genomic DNA Kit (Zymo Research, Orange, CA)를 사용하여 유전체 DNA (genomic DNA)를 추출하였다. 상기 추출된 DNA에서 진핵세포 미생물의 진화 계통연구에 가장 유용한 분자마커로 이용되고 있는 ribosomal ITS (internal transcribed spacer) region의 염기서열을 분석하기 위하여 프라이머 ITS1 (5'-TCCGTAGGTG AACCTGCGG-3', 서열번호 1)과 ITS4 (5'-TCCTCCGCTTATTGATATGC-3', 서열번호 2)를 이용하여 PCR 기법을 이용하여 염기서열을 증폭시켰다. 상기 PCR 반응 후 2 ㎕의 반응액을 취하여 아가로스 겔에서 전기영동을 이용하여 분석한 결과, 약 580 bp 크기의 단편이 증폭되었고, 이를 MN 사의 PCR clean-up, gel extraction kit (Macherey-Nagel, Duren, Germany)를 이용하여 PCR 산물을 정제하였다. 그 다음 상기 정제된 PCR 산물의 염기서열을 분석하였다 (제노텍사, 서열번호 3). 이와 같이 분석된 염기서열은 동정을 위하여 National Center for Biotechnology Information (NCBI)에서 제공하는 BLAST (Basic Local Alignment Search Tool) 프로그램을 이용하여 공지된 염기서열들과 비교하였다. 그 결과, 캔디다 뷰티리 (Candida butyri)와 99.0 %의 상동성을 나타내었다.For strain analysis of the SH-14 strain, the strain was shake-cultured at 30 DEG C and 180 rpm in a 3 mL YPDPS liquid medium for 48 hours. Then, only the cells were recovered by centrifugation, and genomic DNA was extracted using YeaStar ™ Genomic DNA Kit (Zymo Research, Orange, Calif.). In order to analyze the nucleotide sequence of the ribosomal ITS (internal transcribed spacer) region used as a molecular marker most useful for the evolutionary pathway of eukaryotic microorganisms in the extracted DNA, primers ITS1 (5'-TCCGTAGGTG AACCTGCGG-3 ' 1) and ITS4 (5'-TCCTCCGCTTATTGATATGC-3 ', SEQ ID NO: 2). After the PCR reaction, 2 μl of the reaction solution was analyzed by agarose gel electrophoresis. As a result, a fragment of about 580 bp was amplified and PCR clean-up and gel extraction kit (Macherey-Nagel, Duren, Germany) was used to purify the PCR product. The base sequence of the purified PCR product was then analyzed (Genotex, SEQ ID NO: 3). The nucleotide sequences thus identified were compared with known nucleotide sequences using the BLAST (Basic Local Alignment Search Tool) program provided by National Center for Biotechnology Information (NCBI). As a result, it showed 99.0% homology with Candida butyri .

[캔디다 뷰티리 SH-14의 ITS region의 염기서열-서열번호 3][Sequence of the ITS region of Candida buttery SH-14 - SEQ ID NO: 3]

agaaaaaatattcttgccgcgcttactgcgcggcgagaataacaccttacacacagtggattttttttaaaagaactattgcgtttggcttggctaacgctgggccagaggattcagtaaacttcaatttttaattgaattgttattttaatatttttgtcaatttgtttgattaaattcaaaataatcttcaaaactttcaacaacggatctcttggttctcgcatcgatgaagaacgcagcgaaatgcgataagtaatatgaattgcagattttcgtgaatcatcgaatctttgaacgcacattgcgccttatggtattccataaggcatgcctgtttgagcgtcatttctctctcaaacctttgggtttggtattgagtgatactcttagtcggactaggcgtttgcttgaaaagtattggcaagagtgtactggatagtactaactggttattcaatgtattaggtttatccaactcgttgaagtgctggtggtaaatttctagtaacggctcggccttacaacaacaaacaagtttgacctcnaatcaggtaagaatacccgctgaacttaagcatatcagaaaaaatattcttgccgcgcttactgcgcggcgagaataacaccttacacacagtggattttttttaaaagaactattgcgtttggcttggctaacgctgggccagaggattcagtaaacttcaatttttaattgaattgttattttaatatttttgtcaatttgtttgattaaattcaaaataatcttcaaaactttcaacaacggatctcttggttctcgcatcgatgaagaacgcagcgaaatgcgataagtaatatgaattgcagattttcgtgaatcatcgaatctttgaacgcacattgcgccttatggtattccataaggcatgcctgtttgagcgtcatttctctctcaaacctttgggtttggtattgagtgatactcttagtcggactaggcgtttgcttgaaaagtattggcaagagtgtactggatagtactaactggttattcaatgtattaggtttatccaactcgttgaagtgctggtggtaaatttctagtaacggctcggccttacaacaacaaacaagtttgacctcnaatcaggtaagaatacccgctgaacttaagcatatc

실시예2Example 2 . 신규 효모 캔디다 . New yeast candy 뷰티리Beauty Lee SHSH -14의 전체 유전체 분석과 리파아제 유전자의 탐색-14 whole genome analysis and exploration of lipase gene

신규 효모 캔디다 뷰티리 (Candida butyri) SH-14는 상기 실시예 1을 통해 리파아제를 생산하는 유용 효모 균주임을 확인하였으나, 유전체 관한 정보가 미미하기에 전체 유전체 분석을 하고자 하였다. 전체 유전체 분석은 Illumina 1.9로 염기서열을 얻고, 얻어진 염기서열을 드노보 조립 (De novo assembly)하고, 효모 유전체 어노테이션 파이프라인 (Yeast Genome Annotation Pipeline)을 이용하여 유전자를 어노테이션 (annotation)하였다. 분석 결과, 캔디다 뷰티리 (Candida butyri) SH-14의 전체 유전체 크기는 10,901,820 bp로 원형 염색체 (circular chromosome)로 구성되어있고, 평균 G+C 컨텐츠는 34 % 이며, 전체 콘티그 (Total contig)는 101 개로써 양질의 유전자 서열을 얻을 수 있었다 (도 3). New yeast Candida butyri ) SH-14 was found to be a useful yeast strain for producing lipase through the above Example 1. However, since the information about the genome was insignificant, the whole genome was analyzed. The whole genome was analyzed by obtaining nucleotide sequence with Illumina 1.9, de novo assembly of the obtained nucleotide sequence, and annotation of the gene using Yeast Genome Annotation Pipeline. As a result of the analysis, Candida butyri SH-14 has a total genome size of 10,901,820 bp, consisting of a circular chromosome with an average G + C content of 34% and a total contig of 101, (Fig. 3).

전체 유전자 분석을 통하여 얻어진 염기서열 중 캔디다 뷰티리 (Candida butyri) SH-14의 리파아제의 서열을 얻고자, 어노테이션 (annotation) 된 단백질 중에 8 개의 리파아제로 예상되는 단백질 서열을 찾았고 (표 1, 서열번호 4 내지 11), 상기 8 개의 단백질 서열을 근간으로 하여 전체 유전체의 분석된 파일 중에서 대응하는 염기서열을 찾았다 (표 2, 서열번호 12 내지 19). Among the nucleotide sequences obtained through whole gene analysis, Candida butyri In order to obtain the sequence of the lipase of SH-14, a protein sequence predicted to be eight lipases among the annotated proteins was found (Table 1, SEQ ID NOS: 4 to 11), and based on the above eight protein sequences, (Table 2, SEQ ID NOS: 12 to 19). ≪ tb >< TABLE >

예상 리파아제의 아미노산 서열The amino acid sequence of the predicted lipase 유전자gene 설명Explanation 아미노산 서열Amino acid sequence 서열번호SEQ ID NO: LIP1LIP1 triacylglycerol lipase precursor트리아클리칼 로 lipase precursor mklstflsasiifwratetastplsprsgdnvpkdyqklkdyanlvsfayckelipsklgsndsncpilrcqeeeyknievlnlfdfndfgsigsgytgidhqnkriilafrgtstnrdwlaninvpfkkynplsnlqlkadiecegckvhkgfyefiekhcvalikqvaqlkqkypdyqlvvlghslggvfallsgmefllmdfqplvityaspkvgnkamvrfidqlfetskvaqqsqndydfnhgyirvvhnydmvpmlpprelgyyhggveyhieksnlphnpdsvhnrgqnhfssnkdegpvekleriatslvlvftskehtqyfipitgckdmklstflsasiifwratetastplsprsgdnvpkdyqklkdyanlvsfayckelipsklgsndsncpilrcqeeeyknievlnlfdfndfgsigsgytgidhqnkriilafrgtstnrdwlaninvpfkkynplsnlqlkadiecegckvhkgfyefiekhcvalikqvaqlkqkypdyqlvvlghslggvfallsgmefllmdfqplvityaspkvgnkamvrfidqlfetskvaqqsqndydfnhgyirvvhnydmvpmlpprelgyyhggveyhieksnlphnpdsvhnrgqnhfssnkdegpvekleriatslvlvftskehtqyfipitgckd 44 LIP2LIP2 LIP-domain-
containing protein
LIP-domain-
containing protein
micsffrlltivtlviaapttlvpptedpfytapkgfesaelgtvlayrntpapirsiyfevniknswqllvrssdsfgnpsvvvttvfepfnadpsklvsyqvaqdsayldcspsysfmnggglstinnqietvliqtaldqgyyvvspdyeglksaftggiqaghgtldsirgalsssnitgvkkdadtilwgysggslasgwaaalqptyapelasnllgvalggwvtnitatitsvsgtifsglgamgmaglsneytdlygylktampadkyeeftkaysicaaealieynfddwfegedryftdgfkvlneeptysiirnntlgliagqmpeipvfvyhgtldqivpydqaervydiwcdagiksfefatdltaghitelvqgsgaafgwikgmfegtkkpvsgcrktprisnllypgtvrsvtdvvgalldnilgfdigpngenlivennsviskanstrsemicsffrlltivtlviaapttlvpptedpfytapkgfesaelgtvlayrntpapirsiyfevniknswqllvrssdsfgnpsvvvttvfepfnadpsklvsyqvaqdsayldcspsysfmnggglstinnqietvliqtaldqgyyvvspdyeglksaftggiqaghgtldsirgalsssnitgvkkdadtilwgysggslasgwaaalqptyapelasnllgvalggwvtnitatitsvsgtifsglgamgmaglsneytdlygylktampadkyeeftkaysicaaealieynfddwfegedryftdgfkvlneeptysiirnntlgliagqmpeipvfvyhgtldqivpydqaervydiwcdagiksfefatdltaghitelvqgsgaafgwikgmfegtkkpvsgcrktprisnllypgtvrsvtdvvgalldnilgfdigpngenlivennsviskanstrse 55
LIP3LIP3 alpha/beta-hydrolasealpha / beta-hydrolase mamlmllfflfeiacgniwvypgshqksgeeertpvpidievyrnmftyahlidisycissttrleepfncdlncekrfpnvtlvyqwyfddsvcgyiattysnifnyeseegkghkktiivslrgtrsifdsytdikvdmvnyynygsniqecgtdckvhrgfykyyintllkiegilrnelqtdddyellivghslggavglllglyyldegfdkitlvtmgqplvgnkqfaefvdnvmgsrlpiehntfnrkffrvihkddivatipsnnrildsysqfdnqiylnclasdtmpsleqvldcfdgdnpqcisgdienyllshnylqihttyfrsmglcgirimamlmllfflfeiacgniwvypgshqksgeeertpvpidievyrnmftyahlidisycissttrleepfncdlncekrfpnvtlvyqwyfddsvcgyiattysnifnyeseegkghkktiivslrgtrsifdsytdikvdmvnyynygsniqecgtdckvhrgfykyyintllkiegilrnelqtdddyellivghslggavglllglyyldegfdkitlvtmgqplvgnkqfaefvdnvmgsrlpiehntfnrkffrvihkddivatipsnnrildsysqfdnqiylnclasdtmpsleqvldcfdgdnpqcisgdienyllshnylqihttyfrsmglcgiri 66 LIP4LIP4 LIP-domain-
containing protein
LIP-domain-
containing protein
mmittrilvcfalialtfaapltvlkpsedefyaapdgfedeklgtilkwrktpyqiksiyfpvniknswqllvrsedaignpvavtaslfepyngntsrlvsyqvaedsasfdcapsysfvgggyhtvvakaemiliqgaldqgyyvvapdyegpnavftagvtsgmstinvlravlgegrrnetridpdaevvlwgysggtipsgwaxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxaeivdgtlfsglvpaalnglsaqyeemdeaidkflkpnklekfrsgrnecaidvvfsfayqdtfsgfdtyskdgwtilddpdvrdilaentlgvnvtkkfkpeiplfvyhgildeivpfkdaqrvydvwceegydsfefavsnstghileviegsaaglkwisdrfdgvqptkgchrqtrltnlfypglftgvtdilsalmrnifgspiglydeqiekrsdmsedekllkrlfeftdseifkrivqhsypemakkldlmmittrilvcfalialtfaapltvlkpsedefyaapdgfedeklgtilkwrktpyqiksiyfpvniknswqllvrsedaignpvavtaslfepyngntsrlvsyqvaedsasfdcapsysfvgggyhtvvakaemiliqgaldqgyyvvapdyegpnavftagvtsgmstinvlravlgegrrnetridpdaevvlwgysggtipsgwaxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxaeivdgtlfsglvpaalnglsaqyeemdeaidkflkpnklekfrsgrnecaidvvfsfayqdtfsgfdtyskdgwtilddpdvrdilaentlgvnvtkkfkpeiplfvyhgildeivpfkdaqrvydvwceegydsfefavsnstghileviegsaaglkwisdrfdgvqptkgchrqtrltnlfypglftgvtdilsalmrnifgspiglydeqiekrsdmsedekllkrlfeftdseifkrivqhsypemakkldl 77
LIP5LIP5 LIP-domain-
containing protein
LIP-domain-
containing protein
miltnllvyfsliacticapmtilkpseddfytapdgfedeklgtilkwrktpyqiksiyfpvniknswqllvrsedaignpvavtaslfepyngntsrlvsyqvaedsasfdcapsysfvgggyhtvvakaemiliqgaldqgyyvvapdyegpnaaftagitsgmstinvlravlsdqrsnetridsdaevvlwgysggtipsgwaasmapwyakdindnlkgaamggwvtnitataeivegslfeglvaaainglaqqyeeinealdvylvpdkletfrsaknecvidvvfsfayqsafsgsdpytldgwgvledpkvkkivnqntlglnvtekfkpeiplfvyhgildeivpfkdaqrvydvwckeginsfefavsnstghllevlegsgaalkwisdrfdgvaptkgchrqtrlsnifypglftgisdilsalvrnvmgspiglydeqvekrsdvtedekllkrlfaytdeeifrrildnsypdmaqnlgymiltnllvyfsliacticapmtilkpseddfytapdgfedeklgtilkwrktpyqiksiyfpvniknswqllvrsedaignpvavtaslfepyngntsrlvsyqvaedsasfdcapsysfvgggyhtvvakaemiliqgaldqgyyvvapdyegpnaaftagitsgmstinvlravlsdqrsnetridsdaevvlwgysggtipsgwaasmapwyakdindnlkgaamggwvtnitataeivegslfeglvaaainglaqqyeeinealdvylvpdkletfrsaknecvidvvfsfayqsafsgsdpytldgwgvledpkvkkivnqntlglnvtekfkpeiplfvyhgildeivpfkdaqrvydvwckeginsfefavsnstghllevlegsgaalkwisdrfdgvaptkgchrqtrlsnifypglftgisdilsalvrnvmgspiglydeqvekrsdvtedekllkrlfaytdeeifrrildnsypdmaqnlgy 88
LIP6LIP6 LIP-domain-
containing protein
LIP-domain-
containing protein
mlittkilvyfaliiltsaapmtilkpsedefyaapdgfedeklgtilkwrktpyqiksiyfpvniknswellvrsedaigdpvavtatifepynanssrlvsyqvaedspsfncspsyafvgggyptvvtkaemiliqsalnegyyvvvpdyegpnavfgvgvtsamstinvlravlsdqrrnetridsdaevvlwgysggtipsswaasmapwyakdinqhligaalggwvsnltalmeivegslfeglvpniinglsqqfeeindafddylypskrekfrstkkqcvfdaclsfafqstflgdhpyvkgkwsvleeakvknilenntlglkvtkkfkpeipifafhgikdeivpfkdsqrlydvwceeginsfefavskssghllevvegsgaalawisdrfrgipavkgcerkerltnlfypglfssvsnilmalirnimgspiglydeqakkrsgsteeeiimkrlleytdeeiyrriiethsdmfmlittkilvyfaliiltsaapmtilkpsedefyaapdgfedeklgtilkwrktpyqiksiyfpvniknswellvrsedaigdpvavtatifepynanssrlvsyqvaedspsfncspsyafvgggyptvvtkaemiliqsalnegyyvvvpdyegpnavfgvgvtsamstinvlravlsdqrrnetridsdaevvlwgysggtipsswaasmapwyakdinqhligaalggwvsnltalmeivegslfeglvpniinglsqqfeeindafddylypskrekfrstkkqcvfdaclsfafqstflgdhpyvkgkwsvleeakvknilenntlglkvtkkfkpeipifafhgikdeivpfkdsqrlydvwceeginsfefavskssghllevvegsgaalawisdrfrgipavkgcerkerltnlfypglfssvsnilmalirnimgspiglydeqakkrsgsteeeiimkrlleytdeeiyrriiethsdmf 99
LIP7LIP7 LIP-domain-
containing protein
LIP-domain-
containing protein
mfkqlfllfsllifaltlptglvppsqdsfysaptgfesaelgtilkfrpspapirsvyfkvkiksswqllvrssdsfgnpsvivttvfepfnadpsklisyqvaqdsasndcspsyafmdgggfetvtsqaemlliqtaldqgyyvvspdyeglkavytggiqsghgtldsltaaltsknitginsdaksilwgysggalaagwaaalqptyapdlkqsllgaalggfvtnvtatvtavnggpfsglvgmgiaglsneypelkdylkeqmypdkyeqfqeiyglctaegalkfaftdyfngpnkyvngigvlanepaasilknntlglvpsqvpdiplfvyhgvidslvpyketervyntwcdegiesfelaadltaghltevlqgsgaafgwitkrfdgkapisgcrktkrltnllypgtvgsvtnlisalftnvlggdigpngesmkpgnseldhffhinmfkqlfllfsllifaltlptglvppsqdsfysaptgfesaelgtilkfrpspapirsvyfkvkiksswqllvrssdsfgnpsvivttvfepfnadpsklisyqvaqdsasndcspsyafmdgggfetvtsqaemlliqtaldqgyyvvspdyeglkavytggiqsghgtldsltaaltsknitginsdaksilwgysggalaagwaaalqptyapdlkqsllgaalggfvtnvtatvtavnggpfsglvgmgiaglsneypelkdylkeqmypdkyeqfqeiyglctaegalkfaftdyfngpnkyvngigvlanepaasilknntlglvpsqvpdiplfvyhgvidslvpyketervyntwcdegiesfelaadltaghltevlqgsgaafgwitkrfdgkapisgcrktkrltnllypgtvgsvtnlisalftnvlggdigpngesmkpgnseldhffhin 1010
LIP8LIP8 hypothetical protein CANTEDRAFT_108669hypothetical protein CANTEDRAFT_108669 mhmhidepvhkylspmhkhpfpmtfipflvaffmtyectvshsyqflvythkptfekmtqnlnlrnhhkqmtknnerwspirwvlglalvttvvlyihggnifkesedyisnqvmeaadlqgdsfrlkhifqhgagseyyrvhrrlditeeylsrtgldevameadttdvssnsledvyaqndwplafqghnpwnmkmpvrssnhkakirrlterhtpgfldsyldyaievkgnpqklnminlqwdeeedlilpdvhdkeslvmlalmssnayvkfpkddnekkksdwrdvgepwepdenntdiefgwdgdgvrghvfvnevnntvvialkgtsgagipgagedettnndklndnllflcccarvsylwttvcdcyekaytcnqdclekeltrkdryyqaaleiyrnvssiypsnqykiwltghslggslaslvgrtyglpvvafeapgellatqrlhlpqppgypkymehiyhigntadpifmgvcngvsstcnaagyametachtgklcvydvvtdrgwsvnvlnhrihtvvdeiilkynttaecveqppcrdcfnwryvthdddeddepklpnpliphishhstatksqgpshtaydsissssssgssspsssklpekqkclkrtwygwcrewgpadgegdqfmhmhidepvhkylspmhkhpfpmtfipflvaffmtyectvshsyqflvythkptfekmtqnlnlrnhhkqmtknnerwspirwvlglalvttvvlyihggnifkesedyisnqvmeaadlqgdsfrlkhifqhgagseyyrvhrrlditeeylsrtgldevameadttdvssnsledvyaqndwplafqghnpwnmkmpvrssnhkakirrlterhtpgfldsyldyaievkgnpqklnminlqwdeeedlilpdvhdkeslvmlalmssnayvkfpkddnekkksdwrdvgepwepdenntdiefgwdgdgvrghvfvnevnntvvialkgtsgagipgagedettnndklndnllflcccarvsylwttvcdcyekaytcnqdclekeltrkdryyqaaleiyrnvssiypsnqykiwltghslggslaslvgrtyglpvvafeapgellatqrlhlpqppgypkymehiyhigntadpifmgvcngvsstcnaagyametachtgklcvydvvtdrgwsvnvlnhrihtvvdeiilkynttaecveqppcrdcfnwryvthdddeddepklpnpliphishhstatksqgpshtaydsissssssgssspsssklpekqkclkrtwygwcrewgpadgegdqf 1111

Figure 112016026351839-pat00001
Figure 112016026351839-pat00001

Figure 112016026351839-pat00002
Figure 112016026351839-pat00002

Figure 112016026351839-pat00003
Figure 112016026351839-pat00003

Figure 112016026351839-pat00004
Figure 112016026351839-pat00004

Figure 112016026351839-pat00005
Figure 112016026351839-pat00005

Figure 112016026351839-pat00006
Figure 112016026351839-pat00006

Figure 112016026351839-pat00007
Figure 112016026351839-pat00007

Figure 112016026351839-pat00009
Figure 112016026351839-pat00009

실시예Example 3.  3. 단백질융합인자Protein fusion factor ( ( TFPTFP ) 도입을 통한 리파아제 분비 발현 및 활성 확인) To confirm expression of lipase and its activity

앞서 전체 유전자 탐색을 통해 얻어진 캔디다 뷰티리 SH-14 균주 유래의 리파아제 유전자 8 개를 사카로마이세스 세레비지애 (Saccharomyces cerevisiae)에서 발현시키고자 하였다. 먼저, 자체 분비 시그널이 없는 리파아제 유전자를 얻기 위하여 프라이머 STFPL1-F 내지 8-F (표 3, 서열번호 20 내지 27)와 STFPL1-R 내지 8-R (표 3, 서열번호 28 내지 35)를 이용하여 1 차 중합효소 연쇄반응으로 각각의 유전자를 얻고, 여기에 효모 벡터 말단과 상보적인 서열을 도입하기 위하여 프라이머 LNK39 (표 3, 서열번호 36) 및 GT50R (표 3, 서열번호 37)을 이용하여 2 차 중합효소 연쇄반응을 수행하여 벡터와 세포 내 재조합 (in vivo recombination)이 가능한 유전자를 제작하였다.Eight lipase genes derived from Candida bauterii SH-14 strain obtained through the entire gene search were obtained from Saccharomyces cerevisiae S. cerevisiae . First, primers STFPL1-F to 8-F (Table 3, SEQ ID Nos. 20 to 27) and STFPL1-R to 8-R (Table 3, SEQ ID NOS: 28 to 35) were used to obtain a lipase gene without self- (SEQ ID NO: 36) and GT50R (Table 3, SEQ ID NO: 37) in order to obtain the respective genes by primary PCR and to introduce sequences complementary to the yeast vector ends. The primers LNK39 Secondary polymerase chain reaction was performed to prepare a vector and a gene capable of in vivo recombination.

프라이머primer 서열order 서열번호SEQ ID NO: STFPL1-FSTFPL1-F 5'-ctcgccttagataaaagagccagtaccccattgagtc-3'5'-ctcgccttagataaaagagccagtaccccattgagtc-3 ' 2020 STFPL2-FSTFPL2-F 5'-ctcgccttagataaaagacctaccactttagttcct-3'5'-ctcgccttagataaaagacctaccactttagttcct-3 ' 2121 STFPL3-FSTFPL3-F 5'-ctcgccttagataaaagaaatatttgggtttatcct-3'5'-ctcgccttagataaaagaaatatttgggtttatcct-3 ' 2222 STFPL4-FSTFPL4-F 5'-ctcgccttagataaaagagcaccattgacagtttta-3'5'-ctcgccttagataaaagagcaccattgacagtttta-3 ' 2323 STFPL5-FSTFPL5-F 5'-ctcgccttagataaaagagctccaatgacgatcttg-3'5'-ctcgccttagataaaagagctccaatgacgatcttg-3 ' 2424 STFPL6-FSTFPL6-F 5'-ctcgccttagataaaagagctccaatgacaatcttgaa-3'5'-ctcgccttagataaaagagctccaatgacaatcttgaa-3 ' 2525 STFPL7-FSTFPL7-F 5'-ctcgccttagataaaagacttccaactggtttggttcc-3'5'-ctcgccttagataaaagacttccaactggtttggttcc-3 ' 2626 STFPL8-FSTFPL8-F 5'-ctcgccttagataaaagaatgcatatgcatatcgat-3'5'-ctcgccttagataaaagaatgcatatgcatatcgat-3 ' 2727 STFPL1-RSTFPL1-R 5'-cactccgttcaagtcgacttaatctttgcaaccagtg-3'5'-cactccgttcaagtcgacttaatctttgcaaccagtg-3 ' 2828 STFPL2-RSTFPL2-R 5'-cactccgttcaagtcgacttattcacttctagtaga-3'5'-cactccgttcaagtcgacttattcacttctagtaga-3 ' 2929 STFPL3-RSTFPL3-R 5'-cactccgttcaagtcgacttagattcttattccaca-3'5'-cactccgttcaagtcgacttagattcttattccaca-3 ' 3030 STFPL4-RSTFPL4-R 5'-cactccgttcaagtcgacttataagtctaattttttgg-3'5'-cactccgttcaagtcgacttataagtctaattttttgg-3 ' 3131 STFPL5-RSTFPL5-R 5'-cactccgttcaagtcgacttaatagcccaaattttgag-3'5'-cactccgttcaagtcgacttaatagcccaaattttgag-3 ' 3232 STFPL6-RSTFPL6-R 5'-cactccgttcaagtcgacttaaaacatatctgaatgtg-3'5'-cactccgttcaagtcgacttaaaacatatctatgtg-3 ' 3333 STFPL7-RSTFPL7-R 5'-cactccgttcaagtcgacttaattgatatggaagaagt-3'5'-cactccgttcaagtcgacttaattgatatggaagaagt-3 ' 3434 STFPL8-RSTFPL8-R 5'-cactccgttcaagtcgacttaaaattgatcaccttctc-3'5'-cactccgttcaagtcgacttaaaattgatcaccttctc-3 ' 3535 LNK39LNK39 5'-ggccgcctcggcctctgctggcctcgccttagataaaaga-3'5'-ggccgcctcggcctctgctggcctcgccttagataaaaga-3 ' 3636 GT50RGT50R 5'-gtcattattaaatatatatatatatatattgtcactccgttcaagtcgac-3'Gt; 3737

다음으로, 증폭된 유전자를 단백질 분비발현을 도와주는 24 종의 단백질 분비 융합 인자 (Translational Fusion Partner; TFP, 한국등록특허 제10-0975596호)를 함유한 선형화된 벡터와 함께 효모 균주 Y2805 (Mat α pep4::HIS3 prb1 can1 his3-200 ura3-52) 균주에 도입하여 세포 내 재조합을 통하여 형질전환체가 형성되도록 하였다. 본 발명에 사용된 단백질 분비 융합 인자의 아미노산 서열 (표 4) 및 뉴클레오티드 서열 (표 5)은 하기와 같다.Next, the amplified gene was ligated with a linearized vector containing 24 kinds of protein secretion fusion factors (TFP, Korean Patent No. 10-0975596) that helped express the protein secretion, and yeast strain Y2805 (Mat alpha pep4 :: HIS3 prb1 can1 his3-200 ura3-52) to produce a transformant through intracellular recombination. The amino acid sequence (Table 4) and the nucleotide sequence (Table 5) of the protein secretion fusion factor used in the present invention are as follows.

단백질 분비 융합 인자의 아미노산 서열Amino acid sequence of protein secretion fusion factor 단백질 분비 융합 인자Protein secretion factor 아미노산 서열Amino acid sequence 서열번호SEQ ID NO: TFP 1TFP 1 MFNRFNKFQAAVALALLSRGALGDSYTNSTSSADLSSITSVSSASASATASDSLSSSDGTVYLPSTTISGDLTVTGKVIATEAVEVAAGGKLTLLDGEKYVFSSEAASASAGLALDKRMFNRFNKFQAAVALALLSRGALGDSYTNSTSSADLSSITSVSSASASATASDSLSSSDGTVYLPSTTISGDLTVTGKVIATEAVEVAAGGKLTLLDGEKYVFSSEAASASAGLALDKR 서열번호 38SEQ ID NO: 38 TFP 2TFP 2 MTPYAVAITVALLIVTVSALQVNNSCVAFPPSNLRGKNGDGTNEQYATALLSIPWNGPPESSRDINLIELEPQVALYLLENYINHYYNTTRDNKCPNNHYLMGGQLGSSSDNRSLNEAASASAGLALDKR MTPYAVAITVALLIVTVSALQVNNSCVAFPPSNLRGKNGDGTNEQYATALLSIPWNGPPESSRDINLIELEPQVALYLLENYINHYYNTTRDNKCPNNHYLMGGQLGSSSDNRSLNEAASASAGLALDKR 서열번호 39SEQ ID NO: 39 TFP 3TFP 3 MQFKNVALAASVAALSATASAEGYTPGEPWSTLTPTGSISCGAAEYTTTFGIAVQAITSSKAKRDVISQIGDGQVQATSAATAQATDSQAQATTTATPTSSEKMAASASAGLALDKR MQFKNVALAASVAALSATASAEGYTPGEPWSTLTPTGSISCGAAEYTTTFGIAVQAITSSKAKRDVISQIGDGQVQATSAATAQATDSQAQATTTATPTSSEKMAASASAGLALDKR 서열번호 40SEQ ID NO: 40 TFP 4TFP 4 MRFAEFLVVFATLGGGMAAPVESLAGTQRYLVQMKERFTTEKLCALDDKAASASAGLALDKR MRFAEFLVVFATLGGGMAAPVESLAGTQRYLVQMKERFTTEKLCALDDKAASASAGLALDKR 서열번호 41SEQ ID NO: 41 TFP 5TFP 5 MFNRFNKFQAAVALALLSRGALGAPVNTTTEDETALIPAEAVIGYLDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGVAASASAGLALDKR MFNRFNKFQAAVALALLSRGALGAPVNTTEDETALIPAEAVIGYLDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGVAASASAGLALDKR 서열번호 42SEQ ID NO: 42 TFP 6TFP 6 MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIGYLDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGVAASASAGLALDKR MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIGYLDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGVAASASAGLALDKR 서열번호 43SEQ ID NO: 43 TFP 7TFP 7 MVFGQLYALFIFTLSCCISKTVQADSSKESSSFISFDKESNWDTISTISSTADVISSVDSAIAVFEFDNFSLLDSLMIDEEYPFFNRFFANDVSLTVHDDSPLNISQSLSPIMEQFTVDELPESASDLLYEYSLDDKSIVLFKFTSDAYDLKKLDEFIDSCLSFLEDKSGDNLTVVINSLGWAFEDEDGDDEYATEETLSHHDNNKGKEGDDLAASASAGLALDKR MVFGQLYALFIFTLSCCISKTVQADSSKESSSFISFDKESNWDTISTISSTADVISSVDSAIAVFEFDNFSLLDSLMIDEEYPFFNRFFANDVSLTVHDDSPLNISQSLSPIMEQFTVDELPESASDLLYEYSLDDKSIVLFKFTSDAYDLKKLDEFIDSCLSFLEDKSGDNLTVVINSLGWAFEDEDGDDEYATEETLSHHDNNKGKEGDDLAASASAGLALDKR 서열번호 44SEQ ID NO: 44 TFP 8TFP 8 MLQSVVFFALLTFASSVSAIYSNNTVSTTTTLAPSYSLVPQETTISYADDLAASASAGLALDKR MLQSVVFFALLTFASSVSAIYSNNTVSTTTTLAPSYSLVPQETTISYADDLAASASAGLALDKR 서열번호 45SEQ ID NO: 45 TFP 9TFP 9 MKFSTAVTTLISSGAIVSALPHVDVHQEDAHQHKRAVAYKYVYETVVVDSDGHTVTPAASEVATAATSAIITTSVLAPTSSAAAADSSASIAVSSAALAKNEKISDAAASATASTSQGASSSSYLAASASAGLALDKR MKFSTAVTTLISSGAIVSALPHVDVHQEDAHQHKRAVAYKYVYETVVVDSDGHTVTPAASEVATAATSAIITTSVLAPTSSAAAADSSASIAVSSAALAKNEKISDAAASATASTSQGASSSSYLAASASAGLALDKR 서열번호 46SEQ ID NO: 46 TFP 10TFP 10 MNWLFLVSLVFFCGVSTHPALAMSSNRLLKLANKSPKKIIPLKDSSFENILAPPHENAYIVALFTATAPEIGCSLCLELESEYDTIVASWFDDHPDAKSSNSDTSIFFTKVNLEDPSKTIPKAFQFFQLNNVPRLFIFKLNSPSILDHSVISISTDTGSERMKQIIQAIKQFSQVNDFSLHLPVGLAASASAGLALDKR MNWLFLVSLVFFCGVSTHPALAMSSNRLLKLANKSPKKIIPLKDSSFENILAPPHENAYIVALFTATAPEIGCSLCLELESEYDTIVASWFDDHPDAKSSNSDTSIFFTKVNLEDPSKTIPKAFQFFQLNNVPRLFIFKLNSPSILDHSVISISTDTGSERMKQIIQAIKQFSQVNDFSLHLPVGLAASASAGLALDKR 서열번호 47SEQ ID NO: 47 TFP 11TFP 11 MKFSSVTAITLATVATVATAKKGEHDFTTTLTLSSDGSLTTTTSTHTTHKYGKFNKTSKSKTPLAASASAGLALDKR MKFSSVTAITLATVATVATAKKGEHDFTTTLTLSSDGSLTTTTSTHTTHKYGKFNKTSKSKTPLAASASAGLALDKR 서열번호 48SEQ ID NO: 48 TFP 12TFP 12 MASFATKFVIACFLFFSASAHNVLLPAYGRRCFFEDLSKGDELSISFQFGDRNPQSSSQLTGDFIIYGPERHEVLKTVRELAASASAGLALDKR MASFATKFVIACFLFFSASAHNVLLPAYGRRCFFEDLSKGDELSISFQFGDRNPQSSSQLTGDFIIYGPERHEVLKTVRELAASASAGLALDKR 서열번호 49SEQ ID NO: 49 TFP 13TFP 13 MQYKKTLVASALAATTLAAYAPSEPWSTLTPTATYSGGVTDYASTFGIAVQPISTTSSASSAATTASSKAKRAASQIGDGQVQAATTTASVSTKSTAAAVSQIGDGQIQATTKTTAAAVSQIGDGQIQATTKTTSAKTTAAAVSQISDGQIQATTTTLAPLAASASAGLALDKR MQYKKTLVASALAATTLAAYAPSEPWSTLTPTATYSGGVTDYASTFGIAVQPISTTSSASSAATTASSKAKRAASQIGDGQVQAATTTASVSTKSTAAAVSQIGDGQIQATTKTTAAAVSQIGDGQIQATTKTTSAKTTAAAVSQISDGQIQATTTTLAPLAASASAGLALDKR 서열번호 50SEQ ID NO: 50 TFP 14TFP 14 MQFKNALTATAILSASALAANSTTSIPSSCSIGTSATATAQATDSQAQATTTAPLAASASAGLALDKR MQFKNALTATAILSASALAANSTTSIPSSCSIGTSATATAQATDSQAQATTTAPLAASASAGLALDKR 서열번호 51SEQ ID NO: 51 TFP 15TFP 15 MVSKTWICGFISIITVVQALSCEKHDVLKKYQVGKFSSLTSTERDTPPSTTIEKWWINVCEEHNVEPPEECKKNDMLCGLTDVILPGKDAITTQIIDFDKNIGFNVEETESALTLTLNGATWGANSFDAKLEFQCNDNMKQDELAASASAGLALDKR ≪ 서열번호 52SEQ ID NO: 52 TFP 16TFP 16 MKLSALLALSASTAVLAAPAVHHSDNHHHNDKRAVVTVTQYVNADGAVVIPAATTATSAAADGKVESVAAATTTLSSTAAAATTLAASASAGLALDKR MKLSALLALSASTAVLAAPAVHHSDNHHHNDKRAVVTVTQYVNADGAVVIPAATTATSAAADGKVESVAAATTTLSSTAAAATTLAASASAGLALDKR 서열번호 53SEQ ID NO: 53 TFP 17TFP 17 MKLSTVLLSAGLASTTLAQFSNSTSASSTDVTSSSSISTSSGSVTITSSEAPESDNGTSTAAPTETSTEAPTTAIPTNGTSTEAPTTAIPTNGTSTEAPTDTTTEAPTTALPTNGTSTEAPTDTTTEAPTTGLPTNGTTSAFPPTTSLPPSNTTTTPPYNPSTDYTTDYTVVTEYTTYCPERAASASAGLALDKR MKLSTVLLSAGLASTTLAQFSNSTSASSTDVTSSSSSTSSASVTITSSEAPESDNGTSTAAPTETSTEAPTTAIPTNGTSTEAPTTAIPTNGTSTEAPTDTTTEAPTTALPTNGTSTEAPTDTTTEAPTTGLPTNGTTSAFPPTTSLPPSNTTTTPPYNPSTDYTTDYTVVTEYTTYCPERAASASAGLALDKR 서열번호 54SEQ ID NO: 54 TFP 18TFP 18 MRFSTTLATAATALFFTASQVSAIGELAFNLGVKNNDGTCKSTSDYETELQALKSYTSTVKVYAASDCNTLQNLGPAAEAEGFTIFVGVWPLAASASAGLALDKR MRFSTTLATAATALFFTASQVSAIGELAFNLGVKNNDGTCKSTSDYETELQALKSYTSTVKVYAASDCNTLQNLGPAAEAEGFTIFVGVWPLAASASAGLALDKR 서열번호 55SEQ ID NO: 55 TFP 19TFP 19 MRLSNLIASASLLSAATLAAPANHEHKDKRAVVTTTVQKQTTIIVNGAASTPVAALEENAVVNSAPAAATSTTSSAASVATAASSSENNSQVSAAASPASSSAATSTQSSLAASASAGLALDKR MRLSNLIASASLLSAATLAAPANHEHKDKRAVVTTTVQKQTTIIVNGAASTPVAALEENAVVNSAPAAATSTTSSAASVATAASSSENNSQVSAAASPASSSAATSTQSSLAASASAGLALDKR 서열번호 56SEQ ID NO: 56 TFP 20TFP 20 MQFSTVASIAAVAAVASAAANVTTATVSQESTTLVTITSCEDHVCSETVSPALVSTATVTVDDVITQYTTWCPLTTEAPKNGTSTAAPVTSTEAPKNTTSAAPTHSVTSYTGAAAKALPAAGALLAASASAGLALDKR MQFSTVASIAAVAAVASAAANVTTATVSQESTTLVTITSCEDHVCSETVSPALVSTATVTVDDVITQYTTWCPLTTEAPKNGTSTAAPVTSTEAPKNTTSAAPTHSVTSYTGAAAKALPAAGALLAASASAGLALDKR 서열번호 57SEQ ID NO: 57 TFP 21TFP 21 MKFSSALVLSAVAATALAESITTTITATKNGHVYTKTVTQDATFVWGGEDSYASSTSAAESSAAETSAAETSAAATTSAAATTSAAETSSAAETSSADEGSGSSITTTITATKNGHVYTKTVTQDATFVWTGEGSSNTWSPSSTSTSSEAATSSASTTATTLLAASASAGLALDKR MKFSSALVLSAVAATALAESITTTITATKNGHVYTKTVTQDATFVWGGEDSYASSTSAAESSAAETSAAETSAAATTSAAATTSAAETSSAAETSSADEGSGSSITTTITATKNGHVYTKTVTQDATFVWTGEGSSNTWSPSSTSTSSEAATSSASTTATTLLAASASAGLALDKR 서열번호 58SEQ ID NO: 58 TFP 22TFP 22 MKFQVVLSALLACSSAVVASPIENLFKYRAVKASHSKNINSTLPAWNGSNSSNVTYANGTNSTTNTTTAESSQLQIIVTGGQVPITNSSLTHTNYTRLFNSSSALNITELYNVARVVNETIQDNLAASASAGLALDKR MKFQVVLSALLACSSAVVASPIENLFKYRAVKASHSKNINSTLPAWNGSNSSNVTYANGTNSTTNTTTAESSQLQIIVTGGQVPITNSSLTHTNYTRLFNSSSALNITELYNVARVVNETIQDNLAASASAGLALDKR 서열번호 59SEQ ID NO: 59 TFP 23TFP 23 MRAITLLSSVVSLALLSKEVLATPPACLLACVAQVGKSSSTCDSLNQVTCYCEHENSAVKKCLDSICPNNDADAAYSAFKSSCSEQNASLGDSSGSASSSVLAASASAGLALDKR MRAITLLSSVVSLALLSKEVLATPPACLLACVAQVGKSSSTCDSLNQVTCYCEHENSAVKKCLDSICPNNDADAAYSAFKSSCSEQNASLGDSSGSASSSVLAASASAGLALDKR 서열번호 60SEQ ID NO: 60 TFP 24TFP 24 MKLSTVLLSAGLASTTLAQFSNSTSASSTDVTSSSSISTSSGSVTITSSEAPESDNGTSTAAPTETSTEAPTTAIPTNGTSTEAPTTAIPTNGTSTEAPTDTTTEAPTTALPTNGTSTEAPTDTTTEAPTTGLPTNGTTSAFPPTTSLPPSNTTTTLAASASAGLALDKR MKLSTVLLSAGLASTTLAQFSNSTSASSTDVTSSSSISTSSGSVTITSSEAPESDNGTSTAAPTETSTEAPTTAIPTNGTSTEAPTTAIPTNGTSTEAPTDTTTEAPTTALPTNGTSTEAPTDTTTEAPTTGLPTNGTTSAFPPTTSLPPSNTTTTLAASASAGLALDKR 서열번호 61SEQ ID NO: 61

