KR101779890B1 - A microorganism having enhanced levan fructotransferase productivity and a method of producing difructose anhydride IV using the microorganism - Google Patents

A microorganism having enhanced levan fructotransferase productivity and a method of producing difructose anhydride IV using the microorganism Download PDF

Info

Publication number
KR101779890B1
KR101779890B1 KR1020150094730A KR20150094730A KR101779890B1 KR 101779890 B1 KR101779890 B1 KR 101779890B1 KR 1020150094730 A KR1020150094730 A KR 1020150094730A KR 20150094730 A KR20150094730 A KR 20150094730A KR 101779890 B1 KR101779890 B1 KR 101779890B1
Authority
KR
South Korea
Prior art keywords
ala
thr
ser
leu
levan
Prior art date
Application number
KR1020150094730A
Other languages
Korean (ko)
Other versions
KR20170004415A (en
Inventor
손정훈
배정훈
성봉현
고현준
박순호
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020150094730A priority Critical patent/KR101779890B1/en
Publication of KR20170004415A publication Critical patent/KR20170004415A/en
Application granted granted Critical
Publication of KR101779890B1 publication Critical patent/KR101779890B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/02Carbon-oxygen lyases (4.2) acting on polysaccharides (4.2.2)
    • C12Y402/02016Levan fructotransferase (DFA-IV-forming) (4.2.2.16)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 레반 과당전이효소 (levan fructotransferase)를 코딩하는 핵산 및 단백질 분비 융합 인자 (Translational fusion partner, TFP)를 코딩하는 핵산을 포함하는 레반 과당전이효소 분비 발현 카세트, 상기 카세트를 포함하는 벡터, 상기 카세트 또는 벡터를 포함하는 재조합 미생물, 및 상기 재조합 미생물을 이용한 레반 과당전이효소 및 디프럭토스 언하이드리드 IV (difructose anhydride IV)의 제조방법에 관한 것이다.
본 발명의 재조합 미생물은 단백질 분비 융합 인자를 이용하여 재조합 레반 과당전이효소를 우수한 효율로 분비 발현할 수 있으며, 상기 미생물로부터 생산된 레반 과당전이효소를 레반 (levan)과 반응시키거나, 또는 상기 미생물을 레반을 포함한 배지에서 발효시켜 디프럭토스 언하이드리드 IV를 효과적으로 생산할 수 있다.
The present invention relates to a Levan fructosyltransferase secretion expression cassette comprising a nucleic acid encoding levan fructotransferase and a nucleic acid encoding a translational fusion partner (TFP), a vector containing the cassette, A cassette or a vector, and a process for producing a levansucrose transferase and a difructose anhydride IV using the recombinant microorganism.
The recombinant microorganism of the present invention can secrete recombinant levan fructose transferase with excellent efficiency by using a protein secretion fusion factor and can be obtained by reacting the levan fructose transferase produced from the microorganism with levan, Can be fermented in a medium containing Levan to effectively produce diproprathiane hydride IV.

Description

레반 과당전이효소 생산능이 향상된 균주 및 이를 이용한 디프럭토스 언하이드리드 IV 생산방법 {A microorganism having enhanced levan fructotransferase productivity and a method of producing difructose anhydride IV using the microorganism}[0001] The present invention relates to a microorganism having enhanced levulinotransferase activity and a method for producing the same,

본 발명은 레반 과당전이효소 (levan fructotransferase)를 코딩하는 핵산 및 단백질 분비 융합 인자 (Translational fusion partner, TFP)를 코딩하는 핵산을 포함하는 레반 과당전이효소 분비 발현 카세트, 상기 카세트를 포함하는 벡터, 상기 카세트 또는 벡터를 포함하는 재조합 미생물, 및 상기 재조합 미생물을 이용한 레반 과당전이효소 또는 디프럭토스 언하이드리드 IV (difructose anhydride IV)의 제조 방법에 관한 것이다.
The present invention relates to a Levan fructosyltransferase secretion expression cassette comprising a nucleic acid encoding levan fructotransferase and a nucleic acid encoding a translational fusion partner (TFP), a vector containing the cassette, A cassette or a vector, and a process for producing a levansucrose transferase or difructose anhydride IV using the recombinant microorganism.

디프럭토스 언하이드리드 (difructose anhydride, DFA)는 과당 중합체로부터 생성되는 이당체로서 과당 2분자가 서로의 환원형 말단과 비환원성 수산기가 결합된 가장 작은 환상 이당류로 구조적인 특징으로 인하여 생체내에서 미네랄 이온 (칼슘, 철분)의 흡수촉진 기능이 탁월하여 빈혈, 골다공증 예방 및 개선의 효능을 가지고 있는 기능성 소재이다 (J Ind Microbiol Biotechnol 2014, 41:893-906). Difructose anhydride (DFA) is a disaccharide produced from fructose polymers. It is the smallest cyclic disaccharide in which two molecules of fructose are bound to each other by a reducing end and a non-reducing hydroxyl group. (J Ind Microbiol Biotechnol 2014, 41: 893-906), which has an excellent absorption-promoting function of mineral ions (calcium and iron) and has an effect of preventing and improving anemia and osteoporosis.

이 중, DFA-IV는 또 다른 과당중합체인 레반으로부터 레반 과당전이효소에 의하여 생성된다. DFA를 생산하는 것으로 밝혀진 미생물은 주로 아쓰로박터 (Arthrobacter) 속에서 발견되었으나, 아쓰로박터 속 미생물로부터 발현된 레반 과당전이효소를 DFA-IV 생산에 사용할 경우 레반 과당전이효소의 발현량이 낮기 때문에 효소 생산비용이 증가하는 단점이 있었다. 이러한 단점을 극복하기 위하여 아쓰로박터 속 미생물 유래의 레반 과당전이효소 유전자를 클로닝하여 제조된 대장균을 이용하여 재조합 레반 과당전이효소를 생산하는 방법이 여러 그룹에서 보고되었으며, 이를 통해 레반으로부터 DFA-IV 생산을 위한 효소 공정이 개발되었지만 (Letters in Applied Microbiology 2005, 40: 228-234), 전환율은 낮은 수준이었다.
Among them, DFA-IV is produced by Levan fructosyl transferase from Levan, another fructose polymer. The microorganisms found to produce DFA were found mainly in Arthrobacter . However, when Levan fructose transferase expressed from microorganisms of the genus Arthrobacter is used for the production of DFA-IV, the expression level of levan fructose transferase is low, There was a disadvantage in increasing. In order to overcome this disadvantage, a method of producing a recombinant levan fructosyltransferase using E. coli prepared by cloning Levan fructosyltransferase gene derived from a microorganism of the genus Astrobacter has been reported in various groups, and DFA-IV production (Letters in Applied Microbiology 2005, 40: 228-234), the conversion was low.

레반으로부터 효율적인 DFA-IV 생산을 위한 핵심적인 기술은 레반 과당전이효소의 재조합 대량 생산 기술이다. 미생물을 이용하여 레반 과당전이효소와 같은 외래 단백질을 대량 발현하는 경우 숙주세포나 목적 단백질의 특징에 따라서 단백질의 발현량, 수용성 여부, 발현 장소, 수식 (modification) 등이 각기 다르므로 목적 단백질에 가장 적합한 발현 시스템을 선택해야만 효율적인 생산 시스템을 구축 할 수 있다. 일반적으로 대장균을 숙주시스템으로 이용하고 있으나, 대장균에서 재조합 레반 과당전이효소를 생산할 경우 대부분 활성형으로 발현되지만 과발현이 되거나 발현 조건이 맞지 않을 경우 활성이 없는 불용성 (inclusion bodies) 형태로 축적되어 전반적인 활성이 낮아지는 경우가 자주 발생하고 있다. 또한 대장균은 인체에 대한 안전성이 확보되지 않아 생산된 효소를 이용해 만들어진 DFA의 인체사용이 제한을 받고 있으므로 효모 등 GRAS (Generally Recognized As Safe) 미생물의 활용 필요성이 제기되고 있다. A key technology for the efficient production of DFA-IV from Levan is the recombinant mass production technology of levan fructose transferase. In the case of mass expression of exogenous proteins such as levan fructosyltransferase using microorganisms, depending on the characteristics of the host cell and the target protein, the expression level, water solubility, expression site, and modification of the protein are different from each other, An efficient production system can be constructed only by selecting an appropriate expression system. Generally, Escherichia coli is used as a host system. However, when Escherichia coli produces recombinant levan fructose-transferase, it is mostly expressed as an active form, but when it is over-expressed or inadequate in expression conditions, it accumulates as insoluble inclusion bodies, Is often lowered. In addition, since E. coli is not safe for human body, the use of DFA produced by using the produced enzyme is restricted, and therefore, there is a need to use a microorganism called GRAS (Generally Recognized As Safe) such as yeast.