단백질 분비 융합 인자의 뉴클레오티드 서열The nucleotide sequence of the protein secretion fusion factor 단백질 분비 융합 인자Protein secretion factor 뉴클레오티드 서열Nucleotide sequence TFP 1TFP 1 ATGTTCAATCGTTTTAACAAATTCCAAGCTGCTGTCGCTTTGGCCCTACTCTCTCGCGGCGCTCTCGGTGACTCTTACACCAATAGCACCTCCTCCGCAGACTTGAGTTCTATCACTTCCGTCTCGTCAGCTAGTGCAAGTGCCACCGCTTCCGACTCACTTTCTTCCAGTGACGGTACCGTTTATTTGCCATCCACAACAATTAGCGGTGATCTCACAGTTACTGGTAAAGTAATTGCAACCGAGGCCGTGGAAGTCGCTGCCGGTGGTAAGTTGACTTTACTTGACGGTGAAAAATACGTCTTCTCATCTGAGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 62)ATGTTCAATCGTTTTAACAAATTCCAAGCTGCTGTCGCTTTGGCCCTACTCTCTCGCGGCGCTCTCGGTGACTCTTACACCAATAGCACCTCCTCCGCAGACTTGAGTTCTATCACTTCCGTCTCGTCAGCTAGTGCAAGTGCCACCGCTTCCGACTCACTTTCTTCCAGTGACGGTACCGTTTATTTGCCATCCACAACAATTAGCGGTGATCTCACAGTTACTGGTAAAGTAATTGCAACCGAGGCCGTGGAAGTCGCTGCCGGTGGTAAGTTGACTTTACTTGACGGTGAAAAATACGTCTTCTCATCTGAGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 62) TFP 2TFP 2 ATGACGCCCTATGCAGTAGCAATTACCGTGGCCTTACTAATTGTAACAGTGAGCGCACTCCAGGTCAACAATTCATGTGTCGCTTTTCCGCCATCAAATCTCAGGGGCAAGAATGGAGACGGTACTAATGAACAGTATGCAACTGCACTACTTTCTATTCCCTGGAATGGGCCTCCTGAGTCATCGAGGGATATTAATCTTATCGAACTCGAACCGCAAGTTGCACTCTATTTGCTCGAAAATTATATTAACCATTACTACAACACCACAAGAGACAATAAGTGCCCTAATAACCACTACCTAATGGGAGGGCAGTTGGGTAGCTCATCGGATAATAGGAGTTTGAACGAGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 63)ATGACGCCCTATGCAGTAGCAATTACCGTGGCCTTACTAATTGTAACAGTGAGCGCACTCCAGGTCAACAATTCATGTGTCGCTTTTCCGCCATCAAATCTCAGGGGCAAGAATGGAGACGGTACTAATGAACAGTATGCAACTGCACTACTTTCTATTCCCTGGAATGGGCCTCCTGAGTCATCGAGGGATATTAATCTTATCGAACTCGAACCGCAAGTTGCACTCTATTTGCTCGAAAATTATATTAACCATTACTACAACACCACAAGAGACAATAAGTGCCCTAATAACCACTACCTAATGGGAGGGCAGTTGGGTAGCTCATCGGATAATAGGAGTTTGAACGAGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 63) TFP 3TFP 3 ATGCAATTCAAAAACGTCGCCCTAGCTGCCTCCGTTGCTGCTCTATCCGCCACTGCTTCTGCTGAAGGTTACACTCCAGGTGAACCATGGTCCACCTTAACCCCAACCGGCTCCATCTCTTGTGGTGCAGCCGAATACACTACCACCTTTGGTATTGCTGTTCAAGCTATTACCTCTTCAAAAGCTAAGAGAGACGTTATCTCTCAAATTGGTGACGGTCAAGTCCAAGCCACTTCTGCTGCTACTGCTCAAGCCACCGATAGTCAAGCCCAAGCTACTACTACCGCTACCCCAACCAGCTCCGAAAAGATGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 64)ATGCAATTCAAAAACGTCGCCCTAGCTGCCTCCGTTGCTGCTCTATCCGCCACTGCTTCTGCTGAAGGTTACACTCCAGGTGAACCATGGTCCACCTTAACCCCAACCGGCTCCATCTCTTGTGGTGCAGCCGAATACACTACCACCTTTGGTATTGCTGTTCAAGCTATTACCTCTTCAAAAGCTAAGAGAGACGTTATCTCTCAAATTGGTGACGGTCAAGTCCAAGCCACTTCTGCTGCTACTGCTCAAGCCACCGATAGTCAAGCCCAAGCTACTACTACCGCTACCCCAACCAGCTCCGAAAAGATGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 64) TFP 4TFP 4 ATGAGATTTGCAGAATTCTTGGTGGTATTTGCCACGTTAGGCGGGGGGATGGCTGCACCGGTTGAGTCTCTGGCCGGGACCCAACGGTATCTGGTGCAAATGAAGGAGCGGTTCACCACAGAGAAGCTGTGTGCTTTGGACGACAAGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 65)ATGAGATTTGCAGAATTCTTGGTGGTATTTGCCGTTAGGCGGGGGGATGGCTGCACCGGTTGAGTCTCTGGCCGGGACCCAACGGTATCTGGTGCAAATGAAGGAGCGGTTCACCACAGAGAAGCTGTGTGCTTTGGACGACAAGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 65) TFP 5TFP 5 ATGTTCAATCGTTTTAACAAATTCCAAGCTGCTGTCGCTTTGGCCCTACTCTCTCGCGGCGCTCTCGGTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACTAATTCCGGCTGAAGCTGTCATCGGTTACTTAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 66)ATGTTCAATCGTTTTAACAAATTCCAAGCTGCTGTCGCTTTGGCCCTACTCTCTCGCGGCGCTCTCGGTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACTAATTCCGGCTGAAGCTGTCATCGGTTACTTAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 66) TFP 6TFP 6 ATGAGATTTCCTTCAATTTTTACTGCAGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTTAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 67)ATGAGATTTCCTTCAATTTTTACTGCAGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTTAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 67) TFP 7TFP 7 ATGGTGTTCGGTCAGCTGTATGCCCTTTTCATCTTCACGTTATCATGTTGTATTTCCAAAACTGTGCAAGCAGATTCATCCAAGGAAAGCTCTTCCTTTATTTCGTTCGACAAAGAGAGTAACTGGGATACCATCAGCACTATATCTTCAACGGCAGATGTTATATCATCCGTTGACAGTGCTATCGCTGTTTTTGAATTTGACAATTTCTCATTATTGGACAGCTTGATGATTGACGAAGAATACCCATTCTTCAATAGATTCTTTGCCAATGATGTCAGTTTAACTGTTCATGACGATTCGCCTTTGAACATCTCTCAATCATTATCTCCCATTATGGAACAATTTACTGTGGATGAATTACCTGAAAGTGCCTCTGACTTACTATATGAATACTCCTTAGATGATAAAAGCATCGTTTTGTTCAAGTTTACCTCGGATGCCTACGATTTGAAAAAATTAGATGAATTTATTGATTCTTGCTTATCGTTTTTGGAAGATAAATCTGGCGACAATTTGACTGTGGTTATTAACTCTCTTGGTTGGGCTTTTGAAGATGAAGATGGTGACGATGAATATGCAACAGAAGAGACTTTGAGCCATCATGATAACAACAAGGGTAAAGAAGGCGACGATCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 68)ATGGTGTTCGGTCAGCTGTATGCCCTTTTCATCTTCACGTTATCATGTTGTATTTCCAAAACTGTGCAAGCAGATTCATCCAAGGAAAGCTCTTCCTTTATTTCGTTCGACAAAGAGAGTAACTGGGATACCATCAGCACTATATCTTCAACGGCAGATGTTATATCATCCGTTGACAGTGCTATCGCTGTTTTTGAATTTGACAATTTCTCATTATTGGACAGCTTGATGATTGACGAAGAATACCCATTCTTCAATAGATTCTTTGCCAATGATGTCAGTTTAACTGTTCATGACGATTCGCCTTTGAACATCTCTCAATCATTATCTCCCATTATGGAACAATTTACTGTGGATGAATTACCTGAAAGTGCCTCTGACTTACTATATGAATACTCCTTAGATGATAAAAGCATCGTTTTGTTCAAGTTTACCTCGGATGCCTACGATTTGAAAAAATTAGATGAATTTATTGATTCTTGCTTATCGTTTTTGGAAGATAAATCTGGCGACAATTTGACTGTGGTTATTAACTCTCTTGGTTGGGCTTTTGAAGATGAAGATGGTGACGATGAATATGCAACAGAAGAGACTTTGAGCCATCATGATAACAACAAGGGTAAAGAAGGCGACGATCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 68) TFP 8TFP 8 ATGCTTCAATCCGTTGTCTTTTTCGCTCTTTTAACCTTCGCAAGTTCTGTGTCAGCGATTTATTCAAACAATACTGTTTCTACAACTACCACTTTAGCGCCCAGCTACTCCTTGGTGCCCCAAGAGACTACCATATCGTACGCCGACGACCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 69)ATGCTTCAATCCGTTGTCTTTTTCGCTCTTTTAACCTTCGCAAGTTCTGTGTCAGCGATTTATTCAAACAATACTGTTTCTACAACTACCACTTTAGCGCCCAGCTACTCCTTGGTGCCCCAAGAGACTACCATATCGTACGCCGACGACCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 69) TFP 9TFP 9 ATGAAATTCTCAACTGCCGTTACTACGTTGATTAGTTCTGGTGCCATCGTGTCTGCTTTACCACACGTGGATGTTCACCAAGAAGATGCCCACCAACATAAGAGGGCCGTTGCGTACAAATACGTTTACGAAACTGTTGTTGTCGATTCTGATGGCCACACTGTAACTCCTGCTGCTTCAGAAGTCGCTACTGCTGCTACCTCTGCTATCATTACAACATCTGTGTTGGCTCCAACCTCCTCCGCAGCCGCTGCGGATAGCTCCGCTTCCATTGCTGTTTCATCTGCTGCCTTAGCCAAGAATGAGAAAATCTCTGATGCCGCTGCATCTGCCACTGCCTCAACATCTCAAGGGGCATCCTCCTCATCCTACCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 70)ATGAAATTCTCAACTGCCGTTACTACGTTGATTAGTTCTGGTGCCATCGTGTCTGCTTTACCACACGTGGATGTTCACCAAGAAGATGCCCACCAACATAAGAGGGCCGTTGCGTACAAATACGTTTACGAAACTGTTGTTGTCGATTCTGATGGCCACACTGTAACTCCTGCTGCTTCAGAAGTCGCTACTGCTGCTACCTCTGCTATCATTACAACATCTGTGTTGGCTCCAACCTCCTCCGCAGCCGCTGCGGATAGCTCCGCTTCCATTGCTGTTTCATCTGCTGCCTTAGCCAAGAATGAGAAAATCTCTGATGCCGCTGCATCTGCCACTGCCTCAACATCTCAAGGGGCATCCTCCTCATCCTACCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 70) TFP 10TFP 10 ATGAATTGGCTGTTTTTGGTCTCGCTGGTTTTCTTCTGCGGCGTGTCAACCCATCCTGCCCTGGCAATGTCCAGCAACAGACTACTAAAGCTGGCTAATAAATCTCCCAAGAAAATTATACCTCTGAAGGACTCAAGTTTTGAAAACATCTTGGCACCACCTCACGAAAATGCCTATATAGTTGCTCTGTTTACTGCCACAGCGCCCGAAATTGGCTGTTCTCTGTGTCTCGAGCTAGAATCCGAATACGACACCATAGTGGCCTCCTGGTTTGATGATCATCCGGATGCAAAATCGTCCAATTCCGATACATCTATTTTCTTCACAAAGGTCAATTTGGAGGACCCTTCTAAGACCATTCCTAAAGCGTTCCAGTTTTTCCAACTAAACAATGTTCCTAGATTGTTCATCTTCAAACTAAACTCTCCCTCTATTCTGGACCACAGCGTGATCAGTATTTCCACTGATACTGGCTCAGAAAGAATGAAGCAAATCATACAAGCCATTAAGCAGTTCTCGCAAGTAAACGACTTCTCTTTACACTTACCTGTGGGTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 71)ATGAATTGGCTGTTTTTGGTCTCGCTGGTTTTCTTCTGCGGCGTGTCAACCCATCCTGCCCTGGCAATGTCCAGCAACAGACTACTAAAGCTGGCTAATAAATCTCCCAAGAAAATTATACCTCTGAAGGACTCAAGTTTTGAAAACATCTTGGCACCACCTCACGAAAATGCCTATATAGTTGCTCTGTTTACTGCCACAGCGCCCGAAATTGGCTGTTCTCTGTGTCTCGAGCTAGAATCCGAATACGACACCATAGTGGCCTCCTGGTTTGATGATCATCCGGATGCAAAATCGTCCAATTCCGATACATCTATTTTCTTCACAAAGGTCAATTTGGAGGACCCTTCTAAGACCATTCCTAAAGCGTTCCAGTTTTTCCAACTAAACAATGTTCCTAGATTGTTCATCTTCAAACTAAACTCTCCCTCTATTCTGGACCACAGCGTGATCAGTATTTCCACTGATACTGGCTCAGAAAGAATGAAGCAAATCATACAAGCCATTAAGCAGTTCTCGCAAGTAAACGACTTCTCTTTACACTTACCTGTGGGTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 71) TFP 11TFP 11 ATGAAGTTCTCTTCTGTTACTGCTATTACTCTAGCCACCGTTGCCACCGTTGCCACTGCTAAGAAGGGTGAACATGATTTCACTACCACTTTAACTTTGTCATCGGACGGTAGTTTAACTACTACCACCTCTACTCATACCACTCACAAGTATGGTAAGTTCAACAAGACTTCCAAGTCCAAGACCCCCCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 72)ATGAAGTTCTCTTCTGTTACTGCTATTACTCTAGCCACCGTTGCCACCGTTGCCACTGCTAAGAAGGGTGAACATGATTTCACTACCACTTTAACTTTGTCATCGGACGGTAGTTTAACTACTACCACCTCTACTCATACCACTCACAAGTATGGTAAGTTCAACAAGACTTCCAAGTCCAAGACCCCCCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 72) TFP 12TFP 12 ATGGCCTCATTTGCTACTAAGTTTGTCATTGCTTGCTTCCTGTTCTTCTCGGCGTCCGCCCATAATGTCCTTCTTCCAGCTTATGGCCGTAGATGCTTCTTCGAAGACTTGAGTAAGGGTGACGAGCTCTCCATTTCGTTCCAGTTCGGTGATAGAAACCCTCAATCCAGTAGCCAGCTGACTGGTGACTTTATCATCTACGGGCCGGAAAGACATGAAGTTTTGAAAACGGTTAGGGAACTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 73)ATGGCCTCATTTGCTACTAAGTTTGTCATTGCTTGCTTCCTGTTCTTCTCGGCGTCCGCCCATAATGTCCTTCTTCCAGCTTATGGCCGTAGATGCTTCTTCGAAGACTTGAGTAAGGGTGACGAGCTCTCCATTTCGTTCCAGTTCGGTGATAGAAACCCTCAATCCAGTAGCCAGCTGACTGGTGACTTTATCATCTACGGGCCGGAAAGACATGAAGTTTTGAAAACGGTTAGGGAACTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 73) TFP 13TFP 13 ATGCAATACAAAAAGACTTTGGTTGCCTCTGCTTTGGCCGCTACTACATTGGCCGCCTATGCTCCATCTGAGCCTTGGTCCACTTTGACTCCAACAGCCACTTACAGCGGTGGTGTTACCGACTACGCTTCCACCTTCGGTATTGCCGTTCAACCAATCTCCACTACATCCAGCGCATCATCTGCAGCCACCACAGCCTCATCTAAGGCCAAGAGAGCTGCTTCCCAAATTGGTGATGGTCAAGTCCAAGCTGCTACCACTACTGCTTCTGTCTCTACCAAGAGTACCGCTGCCGCCGTTTCTCAGATCGGTGATGGTCAAATCCAAGCTACTACCAAGACTACCGCTGCTGCTGTCTCTCAAATTGGTGATGGTCAAATTCAAGCTACCACCAAGACTACCTCTGCTAAGACTACCGCCGCTGCCGTTTCTCAAATCAGTGATGGTCAAATCCAAGCTACCACCACTACTTTAGCCCCTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 74)ATGCAATACAAAAAGACTTTGGTTGCCTCTGCTTTGGCCGCTACTACATTGGCCGCCTATGCTCCATCTGAGCCTTGGTCCACTTTGACTCCAACAGCCACTTACAGCGGTGGTGTTACCGACTACGCTTCCACCTTCGGTATTGCCGTTCAACCAATCTCCACTACATCCAGCGCATCATCTGCAGCCACCACAGCCTCATCTAAGGCCAAGAGAGCTGCTTCCCAAATTGGTGATGGTCAAGTCCAAGCTGCTACCACTACTGCTTCTGTCTCTACCAAGAGTACCGCTGCCGCCGTTTCTCAGATCGGTGATGGTCAAATCCAAGCTACTACCAAGACTACCGCTGCTGCTGTCTCTCAAATTGGTGATGGTCAAATTCAAGCTACCACCAAGACTACCTCTGCTAAGACTACCGCCGCTGCCGTTTCTCAAATCAGTGATGGTCAAATCCAAGCTACCACCACTACTTTAGCCCCTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 74) TFP 14TFP 14 ATGCAATTCAAGAACGCTTTGACTGCTACTGCTATTCTAAGTGCCTCCGCTCTAGCTGCTAACTCAACTACTTCTATTCCATCTTCATGTAGTATTGGTACTTCTGCCACTGCTACTGCTCAAGCCACCGATAGTCAAGCCCAAGCTACTACTACCGCACCCCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 75)ATGCAATTCAAGAACGCTTTGACTGCTACTGCTATTCTAAGTGCCTCCGCTCTAGCTGCTAACTCAACTACTTCTATTCCATCTTCATGTAGTATTGGTACTTCTGCCACTGCTACTGCTCAAGCCACCGATAGTCAAGCCCAAGCTACTACTACCGCACCCCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 75) TFP 15TFP 15 ATGGTATCGAAGACTTGGATATGTGGCTTCATCAGTATAATTACAGTGGTACAGGCCTTGTCCTGCGAGAAGCATGATGTATTGAAAAAGTATCAGGTGGGAAAATTTAGCTCACTAACTTCTACGGAAAGGGATACTCCGCCAAGCACAACTATTGAAAAGTGGTGGATAAACGTTTGCGAAGAGCATAACGTAGAACCTCCTGAAGAATGTAAAAAAAATGACATGCTATGTGGTTTAACAGATGTCATCTTGCCCGGTAAGGATGCTATCACCACTCAAATTATAGATTTTGACAAAAACATTGGCTTCAATGTCGAGGAAACTGAGAGTGCGCTTACATTGACACTAAACGGCGCTACGTGGGGCGCCAATTCTTTTGACGCAAAACTAGAATTTCAGTGTAATGACAATATGAAACAAGACGAACTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 76)ATGGTATCGAAGACTTGGATATGTGGCTTCATCAGTATAATTACAGTGGTACAGGCCTTGTCCTGCGAGAAGCATGATGTATTGAAAAAGTATCAGGTGGGAAAATTTAGCTCACTAACTTCTACGGAAAGGGATACTCCGCCAAGCACAACTATTGAAAAGTGGTGGATAAACGTTTGCGAAGAGCATAACGTAGAACCTCCTGAAGAATGTAAAAAAAATGACATGCTATGTGGTTTAACAGATGTCATCTTGCCCGGTAAGGATGCTATCACCACTCAAATTATAGATTTTGACAAAAACATTGGCTTCAATGTCGAGGAAACTGAGAGTGCGCTTACATTGACACTAAACGGCGCTACGTGGGGCGCCAATTCTTTTGACGCAAAACTAGAATTTCAGTGTAATGACAATATGAAACAAGACGAACTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 76) TFP 16TFP 16 ATGAAATTATCCGCTCTATTAGCTTTATCAGCCTCCACCGCCGTCTTGGCCGCTCCAGCTGTCCACCATAGTGACAACCACCACCACAACGACAAGCGTGCCGTTGTCACCGTTACTCAGTACGTCAACGCAGACGGCGCTGTTGTTATTCCAGCTGCCACCACCGCTACCTCGGCGGCTGCTGATGGAAAGGTCGAGTCTGTTGCTGCTGCCACCACTACTTTGTCCTCGACTGCCGCCGCCGCTACAACCCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 77)ATGAAATTATCCGCTCTATTAGCTTTATCAGCCTCCACCGCCGTCTTGGCCGCTCCAGCTGTCCACCATAGTGACAACCACCACCACAACGACAAGCGTGCCGTTGTCACCGTTACTCAGTACGTCAACGCAGACGGCGCTGTTGTTATTCCAGCTGCCACCACCGCTACCTCGGCGGCTGCTGATGGAAAGGTCGAGTCTGTTGCTGCTGCCACCACTACTTTGTCCTCGACTGCCGCCGCCGCTACAACCCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 77) TFP 17TFP 17 ATGAAATTATCAACTGTCCTATTATCTGCCGGTTTAGCCTCGACTACTTTGGCCCAATTTTCCAACAGTACATCTGCTTCTTCCACCGATGTCACTTCCTCCTCTTCCATCTCCACTTCCTCTGGCTCAGTAACTATCACATCTTCTGAAGCTCCAGAATCCGACAACGGTACCAGCACAGCTGCACCAACTGAAACCTCAACAGAGGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGCTCTTCCAACTAACGGTACTTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGGTCTTCCAACCAACGGTACCACTTCAGCTTTCCCACCAACTACATCTTTGCCACCAAGCAACACTACCACCACTCCTCCTTACAACCCATCTACTGACTACACCACTGACTACACTGTAGTCACTGAATATACTACTTACTGTCCGGAACGGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 78)ATGAAATTATCAACTGTCCTATTATCTGCCGGTTTAGCCTCGACTACTTTGGCCCAATTTTCCAACAGTACATCTGCTTCTTCCACCGATGTCACTTCCTCCTCTTCCATCTCCACTTCCTCTGGCTCAGTAACTATCACATCTTCTGAAGCTCCAGAATCCGACAACGGTACCAGCACAGCTGCACCAACTGAAACCTCAACAGAGGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGCTCTTCCAACTAACGGTACTTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGGTCTTCCAACCAACGGTACCACTTCAGCTTTCCCACCAACTACATCTTTGCCACCAAGCAACACTACCACCACTCCTCCTTACAACCCATCTACTGACTACACCACTGACTACACTGTAGTCACTGAATATACTACTTACTGTCCGGAACGGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 78) TFP 18TFP 18 ATGCGTTTCTCTACTACACTCGCTACTGCAGCTACTGCGCTATTTTTCACAGCCTCCCAAGTTTCAGCTATTGGTGAACTAGCCTTTAACTTGGGTGTCAAGAACAACGATGGTACTTGTAAGTCCACTTCCGACTATGAAACCGAATTACAAGCTTTGAAGAGCTACACTTCCACCGTCAAAGTTTACGCTGCCTCAGATTGTAACACTTTGCAAAACTTAGGTCCTGCTGCTGAAGCTGAGGGATTTACTATCTTTGTCGGTGTTTGGCCACTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 79)ATGCGTTTCTCTACTACACTCGCTACTGCAGCTACTGCGCTATTTTTCACAGCCTCCCAAGTTTCAGCTATTGGTGAACTAGCCTTTAACTTGGGTGTCAAGAACAACGATGGTACTTGTAAGTCCACTTCCGACTATGAAACCGAATTACAAGCTTTGAAGAGCTACACTTCCACCGTCAAAGTTTACGCTGCCTCAGATTGTAACACTTTGCAAAACTTAGGTCCTGCTGCTGAAGCTGAGGGATTTACTATCTTTGTCGGTGTTTGGCCACTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 79) TFP 19TFP 19 ATGCGTCTCTCTAACCTAATTGCTTCTGCCTCTCTTTTATCTGCTGCTACTCTTGCTGCTCCCGCTAACCACGAACACAAGGACAAGCGTGCTGTGGTCACTACCACTGTTCAAAAACAAACCACTATCATTGTTAATGGTGCCGCTTCAACTCCAGTTGCTGCTTTGGAAGAAAATGCTGTTGTCAACTCCGCTCCAGCTGCCGCTACCAGTACAACATCGTCTGCTGCTTCTGTAGCTACCGCTGCTTCCTCTTCTGAGAACAACTCACAAGTTTCTGCTGCCGCATCTCCAGCCTCCAGCTCTGCTGCTACATCTACTCAATCTTCTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 80)ATGCGTCTCTCTAACCTAATTGCTTCTGCCTCTCTTTTATCTGCTGCTACTCTTGCTGCTCCCGCTAACCACGAACACAAGGACAAGCGTGCTGTGGTCACTACCACTGTTCAAAAACAAACCACTATCATTGTTAATGGTGCCGCTTCAACTCCAGTTGCTGCTTTGGAAGAAAATGCTGTTGTCAACTCCGCTCCAGCTGCCGCTACCAGTACAACATCGTCTGCTGCTTCTGTAGCTACCGCTGCTTCCTCTTCTGAGAACAACTCACAAGTTTCTGCTGCCGCATCTCCAGCCTCCAGCTCTGCTGCTACATCTACTCAATCTTCTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 80) TFP 20TFP 20 ATGCAATTTTCTACTGTCGCTTCTATCGCCGCTGTCGCCGCTGTCGCTTCTGCCGCTGCTAACGTTACCACTGCTACTGTCAGCCAAGAATCTACCACTTTGGTCACCATCACTTCTTGTGAAGACCACGTCTGTTCTGAAACTGTCTCCCCAGCTTTGGTTTCCACCGCTACCGTCACCGTCGATGACGTTATCACTCAATACACCACCTGGTGCCCATTGACCACTGAAGCCCCAAAGAACGGTACTTCTACTGCTGCTCCAGTTACCTCTACTGAAGCTCCAAAGAACACCACCTCTGCTGCTCCAACTCACTCTGTCACCTCTTACACTGGTGCTGCTGCTAAGGCTTTGCCAGCTGCTGGTGCTTTGCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 81)ATGCAATTTTCTACTGTCGCTTCTATCGCCGCTGTCGCCGCTGTCGCTTCTGCCGCTGCTAACGTTACCACTGCTACTGTCAGCCAAGAATCTACCACTTTGGTCACCATCACTTCTTGTGAAGACCACGTCTGTTCTGAAACTGTCTCCCCAGCTTTGGTTTCCACCGCTACCGTCACCGTCGATGACGTTATCACTCAATACACCACCTGGTGCCCATTGACCACTGAAGCCCCAAAGAACGGTACTTCTACTGCTGCTCCAGTTACCTCTACTGAAGCTCCAAAGAACACCACCTCTGCTGCTCCAACTCACTCTGTCACCTCTTACACTGGTGCTGCTGCTAAGGCTTTGCCAGCTGCTGGTGCTTTGCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 81) TFP 21TFP 21 ATGAAATTCTCTTCCGCTTTGGTTCTATCTGCTGTTGCCGCTACTGCTCTTGCTGAGAGTATCACCACCACCATCACTGCCACCAAGAACGGTCATGTCTACACTAAGACTGTCACCCAAGATGCTACTTTTGTTTGGGGTGGTGAAGACTCTTACGCCAGCAGCACTTCTGCCGCTGAATCTTCTGCCGCCGAAACTTCTGCCGCCGAAACCTCTGCTGCCGCTACCACTTCTGCTGCCGCTACCACTTCTGCTGCTGAGACTTCTTCTGCTGCTGAGACTTCTTCTGCTGATGAAGGTTCTGGTTCTAGTATCACTACCACTATCACTGCCACCAAGAACGGTCACGTCTACACTAAGACTGTCACCCAAGATGCTACTTTTGTCTGGACTGGTGAAGGCAGCAGCAACACCTGGTCTCCAAGTAGTACCTCTACCAGCTCAGAAGCTGCTACCTCTTCTGCTTCAACCACTGCAACCACCCTGCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 82)ATGAAATTCTCTTCCGCTTTGGTTCTATCTGCTGTTGCCGCTACTGCTCTTGCTGAGAGTATCACCACCACCATCACTGCCACCAAGAACGGTCATGTCTACACTAAGACTGTCACCCAAGATGCTACTTTTGTTTGGGGTGGTGAAGACTCTTACGCCAGCAGCACTTCTGCCGCTGAATCTTCTGCCGCCGAAACTTCTGCCGCCGAAACCTCTGCTGCCGCTACCACTTCTGCTGCCGCTACCACTTCTGCTGCTGAGACTTCTTCTGCTGCTGAGACTTCTTCTGCTGATGAAGGTTCTGGTTCTAGTATCACTACCACTATCACTGCCACCAAGAACGGTCACGTCTACACTAAGACTGTCACCCAAGATGCTACTTTTGTCTGGACTGGTGAAGGCAGCAGCAACACCTGGTCTCCAAGTAGTACCTCTACCAGCTCAGAAGCTGCTACCTCTTCTGCTTCAACCACTGCAACCACCCTGCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 82) TFP 22TFP 22 ATGAAGTTCCAAGTTGTTTTATCTGCCCTTTTGGCATGTTCATCTGCCGTCGTCGCAAGCCCAATCGAAAACCTATTCAAATACAGGGCAGTTAAGGCATCTCACAGTAAGAATATCAACTCCACTTTGCCGGCCTGGAATGGGTCTAACTCTAGCAATGTTACCTACGCTAATGGAACAAACAGTACTACCAATACTACTACTGCCGAAAGCAGTCAATTACAAATCATTGTAACAGGTGGTCAAGTACCAATCACCAACAGTTCTTTGACCCACACAAACTACACCAGATTATTCAACAGTTCTTCTGCTTTGAACATTACCGAATTGTACAATGTTGCCCGTGTTGTTAACGAAACGATCCAAGATAACCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 83)ATGAAGTTCCAAGTTGTTTTATCTGCCCTTTTGGCATGTTCATCTGCCGTCGTCGCAAGCCCAATCGAAAACCTATTCAAATACAGGGCAGTTAAGGCATCTCACAGTAAGAATATCAACTCCACTTTGCCGGCCTGGAATGGGTCTAACTCTAGCAATGTTACCTACGCTAATGGAACAAACAGTACTACCAATACTACTACTGCCGAAAGCAGTCAATTACAAATCATTGTAACAGGTGGTCAAGTACCAATCACCAACAGTTCTTTGACCCACACAAACTACACCAGATTATTCAACAGTTCTTCTGCTTTGAACATTACCGAATTGTACAATGTTGCCCGTGTTGTTAACGAAACGATCCAAGATAACCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 83) TFP 23TFP 23 ATGCGTGCCATCACTTTATTATCTTCAGTCGTTTCTTTGGCATTGTTGTCGAAGGAAGTCTTAGCAACACCTCCAGCTTGTTTATTGGCCTGTGTTGCGCAAGTCGGCAAATCCTCTTCCACATGTGACTCTTTGAATCAAGTCACCTGTTACTGTGAACACGAAAACTCCGCCGTCAAGAAATGTCTAGACTCCATCTGCCCAAACAATGACGCTGATGCTGCTTATTCTGCTTTCAAGAGTTCTTGTTCCGAACAAAATGCTTCATTGGGCGATTCCAGCGGCAGTGCCTCCTCATCCGTTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 84)ATGCGTGCCATCACTTTATTATCTTCAGTCGTTTCTTTGGCATTGTTGTCGAAGGAAGTCTTAGCAACACCTCCAGCTTGTTTATTGGCCTGTGTTGCGCAAGTCGGCAAATCCTCTTCCACATGTGACTCTTTGAATCAAGTCACCTGTTACTGTGAACACGAAAACTCCGCCGTCAAGAAATGTCTAGACTCCATCTGCCCAAACAATGACGCTGATGCTGCTTATTCTGCTTTCAAGAGTTCTTGTTCCGAACAAAATGCTTCATTGGGCGATTCCAGCGGCAGTGCCTCCTCATCCGTTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 84) TFP 24TFP 24 ATGAAATTATCAACTGTCCTATTATCTGCCGGTTTGGCCTCGACTACTTTGGCCCAATTTTCCAACAGTACATCTGCTTCTTCCACCGATGTCACTTCCTCCTCTTCCATCTCCACTTCCTCTGGCTCAGTAACTATCACATCTTCTGAAGCTCCAGAATCCGACAACGGTACCAGCACAGCTGCACCAACTGAAACCTCAACAGAGGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGCTCTTCCAACTAACGGTACTTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGGTCTTCCAACCAACGGTACCACTTCAGCTTTCCCACCAACTACATCTTTGCCACCAAGCAACACTACCACCACTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 85)ATGAAATTATCAACTGTCCTATTATCTGCCGGTTTGGCCTCGACTACTTTGGCCCAATTTTCCAACAGTACATCTGCTTCTTCCACCGATGTCACTTCCTCCTCTTCCATCTCCACTTCCTCTGGCTCAGTAACTATCACATCTTCTGAAGCTCCAGAATCCGACAACGGTACCAGCACAGCTGCACCAACTGAAACCTCAACAGAGGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGCTCTTCCAACTAACGGTACTTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGGTCTTCCAACCAACGGTACCACTTCAGCTTTCCCACCAACTACATCTTTGCCACCAAGCAACACTACCACCACTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 85)

프라이머 LNK39과 GT50R 프라이머로 증폭한 중합효소 연쇄반응 산물은 선형화된 벡터 말단과 40 염기쌍 이상의 동일한 서열을 포함하고 있기 때문에 선형화된 벡터와 함께 효모 세포로 도입하면 세포 내에서 교차가 일어나서 원형의 플라스미드 벡터가 만들어지게 된다 (도 4). 세포 내 재조합을 통해 형성된 형질전환체는 우라실이 없는 선택배지 (0.67 % 아미노산이 결여된 효모기질, 0.77 % 우라실이 결핍된 영양 보충물, 2 % 포도당)에서 성장하므로 이를 통해 형질전환체를 선별하였다. 선별된 8 개의 리파아제 유전자들을 모두 발현하여 YPT 배지에 점적하여 활성이 있는 유전자를 일차 선별하였다. 그 결과, 8 개의 리파아제 중 CBLIP2 , CBLIP5 , CBLIP7의 세 개의 유전자만이 트리뷰티린 (tributyrin) 배지에서 투명환을 형성하여 리파아제 활성을 나타내는 것으로 확인되었다. 따라서 상기 세 개의 유전자 (CBLIP2, CBLIP5 , CBLIP7)의 활성과 단백질을 확인하기 위하여 YPDG (1 % 효모 추출물, 2 % 펩톤, 1 % 포도당, 1 % 갈락토오스) 배지에서 40 시간 배양 후 원심분리하여 상등액을 얻었다. 상등액 0.6 ㎖을 0.4 ㎖의 아세톤으로 침전시킨 후 SDS-PAGE 분석하였다 (도 5 내지 7). 도 5 내지 7은 효모 Y2805 균주에 리파아제가 도입되어 형성된 24 개 형질전환체들의 배양상등액을 SDS-PAGE 분석한 결과를 나타내는 전기영동 사진으로서 각각의 벡터가 도입된 형질전환체의 배양 상등액에서 단백질의 크기가 서로 다른 밴드들이 관찰되었다. 이것은 리파아제 유전자 크기로부터 유추되는 단백질 크기와 상당한 차이가 있었는데, 이는 세 개의 모든 리파아제 단백질 서열상에 N-글리코실화 유발 서열을 함유하고 있어 당쇄 부가로 인한 차이일 것으로 추정되었다. 이에, 상기 각 형질전환체로부터 발현된 리파아제에 당쇄제거 효소인 엔도에이치 효소를 처리한 결과, 예상 크기의 단백질이 형성되었다 (도 5 내지 7). 그러나 CBLIP2는 예상 크기보다 큰 크기로 발현되었고, TFP 마다 크기가 다르게 발현되는 것으로 확인되었다 (도 5). 이것은 TFP의 분리가 제대로 이루어 지지 않고 융합된 형태로 분비 발현되기 때문인 것으로 보인다. 그러나 CBLIP2의 발현률은 세 개의 유전자중에 가장 좋은 것으로 확인되었다.Since the polymerase chain reaction products amplified with the primers LNK39 and GT50R primers contain the same sequences of more than 40 base pairs with the linearized vector ends, when introduced into yeast cells together with the linearized vector, crossing occurs in the cells, and a circular plasmid vector (FIG. 4). Transformants transformed through intracellular recombination were grown on a selective medium without uracil (0.67% amino acid-deficient yeast substrate, 0.77% uracil deficient nutritional supplement, 2% glucose), thereby selecting transformants . Expression of all 8 selected lipase genes was carried out on YPT medium and primary genes were selected. As a result, it was confirmed that only three genes of CBLIP2 , CBLIP5 , and CBLIP7 among the eight lipases form a transparent ring in the tributyrin medium to exhibit lipase activity. Therefore , in order to confirm the activity and the protein of the three genes ( CBLIP2, CBLIP5 , and CBLIP7 ) , the cells were cultured in YPDG (1% yeast extract, 2% peptone, 1% glucose, 1% galactose) for 40 hours, centrifuged, . 0.6 ml of the supernatant was precipitated with 0.4 ml of acetone and subjected to SDS-PAGE analysis (Figs. 5 to 7). FIGS. 5 to 7 are electrophoresis images showing the result of SDS-PAGE analysis of the culture supernatant of 24 transformants formed by introducing lipase into yeast strain Y2805. As a result, Bands of different sizes were observed. This was a significant difference from the protein size deduced from the lipase gene size, which contained N-glycosylation inducing sequences on all three lipase protein sequences, presumably due to the sugar chain addition. Thus, lipase expressed from each of the transformants was treated with an endo-enzyme, which is a sugar chain-removing enzyme, to form an expected size protein (FIGS. 5 to 7). However, it was confirmed that CBLIP2 was expressed at a size larger than the expected size, and the size was differently expressed in each TFP (FIG. 5). This seems to be due to the fact that TFP is not isolated properly but secreted in a fused form. However, the expression of CBLIP2 was found to be the best among the three genes.

각각의 형질전환체로부터 분비된 단백질의 활성을 확인하기 위하여 20 ㎕의 효소 용액을 0.98 ㎖의 기질용액 (50 mM Tris-HCl 완충용액 (pH 7.5): 에탄올: 50 mM p-나이트로페닐 뷰티레이트 (p-Nitrophenyl butyrate, PNPB) 또는 데카노에이트 (decanoate, PNPD) 또는 팔미테이트 (palmitate, PNPP) = 380: 19: 1)과 30 ℃에서 5 분간 반응한 뒤 410 ㎚에서 흡광도를 측정한 결과, 각각 CBLIP2은 TFP 11, 13, 19, 23 번에서 활성이 좋았으며 그 중 TFP 19 번의 활성이 가장 좋았기 때문에 이로부터 단일콜로니 선별을 하였다. 세 가지 기질 중 짧은 길이의 PNPB의 활성이 가장 좋았으며, PNPD의 활성이 가장 안 좋은 것으로 나타났다 (도 8). CBLIP5은 TFP 8, 9, 13, 19 번에서의 활성이 좋았으며, 그 중 TFP 8 번의 활성이 가장 좋았기 때문에 이로부터 단일콜로니 선별을 하였다. CBLIP5는 세 가지 기질 중 PNPD의 활성이 가장 좋은 것으로 확인되었다 (도 9). 그리고 CBLIP7은 TFP 4, 8, 13, 20, 21, 22, 23, 24에서의 활성이 좋았으며, 그 중 TFP 8 번의 활성이 가장 좋았기 때문에 이로부터 단일콜로니 선별을 하였다. CBLIP7은 세 가지 기질 중 가장 긴 길이인 PNPP의 활성이 가장 좋은 것으로 확인되었다 (도 10). 이때 효소 활성은 약 1 분에 1 μM의 니트로페놀을 생성할 수 있는 효소량을 1 unit으로 정하였다. To confirm the activity of the secreted protein from each transformant, 20 μl of the enzyme solution was added to 0.98 ml of a substrate solution (50 mM Tris-HCl buffer (pH 7.5): ethanol: 50 mM p-nitrophenyl butyrate (PNPP) or palmitate (PNPP) = 380: 19: 1) at 30 ° C for 5 minutes, and then the absorbance at 410 nm was measured. As a result, CBLIP2 showed good activity at TFP 11, 13, 19, and 23, among which TFP 19 was the best, and single colonies were selected therefrom. Among the three substrates, the short-length PNPB activity was the best, and the PNPD activity was the worst (Fig. 8). CBLIP5 had good activity at TFP 8, 9, 13, and 19, among which TFP 8 was the best, and single colony selection was performed therefrom. CBLIP5 was found to have the best activity of PNPD among the three substrates (Figure 9). CBLIP7 had good activity at TFP 4, 8, 13, 20, 21, 22, 23, and 24, among which TFP 8 was the best, and single colony selection was performed from this. CBLIP7 was found to have the best activity of PNPP, the longest of the three substrates (Fig. 10). The enzyme activity was defined as 1 unit of enzyme capable of producing 1 μM nitrophenol at about 1 minute.

실시예Example 4:  4: CBLIP2CBLIP2 , , CBLIP5CBLIP5 And CBLIP7CBLIP7 유전자의 자체 시그널,  The self-signal of the gene, MFαMFα (mating factor alpha) 분비시그널 및 단백질 분비 융합 인자를 융합파트너로 이용한 발현 비교 (mating factor alpha) secretion signal and protein secretion factor as fusion partners

본 발명에서 선별한 단백질 분비 융합인자의 리파제 분비유도능을 확인하기 위하여 자체 분비시그널과 효모에서 가장 널리 이용되는 MFα를 이용하여 발현한 경우와 발현량을 비교하고자 하였다. CBLIP2 , CBLIP5 CBLIP7 유전자의 자체 분비시그널을 이용하여 발현하기 위하여 각각 유전자를 서열번호 86 내지 88/서열번호 89 내지 91의 프라이머 (표 6)로 중합효소 연쇄반응을 수행 후 각각 1.4, 1.5 및 1.4 kb 크기의 절편을 회수하였다. In order to confirm the lipase secretion inducing ability of the protein secretion factor selected in the present invention, the expression level of the protein expressed by MFα, the most widely used yeast secretory signal and yeast, was compared. CBLIP2 , CBLIP5 And In order to express the gene using self-secretion signal of CBLIP7 gene, each gene was subjected to polymerase chain reaction with primers of SEQ ID NOS: 86 to 88 / SEQ ID NOS: 89 to 91 (Table 6) Respectively.

프라이머primer 염기서열Base sequence 서열번호SEQ ID NO: CBSPlip2-FCBSPlip2-F 5'-tccaaaaaaaaagtaagaatttttgaaaattcaaggatccatgatctgttcattctttag-3'5'-tccaaaaaaaaagtaagaatttttgaaaattcaaggatccatgatctgttcattctttag-3 ' 8686 CBSPlip5-FCBSPlip5-F 5'-tccaaaaaaaaagtaagaatttttgaaaattcaaggatccatgattttaacgaatctt-3'5'-tccaaaaaaaaagtaagaatttttgaaaattcaaggatccatgattttaacgaatctt-3 ' 8787 CBSPlip7-FCBSPlip7-F 5'-tccaaaaaaaaagtaagaatttttgaaaattcaaggatccatgttcaaacagcttttc-3'5'-tccaaaaaaaaagtaagaatttttgaaaattcaaggatccatgttcaaacagcttttc-3 ' 8888 CBSPlip2-RCBSPlip2-R 5'-aatatatatatatatatattgtcactccgttcaagtcgacctattcacttctagtagaat-3'5'-aatatatatatatatattgtcactccgttcaagtcgacctattcacttctagtagaat-3 ' 8989 CBSPlip5-RCBSPlip5-R 5'-aatatatatatatatatattgtcactccgttcaagtcgacttaatagcccaaattttg-3'5'-aatatatatatatatattgtcactccgttcaagtcgacttaatagcccaaattttg-3 ' 9090 CBSPlip7-RCBSPlip7-R 5'-aatatatatatatatatattgtcactccgttcaagtcgacctaattgatatggaagaa-3'5'-aatatatatatatatattgtcactccgttcaagtcgacctaattgatatggaagaa-3 ' 9191

그 다음 상기 절편을 BamH1/Sal1으로 절단한 YEGα-HIR525 벡터와 Y2805 균주에 형질전환하여 세포 내 재조합 (in vivo recombination)을 통해 원형 벡터를 생성시키고 벡터가 잘 생성된 단일콜로니를 UD 배지에서 선별하였다. MFα 분비시그널을 이용하기 위해 TFP 6번 벡터를 사용하여 동일한 균주에 형질전환 하였고, 단일 콜로니를 선별하였다. 자체 분비시그널 또는 MFα 분비시그널을 이용하는 단일 형질전환체 및 각각 유전자에서 가장 높게 분비 발현되어 선별된 단일 형질전환체 (TFP19-CBLIP2, TFP8-CBLIP5, TFP8-CBLIP7)를 YPDG 배지에서 40 시간 배양한 후 원심 분리하여 균체를 제거하고 배양 상등액을 얻었다. 각각의 형질전환체로부터 분비된 단백질의 활성을 확인하기 위하여 20 ㎕의 효소 용액을 0.98 ㎖의 기질용액 (50 mM Tris-HCl 완충용액 (pH 7.5): 에탄올: 50 mM p-나이트로페닐 뷰티레이트 (p-Nitrophenyl butyrate, PNPB) 또는 데카노에이트 (decanoate, PNPD) 또는 팔미테이트 (palmitate, PNPP) = 380: 19: 1)과 30 ℃에서 5 분간 반응 한 뒤 410 ㎚에서 흡광도를 측정한 결과, 표 7에서 보여지듯이, 모든 TFP를 이용한 발현이 자체 분비 시그널이나 MFα 분비 시그널로 발현한 것에 비해 발현율이나 활성이 월등히 좋았다. 그 중 CBLP2의 활성이 제일 좋았기 때문에 CBLIP2를 정제하여 단백질 특성분석을 진행하였다.Then, the above-mentioned fragment was transformed into YEGα-HIR525 vector and Y2805 strain digested with BamH1 / Sal1 to generate a circular vector through in vivo recombination, and a single vector with well-generated vector was selected on UD medium . To use the MFa secretion signal, the same strain was transformed with the TFP 6 vector and single colonies were screened. (TFP19- CBLIP2 , TFP8- CBLIP5 , and TFP8- CBLIP7 ) were cultured in YPDG medium for 40 hours after single transfection using self-secretory signal or MFa secretion signal and the highest secreted and selected single transformants The cells were removed by centrifugation and a culture supernatant was obtained. To confirm the activity of the secreted protein from each transformant, 20 μl of the enzyme solution was added to 0.98 ml of a substrate solution (50 mM Tris-HCl buffer (pH 7.5): ethanol: 50 mM p-nitrophenyl butyrate (PNPP) or palmitate (PNPP) = 380: 19: 1) at 30 ° C for 5 minutes, and then the absorbance at 410 nm was measured. As a result, As shown in Table 7, expression using all TFPs was significantly better than that expressed by self-secretory signal or MFa secretion signal. Since CBLP2 activity was the best among these , CBLIP2 was purified and analyzed for protein characteristics.

CBLIP2CBLIP2 Lipase 활성
(U/min/ml)
Lipase activity
(U / min / ml)
CBLIP5CBLIP5 Lipase 활성
(U/min/ml)
Lipase activity
(U / min / ml)
CBLIP7CBLIP7 Lipase 활성
(U/min/ml)
Lipase activity
(U / min / ml)
TFP19TFP19 810810 TFP8TFP8 550550 TFP8TFP8 210210 자체 분비시그널Self-secretory signal 630630 자체 분비시그널Self-secretory signal 370370 자체 분비시그널Self-secretory signal 6565 MFα 분비시그널MFa secretion signal 150150 MFa 분비시그널MFa secretion signal 5050 MFa 분비시그널MFa secretion signal 6060

실시예Example 5: 유가  5: Oil prices 배양식Pear form 발효를 통한 리파아제 ( Lipase through fermentation ( CBLIP2CBLIP2 )의 대량 생산 ) Mass production

상기 실시예 4를 통해 선별된 Y2805/YGa-ST19-CBLIP2으로 형질전환시킨 재조합 효모 균주를 이용하여 리파아제를 대량 생산하기 위해 5 L 발효조에서 유가식 배양을 수행하고자 하였다. 그러나, 야생형 효모 균주에서 GAL10 프로모터를 발현하기 위해서는 고가의 인듀서 (inducer)인 갈락토스를 필요로 하기 때문에 포도당만으로도 발현유도가 가능한 gal80 변이 균주, Y2805Δgal80를 이용하였다. 이에, 리파아제 유전자를 Y2805Δgal80 (Mat α pep4 :: HIS3 gal80 :: Tc190 , prb1 can1 his3-200 ura3 -52) 균주에서 발현하기 위해 실시예 4에서 확보된 균주로부터 분리된 플라스미드, YGaST19-CBLip2 벡터를 Y2805Δgal80에 형질전환 한 뒤 리파아제 활성이 좋은 형질전환체를 얻었다. 본 배양에 들어가기 전에 50 ㎖의 최소 액체배지 (0.67 % 아미노산이 결여된 효모 질소원 기질, 0.5 % 카사미노산, 2 % 포도당)에 1 단계 초기 배양한 후, 다시 200 ㎖의 YPD 액체배지 (1 % 효모 추출물, 2 % 펩톤, 2 % 포도당)에서 배양하여 활성화시킨 후, 본 배양액에 접종하여 30 ℃에서 48 시간 동안 배양하였다. 세포 성장 속도에 따라 유가 배양식 배지 (15 % 효모 추출물, 30 % 포도당)를 추가 공급하였다. 배양 48 시간 후 세포농도가 OD600을 기준으로 대략 180에 도달하였다. 배지로 분비된 리파아제를 확인하기 위하여 시간 별 배양 상등액을 취하여 SDS-PAGE 분석을 하였고, 12 시간 간격으로 단백질 활성을 확인하였다. 그 결과, 48 시간에 약 230 KU/L/min의 활성에 도달하였다 (도 11). 발효를 통해 생산된 단백질은 50 mM의 트리스 완충용액 (pH 7.5)으로 한외여과 (분자량 cut off 30,000)를 이용하여 2 배 농축하였다.Using the Example 4 in which the recombinant yeast strain transformed with the selected Y2805 / YGa-ST19- CBLIP2 through to mass production of the lipase was to perform a fed-batch culture in a 5 L fermenter. However, in order to express the GAL10 promoter in the wild-type yeast strain, galactoside, which is an expensive inducer, is required. Therefore, a gal80 mutant strain, Y2805Δgal80, which can induce expression by glucose alone, was used. Thus, the lipase gene was replaced with Y2805Δgal80 ( Mat α pep4 :: HIS3 gal80 :: Tc190 , pRB1 ura3 can1 his3-200 -52) separated from the strain obtained in Example 4 for expression of the plasmid in the strain, YGaST19- CBLip2 vector transformants after a lipase activity to give a good transformant in Y2805Δgal80. The cells were cultured for one step in 50 ml of a minimal liquid medium (yeast nitrogen substrate lacking 0.67% amino acid, 0.5% casamino acid, 2% glucose) before entering the present culture, and then 200 ml of YPD liquid medium (1% yeast Extract, 2% peptone, 2% glucose) and then inoculated into the culture medium and cultured at 30 ° C for 48 hours. (15% yeast extract, 30% glucose) according to the cell growth rate. After 48 hours of incubation, the cell concentration reached approximately 180 on an OD 600 basis. To identify the lipase secreted in the medium, the supernatant was taken by time, analyzed by SDS-PAGE, and the protein activity was checked at intervals of 12 hours. As a result, the activity reached about 230 KU / L / min at 48 hours (FIG. 11). Proteins produced by fermentation were concentrated twice by ultrafiltration (molecular weight cut off 30,000) into 50 mM Tris buffer solution (pH 7.5).

실시예Example 6 : 리파아제 ( 6: Lipase ( CBLIP2CBLIP2 )의 정제) Tablets

상기 실시예 5의 방법으로 얻어진 발효농축액을 이온 교환 (ion exchange) 방법을 이용하여 정제를 수행하였다. CBLIP2의 PI는 4.6 정도로 20 mM 소듐 아세테이트 완충용액 (sodium acetate buffer, pH 5.5)을 사용했을 때, 단백질은 음전하를 띄므로 음이온 교환 컬럼 (anion exchange column)인 Q FF 컬럼을 이용하여 정제하였다. 20 mM 소듐 아세테이트 완충용액 (pH 5.5)으로 레진을 충분히 평행화시킨 후, 발효농축액 6 ㎖를 로딩하여 2 ㎖/분의 유속으로 0 ℃에서 1 M NaCl의 농도 구배를 주면서 단백질을 용출시켰다 (도 12a). SDS-PAGE를 통하여 각 분획의 단백질을 확인한 결과, 8, 9 및 10 번 분획에서 정제된 리파아제를 확인할 수 있었다 (도 12b). 각 분획의 활성을 측정하여 활성이 높게 나타나는 8, 9 및 10 번 분획 (도 12c)만을 회수한 뒤 PD-10 탈염 컬럼 (desalting column)을 이용하여 탈염을 하였고 이렇게 얻어진 정제액의 활성을 PNPP로 측정하여 발효농축액과의 활성 및 단백질 양을 비교하였다. 그 결과 약 3 배로 정제 (purification) 되었고, 단백질 양은 5 배 줄었지만, 활성은 크게 줄지 않아 특이적 활성 (specific activity)이 높은 상태로 정제가 잘된 것을 확인하였다 (표 8).The fermentation concentrate obtained by the method of Example 5 was purified using an ion exchange method. The protein of CBLIP2 was purified by using an anion exchange column (Q FF column) because the protein was negatively charged when using 20 mM sodium acetate buffer (pH 5.5) at a pH of 4.6. The resin was sufficiently parallelized with 20 mM sodium acetate buffer (pH 5.5), and 6 ml of the fermentation concentrate was loaded and the protein was eluted with a gradient of 1 M NaCl at 0 ° C at a flow rate of 2 ml / min 12a). Proteins of each fraction were confirmed by SDS-PAGE, and the purified lipase was confirmed in fractions 8, 9, and 10 (FIG. 12B). The activity of each fraction was measured, and only fractions 8, 9 and 10 (FIG. 12C) showing high activity were recovered. After desalting using a PD-10 desalting column, the activity of the purified solution thus obtained was measured by PNPP And the activity and protein content of the fermented concentrate were compared. As a result, the purified protein was reduced to about 3-fold and the amount of protein was reduced by 5-fold, but the activity was not significantly reduced, and the purified product was found to have a high specific activity (Table 8).

정제 단계Purification step 총 부피Total volume
(㎖)(Ml)
효소 활성Enzyme activity
(U/㎖)(U / ml)
단백질 농도 (mg/㎖)Protein concentration (mg / ml) 특이적 활성Specific activity
(U/mg)(U / mg)
정제 인자Refining factor
(배)(ship)
수율yield
(%)(%)
발효농축액Fermented concentrate 66 196964196964 15.915.9 12387.712387.7 1One 100100 Q FFQ FF 5.55.5 147179.9147179.9 3.83.8 38731.538731.5 3.13.1 68.568.5

실시예Example 7: 발현된 재조합 리파아제의 생화학적 특성 분석 7: Biochemical characterization of expressed recombinant lipase

7-1: pH와 온도의 영향조사7-1: Investigation of effect of pH and temperature

실시예 6의 방법을 통해 정제된 리파아제의 특성을 조사하기 위해 정제된 효소액을 사용하여 효소 활성에 미치는 pH와 온도의 영향을 조사하였다. 온도의 영향을 조사하기 위하여 20 내지 80 ℃의 범위에서 10 ℃ 간격으로 반응시킨 후 각각의 활성을 측정하였고, 활성이 가장 높은 온도를 기준으로 하여 상대적인 활성을 나타내었다. 그 결과, 50 ~ 60 ℃에서 가장 높은 활성을 나타내는 것을 확인하였다 (도 13). The effect of pH and temperature on enzyme activity was investigated using purified enzyme solutions to investigate the properties of the purified lipase by the method of Example 6. In order to investigate the effect of temperature, each activity was measured after reacting in the range of 20 to 80 캜 at intervals of 10 캜, and relative activity was shown based on the highest activity. As a result, it was confirmed that it exhibited the highest activity at 50 to 60 ° C (FIG. 13).

또한, 효소 활성에 미치는 pH의 영향을 조사하기 위하여 소듐 시트레이트 완충용액 (sodium citrate buffer, pH 5.0), 포타슘 포스페이트 완충용액 (potassium phosphate buffer, pH 6.0 및 7.0), Tris-HCl 완충용액 (pH 8.0), 글리신-NaOH 완충용액 (pH 9.0 및 10.0)을 사용하여 50 ℃에서 반응 시킨 후, 효소 활성을 측정하였다. 각 pH에서 상대적인 활성을 조사한 결과 염기성인 pH 8.0, 9.0 및 10.0에서 높은 활성을 나타내었으며, 그 중 pH 8.0에서 가장 높은 활성을 보였다. 반면 산성 및 중성의 pH에서는 상대적으로 낮은 활성을 나타내었다 (도 14a). To investigate the effect of pH on the enzyme activity, sodium citrate buffer (pH 5.0), potassium phosphate buffer (pH 6.0 and 7.0), Tris-HCl buffer (pH 8.0 ), Glycine-NaOH buffer solution (pH 9.0 and 10.0) at 50 ° C, and enzyme activity was measured. Relative activity at pH was found to be high at basic pH 8.0, 9.0 and 10.0, and the highest activity was observed at pH 8.0. Whereas it exhibited relatively low activity at acidic and neutral pH (Fig. 14A).

추가적으로, pH에 대한 안정성을 조사하기 위하여 정제된 효소액을 각 pH에서 1 시간 방치한 후, 남아있는 효소의 잔존 활성을 측정하였다. 그 결과 대부분의 pH에서 활성에 영향이 없는 것으로 확인되었다 (도 14b).In addition, to examine the stability against pH, the purified enzyme solution was allowed to stand at each pH for 1 hour, and residual activity of the remaining enzyme was measured. As a result, it was confirmed that activity was not affected at most pH (FIG. 14B).

7-2: 7-2: 금속 이온Metal ion , 억제제, 계면활성제 및 용매의 영향조사, Inhibitors, surfactants and solvents

상기에서 사용된 정제된 효소액을 사용하여 효소 활성에 미치는 금속 이온, 억제제, 계면활성제 및 용매의 영향을 조사하였다. The effect of metal ion, inhibitor, surfactant and solvent on enzyme activity was investigated using the purified enzyme solution used above.

첫 번째로 1 mM의 금속 이온 (Ba2 +, Ca2 +, Mg2 +, K+, Li+, Hg2 +, Na+)을 첨가하여 1 시간 동안 방치한 뒤, 남아있는 효소의 잔존 활성을 측정하였다. 그 결과 대부분의 금속 이온에 영향을 받지 않는 것으로 나타났다 (도 15a). A first metal ion of 1 mM (Ba 2 +, Ca 2 +, Mg 2 +, K +, Li +, Hg 2 +, Na +) was added to 1 hour to the back, left residual activity of the enzyme was allowed to stand for Were measured. As a result, most of the metal ions were not affected (FIG. 15A).

두 번째로 억제제와 계면활성제의 영향을 조사하였다. 상기 금속 이온 영향 측정방법과 같은 방법으로 1 mM의 억제제와 계면활성제 (EDTA, SDS, Tween20, Tween80, Triton X-100, PMSF, 베타-머캅토에탄올 (beta-mercaptoethanol))를 첨가하여 1 시간 동안 방치한 뒤, 남아있는 효소의 잔존 활성을 측정하였다. 그 결과, Tween20, Tween80, Triton X-100의 영향을 많이 받아 효소 활성이 저해되는 것을 확인할 수 있었다 (도 15b). Second, the effects of inhibitors and surfactants were investigated. (EDTA, SDS, Tween 20, Tween 80, Triton X-100, PMSF, beta-mercaptoethanol) was added in the same manner as in the above metal ion effect measurement method, After standing, the residual activity of the remaining enzyme was measured. As a result, it was confirmed that the activity of Tween 20, Tween 80, and Triton X-100 was greatly affected, and enzyme activity was inhibited (FIG. 15B).

마지막으로 용매의 영향을 조사하였다. 30 %의 각 용매 (아세톤, 에탄올, 메탄올, 2-프로판올, 부탄올)를 첨가하여 1 시간 동안 방치한 뒤, 남아있는 효소의 잔존 활성을 측정하였다. 그 결과, 2-프로판올과 부탄올에 많은 저해를 받았고, 나머지 용매에는 영향을 받지 않았다 (도 15c).Finally, the effect of solvent was investigated. 30% of each solvent (acetone, ethanol, methanol, 2-propanol, butanol) was added and left for 1 hour, and remaining activity of the remaining enzyme was measured. As a result, 2-propanol and butanol were highly inhibited, and the remaining solvents were not affected (FIG. 15C).

7-3: 기질특이성 조사7-3: Investigation of substrate specificity

상기에서 사용된 정제된 효소액을 사용하여 기질특이성을 조사하고자 하였다. C4 (PNPB : 4-Nitrophenyl butyrate), C6 (PNPH : 4-Nitrophenyl hexanoate), C8 (PNPC : 4-Nitrophenyl caprylate), C10 (PNPD : 4-Nitrophenyl decanoate), C12 (PNPL : 4-Nitrophenyl laurate), C14 (PNPM : 4-NItrophenyl myristate), C16 (PNPP : 4-Nitrophenyl palmitate)의 기질들을 아세토나이트릴 (Acetonitrile)에 녹여 50 mM의 농도로 만들어 주었다. 효소액 10 ㎕와 각각의 기질 (50 mM): 50 mM Tris-HCl (pH 7.5) : 에탄올이 0.1 : 1.9 : 38의 비율로 혼합된 혼합액을 혼합하여 30 ℃ 항온조에 넣어 5 분간 반응 후 405 nm에서 지질분해효소의 기질특이성을 확인하였다. 그 결과, 짧은 길이의 기질인 C4와 C6에서 활성이 높았으며, C8 ~ C16까지는 비교적 비슷한 활성을 나타내었다 (도 16). 이러한 결과로부터 짧은 길이의 탄소수를 가지는 기질에 대하여 특이성을 지니는 것으로 판단되었다.The purified enzyme solution used above was used to investigate the substrate specificity. 4-Nitrophenyl hexanoate (C 8), C 8 (PNP) 4-Nitrophenyl decanoate (C 8), C 12 (PNPL 4-Nitrophenyl laurate) C14 (PNPM: 4-NItrophenyl myristate) and C16 (PNPP: 4-Nitrophenyl palmitate) were dissolved in acetonitrile to a concentration of 50 mM. 10 μl of the enzyme solution and 50 μl of each substrate (50 mM): 50 mM Tris-HCl (pH 7.5): ethanol in the ratio of 0.1: 1.9: 38 were mixed and incubated at 30 ° C. for 5 minutes. The substrate specificity of the lipolytic enzyme was confirmed. As a result, the activity was high in short length substrates C4 and C6, and relatively similar activities were shown in C8 to C16 (FIG. 16). From these results, it was judged to have specificity for a substrate having a short carbon number.

실시예Example 8:  8: CTGCTG 코돈 ( Codon ( codoncodon )의 영향조사) Influence investigation

발표된 논문에 의하면 몇몇 캔디다 종은 CTG 코돈을 류신이 아닌 세린으로 번역하여 보통 효모인 사카로마이세스 세레비지에에서 발현했을 경우 원래 아미노산인 세린이 아닌 류신으로 번역되어 단백질의 활성에 영향을 주는 것으로 알려져 있다 (nt J Mol Sci. 2011;12(6):3950-65. doi: 10.3390/ijms12063950. Epub 2011 Jun 14.A novel cold-active lipase from Candida albicans: cloning, expression and characterization of the recombinant enzyme.Lan DM1, Yang N, Wang WK, Shen YF, Yang B, Wang YH). 이에, 앞서 발현된 세 가지 단백질 CBLIP2 , CBLIP5 , CBLIP7의 비정상적 CTG 코돈의 영향을 조사하고자 하였다. 세 가지 종류의 단백질 중 CTG 코돈을 가지고 있는 것은 CBLIP5가 유일하였으며, 3 개의 CTG 코돈을 가지고 있었다 (도 17). 이에 CTG를 보편적인 세린 코돈인 TCT로 치환하여 치환된 단백질 (서열번호 92)의 활성 정도를 확인하였다. CTG를 TCT로 치환한 CBLIP5의 유전자 (서열번호 93)를 사카로마이세스 세레비지애 (Saccharomyces cerevisiae)에서 발현하기 위하여 프라이머 STFPL5-F (표 3, 서열번호 24), Lip5CTG1~3-F (표 9, 서열번호 94, 96 및 98)와 STFPL5-R (표 3, 서열번호 32), Lip5CTG1~3-R (표 9, 서열번호 95, 97 및 99)를 이용하여 1 차 중합효소 연쇄 반응하여 4 개의 단편을 얻고, 다시 LNK39 (표 3, 서열번호 36) 및 GT50R (표 3, 서열번호 37)을 이용하여 2 차 overlapping extension PCR을 수행하여 벡터와 세포 내 재조합 (in vivo recombination)이 가능한 유전자를 제작하였다.According to the published study, some Candida species translate the CTG codon into non-leucine serine, which when expressed in Saccharomyces cerevisiae yeast, translates to the original amino acid leucine, not serine, (Nt J Mol Sci. 2011; 12 (6): 3950-65. Doi: 10.3390 / ijms12063950. Epub 2011 Jun 14.A novel cold-active lipase from Candida albicans: cloning, expression and characterization of the recombinant enzyme Lan DM1, Yang N, Wang WK, Shen YF, Yang B, Wang YH). To investigate the effect of abnormal CTG codons on the previously expressed three proteins CBLIP2 , CBLIP5 and CBLIP7 . It has three types of CTG codons of the protein was the only CBLIP5 and had three CTG codon (Fig. 17). The activity of the substituted protein (SEQ ID NO: 92) was confirmed by replacing CTG with the common serine codon TCT. The gene of CBLIP5 (SEQ ID NO: 93) in which CTG was replaced with TCT was transformed into Saccharomyces cerevisiae cerevisiae) primer STFPL5-F (Table 3, SEQ ID NO: 24), Lip5CTG1 ~ 3-F ( Table 9, SEQ ID NO: 94, 96 and 98) and STFPL5-R (Table 3, SEQ ID NO: 32) to express in, Lip5CTG1 (Table 3, SEQ ID NO: 36) and GT50R (Table 3, SEQ ID NO: 36) and 3-R (Table 9, SEQ ID NOS: 95, 97 and 99) 37) was used to perform a second overlapping extension PCR to construct a vector and a gene capable of in vivo recombination.

유전자gene 서열order 서열번호SEQ ID NO: CbLIP5CbLIP5 MILTNLLVYFSLIACTICAPMTILKPSEDDFYTAPDGFEDEKLGTILKWRKTPYQIKSIYFPVNIKNSWQLLVRSEDAIGNPVAVTASLFEPYNGNTSRLVSYQVAEDSASFDCAPSYSFVGGGYHTVVAKAEMILIQGALDQGYYVVAPDYEGPNAAFTAGITSGMSTINVLRAVLSDQRSNETRIDSDAEVVLWGYSGGTIPSGWAASMAPWYAKDINDNLKGAAMGGWVTNITATAEIVEGSLFEGLVAAAINGLAQQYEEINEALDVYLVPDKLETFRSAKNECVIDVVFSFAYQSAFSGSDPYTSDGWGVLEDPKVKKIVNQNTLGLNVTEKFKPEIPLFVYHGILDEIVPFKDAQRVYDVWCKEGINSFEFAVSNSTGHLLEVLEGSGAALKWISDRFDGVAPTKGCHRQTRLSNIFYPGSFTGISDILSALVRNVMGSPIGLYDEQVEKRSDVTEDEKLLKRSFAYTDEEIFRRILDNSYPDMAQNLGYMILTNLLVYFSLIACTICAPMTILKPSEDDFYTAPDGFEDEKLGTILKWRKTPYQIKSIYFPVNIKNSWQLLVRSEDAIGNPVAVTASLFEPYNGNTSRLVSYQVAEDSASFDCAPSYSFVGGGYHTVVAKAEMILIQGALDQGYYVVAPDYEGPNAAFTAGITSGMSTINVLRAVLSDQRSNETRIDSDAEVVLWGYSGGTIPSGWAASMAPWYAKDINDNLKGAAMGGWVTNITATAEIVEGSLFEGLVAAAINGLAQQYEEINEALDVYLVPDKLETFRSAKNECVIDVVFSFAYQSAFSGSDPYTSDGWGVLEDPKVKKIVNQNTLGLNVTEKFKPEIPLFVYHGILDEIVPFKDAQRVYDVWCKEGINSFEFAVSNSTGHLLEVLEGSGAALKWISDRFDGVAPTKGCHRQTRLSNIFYPGSFTGISDILSALVRNVMGSPIGLYDEQVEKRSDVTEDEKLLKRSFAYTDEEIFRRILDNSYPDMAQNLGY 9292 CbLIP5CbLIP5 atgattttaacgaatcttcttgtatatttcagcttgatagcgtgcacaatttgtgctccaatgacgatcttgaaaccttctgaagatgacttttatactgctccagatggctttgaggatgaaaagttaggtactattcttaaatggagaaagactccttatcagattaagagtatctacttcccagttaacattaagaatagttggcaattgcttgtgagatctgaagatgcaatcggtaatccagttgcagtcactgcttccctttttgaaccgtacaatggtaacacatccaggttggtctcataccaagttgcagaggatagtgcttcgttcgactgtgcaccgtcatattcatttgtaggaggaggttaccatacagtggttgcaaaagctgagatgattttgatacaaggagcattagatcaaggttattacgttgttgcaccagactatgaaggacccaatgctgcatttactgccgggataacatccggcatgagcaccattaatgttcttcgagcagtcttaagtgatcagaggagtaatgaaacgagaattgactcagatgcagaagtggttctttggggatatagtggaggcacaatccctagtggttgggcagcatctatggctccatggtatgctaaagatatcaatgataatcttaaaggagcagcaatgggtggatgggtaactaatattactgccacggctgaaattgtagaagggtcccttttcgaaggattggttgcagcagccatcaatggattagcacaacaatatgaagaaattaatgaggcacttgatgtttatcttgtacctgataagctagagacatttagatcagcaaagaatgaatgcgttattgatgtagtat
tttcctttgcttatcaaagtgcattcagtggaagtgatccttatacatctgatggatggggtgtattagaagacccaaaagtgaagaagattgtcaaccaaaatacccttggattaaatgtgactgaaaaattcaaaccagagatcccactatttgtttatcatggaattcttgatgaaattgttcctttcaaagatgcacagagagtttatgatgtttggtgtaaagaaggcattaattcatttgaatttgccgtctctaattctactggccatcttcttgaggtacttgaaggcagtggagcagcgttgaagtggatatctgacagattcgatggagttgcaccaaccaaaggatgtcatagacaaacaagattaagtaatatcttctatccaggttcttttactggaatatctgacattttatctgctttagtcagaaatgtcatgggaagccctattggactttatgatgaacaagttgaaaagagatcagatgtaaccgaagacgaaaaattattgaaaaggtcttttgcatacacagatgaagaaatctttagaagaatacttgacaacagctatccagatatggctcaaaatttgggctattaa
atgattttaacgaatcttcttgtatatttcagcttgatagcgtgcacaatttgtgctccaatgacgatcttgaaaccttctgaagatgacttttatactgctccagatggctttgaggatgaaaagttaggtactattcttaaatggagaaagactccttatcagattaagagtatctacttcccagttaacattaagaatagttggcaattgcttgtgagatctgaagatgcaatcggtaatccagttgcagtcactgcttccctttttgaaccgtacaatggtaacacatccaggttggtctcataccaagttgcagaggatagtgcttcgttcgactgtgcaccgtcatattcatttgtaggaggaggttaccatacagtggttgcaaaagctgagatgattttgatacaaggagcattagatcaaggttattacgttgttgcaccagactatgaaggacccaatgctgcatttactgccgggataacatccggcatgagcaccattaatgttcttcgagcagtcttaagtgatcagaggagtaatgaaacgagaattgactcagatgcagaagtggttctttggggatatagtggaggcacaatccctagtggttgggcagcatctatggctccatggtatgctaaagatatcaatgataatcttaaaggagcagcaatgggtggatgggtaactaatattactgccacggctgaaattgtagaagggtcccttttcgaaggattggttgcagcagccatcaatggattagcacaacaatatgaagaaattaatgaggcacttgatgtttatcttgtacctgataagctagagacatttagatcagcaaagaatgaatgcgttattgatgtagtat
tttcctttgcttatcaaagtgcattcagtggaagtgatccttatacatctgatggatggggtgtattagaagacccaaaagtgaagaagattgtcaaccaaaatacccttggattaaatgtgactgaaaaattcaaaccagagatcccactatttgtttatcatggaattcttgatgaaattgttcctttcaaagatgcacagagagtttatgatgtttggtgtaaagaaggcattaattcatttgaatttgccgtctctaattctactggccatcttcttgaggtacttgaaggcagtggagcagcgttgaagtggatatctgacagattcgatggagttgcaccaaccaaaggatgtcatagacaaacaagattaagtaatatcttctatccaggttcttttactggaatatctgacattttatctgctttagtcagaaatgtcatgggaagccctattggactttatgatgaacaagttgaaaagagatcagatgtaaccgaagacgaaaaattattgaaaaggtcttttgcatacacagatgaagaaatctttagaagaatacttgacaacagctatccagatatggctcaaaatttgggctattaa
9393
프라이머primer 서열order Lip5CTG1-FLip5CTG1-F AGTGATCCTTATACATCTGATGGATGGGGTGTAAGTGATCCTTATACA TCT GATGGATGGGGTGTA 9494 Lip5CTG1-RLip5CTG1-R TACACCCCATCCATCAGATGTATAAGGATCACTTACACCCCATCCATC AGA TGTATAAGGATCACT 9595 Lip5CTG2-FLip5CTG2-F ATCTTCTATCCAGGTTCTTTTACTGGAATATCTATCTTCTATCCAGGT TCT TTTACTGGAATATCT 9696 Lip5CTG2-RLip5CTG2-R AGATATTCCAGTAAAAGAACCTGGATAGAAGATAGATATTCCAGTAAA AGA ACCTGGATAGAAGAT 9797 Lip5CTG3-FLip5CTG3-F AAATTATTGAAAAGGTCTTTTGCATACACAGATAAATTATTGAAAAGG TCT TTTGCATACACAGAT 9898 Lip5CTG3-RLip5CTG3-R ATCTGTGTATGCAAAAGACCTTTTCAATAATTTATCTGTGTATGCAAA AGA CCTTTTCAATAATTT 9999

증폭된 유전자를 포함하는 발현벡터를 단백질 분비발현을 도와주는 24 종의 단백질 분비 융합 인자 (표 5)를 함유한 벡터와 함께 효모 균주인 Y2805 (Mat α pep4::HIS3 prb1 can1 his3 -200 ura3 -52) 균주에 도입하여 세포 내 재조합을 통하여 형질전환체가 형성되도록 하였다. 세포 내 재조합을 통해 형성된 형질전환체는 UDGT 배지 (0.67 % 아미노산이 결여된 효모기질, 0.77 % 우라실이 결핍된 영양 보충물, 2 % 포도당, 1 % 갈락토즈, 1 % 트리뷰티린)에 점적하여 투명환이 큰 4 개의 TFP를 선별하였다. 그 결과, TFP 8, 9, 13 및 19 번의 활성이 좋았으며, 선별된 4 개의 TFP를 포함하는 TCT로 치환된 CBLIP5를 치환전의 동일한 TFP를 포함하는 CBLIP5와 활성과 단백질 비교를 하였다. 동일하게 YPDG (1 % 효모 추출물, 2 % 펩톤, 1 % 포도당, 1 % 갈락토오스) 배지에서 40 시간 배양 후 원심분리하여 상등액을 얻었다. 상등액 0.6 ㎖을 0.4 ㎖의 아세톤으로 침전시킨 후 SDS-PAGE 분석하였다 (도 18a). 그 결과, 치환 전과 치환 후의 단백질의 발현량에는 크게 차이가 없이 발현이 잘된 것을 확인하였다. 그러나 치환 후가 치환 전보다 4 개의 TFP 모두 약 3 배의 활성증가가 이뤄진 것을 확인하였다 (도 18b). 이는 캔디다 뷰티리 SH14의 비정상적 CTG 코돈이 리파아제 활성에 영향을 미치는 것으로 판단된다.The expression vector containing the amplified gene was transformed into a yeast strain Y2805 ( Mat alpha pep4 :: HIS3 prb1 ( SEQ ID NO: 2)) together with a vector containing 24 protein secretion fusion factors (Table 5) can1 his3 ura3 was -200 to -52) to form body is introduced in the strain transformed by the recombinant cells. Transformants formed through intracellular recombination were spotted on UDGT medium (yeast substrate lacking 0.67% amino acid, nutritional supplement lacking 0.77% uracil, 2% glucose, 1% galactose, 1% tributyrin) Four TFPs with large transparent rings were selected. As a result, the activities of TFP 8, 9, 13 and 19 were good, and CBLIP5 substituted with TCT containing four TFPs selected was compared with CBLIP5 containing the same TFP before substitution. Likewise, the cells were cultured in YPDG (1% yeast extract, 2% peptone, 1% glucose, 1% galactose) for 40 hours and centrifuged to obtain supernatant. 0.6 ml of the supernatant was precipitated with 0.4 ml of acetone and subjected to SDS-PAGE analysis (Fig. 18 (a)). As a result, it was confirmed that the expression level of the protein before and after the substitution was not significantly different. However, it was confirmed that the activity of the four TFPs after substitution was about three times higher than that before substitution (Fig. 18B). This suggests that the abnormal CTG codon of Candida bauterii SH14 affects the lipase activity.

실시예 9: CBLIP2의 고정화 및 바이오디젤 전환 효과Example 9: Immobilization of CBLIP2 and effect of biodiesel conversion

재조합 대량생산된 CBLIP2를 이용하여 바이오디젤 생산용 고정화촉매를 개발하기 위해서, 고정화 흡착담체로서 Lewatit VP OC 1600 (Bayer)을 이용하여 고정화하였다. 효소를 고정화하기 전에 담체 30 g을 메탄올 75 ㎖에 60 분간 세척한 후 다시 300 ㎖의 50 mM 트리스 완충용액 (pH 7.6)에 25 에서 1 시간 동안 세척하여 전처리하였다. 효소액은 레진 그람 당 2000 unit을 첨가하여 진탕 배양기에서 25 ℃, 200 rpm의 속도로 15 시간 고정화시켰다. 고정화 시간은 상등액에 존재하는 초기 효소활성과 일정시간이 경과한 후 잔여 효소활성을 비교하여 더 이상 잔여활성이 변화가 없을 때까지 고정화 반응을 진행하였다 (도 19). 또한 반응 시간 별 상등액에 남아 있는 단백질량을 확인하기 위하여, 고정화 시간 별로 시료를 취해서 고정화되지 않고 상등액에 남아 있는 CBLIP2 효소의 양을 확인하였다. 고정화 반응이 끝난 담체는 거름종이와 유리깔때기를 이용하여 회수하고 다시 300 ㎖의 상기 완충용액으로 고정화된 담체를 반복 세척하였다. 세척된 고정화 효소는 상온에서 진공펌프를 이용하여 건조시키고 4 ℃에서 보관하였다. In order to develop the immobilized catalyst for biodiesel production using recombinant mass produced CBLIP2, immobilization was carried out using Lewatit VP OC 1600 (Bayer) as a fixed adsorption carrier. Before fixing the enzyme, 30 g of the carrier was washed with 75 ml of methanol for 60 minutes and then washed again with 300 ml of 50 mM Tris buffer solution (pH 7.6) at 25 for 1 hour. The enzyme solution was immobilized in a shaking incubator at 25 ° C and 200 rpm for 15 hours by adding 2000 units per gram of resin. The immobilization time was compared with the initial enzyme activity present in the supernatant after the elapse of a certain time, and the immobilization reaction was performed until the residual activity was no longer changed (FIG. 19). In order to confirm the amount of protein remaining in the supernatant by reaction time, the amount of CBLIP2 enzyme remaining in the supernatant was determined without taking the sample by immobilization time. The immobilized carrier was recovered by using a filter paper and a glass funnel, and the carrier immobilized with 300 ml of the buffer solution was repeatedly washed. The washed immobilized enzyme was dried at room temperature using a vacuum pump and stored at 4 ° C.

상기한 바와 같이 흡착 담체에 CBLIP2를 고정화하여 수분 함유량 별 (0, 5, 10 및 20 %) 바이오디젤 전환 반응 효율을 비교하였다. 식물성 유지 (대두유, soybean oil) 10 ㎖에 메탄올 0.5 ㎖을 첨가하고 각 고정화 효소를 10 %(w/v) 첨가한 후 수분을 농도 별로 첨가하여 40 ℃에서 강력하게 교반하면서 시간별로 생성된 바이오디젤을 HPLC (High performance liquid chromatography, Agilent)를 이용하여 분석하였다. 식물성 유지 (triacylglyceride, TG)와 메탄올이 반응하여 바이오디젤 (fatty acid methyl ester)로 100 % 전환되기 위해서는 전체 유지 양의 11 % (v/v) 정도의 메탄올이 필요하다. 그러나 고농도의 메탄올은 효소를 불활성화 하기 때문에 반응초기에 0.5 ㎖을 넣고 10 시간 후 다시 0.5 ㎖의 메탄올을 추가하였다.As described above, CBLIP2 was immobilized on an adsorbent carrier to compare the conversion efficiencies of biodiesel conversion (0, 5, 10 and 20%) by moisture content. 0.5 ml of methanol was added to 10 ml of vegetable oil (soybean oil), 10% (w / v) of each immobilized enzyme was added, and water was added to each concentration. Were analyzed by HPLC (High performance liquid chromatography, Agilent). To achieve 100% conversion of fatty acid methyl ester to triacylglyceride (TG) and methanol, about 11% (v / v) of methanol is needed. However, since methanol at high concentration deactivates the enzyme, 0.5 ml of methanol was added at the initial stage of the reaction, and 0.5 ml of methanol was further added after 10 hours.

전환된 바이오디젤의 분석은 시간 별로 시료를 200 ㎕ 회수하여 13,000 X g에서 5 분간 원심분리한 뒤 상등액을 회수하고 이를 아세톤에 적절한 비율로 희석하여 이 중 5 ㎕를 앞서 설명한 HPLC (High performance liquid chromatography, Agilent)를 이용하여 분석하였다. 분석조건은 고정상인 칼럼 (C18 4.6 x 150 mm)과 이동상인 아세톤, 아세토나이트릴을 사용하였다. 분석 방법은 초기 분석 후 20 분까지는 아세토나이트릴을 100 % 사용하다가, 20 분에서 30 분까지는 50 %, 30 분에서 40 분까지는 100 %로 변화시켜 사용하였다. 분석이 끝난 후, 목표한 위치에 나타난 피크 면적을 적분 계산하고 표준 곡선과 비교하여 전환율을 측정하였다. 표준 곡선은 시판중인 각각의 지방산 메틸 에스터 (fatty acid methyl ester, Sigma)를 구입하여 동일한 조건에서 분석하였으며, 각 지방산 메틸 에스터의 농도 별 피크 면적을 이용하여 표준 곡선을 작성하였다. 측정 결과, 수분이 전혀 없는 상태에서는 반응이 전혀 이루어지지 않았으나 수분을 5 % 보다 10 % 첨가한 경우 전환율이 우수하였으며 20 %를 첨가한 경우 10 % 때 보다 오히려 반응이 감소하였다 (도 20). 본 효소는 오일과 수분의 계면에서 활성이 증가되는 전형적인 리파아제의 특성을 보이는 것을 알 수 있었으며 이러한 특성은 폐식용유와 같은 수분이 다량 함유된 기질을 이용하여 바이오디젤로 전환할 수 있는 장점을 제공한다. For the analysis of the converted biodiesel, 200 μl of the sample was collected over time, and the supernatant was recovered by centrifugation at 13,000 × g for 5 minutes. The supernatant was recovered and diluted to an appropriate ratio with acetone. 5 μl of the recovered biodiesel was subjected to high performance liquid chromatography , Agilent). Analytical conditions were a stationary phase column (C18 4.6 x 150 mm) and mobile phase acetone, acetonitrile. The analytical method was 100% acetonitrile for 20 minutes after initial analysis, 50% for 20 minutes to 30 minutes, and 100% for 30 minutes to 40 minutes. After the analysis, the peak area at the target position was integrated and the conversion rate was measured by comparing with the standard curve. Standard curves were obtained by purchasing commercially available fatty acid methyl esters (Sigma) and analyzing them under the same conditions. Standard curves were prepared using the peak area of each fatty acid methyl ester concentration. As a result of the measurement, no reaction was observed in the absence of moisture, but the conversion was excellent when 10% of moisture was added at 5%, and the reaction was decreased at 10% when 20% was added (FIG. This enzyme has a characteristic lipase activity that increases the activity at the interface of oil and water. This property provides the advantage of being able to convert to biodiesel using a substrate containing a large amount of water such as waste cooking oil .

이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, it will be understood by those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. In this regard, it should be understood that the embodiments described above are illustrative in all aspects and not restrictive. The scope of the present invention should be construed as being included in the scope of the present invention without departing from the scope of the present invention as defined by the appended claims.