효모 사카로마이세스 세레비지에 (Saccharomyces cerevisiae)는 GRAS 미생물로서, 고등생물과 동일한 진핵세포로서 고등생물 유래의 유전자와 전사 및 번역 시스템이 유사하며 스플라이싱 (splicing)을 통한 인트론 (intron)의 제거 시스템과 고등동물의 골지체와 유사한 분비 기관을 갖추고 있다. 따라서, 번역 후 수식 (post-translational modification)을 통해 활성형 단백질을 분비 생산할 수 있으며 재조합 단백질을 배양 배지로 분비 생산할 경우 여러 단계의 복잡한 정제과정을 거치지 않고도 쉽게 순수한 효소를 분리할 수 있는 장점이 있다. 하지만, 그럼에도 불구하고 기존 분비 발현 시스템으로는 효소 생산성이 낮아 경쟁력을 확보할 수 없었기 때문에 현재까지 레반 과당전이효소를 효모에서 생산한 보고는 없었다.
Yeast Saccharomyces cerevisiae cerevisiae ) is a GRAS microorganism, which is the same eukaryotic cell as a higher organism, similar in transcription and translation system to genes derived from higher organisms, and is similar to the intron removal system through splicing and secretion similar to the Golgi apparatus of higher animals It has an institution. Therefore, it is possible to secrete an active protein through post-translational modification, and when the recombinant protein is secreted by a culture medium, the pure enzyme can be easily separated without complicated purification steps . Nevertheless, there is no report on the production of levansuclease transferase in yeast, since the conventional secretion expression system was not able to secure competitiveness due to low enzyme productivity.

이에, 본 발명자들은 레반 과당전이효소를 미생물에서 대량 분비 생산하는 시스템을 개발하기 위하여, 단백질 분비 융합 인자 기술 (대한민국 등록특허 제10-0975596호)을 사용하여 재조합 레반 과당전이효소를 효과적으로 미생물의 세포 밖으로 분비시킬 수 있는 단백질 분비 융합 인자를 선별하였다. 상기 과정을 통해 선별된 단백질 분비 융합 인자 유전자와 레반 과당전이효소 유전자가 연결된 발현벡터를 미생물에 도입하여 형질전환체를 제조하고, 이로부터 레반 과당전이효소를 대량 분비 생산할 수 있음을 확인하였다. 또한, 상기 생산된 레반 과당전이효소를 이용하여 레반으로부터 DFA-IV 생산에 적용한 결과 효율적으로 레반으로부터 DFA-IV가 전환 생산됨을 확인하였고, 상기 레반 과당전이효소를 분비 발현하는 재조합 미생물을 레반을 함유하는 배지에서 배양하면 레반으로부터 직접 DFA-IV의 생산이 가능함을 확인하여 본 발명을 완성하였다.
Accordingly, the inventors of the present invention have found that, in order to develop a system for mass production of levan fructosyltransferase from microorganisms, recombinant levan fructose transfection enzyme can be effectively used as a microorganism cell by using a protein secretion fusion technology (Korean Patent No. 10-0975596) The protein secretion factors that can secrete out were selected. Through the above process, it was confirmed that a transformant was introduced into a microorganism by linking the selected protein secretion factor gene and a Levan fructosyltransferase gene-linked expression vector to produce a recombinant lepane fructosyltransferase. Further, it was confirmed that DFA-IV was efficiently produced from Levan by the production of levan-fransonase from Levan using the produced levan fructose-transferase, and it was confirmed that the recombinant microorganism secreted and expressed Levan- The present inventors completed the present invention by confirming that DFA-IV can be directly produced from Levan.

본 발명의 하나의 목적은 레반 과당전이효소 (levan fructotransferase)를 코딩하는 핵산 및 단백질 분비 융합 인자 (Translational fusion partner, TFP)를 코딩하는 핵산을 포함하는, 레반 과당전이효소 분비 발현 카세트를 제공하는 것이다.One object of the present invention is to provide a Levan fructosylase secretion expression cassette comprising a nucleic acid encoding levan fructotransferase and a nucleic acid encoding a translational fusion partner (TFP) .

본 발명의 또 다른 목적은 상기 카세트를 포함하는 벡터를 제공하는 것이다.Yet another object of the present invention is to provide a vector comprising said cassette.