한국생명공학연구원Korea Biotechnology Research Institute KCTC18455PKCTC18455P 2016030420160304

<110> KOREA RESEARCH INSTITUTE OF BIOSCIENCE AND BIOTECHNOLOGY <120> Novel lipase from yeast Candida butyri SH-14 and the use thereof <130> KPA160011-KR <160> 99 <170> KopatentIn 2.0 <210> 1 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ITS1 <400> 1 tccgtaggtg aacctgcgg 19 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ITS4 <400> 2 tcctccgctt attgatatgc 20 <210> 3 <211> 584 <212> DNA <213> Artificial Sequence <220> <223> ITS region of Candida butyri SH-14 <400> 3 agaaaaaata ttcttgccgc gcttactgcg cggcgagaat aacaccttac acacagtgga 60 ttttttttaa aagaactatt gcgtttggct tggctaacgc tgggccagag gattcagtaa 120 acttcaattt ttaattgaat tgttatttta atatttttgt caatttgttt gattaaattc 180 aaaataatct tcaaaacttt caacaacgga tctcttggtt ctcgcatcga tgaagaacgc 240 agcgaaatgc gataagtaat atgaattgca gattttcgtg aatcatcgaa tctttgaacg 300 cacattgcgc cttatggtat tccataaggc atgcctgttt gagcgtcatt tctctctcaa 360 acctttgggt ttggtattga gtgatactct tagtcggact aggcgtttgc ttgaaaagta 420 ttggcaagag tgtactggat agtactaact ggttattcaa tgtattaggt ttatccaact 480 cgttgaagtg ctggtggtaa atttctagta acggctcggc cttacaacaa caaacaagtt 540 tgacctcnaa tcaggtaaga atacccgctg aacttaagca tatc 584 <210> 4 <211> 338 <212> PRT <213> Artificial Sequence <220> <223> LIP1 <400> 4 Met Lys Leu Ser Thr Phe Leu Ser Ala Ser Ile Ile Phe Trp Arg Ala 1 5 10 15 Thr Glu Thr Ala Ser Thr Pro Leu Ser Pro Arg Ser Gly Asp Asn Val 20 25 30 Pro Lys Asp Tyr Gln Lys Leu Lys Asp Tyr Ala Asn Leu Val Ser Phe 35 40 45 Ala Tyr Cys Lys Glu Leu Ile Pro Ser Lys Leu Gly Ser Asn Asp Ser 50 55 60 Asn Cys Pro Ile Leu Arg Cys Gln Glu Glu Glu Tyr Lys Asn Ile Glu 65 70 75 80 Val Leu Asn Leu Phe Asp Phe Asn Asp Phe Gly Ser Ile Gly Ser Gly 85 90 95 Tyr Thr Gly Ile Asp His Gln Asn Lys Arg Ile Ile Leu Ala Phe Arg 100 105 110 Gly Thr Ser Thr Asn Arg Asp Trp Leu Ala Asn Ile Asn Val Pro Phe 115 120 125 Lys Lys Tyr Asn Pro Leu Ser Asn Leu Gln Leu Lys Ala Asp Ile Glu 130 135 140 Cys Glu Gly Cys Lys Val His Lys Gly Phe Tyr Glu Phe Ile Glu Lys 145 150 155 160 His Cys Val Ala Leu Ile Lys Gln Val Ala Gln Leu Lys Gln Lys Tyr 165 170 175 Pro Asp Tyr Gln Leu Val Val Leu Gly His Ser Leu Gly Gly Val Phe 180 185 190 Ala Leu Leu Ser Gly Met Glu Phe Leu Leu Met Asp Phe Gln Pro Leu 195 200 205 Val Ile Thr Tyr Ala Ser Pro Lys Val Gly Asn Lys Ala Met Val Arg 210 215 220 Phe Ile Asp Gln Leu Phe Glu Thr Ser Lys Val Ala Gln Gln Ser Gln 225 230 235 240 Asn Asp Tyr Asp Phe Asn His Gly Tyr Ile Arg Val Val His Asn Tyr 245 250 255 Asp Met Val Pro Met Leu Pro Pro Arg Glu Leu Gly Tyr Tyr His Gly 260 265 270 Gly Val Glu Tyr His Ile Glu Lys Ser Asn Leu Pro His Asn Pro Asp 275 280 285 Ser Val His Asn Arg Gly Gln Asn His Phe Ser Ser Asn Lys Asp Glu 290 295 300 Gly Pro Val Glu Lys Leu Glu Arg Ile Ala Thr Ser Leu Val Leu Val 305 310 315 320 Phe Thr Ser Lys Glu His Thr Gln Tyr Phe Ile Pro Ile Thr Gly Cys 325 330 335 Lys Asp <210> 5 <211> 468 <212> PRT <213> Artificial Sequence <220> <223> LIP2 <400> 5 Met Ile Cys Ser Phe Phe Arg Leu Leu Thr Ile Val Thr Leu Val Ile 1 5 10 15 Ala Ala Pro Thr Thr Leu Val Pro Pro Thr Glu Asp Pro Phe Tyr Thr 20 25 30 Ala Pro Lys Gly Phe Glu Ser Ala Glu Leu Gly Thr Val Leu Ala Tyr 35 40 45 Arg Asn Thr Pro Ala Pro Ile Arg Ser Ile Tyr Phe Glu Val Asn Ile 50 55 60 Lys Asn Ser Trp Gln Leu Leu Val Arg Ser Ser Asp Ser Phe Gly Asn 65 70 75 80 Pro Ser Val Val Val Thr Thr Val Phe Glu Pro Phe Asn Ala Asp Pro 85 90 95 Ser Lys Leu Val Ser Tyr Gln Val Ala Gln Asp Ser Ala Tyr Leu Asp 100 105 110 Cys Ser Pro Ser Tyr Ser Phe Met Asn Gly Gly Gly Leu Ser Thr Ile 115 120 125 Asn Asn Gln Ile Glu Thr Val Leu Ile Gln Thr Ala Leu Asp Gln Gly 130 135 140 Tyr Tyr Val Val Ser Pro Asp Tyr Glu Gly Leu Lys Ser Ala Phe Thr 145 150 155 160 Gly Gly Ile Gln Ala Gly His Gly Thr Leu Asp Ser Ile Arg Gly Ala 165 170 175 Leu Ser Ser Ser Asn Ile Thr Gly Val Lys Lys Asp Ala Asp Thr Ile 180 185 190 Leu Trp Gly Tyr Ser Gly Gly Ser Leu Ala Ser Gly Trp Ala Ala Ala 195 200 205 Leu Gln Pro Thr Tyr Ala Pro Glu Leu Ala Ser Asn Leu Leu Gly Val 210 215 220 Ala Leu Gly Gly Trp Val Thr Asn Ile Thr Ala Thr Ile Thr Ser Val 225 230 235 240 Ser Gly Thr Ile Phe Ser Gly Leu Gly Ala Met Gly Met Ala Gly Leu 245 250 255 Ser Asn Glu Tyr Thr Asp Leu Tyr Gly Tyr Leu Lys Thr Ala Met Pro 260 265 270 Ala Asp Lys Tyr Glu Glu Phe Thr Lys Ala Tyr Ser Ile Cys Ala Ala 275 280 285 Glu Ala Leu Ile Glu Tyr Asn Phe Asp Asp Trp Phe Glu Gly Glu Asp 290 295 300 Arg Tyr Phe Thr Asp Gly Phe Lys Val Leu Asn Glu Glu Pro Thr Tyr 305 310 315 320 Ser Ile Ile Arg Asn Asn Thr Leu Gly Leu Ile Ala Gly Gln Met Pro 325 330 335 Glu Ile Pro Val Phe Val Tyr His Gly Thr Leu Asp Gln Ile Val Pro 340 345 350 Tyr Asp Gln Ala Glu Arg Val Tyr Asp Ile Trp Cys Asp Ala Gly Ile 355 360 365 Lys Ser Phe Glu Phe Ala Thr Asp Leu Thr Ala Gly His Ile Thr Glu 370 375 380 Leu Val Gln Gly Ser Gly Ala Ala Phe Gly Trp Ile Lys Gly Met Phe 385 390 395 400 Glu Gly Thr Lys Lys Pro Val Ser Gly Cys Arg Lys Thr Pro Arg Ile 405 410 415 Ser Asn Leu Leu Tyr Pro Gly Thr Val Arg Ser Val Thr Asp Val Val 420 425 430 Gly Ala Leu Leu Asp Asn Ile Leu Gly Phe Asp Ile Gly Pro Asn Gly 435 440 445 Glu Asn Leu Ile Val Glu Asn Asn Ser Val Ile Ser Lys Ala Asn Ser 450 455 460 Thr Arg Ser Glu 465 <210> 6 <211> 345 <212> PRT <213> Artificial Sequence <220> <223> LIP3 <400> 6 Met Ala Met Leu Met Leu Leu Phe Phe Leu Phe Glu Ile Ala Cys Gly 1 5 10 15 Asn Ile Trp Val Tyr Pro Gly Ser His Gln Lys Ser Gly Glu Glu Glu 20 25 30 Arg Thr Pro Val Pro Ile Asp Ile Glu Val Tyr Arg Asn Met Phe Thr 35 40 45 Tyr Ala His Leu Ile Asp Ile Ser Tyr Cys Ile Ser Ser Thr Thr Arg 50 55 60 Leu Glu Glu Pro Phe Asn Cys Asp Leu Asn Cys Glu Lys Arg Phe Pro 65 70 75 80 Asn Val Thr Leu Val Tyr Gln Trp Tyr Phe Asp Asp Ser Val Cys Gly 85 90 95 Tyr Ile Ala Thr Thr Tyr Ser Asn Ile Phe Asn Tyr Glu Ser Glu Glu 100 105 110 Gly Lys Gly His Lys Lys Thr Ile Ile Val Ser Leu Arg Gly Thr Arg 115 120 125 Ser Ile Phe Asp Ser Tyr Thr Asp Ile Lys Val Asp Met Val Asn Tyr 130 135 140 Tyr Asn Tyr Gly Ser Asn Ile Gln Glu Cys Gly Thr Asp Cys Lys Val 145 150 155 160 His Arg Gly Phe Tyr Lys Tyr Tyr Ile Asn Thr Leu Leu Lys Ile Glu 165 170 175 Gly Ile Leu Arg Asn Glu Leu Gln Thr Asp Asp Asp Tyr Glu Leu Leu 180 185 190 Ile Val Gly His Ser Leu Gly Gly Ala Val Gly Leu Leu Leu Gly Leu 195 200 205 Tyr Tyr Leu Asp Glu Gly Phe Asp Lys Ile Thr Leu Val Thr Met Gly 210 215 220 Gln Pro Leu Val Gly Asn Lys Gln Phe Ala Glu Phe Val Asp Asn Val 225 230 235 240 Met Gly Ser Arg Leu Pro Ile Glu His Asn Thr Phe Asn Arg Lys Phe 245 250 255 Phe Arg Val Ile His Lys Asp Asp Ile Val Ala Thr Ile Pro Ser Asn 260 265 270 Asn Arg Ile Leu Asp Ser Tyr Ser Gln Phe Asp Asn Gln Ile Tyr Leu 275 280 285 Asn Cys Leu Ala Ser Asp Thr Met Pro Ser Leu Glu Gln Val Leu Asp 290 295 300 Cys Phe Asp Gly Asp Asn Pro Gln Cys Ile Ser Gly Asp Ile Glu Asn 305 310 315 320 Tyr Leu Leu Ser His Asn Tyr Leu Gln Ile His Thr Thr Tyr Phe Arg 325 330 335 Ser Met Gly Leu Cys Gly Ile Arg Ile 340 345 <210> 7 <211> 513 <212> PRT <213> Artificial Sequence <220> <223> LIP4 <400> 7 Met Met Ile Thr Thr Arg Ile Leu Val Cys Phe Ala Leu Ile Ala Leu 1 5 10 15 Thr Phe Ala Ala Pro Leu Thr Val Leu Lys Pro Ser Glu Asp Glu Phe 20 25 30 Tyr Ala Ala Pro Asp Gly Phe Glu Asp Glu Lys Leu Gly Thr Ile Leu 35 40 45 Lys Trp Arg Lys Thr Pro Tyr Gln Ile Lys Ser Ile Tyr Phe Pro Val 50 55 60 Asn Ile Lys Asn Ser Trp Gln Leu Leu Val Arg Ser Glu Asp Ala Ile 65 70 75 80 Gly Asn Pro Val Ala Val Thr Ala Ser Leu Phe Glu Pro Tyr Asn Gly 85 90 95 Asn Thr Ser Arg Leu Val Ser Tyr Gln Val Ala Glu Asp Ser Ala Ser 100 105 110 Phe Asp Cys Ala Pro Ser Tyr Ser Phe Val Gly Gly Gly Tyr His Thr 115 120 125 Val Val Ala Lys Ala Glu Met Ile Leu Ile Gln Gly Ala Leu Asp Gln 130 135 140 Gly Tyr Tyr Val Val Ala Pro Asp Tyr Glu Gly Pro Asn Ala Val Phe 145 150 155 160 Thr Ala Gly Val Thr Ser Gly Met Ser Thr Ile Asn Val Leu Arg Ala 165 170 175 Val Leu Gly Glu Gly Arg Arg Asn Glu Thr Arg Ile Asp Pro Asp Ala 180 185 190 Glu Val Val Leu Trp Gly Tyr Ser Gly Gly Thr Ile Pro Ser Gly Trp 195 200 205 Ala Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 210 215 220 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 225 230 235 240 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ala 245 250 255 Glu Ile Val Asp Gly Thr Leu Phe Ser Gly Leu Val Pro Ala Ala Leu 260 265 270 Asn Gly Leu Ser Ala Gln Tyr Glu Glu Met Asp Glu Ala Ile Asp Lys 275 280 285 Phe Leu Lys Pro Asn Lys Leu Glu Lys Phe Arg Ser Gly Arg Asn Glu 290 295 300 Cys Ala Ile Asp Val Val Phe Ser Phe Ala Tyr Gln Asp Thr Phe Ser 305 310 315 320 Gly Phe Asp Thr Tyr Ser Lys Asp Gly Trp Thr Ile Leu Asp Asp Pro 325 330 335 Asp Val Arg Asp Ile Leu Ala Glu Asn Thr Leu Gly Val Asn Val Thr 340 345 350 Lys Lys Phe Lys Pro Glu Ile Pro Leu Phe Val Tyr His Gly Ile Leu 355 360 365 Asp Glu Ile Val Pro Phe Lys Asp Ala Gln Arg Val Tyr Asp Val Trp 370 375 380 Cys Glu Glu Gly Tyr Asp Ser Phe Glu Phe Ala Val Ser Asn Ser Thr 385 390 395 400 Gly His Ile Leu Glu Val Ile Glu Gly Ser Ala Ala Gly Leu Lys Trp 405 410 415 Ile Ser Asp Arg Phe Asp Gly Val Gln Pro Thr Lys Gly Cys His Arg 420 425 430 Gln Thr Arg Leu Thr Asn Leu Phe Tyr Pro Gly Leu Phe Thr Gly Val 435 440 445 Thr Asp Ile Leu Ser Ala Leu Met Arg Asn Ile Phe Gly Ser Pro Ile 450 455 460 Gly Leu Tyr Asp Glu Gln Ile Glu Lys Arg Ser Asp Met Ser Glu Asp 465 470 475 480 Glu Lys Leu Leu Lys Arg Leu Phe Glu Phe Thr Asp Ser Glu Ile Phe 485 490 495 Lys Arg Ile Val Gln His Ser Tyr Pro Glu Met Ala Lys Lys Leu Asp 500 505 510 Leu <210> 8 <211> 496 <212> PRT <213> Artificial Sequence <220> <223> LIP5 <400> 8 Met Ile Leu Thr Asn Leu Leu Val Tyr Phe Ser Leu Ile Ala Cys Thr 1 5 10 15 Ile Cys Ala Pro Met Thr Ile Leu Lys Pro Ser Glu Asp Asp Phe Tyr 20 25 30 Thr Ala Pro Asp Gly Phe Glu Asp Glu Lys Leu Gly Thr Ile Leu Lys 35 40 45 Trp Arg Lys Thr Pro Tyr Gln Ile Lys Ser Ile Tyr Phe Pro Val Asn 50 55 60 Ile Lys Asn Ser Trp Gln Leu Leu Val Arg Ser Glu Asp Ala Ile Gly 65 70 75 80 Asn Pro Val Ala Val Thr Ala Ser Leu Phe Glu Pro Tyr Asn Gly Asn 85 90 95 Thr Ser Arg Leu Val Ser Tyr Gln Val Ala Glu Asp Ser Ala Ser Phe 100 105 110 Asp Cys Ala Pro Ser Tyr Ser Phe Val Gly Gly Gly Tyr His Thr Val 115 120 125 Val Ala Lys Ala Glu Met Ile Leu Ile Gln Gly Ala Leu Asp Gln Gly 130 135 140 Tyr Tyr Val Val Ala Pro Asp Tyr Glu Gly Pro Asn Ala Ala Phe Thr 145 150 155 160 Ala Gly Ile Thr Ser Gly Met Ser Thr Ile Asn Val Leu Arg Ala Val 165 170 175 Leu Ser Asp Gln Arg Ser Asn Glu Thr Arg Ile Asp Ser Asp Ala Glu 180 185 190 Val Val Leu Trp Gly Tyr Ser Gly Gly Thr Ile Pro Ser Gly Trp Ala 195 200 205 Ala Ser Met Ala Pro Trp Tyr Ala Lys Asp Ile Asn Asp Asn Leu Lys 210 215 220 Gly Ala Ala Met Gly Gly Trp Val Thr Asn Ile Thr Ala Thr Ala Glu 225 230 235 240 Ile Val Glu Gly Ser Leu Phe Glu Gly Leu Val Ala Ala Ala Ile Asn 245 250 255 Gly Leu Ala Gln Gln Tyr Glu Glu Ile Asn Glu Ala Leu Asp Val Tyr 260 265 270 Leu Val Pro Asp Lys Leu Glu Thr Phe Arg Ser Ala Lys Asn Glu Cys 275 280 285 Val Ile Asp Val Val Phe Ser Phe Ala Tyr Gln Ser Ala Phe Ser Gly 290 295 300 Ser Asp Pro Tyr Thr Leu Asp Gly Trp Gly Val Leu Glu Asp Pro Lys 305 310 315 320 Val Lys Lys Ile Val Asn Gln Asn Thr Leu Gly Leu Asn Val Thr Glu 325 330 335 Lys Phe Lys Pro Glu Ile Pro Leu Phe Val Tyr His Gly Ile Leu Asp 340 345 350 Glu Ile Val Pro Phe Lys Asp Ala Gln Arg Val Tyr Asp Val Trp Cys 355 360 365 Lys Glu Gly Ile Asn Ser Phe Glu Phe Ala Val Ser Asn Ser Thr Gly 370 375 380 His Leu Leu Glu Val Leu Glu Gly Ser Gly Ala Ala Leu Lys Trp Ile 385 390 395 400 Ser Asp Arg Phe Asp Gly Val Ala Pro Thr Lys Gly Cys His Arg Gln 405 410 415 Thr Arg Leu Ser Asn Ile Phe Tyr Pro Gly Leu Phe Thr Gly Ile Ser 420 425 430 Asp Ile Leu Ser Ala Leu Val Arg Asn Val Met Gly Ser Pro Ile Gly 435 440 445 Leu Tyr Asp Glu Gln Val Glu Lys Arg Ser Asp Val Thr Glu Asp Glu 450 455 460 Lys Leu Leu Lys Arg Leu Phe Ala Tyr Thr Asp Glu Glu Ile Phe Arg 465 470 475 480 Arg Ile Leu Asp Asn Ser Tyr Pro Asp Met Ala Gln Asn Leu Gly Tyr 485 490 495 <210> 9 <211> 491 <212> PRT <213> Artificial Sequence <220> <223> LIP6 <400> 9 Met Leu Ile Thr Thr Lys Ile Leu Val Tyr Phe Ala Leu Ile Ile Leu 1 5 10 15 Thr Ser Ala Ala Pro Met Thr Ile Leu Lys Pro Ser Glu Asp Glu Phe 20 25 30 Tyr Ala Ala Pro Asp Gly Phe Glu Asp Glu Lys Leu Gly Thr Ile Leu 35 40 45 Lys Trp Arg Lys Thr Pro Tyr Gln Ile Lys Ser Ile Tyr Phe Pro Val 50 55 60 Asn Ile Lys Asn Ser Trp Glu Leu Leu Val Arg Ser Glu Asp Ala Ile 65 70 75 80 Gly Asp Pro Val Ala Val Thr Ala Thr Ile Phe Glu Pro Tyr Asn Ala 85 90 95 Asn Ser Ser Arg Leu Val Ser Tyr Gln Val Ala Glu Asp Ser Pro Ser 100 105 110 Phe Asn Cys Ser Pro Ser Tyr Ala Phe Val Gly Gly Gly Tyr Pro Thr 115 120 125 Val Val Thr Lys Ala Glu Met Ile Leu Ile Gln Ser Ala Leu Asn Glu 130 135 140 Gly Tyr Tyr Val Val Val Pro Asp Tyr Glu Gly Pro Asn Ala Val Phe 145 150 155 160 Gly Val Gly Val Thr Ser Ala Met Ser Thr Ile Asn Val Leu Arg Ala 165 170 175 Val Leu Ser Asp Gln Arg Arg Asn Glu Thr Arg Ile Asp Ser Asp Ala 180 185 190 Glu Val Val Leu Trp Gly Tyr Ser Gly Gly Thr Ile Pro Ser Ser Trp 195 200 205 Ala Ala Ser Met Ala Pro Trp Tyr Ala Lys Asp Ile Asn Gln His Leu 210 215 220 Ile Gly Ala Ala Leu Gly Gly Trp Val Ser Asn Leu Thr Ala Leu Met 225 230 235 240 Glu Ile Val Glu Gly Ser Leu Phe Glu Gly Leu Val Pro Asn Ile Ile 245 250 255 Asn Gly Leu Ser Gln Gln Phe Glu Glu Ile Asn Asp Ala Phe Asp Asp 260 265 270 Tyr Leu Tyr Pro Ser Lys Arg Glu Lys Phe Arg Ser Thr Lys Lys Gln 275 280 285 Cys Val Phe Asp Ala Cys Leu Ser Phe Ala Phe Gln Ser Thr Phe Leu 290 295 300 Gly Asp His Pro Tyr Val Lys Gly Lys Trp Ser Val Leu Glu Glu Ala 305 310 315 320 Lys Val Lys Asn Ile Leu Glu Asn Asn Thr Leu Gly Leu Lys Val Thr 325 330 335 Lys Lys Phe Lys Pro Glu Ile Pro Ile Phe Ala Phe His Gly Ile Lys 340 345 350 Asp Glu Ile Val Pro Phe Lys Asp Ser Gln Arg Leu Tyr Asp Val Trp 355 360 365 Cys Glu Glu Gly Ile Asn Ser Phe Glu Phe Ala Val Ser Lys Ser Ser 370 375 380 Gly His Leu Leu Glu Val Val Glu Gly Ser Gly Ala Ala Leu Ala Trp 385 390 395 400 Ile Ser Asp Arg Phe Arg Gly Ile Pro Ala Val Lys Gly Cys Glu Arg 405 410 415 Lys Glu Arg Leu Thr Asn Leu Phe Tyr Pro Gly Leu Phe Ser Ser Val 420 425 430 Ser Asn Ile Leu Met Ala Leu Ile Arg Asn Ile Met Gly Ser Pro Ile 435 440 445 Gly Leu Tyr Asp Glu Gln Ala Lys Lys Arg Ser Gly Ser Thr Glu Glu 450 455 460 Glu Ile Ile Met Lys Arg Leu Leu Glu Tyr Thr Asp Glu Glu Ile Tyr 465 470 475 480 Arg Arg Ile Ile Glu Thr His Ser Asp Met Phe 485 490 <210> 10 <211> 463 <212> PRT <213> Artificial Sequence <220> <223> LIP7 <400> 10 Met Phe Lys Gln Leu Phe Leu Leu Phe Ser Leu Leu Ile Phe Ala Leu 1 5 10 15 Thr Leu Pro Thr Gly Leu Val Pro Pro Ser Gln Asp Ser Phe Tyr Ser 20 25 30 Ala Pro Thr Gly Phe Glu Ser Ala Glu Leu Gly Thr Ile Leu Lys Phe 35 40 45 Arg Pro Ser Pro Ala Pro Ile Arg Ser Val Tyr Phe Lys Val Lys Ile 50 55 60 Lys Ser Ser Trp Gln Leu Leu Val Arg Ser Ser Asp Ser Phe Gly Asn 65 70 75 80 Pro Ser Val Ile Val Thr Thr Val Phe Glu Pro Phe Asn Ala Asp Pro 85 90 95 Ser Lys Leu Ile Ser Tyr Gln Val Ala Gln Asp Ser Ala Ser Asn Asp 100 105 110 Cys Ser Pro Ser Tyr Ala Phe Met Asp Gly Gly Gly Phe Glu Thr Val 115 120 125 Thr Ser Gln Ala Glu Met Leu Leu Ile Gln Thr Ala Leu Asp Gln Gly 130 135 140 Tyr Tyr Val Val Ser Pro Asp Tyr Glu Gly Leu Lys Ala Val Tyr Thr 145 150 155 160 Gly Gly Ile Gln Ser Gly His Gly Thr Leu Asp Ser Leu Thr Ala Ala 165 170 175 Leu Thr Ser Lys Asn Ile Thr Gly Ile Asn Ser Asp Ala Lys Ser Ile 180 185 190 Leu Trp Gly Tyr Ser Gly Gly Ala Leu Ala Ala Gly Trp Ala Ala Ala 195 200 205 Leu Gln Pro Thr Tyr Ala Pro Asp Leu Lys Gln Ser Leu Leu Gly Ala 210 215 220 Ala Leu Gly Gly Phe Val Thr Asn Val Thr Ala Thr Val Thr Ala Val 225 230 235 240 Asn Gly Gly Pro Phe Ser Gly Leu Val Gly Met Gly Ile Ala Gly Leu 245 250 255 Ser Asn Glu Tyr Pro Glu Leu Lys Asp Tyr Leu Lys Glu Gln Met Tyr 260 265 270 Pro Asp Lys Tyr Glu Gln Phe Gln Glu Ile Tyr Gly Leu Cys Thr Ala 275 280 285 Glu Gly Ala Leu Lys Phe Ala Phe Thr Asp Tyr Phe Asn Gly Pro Asn 290 295 300 Lys Tyr Val Asn Gly Ile Gly Val Leu Ala Asn Glu Pro Ala Ala Ser 305 310 315 320 Ile Leu Lys Asn Asn Thr Leu Gly Leu Val Pro Ser Gln Val Pro Asp 325 330 335 Ile Pro Leu Phe Val Tyr His Gly Val Ile Asp Ser Leu Val Pro Tyr 340 345 350 Lys Glu Thr Glu Arg Val Tyr Asn Thr Trp Cys Asp Glu Gly Ile Glu 355 360 365 Ser Phe Glu Leu Ala Ala Asp Leu Thr Ala Gly His Leu Thr Glu Val 370 375 380 Leu Gln Gly Ser Gly Ala Ala Phe Gly Trp Ile Thr Lys Arg Phe Asp 385 390 395 400 Gly Lys Ala Pro Ile Ser Gly Cys Arg Lys Thr Lys Arg Leu Thr Asn 405 410 415 Leu Leu Tyr Pro Gly Thr Val Gly Ser Val Thr Asn Leu Ile Ser Ala 420 425 430 Leu Phe Thr Asn Val Leu Gly Gly Asp Ile Gly Pro Asn Gly Glu Ser 435 440 445 Met Lys Pro Gly Asn Ser Glu Leu Asp His Phe Phe His Ile Asn 450 455 460 <210> 11 <211> 646 <212> PRT <213> Artificial Sequence <220> <223> LIP8 <400> 11 Met His Met His Ile Asp Glu Pro Val His Lys Tyr Leu Ser Pro Met 1 5 10 15 His Lys His Pro Phe Pro Met Thr Phe Ile Pro Phe Leu Val Ala Phe 20 25 30 Phe Met Thr Tyr Glu Cys Thr Val Ser His Ser Tyr Gln Phe Leu Val 35 40 45 Tyr Thr His Lys Pro Thr Phe Glu Lys Met Thr Gln Asn Leu Asn Leu 50 55 60 Arg Asn His His Lys Gln Met Thr Lys Asn Asn Glu Arg Trp Ser Pro 65 70 75 80 Ile Arg Trp Val Leu Gly Leu Ala Leu Val Thr Thr Val Val Leu Tyr 85 90 95 Ile His Gly Gly Asn Ile Phe Lys Glu Ser Glu Asp Tyr Ile Ser Asn 100 105 110 Gln Val Met Glu Ala Ala Asp Leu Gln Gly Asp Ser Phe Arg Leu Lys 115 120 125 His Ile Phe Gln His Gly Ala Gly Ser Glu Tyr Tyr Arg Val His Arg 130 135 140 Arg Leu Asp Ile Thr Glu Glu Tyr Leu Ser Arg Thr Gly Leu Asp Glu 145 150 155 160 Val Ala Met Glu Ala Asp Thr Thr Asp Val Ser Ser Asn Ser Leu Glu 165 170 175 Asp Val Tyr Ala Gln Asn Asp Trp Pro Leu Ala Phe Gln Gly His Asn 180 185 190 Pro Trp Asn Met Lys Met Pro Val Arg Ser Ser Asn His Lys Ala Lys 195 200 205 Ile Arg Arg Leu Thr Glu Arg His Thr Pro Gly Phe Leu Asp Ser Tyr 210 215 220 Leu Asp Tyr Ala Ile Glu Val Lys Gly Asn Pro Gln Lys Leu Asn Met 225 230 235 240 Ile Asn Leu Gln Trp Asp Glu Glu Glu Asp Leu Ile Leu Pro Asp Val 245 250 255 His Asp Lys Glu Ser Leu Val Met Leu Ala Leu Met Ser Ser Asn Ala 260 265 270 Tyr Val Lys Phe Pro Lys Asp Asp Asn Glu Lys Lys Lys Ser Asp Trp 275 280 285 Arg Asp Val Gly Glu Pro Trp Glu Pro Asp Glu Asn Asn Thr Asp Ile 290 295 300 Glu Phe Gly Trp Asp Gly Asp Gly Val Arg Gly His Val Phe Val Asn 305 310 315 320 Glu Val Asn Asn Thr Val Val Ile Ala Leu Lys Gly Thr Ser Gly Ala 325 330 335 Gly Ile Pro Gly Ala Gly Glu Asp Glu Thr Thr Asn Asn Asp Lys Leu 340 345 350 Asn Asp Asn Leu Leu Phe Leu Cys Cys Cys Ala Arg Val Ser Tyr Leu 355 360 365 Trp Thr Thr Val Cys Asp Cys Tyr Glu Lys Ala Tyr Thr Cys Asn Gln 370 375 380 Asp Cys Leu Glu Lys Glu Leu Thr Arg Lys Asp Arg Tyr Tyr Gln Ala 385 390 395 400 Ala Leu Glu Ile Tyr Arg Asn Val Ser Ser Ile Tyr Pro Ser Asn Gln 405 410 415 Tyr Lys Ile Trp Leu Thr Gly His Ser Leu Gly Gly Ser Leu Ala Ser 420 425 430 Leu Val Gly Arg Thr Tyr Gly Leu Pro Val Val Ala Phe Glu Ala Pro 435 440 445 Gly Glu Leu Leu Ala Thr Gln Arg Leu His Leu Pro Gln Pro Pro Gly 450 455 460 Tyr Pro Lys Tyr Met Glu His Ile Tyr His Ile Gly Asn Thr Ala Asp 465 470 475 480 Pro Ile Phe Met Gly Val Cys Asn Gly Val Ser Ser Thr Cys Asn Ala 485 490 495 Ala Gly Tyr Ala Met Glu Thr Ala Cys His Thr Gly Lys Leu Cys Val 500 505 510 Tyr Asp Val Val Thr Asp Arg Gly Trp Ser Val Asn Val Leu Asn His 515 520 525 Arg Ile His Thr Val Val Asp Glu Ile Ile Leu Lys Tyr Asn Thr Thr 530 535 540 Ala Glu Cys Val Glu Gln Pro Pro Cys Arg Asp Cys Phe Asn Trp Arg 545 550 555 560 Tyr Val Thr His Asp Asp Asp Glu Asp Asp Glu Pro Lys Leu Pro Asn 565 570 575 Pro Leu Ile Pro His Ile Ser His His Ser Thr Ala Thr Lys Ser Gln 580 585 590 Gly Pro Ser His Thr Ala Tyr Asp Ser Ile Ser Ser Ser Ser Ser Ser 595 600 605 Gly Ser Ser Ser Pro Ser Ser Ser Lys Leu Pro Glu Lys Gln Lys Cys 610 615 620 Leu Lys Arg Thr Trp Tyr Gly Trp Cys Arg Glu Trp Gly Pro Ala Asp 625 630 635 640 Gly Glu Gly Asp Gln Phe 645 <210> 12 <211> 1017 <212> DNA <213> Artificial Sequence <220> <223> LIP1 <400> 12 atgaaactat ctacctttct ttctgctagt ataatattct ggagagccac cgaaacagcc 60 agtaccccat tgagtccacg ttctggtgac aatgttccca aagattatca aaaattaaaa 120 gattatgcta atcttgtatc ttttgcatac tgcaaagaat tgataccatc gaaacttgga 180 agtaatgata gtaattgtcc aatattgaga tgccaagaag aagagtacaa aaatatagaa 240 gtattgaatc tttttgattt caatgatttt gggagtattg gatcaggcta tactggaata 300 gaccatcaaa ataaaagaat aattctagct ttccgtggga caagtacaaa ccgagactgg 360 ctagcaaata taaatgtacc ttttaagaaa tataatcctt tgtctaacct tcaactgaaa 420 gcagatatag aatgtgaagg ctgtaaagtg cataaaggat tctatgaatt cattgaaaaa 480 cattgtgtag ctctcattaa acaagttgct caattaaaac aaaagtatcc ggattatcaa 540 ttggtggttt taggtcattc tttaggagga gtgtttgctt tattaagtgg gatggagttt 600 ctgcttatgg atttccaacc acttgtaatt acatatgcaa gtcctaaagt tggaaataaa 660 gcaatggtta ggtttattga tcagttattc gaaacatcca aagtcgccca acaatctcaa 720 aatgattacg acttcaacca tggttatatt cgtgtagtgc ataactatga catggttcct 780 atgttacccc caagagaatt gggatattat catggaggtg ttgaatatca tattgagaaa 840 agtaatttac cacataatcc cgatagtgtt cacaatagag gacaaaacca ttttagctcc 900 aataaagatg aaggtcctgt tgaaaagctt gagagaattg ctacatcgtt ggttctggta 960 tttacgtcta aagaacatac tcaatacttt attccaatca ctggttgcaa agattga 1017 <210> 13 <211> 1407 <212> DNA <213> Artificial Sequence <220> <223> LIP2 <400> 13 atgatctgtt cattctttag actattgacc attgtaactt tggttattgc tgctcctacc 60 actttagttc ctccaactga agatcctttc tatactgcac caaagggctt cgaatcagca 120 gagttaggta ctgttttggc ttatagaaac actccagctc caatcagaag tatttatttt 180 gaagttaata tcaaaaactc atggcaattg ttagtcaggt cttctgattc atttggtaat 240 ccttcagtag ttgtaactac tgtttttgaa ccatttaatg ctgatccttc caagttagtt 300 tcttatcaag ttgctcaaga ttctgcatat cttgattgtt caccatcata ttccttcatg 360 aatggaggtg gtctttctac tattaacaat caaattgaga ctgttttaat tcaaacagca 420 ttagaccaag gttattatgt tgtttctcca gattatgaag gattgaaatc ggctttcacc 480 ggtggtattc aagctggtca tggtacattg gattccatta gaggtgcttt atccagtagt 540 aacatcactg gtgttaaaaa ggacgcagat actattcttt ggggttattc tggaggttct 600 ttagctagtg gatgggctgc agctttacaa ccaacttatg caccagaatt ggcttccaac 660 ttacttggtg ttgctttagg tggatgggtt accaatatta ctgctactat aacaagtgtt 720 agtggtacca tattctctgg attgggtgct atgggaatgg ctggtttaag taatgagtac 780 accgatttat acggttacct taagactgct atgccagcag ataaatatga agaattcact 840 aaagcttatt caatatgtgc tgctgaagct cttattgaat ataattttga tgattggttt 900 gaaggcgaag atagatactt taccgatggc tttaaagttt tgaatgaaga accgacatat 960 tccatcattc gtaacaatac attgggttta attgctggtc agatgccaga aattcctgtt 1020 ttcgtttacc atggaactct cgaccagatc gtaccatatg atcaagctga aagggtttat 1080 gatatttggt gtgatgctgg tattaaatct tttgaatttg ctactgattt aactgctggt 1140 catatcactg agcttgtaca aggtagtggt gcagcctttg gatggatcaa aggcatgttt 1200 gaaggaacta aaaaaccagt ttctggttgt agaaaaacac ctagaatttc aaacttactt 1260 tacccaggta ctgtaagatc tgttactgac gttgttggtg ctttgcttga taatatctta 1320 ggatttgata ttggtccaaa tggtgaaaac cttattgttg aaaacaacag cgtcatcagt 1380 aaagctaatt ctactagaag tgaatag 1407 <210> 14 <211> 1038 <212> DNA <213> Artificial Sequence <220> <223> LIP3 <400> 14 atggcaatgt taatgttatt gttcttccta ttcgaaatag catgtggaaa tatttgggtt 60 tatcctggaa gtcatcagaa atcaggagag gaagaacgta cgccagtacc cattgatata 120 gaagtgtatc gtaatatgtt cacttatgca catcttattg atatatcata ttgtatatct 180 tcaacaacaa ggctcgaaga accgtttaac tgtgacttga attgtgaaaa gcgatttcct 240 aacgttactt tggtgtacca atggtatttt gacgattcag tttgtggtta tattgcaacc 300 acatattcta atatttttaa ttatgaatca gaagagggaa aaggtcacaa gaaaacaatc 360 atagtttctt tgagaggaac aagatcaata ttcgattcgt atactgacat taaagttgat 420 atggtaaatt actataacta tggaagtaat attcaagaat gtggaaccga ttgtaaagtt 480 catcgagggt tctataaata ttatattaat actcttctta agatagaagg aattctacga 540 aatgaattac aaaccgatga tgattatgag ctattgatag tgggccattc tttgggcggt 600 gctgttggtc ttcttttagg attatattat ttggatgaag gttttgataa aataacctta 660 gtaacaatgg gtcaacctct agtagggaat aagcaatttg ctgaatttgt ggataatgtt 720 atggggagca gattgcctat tgaacataat actttcaata gaaaattttt cagagttatt 780 cataaggatg atattgttgc aactattccc agtaataata gaatattgga ttcatactct 840 caatttgata atcaaatcta cttgaattgt ctggcttccg acacgatgcc ttctttagag 900 caggtgttgg actgttttga tggtgataat ccccagtgca ttagtggcga cattgagaat 960 tatctcttgt ctcataacta tttacaaatt catactactt atttccgctc aatgggttta 1020 tgtggaataa gaatctaa 1038 <210> 15 <211> 1542 <212> DNA <213> Artificial Sequence <220> <223> LIP4 <400> 15 atgatgatta ccacgagaat cttggtatgt tttgctttaa tagcgctcac ttttgctgca 60 ccattgacag ttttaaaacc atccgaagat gaattttatg ctgccccaga tggttttgaa 120 gatgagaagt taggtactat tcttaaatgg agaaagactc cttatcagat aaagagtatc 180 tacttcccag ttaacattaa gaatagttgg caattgcttg tgagatctga agatgcaatc 240 ggtaatccag ttgcagtcac tgcttccctt tttgaaccgt acaatggtaa cacatccagg 300 ttggtctcat accaagttgc agaggatagt gcttcgttcg actgtgcacc gtcatattca 360 tttgtaggag gaggttacca tacagtggtt gcaaaagctg agatgatttt gatacaagga 420 gcattagatc aaggttatta cgttgttgca ccagattatg aaggacccaa tgctgtattt 480 actgctggtg taacatctgg gatgagtacc atcaatgttc tcagagctgt attaggcgaa 540 ggtaggagaa atgagaccag aattgaccca gatgcagaag tggttctttg gggatatagt 600 ggaggcacaa tccctagtgg ttgggcagnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 660 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 720 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnagcaga gattgtcgat 780 ggtactttat tcagtgggtt agttcctgcg gcactcaatg gattatcagc acagtatgaa 840 gaaatggatg aagctattga taagtttctt aaacctaaca aactagaaaa attcagatct 900 ggaagaaatg agtgtgctat agatgtggta ttttcttttg catatcaaga tacttttagt 960 gggtttgata cttattccaa agatggatgg actattttgg atgacccaga tgtcagagat 1020 attcttgccg aaaataccct tggagtaaat gtgaccaaaa agttcaaacc agagattcca 1080 ttatttgttt atcatggcat tcttgatgaa attgttcctt tcaaagacgc acagagagtt 1140 tatgatgttt ggtgtgaaga aggttatgat tcttttgaat ttgcagtttc taattctact 1200 ggacacattc ttgaagttat tgaaggtagt gcagccggat taaaatggat atcggacaga 1260 ttcgatggag tacaaccaac caaaggatgt catagacaaa caagattaac taatcttttc 1320 tatccaggtc tgtttacagg agtcacagac atcttatctg cattaatgag aaatatattc 1380 ggaagtccaa ttggtctcta cgatgaacaa attgaaaaga gatcagatat gtccgaagac 1440 gaaaaattat tgaagagact gtttgaattc actgattctg aaatattcaa aagaattgtt 1500 caacacagtt accctgaaat ggccaaaaaa ttagacttat aa 1542 <210> 16 <211> 1491 <212> DNA <213> Artificial Sequence <220> <223> LIP5 <400> 16 atgattttaa cgaatcttct tgtatatttc agcttgatag cgtgcacaat ttgtgctcca 60 atgacgatct tgaaaccttc tgaagatgac ttttatactg ctccagatgg ctttgaggat 120 gaaaagttag gtactattct taaatggaga aagactcctt atcagattaa gagtatctac 180 ttcccagtta acattaagaa tagttggcaa ttgcttgtga gatctgaaga tgcaatcggt 240 aatccagttg cagtcactgc ttcccttttt gaaccgtaca atggtaacac atccaggttg 300 gtctcatacc aagttgcaga ggatagtgct tcgttcgact gtgcaccgtc atattcattt 360 gtaggaggag gttaccatac agtggttgca aaagctgaga tgattttgat acaaggagca 420 ttagatcaag gttattacgt tgttgcacca gactatgaag gacccaatgc tgcatttact 480 gccgggataa catccggcat gagcaccatt aatgttcttc gagcagtctt aagtgatcag 540 aggagtaatg aaacgagaat tgactcagat gcagaagtgg ttctttgggg atatagtgga 600 ggcacaatcc ctagtggttg ggcagcatct atggctccat ggtatgctaa agatatcaat 660 gataatctta aaggagcagc aatgggtgga tgggtaacta atattactgc cacggctgaa 720 attgtagaag ggtccctttt cgaaggattg gttgcagcag ccatcaatgg attagcacaa 780 caatatgaag aaattaatga ggcacttgat gtttatcttg tacctgataa gctagagaca 840 tttagatcag caaagaatga atgcgttatt gatgtagtat tttcctttgc ttatcaaagt 900 gcattcagtg gaagtgatcc ttatacactg gatggatggg gtgtattaga agacccaaaa 960 gtgaagaaga ttgtcaacca aaataccctt ggattaaatg tgactgaaaa attcaaacca 1020 gagatcccac tatttgttta tcatggaatt cttgatgaaa ttgttccttt caaagatgca 1080 cagagagttt atgatgtttg gtgtaaagaa ggcattaatt catttgaatt tgccgtctct 1140 aattctactg gccatcttct tgaggtactt gaaggcagtg gagcagcgtt gaagtggata 1200 tctgacagat tcgatggagt tgcaccaacc aaaggatgtc atagacaaac aagattaagt 1260 aatatcttct atccaggtct gtttactgga atatctgaca ttttatctgc tttagtcaga 1320 aatgtcatgg gaagccctat tggactttat gatgaacaag ttgaaaagag atcagatgta 1380 accgaagacg aaaaattatt gaaaaggctg tttgcataca cagatgaaga aatctttaga 1440 agaatacttg acaacagcta tccagatatg gctcaaaatt tgggctatta a 1491 <210> 17 <211> 1476 <212> DNA <213> Artificial Sequence <220> <223> LIP6 <400> 17 atgttgatta ccacgaaaat cttggtatat tttgctttga taatcttgac tagtgctgct 60 ccaatgacaa tcttgaaacc ttctgaagat gaattctatg ctgccccaga tggctttgaa 120 gatgagaagt taggcactat tcttaaatgg agaaagactc cttatcagat taagagtatc 180 tacttcccag ttaacattaa gaatagttgg gaattgcttg ttagatctga agatgcgatt 240 ggagatccag ttgcagttac tgctactatc tttgagcctt ataatgccaa ttcatctagg 300 ttggtttcat accaagttgc agaggacagt ccttcattca actgttcacc atcatatgca 360 tttgtaggtg gtggctaccc gacagtagta accaaggctg agatgatatt aatccagtcc 420 gctttgaatg agggctatta cgttgtagtt cctgattacg agggccctaa tgctgtattt 480 ggggtaggtg ttacttctgc aatgagcacc attaatgttc ttagagcagt tttgagtgat 540 cagagacgta atgaaaccag aattgactca gacgcagaag tggttctttg gggatatagt 600 ggaggaacaa ttccaagcag ttgggctgca tctatggctc catggtatgc taaagatatc 660 aaccaacatc ttattggagc agcattggga ggatgggtta gcaatcttac ggcgcttatg 720 gagattgttg aaggatctct ctttgaaggt ttagttccaa atattataaa tggattgagt 780 caacaattcg aagaaataaa tgatgcattt gatgactatc tttatccaag taaaagagag 840 aaatttagat caacaaagaa gcaatgtgta tttgatgcct gtttgtcatt tgcattccaa 900 agtactttcc taggcgatca tccttacgta aaggggaaat ggagtgtctt ggaggaagca 960 aaagtgaaga atatcctcga aaataataca cttggattga aagtgactaa gaaattcaag 1020 ccagaaattc ctatatttgc atttcatgga ataaaagatg agatagttcc atttaaagac 1080 tctcaaagac tttatgatgt ttggtgtgaa gaagggataa attcatttga gtttgctgtt 1140 tccaaatcaa gtggacacct tcttgaagtt gttgaaggaa gtggggccgc tttggcatgg 1200 atatctgata gattcagggg tatacctgct gttaaaggct gtgaaaggaa agaaagatta 1260 accaatttgt tctatcctgg tctgttttct tctgtttcta atattttaat ggctcttatt 1320 agaaatatta tgggaagtcc aattggtctc tatgatgaac aagcaaaaaa gagatcaggc 1380 tctaccgaag aagagataat aatgaaaaga ctgcttgaat acactgacga agaaatctac 1440 aggagaataa tcgaaacaca ttcagatatg ttttag 1476 <210> 18 <211> 1392 <212> DNA <213> Artificial Sequence <220> <223> LIP7 <400> 18 atgttcaaac agcttttctt attatttagc ttacttattt ttgctttgac tcttccaact 60 ggtttggttc ctcctagtca agattctttt tattctgcac caactggatt cgagtctgca 120 gaattaggta ctatcttgaa gtttagacct tcgccagctc caattagaag tgtttacttc 180 aaagtcaaga ttaagagctc ctggcaatta ttggtcagat cttccgattc atttggtaat 240 ccttctgtta ttgtcaccac tgtctttgaa ccattcaatg ctgatccttc caaattaatt 300 tcttaccaag ttgctcaaga tagtgcctcc aatgattgtt ctccatctta tgctttcatg 360 gatggtggag gatttgaaac cgtgacttcc caagcagaaa tgcttttaat tcaaactgca 420 ttagatcaag gttattatgt tgtttctcca gattatgaag gattaaaggc tgtttatact 480 gggggtattc aatctggtca tggtactttg gattcactta ctgcagcttt aactagtaaa 540 aatattacag ggattaatag tgatgctaaa tctattcttt ggggttattc tggtggcgct 600 ttagctgctg gatgggctgc tgctttacaa ccaacttatg ctccagactt gaaacaaagt 660 ttacttggtg ctgcacttgg tggatttgtt actaatgtta ctgctacggt tactgcagtt 720 aatggtggtc cattttctgg tttagttggt atgggtattg ctgggttgag taacgaatat 780 cctgaattga aagactattt aaaagaacaa atgtacccag ataaatacga gcaatttcaa 840 gagatttatg gactttgtac agcagaaggt gcacttaagt ttgctttcac cgactacttc 900 aatggaccaa ataagtacgt taatggtatt ggagttttag ctaacgaacc cgctgctagt 960 attcttaaaa ataatacgct tggacttgtt ccatcccaag ttccagatat tccacttttt 1020 gtttatcacg gtgtaattga ttcccttgtt ccttataagg aaacagaaag agtgtataat 1080 acttggtgtg acgaaggaat tgagtcgttt gaattggccg ctgacttaac tgccgggcac 1140 cttaccgagg ttcttcaagg aagtggtgct gcttttggat ggattacgaa gagattcgat 1200 gggaaagccc caatttcagg ctgcagaaaa accaaaagat taactaattt attataccca 1260 ggaacagtgg gatccgttac caatttgatt tcagccttat tcaccaatgt tcttggcggt 1320 gatattggtc caaatggtga aagtatgaaa ccaggaaatt cagaacttga ccacttcttc 1380 catatcaatt ag 1392 <210> 19 <211> 1941 <212> DNA <213> Artificial Sequence <220> <223> LIP8 <400> 19 atgcatatgc atatcgatga acctgtgcat aaatatctat ctccgatgca taaacaccca 60 tttccaatga cttttatacc gtttttggta gctttcttca tgacatatga atgtactgtc 120 agccactctt atcagttttt ggtatataca cacaagccaa cttttgagaa aatgacccaa 180 aacctgaatc tcagaaatca ccacaagcaa atgaccaaaa acaacgagag atggagcccc 240 atacgctggg tattggggct ggcacttgta acaacggtag ttctttacat tcacggggga 300 aatatattta aagagtcaga ggattatata agcaaccaag tcatggaggc tgcagatctt 360 cagggtgata gctttcggct taagcatatc ttccagcatg gggccggatc tgagtattat 420 cgggttcata gacgtcttga tatcacggag gaatacttgt cccgtacggg gcttgacgaa 480 gtggccatgg aagctgacac aactgacgtt agcagcaata gtttagaaga tgtctatgct 540 caaaacgact ggccattggc atttcaaggc cataatccat ggaatatgaa gatgcctgtg 600 cgtagcagta accacaaggc gaagatccgg cggttgacag agcgccatac gcctggattt 660 ttagattcat acttggatta cgccattgaa gtcaagggga atcctcaaaa acttaatatg 720 attaatttac aatgggatga agaggaagac ttgatacttc cagatgtgca tgataaagag 780 tcattggtaa tgttggcatt gatgtcttcc aatgcgtatg tgaagtttcc aaaggatgat 840 aatgaaaaga aaaagagtga ctggcgagat gtaggagaac catgggaacc agatgaaaac 900 aatactgaca ttgaatttgg atgggatgga gatggggtcc ggggacatgt atttgtcaat 960 gaagttaaca atacagtggt tattgcattg aaaggtacga gtggagcagg cattcctggt 1020 gcaggagaag acgaaactac caataatgat aaacttaatg ataatttatt attcctgtgt 1080 tgttgtgctc gtgtaagtta cttgtggaca acggtctgtg actgttatga gaaggcttac 1140 acttgtaatc aggattgctt ggagaaagaa ttgacccgta aagatagata ttatcaagca 1200 gcattagaaa tctatcgaaa tgttagtagt atctatcctt ctaatcagta taaaatatgg 1260 ttaacaggcc attcattagg gggatcattg gcttcattag tggggagaac ttatggactc 1320 cctgtagtag cttttgaagc accaggagag ctattagcta ctcaaagact tcatttacct 1380 caacctccag gatatcccaa atatatggaa catatttacc atattggtaa tactgcagac 1440 cctattttca tgggggtatg taatggagtt tcttcaacat gtaatgcagc gggttatgca 1500 atggaaactg cttgtcatac tggaaaatta tgtgtttatg atgttgtcac tgatagagga 1560 tggagtgtta atgtattaaa tcacaggatc cacactgtgg tggatgaaat tatcttaaag 1620 tacaatacaa cagcagaatg tgttgaacaa ccaccatgta gagattgctt caattggaga 1680 tatgttactc atgatgatga tgaggatgat gagccaaaat tgcccaaccc tttaattcct 1740 catatttcac accacagtac tgctacgaag tcacaaggac catcacatac agcttatgat 1800 agtatcagta gtagtagcag cagcggtagc agcagtccta gtagtagtaa acttccagag 1860 aaacaaaaat gtttgaagag aacatggtac ggctggtgca gagaatgggg accagctgac 1920 ggagaaggtg atcaattttg a 1941 <210> 20 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> STFPL1-F <400> 20 ctcgccttag ataaaagagc cagtacccca ttgagtc 37 <210> 21 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> STFPL2-F <400> 21 ctcgccttag ataaaagacc taccacttta gttcct 36 <210> 22 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> STFPL3-F <400> 22 ctcgccttag ataaaagaaa tatttgggtt tatcct 36 <210> 23 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> STFPL4-F <400> 23 ctcgccttag ataaaagagc accattgaca gtttta 36 <210> 24 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> STFPL5-F <400> 24 ctcgccttag ataaaagagc tccaatgacg atcttg 36 <210> 25 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> STFPL6-F <400> 25 ctcgccttag ataaaagagc tccaatgaca atcttgaa 38 <210> 26 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> STFPL7-F <400> 26 ctcgccttag ataaaagact tccaactggt ttggttcc 38 <210> 27 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> STFPL8-F <400> 27 ctcgccttag ataaaagaat gcatatgcat atcgat 36 <210> 28 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> STFPL1-R <400> 28 cactccgttc aagtcgactt aatctttgca accagtg 37 <210> 29 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> STFPL2-R <400> 29 cactccgttc aagtcgactt attcacttct agtaga 36 <210> 30 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> STFPL3-R <400> 30 cactccgttc aagtcgactt agattcttat tccaca 36 <210> 31 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> STFPL4-R <400> 31 cactccgttc aagtcgactt ataagtctaa ttttttgg 38 <210> 32 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> STFPL5-R <400> 32 cactccgttc aagtcgactt aatagcccaa attttgag 38 <210> 33 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> STFPL6-R <400> 33 cactccgttc aagtcgactt aaaacatatc tgaatgtg 38 <210> 34 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> STFPL7-R <400> 34 cactccgttc aagtcgactt aattgatatg gaagaagt 38 <210> 35 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> STFPL8-R <400> 35 cactccgttc aagtcgactt aaaattgatc accttctc 38 <210> 36 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> LNK39 <400> 36 ggccgcctcg gcctctgctg gcctcgcctt agataaaaga 40 <210> 37 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> GT50R <400> 37 gtcattatta aatatatata tatatatatt gtcactccgt tcaagtcgac 50 <210> 38 <211> 118 <212> PRT <213> Artificial Sequence <220> <223> TFP1 <400> 38 Met Phe Asn Arg Phe Asn Lys Phe Gln Ala Ala Val Ala Leu Ala Leu 1 5 10 15 Leu Ser Arg Gly Ala Leu Gly Asp Ser Tyr Thr Asn Ser Thr Ser Ser 20 25 30 Ala Asp Leu Ser Ser Ile Thr Ser Val Ser Ser Ala Ser Ala Ser Ala 35 40 45 Thr Ala Ser Asp Ser Leu Ser Ser Ser Asp Gly Thr Val Tyr Leu Pro 50 55 60 Ser Thr Thr Ile Ser Gly Asp Leu Thr Val Thr Gly Lys Val Ile Ala 65 70 75 80 Thr Glu Ala Val Glu Val Ala Ala Gly Gly Lys Leu Thr Leu Leu Asp 85 90 95 Gly Glu Lys Tyr Val Phe Ser Ser Glu Ala Ala Ser Ala Ser Ala Gly 100 105 110 Leu Ala Leu Asp Lys Arg 115 <210> 39 <211> 130 <212> PRT <213> Artificial Sequence <220> <223> TFP2 <400> 39 Met Thr Pro Tyr Ala Val Ala Ile Thr Val Ala Leu Leu Ile Val Thr 1 5 10 15 Val Ser Ala Leu Gln Val Asn Asn Ser Cys Val Ala Phe Pro Pro Ser 20 25 30 Asn Leu Arg Gly Lys Asn Gly Asp Gly Thr Asn Glu Gln Tyr Ala Thr 35 40 45 Ala Leu Leu Ser Ile Pro Trp Asn Gly Pro Pro Glu Ser Ser Arg Asp 50 55 60 Ile Asn Leu Ile Glu Leu Glu Pro Gln Val Ala Leu Tyr Leu Leu Glu 65 70 75 80 Asn Tyr Ile Asn His Tyr Tyr Asn Thr Thr Arg Asp Asn Lys Cys Pro 85 90 95 Asn Asn His Tyr Leu Met Gly Gly Gln Leu Gly Ser Ser Ser Asp Asn 100 105 110 Arg Ser Leu Asn Glu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp 115 120 125 Lys Arg 130 <210> 40 <211> 117 <212> PRT <213> Artificial Sequence <220> <223> TFP3 <400> 40 Met Gln Phe Lys Asn Val Ala Leu Ala Ala Ser Val Ala Ala Leu Ser 1 5 10 15 Ala Thr Ala Ser Ala Glu Gly Tyr Thr Pro Gly Glu Pro Trp Ser Thr 20 25 30 Leu Thr Pro Thr Gly Ser Ile Ser Cys Gly Ala Ala Glu Tyr Thr Thr 35 40 45 Thr Phe Gly Ile Ala Val Gln Ala Ile Thr Ser Ser Lys Ala Lys Arg 50 55 60 Asp Val Ile Ser Gln Ile Gly Asp Gly Gln Val Gln Ala Thr Ser Ala 65 70 75 80 Ala Thr Ala Gln Ala Thr Asp Ser Gln Ala Gln Ala Thr Thr Thr Ala 85 90 95 Thr Pro Thr Ser Ser Glu Lys Met Ala Ala Ser Ala Ser Ala Gly Leu 100 105 110 Ala Leu Asp Lys Arg 115 <210> 41 <211> 62 <212> PRT <213> Artificial Sequence <220> <223> TFP4 <400> 41 Met Arg Phe Ala Glu Phe Leu Val Val Phe Ala Thr Leu Gly Gly Gly 1 5 10 15 Met Ala Ala Pro Val Glu Ser Leu Ala Gly Thr Gln Arg Tyr Leu Val 20 25 30 Gln Met Lys Glu Arg Phe Thr Thr Glu Lys Leu Cys Ala Leu Asp Asp 35 40 45 Lys Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 50 55 60 <210> 42 <211> 97 <212> PRT <213> Artificial Sequence <220> <223> TFP5 <400> 42 Met Phe Asn Arg Phe Asn Lys Phe Gln Ala Ala Val Ala Leu Ala Leu 1 5 10 15 Leu Ser Arg Gly Ala Leu Gly Ala Pro Val Asn Thr Thr Thr Glu Asp 20 25 30 Glu Thr Ala Leu Ile Pro Ala Glu Ala Val Ile Gly Tyr Leu Asp Leu 35 40 45 Glu Gly Asp Phe Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn 50 55 60 Asn Gly Leu Leu Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys 65 70 75 80 Glu Glu Gly Val Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys 85 90 95 Arg <210> 43 <211> 93 <212> PRT <213> Artificial Sequence <220> <223> TFP6 <400> 43 Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser 1 5 10 15 Ala Leu Ala Ala Pro Val Asn Thr Thr Thr Glu Asp Glu Thr Ala Gln 20 25 30 Ile Pro Ala Glu Ala Val Ile Gly Tyr Leu Asp Leu Glu Gly Asp Phe 35 40 45 Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu 50 55 60 Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val 65 70 75 80 Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 85 90 <210> 44 <211> 226 <212> PRT <213> Artificial Sequence <220> <223> TFP7 <400> 44 Met Val Phe Gly Gln Leu Tyr Ala Leu Phe Ile Phe Thr Leu Ser Cys 1 5 10 15 Cys Ile Ser Lys Thr Val Gln Ala Asp Ser Ser Lys Glu Ser Ser Ser 20 25 30 Phe Ile Ser Phe Asp Lys Glu Ser Asn Trp Asp Thr Ile Ser Thr Ile 35 40 45 Ser Ser Thr Ala Asp Val Ile Ser Ser Val Asp Ser Ala Ile Ala Val 50 55 60 Phe Glu Phe Asp Asn Phe Ser Leu Leu Asp Ser Leu Met Ile Asp Glu 65 70 75 80 Glu Tyr Pro Phe Phe Asn Arg Phe Phe Ala Asn Asp Val Ser Leu Thr 85 90 95 Val His Asp Asp Ser Pro Leu Asn Ile Ser Gln Ser Leu Ser Pro Ile 100 105 110 Met Glu Gln Phe Thr Val Asp Glu Leu Pro Glu Ser Ala Ser Asp Leu 115 120 125 Leu Tyr Glu Tyr Ser Leu Asp Asp Lys Ser Ile Val Leu Phe Lys Phe 130 135 140 Thr Ser Asp Ala Tyr Asp Leu Lys Lys Leu Asp Glu Phe Ile Asp Ser 145 150 155 160 Cys Leu Ser Phe Leu Glu Asp Lys Ser Gly Asp Asn Leu Thr Val Val 165 170 175 Ile Asn Ser Leu Gly Trp Ala Phe Glu Asp Glu Asp Gly Asp Asp Glu 180 185 190 Tyr Ala Thr Glu Glu Thr Leu Ser His His Asp Asn Asn Lys Gly Lys 195 200 205 Glu Gly Asp Asp Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp 210 215 220 Lys Arg 225 <210> 45 <211> 64 <212> PRT <213> Artificial Sequence <220> <223> TFP8 <400> 45 Met Leu Gln Ser Val Val Phe Phe Ala Leu Leu Thr Phe Ala Ser Ser 1 5 10 15 Val Ser Ala Ile Tyr Ser Asn Asn Thr Val Ser Thr Thr Thr Thr Leu 20 25 30 Ala Pro Ser Tyr Ser Leu Val Pro Gln Glu Thr Thr Ile Ser Tyr Ala 35 40 45 Asp Asp Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 50 55 60 <210> 46 <211> 138 <212> PRT <213> Artificial Sequence <220> <223> TFP9 <400> 46 Met Lys Phe Ser Thr Ala Val Thr Thr Leu Ile Ser Ser Gly Ala Ile 1 5 10 15 Val Ser Ala Leu Pro His Val Asp Val His Gln Glu Asp Ala His Gln 20 25 30 His Lys Arg Ala Val Ala Tyr Lys Tyr Val Tyr Glu Thr Val Val Val 35 40 45 Asp Ser Asp Gly His Thr Val Thr Pro Ala Ala Ser Glu Val Ala Thr 50 55 60 Ala Ala Thr Ser Ala Ile Ile Thr Thr Ser Val Leu Ala Pro Thr Ser 65 70 75 80 Ser Ala Ala Ala Ala Asp Ser Ser Ala Ser Ile Ala Val Ser Ser Ala 85 90 95 Ala Leu Ala Lys Asn Glu Lys Ile Ser Asp Ala Ala Ala Ser Ala Thr 100 105 110 Ala Ser Thr Ser Gln Gly Ala Ser Ser Ser Ser Tyr Leu Ala Ala Ser 115 120 125 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 130 135 <210> 47 <211> 199 <212> PRT <213> Artificial Sequence <220> <223> TFP10 <400> 47 Met Asn Trp Leu Phe Leu Val Ser Leu Val Phe Phe Cys Gly Val Ser 1 5 10 15 Thr His Pro Ala Leu Ala Met Ser Ser Asn Arg Leu Leu Lys Leu Ala 20 25 30 Asn Lys Ser Pro Lys Lys Ile Ile Pro Leu Lys Asp Ser Ser Phe Glu 35 40 45 Asn Ile Leu Ala Pro Pro His Glu Asn Ala Tyr Ile Val Ala Leu Phe 50 55 60 Thr Ala Thr Ala Pro Glu Ile Gly Cys Ser Leu Cys Leu Glu Leu Glu 65 70 75 80 Ser Glu Tyr Asp Thr Ile Val Ala Ser Trp Phe Asp Asp His Pro Asp 85 90 95 Ala Lys Ser Ser Asn Ser Asp Thr Ser Ile Phe Phe Thr Lys Val Asn 100 105 110 Leu Glu Asp Pro Ser Lys Thr Ile Pro Lys Ala Phe Gln Phe Phe Gln 115 120 125 Leu Asn Asn Val Pro Arg Leu Phe Ile Phe Lys Leu Asn Ser Pro Ser 130 135 140 Ile Leu Asp His Ser Val Ile Ser Ile Ser Thr Asp Thr Gly Ser Glu 145 150 155 160 Arg Met Lys Gln Ile Ile Gln Ala Ile Lys Gln Phe Ser Gln Val Asn 165 170 175 Asp Phe Ser Leu His Leu Pro Val Gly Leu Ala Ala Ser Ala Ser Ala 180 185 190 Gly Leu Ala Leu Asp Lys Arg 195 <210> 48 <211> 77 <212> PRT <213> Artificial Sequence <220> <223> TFP11 <400> 48 Met Lys Phe Ser Ser Val Thr Ala Ile Thr Leu Ala Thr Val Ala Thr 1 5 10 15 Val Ala Thr Ala Lys Lys Gly Glu His Asp Phe Thr Thr Thr Leu Thr 20 25 30 Leu Ser Ser Asp Gly Ser Leu Thr Thr Thr Thr Ser Thr His Thr Thr 35 40 45 His Lys Tyr Gly Lys Phe Asn Lys Thr Ser Lys Ser Lys Thr Pro Leu 50 55 60 Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 65 70 75 <210> 49 <211> 94 <212> PRT <213> Artificial Sequence <220> <223> TFP12 <400> 49 Met Ala Ser Phe Ala Thr Lys Phe Val Ile Ala Cys Phe Leu Phe Phe 1 5 10 15 Ser Ala Ser Ala His Asn Val Leu Leu Pro Ala Tyr Gly Arg Arg Cys 20 25 30 Phe Phe Glu Asp Leu Ser Lys Gly Asp Glu Leu Ser Ile Ser Phe Gln 35 40 45 Phe Gly Asp Arg Asn Pro Gln Ser Ser Ser Gln Leu Thr Gly Asp Phe 50 55 60 Ile Ile Tyr Gly Pro Glu Arg His Glu Val Leu Lys Thr Val Arg Glu 65 70 75 80 Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 85 90 <210> 50 <211> 174 <212> PRT <213> Artificial Sequence <220> <223> TFP13 <400> 50 Met Gln Tyr Lys Lys Thr Leu Val Ala Ser Ala Leu Ala Ala Thr Thr 1 5 10 15 Leu Ala Ala Tyr Ala Pro Ser Glu Pro Trp Ser Thr Leu Thr Pro Thr 20 25 30 Ala Thr Tyr Ser Gly Gly Val Thr Asp Tyr Ala Ser Thr Phe Gly Ile 35 40 45 Ala Val Gln Pro Ile Ser Thr Thr Ser Ser Ala Ser Ser Ala Ala Thr 50 55 60 Thr Ala Ser Ser Lys Ala Lys Arg Ala Ala Ser Gln Ile Gly Asp Gly 65 70 75 80 Gln Val Gln Ala Ala Thr Thr Thr Ala Ser Val Ser Thr Lys Ser Thr 85 90 95 Ala Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Ile Gln Ala Thr Thr 100 105 110 Lys Thr Thr Ala Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Ile Gln 115 120 125 Ala Thr Thr Lys Thr Thr Ser Ala Lys Thr Thr Ala Ala Ala Val Ser 130 135 140 Gln Ile Ser Asp Gly Gln Ile Gln Ala Thr Thr Thr Thr Leu Ala Pro 145 150 155 160 Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 165 170 <210> 51 <211> 68 <212> PRT <213> Artificial Sequence <220> <223> TFP14 <400> 51 Met Gln Phe Lys Asn Ala Leu Thr Ala Thr Ala Ile Leu Ser Ala Ser 1 5 10 15 Ala Leu Ala Ala Asn Ser Thr Thr Ser Ile Pro Ser Ser Cys Ser Ile 20 25 30 Gly Thr Ser Ala Thr Ala Thr Ala Gln Ala Thr Asp Ser Gln Ala Gln 35 40 45 Ala Thr Thr Thr Ala Pro Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala 50 55 60 Leu Asp Lys Arg 65 <210> 52 <211> 157 <212> PRT <213> Artificial Sequence <220> <223> TFP15 <400> 52 Met Val Ser Lys Thr Trp Ile Cys Gly Phe Ile Ser Ile Ile Thr Val 1 5 10 15 Val Gln Ala Leu Ser Cys Glu Lys His Asp Val Leu Lys Lys Tyr Gln 20 25 30 Val Gly Lys Phe Ser Ser Leu Thr Ser Thr Glu Arg Asp Thr Pro Pro 35 40 45 Ser Thr Thr Ile Glu Lys Trp Trp Ile Asn Val Cys Glu Glu His Asn 50 55 60 Val Glu Pro Pro Glu Glu Cys Lys Lys Asn Asp Met Leu Cys Gly Leu 65 70 75 80 Thr Asp Val Ile Leu Pro Gly Lys Asp Ala Ile Thr Thr Gln Ile Ile 85 90 95 Asp Phe Asp Lys Asn Ile Gly Phe Asn Val Glu Glu Thr Glu Ser Ala 100 105 110 Leu Thr Leu Thr Leu Asn Gly Ala Thr Trp Gly Ala Asn Ser Phe Asp 115 120 125 Ala Lys Leu Glu Phe Gln Cys Asn Asp Asn Met Lys Gln Asp Glu Leu 130 135 140 Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 145 150 155 <210> 53 <211> 98 <212> PRT <213> Artificial Sequence <220> <223> TFP16 <400> 53 Met Lys Leu Ser Ala Leu Leu Ala Leu Ser Ala Ser Thr Ala Val Leu 1 5 10 15 Ala Ala Pro Ala Val His His Ser Asp Asn His His His Asn Asp Lys 20 25 30 Arg Ala Val Val Thr Val Thr Gln Tyr Val Asn Ala Asp Gly Ala Val 35 40 45 Val Ile Pro Ala Ala Thr Thr Ala Thr Ser Ala Ala Ala Asp Gly Lys 50 55 60 Val Glu Ser Val Ala Ala Ala Thr Thr Thr Leu Ser Ser Thr Ala Ala 65 70 75 80 Ala Ala Thr Thr Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp 85 90 95 Lys Arg <210> 54 <211> 195 <212> PRT <213> Artificial Sequence <220> <223> TFP17 <400> 54 Met Lys Leu Ser Thr Val Leu Leu Ser Ala Gly Leu Ala Ser Thr Thr 1 5 10 15 Leu Ala Gln Phe Ser Asn Ser Thr Ser Ala Ser Ser Thr Asp Val Thr 20 25 30 Ser Ser Ser Ser Ile Ser Thr Ser Ser Gly Ser Val Thr Ile Thr Ser 35 40 45 Ser Glu Ala Pro Glu Ser Asp Asn Gly Thr Ser Thr Ala Ala Pro Thr 50 55 60 Glu Thr Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr 65 70 75 80 Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr Ser Thr 85 90 95 Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala Pro Thr Thr Ala Leu Pro 100 105 110 Thr Asn Gly Thr Ser Thr Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala 115 120 125 Pro Thr Thr Gly Leu Pro Thr Asn Gly Thr Thr Ser Ala Phe Pro Pro 130 135 140 Thr Thr Ser Leu Pro Pro Ser Asn Thr Thr Thr Thr Pro Pro Tyr Asn 145 150 155 160 Pro Ser Thr Asp Tyr Thr Thr Asp Tyr Thr Val Val Thr Glu Tyr Thr 165 170 175 Thr Tyr Cys Pro Glu Arg Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu 180 185 190 Asp Lys Arg 195 <210> 55 <211> 105 <212> PRT <213> Artificial Sequence <220> <223> TFP18 <400> 55 Met Arg Phe Ser Thr Thr Leu Ala Thr Ala Ala Thr Ala Leu Phe Phe 1 5 10 15 Thr Ala Ser Gln Val Ser Ala Ile Gly Glu Leu Ala Phe Asn Leu Gly 20 25 30 Val Lys Asn Asn Asp Gly Thr Cys Lys Ser Thr Ser Asp Tyr Glu Thr 35 40 45 Glu Leu Gln Ala Leu Lys Ser Tyr Thr Ser Thr Val Lys Val Tyr Ala 50 55 60 Ala Ser Asp Cys Asn Thr Leu Gln Asn Leu Gly Pro Ala Ala Glu Ala 65 70 75 80 Glu Gly Phe Thr Ile Phe Val Gly Val Trp Pro Leu Ala Ala Ser Ala 85 90 95 Ser Ala Gly Leu Ala Leu Asp Lys Arg 100 105 <210> 56 <211> 124 <212> PRT <213> Artificial Sequence <220> <223> TFP19 <400> 56 Met Arg Leu Ser Asn Leu Ile Ala Ser Ala Ser Leu Leu Ser Ala Ala 1 5 10 15 Thr Leu Ala Ala Pro Ala Asn His Glu His Lys Asp Lys Arg Ala Val 20 25 30 Val Thr Thr Thr Val Gln Lys Gln Thr Thr Ile Ile Val Asn Gly Ala 35 40 45 Ala Ser Thr Pro Val Ala Ala Leu Glu Glu Asn Ala Val Val Asn Ser 50 55 60 Ala Pro Ala Ala Ala Thr Ser Thr Thr Ser Ser Ala Ala Ser Val Ala 65 70 75 80 Thr Ala Ala Ser Ser Ser Glu Asn Asn Ser Gln Val Ser Ala Ala Ala 85 90 95 Ser Pro Ala Ser Ser Ser Ala Ala Thr Ser Thr Gln Ser Ser Leu Ala 100 105 110 Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 115 120 <210> 57 <211> 138 <212> PRT <213> Artificial Sequence <220> <223> TFP20 <400> 57 Met Gln Phe Ser Thr Val Ala Ser Ile Ala Ala Val Ala Ala Val Ala 1 5 10 15 Ser Ala Ala Ala Asn Val Thr Thr Ala Thr Val Ser Gln Glu Ser Thr 20 25 30 Thr Leu Val Thr Ile Thr Ser Cys Glu Asp His Val Cys Ser Glu Thr 35 40 45 Val Ser Pro Ala Leu Val Ser Thr Ala Thr Val Thr Val Asp Asp Val 50 55 60 Ile Thr Gln Tyr Thr Thr Trp Cys Pro Leu Thr Thr Glu Ala Pro Lys 65 70 75 80 Asn Gly Thr Ser Thr Ala Ala Pro Val Thr Ser Thr Glu Ala Pro Lys 85 90 95 Asn Thr Thr Ser Ala Ala Pro Thr His Ser Val Thr Ser Tyr Thr Gly 100 105 110 Ala Ala Ala Lys Ala Leu Pro Ala Ala Gly Ala Leu Leu Ala Ala Ser 115 120 125 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 130 135 <210> 58 <211> 176 <212> PRT <213> Artificial Sequence <220> <223> TFP21 <400> 58 Met Lys Phe Ser Ser Ala Leu Val Leu Ser Ala Val Ala Ala Thr Ala 1 5 10 15 Leu Ala Glu Ser Ile Thr Thr Thr Ile Thr Ala Thr Lys Asn Gly His 20 25 30 Val Tyr Thr Lys Thr Val Thr Gln Asp Ala Thr Phe Val Trp Gly Gly 35 40 45 Glu Asp Ser Tyr Ala Ser Ser Thr Ser Ala Ala Glu Ser Ser Ala Ala 50 55 60 Glu Thr Ser Ala Ala Glu Thr Ser Ala Ala Ala Thr Thr Ser Ala Ala 65 70 75 80 Ala Thr Thr Ser Ala Ala Glu Thr Ser Ser Ala Ala Glu Thr Ser Ser 85 90 95 Ala Asp Glu Gly Ser Gly Ser Ser Ile Thr Thr Thr Ile Thr Ala Thr 100 105 110 Lys Asn Gly His Val Tyr Thr Lys Thr Val Thr Gln Asp Ala Thr Phe 115 120 125 Val Trp Thr Gly Glu Gly Ser Ser Asn Thr Trp Ser Pro Ser Ser Thr 130 135 140 Ser Thr Ser Ser Glu Ala Ala Thr Ser Ser Ala Ser Thr Thr Ala Thr 145 150 155 160 Thr Leu Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 165 170 175 <210> 59 <211> 138 <212> PRT <213> Artificial Sequence <220> <223> TFP22 <400> 59 Met Lys Phe Gln Val Val Leu Ser Ala Leu Leu Ala Cys Ser Ser Ala 1 5 10 15 Val Val Ala Ser Pro Ile Glu Asn Leu Phe Lys Tyr Arg Ala Val Lys 20 25 30 Ala Ser His Ser Lys Asn Ile Asn Ser Thr Leu Pro Ala Trp Asn Gly 35 40 45 Ser Asn Ser Ser Asn Val Thr Tyr Ala Asn Gly Thr Asn Ser Thr Thr 50 55 60 Asn Thr Thr Thr Ala Glu Ser Ser Gln Leu Gln Ile Ile Val Thr Gly 65 70 75 80 Gly Gln Val Pro Ile Thr Asn Ser Ser Leu Thr His Thr Asn Tyr Thr 85 90 95 Arg Leu Phe Asn Ser Ser Ser Ala Leu Asn Ile Thr Glu Leu Tyr Asn 100 105 110 Val Ala Arg Val Val Asn Glu Thr Ile Gln Asp Asn Leu Ala Ala Ser 115 120 125 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 130 135 <210> 60 <211> 115 <212> PRT <213> Artificial Sequence <220> <223> TFP23 <400> 60 Met Arg Ala Ile Thr Leu Leu Ser Ser Val Val Ser Leu Ala Leu Leu 1 5 10 15 Ser Lys Glu Val Leu Ala Thr Pro Pro Ala Cys Leu Leu Ala Cys Val 20 25 30 Ala Gln Val Gly Lys Ser Ser Ser Thr Cys Asp Ser Leu Asn Gln Val 35 40 45 Thr Cys Tyr Cys Glu His Glu Asn Ser Ala Val Lys Lys Cys Leu Asp 50 55 60 Ser Ile Cys Pro Asn Asn Asp Ala Asp Ala Ala Tyr Ser Ala Phe Lys 65 70 75 80 Ser Ser Cys Ser Glu Gln Asn Ala Ser Leu Gly Asp Ser Ser Gly Ser 85 90 95 Ala Ser Ser Ser Val Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu 100 105 110 Asp Lys Arg 115 <210> 61 <211> 170 <212> PRT <213> Artificial Sequence <220> <223> TFP24 <400> 61 Met Lys Leu Ser Thr Val Leu Leu Ser Ala Gly Leu Ala Ser Thr Thr 1 5 10 15 Leu Ala Gln Phe Ser Asn Ser Thr Ser Ala Ser Ser Thr Asp Val Thr 20 25 30 Ser Ser Ser Ser Ile Ser Thr Ser Ser Gly Ser Val Thr Ile Thr Ser 35 40 45 Ser Glu Ala Pro Glu Ser Asp Asn Gly Thr Ser Thr Ala Ala Pro Thr 50 55 60 Glu Thr Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr 65 70 75 80 Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr Ser Thr 85 90 95 Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala Pro Thr Thr Ala Leu Pro 100 105 110 Thr Asn Gly Thr Ser Thr Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala 115 120 125 Pro Thr Thr Gly Leu Pro Thr Asn Gly Thr Thr Ser Ala Phe Pro Pro 130 135 140 Thr Thr Ser Leu Pro Pro Ser Asn Thr Thr Thr Thr Leu Ala Ala Ser 145 150 155 160 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 165 170 <210> 62 <211> 354 <212> DNA <213> Artificial Sequence <220> <223> TFP1 <400> 62 atgttcaatc gttttaacaa attccaagct gctgtcgctt tggccctact ctctcgcggc 60 gctctcggtg actcttacac caatagcacc tcctccgcag acttgagttc tatcacttcc 120 gtctcgtcag ctagtgcaag tgccaccgct tccgactcac tttcttccag tgacggtacc 180 gtttatttgc catccacaac aattagcggt gatctcacag ttactggtaa agtaattgca 240 accgaggccg tggaagtcgc tgccggtggt aagttgactt tacttgacgg tgaaaaatac 300 gtcttctcat ctgaggccgc ctcggcctct gctggcctcg ccttagataa aaga 354 <210> 63 <211> 390 <212> DNA <213> Artificial Sequence <220> <223> TFP2 <400> 63 atgacgccct atgcagtagc aattaccgtg gccttactaa ttgtaacagt gagcgcactc 60 caggtcaaca attcatgtgt cgcttttccg ccatcaaatc tcaggggcaa gaatggagac 120 ggtactaatg aacagtatgc aactgcacta ctttctattc cctggaatgg gcctcctgag 180 tcatcgaggg atattaatct tatcgaactc gaaccgcaag ttgcactcta tttgctcgaa 240 aattatatta accattacta caacaccaca agagacaata agtgccctaa taaccactac 300 ctaatgggag ggcagttggg tagctcatcg gataatagga gtttgaacga ggccgcctcg 360 gcctctgctg gcctcgcctt agataaaaga 390 <210> 64 <211> 351 <212> DNA <213> Artificial Sequence <220> <223> TFP3 <400> 64 atgcaattca aaaacgtcgc cctagctgcc tccgttgctg ctctatccgc cactgcttct 60 gctgaaggtt acactccagg tgaaccatgg tccaccttaa ccccaaccgg ctccatctct 120 tgtggtgcag ccgaatacac taccaccttt ggtattgctg ttcaagctat tacctcttca 180 aaagctaaga gagacgttat ctctcaaatt ggtgacggtc aagtccaagc cacttctgct 240 gctactgctc aagccaccga tagtcaagcc caagctacta ctaccgctac cccaaccagc 300 tccgaaaaga tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 351 <210> 65 <211> 186 <212> DNA <213> Artificial Sequence <220> <223> TFP4 <400> 65 atgagatttg cagaattctt ggtggtattt gccacgttag gcggggggat ggctgcaccg 60 gttgagtctc tggccgggac ccaacggtat ctggtgcaaa tgaaggagcg gttcaccaca 120 gagaagctgt gtgctttgga cgacaaggcc gcctcggcct ctgctggcct cgccttagat 180 aaaaga 186 <210> 66 <211> 291 <212> DNA <213> Artificial Sequence <220> <223> TFP5 <400> 66 atgttcaatc gttttaacaa attccaagct gctgtcgctt tggccctact ctctcgcggc 60 gctctcggtg ctccagtcaa cactacaaca gaagatgaaa cggcactaat tccggctgaa 120 gctgtcatcg gttacttaga tttagaaggg gatttcgatg ttgctgtttt gccattttcc 180 aacagcacaa ataacgggtt attgtttata aatactacta ttgccagcat tgctgctaaa 240 gaagaagggg tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 291 <210> 67 <211> 279 <212> DNA <213> Artificial Sequence <220> <223> TFP6 <400> 67 atgagatttc cttcaatttt tactgcagtt ttattcgcag catcctccgc attagctgct 60 ccagtcaaca ctacaacaga agatgaaacg gcacaaattc cggctgaagc tgtcatcggt 120 tacttagatt tagaagggga tttcgatgtt gctgttttgc cattttccaa cagcacaaat 180 aacgggttat tgtttataaa tactactatt gccagcattg ctgctaaaga agaaggggtg 240 gccgcctcgg cctctgctgg cctcgcctta gataaaaga 279 <210> 68 <211> 678 <212> DNA <213> Artificial Sequence <220> <223> TFP7 <400> 68 atggtgttcg gtcagctgta tgcccttttc atcttcacgt tatcatgttg tatttccaaa 60 actgtgcaag cagattcatc caaggaaagc tcttccttta tttcgttcga caaagagagt 120 aactgggata ccatcagcac tatatcttca acggcagatg ttatatcatc cgttgacagt 180 gctatcgctg tttttgaatt tgacaatttc tcattattgg acagcttgat gattgacgaa 240 gaatacccat tcttcaatag attctttgcc aatgatgtca gtttaactgt tcatgacgat 300 tcgcctttga acatctctca atcattatct cccattatgg aacaatttac tgtggatgaa 360 ttacctgaaa gtgcctctga cttactatat gaatactcct tagatgataa aagcatcgtt 420 ttgttcaagt ttacctcgga tgcctacgat ttgaaaaaat tagatgaatt tattgattct 480 tgcttatcgt ttttggaaga taaatctggc gacaatttga ctgtggttat taactctctt 540 ggttgggctt ttgaagatga agatggtgac gatgaatatg caacagaaga gactttgagc 600 catcatgata acaacaaggg taaagaaggc gacgatctgg ccgcctcggc ctctgctggc 660 ctcgccttag ataaaaga 678 <210> 69 <211> 192 <212> DNA <213> Artificial Sequence <220> <223> TFP8 <400> 69 atgcttcaat ccgttgtctt tttcgctctt ttaaccttcg caagttctgt gtcagcgatt 60 tattcaaaca atactgtttc tacaactacc actttagcgc ccagctactc cttggtgccc 120 caagagacta ccatatcgta cgccgacgac ctggccgcct cggcctctgc tggcctcgcc 180 ttagataaaa ga 192 <210> 70 <211> 414 <212> DNA <213> Artificial Sequence <220> <223> TFP9 <400> 70 atgaaattct caactgccgt tactacgttg attagttctg gtgccatcgt gtctgcttta 60 ccacacgtgg atgttcacca agaagatgcc caccaacata agagggccgt tgcgtacaaa 120 tacgtttacg aaactgttgt tgtcgattct gatggccaca ctgtaactcc tgctgcttca 180 gaagtcgcta ctgctgctac ctctgctatc attacaacat ctgtgttggc tccaacctcc 240 tccgcagccg ctgcggatag ctccgcttcc attgctgttt catctgctgc cttagccaag 300 aatgagaaaa tctctgatgc cgctgcatct gccactgcct caacatctca aggggcatcc 360 tcctcatcct acctggccgc ctcggcctct gctggcctcg ccttagataa aaga 414 <210> 71 <211> 597 <212> DNA <213> Artificial Sequence <220> <223> TFP10 <400> 71 atgaattggc tgtttttggt ctcgctggtt ttcttctgcg gcgtgtcaac ccatcctgcc 60 ctggcaatgt ccagcaacag actactaaag ctggctaata aatctcccaa gaaaattata 120 cctctgaagg actcaagttt tgaaaacatc ttggcaccac ctcacgaaaa tgcctatata 180 gttgctctgt ttactgccac agcgcccgaa attggctgtt ctctgtgtct cgagctagaa 240 tccgaatacg acaccatagt ggcctcctgg tttgatgatc atccggatgc aaaatcgtcc 300 aattccgata catctatttt cttcacaaag gtcaatttgg aggacccttc taagaccatt 360 cctaaagcgt tccagttttt ccaactaaac aatgttccta gattgttcat cttcaaacta 420 aactctccct ctattctgga ccacagcgtg atcagtattt ccactgatac tggctcagaa 480 agaatgaagc aaatcataca agccattaag cagttctcgc aagtaaacga cttctcttta 540 cacttacctg tgggtctggc cgcctcggcc tctgctggcc tcgccttaga taaaaga 597 <210> 72 <211> 231 <212> DNA <213> Artificial Sequence <220> <223> TFP11 <400> 72 atgaagttct cttctgttac tgctattact ctagccaccg ttgccaccgt tgccactgct 60 aagaagggtg aacatgattt cactaccact ttaactttgt catcggacgg tagtttaact 120 actaccacct ctactcatac cactcacaag tatggtaagt tcaacaagac ttccaagtcc 180 aagacccccc tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 231 <210> 73 <211> 282 <212> DNA <213> Artificial Sequence <220> <223> TFP12 <400> 73 atggcctcat ttgctactaa gtttgtcatt gcttgcttcc tgttcttctc ggcgtccgcc 60 cataatgtcc ttcttccagc ttatggccgt agatgcttct tcgaagactt gagtaagggt 120 gacgagctct ccatttcgtt ccagttcggt gatagaaacc ctcaatccag tagccagctg 180 actggtgact ttatcatcta cgggccggaa agacatgaag ttttgaaaac ggttagggaa 240 ctggccgcct cggcctctgc tggcctcgcc ttagataaaa ga 282 <210> 74 <211> 522 <212> DNA <213> Artificial Sequence <220> <223> TFP13 <400> 74 atgcaataca aaaagacttt ggttgcctct gctttggccg ctactacatt ggccgcctat 60 gctccatctg agccttggtc cactttgact ccaacagcca cttacagcgg tggtgttacc 120 gactacgctt ccaccttcgg tattgccgtt caaccaatct ccactacatc cagcgcatca 180 tctgcagcca ccacagcctc atctaaggcc aagagagctg cttcccaaat tggtgatggt 240 caagtccaag ctgctaccac tactgcttct gtctctacca agagtaccgc tgccgccgtt 300 tctcagatcg gtgatggtca aatccaagct actaccaaga ctaccgctgc tgctgtctct 360 caaattggtg atggtcaaat tcaagctacc accaagacta cctctgctaa gactaccgcc 420 gctgccgttt ctcaaatcag tgatggtcaa atccaagcta ccaccactac tttagcccct 480 ctggccgcct cggcctctgc tggcctcgcc ttagataaaa ga 522 <210> 75 <211> 204 <212> DNA <213> Artificial Sequence <220> <223> TFP14 <400> 75 atgcaattca agaacgcttt gactgctact gctattctaa gtgcctccgc tctagctgct 60 aactcaacta cttctattcc atcttcatgt agtattggta cttctgccac tgctactgct 120 caagccaccg atagtcaagc ccaagctact actaccgcac ccctggccgc ctcggcctct 180 gctggcctcg ccttagataa aaga 204 <210> 76 <211> 471 <212> DNA <213> Artificial Sequence <220> <223> TFP15 <400> 76 atggtatcga agacttggat atgtggcttc atcagtataa ttacagtggt acaggccttg 60 tcctgcgaga agcatgatgt attgaaaaag tatcaggtgg gaaaatttag ctcactaact 120 tctacggaaa gggatactcc gccaagcaca actattgaaa agtggtggat aaacgtttgc 180 gaagagcata acgtagaacc tcctgaagaa tgtaaaaaaa atgacatgct atgtggttta 240 acagatgtca tcttgcccgg taaggatgct atcaccactc aaattataga ttttgacaaa 300 aacattggct tcaatgtcga ggaaactgag agtgcgctta cattgacact aaacggcgct 360 acgtggggcg ccaattcttt tgacgcaaaa ctagaatttc agtgtaatga caatatgaaa 420 caagacgaac tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 471 <210> 77 <211> 294 <212> DNA <213> Artificial Sequence <220> <223> TFP16 <400> 77 atgaaattat ccgctctatt agctttatca gcctccaccg ccgtcttggc cgctccagct 60 gtccaccata gtgacaacca ccaccacaac gacaagcgtg ccgttgtcac cgttactcag 120 tacgtcaacg cagacggcgc tgttgttatt ccagctgcca ccaccgctac ctcggcggct 180 gctgatggaa aggtcgagtc tgttgctgct gccaccacta ctttgtcctc gactgccgcc 240 gccgctacaa ccctggccgc ctcggcctct gctggcctcg ccttagataa aaga 294 <210> 78 <211> 585 <212> DNA <213> Artificial Sequence <220> <223> TFP17 <400> 78 atgaaattat caactgtcct attatctgcc ggtttagcct cgactacttt ggcccaattt 60 tccaacagta catctgcttc ttccaccgat gtcacttcct cctcttccat ctccacttcc 120 tctggctcag taactatcac atcttctgaa gctccagaat ccgacaacgg taccagcaca 180 gctgcaccaa ctgaaacctc aacagaggct ccaaccactg ctatcccaac taacggtacc 240 tctactgaag ctccaaccac tgctatccca actaacggta cctctactga agctccaact 300 gatactacta ctgaagctcc aaccaccgct cttccaacta acggtacttc tactgaagct 360 ccaactgata ctactactga agctccaacc accggtcttc caaccaacgg taccacttca 420 gctttcccac caactacatc tttgccacca agcaacacta ccaccactcc tccttacaac 480 ccatctactg actacaccac tgactacact gtagtcactg aatatactac ttactgtccg 540 gaacgggccg cctcggcctc tgctggcctc gccttagata aaaga 585 <210> 79 <211> 315 <212> DNA <213> Artificial Sequence <220> <223> TFP18 <400> 79 atgcgtttct ctactacact cgctactgca gctactgcgc tatttttcac agcctcccaa 60 gtttcagcta ttggtgaact agcctttaac ttgggtgtca agaacaacga tggtacttgt 120 aagtccactt ccgactatga aaccgaatta caagctttga agagctacac ttccaccgtc 180 aaagtttacg ctgcctcaga ttgtaacact ttgcaaaact taggtcctgc tgctgaagct 240 gagggattta ctatctttgt cggtgtttgg ccactggccg cctcggcctc tgctggcctc 300 gccttagata aaaga 315 <210> 80 <211> 372 <212> DNA <213> Artificial Sequence <220> <223> TFP19 <400> 80 atgcgtctct ctaacctaat tgcttctgcc tctcttttat ctgctgctac tcttgctgct 60 cccgctaacc acgaacacaa ggacaagcgt gctgtggtca ctaccactgt tcaaaaacaa 120 accactatca ttgttaatgg tgccgcttca actccagttg ctgctttgga agaaaatgct 180 gttgtcaact ccgctccagc tgccgctacc agtacaacat cgtctgctgc ttctgtagct 240 accgctgctt cctcttctga gaacaactca caagtttctg ctgccgcatc tccagcctcc 300 agctctgctg ctacatctac tcaatcttct ctggccgcct cggcctctgc tggcctcgcc 360 ttagataaaa ga 372 <210> 81 <211> 414 <212> DNA <213> Artificial Sequence <220> <223> TFP20 <400> 81 atgcaatttt ctactgtcgc ttctatcgcc gctgtcgccg ctgtcgcttc tgccgctgct 60 aacgttacca ctgctactgt cagccaagaa tctaccactt tggtcaccat cacttcttgt 120 gaagaccacg tctgttctga aactgtctcc ccagctttgg tttccaccgc taccgtcacc 180 gtcgatgacg ttatcactca atacaccacc tggtgcccat tgaccactga agccccaaag 240 aacggtactt ctactgctgc tccagttacc tctactgaag ctccaaagaa caccacctct 300 gctgctccaa ctcactctgt cacctcttac actggtgctg ctgctaaggc tttgccagct 360 gctggtgctt tgctggccgc ctcggcctct gctggcctcg ccttagataa aaga 414 <210> 82 <211> 528 <212> DNA <213> Artificial Sequence <220> <223> TFP21 <400> 82 atgaaattct cttccgcttt ggttctatct gctgttgccg ctactgctct tgctgagagt 60 atcaccacca ccatcactgc caccaagaac ggtcatgtct acactaagac tgtcacccaa 120 gatgctactt ttgtttgggg tggtgaagac tcttacgcca gcagcacttc tgccgctgaa 180 tcttctgccg ccgaaacttc tgccgccgaa acctctgctg ccgctaccac ttctgctgcc 240 gctaccactt ctgctgctga gacttcttct gctgctgaga cttcttctgc tgatgaaggt 300 tctggttcta gtatcactac cactatcact gccaccaaga acggtcacgt ctacactaag 360 actgtcaccc aagatgctac ttttgtctgg actggtgaag gcagcagcaa cacctggtct 420 ccaagtagta cctctaccag ctcagaagct gctacctctt ctgcttcaac cactgcaacc 480 accctgctgg ccgcctcggc ctctgctggc ctcgccttag ataaaaga 528 <210> 83 <211> 414 <212> DNA <213> Artificial Sequence <220> <223> TFP22 <400> 83 atgaagttcc aagttgtttt atctgccctt ttggcatgtt catctgccgt cgtcgcaagc 60 ccaatcgaaa acctattcaa atacagggca gttaaggcat ctcacagtaa gaatatcaac 120 tccactttgc cggcctggaa tgggtctaac tctagcaatg ttacctacgc taatggaaca 180 aacagtacta ccaatactac tactgccgaa agcagtcaat tacaaatcat tgtaacaggt 240 ggtcaagtac caatcaccaa cagttctttg acccacacaa actacaccag attattcaac 300 agttcttctg ctttgaacat taccgaattg tacaatgttg cccgtgttgt taacgaaacg 360 atccaagata acctggccgc ctcggcctct gctggcctcg ccttagataa aaga 414 <210> 84 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> TFP23 <400> 84 atgcgtgcca tcactttatt atcttcagtc gtttctttgg cattgttgtc gaaggaagtc 60 ttagcaacac ctccagcttg tttattggcc tgtgttgcgc aagtcggcaa atcctcttcc 120 acatgtgact ctttgaatca agtcacctgt tactgtgaac acgaaaactc cgccgtcaag 180 aaatgtctag actccatctg cccaaacaat gacgctgatg ctgcttattc tgctttcaag 240 agttcttgtt ccgaacaaaa tgcttcattg ggcgattcca gcggcagtgc ctcctcatcc 300 gttctggccg cctcggcctc tgctggcctc gccttagata aaaga 345 <210> 85 <211> 510 <212> DNA <213> Artificial Sequence <220> <223> TFP24 <400> 85 atgaaattat caactgtcct attatctgcc ggtttggcct cgactacttt ggcccaattt 60 tccaacagta catctgcttc ttccaccgat gtcacttcct cctcttccat ctccacttcc 120 tctggctcag taactatcac atcttctgaa gctccagaat ccgacaacgg taccagcaca 180 gctgcaccaa ctgaaacctc aacagaggct ccaaccactg ctatcccaac taacggtacc 240 tctactgaag ctccaaccac tgctatccca actaacggta cctctactga agctccaact 300 gatactacta ctgaagctcc aaccaccgct cttccaacta acggtacttc tactgaagct 360 ccaactgata ctactactga agctccaacc accggtcttc caaccaacgg taccacttca 420 gctttcccac caactacatc tttgccacca agcaacacta ccaccactct ggccgcctcg 480 gcctctgctg gcctcgcctt agataaaaga 510 <210> 86 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> BCSPlip2-F <400> 86 tccaaaaaaa aagtaagaat ttttgaaaat tcaaggatcc atgatctgtt cattctttag 60 60 <210> 87 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> BCSPlip5-F <400> 87 tccaaaaaaa aagtaagaat ttttgaaaat tcaaggatcc atgattttaa cgaatctt 58 <210> 88 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> BCSPlip7-F <400> 88 tccaaaaaaa aagtaagaat ttttgaaaat tcaaggatcc atgttcaaac agcttttc 58 <210> 89 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> BCSPlip2-R <400> 89 aatatatata tatatatatt gtcactccgt tcaagtcgac ctattcactt ctagtagaat 60 60 <210> 90 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> BCSPlip5-R <400> 90 aatatatata tatatatatt gtcactccgt tcaagtcgac ttaatagccc aaattttg 58 <210> 91 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> BCSPlip7-R <400> 91 aatatatata tatatatatt gtcactccgt tcaagtcgac ctaattgata tggaagaa 58 <210> 92 <211> 496 <212> PRT <213> Artificial Sequence <220> <223> CbLIP5 codon modification <400> 92 Met Ile Leu Thr Asn Leu Leu Val Tyr Phe Ser Leu Ile Ala Cys Thr 1 5 10 15 Ile Cys Ala Pro Met Thr Ile Leu Lys Pro Ser Glu Asp Asp Phe Tyr 20 25 30 Thr Ala Pro Asp Gly Phe Glu Asp Glu Lys Leu Gly Thr Ile Leu Lys 35 40 45 Trp Arg Lys Thr Pro Tyr Gln Ile Lys Ser Ile Tyr Phe Pro Val Asn 50 55 60 Ile Lys Asn Ser Trp Gln Leu Leu Val Arg Ser Glu Asp Ala Ile Gly 65 70 75 80 Asn Pro Val Ala Val Thr Ala Ser Leu Phe Glu Pro Tyr Asn Gly Asn 85 90 95 Thr Ser Arg Leu Val Ser Tyr Gln Val Ala Glu Asp Ser Ala Ser Phe 100 105 110 Asp Cys Ala Pro Ser Tyr Ser Phe Val Gly Gly Gly Tyr His Thr Val 115 120 125 Val Ala Lys Ala Glu Met Ile Leu Ile Gln Gly Ala Leu Asp Gln Gly 130 135 140 Tyr Tyr Val Val Ala Pro Asp Tyr Glu Gly Pro Asn Ala Ala Phe Thr 145 150 155 160 Ala Gly Ile Thr Ser Gly Met Ser Thr Ile Asn Val Leu Arg Ala Val 165 170 175 Leu Ser Asp Gln Arg Ser Asn Glu Thr Arg Ile Asp Ser Asp Ala Glu 180 185 190 Val Val Leu Trp Gly Tyr Ser Gly Gly Thr Ile Pro Ser Gly Trp Ala 195 200 205 Ala Ser Met Ala Pro Trp Tyr Ala Lys Asp Ile Asn Asp Asn Leu Lys 210 215 220 Gly Ala Ala Met Gly Gly Trp Val Thr Asn Ile Thr Ala Thr Ala Glu 225 230 235 240 Ile Val Glu Gly Ser Leu Phe Glu Gly Leu Val Ala Ala Ala Ile Asn 245 250 255 Gly Leu Ala Gln Gln Tyr Glu Glu Ile Asn Glu Ala Leu Asp Val Tyr 260 265 270 Leu Val Pro Asp Lys Leu Glu Thr Phe Arg Ser Ala Lys Asn Glu Cys 275 280 285 Val Ile Asp Val Val Phe Ser Phe Ala Tyr Gln Ser Ala Phe Ser Gly 290 295 300 Ser Asp Pro Tyr Thr Ser Asp Gly Trp Gly Val Leu Glu Asp Pro Lys 305 310 315 320 Val Lys Lys Ile Val Asn Gln Asn Thr Leu Gly Leu Asn Val Thr Glu 325 330 335 Lys Phe Lys Pro Glu Ile Pro Leu Phe Val Tyr His Gly Ile Leu Asp 340 345 350 Glu Ile Val Pro Phe Lys Asp Ala Gln Arg Val Tyr Asp Val Trp Cys 355 360 365 Lys Glu Gly Ile Asn Ser Phe Glu Phe Ala Val Ser Asn Ser Thr Gly 370 375 380 His Leu Leu Glu Val Leu Glu Gly Ser Gly Ala Ala Leu Lys Trp Ile 385 390 395 400 Ser Asp Arg Phe Asp Gly Val Ala Pro Thr Lys Gly Cys His Arg Gln 405 410 415 Thr Arg Leu Ser Asn Ile Phe Tyr Pro Gly Ser Phe Thr Gly Ile Ser 420 425 430 Asp Ile Leu Ser Ala Leu Val Arg Asn Val Met Gly Ser Pro Ile Gly 435 440 445 Leu Tyr Asp Glu Gln Val Glu Lys Arg Ser Asp Val Thr Glu Asp Glu 450 455 460 Lys Leu Leu Lys Arg Ser Phe Ala Tyr Thr Asp Glu Glu Ile Phe Arg 465 470 475 480 Arg Ile Leu Asp Asn Ser Tyr Pro Asp Met Ala Gln Asn Leu Gly Tyr 485 490 495 <210> 93 <211> 1491 <212> DNA <213> Artificial Sequence <220> <223> CbLIP5 codon modification <400> 93 atgattttaa cgaatcttct tgtatatttc agcttgatag cgtgcacaat ttgtgctcca 60 atgacgatct tgaaaccttc tgaagatgac ttttatactg ctccagatgg ctttgaggat 120 gaaaagttag gtactattct taaatggaga aagactcctt atcagattaa gagtatctac 180 ttcccagtta acattaagaa tagttggcaa ttgcttgtga gatctgaaga tgcaatcggt 240 aatccagttg cagtcactgc ttcccttttt gaaccgtaca atggtaacac atccaggttg 300 gtctcatacc aagttgcaga ggatagtgct tcgttcgact gtgcaccgtc atattcattt 360 gtaggaggag gttaccatac agtggttgca aaagctgaga tgattttgat acaaggagca 420 ttagatcaag gttattacgt tgttgcacca gactatgaag gacccaatgc tgcatttact 480 gccgggataa catccggcat gagcaccatt aatgttcttc gagcagtctt aagtgatcag 540 aggagtaatg aaacgagaat tgactcagat gcagaagtgg ttctttgggg atatagtgga 600 ggcacaatcc ctagtggttg ggcagcatct atggctccat ggtatgctaa agatatcaat 660 gataatctta aaggagcagc aatgggtgga tgggtaacta atattactgc cacggctgaa 720 attgtagaag ggtccctttt cgaaggattg gttgcagcag ccatcaatgg attagcacaa 780 caatatgaag aaattaatga ggcacttgat gtttatcttg tacctgataa gctagagaca 840 tttagatcag caaagaatga atgcgttatt gatgtagtat tttcctttgc ttatcaaagt 900 gcattcagtg gaagtgatcc ttatacatct gatggatggg gtgtattaga agacccaaaa 960 gtgaagaaga ttgtcaacca aaataccctt ggattaaatg tgactgaaaa attcaaacca 1020 gagatcccac tatttgttta tcatggaatt cttgatgaaa ttgttccttt caaagatgca 1080 cagagagttt atgatgtttg gtgtaaagaa ggcattaatt catttgaatt tgccgtctct 1140 aattctactg gccatcttct tgaggtactt gaaggcagtg gagcagcgtt gaagtggata 1200 tctgacagat tcgatggagt tgcaccaacc aaaggatgtc atagacaaac aagattaagt 1260 aatatcttct atccaggttc ttttactgga atatctgaca ttttatctgc tttagtcaga 1320 aatgtcatgg gaagccctat tggactttat gatgaacaag ttgaaaagag atcagatgta 1380 accgaagacg aaaaattatt gaaaaggtct tttgcataca cagatgaaga aatctttaga 1440 agaatacttg acaacagcta tccagatatg gctcaaaatt tgggctatta a 1491 <210> 94 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Lip5CTG1-F <400> 94 agtgatcctt atacatctga tggatggggt gta 33 <210> 95 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Lip5CTG1-R <400> 95 tacaccccat ccatcagatg tataaggatc act 33 <210> 96 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Lip5CTG2-F <400> 96 atcttctatc caggttcttt tactggaata tct 33 <210> 97 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Lip5CTG2-R <400> 97 agatattcca gtaaaagaac ctggatagaa gat 33 <210> 98 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Lip5CTG3-F <400> 98 aaattattga aaaggtcttt tgcatacaca gat 33 <210> 99 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Lip5CTG3-R <400> 99 atctgtgtat gcaaaagacc ttttcaataa ttt 33 <110> KOREA RESEARCH INSTITUTE OF BIOSCIENCE AND BIOTECHNOLOGY <120> Novel lipase from yeast Candida butyri SH-14 and the use thereof <130> KPA160011-KR <160> 99 <170> Kopatentin 2.0 <210> 1 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ITS1 <400> 1 tccgtaggtg aacctgcgg 19 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ITS4 <400> 2 tcctccgctt attgatatgc 20 <210> 3 <211> 584 <212> DNA <213> Artificial Sequence <220> <223> ITS region of Candida butyri SH-14 <400> 3 agaaaaaata ttcttgccgc gcttactgcg cggcgagaat aacaccttac acacagtgga 60 ttttttttaa aagaactatt gcgtttggct tggctaacgc tgggccagag gattcagtaa 120 acttcaattt ttaattgaat tgttatttta atatttttgt caatttgttt gattaaattc 180 aaaataatct tcaaaacttt caacaacgga tctcttggtt ctcgcatcga tgaagaacgc 240 agcgaaatgc gataagtaat atgaattgca gattttcgtg aatcatcgaa tctttgaacg 300 cacattgcgc cttatggtat tccataaggc atgcctgttt gagcgtcatt tctctctcaa 360 acctttgggt ttggtattga gtgatactct tagtcggact aggcgtttgc ttgaaaagta 420 ttggcaagag tgtactggat agtactaact ggttattcaa tgtattaggt ttatccaact 480 cgttgaagtg ctggtggtaa atttctagta acggctcggc cttacaacaa caaacaagtt 540 tgacctcnaa tcaggtaaga atacccgctg aacttaagca tatc 584 <210> 4 <211> 338 <212> PRT <213> Artificial Sequence <220> <223> LIP1 <400> 4 Met Lys Leu Ser Thr Phe Leu Ser Ala Ser Ile Ile Phe Trp Arg Ala   1 5 10 15 Thr Glu Thr Ala Ser Thr Pro Leu Ser Pro Arg Ser Gly Asp Asn Val              20 25 30 Pro Lys Asp Tyr Gln Lys Leu Lys Asp Tyr Ala Asn Leu Val Ser Phe          35 40 45 Ala Tyr Cys Lys Glu Leu Ile Pro Ser Lys Leu Gly Ser Asn Ser Ser      50 55 60 Asn Cys Pro Ile Leu Arg Cys Gln Glu Glu Glu Tyr Lys Asn Ile Glu  65 70 75 80 Val Leu Asn Leu Phe Asp Phe Asn Asp Phe Gly Ser Ile Gly Ser Gly                  85 90 95 Tyr Thr Gly Ile Asp His Gln Asn Lys Arg Ile Ile Leu Ala Phe Arg             100 105 110 Gly Thr Ser Thr Asn Arg Asp Trp Leu Ala Asn Ile Asn Val Pro Phe         115 120 125 Lys Lys Tyr Asn Pro Leu Ser Asn Leu Gln Leu Lys Ala Asp Ile Glu     130 135 140 Cys Glu Gly Cys Lys Val His Lys Gly Phe Tyr Glu Phe Ile Glu Lys 145 150 155 160 His Cys Val Ala Leu Ile Lys Gln Val Ala Gln Leu Lys Gln Lys Tyr                 165 170 175 Pro Asp Tyr Gln Leu Val Val Leu Gly His Ser Leu Gly Gly Val Phe             180 185 190 Ala Leu Leu Ser Gly Met Glu Phe Leu Leu Met Asp Phe Gln Pro Leu         195 200 205 Val Ile Thr Tyr Ala Ser Pro Lys Val Gly Asn Lys Ala Met Val Arg     210 215 220 Phe Ile Asp Gln Leu Phe Glu Thr Ser Lys Val Ala Gln Gln Ser Gln 225 230 235 240 Asn Asp Tyr Asp Phe Asn His Gly Tyr Ile Arg Val Val His Asn Tyr                 245 250 255 Asp Met Val Pro Met Leu Pro Pro Arg Glu Leu Gly Tyr Tyr His Gly             260 265 270 Gly Val Glu Tyr His Ile Glu Lys Ser Asn Leu Pro His Asn Pro Asp         275 280 285 Ser Val His Asn Arg Gly Gln Asn His Phe Ser Ser Asn Lys Asp Glu     290 295 300 Gly Pro Val Glu Lys Leu Glu Arg Ile Ala Thr Ser Leu Val Leu Val 305 310 315 320 Phe Thr Ser Lys Glu His Thr Gln Tyr Phe Ile Pro Ile Thr Gly Cys                 325 330 335 Lys Asp         <210> 5 <211> 468 <212> PRT <213> Artificial Sequence <220> <223> LIP2 <400> 5 Met Ile Cys Ser Phe Phe Arg Leu Leu Thr Ile Val Thr Leu Val Ile   1 5 10 15 Ala Ala Pro Thr Thr Leu Val Pro Pro Thr Glu Asp Pro Phe Tyr Thr              20 25 30 Ala Pro Lys Gly Phe Glu Ser Ala Glu Leu Gly Thr Val Leu Ala Tyr          35 40 45 Arg Asn Thr Pro Ala Pro Ile Arg Ser Ile Tyr Phe Glu Val Asn Ile      50 55 60 Lys Asn Ser Trp Gln Leu Leu Val Arg Ser Ser Asp Ser Phe Gly Asn  65 70 75 80 Pro Ser Val Val Thr Thr Val Phe Glu Pro Phe Asn Ala Asp Pro                  85 90 95 Ser Lys Leu Val Ser Tyr Gln Val Ala Gln Asp Ser Ala Tyr Leu Asp             100 105 110 Cys Ser Pro Ser Tyr Ser Phe Met Asn Gly Gly Gly Leu Ser Thr Ile         115 120 125 Asn Asn Gln Ile Glu Thr Val Leu Ile Gln Thr Ala Leu Asp Gln Gly     130 135 140 Tyr Tyr Val Ser Ser Pro Asp Tyr Glu Gly Leu Lys Ser Ala Phe Thr 145 150 155 160 Gly Gly Ile Gln Ala Gly His Gly Thr Leu Asp Ser Ile Arg Gly Ala                 165 170 175 Leu Ser Ser Ser Asn Ile Thr Gly Val Lys Lys Asp Ala Asp Thr Ile             180 185 190 Leu Trp Gly Tyr Ser Gly Gly Ser Leu Ala Ser Gly Trp Ala Ala Ala         195 200 205 Leu Gln Pro Thr Tyr Ala Pro Glu Leu Ala Ser Asn Leu Leu Gly Val     210 215 220 Ala Leu Gly Gly Trp Val Thr Asn Ile Thr Ala Thr Ile Thr Ser Val 225 230 235 240 Ser Gly Thr Ile Phe Ser Gly Leu Gly Ala Met Gly Met Ala Gly Leu                 245 250 255 Ser Asn Glu Tyr Thr Asp Leu Tyr Gly Tyr Leu Lys Thr Ala Met Pro             260 265 270 Ala Asp Lys Tyr Glu Glu Phe Thr Lys Ala Tyr Ser Ile Cys Ala Ala         275 280 285 Glu Ala Leu Ile Glu Tyr Asn Phe Asp Asp Trp Phe Glu Gly Glu Asp     290 295 300 Arg Tyr Phe Thr Asp Gly Phe Lys Val Leu Asn Glu Glu Pro Thr Tyr 305 310 315 320 Ser Ile Ile Arg Asn Asn Thr Leu Gly Leu Ile Ala Gly Gln Met Pro                 325 330 335 Glu Ile Pro Val Phe Val Tyr His Gly Thr Leu Asp Gln Ile Val Pro             340 345 350 Tyr Asp Gln Ala Glu Arg Val Tyr Asp Ile Trp Cys Asp Ala Gly Ile         355 360 365 Lys Ser Phe Glu Phe Ala Thr Asp Leu Thr Ala Gly His Ile Thr Glu     370 375 380 Leu Val Gln Gly Ser Gly Ala Ala Phe Gly Trp Ile Lys Gly Met Phe 385 390 395 400 Glu Gly Thr Lys Lys Pro Val Ser Gly Cys Arg Lys Thr Pro Arg Ile                 405 410 415 Ser Asn Leu Leu Tyr Pro Gly Thr Val Arg Ser Val Thr Asp Val Val             420 425 430 Gly Ala Leu Leu Asp Asn Ile Leu Gly Phe Asp Ile Gly Pro Asn Gly         435 440 445 Glu Asn Leu Ile Val Glu Asn Asn Ser Val Ile Ser Lys Ala Asn Ser     450 455 460 Thr Arg Ser Glu 465 <210> 6 <211> 345 <212> PRT <213> Artificial Sequence <220> <223> LIP3 <400> 6 Met Ala Met Leu Met Leu Leu Phe Phe Leu Phe Glu Ile Ala Cys Gly   1 5 10 15 Asn Ile Trp Val Tyr Pro Gly Ser His Gln Lys Ser Gly Glu Glu Glu              20 25 30 Arg Thr Pro Val Ile Asp Ile Glu Val Tyr Arg Asn Met Phe Thr          35 40 45 Tyr Ala His Leu Ile Asp Ile Ser Tyr Cys Ile Ser Ser Thr Thr Arg      50 55 60 Leu Glu Glu Pro Phe Asn Cys Asp Leu Asn Cys Glu Lys Arg Phe Pro  65 70 75 80 Asn Val Thr Leu Val Tyr Gln Trp Tyr Phe Asp Ser Val Cys Gly                  85 90 95 Tyr Ile Ala Thr Thr Tyr Ser Asn Ile Phe Asn Tyr Glu Ser Glu Glu             100 105 110 Gly Lys Gly His Lys Lys Thr Ile Ile Val Ser Leu Arg Gly Thr Arg         115 120 125 Ser Ile Phe Asp Ser Tyr Thr Asp Ile Lys Val Asp Met Val Asn Tyr     130 135 140 Tyr Asn Tyr Gly Ser Asn Ile Gln Glu Cys Gly Thr Asp Cys Lys Val 145 150 155 160 His Arg Gly Phe Tyr Lys Tyr Tyr Ile Asn Thr Leu Leu Lys Ile Glu                 165 170 175 Gly Ile Leu Arg Asn Glu Leu Gln Thr Asp Asp Asp Tyr Glu Leu Leu             180 185 190 Ile Val Gly His Ser Leu Gly Aly Val Gly Leu Leu Leu Gly Leu         195 200 205 Tyr Tyr Leu Asp Glu Gly Phe Asp Lys Ile Thr Leu Val Thr Met Gly     210 215 220 Gln Pro Leu Val Gly Asn Lys Gln Phe Ala Glu Phe Val Asp Asn Val 225 230 235 240 Met Gly Ser Arg Leu Pro Ile Glu His Asn Thr Phe Asn Arg Lys Phe                 245 250 255 Phe Arg Val Ile His Lys Asp Asp Ile Val Ala Thr Ile Pro Ser Asn             260 265 270 Asn Arg Ile Leu Asp Ser Tyr Ser Gln Phe Asp Asn Gln Ile Tyr Leu         275 280 285 Asn Cys Leu Ala Ser Asp Thr Met Pro Ser Leu Glu Gln Val Leu Asp     290 295 300 Cys Phe Asp Gly Asp Asn Pro Gln Cys Ile Ser Gly Asp Ile Glu Asn 305 310 315 320 Tyr Leu Leu Ser His Asn Tyr Leu Gln Ile His Thr Thr Tyr Phe Arg                 325 330 335 Ser Met Gly Leu Cys Gly Ile Arg Ile             340 345 <210> 7 <211> 513 <212> PRT <213> Artificial Sequence <220> <223> LIP4 <400> 7 Met Met Ile Thr Thr Arg Ile Leu Val Cys Phe Ala Leu Ile Ala Leu   1 5 10 15 Thr Phe Ala Ala Pro Leu Thr Val Leu Lys Pro Ser Glu Asp Glu Phe              20 25 30 Tyr Ala Ala Pro Asp Gly Phe Glu Asp Glu Lys Leu Gly Thr Ile Leu          35 40 45 Lys Trp Arg Lys Thr Pro Tyr Gln Ile Lys Ser Ile Tyr Phe Pro Val      50 55 60 Asn Ile Lys Asn Ser Trp Gln Leu Leu Val Arg Ser Glu Asp Ala Ile  65 70 75 80 Gly Asn Pro Val Ala Val Thr Ala Ser Leu Phe Glu Pro Tyr Asn Gly                  85 90 95 Asn Thr Ser Arg Leu Val Ser Tyr Gln Val Ala Glu Asp Ser Ala Ser             100 105 110 Phe Asp Cys Ala Pro Ser Tyr Ser Phe Val Gly Gly Gly Tyr His Thr         115 120 125 Val Val Ala Lys Ala Glu Met Ile Leu Ile Gln Gly Ala Leu Asp Gln     130 135 140 Gly Tyr Tyr Val Val Ala Pro Asp Tyr Glu Gly Pro Asn Ala Val Phe 145 150 155 160 Thr Ala Gly Val Thr Ser Gly Met Ser Thr Ile Asn Val Leu Arg Ala                 165 170 175 Val Leu Gly Glu Gly Arg Arg Asn Glu Thr Arg Ile Asp Pro Asp Ala             180 185 190 Glu Val Val Leu Trp Gly Tyr Ser Gly Gly Thr Ile Pro Ser Gly Trp         195 200 205 Ala Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa     210 215 220 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 225 230 235 240 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ala                 245 250 255 Glu Ile Val Asp Gly Thr Leu Phe Ser Gly Leu Val Pro Ala Ala Leu             260 265 270 Asn Gly Leu Ser Ala Gln Tyr Glu Glu Met Asp Glu Ala Ile Asp Lys         275 280 285 Phe Leu Lys Pro Asn Lys Leu Glu Lys Phe Arg Ser Gly Arg Asn Glu     290 295 300 Cys Ala Ile Asp Val Val Phe Ser Phe Ala Tyr Gln Asp Thr Phe Ser 305 310 315 320 Gly Phe Asp Thr Tyr Ser Lys Asp Gly Trp Thr Ile Leu Asp Asp Pro                 325 330 335 Asp Val Arg Asp Ile Leu Ala Glu Asn Thr Leu Gly Val Asn Val Thr             340 345 350 Lys Lys Phe Lys Pro Glu Ile Pro Leu Phe Val Tyr His Gly Ile Leu         355 360 365 Asp Glu Ile Val Pro Phe Lys Asp Ala Gln Arg Val Tyr Asp Val Trp     370 375 380 Cys Glu Glu Gly Tyr Asp Ser Phe Glu Phe Ala Val Ser Asn Ser Thr 385 390 395 400 Gly His Ile Leu Glu Val Ile Glu Gly Ser Ala Gly Leu Lys Trp                 405 410 415 Ile Ser Asp Arg Phe Asp Gly Val Gln Pro Thr Lys Gly Cys His Arg             420 425 430 Gln Thr Arg Leu Thr Asn Leu Phe Tyr Pro Gly Leu Phe Thr Gly Val         435 440 445 Thr Asp Ile Leu Ser Ala Leu Met Arg Asn Ile Phe Gly Ser Pro Ile     450 455 460 Gly Leu Tyr Asp Glu Gln Ile Glu Lys Arg Ser Asp Met Ser Glu Asp 465 470 475 480 Glu Lys Leu Leu Lys Arg Leu Phe Glu Phe Thr Asp Ser Glu Ile Phe                 485 490 495 Lys Arg Ile Val Gln His Ser Tyr Pro Glu Met Ala Lys Lys Leu Asp             500 505 510 Leu     <210> 8 <211> 496 <212> PRT <213> Artificial Sequence <220> <223> LIP5 <400> 8 Met Ile Leu Thr Asn Leu Leu Val Tyr Phe Ser Leu Ile Ala Cys Thr   1 5 10 15 Ile Cys Ala Pro Met Thr Ile Leu Lys Pro Ser Glu Asp Asp Phe Tyr              20 25 30 Thr Ala Pro Asp Gly Phe Glu Asp Glu Lys Leu Gly Thr Ile Leu Lys          35 40 45 Trp Arg Lys Thr Pro Tyr Gln Ile Lys Ser Ile Tyr Phe Pro Val Asn      50 55 60 Ile Lys Asn Ser Trp Gln Leu Leu Val Arg Ser Glu Asp Ala Ile Gly  65 70 75 80 Asn Pro Val Ala Val Thr Ala Ser Leu Phe Glu Pro Tyr Asn Gly Asn                  85 90 95 Thr Ser Arg Leu Val Ser Tyr Gln Val Ala Glu Asp Ser Ala Ser Phe             100 105 110 Asp Cys Ala Pro Ser Tyr Ser Phe Val Gly Gly Gly Tyr His Thr Val         115 120 125 Val Ala Lys Ala Glu Met Ile Leu Ile Gln Gly Ala Leu Asp Gln Gly     130 135 140 Tyr Tyr Val Val Ala Pro Asp Tyr Glu Gly Pro Asn Ala Ala Phe Thr 145 150 155 160 Ala Gly Ile Thr Ser Gly Met Ser Thr Ile Asn Val Leu Arg Ala Val                 165 170 175 Leu Ser Asp Gln Arg Ser Asn Glu Thr Arg Ile Asp Ser Asp Ala Glu             180 185 190 Val Val Leu Trp Gly Tyr Ser Gly Gly Thr Ile Pro Ser Gly Trp Ala         195 200 205 Ala Ser Met Ala Pro Trp Tyr Ala Lys Asp Ile Asn Asp Asn Leu Lys     210 215 220 Gly Ala Ala Met Gly Gly Trp Val Thr Asn Ile Thr Ala Thr Ala Glu 225 230 235 240 Ile Val Glu Gly Ser Leu Phe Glu Gly Leu Val Ala Ala Ala Ile Asn                 245 250 255 Gly Leu Ala Gln Gln Tyr Glu Glu Ile Asn Glu Ala Leu Asp Val Tyr             260 265 270 Leu Val Pro Asp Lys Leu Glu Thr Phe Arg Ser Ala Lys Asn Glu Cys         275 280 285 Val Ile Asp Val Val Phe Ser Phe Ala Tyr Gln Ser Ala Phe Ser Gly     290 295 300 Ser Asp Pro Tyr Thr Leu Asp Gly Trp Gly Val Leu Glu Asp Pro Lys 305 310 315 320 Val Lys Lys Ile Val Asn Gln Asn Thr Leu Gly Leu Asn Val Thr Glu                 325 330 335 Lys Phe Lys Pro Glu Ile Pro Leu Phe Val Tyr His Gly Ile Leu Asp             340 345 350 Glu Ile Val Pro Phe Lys Asp Ala Gln Arg Val Tyr Asp Val Trp Cys         355 360 365 Lys Glu Gly Ile Asn Ser Phe Glu Phe Ala Val Ser Asn Ser Thr Gly     370 375 380 His Leu Leu Glu Val Leu Glu Gly Ser Gly Ala Ala Leu Lys Trp Ile 385 390 395 400 Ser Asp Arg Phe Asp Gly Val Ala Pro Thr Lys Gly Cys His Arg Gln                 405 410 415 Thr Arg Leu Ser Asn Ile Phe Tyr Pro Gly Leu Phe Thr Gly Ile Ser             420 425 430 Asp Ile Leu Ser Ala Leu Val Arg Asn Val Met Gly Ser Pro Ile Gly         435 440 445 Leu Tyr Asp Glu Glu Val Glu Lys Arg Ser Asp Val Thr Glu Asp Glu     450 455 460 Lys Leu Leu Lys Arg Leu Phe Ala Tyr Thr Asp Glu Glu Ile Phe Arg 465 470 475 480 Arg Ile Leu Asp Asn Ser Tyr Pro Asp Met Ala Gln Asn Leu Gly Tyr                 485 490 495 <210> 9 <211> 491 <212> PRT <213> Artificial Sequence <220> <223> LIP6 <400> 9 Met Leu Ile Thr Thr Lys Ile Leu Val Tyr Phe Ala Leu Ile Ile Leu   1 5 10 15 Thr Ser Ala Ala Pro Met Thr Ile Leu Lys Pro Ser Glu Asp Glu Phe              20 25 30 Tyr Ala Ala Pro Asp Gly Phe Glu Asp Glu Lys Leu Gly Thr Ile Leu          35 40 45 Lys Trp Arg Lys Thr Pro Tyr Gln Ile Lys Ser Ile Tyr Phe Pro Val      50 55 60 Asn Ile Lys Asn Ser Trp Glu Leu Leu Val Arg Ser Glu Asp Ala Ile  65 70 75 80 Gly Asp Pro Val Ala Val Thr Ala Thr Ile Phe Glu Pro Tyr Asn Ala                  85 90 95 Asn Ser Ser Arg Leu Val Ser Tyr Gln Val Ala Glu Asp Ser Pro Ser             100 105 110 Phe Asn Cys Ser Pro Ser Tyr Ala Phe Val Gly Gly Gly Tyr Pro Thr         115 120 125 Val Val Thr Lys Ala Glu Met Ile Leu Ile Gln Ser Ala Leu Asn Glu     130 135 140 Gly Tyr Tyr Val Val Val Pro Asp Tyr Glu Gly Pro Asn Ala Val Phe 145 150 155 160 Gly Val Gly Val Thr Ser Ala Met Ser Thr Ile Asn Val Leu Arg Ala                 165 170 175 Val Leu Ser Asp Gln Arg Arg Asn Glu Thr Arg Ile Asp Ser Asp Ala             180 185 190 Glu Val Val Leu Trp Gly Tyr Ser Gly Gly Thr Ile Pro Ser Ser Trp         195 200 205 Ala Ala Ser Met Ala Pro Trp Tyr Ala Lys Asp Ile Asn Gln His Leu     210 215 220 Ile Gly Ala Ala Leu Gly Gly Trp Val Ser Asn Leu Thr Ala Leu Met 225 230 235 240 Glu Ile Val Glu Gly Ser Leu Phe Glu Gly Leu Val Pro Asn Ile Ile                 245 250 255 Asn Gly Leu Ser Gln Gln Phe Glu Glu Ile Asn Asp Ala Phe Asp Asp             260 265 270 Tyr Leu Tyr Pro Ser Lys Arg Glu Lys Phe Arg Ser Thr Lys Lys Gln         275 280 285 Cys Val Phe Asp Ala Cys Leu Ser Phe Ala Phe Gln Ser Thr Phe Leu     290 295 300 Gly Asp His Pro Tyr Val Lys Gly Lys Trp Ser Val Leu Glu Glu Ala 305 310 315 320 Lys Val Lys Asn Ile Leu Glu Asn Asn Thr Leu Gly Leu Lys Val Thr                 325 330 335 Lys Lys Phe Lys Pro Glu Ile Pro Ile Phe Ala Phe His Gly Ile Lys             340 345 350 Asp Glu Ile Val Pro Phe Lys Asp Ser Gln Arg Leu Tyr Asp Val Trp         355 360 365 Cys Glu Glu Gly Ile Asn Ser Phe Glu Phe Ala Val Ser Ser Ser Ser     370 375 380 Gly His Leu Leu Glu Val Val Glu Gly Ser Gly Ala Ala Leu Ala Trp 385 390 395 400 Ile Ser Asp Arg Phe Arg Gly Ile Pro Ala Val Lys Gly Cys Glu Arg                 405 410 415 Lys Glu Arg Leu Thr Asn Leu Phe Tyr Pro Gly Leu Phe Ser Ser Val             420 425 430 Ser Asn Ile Leu Met Ala Leu Ile Arg Asn Ile Met Gly Ser Pro Ile         435 440 445 Gly Leu Tyr Asp Glu Glu Ala Lys Lys Arg Ser Gly Ser Thr Glu Glu     450 455 460 Glu Ile Ile Met Lys Arg Leu Leu Glu Tyr Thr Asp Glu Glu Ile Tyr 465 470 475 480 Arg Arg Ile Ile Glu Thr His Ser Asp Met Phe                 485 490 <210> 10 <211> 463 <212> PRT <213> Artificial Sequence <220> <223> LIP7 <400> 10 Met Phe Lys Gln Leu Phe Leu Leu Phe Ser Leu Leu Ile Phe Ala Leu   1 5 10 15 Thr Leu Pro Thr Gly Leu Val Pro Ser Ser Gln Asp Ser Phe Tyr Ser              20 25 30 Ala Pro Thr Gly Phe Glu Ser Ala Glu Leu Gly Thr Ile Leu Lys Phe          35 40 45 Arg Pro Ser Pro Ala Pro Ile Arg Ser Val Tyr Phe Lys Val Lys Ile      50 55 60 Lys Ser Ser Trp Gln Leu Leu Val Arg Ser Ser Asp Ser Phe Gly Asn  65 70 75 80 Pro Ser Val Ile Val Thr Thr Val Phe Glu Pro Phe Asn Ala Asp Pro                  85 90 95 Ser Lys Leu Ile Ser Tyr Gln Val Ala Gln Asp Ser Ala Ser Asn Asp             100 105 110 Cys Ser Pro Ser Tyr Ala Phe Met Asp Gly Gly Gly Phe Glu Thr Val         115 120 125 Thr Ser Gln Ala Glu Met Leu Leu Ile Gln Thr Ala Leu Asp Gln Gly     130 135 140 Tyr Tyr Val Val Ser Pro Asp Tyr Glu Gly Leu Lys Ala Val Tyr Thr 145 150 155 160 Gly Gly Ile Gln Ser Gly His Gly Thr Leu Asp Ser Leu Thr Ala Ala                 165 170 175 Leu Thr Ser Lys Asn Ile Thr Gly Ile Asn Ser Asp Ala Lys Ser Ile             180 185 190 Leu Trp Gly Tyr Ser Gly Gly Ala Leu Ala Ala Gly Trp Ala Ala Ala         195 200 205 Leu Gln Pro Thr Tyr Ala Pro Asp Leu Lys Gln Ser Leu Leu Gly Ala     210 215 220 Ala Leu Gly Gly Phe Val Thr Asn Val Thr Ala Thr Val Thr Ala Val 225 230 235 240 Asn Gly Gly Pro Phe Ser Gly Leu Val Gly Met Gly Ile Ala Gly Leu                 245 250 255 Ser Asn Glu Tyr Pro Glu Leu Lys Asp Tyr Leu Lys Glu Gln Met Tyr             260 265 270 Pro Asp Lys Tyr Glu Gln Phe Gln Glu Ile Tyr Gly Leu Cys Thr Ala         275 280 285 Glu Gly Ala Leu Lys Phe Ala Phe Thr Asp Tyr Phe Asn Gly Pro Asn     290 295 300 Lys Tyr Val Asn Gly Ile Gly Val Leu Ala Asn Glu Pro Ala Ala Ser 305 310 315 320 Ile Leu Lys Asn Asn Thr Leu Gly Leu Val Ser Ser Gln Val Pro Asp                 325 330 335 Ile Pro Leu Phe Val Tyr His Gly Val Ile Asp Ser Leu Val Pro Tyr             340 345 350 Lys Glu Thr Glu Arg Val Tyr Asn Thr Trp Cys Asp Glu Gly Ile Glu         355 360 365 Ser Phe Glu Leu Ala Ala Asp Leu Thr Ala Gly His Leu Thr Glu Val     370 375 380 Leu Gln Gly Ser Gly Ala Ala Phe Gly Trp Ile Thr Lys Arg Phe Asp 385 390 395 400 Gly Lys Ala Pro Ile Ser Gly Cys Arg Lys Thr Lys Arg Leu Thr Asn                 405 410 415 Leu Leu Tyr Pro Gly Thr Val Gly Ser Val Thr Asn Leu Ile Ser Ala             420 425 430 Leu Phe Thr Asn Val Leu Gly Gly Asp Ile Gly Pro Asn Gly Glu Ser         435 440 445 Met Lys Pro Gly Asn Ser Glu Leu Asp His Phe Phe His Ile Asn     450 455 460 <210> 11 <211> 646 <212> PRT <213> Artificial Sequence <220> <223> LIP8 <400> 11 Met Met Met His Ile Asp Glu Pro Val His Lys Tyr Leu Ser Pro Met   1 5 10 15 His Lys His Pro Phe Pro Met Thr Phe Ile Pro Phe Leu Val Ala Phe              20 25 30 Phe Met Thr Tyr Glu Cys Thr Val Ser Ser Ser Tyr Gln Phe Leu Val          35 40 45 Tyr Thr His Lys Pro Thr Phe Glu Lys Met Thr Gln Asn Leu Asn Leu      50 55 60 Arg Asn His His Lys Gln Met Thr Lys Asn Asn Glu Arg Trp Ser Pro  65 70 75 80 Ile Arg Trp Val Leu Gly Leu Ala Leu Val Thr Thr Val Val Leu Tyr                  85 90 95 Ile His Gly Gly Asn Ile Phe Lys Glu Ser Glu Asp Tyr Ile Ser Asn             100 105 110 Gln Val Met Glu Ala Ala Asp Leu Gln Gly Asp Ser Phe Arg Leu Lys         115 120 125 His Ile Phe Gln His Gly Ala Gly Ser Glu Tyr Tyr Arg Val His Arg     130 135 140 Arg Leu Asp Ile Thr Glu Glu Tyr Leu Ser Arg Thr Gly Leu Asp Glu 145 150 155 160 Val Ala Met Glu Ala Asp Thr Thr Asp Val Ser Ser Asn Ser Leu Glu                 165 170 175 Asp Val Tyr Ala Gln Asn Asp Trp Pro Leu Ala Phe Gln Gly His Asn             180 185 190 Pro Trp Asn Met Lys Met Pro Val Arg Ser Ser Asn His Lys Ala Lys         195 200 205 Ile Arg Arg Leu Thr Glu Arg His Thr Pro Gly Phe Leu Asp Ser Tyr     210 215 220 Leu Asp Tyr Ala Ile Glu Val Lys Gly Asn Pro Gln Lys Leu Asn Met 225 230 235 240 Ile Asn Leu Gln Trp Asp Glu Glu Glu Asp Leu Ile Leu Pro Asp Val                 245 250 255 His Asp Lys Glu Ser Leu Val Met Leu Ala Leu Met Ser Ser Asn Ala             260 265 270 Tyr Val Lys Phe Pro Lys Asp Asp Asn Glu Lys Lys Lys Ser Asp Trp         275 280 285 Arg Asp Val Gly Glu Pro Trp Glu Pro Asp Glu Asn Asn Thr Asp Ile     290 295 300 Glu Phe Gly Trp Asp Gly Asp Gly Val Arg Gly His Val Phe Val Asn 305 310 315 320 Glu Val Asn Asn Thr Val Val Ile Ala Leu Lys Gly Thr Ser Gly Ala                 325 330 335 Gly Ile Pro Gly Ala Gly Glu Asp Glu Thr Thr Asn Asn Asp Lys Leu             340 345 350 Asn Asp Asn Leu Leu Phe Leu Cys Cys Cys Ala Arg Val Ser Tyr Leu         355 360 365 Trp Thr Thr Val Cys Asp Cys Tyr Glu Lys Ala Tyr Thr Cys Asn Gln     370 375 380 Asp Cys Leu Glu Lys Glu Leu Thr Arg Lys Asp Arg Tyr Tyr Gln Ala 385 390 395 400 Ala Leu Glu Ile Tyr Arg Asn Val Ser Ser Ile Tyr Pro Ser Asn Gln                 405 410 415 Tyr Lys Ile Trp Leu Thr Gly His Ser Leu Gly Gly Ser Leu Ala Ser             420 425 430 Leu Val Gly Arg Thr Tyr Gly Leu Pro Val Val Ala Phe Glu Ala Pro         435 440 445 Gly Glu Leu Leu Ala Thr Gln Arg Leu His Leu Pro Gln Pro Pro Gly     450 455 460 Tyr Pro Lys Tyr Met Glu His Ile Tyr His Ile Gly Asn Thr Ala Asp 465 470 475 480 Pro Ile Phe Met Gly Val Cys Asn Gly Val Ser Ser Thr Cys Asn Ala                 485 490 495 Ala Gly Tyr Ala Met Glu Thr Ala Cys His Thr Gly Lys Leu Cys Val             500 505 510 Tyr Asp Val Val Thr Asp Arg Gly Trp Ser Val Asn Val Leu Asn His         515 520 525 Arg Ile His Thr Val Val Asp Glu Ile Ile Leu Lys Tyr Asn Thr Thr     530 535 540 Ala Glu Cys Val Glu Gln Pro Pro Cys Arg Asp Cys Phe Asn Trp Arg 545 550 555 560 Tyr Val Thr His Asp Asp Asp Glu Asp Asp Glu Pro Lys Leu Pro Asn                 565 570 575 Pro Leu Ile Pro His Ile Ser His His Ser Thr Ala Thr Lys Ser Gln             580 585 590 Gly Pro Ser His Thr Ala Tyr Asp Ser Ile Ser Ser Ser Ser Ser         595 600 605 Gly Ser Ser Ser Ser Ser Ser Ser Lys Leu Pro Glu Lys Gln Lys Cys     610 615 620 Leu Lys Arg Thr Trp Tyr Gly Trp Cys Arg Glu Trp Gly Pro Ala Asp 625 630 635 640 Gly Glu Gly Asp Gln Phe                 645 <210> 12 <211> 1017 <212> DNA <213> Artificial Sequence <220> <223> LIP1 <400> 12 atgaaactat ctacctttct ttctgctagt ataatattct ggagagccac cgaaacagcc 60 agtaccccat tgagtccacg ttctggtgac aatgttccca aagattatca aaaattaaaa 120 gattatgcta atcttgtatc ttttgcatac tgcaaagaat tgataccatc gaaacttgga 180 agataatgata gtaattgtcc aatattgaga tgccaagaag aagagtacaa aaatatagaa 240 gtattgaatc tttttgattt caatgatttt gggagtattg gatcaggcta tactggaata 300 gaccatcaaa ataaaagaat aattctagct ttccgtggga caagtacaaa ccgagactgg 360 ctagcaaata taaatgtacc ttttaagaaa tataatcctt tgtctaacct tcaactgaaa 420 gcagatatag aatgtgaagg ctgtaaagtg cataaaggat tctatgaatt cattgaaaaa 480 cattgtgtag ctctcattaa acaagttgct caattaaaac aaaagtatcc ggattatcaa 540 ttggtggttt taggtcattc tttaggagga gtgtttgctt tattaagtgg gatggagttt 600 ctgcttatgg atttccaacc acttgtaatt acatatgcaa gtcctaaagt tggaaataaa 660 gcaatggtta ggtttattga tcagttattc gaaacatcca aagtcgccca acaatctcaa 720 aatgattacg acttcaacca tggttatatt cgtgtagtgc ataactatga catggttcct 780 atgttacccc caagagaatt gggatattat catggaggtg ttgaatatca tattgagaaa 840 agtaatttac cacataatcc cgatagtgtt cacaatagag gacaaaacca ttttagctcc 900 aataaagatg aaggtcctgt tgaaaagctt gagagaattg ctacatcgtt ggttctggta 960 tttacgtcta aagaacatac tcaatacttt attccaatca ctggttgcaa agattga 1017 <210> 13 <211> 1407 <212> DNA <213> Artificial Sequence <220> <223> LIP2 <400> 13 atgatctgtt cattctttag actattgacc attgtaactt tggttattgc tgctcctacc 60 actttagttc ctccaactga agatcctttc tatactgcac caaagggctt cgaatcagca 120 gagttaggta ctgttttggc ttatagaaac actccagctc caatcagaag tatttatttt 180 gaagttaata tcaaaaactc atggcaattg ttagtcaggt cttctgattc atttggtaat 240 ccttcagtag ttgtaactac tgtttttgaa ccatttaatg ctgatccttc caagttagtt 300 tcttatcaag ttgctcaaga ttctgcatat cttgattgtt caccatcata ttccttcatg 360 aatggaggtg gtctttctac tattaacaat caaattgaga ctgttttaat tcaaacagca 420 ttagaccaag gttattatgt tgtttctcca gattatgaag gattgaaatc ggctttcacc 480 ggtggtattc aagctggtca tggtacattg gattccatta gaggtgcttt atccagtagt 540 aacatcactg gtgttaaaaa ggacgcagat actattcttt ggggttattc tggaggttct 600 ttagctagtg gatgggctgc agctttacaa ccaacttatg caccagaatt ggcttccaac 660 ttacttggtg ttgctttagg tggatgggtt accaatatta ctgctactat aacaagtgtt 720 agtggtacca tattctctgg attgggtgct atgggaatgg ctggtttaag taatgagtac 780 accgatttat acggttacct taagactgct atgccagcag ataaatatga agaattcact 840 aaagcttatt caatatgtgc tgctgaagct cttattgaat ataattttga tgattggttt 900 gaaggcgaag atagatactt taccgatggc tttaaagttt tgaatgaaga accgacatat 960 tccatcattc gtaacaatac attgggttta attgctggtc agatgccaga aattcctgtt 1020 ttcgtttacc atggaactct cgaccagatc gtaccatatg atcaagctga aagggtttat 1080 gatatttggt gtgatgctgg tattaaatct tttgaatttg ctactgattt aactgctggt 1140 catatcactg agcttgtaca aggtagtggt gcagcctttg gatggatcaa aggcatgttt 1200 gaaggaacta aaaaaccagt ttctggttgt agaaaaacac ctagaatttc aaacttactt 1260 tacccaggta ctgtaagatc tgttactgac gttgttggtg ctttgcttga taatatctta 1320 ggatttgata ttggtccaaa tggtgaaaac cttattgttg aaaacaacag cgtcatcagt 1380 aaagctaatt ctactagaag tgaatag 1407 <210> 14 <211> 1038 <212> DNA <213> Artificial Sequence <220> <223> LIP3 <400> 14 atggcaatgt taatgttatt gttcttccta ttcgaaatag catgtggaaa tatttgggtt 60 tatcctggaa gtcatcagaa atcaggagag gaagaacgta cgccagtacc cattgatata 120 gaagtgtatc gtaatatgtt cacttatgca catcttattg atatatcata ttgtatatct 180 tcaacaacaa ggctcgaaga accgtttaac tgtgacttga attgtgaaaa gcgatttcct 240 aacgttactt tggtgtacca atggtatttt gacgattcag tttgtggtta tattgcaacc 300 acatattcta atatttttaa ttatgaatca gaagagggaa aaggtcacaa gaaaacaatc 360 atagtttctt tgagaggaac aagatcaata ttcgattcgt atactgacat taaagttgat 420 atggtaaatt actataacta tggaagtaat attcaagaat gtggaaccga ttgtaaagtt 480 catcgagggt tctataaata ttatattaat actcttctta agatagaagg aattctacga 540 aatgaattac aaaccgatga tgattatgag ctattgatag tgggccattc tttgggcggt 600 gt; gtaacaatgg gtcaacctct agtagggaat aagcaatttg ctgaatttgt ggataatgtt 720 atggggagca gattgcctat tgaacataat actttcaata gaaaattttt cagagttatt 780 cataaggatg atattgttgc aactattccc agtaataata gaatattgga ttcatactct 840 caatttgata atcaaatcta cttgaattgt ctggcttccg acacgatgcc ttctttagag 900 caggtgttgg actgttttga tggtgataat ccccagtgca ttagtggcga cattgagaat 960 tatctcttgt ctcataacta tttacaaatt catactactt atttccgctc aatgggttta 1020 tgtggaataa gaatctaa 1038 <210> 15 <211> 1542 <212> DNA <213> Artificial Sequence <220> <223> LIP4 <400> 15 atgatgatta ccacgagaat cttggtatgt tttgctttaa tagcgctcac ttttgctgca 60 ccattgacag ttttaaaacc atccgaagat gaattttatg ctgccccaga tggttttgaa 120 gatgagaagt taggtactat tcttaaatgg agaaagactc cttatcagat