본 발명의 또 다른 목적은 레반 과당전이효소 (levan fructotransferase)를 코딩하는 핵산 및 단백질 분비 융합 인자를 코딩하는 핵산을 포함하는, 레반 과당전이효소 분비 발현 카세트를 함유하는, 재조합 미생물을 제공하는 것이다.It is another object of the present invention to provide a recombinant microorganism containing a Levan fructose transferase secretion expression cassette comprising a nucleic acid encoding levan fructotransferase and a nucleic acid encoding a protein secretion fusion factor.

본 발명의 또 다른 목적은 (i) 상기 재조합 미생물을 배양하는 단계; 및 (ii) 상기 배양된 미생물 또는 이의 배양 상등액으로부터 레반 과당전이효소를 회수하는 단계를 포함하는, 레반 과당전이효소 (levan fructotransferase)의 제조방법을 제공하는 것이다.Yet another object of the present invention is to provide a method for producing a recombinant microorganism which comprises (i) culturing the recombinant microorganism; And (ii) recovering levan fructosyltransferase from the cultured microorganism or culture supernatant thereof. The present invention also provides a method for producing Levan fructotransferase.

본 발명의 또 다른 목적은 상기 재조합 미생물 또는 상기 제조방법으로 제조된 레반 과당전이효소를 레반과 반응시키는 단계를 포함하는, 디프럭토스 언하이드리드 IV (difreuctose anhydride IV)의 제조방법을 제공하는 것이다.
It is still another object of the present invention to provide a process for preparing difreuctose anhydride IV comprising reacting the recombinant microorganism or the levan fructose transferase produced by the production method with levan .

상기 목적을 달성하기 위하여, 본 발명은 하나의 양태로서 레반 과당전이효소 (levan fructotransferase)를 코딩하는 핵산 및 단백질 분비 융합 인자 (Translational fusion partner, TFP)를 코딩하는 핵산을 포함하는, 레반 과당전이효소 분비 발현 카세트를 제공한다.
In order to achieve the above object, the present invention provides, as an embodiment, a nucleic acid encoding a levan fructotransferase and a nucleic acid encoding a translational fusion partner (TFP) Secretion expression cassette.

본 발명에서는 디프럭토스 언하이드리드 IV (difructose anhydride IV)를 고효율로 생산하기 위해 단백질 분비 융합 인자를 이용하여 미생물로부터 레반 과당전이효소를 분비 생산하였으며, 이를 위해 레반 과당전이효소를 코딩하는 핵산 및 단백질 분비 융합 인자를 코딩하는 핵산을 포함하는 레반 과당전이효소 분비 발현 카세트, 상기 카세트를 포함하는 재조합 벡터 및 재조합 미생물을 제조한 후, 이를 이용하여 디프럭토스 언하이드리드 IV 생산에 유용한 레반 과당전이효소를 생산하고자 하였다.In order to produce difructose anhydride IV with high efficiency, a recombinant fibrin glycosyltransferase was secreted from a microorganism using a protein secretion fusion factor. For this purpose, a nucleic acid encoding a levan fructose transferase A recombinant vector containing the cassette, and a recombinant microorganism having the Levan fructosyltransferase secretion expression cassette comprising the nucleic acid encoding the protein secretion fusion factor were prepared and then used to obtain Levan fructosyl transferase Enzymes.

상기 “디프럭토스 언하이드리드 (difructose anhydride, DFA)”는 이눌린 (inulin)을 황산 처리하여 과당 (fructose) 시럽을 제조하는 과정 중 생성되며, 2 개의 과당의 환원형 말단이 서로 다른 과당 말단의 비환원성 수산기에 결합된 환상 2 당으로, 현재까지 DFA I 내지 V로 5 종이 알려져 있다. 이 중 디프럭토스 언하이드리드 IV의 구조는 하기 화학식 1과 같다.
The above-mentioned "difructose anhydride (DFA)" is produced during the process of producing fructose syrup by treatment of inulin with sulfuric acid, and the reducing end of the two fructose is formed at the end of the fructose Cyclic divalent sugar bound to a non-reducing hydroxyl group. Up to now, five classes of DFA I to V have been known. Of these, the structure of diproxthanhydride IV is represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure 112015064473105-pat00001

Figure 112015064473105-pat00001

디프럭토스 언하이드리드는 동물의 체내에서 분해되지 않는 비소화성, 비발효성 이당류로 저칼로리 감미료로 사용될 수 있으며, 충치 발생을 억제하고 비피더스 (Bifidus) 균 증식 인자로 이용될 수 있다. 또한, 생체 내 미네랄 흡수 촉진인자 등으로도 사용될 수 있다. 그러나, 이에 제한되는 것은 아니다.Diprutosteride hydride is a non-digestible, non-toxic, non-degradable disaccharide that can be used as a low calorie sweetener in the body of an animal and can be used as a bifidus microflora growth factor to inhibit tooth decay. It can also be used as a mineral absorption promoting factor in vivo. However, it is not limited thereto.

본 발명에서 용어, “레반 과당전이효소 (levan fructotransferase)”는 레반 (levan)을 기질로 하여 디프럭토스 언하이드리드 IV (DFA-IV)를 생산하는 효소를 말한다. 본 발명에서는 lftA로도 명명된다. 상기 레반 과당전이효소는 구체적으로 아쓰로박터 우레아파시엔스 (Arthrobacter ureafaciens) 유래일 수 있고, 더욱 구체적으로 서열번호 8의 아미노산 서열을 가지는 레반 과당전이효소일 수 있으나, 이에 제한되는 것은 아니며 디프럭토스 언하이드리드 IV 생성능을 가지는 효소라면 그 유래나 서열에 관계 없이 모두 포함될 수 있다.The term " levan fructotransferase " in the present invention refers to an enzyme that produces diplactose anhydride IV (DFA-IV) using levan as a substrate. In the present invention, it is also called lftA. The levan fructose transferase is specifically an Arthrobacter ureafaciens , more specifically, a levan fumaryltransferase having the amino acid sequence of SEQ ID NO: 8, but is not limited thereto, and any enzyme having the ability to produce diproprathionidolide IV may be used regardless of its origin or sequence Can all be included.

따라서 서열번호 8의 아미노산 서열을 포함하거나, 또는 상기 서열번호 8의 아미노산 서열의 보존서열을 포함하고 하나 이상의 위치에서 1 개 또는 다수 개 (단백질의 아미노산 잔기의 입체 구조에 있어서의 위치나 종류에 따라서 상이하지만, 구체적으로는 2 내지 20 개, 보다 구체적으로는 2 내지 10 개, 보다 더 구체적으로는 2 내지 5 개)의 아미노산이 치환, 결실, 삽입, 첨가 또는 역위된 아미노산 서열을 포함할 수 있는데, 상기 레반 과당전이효소의 활성을 유지 또는 강화시킬 수 있는 한, 서열번호 8의 아미노산 서열에 대하여, 80 % 이상, 구체적으로는 90 % 이상, 보다 구체적으로는 95 % 이상, 특히 구체적으로는 97 % 이상의 상동성을 갖는 아미노산 서열을 포함할 수 있고, 상기 아미노산의 치환, 결실, 삽입, 첨가 또는 역위 등에는 상기 레반 과당전이효소의 활성을 함유하는 미생물에서 천연적으로 생기는 돌연변이 서열 또는 인위적인 변이 서열까지도 포함할 수 있다.Thus, the polypeptide of the present invention comprises the amino acid sequence of SEQ ID NO: 8, or the conserved sequence of the amino acid sequence of SEQ ID NO: 8, and has one or more amino acid residues at one or more positions Amino acid sequence may be substituted, deleted, inserted, added or inverted, specifically 2 to 20, more particularly 2 to 10, more particularly 2 to 5 amino acids) As long as it can maintain or enhance the activity of the levan fructosyltransferase, it is preferably 80% or more, more preferably 90% or more, more particularly 95% or more, particularly 97 % Or more of the amino acid sequence, and the substitution, deletion, insertion, addition, or inversion of the amino acid may include, for example, In the micro-organisms containing an active can include even the mutant sequence or artificial sequence variation occurring naturally.

본 발명의 용어, “상동성”은 야생형 (wild type) 단백질의 아미노산 서열 또는 이를 코딩하는 염기 서열과 유사한 정도를 나타내기 위한 것으로서, 본 발명의 아미노산 서열 또는 염기 서열과 상기와 같은 퍼센트 이상의 동일한 서열을 가지는 서열을 포함한다. 이러한 상동성은 두 서열을 육안으로 비교하여 결정할 수도 있으나, 비교 대상이 되는 서열을 나란히 배열하여 상동성 정도를 분석해주는 생물정보 알고리즘 (bioinformatic algorithm)을 사용하여 결정할 수 있다. 상기 두 개의 아미노산 서열 사이의 상동성은 백분율로 표시할 수 있다. 유용한 자동화된 알고리즘은 Wisconsin Genetics Software Package (Genetics Computer Group, Madison, W, USA)의 GAP, BESTFIT, FASTA와 TFASTA 컴퓨터 소프트웨어 모듈에서 이용 가능하다. 상기 모듈에서 자동화된 배열 알고리즘은 Needleman & Wunsch와 Pearson & Lipman과 Smith & Waterman 서열 배열 알고리즘을 포함한다. 다른 유용한 배열에 대한 알고리즘과 상동성 결정은 FASTP, BLAST, BLAST2, PSIBLAST와 CLUSTAL W를 포함하는 소프트웨어에서 자동화되어 있다.
The term " homology " of the present invention is intended to indicate a degree similar to an amino acid sequence of a wild-type protein or a nucleotide sequence encoding the amino acid sequence, and the amino acid sequence or nucleotide sequence of the present invention is preferably identical to the above- Lt; / RTI > This homology can be determined by comparing the two sequences visually, but can be determined using a bioinformatic algorithm that aligns the sequences to be compared and analyzes the degree of homology. The homology between the two amino acid sequences can be expressed as a percentage. Useful automated algorithms are available in the GAP, BESTFIT, FASTA and TFASTA computer software modules of the Wisconsin Genetics Software Package (Genetics Computer Group, Madison, Wis. USA). The automated array algorithms in this module include Needleman & Wunsch, Pearson & Lipman, and Smith & Waterman sequence alignment algorithms. Algorithm and homology determination for other useful arrays is automated in software including FASTP, BLAST, BLAST2, PSIBLAST and CLUSTAL W.

본 발명에서 용어 “단백질 분비 융합 인자 (translational fusion partner: TFP)”는 목적 단백질의 분비에 유용한 인자를 말한다. 상기 단백질 분비 융합 인자는 한국공개특허 제10-2008-0042823호에 개시된 것일 수 있고, 구체적으로 서열번호 9의 TFP 1, 서열번호 10의 TFP 2, 서열번호 11의 TFP 3, 서열번호 12의 TFP 4, 서열번호 13의 TFP 5, 서열번호 14의 TFP 6, 서열번호 15의 TFP 7, 서열번호 16의 TFP 8, 서열번호 17의 TFP 9, 서열번호 18의 TFP 10, 서열번호 19의 TFP 11, 서열번호 20의 TFP 12, 서열번호 21의 TFP 13, 서열번호 22의 TFP 14, 서열번호 23의 TFP 15, 서열번호 24의 TFP 16, 서열번호 25의 TFP 17, 서열번호 26의 TFP 18, 서열번호 27의 TFP 19, 서열번호 28의 TFP 20, 서열번호 29의 TFP 21, 서열번호 30의 TFP 22, 서열번호 31의 TFP 23, 또는 서열번호 32의 TFP 24일 수 있으나, 목적 단백질의 분비 발현을 향상시킬 수 있는 인자라면 제한 없이 포함될 수 있다.In the present invention, the term " translational fusion partner (TFP) " refers to a factor useful for secretion of a target protein. The protein secretion factor may be one disclosed in Korean Patent Laid-Open No. 10-2008-0042823, and more specifically, TFP 1 of SEQ ID NO: 9, TFP 2 of SEQ ID NO: 10, TFP 3 of SEQ ID NO: 11, TFP 4, TFP 5 of SEQ ID NO: 13, TFP 6 of SEQ ID NO: 15, TFP 7 of SEQ ID NO: 15, TFP 8 of SEQ ID NO: 16, TFP 9 of SEQ ID NO: 17, TFP 10 of SEQ ID NO: 18, TFP 11 of SEQ ID NO: 19 TFP 14 of SEQ ID NO: 22, TFP 14 of SEQ ID NO: 22, TFP 15 of SEQ ID NO: 23, TFP 16 of SEQ ID NO: 24, TFP 17 of SEQ ID NO: 25, TFP 18 of SEQ ID NO: 26, TFP 19 of SEQ ID NO: 27, TFP 20 of SEQ ID NO: 28, TFP 21 of SEQ ID NO: 29, TFP 22 of SEQ ID NO: 30, TFP 23 of SEQ ID NO: 31 or TFP 24 of SEQ ID NO: 32, Any factor capable of improving expression can be included without limitation.

따라서 상기 TFP는 서열번호 9 내지 32 중 어느 하나의 아미노산 서열을 포함할 수 있다. 또는 상기 TFP는 상기 서열번호 9 내지 32의 아미노산 서열 중 어느 하나의 보존서열을 포함하면서 하나 이상의 위치에서 1 개 또는 다수 개 (단백질의 아미노산