aaagagtatc 180 tacttcccag ttaacattaa gaatagttgg caattgcttg tgagatctga agatgcaatc 240 ggtaatccag ttgcagtcac tgcttccctt tttgaaccgt acaatggtaa cacatccagg 300 ttggtctcat accaagttgc agaggatagt gcttcgttcg actgtgcacc gtcatattca 360 tttgtaggag gaggttacca tacagtggtt gcaaaagctg agatgatttt gatacaagga 420 gcattagatc aaggttatta cgttgttgca ccagattatg aaggacccaa tgctgtattt 480 actgctggtg taacatctgg gatgagtacc atcaatgttc tcagagctgt attaggcgaa 540 ggtaggagaa atgagaccag aattgaccca gatgcagaag tggttctttg gggatatagt 600 ggaggcacaa tccctagtgg ttgggcagnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 660 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 720 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnagcaga gattgtcgat 780 ggtactttat tcagtgggtt agttcctgcg gcactcaatg gattatcagc acagtatgaa 840 gaaatggatg aagctattga taagtttctt aaacctaaca aactagaaaa attcagatct 900 ggaagaaatg agtgtgctat agatgtggta ttttcttttg catatcaaga tacttttagt 960 gggtttgata cttattccaa agatggatgg actattttgg atgacccaga tgtcagagat 1020 attcttgccg aaaataccct tggagtaaat gtgaccaaaa agttcaaacc agagattcca 1080 ttatttgttt atcatggcat tcttgatgaa attgttcctt tcaaagacgc acagagagtt 1140 tatgatgttt ggtgtgaaga aggttatgat tcttttgaat ttgcagtttc taattctact 1200 ggacacattc ttgaagttat tgaaggtagt gcagccggat taaaatggat atcggacaga 1260 ttcgatggag tacaaccaac caaaggatgt catagacaaa caagattaac taatcttttc 1320 tatccaggtc tgtttacagg agtcacagac atcttatctg cattaatgag aaatatattc 1380 ggaagtccaa ttggtctcta cgatgaacaa attgaaaaga gatcagatat gtccgaagac 1440 gaaaaattat tgaagagact gtttgaattc actgattctg aaatattcaa aagaattgtt 1500 caacacagtt accctgaaat ggccaaaaaa ttagacttat aa 1542 <210> 16 <211> 1491 <212> DNA <213> Artificial Sequence <220> <223> LIP5 <400> 16 atgattttaa cgaatcttct tgtatatttc agcttgatag cgtgcacaat ttgtgctcca 60 atgacgatct tgaaaccttc tgaagatgac ttttatactg ctccagatgg ctttgaggat 120 gaaaagttag gtactattct taaatggaga aagactcctt atcagattaa gagtatctac 180 ttcccagtta acattaagaa tagttggcaa ttgcttgtga gatctgaaga tgcaatcggt 240 aatccagttg cagtcactgc ttcccttttt gaaccgtaca atggtaacac atccaggttg 300 gtctcatacc aagttgcaga ggatagtgct tcgttcgact gtgcaccgtc atattcattt 360 gtaggaggag gttaccatac agtggttgca aaagctgaga tgattttgat acaaggagca 420 ttagatcaag gttattacgt tgttgcacca gactatgaag gacccaatgc tgcatttact 480 gccgggataa catccggcat gagcaccatt aatgttcttc gagcagtctt aagtgatcag 540 aggagtaatg aaacgagaat tgactcagat gcagaagtgg ttctttgggg atatagtgga 600 ggcacaatcc ctagtggttg ggcagcatct atggctccat ggtatgctaa agatatcaat 660 gataatctta aaggagcagc aatgggtgga tgggtaacta atattactgc cacggctgaa 720 attgtagaag ggtccctttt cgaaggattg gttgcagcag ccatcaatgg attagcacaa 780 caatatgaag aaattaatga ggcacttgat gtttatcttg tacctgataa gctagagaca 840 tttagatcag caaagaatga atgcgttatt gatgtagtat tttcctttgc ttatcaaagt 900 gcattcagtg gaagtgatcc ttatacactg gatggatggg gtgtattaga agacccaaaa 960 gtgaagaaga ttgtcaacca aaataccctt ggattaaatg tgactgaaaa attcaaacca 1020 gagatcccac tatttgttta tcatggaatt cttgatgaaa ttgttccttt caaagatgca 1080 cagagagttt atgatgtttg gtgtaaagaa ggcattaatt catttgaatt tgccgtctct 1140 aattctactg gccatcttct tgaggtactt gaaggcagtg gagcagcgtt gaagtggata 1200 tctgacagat tcgatggagt tgcaccaacc aaaggatgtc atagacaaac aagattaagt 1260 aatatcttct atccaggtct gtttactgga atatctgaca ttttatctgc tttagtcaga 1320 aatgtcatgg gaagccctat tggactttat gatgaacaag ttgaaaagag atcagatgta 1380 accgaagacg aaaaattatt gaaaaggctg tttgcataca cagatgaaga aatctttaga 1440 agaatacttg acaacagcta tccagatatg gctcaaaatt tgggctatta a 1491 <210> 17 <211> 1476 <212> DNA <213> Artificial Sequence <220> <223> LIP6 <400> 17 atgttgatta ccacgaaaat cttggtatat tttgctttga taatcttgac tagtgctgct 60 ccaatgacaa tcttgaaacc ttctgaagat gaattctatg ctgccccaga tggctttgaa 120 gatgagaagt taggcactat tcttaaatgg agaaagactc cttatcagat taagagtatc 180 tacttcccag ttaacattaa gaatagttgg gaattgcttg ttagatctga agatgcgatt 240 ggagatccag ttgcagttac tgctactatc tttgagcctt ataatgccaa ttcatctagg 300 ttggtttcat accaagttgc agaggacagt ccttcattca actgttcacc atcatatgca 360 tttgtaggtg gtggctaccc gacagtagta accaaggctg agatgatatt aatccagtcc 420 gctttgaatg agggctatta cgttgtagtt cctgattacg agggccctaa tgctgtattt 480 ggggtaggtg ttacttctgc aatgagcacc attaatgttc ttagagcagt tttgagtgat 540 cagagacgta atgaaaccag aattgactca gacgcagaag tggttctttg gggatatagt 600 ggaggaacaa ttccaagcag ttgggctgca tctatggctc catggtatgc taaagatatc 660 aaccaacatc ttattggagc agcattggga ggatgggtta gcaatcttac ggcgcttatg 720 gagattgttg aaggatctct ctttgaaggt ttagttccaa atattataaa tggattgagt 780 caacaattcg aagaaataaa tgatgcattt gatgactatc tttatccaag taaaagagag 840 aaatttagat caacaaagaa gcaatgtgta tttgatgcct gtttgtcatt tgcattccaa 900 agtactttcc taggcgatca tccttacgta aaggggaaat ggagtgtctt ggaggaagca 960 aaagtgaaga atatcctcga aaataataca cttggattga aagtgactaa gaaattcaag 1020 ccagaaattc ctatatttgc atttcatgga ataaaagatg agatagttcc atttaaagac 1080 tctcaaagac tttatgatgt ttggtgtgaa gaagggataa attcatttga gtttgctgtt 1140 tccaaatcaa gtggacacct tcttgaagtt gttgaaggaa gtggggccgc tttggcatgg 1200 atatctgata gattcagggg tatacctgct gttaaaggct gtgaaaggaa agaaagatta 1260 accaatttgt tctatcctgg tctgttttct tctgtttcta atattttaat ggctcttatt 1320 agaaatatta tgggaagtcc aattggtctc tatgatgaac aagcaaaaaa gagatcaggc 1380 tctaccgaag aagagataat aatgaaaaga ctgcttgaat acactgacga agaaatctac 1440 aggagaataa tcgaaacaca ttcagatatg ttttag 1476 <210> 18 <211> 1392 <212> DNA <213> Artificial Sequence <220> <223> LIP7 <400> 18 atgttcaaac agcttttctt attatttagc ttacttattt ttgctttgac tcttccaact 60 ggtttggttc ctcctagtca agattctttt tattctgcac caactggatt cgagtctgca 120 gaattaggta ctatcttgaa gtttagacct tcgccagctc caattagaag tgtttacttc 180 aaagtcaaga ttaagagctc ctggcaatta ttggtcagat cttccgattc atttggtaat 240 ccttctgtta ttgtcaccac tgtctttgaa ccattcaatg ctgatccttc caaattaatt 300 tcttaccaag ttgctcaaga tagtgcctcc aatgattgtt ctccatctta tgctttcatg 360 gatggtggag gatttgaaac cgtgacttcc caagcagaaa tgcttttaat tcaaactgca 420 ttagatcaag gttattatgt tgtttctcca gattatgaag gattaaaggc tgtttatact 480 gggggtattc aatctggtca tggtactttg gattcactta ctgcagcttt aactagtaaa 540 aatattacag ggattaatag tgatgctaaa tctattcttt ggggttattc tggtggcgct 600 ttagctgctg gatgggctgc tgctttacaa ccaacttatg ctccagactt gaaacaaagt 660 ttacttggtg ctgcacttgg tggatttgtt actaatgtta ctgctacggt tactgcagtt 720 aatggtggtc cattttctgg tttagttggt atgggtattg ctgggttgag taacgaatat 780 cctgaattga aagactattt aaaagaacaa atgtacccag ataaatacga gcaatttcaa 840 gagatttatg gactttgtac agcagaaggt gcacttaagt ttgctttcac cgactacttc 900 aatggaccaa ataagtacgt taatggtatt ggagttttag ctaacgaacc cgctgctagt 960 attcttaaaa ataatacgct tggacttgtt ccatcccaag ttccagatat tccacttttt 1020 gtttatcacg gtgtaattga ttcccttgtt ccttataagg aaacagaaag agtgtataat 1080 acttggtgtg acgaaggaat tgagtcgttt gaattggccg ctgacttaac tgccgggcac 1140 cttaccgagg ttcttcaagg aagtggtgct gcttttggat ggattacgaa gagattcgat 1200 gggaaagccc caatttcagg ctgcagaaaa accaaaagat taactaattt attataccca 1260 ggaacagtgg gatccgttac caatttgatt tcagccttat tcaccaatgt tcttggcggt 1320 cialis catatcaatt ag 1392 <210> 19 <211> 1941 <212> DNA <213> Artificial Sequence <220> <223> LIP8 <400> 19 atgcatatgc atatcgatga acctgtgcat aaatatctat ctccgatgca taaacaccca 60 tttccaatga cttttatacc gtttttggta gctttcttca tgacatatga atgtactgtc 120 agccactctt atcagttttt ggtatataca cacaagccaa cttttgagaa aatgacccaa 180 aacctgaatc tcagaaatca ccacaagcaa atgaccaaaa acaacgagag atggagcccc 240 atacgctggg tattggggct ggcacttgta acaacggtag ttctttacat tcacggggga 300 aatatattta aagagtcaga ggattatata agcaaccaag tcatggaggc tgcagatctt 360 cagggtgata gctttcggct taagcatatc ttccagcatg gggccggatc tgagtattat 420 cgggttcata gacgtcttga tatcacggag gaatacttgt cccgtacggg gcttgacgaa 480 gtggccatgg aagctgacac aactgacgtt agcagcaata gtttagaaga tgtctatgct 540 caaaacgact ggccattggc atttcaaggc cataatccat ggaatatgaa gatgcctgtg 600 cgtagcagta accacaaggc gaagatccgg cggttgacag agcgccatac gcctggattt 660 ttagattcat acttggatta cgccattgaa gtcaagggga atcctcaaaa acttaatatg 720 attaatttac aatgggatga agaggaagac ttgatacttc cagatgtgca tgataaagag 780 tcattggtaa tgttggcatt gatgtcttcc aatgcgtatg tgaagtttcc aaaggatgat 840 aatgaaaaga aaaagagtga ctggcgagat gtaggagaac catgggaacc agatgaaaac 900 aatactgaca ttgaatttgg atgggatgga gatggggtcc ggggacatgt atttgtcaat 960 gaagttaaca atacagtggt tattgcattg aaaggtacga gtggagcagg cattcctggt 1020 gcaggagaag acgaaactac caataatgat aaacttaatg ataatttatt attcctgtgt 1080 tgttgtgctc gtgtaagtta cttgtggaca acggtctgtg actgttatga gaaggcttac 1140 acttgtaatc aggattgctt ggagaaagaa ttgacccgta aagatagata ttatcaagca 1200 gcattagaaa tctatcgaaa tgttagtagt atctatcctt ctaatcagta taaaatatgg 1260 ttaacaggcc attcattagg gggatcattg gcttcattag tggggagaac ttatggactc 1320 cctgtagtag cttttgaagc accaggagag ctattagcta ctcaaagact tcatttacct 1380 caacctccag gatatcccaa atatatggaa catatttacc atattggtaa tactgcagac 1440 cctattttca tgggggtatg taatggagtt tcttcaacat gtaatgcagc gggttatgca 1500 atggaaactg cttgtcatac tggaaaatta tgtgtttatg atgttgtcac tgatagagga 1560 tggagtgtta atgtattaaa tcacaggatc cacactgtgg tggatgaaat tatcttaaag 1620 tacaatacaa cagcagaatg tgttgaacaa ccaccatgta gagattgctt caattggaga 1680 tatgttactc atgatgatga tgaggatgat gagccaaaat tgcccaaccc tttaattcct 1740 catatttcac accacagtac tgctacgaag tcacaaggac catcacatac agcttatgat 1800 agtatcagta gtagtagcag cagcggtagc agcagtccta gtagtagtaa acttccagag 1860 aaacaaaaat gtttgaagag aacatggtac ggctggtgca gagaatgggg accagctgac 1920 ggagaaggtg atcaattttg a 1941 <210> 20 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> STFPL1-F <400> 20 ctcgccttag ataaaagagc cagtacccca ttgagtc 37 <210> 21 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> STFPL2-F <400> 21 ctcgccttag ataaaagacc taccacttta gttcct 36 <210> 22 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> STFPL3-F <400> 22 ctcgccttag ataaaagaaa tatttgggtt tatcct 36 <210> 23 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> STFPL4-F <400> 23 ctcgccttag ataaaagagc accattgaca gtttta 36 <210> 24 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> STFPL5-F <400> 24 ctcgccttag ataaaagagc tccaatgacg atcttg 36 <210> 25 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> STFPL6-F <400> 25 ctcgccttag ataaaagagc tccaatgaca atcttgaa 38 <210> 26 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> STFPL7-F <400> 26 ctcgccttag ataaagact tccaactggt ttggttcc 38 <210> 27 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> STFPL8-F <400> 27 ctcgccttag ataaaagaat gcatatgcat atcgat 36 <210> 28 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> STFPL1-R <400> 28 cactccgttc aagtcgactt aatctttgca accagtg 37 <210> 29 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> STFPL2-R <400> 29 cactccgttc aagtcgactt attcacttct agtaga 36 <210> 30 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> STFPL3-R <400> 30 cactccgttc aagtcgactt agattcttat tccaca 36 <210> 31 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> STFPL4-R <400> 31 cactccgttc aagtcgactt ataagtctaa ttttttgg 38 <210> 32 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> STFPL5-R <400> 32 cactccgttc aagtcgactt aatagcccaa attttgag 38 <210> 33 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> STFPL6-R <400> 33 cactccgttc aagtcgactt aaaacatatc tgaatgtg 38 <210> 34 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> STFPL7-R <400> 34 cactccgttc aagtcgactt aattgatatg gaagaagt 38 <210> 35 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> STFPL8-R <400> 35 cactccgttc aagtcgactt aaaattgatc accttctc 38 <210> 36 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> LNK39 <400> 36 ggccgcctcg gcctctgctg gcctcgcctt agataaaaga 40 <210> 37 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> GT50R <400> 37 gtcattatta aatatatata tatatatatt gtcactccgt tcaagtcgac 50 <210> 38 <211> 118 <212> PRT <213> Artificial Sequence <220> <223> TFP1 <400> 38 Met Phe Asn Arg Phe Asn Lys Phe Gln Ala Ala Val Ala Leu Ala Leu   1 5 10 15 Leu Ser Arg Gly Ala Leu Gly Asp Ser Tyr Thr Asn Ser Thr Ser Ser              20 25 30 Ala Asp Leu Ser Ser Ile Thr Ser Val Ser Ser Ala Ser Ala Ser Ala          35 40 45 Thr Ala Ser Asp Ser Ser Ser Ser Ser Asp Gly Thr Val Tyr Leu Pro      50 55 60 Ser Thr Thr Ile Ser Gly Asp Leu Thr Val Thr Gly Lys Val Ile Ala  65 70 75 80 Thr Glu Ala Val Glu Val Ala Ala Gly Gly Lys Leu Thr Leu Leu Asp                  85 90 95 Gly Glu Lys Tyr Val Phe Ser Ser Glu Ala Ala Ser Ala Ser Ala Gly             100 105 110 Leu Ala Leu Asp Lys Arg         115 <210> 39 <211> 130 <212> PRT <213> Artificial Sequence <220> <223> TFP2 <400> 39 Met Thr Pro Tyr Ala Val Ala Ile Thr Val Ala Leu Leu Ile Val Thr   1 5 10 15 Val Ser Ala Leu Gln Val Asn Asn Ser Cys Val Ala Phe Pro Ser Ser              20 25 30 Asn Leu Arg Gly Lys Asn Gly Asp Gly Thr Asn Glu Gln Tyr Ala Thr          35 40 45 Ala Leu Leu Ser Ile Pro Trp Asn Gly Pro Pro Glu Ser Ser Arg Asp      50 55 60 Ile Asn Leu Ile Glu Leu Glu Pro Gln Val Ala Leu Tyr Leu Leu Glu  65 70 75 80 Asn Tyr Ile Asn His Tyr Tyr Asn Thr Thr Arg Asp Asn Lys Cys Pro                  85 90 95 Asn Asn His Tyr Leu Met Gly Gly Gln Leu Gly Ser Ser Ser Asp Asn             100 105 110 Arg Ser Leu Asn Glu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp         115 120 125 Lys Arg     130 <210> 40 <211> 117 <212> PRT <213> Artificial Sequence <220> <223> TFP3 <400> 40 Met Gln Phe Lys Asn Val Ala Leu Ala Ala Ser Val Ala Ala Leu Ser   1 5 10 15 Ala Thr Ala Ser Ala Glu Gly Tyr Thr Pro Gly Glu Pro Trp Ser Thr              20 25 30 Leu Thr Pro Thr Gly Ser Ile Ser Cys Gly Ala Ala Glu Tyr Thr Thr          35 40 45 Thr Phe Gly Ile Ala Val Gln Ala Ile Thr Ser Ser Lys Ala Lys Arg      50 55 60 Asp Val Ile Ser Gln Ile Gly Asp Gly Gln Val Gln Ala Thr Ser Ala  65 70 75 80 Ala Thr Ala Gln Ala Thr Asp Ser Gln Ala Gln Ala Thr Thr Thr Ala                  85 90 95 Thr Pro Thr Ser Ser Glu Lys Met Ala Ala Ser Ala Ser Ala Gly Leu             100 105 110 Ala Leu Asp Lys Arg         115 <210> 41 <211> 62 <212> PRT <213> Artificial Sequence <220> <223> TFP4 <400> 41 Met Arg Phe Ala Glu Phe Leu Val Val Phe Ala Thr Leu Gly Gly Gly   1 5 10 15 Met Ala Ala Pro Val Glu Ser Leu Ala Gly Thr Gln Arg Tyr Leu Val              20 25 30 Gln Met Lys Glu Arg Phe Thr Thr Glu Lys Leu Cys Ala Leu Asp Asp          35 40 45 Lys Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg      50 55 60 <210> 42 <211> 97 <212> PRT <213> Artificial Sequence <220> <223> TFP5 <400> 42 Met Phe Asn Arg Phe Asn Lys Phe Gln Ala Ala Val Ala Leu Ala Leu   1 5 10 15 Leu Ser Arg Gly Ala Leu Gly Ala Pro Val Asn Thr Thr Thr Glu Asp              20 25 30 Glu Thr Ala Leu Ile Pro Ala Glu Ala Val Ile Gly Tyr Leu Asp Leu          35 40 45 Glu Gly Asp Phe Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn      50 55 60 Asn Gly Leu Leu Phe Ile Asn Thr Ile Ala Ser Ile Ala Ala Lys  65 70 75 80 Glu Glu Gly Val Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys                  85 90 95 Arg     <210> 43 <211> 93 <212> PRT <213> Artificial Sequence <220> <223> TFP6 <400> 43 Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser   1 5 10 15 Ala Leu Ala Ala Pro Val Asn Thr Thr Thr Glu Asp Glu Thr Ala Gln              20 25 30 Ile Pro Ala Glu Ala Val Ile Gly Tyr Leu Asp Leu Glu Gly Asp Phe          35 40 45 Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu      50 55 60 Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val  65 70 75 80 Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg                  85 90 <210> 44 <211> 226 <212> PRT <213> Artificial Sequence <220> <223> TFP7 <400> 44 Met Val Phe Gly Gln Leu Tyr Ala Leu Phe Ile Phe Thr Leu Ser Cys   1 5 10 15 Cys Ile Ser Lys Thr Val Gln Ala Asp Ser Ser Lys Glu Ser Ser Ser              20 25 30 Phe Ile Ser Phe Asp Lys Glu Ser Asn Trp Asp Thr Ile Ser Thr Ile          35 40 45 Ser Ser Thr Ser Ala Val Val Ser Ser Val Asp Ser Ala Ile Ala Val      50 55 60 Phe Glu Phe Asp Asn Phe Ser Leu Leu Asp Ser Leu Met Ile Asp Glu  65 70 75 80 Glu Tyr Pro Phe Phe Asn Arg Phe Phe Ala Asn Asp Val Ser Leu Thr                  85 90 95 Val His Asp Asp Ser Pro Leu Asn Ile Ser Gln Ser Leu Ser Pro Ile             100 105 110 Met Glu Gln Phe Thr Val Asp Glu Leu Pro Glu Ser Ala Ser Asp Leu         115 120 125 Leu Tyr Glu Tyr Ser Leu Asp Asp Lys Ser Ile Val Leu Phe Lys Phe     130 135 140 Thr Ser Asp Ala Tyr Asp Leu Lys Lys Leu Asp Glu Phe Ile Asp Ser 145 150 155 160 Cys Leu Ser Phe Leu Glu Asp Lys Ser Gly Asp Asn Leu Thr Val Val                 165 170 175 Ile Asn Ser Leu Gly Trp Ala Phe Glu Asp Glu Asp Gly Asp Asp Glu             180 185 190 Tyr Ala Thr Glu Glu Thr Leu Ser His His Asp Asn Asn Lys Gly Lys         195 200 205 Glu Gly Asp Asp Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp     210 215 220 Lys Arg 225 <210> 45 <211> 64 <212> PRT <213> Artificial Sequence <220> <223> TFP8 <400> 45 Met Leu Gln Ser Val Val Phe Phe Ala Leu Leu Thr Phe Ala Ser Ser   1 5 10 15 Val Ser Ala Ile Tyr Ser Asn Asn Thr Val Ser Thr Thr Thr Thr Leu              20 25 30 Ala Pro Ser Tyr Ser Leu Val Pro Gln Glu Thr Thr Ile Ser Tyr Ala          35 40 45 Asp Asp Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg      50 55 60 <210> 46 <211> 138 <212> PRT <213> Artificial Sequence <220> <223> TFP9 <400> 46 Met Lys Phe Ser Thr Ala Val Thr Thr Leu Ile Ser Ser Gly Ala Ile   1 5 10 15 Val Ser Ala Leu Pro His Val Asp Val His Gln Glu Asp Ala His Gln              20 25 30 His Lys Arg Ala Val Ala Tyr Lys Tyr Val Tyr Glu Thr Val Val Val          35 40 45 Asp Ser Asp Gly His Thr Val Thr Pro Ala Ala Ser Glu Val Ala Thr      50 55 60 Ala Ala Thr Ser Ala Ile Ile Thr Thr Ser  65 70 75 80 Ser Ala Ala Ala Asp Ser Ser Ala Ser Ile Ala Val Ser Ser Ala                  85 90 95 Ala Leu Ala Lys Asn Glu Lys Ile Ser Asp Ala Ala Ala Ser Ala Thr             100 105 110 Ala Ser Thr Ser Gln Gly Ala Ser Ser Ser Ser Tyr Leu Ala Ala Ser         115 120 125 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg     130 135 <210> 47 <211> 199 <212> PRT <213> Artificial Sequence <220> <223> TFP10 <400> 47 Met Asn Trp Leu Phe Leu Val Ser Leu Val Phe Phe Cys Gly Val Ser   1 5 10 15 Thr His Pro Ala Leu Ala Met Ser Ser Asn Arg Leu Leu Lys Leu Ala              20 25 30 Asn Lys Ser Pro Lys Lys Ile Ile Pro Leu Lys Asp Ser Ser Phe Glu          35 40 45 Asn Ile Leu Ala Pro Pro His Glu Asn Ala Tyr Ile Val Ala Leu Phe      50 55 60 Thr Ala Thr Ala Pro Glu Ile Gly Cys Ser Leu Cys Leu Glu Leu Glu  65 70 75 80 Ser Glu Tyr Asp Thr Ile Val Ala Ser Trp Phe Asp Asp His Pro Asp                  85 90 95 Ala Lys Ser Ser Asn Ser Asp Thr Ser Ile Phe Phe Thr Lys Val Asn             100 105 110 Leu Glu Asp Pro Ser Lys Thr Ile Pro Lys Ala Phe Gln Phe Phe Gln         115 120 125 Leu Asn Asn Val Pro Arg Leu Phe Ile Phe Lys Leu Asn Ser Ser Ser     130 135 140 Ile Leu Asp His Ser Val Ile Ser Ile Ser Thr Asp Thr Gly Ser Glu 145 150 155 160 Arg Met Lys Gln Ile Ile Gln Ala Ile Lys Gln Phe Ser Gln Val Asn                 165 170 175 Asp Phe Ser Leu His Leu Pro Val Gly Leu Ala Ala Ser Ala Ser Ala             180 185 190 Gly Leu Ala Leu Asp Lys Arg         195 <210> 48 <211> 77 <212> PRT <213> Artificial Sequence <220> <223> TFP11 <400> 48 Met Lys Phe Ser Ser Val Thr Ala Ile Thr Leu Ala Thr Val Ala Thr   1 5 10 15 Val Ala Thr Ala Lys Lys Gly Glu His Asp Phe Thr Thr Thr Leu Thr              20 25 30 Leu Ser Ser Asp Gly Ser Leu Thr Thr Thr Thr Ser Thr His Thr Thr          35 40 45 His Lys Tyr Gly Lys Phe Asn Lys Thr Ser Lys Ser Lys Thr Pro Leu      50 55 60 Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg  65 70 75 <210> 49 <211> 94 <212> PRT <213> Artificial Sequence <220> <223> TFP12 <400> 49 Met Ala Ser Phe Ala Thr Lys Phe Val Ile Ala Cys Phe Leu Phe Phe   1 5 10 15 Ser Ala Ser Ala His Asn Val Leu Leu Pro Ala Tyr Gly Arg Arg Cys              20 25 30 Phe Phe Glu Asp Leu Ser Lys Gly Asp Glu Leu Ser Ile Ser Phe Gln          35 40 45 Phe Gly Asp Arg Asn Pro Gln Ser Ser Ser Gln Leu Thr Gly Asp Phe      50 55 60 Ile Ile Tyr Gly Pro Glu Arg His Glu Val Leu Lys Thr Val Arg Glu  65 70 75 80 Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg                  85 90 <210> 50 <211> 174 <212> PRT <213> Artificial Sequence <220> <223> TFP13 <400> 50 Met Gln Tyr Lys Lys Thr Leu Val Ala Ser Ala Leu Ala Ala Thr Thr   1 5 10 15 Leu Ala Ala Tyr Ala Pro Ser Glu Pro Trp Ser Thr Leu Thr Pro Thr              20 25 30 Ala Thr Tyr Ser Gly Gly Val Thr Asp Tyr Ala Ser Thr Phe Gly Ile          35 40 45 Ala Val Gln Pro Ile Ser Thr Thr Ser Ser Ala Ser Ser Ala Ala Thr      50 55 60 Thr Ala Ser Ser Lys Ala Lys Arg Ala Ser Ser Gln Ile Gly Asp Gly  65 70 75 80 Gln Val Gln Ala Ala Thr Thr Thr Ala Ser Val Ser Thr Lys Ser Thr                  85 90 95 Ala Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Ile Gln Ala Thr Thr             100 105 110 Lys Thr Thr Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Ile Gln         115 120 125 Ala Thr Thr Lys Thr Thr Ser Ala Lys Thr Thr Ala Ala Ala Val Ser     130 135 140 Gln Ile Ser Asp Gly Gln Ile Gln Ala Thr Thr Thr Thr Leu Ala Pro 145 150 155 160 Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg                 165 170 <210> 51 <211> 68 <212> PRT <213> Artificial Sequence <220> <223> TFP14 <400> 51 Met Gln Phe Lys Asn Ala Leu Thr Ala Thr Ala Ile Leu Ser Ala Ser   1 5 10 15 Ala Leu Ala Ala Asn Ser Thr Thr Ser Ile Pro Ser Ser Cys Ser Ile              20 25 30 Gly Thr Ser Ala Thr Ala Thr Ala Gln Ala Thr Asp Ser Gln Ala Gln          35 40 45 Ala Thr Thr Ala Pro Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala      50 55 60 Leu Asp Lys Arg  65 <210> 52 <211> 157 <212> PRT <213> Artificial Sequence <220> <223> TFP15 <400> 52 Met Val Ser Lys Thr Trp Ile Cys Gly Phe Ile Ser Ile Ile Thr Val   1 5 10 15 Val Gln Ala Leu Ser Cys Glu Lys His Asp Val Leu Lys Lys Tyr Gln              20 25 30 Val Gly Lys Phe Ser Ser Leu Thr Ser Thr Glu Arg Asp Thr Pro Pro          35 40 45 Ser Thr Thr Ile Glu Lys Trp Trp Ile Asn Val Cys Glu Glu His Asn      50 55 60 Val Glu Pro Pro Glu Glu Cys Lys Lys Asn Asp Met Leu Cys Gly Leu  65 70 75 80 Thr Asp Val Ile Leu Pro Gly Lys Asp Ala Ile Thr Thr Gln Ile Ile                  85 90 95 Asp Phe Asp Lys Asn Ile Gly Phe Asn Val Glu Glu Thr Glu Ser Ala             100 105 110 Leu Thr Leu Thr Leu Asn Gly Ala Thr Trp Gly Ala Asn Ser Phe Asp         115 120 125 Ala Lys Leu Glu Phe Gln Cys Asn Asp Asn Met Lys Gln Asp Glu Leu     130 135 140 Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 145 150 155 <210> 53 <211> 98 <212> PRT <213> Artificial Sequence <220> <223> TFP16 <400> 53 Met Lys Leu Ser Ala Leu Le Ala Leu Ser Ala Ser Thr Ala Val Leu   1 5 10 15 Ala Ala Pro Ala Val His His Ser Asp Asn His His His Asn Asp Lys              20 25 30 Arg Ala Val Val Thr Val Thr Gln Tyr Val Asn Ala Asp Gly Ala Val          35 40 45 Val Ile Pro Ala Ala Thr Ala Thr Ser Ala Ala Ala Asp Gly Lys      50 55 60 Val Glu Ser Val Ala Ala Thr Thr Thr Leu Ser Ser Thr Ala Ala  65 70 75 80 Ala Ala Thr Thr Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp                  85 90 95 Lys Arg         <210> 54 <211> 195 <212> PRT <213> Artificial Sequence <220> <223> TFP17 <400> 54 Met Lys Leu Ser Thr Val Leu Leu Ser Ala Gly Leu Ala Ser Thr Thr   1 5 10 15 Leu Ala Gln Phe Ser Asn Ser Thr Ser Ala Ser Ser Thr Asp Val Thr              20 25 30 Ser Ser Ser Ser Ser Thr Ser Ser Ser Ser Val Thr Ile Thr Ser          35 40 45 Ser Glu Ala Pro Glu Ser Asp Asn Gly Thr Ser Thr Ala Ala Pro Thr      50 55 60 Glu Thr Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr  65 70 75 80 Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr Ser Thr                  85 90 95 Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala Pro Thr Thr Ala Leu Pro             100 105 110 Thr Asn Gly Thr Ser Thr Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala         115 120 125 Pro Thr Thr Gly Leu Pro Thr Asn Gly Thr Thr Ser Ala Phe Pro Pro     130 135 140 Thr Thr Ser Leu Pro Pro Ser Asn Thr Thr Thr Thr Pro Pro Tyr Asn 145 150 155 160 Pro Ser Thr Asp Tyr Thr Thr Asp Tyr Thr Val Val Thr Glu Tyr Thr                 165 170 175 Thr Tyr Cys Pro Glu Arg Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu             180 185 190 Asp Lys Arg         195 <210> 55 <211> 105 <212> PRT <213> Artificial Sequence <220> <223> TFP18 <400> 55 Met Arg Phe Ser Thr Thr Leu Ala Thr Ala Ala Thr Ala Leu Phe Phe   1 5 10 15 Thr Ala Ser Gln Val Ser Ala Ile Gly Glu Leu Ala Phe Asn Leu Gly              20 25 30 Val Lys Asn Asn Asp Gly Thr Cys Lys Ser Thr Ser Asp Tyr Glu Thr          35 40 45 Glu Leu Gln Ala Leu Lys Ser Tyr Thr Ser Thr Val Lys Val Tyr Ala      50 55 60 Ala Ser Asp Cys Asn Thr Leu Gln Asn Leu Gly Pro Ala Ala Glu Ala  65 70 75 80 Glu Gly Phe Thr Ile Phe Val Gly Val Trp Pro Leu Ala Ala Ser Ala                  85 90 95 Ser Ala Gly Leu Ala Leu Asp Lys Arg             100 105 <210> 56 <211> 124 <212> PRT <213> Artificial Sequence <220> <223> TFP19 <400> 56 Met Arg Leu Ser Asn Leu Ile Ala Ser Ala Ser Leu Leu Ser Ala Ala   1 5 10 15 Thr Leu Ala Ala Pro Ala Asn His Glu His Lys Asp Lys Arg Ala Val              20 25 30 Val Thr Thr Thr Val Gln Lys Gln Thr Thr Ile Ile Val Asn Gly Ala          35 40 45 Ala Ser Thr Pro Val Ala Ala Leu Glu Glu Asn Ala Val Val Asn Ser      50 55 60 Ala Pro Ala Ala Ala Thr Ser Thr Ser Ser Ala Ala Ser Val Ala  65 70 75 80 Thr Ala Ala Ser Ser Glu Asn Asn Ser Gln Val Ser Ala Ala Ala                  85 90 95 Ser Pro Ala Ser Ser Ala Ala Thr Ser Thr Gln Ser Ser Leu Ala             100 105 110 Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg         115 120 <210> 57 <211> 138 <212> PRT <213> Artificial Sequence <220> <223> TFP20 <400> 57 Met Gln Phe Ser Thr Val Ala Ser Ile Ala Ala Val Ala Ala Val Ala   1 5 10 15 Ser Ala Ala Asn Val Thr Thr Ala Thr Val Ser Gln Glu Ser Thr              20 25 30 Thr Leu Val Thr Ile Thr Ser Cys Glu Asp His Val Cys Ser Glu Thr          35 40 45 Val Ser Pro Ala Leu Val Ser Thr Ala Thr Val Thr Val Asp Asp Val      50 55 60 Ile Thr Gln Tyr Thr Thr Trp Cys Pro Leu Thr Thr Glu Ala Pro Lys  65 70 75 80 Asn Gly Thr Ser Thr Ala Ala Pro Val Thr Ser Thr Glu Ala Pro Lys                  85 90 95 Asn Thr Thr Ser Ala Ala Pro Thr His Ser Val Thr Ser Tyr Thr Gly             100 105 110 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Leu Ala Ala Ser         115 120 125 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg     130 135 <210> 58 <211> 176 <212> PRT <213> Artificial Sequence <220> <223> TFP21 <400> 58 Met Lys Phe Ser Ser Ala Leu Val Seru Ser Ala Val Ala Ala Thr Ala   1 5 10 15 Leu Ala Glu Ser Ile Thr Thr Thr Ile Thr Ala Thr Lys Asn Gly His              20 25 30 Val Tyr Thr Lys Thr Val Thr Gln Asp Ala Thr Phe Val Trp Gly Gly          35 40 45 Glu Asp Ser Tyr Ala Ser Ser Thr Ser Ala Ala Glu Ser Ser Ala Ala      50 55 60 Glu Thr Ser Ala Ala Glu Thr Ser Ala Ala Ala Thr Thr Ser Ala Ala  65 70 75 80 Ala Thr Thr Ser Ala Glu Thr Ser Ser Ala Ala Glu Thr Ser Ser                  85 90 95 Ala Asp Glu Gly Ser Gly Ser Ser Ile Thr Thr Thr Ile Thr Ala Thr             100 105 110 Lys Asn Gly His Val Tyr Thr Lys Thr Val Thr Gln Asp Ala Thr Phe         115 120 125 Val Trp Thr Gly Glu Gly Ser Ser Asn Thr Trp Ser Pro Ser Ser Thr     130 135 140 Ser Thr Ser Ala Thr Ser Ser Ala Thr 145 150 155 160 Thr Leu Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg                 165 170 175 <210> 59 <211> 138 <212> PRT <213> Artificial Sequence <220> <223> TFP22 <400> 59 Met Lys Phe Gln Val Val Leu Ser Ala Leu Leu Ala Cys Ser Ser Ala   1 5 10 15 Val Val Ala Ser Pro Ile Glu Asn Leu Phe Lys Tyr Arg Ala Val Lys              20 25 30 Ala Ser His Ser Lys Asn Ile Asn Ser Thr Leu Pro Ala Trp Asn Gly          35 40 45 Ser Asn Ser Ser Asn Val Thr Tyr Ala Asn Gly Thr Asn Ser Thr Thr      50 55 60 Asn Thr Thr Thr Ala Glu Ser Ser Gln Leu Gln Ile Ile Val Thr Gly  65 70 75 80 Gly Gln Val Pro Ile Thr Asn Ser Ser Leu Thr His Thr Asn Tyr Thr                  85 90 95 Arg Leu Phe Asn Ser Ser Ser Ala Leu Asn Ile Thr Glu Leu Tyr Asn             100 105 110 Val Ala Arg Val Val Asn Glu Thr Ile Gln Asp Asn Leu Ala Ala Ser         115 120 125 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg     130 135 <210> 60 <211> 115 <212> PRT <213> Artificial Sequence <220> <223> TFP23 <400> 60 Met Arg Ala Ile Thr Leu Leu Ser Ser Val Val Ser Leu Ala Leu Leu   1 5 10 15 Ser Lys Glu Val Leu Ala Thr Pro Pro Ala Cys Leu Leu Ala Cys Val              20 25 30 Ala Gln Val Gly Lys Ser Ser Ser Thr Cys Asp Ser Leu Asn Gln Val          35 40 45 Thr Cys Tyr Cys Glu His Glu Asn Ser Ala Val Lys Lys Cys Leu Asp      50 55 60 Ser Ile Cys Pro Asn Asn Asp Ala Asp Ala Ala Tyr Ser Ala Phe Lys  65 70 75 80 Ser Ser Cys Ser Glu Gln Asn Ala Ser Leu Gly Asp Ser Ser Gly Ser                  85 90 95 Ala Ser Ser Ala Ser Ala Ser Ala Gly             100 105 110 Asp Lys Arg         115 <210> 61 <211> 170 <212> PRT <213> Artificial Sequence <220> <223> TFP24 <400> 61 Met Lys Leu Ser Thr Val Leu Leu Ser Ala Gly Leu Ala Ser Thr Thr   1 5 10 15 Leu Ala Gln Phe Ser Asn Ser Thr Ser Ala Ser Ser Thr Asp Val Thr              20 25 30 Ser Ser Ser Ser Ser Thr Ser Ser Ser Ser Val Thr Ile Thr Ser          35 40 45 Ser Glu Ala Pro Glu Ser Asp Asn Gly Thr Ser Thr Ala Ala Pro Thr      50 55 60 Glu Thr Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr  65 70 75 80 Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr Ser Thr                  85 90 95 Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala Pro Thr Thr Ala Leu Pro             100 105 110 Thr Asn Gly Thr Ser Thr Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala         115 120 125 Pro Thr Thr Gly Leu Pro Thr Asn Gly Thr Thr Ser Ala Phe Pro Pro     130 135 140 Thr Thr Ser Leu Pro Ser Ser Asn Thr Thr Thr Thr Leu Ala Ala Ser 145 150 155 160 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg                 165 170 <210> 62 <211> 354 <212> DNA <213> Artificial Sequence <220> <223> TFP1 <400> 62 atgttcaatc gttttaacaa attccaagct gctgtcgctt tggccctact ctctcgcggc 60 gctctcggtg actcttacac caatagcacc tcctccgcag acttgagttc tatcacttcc 120 gtctcgtcag ctagtgcaag tgccaccgct tccgactcac tttcttccag tgacggtacc 180 gtttatttgc catccacaac aattagcggt gatctcacag ttactggtaa agtaattgca 240 accgaggccg tggaagtcgc tgccggtggt aagttgactt tacttgacgg tgaaaaatac 300 gtcttctcat ctgaggccgc ctcggcctct gctggcctcg ccttagataa aaga 354 <210> 63 <211> 390 <212> DNA <213> Artificial Sequence <220> <223> TFP2 <400> 63 atgacgccct atgcagtagc aattaccgtg gccttactaa ttgtaacagt gagcgcactc 60 caggtcaaca attcatgtgt cgcttttccg ccatcaaatc tcaggggcaa gaatggagac 120 ggtactaatg aacagtatgc aactgcacta ctttctattc cctggaatgg gcctcctgag 180 tcatcgaggg atattaatct tatcgaactc gaaccgcaag ttgcactcta tttgctcgaa 240 aattatatta accattacta caacaccaca agagacaata agtgccctaa taaccactac 300 ctaatgggag ggcagttggg tagctcatcg gataatagga gtttgaacga ggccgcctcg 360 gcctctgctg gcctcgcctt agataaaaga 390 <210> 64 <211> 351 <212> DNA <213> Artificial Sequence <220> <223> TFP3 <400> 64 atgcaattca aaaacgtcgc cctagctgcc tccgttgctg ctctatccgc cactgcttct 60 gctgaaggtt acactccagg tgaaccatgg tccaccttaa ccccaaccgg ctccatctct 120 tgtggtgcag ccgaatacac taccaccttt ggtattgctg ttcaagctat tacctcttca 180 aaagctaaga gagacgttat ctctcaaatt ggtgacggtc aagtccaagc cacttctgct 240 gctactgctc aagccaccga tagtcaagcc caagctacta ctaccgctac cccaaccagc 300 tccgaaaaga tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 351 <210> 65 <211> 186 <212> DNA <213> Artificial Sequence <220> <223> TFP4 <400> 65 atgagatttg cagaattctt ggtggtattt gccacgttag gcggggggat ggctgcaccg 60 gttgagtctc tggccgggac ccaacggtat ctggtgcaaa tgaaggagcg gttcaccaca 120 gagaagctgt gtgctttgga cgacaaggcc gcctcggcct ctgctggcct cgccttagat 180 aaaaga 186 <210> 66 <211> 291 <212> DNA <213> Artificial Sequence <220> <223> TFP5 <400> 66 atgttcaatc gttttaacaa attccaagct gctgtcgctt tggccctact ctctcgcggc 60 gctctcggtg ctccagtcaa cactacaaca gaagatgaaa cggcactaat tccggctgaa 120 gctgtcatcg gttacttaga tttagaaggg gatttcgatg ttgctgtttt gccattttcc 180 aacagcacaa ataacgggtt attgtttata aatactacta ttgccagcat tgctgctaaa 240 gaagaagggg tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 291 <210> 67 <211> 279 <212> DNA <213> Artificial Sequence <220> <223> TFP6 <400> 67 atgagatttc cttcaatttt tactgcagtt ttattcgcag catcctccgc attagctgct 60 ccagtcaaca ctacaacaga agatgaaacg gcacaaattc cggctgaagc tgtcatcggt 120 tacttagatt tagaagggga tttcgatgtt gctgttttgc cattttccaa cagcacaaat 180 aacgggttat tgtttataaa tactactatt gccagcattg ctgctaaaga agaaggggtg 240 gccgcctcgg cctctgctgg cctcgcctta gataaaaga 279 <210> 68 <211> 678 <212> DNA <213> Artificial Sequence <220> <223> TFP7 <400> 68 atggtgttcg gtcagctgta tgcccttttc atcttcacgt tatcatgttg tatttccaaa 60 actgtgcaag cagattcatc caaggaaagc tcttccttta tttcgttcga caaagagagt 120 aactgggata ccatcagcac tatatcttca acggcagatg ttatatcatc cgttgacagt 180 gctatcgctg tttttgaatt tgacaatttc tcattattgg acagcttgat gattgacgaa 240 gaatacccat tcttcaatag attctttgcc aatgatgtca gtttaactgt tcatgacgat 300 tcgcctttga acatctctca atcattatct cccattatgg aacaatttac tgtggatgaa 360 ttacctgaaa gtgcctctga cttactatat gaatactcct tagatgataa aagcatcgtt 420 ttgttcaagt ttacctcgga tgcctacgat ttgaaaaaat tagatgaatt tattgattct 480 tgcttatcgt ttttggaaga taaatctggc gacaatttga ctgtggttat taactctctt 540 ggttgggctt ttgaagatga agatggtgac gatgaatatg caacagaaga gactttgagc 600 catcatgata acaacaaggg taaagaaggc gacgatctgg ccgcctcggc ctctgctggc 660 ctcgccttag ataaaaga 678 <210> 69 <211> 192 <212> DNA <213> Artificial Sequence <220> <223> TFP8 <400> 69 atgcttcaat ccgttgtctt tttcgctctt ttaaccttcg caagttctgt gtcagcgatt 60 tattcaaaca atactgtttc tacaactacc actttagcgc ccagctactc cttggtgccc 120 caagagacta ccatatcgta cgccgacgac ctggccgcct cggcctctgc tggcctcgcc 180 ttagataaaa ga 192 <210> 70 <211> 414 <212> DNA <213> Artificial Sequence <220> <223> TFP9 <400> 70 atgaaattct caactgccgt tactacgttg attagttctg gtgccatcgt gtctgcttta 60 ccacacgtgg atgttcacca agaagatgcc caccaacata agagggccgt tgcgtacaaa 120 tacgtttacg aaactgttgt tgtcgattct gatggccaca ctgtaactcc tgctgcttca 180 gaagtcgcta ctgctgctac ctctgctatc attacaacat ctgtgttggc tccaacctcc 240 tccgcagccg ctgcggatag ctccgcttcc attgctgttt catctgctgc cttagccaag 300 aatgagaaaa tctctgatgc cgctgcatct gccactgcct caacatctca aggggcatcc 360 tcctcatcct acctggccgc ctcggcctct gctggcctcg ccttagataa aaga 414 <210> 71 <211> 597 <212> DNA <213> Artificial Sequence <220> <223> TFP10 <400> 71 atgaattggc tgtttttggt ctcgctggtt ttcttctgcg gcgtgtcaac ccatcctgcc 60 ctggcaatgt ccagcaacag actactaaag ctggctaata aatctcccaa gaaaattata 120 cctctgaagg actcaagttt tgaaaacatc ttggcaccac ctcacgaaaa tgcctatata 180 gttgctctgt ttactgccac agcgcccgaa attggctgtt ctctgtgtct cgagctagaa 240 tccgaatacg acaccatagt ggcctcctgg tttgatgatc atccggatgc aaaatcgtcc 300 aattccgata catctatttt cttcacaaag gtcaatttgg aggacccttc taagaccatt 360 cctaaagcgt tccagttttt ccaactaaac aatgttccta gattgttcat cttcaaacta 420 aactctccct ctattctgga ccacagcgtg atcagtattt ccactgatac tggctcagaa 480 agaatgaagc aaatcataca agccattaag cagttctcgc aagtaaacga cttctcttta 540 cacttacctg tgggtctggc cgcctcggcc tctgctggcc tcgccttaga taaaaga 597 <210> 72 <211> 231 <212> DNA <213> Artificial Sequence <220> <223> TFP11 <400> 72 atgaagttct cttctgttac tgctattact ctagccaccg ttgccaccgt tgccactgct 60 aagaagggtg aacatgattt cactaccact ttaactttgt catcggacgg tagtttaact 120 actaccacct ctactcatac cactcacaag tatggtaagt tcaacaagac ttccaagtcc 180 aagacccccc tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 231 <210> 73 <211> 282 <212> DNA <213> Artificial Sequence <220> <223> TFP12 <400> 73 atggcctcat ttgctactaa gtttgtcatt gcttgcttcc tgttcttctc ggcgtccgcc 60 cataatgtcc ttcttccagc ttatggccgt agatgcttct tcgaagactt gagtaagggt 120 gacgagctct ccatttcgtt ccagttcggt gatagaaacc ctcaatccag tagccagctg 180 actggtgact ttatcatcta cgggccggaa agacatgaag ttttgaaaac ggttagggaa 240 ctggccgcct cggcctctgc tggcctcgcc ttagataaaa ga 282 <210> 74 <211> 522 <212> DNA <213> Artificial Sequence <220> <223> TFP13 <400> 74 atgcaataca aaaagacttt ggttgcctct gctttggccg ctactacatt ggccgcctat 60 gctccatctg agccttggtc cactttgact ccaacagcca cttacagcgg tggtgttacc 120 gactacgctt ccaccttcgg tattgccgtt caaccaatct ccactacatc cagcgcatca 180 tctgcagcca ccacagcctc atctaaggcc aagagagctg cttcccaaat tggtgatggt 240 caagtccaag ctgctaccac tactgcttct gtctctacca agagtaccgc tgccgccgtt 300 tctcagatcg gtgatggtca aatccaagct actaccaaga ctaccgctgc tgctgtctct 360 caaattggtg atggtcaaat tcaagctacc accaagacta cctctgctaa gactaccgcc 420 gctgccgttt ctcaaatcag tgatggtcaa atccaagcta ccaccactac tttagcccct 480 ctggccgcct cggcctctgc tggcctcgcc ttagataaaa ga 522 <210> 75 <211> 204 <212> DNA <213> Artificial Sequence <220> <223> TFP14 <400> 75 atgcaattca agaacgcttt gactgctact gctattctaa gtgcctccgc tctagctgct 60 aactcaacta cttctattcc atcttcatgt agtattggta cttctgccac tgctactgct 120 caagccaccg atagtcaagc ccaagctact actaccgcac ccctggccgc ctcggcctct 180 gctggcctcg ccttagataa aaga 204 <210> 76 <211> 471 <212> DNA <213> Artificial Sequence <220> <223> TFP15 <400> 76 atggatatcga agacttggat atgtggcttc atcagtataa ttacagtggt acaggccttg 60 tcctgcgaga agcatgatgt attgaaaaag tatcaggtgg gaaaatttag ctcactaact 120 tctacggaaa gggatactcc gccaagcaca actattgaaa agtggtggat aaacgtttgc 180 gaagagcata acgtagaacc tcctgaagaa tgtaaaaaaa atgacatgct atgtggttta 240 acagatgtca tcttgcccgg taaggatgct atcaccactc aaattataga ttttgacaaa 300 aacattggct tcaatgtcga ggaaactgag agtgcgctta cattgacact aaacggcgct 360 acgtggggcg ccaattcttt tgacgcaaaa ctagaatttc agtgtaatga caatatgaaa 420 caagacgaac tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 471 <210> 77 <211> 294 <212> DNA <213> Artificial Sequence <220> <223> TFP16 <400> 77 atgaaattat ccgctctatt agctttatca gcctccaccg ccgtcttggc cgctccagct 60 gtccaccata gtgacaacca ccaccacaac gacaagcgtg ccgttgtcac cgttactcag 120 tacgtcaacg cagacggcgc tgttgttatt ccagctgcca ccaccgctac ctcggcggct 180 gctgatggaa aggtcgagtc tgttgctgct gccaccacta ctttgtcctc gactgccgcc 240 gccgctacaa ccctggccgc ctcggcctct gctggcctcg ccttagataa aaga 294 <210> 78 <211> 585 <212> DNA <213> Artificial Sequence <220> <223> TFP17 <400> 78 atgaaattat caactgtcct attatctgcc ggtttagcct cgactacttt ggcccaattt 60 tccaacagta catctgcttc ttccaccgat gtcacttcct cctcttccat ctccacttcc 120 tctggctcag taactatcac atcttctgaa gctccagaat ccgacaacgg taccagcaca 180 gctgcaccaa ctgaaacctc aacagaggct ccaaccactg ctatcccaac taacggtacc 240 tctactgaag ctccaaccac tgctatccca actaacggta cctctactga agctccaact 300 gatactacta ctgaagctcc aaccaccgct cttccaacta acggtacttc tactgaagct 360 ccaactgata ctactactga agctccaacc accggtcttc caaccaacgg taccacttca 420 gctttcccac caactacatc tttgccacca agcaacacta ccaccactcc tccttacaac 480 ccatctactg actacaccac tgactacact gtagtcactg aatatactac ttactgtccg 540 gaacgggccg cctcggcctc tgctggcctc gccttagata aaaga 585 <210> 79 <211> 315 <212> DNA <213> Artificial Sequence <220> <223> TFP18 <400> 79 atgcgtttct ctactacact cgctactgca gctactgcgc tatttttcac agcctcccaa 60 gtttcagcta ttggtgaact agcctttaac ttgggtgtca agaacaacga tggtacttgt 120 aagtccactt ccgactatga aaccgaatta caagctttga agagctacac ttccaccgtc 180 aaagtttacg ctgcctcaga ttgtaacact ttgcaaaact taggtcctgc tgctgaagct 240 gagggattta ctatctttgt cggtgtttgg ccactggccg cctcggcctc tgctggcctc 300 gccttagata aaaga 315 <210> 80 <211> 372 <212> DNA <213> Artificial Sequence <220> <223> TFP19 <400> 80 atgcgtctct ctaacctaat tgcttctgcc tctcttttat ctgctgctac tcttgctgct 60 cccgctaacc acgaacacaa ggacaagcgt gctgtggtca ctaccactgt tcaaaaacaa 120 accactatca ttgttaatgg tgccgcttca actccagttg ctgctttgga agaaaatgct 180 gttgtcaact ccgctccagc tgccgctacc agtacaacat cgtctgctgc ttctgtagct 240 accgctgctt cctcttctga gaacaactca caagtttctg ctgccgcatc tccagcctcc 300 agctctgctg ctacatctac tcaatcttct ctggccgcct cggcctctgc tggcctcgcc 360 ttagataaaa ga 372 <210> 81 <211> 414 <212> DNA <213> Artificial Sequence <220> <223> TFP20 <400> 81 atgcaatttt ctactgtcgc ttctatcgcc gctgtcgccg ctgtcgcttc tgccgctgct 60 aacgttacca ctgctactgt cagccaagaa tctaccactt tggtcaccat cacttcttgt 120 gaagaccacg tctgttctga aactgtctcc ccagctttgg tttccaccgc taccgtcacc 180 gtcgatgacg ttatcactca atacaccacc tggtgcccat tgaccactga agccccaaag 240 aacggtactt ctactgctgc tccagttacc tctactgaag ctccaaagaa caccacctct 300 gctgctccaa ctcactctgt cacctcttac actggtgctg ctgctaaggc tttgccagct 360 gctggtgctt tgctggccgc ctcggcctct gctggcctcg ccttagataa aaga 414 <210> 82 <211> 528 <212> DNA <213> Artificial Sequence <220> <223> TFP21 <400> 82 atgaaattct cttccgcttt ggttctatct gctgttgccg ctactgctct tgctgagagt 60 atcaccacca ccatcactgc caccaagaac ggtcatgtct acactaagac tgtcacccaa 120 gatgctactt ttgtttgggg tggtgaagac tcttacgcca gcagcacttc tgccgctgaa 180 tcttctgccg ccgaaacttc tgccgccgaa acctctgctg ccgctaccac ttctgctgcc 240 gctaccactt ctgctgctga gacttcttct gctgctgaga cttcttctgc tgatgaaggt 300 tctggttcta gtatcactac cactatcact gccaccaaga acggtcacgt ctacactaag 360 actgtcaccc aagatgctac ttttgtctgg actggtgaag gcagcagcaa cacctggtct 420 ccaagtagta cctctaccag ctcagaagct gctacctctt ctgcttcaac cactgcaacc 480 accctgctgg ccgcctcggc ctctgctggc ctcgccttag ataaaaga 528 <210> 83 <211> 414 <212> DNA <213> Artificial Sequence <220> <223> TFP22 <400> 83 atgaagttcc aagttgtttt atctgccctt ttggcatgtt catctgccgt cgtcgcaagc 60 ccaatcgaaa acctattcaa atacagggca gttaaggcat ctcacagtaa gaatatcaac 120 tccactttgc cggcctggaa tgggtctaac tctagcaatg ttacctacgc taatggaaca 180 aacagtacta ccaatactac tactgccgaa agcagtcaat tacaaatcat tgtaacaggt 240 ggtcaagtac caatcaccaa cagttctttg acccacacaa actacaccag attattcaac 300 agttcttctg ctttgaacat taccgaattg tacaatgttg cccgtgttgt taacgaaacg 360 atccaagata acctggccgc ctcggcctct gctggcctcg ccttagataa aaga 414 <210> 84 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> TFP23 <400> 84 atgcgtgcca tcactttatt atcttcagtc gtttctttgg cattgttgtc gaaggaagtc 60 ttagcaacac ctccagcttg tttattggcc tgtgttgcgc aagtcggcaa atcctcttcc 120 acatgtgact ctttgaatca agtcacctgt tactgtgaac acgaaaactc cgccgtcaag 180 aaatgtctag actccatctg cccaaacaat gacgctgatg ctgcttattc tgctttcaag 240 agttcttgtt ccgaacaaaa tgcttcattg ggcgattcca gcggcagtgc ctcctcatcc 300 gttctggccg cctcggcctc tgctggcctc gccttagata aaaga 345 <210> 85 <211> 510 <212> DNA <213> Artificial Sequence <220> <223> TFP24 <400> 85 atgaaattat caactgtcct attatctgcc ggtttggcct cgactacttt ggcccaattt 60 tccaacagta catctgcttc ttccaccgat gtcacttcct cctcttccat ctccacttcc 120 tctggctcag taactatcac atcttctgaa gctccagaat ccgacaacgg taccagcaca 180 gctgcaccaa ctgaaacctc aacagaggct ccaaccactg ctatcccaac taacggtacc 240 tctactgaag ctccaaccac tgctatccca actaacggta cctctactga agctccaact 300 gatactacta ctgaagctcc aaccaccgct cttccaacta acggtacttc tactgaagct 360 ccaactgata ctactactga agctccaacc accggtcttc caaccaacgg taccacttca 420 gctttcccac caactacatc tttgccacca agcaacacta ccaccactct ggccgcctcg 480 gcctctgctg gcctcgcctt agataaaaga 510 <210> 86 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> BCSPlip2-F <400> 86 tccaaaaaaa aagtaagaat ttttgaaaat tcaaggatcc atgatctgtt cattctttag 60                                                                           60 <210> 87 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> BCSPlip5-F <400> 87 tccaaaaaaa aagtaagaat ttttgaaaat tcaaggatcc atgattttaa cgaatctt 58 <210> 88 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> BCSPlip7-F <400> 88 tccaaaaaaa aagtaagaat ttttgaaaat tcaaggatcc atgttcaaac agcttttc 58 <210> 89 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> BCSPlip2-R <400> 89 aatatatata tatatatatt gtcactccgt tcaagtcgac ctattcactt ctagtagaat 60                                                                           60 <210> 90 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> BCSPlip5-R <400> 90 aatatatata tatatatatt gtcactccgt tcaagtcgac ttaatagccc aaattttg 58 <210> 91 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> BCSPlip7-R <400> 91 aatatatata tatatatatt gtcactccgt tcaagtcgac ctaattgata tggaagaa 58 <210> 92 <211> 496 <212> PRT <213> Artificial Sequence <220> <223> CbLIP5 codon modification <400> 92 Met Ile Leu Thr Asn Leu Leu Val Tyr Phe Ser Leu Ile Ala Cys Thr   1 5 10 15 Ile Cys Ala Pro Met Thr Ile Leu Lys Pro Ser Glu Asp Asp Phe Tyr              20 25 30 Thr Ala Pro Asp Gly Phe Glu Asp Glu Lys Leu Gly Thr Ile Leu Lys          35 40 45 Trp Arg Lys Thr Pro Tyr Gln Ile Lys Ser Ile Tyr Phe Pro Val Asn      50 55 60 Ile Lys Asn Ser Trp Gln Leu Leu Val Arg Ser Glu Asp Ala Ile Gly  65 70 75 80 Asn Pro Val Ala Val Thr Ala Ser Leu Phe Glu Pro Tyr Asn Gly Asn                  85 90 95 Thr Ser Arg Leu Val Ser Tyr Gln Val Ala Glu Asp Ser Ala Ser Phe             100 105 110 Asp Cys Ala Pro Ser Tyr Ser Phe Val Gly Gly Gly Tyr His Thr Val         115 120 125 Val Ala Lys Ala Glu Met Ile Leu Ile Gln Gly Ala Leu Asp Gln Gly     130 135 140 Tyr Tyr Val Val Ala Pro Asp Tyr Glu Gly Pro Asn Ala Ala Phe Thr 145 150 155 160 Ala Gly Ile Thr Ser Gly Met Ser Thr Ile Asn Val Leu Arg Ala Val                 165 170 175 Leu Ser Asp Gln Arg Ser Asn Glu Thr Arg Ile Asp Ser Asp Ala Glu             180 185 190 Val Val Leu Trp Gly Tyr Ser Gly Gly Thr Ile Pro Ser Gly Trp Ala         195 200 205 Ala Ser Met Ala Pro Trp Tyr Ala Lys Asp Ile Asn Asp Asn Leu Lys     210 215 220 Gly Ala Ala Met Gly Gly Trp Val Thr Asn Ile Thr Ala Thr Ala Glu 225 230 235 240 Ile Val Glu Gly Ser Leu Phe Glu Gly Leu Val Ala Ala Ala Ile Asn                 245 250 255 Gly Leu Ala Gln Gln Tyr Glu Glu Ile Asn Glu Ala Leu Asp Val Tyr             260 265 270 Leu Val Pro Asp Lys Leu Glu Thr Phe Arg Ser Ala Lys Asn Glu Cys         275 280 285 Val Ile Asp Val Val Phe Ser Phe Ala Tyr Gln Ser Ala Phe Ser Gly     290 295 300 Ser Asp Pro Tyr Thr Ser Asp Gly Trp Gly Val Leu Glu Asp Pro Lys 305 310 315 320 Val Lys Lys Ile Val Asn Gln Asn Thr Leu Gly Leu Asn Val Thr Glu                 325 330 335 Lys Phe Lys Pro Glu Ile Pro Leu Phe Val Tyr His Gly Ile Leu Asp             340 345 350 Glu Ile Val Pro Phe Lys Asp Ala Gln Arg Val Tyr Asp Val Trp Cys         355 360 365 Lys Glu Gly Ile Asn Ser Phe Glu Phe Ala Val Ser Asn Ser Thr Gly     370 375 380 His Leu Leu Glu Val Leu Glu Gly Ser Gly Ala Ala Leu Lys Trp Ile 385 390 395 400 Ser Asp Arg Phe Asp Gly Val Ala Pro Thr Lys Gly Cys His Arg Gln                 405 410 415 Thr Arg Leu Ser Asn Ile Phe Tyr Pro Gly Ser Phe Thr Gly Ile Ser             420 425 430 Asp Ile Leu Ser Ala Leu Val Arg Asn Val Met Gly Ser Pro Ile Gly         435 440 445 Leu Tyr Asp Glu Glu Val Glu Lys Arg Ser Asp Val Thr Glu Asp Glu     450 455 460 Lys Leu Leu Lys Arg Ser Phe Ala Tyr Thr Asp Glu Glu Ile Phe Arg 465 470 475 480 Arg Ile Leu Asp Asn Ser Tyr Pro Asp Met Ala Gln Asn Leu Gly Tyr                 485 490 495 <210> 93 <211> 1491 <212> DNA <213> Artificial Sequence <220> <223> CbLIP5 codon modification <400> 93 atgattttaa cgaatcttct tgtatatttc agcttgatag cgtgcacaat ttgtgctcca 60 atgacgatct tgaaaccttc tgaagatgac ttttatactg ctccagatgg ctttgaggat 120 gaaaagttag gtactattct taaatggaga aagactcctt atcagattaa gagtatctac 180 ttcccagtta acattaagaa tagttggcaa ttgcttgtga gatctgaaga tgcaatcggt 240 aatccagttg cagtcactgc ttcccttttt gaaccgtaca atggtaacac atccaggttg 300 gtctcatacc aagttgcaga ggatagtgct tcgttcgact gtgcaccgtc atattcattt 360 gtaggaggag gttaccatac agtggttgca aaagctgaga tgattttgat acaaggagca 420 ttagatcaag gttattacgt tgttgcacca gactatgaag gacccaatgc tgcatttact 480 gccgggataa catccggcat gagcaccatt aatgttcttc gagcagtctt aagtgatcag 540 aggagtaatg aaacgagaat tgactcagat gcagaagtgg ttctttgggg atatagtgga 600 ggcacaatcc ctagtggttg ggcagcatct atggctccat ggtatgctaa agatatcaat 660 gataatctta aaggagcagc aatgggtgga tgggtaacta atattactgc cacggctgaa 720 attgtagaag ggtccctttt cgaaggattg gttgcagcag ccatcaatgg attagcacaa 780 caatatgaag aaattaatga ggcacttgat gtttatcttg tacctgataa gctagagaca 840 tttagatcag caaagaatga atgcgttatt gatgtagtat tttcctttgc ttatcaaagt 900 gcattcagtg gaagtgatcc ttatacatct gatggatggg gtgtattaga agacccaaaa 960 gtgaagaaga ttgtcaacca aaataccctt ggattaaatg tgactgaaaa attcaaacca 1020 gagatcccac tatttgttta tcatggaatt cttgatgaaa ttgttccttt caaagatgca 1080 cagagagttt atgatgtttg gtgtaaagaa ggcattaatt catttgaatt tgccgtctct 1140 aattctactg gccatcttct tgaggtactt gaaggcagtg gagcagcgtt gaagtggata 1200 tctgacagat tcgatggagt tgcaccaacc aaaggatgtc atagacaaac aagattaagt 1260 aatatcttct atccaggttc ttttactgga atatctgaca ttttatctgc tttagtcaga 1320 aatgtcatgg gaagccctat tggactttat gatgaacaag ttgaaaagag atcagatgta 1380 accgaagacg aaaaattatt gaaaaggtct tttgcataca cagatgaaga aatctttaga 1440 agaatacttg acaacagcta tccagatatg gctcaaaatt tgggctatta a 1491 <210> 94 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Lip5CTG1-F <400> 94 agtgatcctt atacatctga tggatggggt gta 33 <210> 95 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Lip5CTG1-R <400> 95 tacaccccat ccatcagatg tataaggatc act 33 <210> 96 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Lip5CTG2-F <400> 96 atcttctatc caggttcttt tactggaata tct 33 <210> 97 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Lip5CTG2-R <400> 97 agatattcca gtaaaagaac ctggatagaa gat 33 <210> 98 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Lip5CTG3-F <400> 98 aaattattga aaaggtcttt tgcatacaca gat 33 <210> 99 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Lip5CTG3-R <400> 99 atctgtgtat gcaaaagacc ttttcaataa ttt 33

Claims (21)

리파아제 (lipase) 활성을 가지는, 수탁번호 KCTC18455P의 캔디다 뷰티리 (Candida butyri) 균주.
Candida butyri strain with accession number KCTC18455P, having lipase activity.
삭제delete 서열번호 5, 서열번호 8, 서열번호 10 및 서열번호 92로 이루어진 군에서 선택되는 어느 하나의 아미노산 서열을 가지는, 리파아제.
SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 10 and SEQ ID NO: 92.
제3항에 있어서, 상기 리파아제는 서열번호 13, 서열번호 16, 서열번호 18 및 서열번호 93으로 이루어진 군에서 선택되는 어느 하나의 뉴클레오티드 서열로 코딩되는, 리파아제.
4. The lipase according to claim 3, wherein the lipase is encoded by any one of nucleotide sequences selected from the group consisting of SEQ ID NO: 13, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO:
제3항 또는 제4항의 리파아제 (lipase)를 코딩하는 핵산 및 단백질 분비 융합 인자 (Translational fusion partner, TFP)를 코딩하는 핵산을 포함하는, 리파아제 분비 발현 카세트.
A lipase secretion expression cassette comprising a nucleic acid encoding the lipase of claim 3 or 4 and a nucleic acid encoding a translational fusion partner (TFP).
제5항에 있어서, 상기 단백질 분비 융합 인자는,
서열번호 38의 TFP 1, 서열번호 39의 TFP 2, 서열번호 40의 TFP 3, 서열번호 41의 TFP 4, 서열번호 42의 TFP 5, 서열번호 43의 TFP 6, 서열번호 44의 TFP 7, 서열번호 45의 TFP 8, 서열번호 46의 TFP 9, 서열번호 47의 TFP 10, 서열번호 48의 TFP 11, 서열번호 49의 TFP 12, 서열번호 50의 TFP 13, 서열번호 51의 TFP 14, 서열번호 52의 TFP 15, 서열번호 53의 TFP 16, 서열번호 54의 TFP 17, 서열번호 55의 TFP 18, 서열번호 56의 TFP 19, 서열번호 57의 TFP 20, 서열번호 58의 TFP 21, 서열번호 59의 TFP 22, 서열번호 60의 TFP 23, 및 서열번호 61의 TFP 24로 이루어진 군에서 선택되는, 리파아제 분비 발현 카세트.
6. The method according to claim 5,
TFP 3 of SEQ ID NO: 40, TFP 4 of SEQ ID NO: 41, TFP 5 of SEQ ID NO: 42, TFP 6 of SEQ ID NO: 43, TFP 7 of SEQ ID NO: 44, SEQ ID NO: TFP 9 of SEQ ID NO: 47, TFP 9 of SEQ ID NO: 47, TFP 11 of SEQ ID NO: 48, TFP 12 of SEQ ID NO: 49, TFP 13 of SEQ ID NO: 50, TFP 14 of SEQ ID NO: 51, SEQ ID NO: 52, TFP 16 of SEQ ID NO: 53, TFP 17 of SEQ ID NO: 54, TFP 18 of SEQ ID NO: 55, TFP 19 of SEQ ID NO: 56, TFP 20 of SEQ ID NO: 57, TFP 21 of SEQ ID NO: 58, SEQ ID NO: 59 A TFP 23 of SEQ ID NO: 60, and a TFP 24 of SEQ ID NO: 61.
제5항에 있어서, 상기 리파아제는 서열번호 5의 아마노산 서열을 가지며, 서열번호 48의 TFP 11, 서열번호 50의 TFP 13, 서열번호 56의 TFP 19 또는 서열번호 60의 TFP 23과 연결된 것인, 리파아제 분비 발현 카세트.
6. The method of claim 5, wherein the lipase has an amino acid sequence of SEQ ID NO: 5 and is linked to TFP 11 of SEQ ID NO: 48, TFP 13 of SEQ ID NO: 50, TFP 19 of SEQ ID NO: 56, or TFP 23 of SEQ ID NO: , A lipase secretion expression cassette.
제5항에 있어서, 상기 리파아제는 서열번호 8의 아미노산 서열을 가지며, 서열번호 45의 TFP 8, 서열번호 46의 TFP 9, 서열번호 50의 TFP 13 또는 서열번호 56의 TFP 19와 연결된 것인, 리파아제 분비 발현 카세트.
6. The method of claim 5, wherein the lipase has the amino acid sequence of SEQ ID NO: 8 and is linked to TFP8 of SEQ ID NO: 45, TFP 9 of SEQ ID NO: 46, TFP 13 of SEQ ID NO: 50, or TFP 19 of SEQ ID NO: Lipase secreted expression cassette.
제5항에 있어서, 상기 리파아제는 서열번호 10의 아미노산 서열을 가지며, 서열번호 41의 TFP 4, 서열번호 45의 TFP 8, 서열번호 50의 TFP 13, 서열번호 57의 TFP 20, 서열번호 58의 TFP 21, 서열번호 59의 TFP 22, 서열번호 60의 TFP 23 또는 서열번호 61의 TFP 24와 연결된 것인, 리파아제 분비 발현 카세트.
6. The method of claim 5, wherein the lipase has an amino acid sequence of SEQ ID NO: 10, TFP4 of SEQ ID NO: 41, TFP8 of SEQ ID NO: 45, TFP13 of SEQ ID NO: 50, TFP20 of SEQ ID NO: 57, TFP 21 of SEQ ID NO: 59, TFP 23 of SEQ ID NO: 60, or TFP 24 of SEQ ID NO: 61.
제5항에 있어서, 상기 리파아제는 서열번호 92의 아미노산 서열을 가지며, 서열번호 45의 TFP 8, 서열번호 46의 TFP 9, 서열번호 50의 TFP 13 또는 서열번호 56의 TFP 19와 연결된 것인, 리파아제 분비 발현 카세트.
6. The method of claim 5, wherein the lipase has the amino acid sequence of SEQ ID NO: 92 and is linked to TFP8 of SEQ ID NO: 45, TFP 9 of SEQ ID NO: 46, TFP 13 of SEQ ID NO: 50, or TFP 19 of SEQ ID NO: Lipase secreted expression cassette.
제5항에 있어서, 상기 리파아제를 코딩하는 핵산 및 단백질 분비 융합 인자를 코딩하는 핵산은 링커 (linker)로 서로 연결된 것인, 리파아제 분비 발현 카세트.
6. The lipase secretion expression cassette according to claim 5, wherein the nucleic acid encoding the lipase and the nucleic acid encoding the protein secretion fusion factor are linked to each other by a linker.
제11항에 있어서, 상기 링커는 프로테아제 인식 서열 또는 친화성 태그를 코딩하는 핵산을 포함하는 것인, 리파아제 분비 발현 카세트.
12. The cassette of claim 11, wherein said linker comprises a nucleic acid encoding a protease recognition sequence or an affinity tag.
제5항에 있어서, 상기 분비 발현 카세트는 리파아제의 카르복시 말단 또는 아미노 말단에 연결되는 친화성 태그를 코딩하는 핵산을 추가로 포함하는 것인, 리파아제 분비 발현 카세트.
6. The cassette of claim 5, wherein the secretion expression cassette further comprises a nucleic acid encoding an affinity tag that is linked to the carboxy terminal or amino terminus of the lipase.
제13항에 있어서, 상기 친화성 태그는 GST, MBP, NusA, 티오레독신 (thioredoxin), 유비퀴틴, FLAG, BAP, HIS, STREP, CBP, CBD, 및 S-태그로 이루어진 그룹에서 선택되는 것인, 리파아제 분비 발현 카세트.
14. The method of claim 13, wherein the affinity tag is selected from the group consisting of GST, MBP, NusA, thioredoxin, ubiquitin, FLAG, BAP, HIS, STREP, CBP, CBD, , A lipase secretion expression cassette.
제5항의 리파아제 (lipase) 분비 발현 카세트를 포함하는, 벡터.
A vector comprising the lipase secretion expression cassette of claim 5.
제3항 또는 제4항의 리파아제 (lipase)를 포함하거나, 또는 상기 리파아제를 코딩하는 핵산 및 단백질 분비 융합 인자를 코딩하는 핵산을 포함하는 리파아제 분비 발현 카세트를 함유하는, 형질전환 미생물.
A transforming microorganism comprising the lipase of claim 3 or 4, or a nucleic acid encoding said lipase and a nucleic acid encoding a protein secretion fusion factor.
제16항에 있어서, 상기 형질전환 미생물은 효모인 것인, 형질전환 미생물.
17. The transforming microorganism according to claim 16, wherein the transforming microorganism is yeast.
제17항에 있어서, 상기 효모는 캔디다 (Candida), 디베리오마이세스 (Debaryomyces), 한세눌라 (Hansenula), 클루이베로마이세스 (Kluyveromyces), 피키아 (Pichia), 스키조사카로마이세스 (Schizosaccharomyces), 야로이야 (Yarrowia), 사카로마이세스 (Saccharomyces), 슈완니오마이세스 (Schwanniomyces) 및 아르술라 (Arxula) 속으로 이루어진 그룹에서 선택되는 것인, 형질전환 미생물.
18. The method of claim 17, wherein the yeast is selected from the group consisting of Candida , Debaryomyces , Hansenula , Kluyveromyces , Pichia , Schizosaccharomyces , Wherein said strain is selected from the group consisting of Yarrowia , Saccharomyces , Schwanniomyces and Arxula .
제17항에 있어서, 상기 효모는 캔디다 뷰티리 (Candida butyri), 캔디다 유틸리스 (Candida utilis), 캔디다 보이디니 (Candida boidinii), 캔디다 알비칸스 (Candida albicans), 클루이베로마이세스 락티스 (Kluyveromyces lactis), 피키아 파스토리스 (Pichia pastoris), 피키아 스티피티스 (Pichia stipitis), 스키조사카로마이세스 폼베 (Schizosaccharomyces pombe), 사카로마이시스 세레비지에 (Saccharomyces cerevisiae), 한세눌라 폴리모르파 (Hansenula polymorpha), 야로이야 리폴리티카 (Yarrowia lipolytica), 슈완니오마이세스 옥시덴탈리스 (Schwanniomyces occidentalis) 및 아르술라 아데니니보란스 (Arxula adeninivorans)로 이루어진 그룹에서 선택되는 것인, 형질전환 미생물.
18. The method of claim 17, wherein the yeast is selected from the group consisting of Candida butyri , Candida utilis , Candida boidinii), Candida albicans (Candida albicans), Cluj Vero Mai Seth lactis (Kluyveromyces lactis , Pichia pastoris , Pichia stipitis ), skiing investigation Schizosaccharomyces pombe ), Saccharomyces cerevisiae , Hansenula ( Hansenula polymorpha , Yarrowia lipolytica , Schwanniomyces occidentalis , and Arxula adeninivorans . &lt; Desc / Clms Page number 13 &gt;
(i) 제16항의 형질전환 미생물을 배양하는 단계; 및
(ii) 상기 배양된 미생물 또는 이의 배양 상등액으로부터 리파아제 (lipase)를 회수하는 단계를 포함하는, 리파아제의 제조방법.
(i) culturing the transformed microorganism of claim 16; And
(ii) recovering the lipase from the cultured microorganism or culture supernatant thereof.
제3항 또는 제4항의 리파아제 (lipase)를 유지 및 알콜과 반응시키는 단계를 포함하는, 바이오디젤의 제조방법.
4. A method for producing biodiesel comprising the steps of: maintaining a lipase of claim 3 or 4 and reacting it with an alcohol.
KR1020160032857A 2016-03-18 2016-03-18 Novel lipase from yeast Candida butyri SH-14 and the Use thereof KR101837130B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160032857A KR101837130B1 (en) 2016-03-18 2016-03-18 Novel lipase from yeast Candida butyri SH-14 and the Use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160032857A KR101837130B1 (en) 2016-03-18 2016-03-18 Novel lipase from yeast Candida butyri SH-14 and the Use thereof

Publications (2)

Publication Number Publication Date
KR20170108635A KR20170108635A (en) 2017-09-27
KR101837130B1 true KR101837130B1 (en) 2018-03-09

Family

ID=60036553

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160032857A KR101837130B1 (en) 2016-03-18 2016-03-18 Novel lipase from yeast Candida butyri SH-14 and the Use thereof

Country Status (1)

Country Link
KR (1) KR101837130B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102170228B1 (en) * 2018-07-30 2020-10-26 한국생명공학연구원 A mutant lipase having enhanced transesterification activity and its application for biodiesel production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011008231A2 (en) 2009-05-06 2011-01-20 Dna 2.0 Inc. Biotransformation using genetically modified candida
JP2013534136A (en) 2010-11-09 2013-09-02 花王株式会社 Method for producing ceramide and / or glucosylceramide production promoter
US20150094483A1 (en) 2009-05-06 2015-04-02 Jon E. Ness Biotransformation using genetically modified candida

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011008231A2 (en) 2009-05-06 2011-01-20 Dna 2.0 Inc. Biotransformation using genetically modified candida
US20150094483A1 (en) 2009-05-06 2015-04-02 Jon E. Ness Biotransformation using genetically modified candida
US20150218486A1 (en) 2009-05-06 2015-08-06 Synthezyme Llc Oxidation of compounds using genetically modified candida
JP2013534136A (en) 2010-11-09 2013-09-02 花王株式会社 Method for producing ceramide and / or glucosylceramide production promoter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of the American Oil Chemists’Society.제69권,제11호,1088-1097면(1992)

Also Published As

Publication number Publication date
KR20170108635A (en) 2017-09-27

Similar Documents

Publication Publication Date Title
CN111378585B (en) Pichia pastoris mutant strain for expressing exogenous gene
EP1275711B1 (en) Lipase/acyltransferase from Candida parapsilosis
CN109280656B (en) Recombinant beauveria bassiana proteinase K mutant PK-M1 and preparation method thereof
US20040142441A1 (en) Enzymes with lipase/acyltransferase activity, nucleic acids encoding the same and methods of use thereof
CN108239648B (en) Method for efficiently expressing rhizomucor miehei lipase
CN109207460B (en) Recombinant beauveria bassiana proteinase K mutant PK-M2 and preparation method thereof
KR102170228B1 (en) A mutant lipase having enhanced transesterification activity and its application for biodiesel production
KR101779890B1 (en) A microorganism having enhanced levan fructotransferase productivity and a method of producing difructose anhydride IV using the microorganism
KR101837130B1 (en) Novel lipase from yeast Candida butyri SH-14 and the Use thereof
CN106754818B (en) Heat-resistant esterase mutant and preparation method and application thereof
KR101460228B1 (en) Mutant lipase with advanced activity and process for production bio-diesel using the same
US20230080079A1 (en) Mutant lipase and use thereof
KR102181315B1 (en) Mutant lipases of Rhizomucor miehei having enhanced transesterification activity and a method of producing the lipase
EP1130100A1 (en) Modified lipolytic enzymes and their use
KR102237465B1 (en) Recombinant yeast secreting inulosucrase and a method of producing fructooligosaccharides
JP6839424B2 (en) Selective secretory technology of proteins in fungi
US20230250406A1 (en) Mutant lipase and use thereof
Van Heusden et al. The Saccharomyces cerevisiae TGL2 gene encodes a protein with lipolytic activity and can complement an Escherichia coli diacylglycerol kinase disruptant
KR101826927B1 (en) A microorganism having enhanced levansucrase productivity and a method of producing levan using the microorganism
KR102225223B1 (en) Method for producing microalgae with thinned cell wall by controlling expression of polysaccharide lyase or cellulose synthase
RU2728240C1 (en) Method for producing secreted fully functional phospholipase a2 in saccharomyces cerevisiae yeast, a precursor protein for implementing said method (versions)
Simatupang et al. Lipolytic activity of Itb1. 1 and Lk3 thermostable lipases expressed in Escherichia coli and Pichia pastoris
KR102613937B1 (en) Yeast strain in which all genes involved in galactose utilization are deleted and method for producing recombinant protein using the same
KR101960450B1 (en) Method of producing product using microorganism containing Daucus carota Hsp17.7 gene
CN111378586B (en) Pichia mutant strain for expressing exogenous gene

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant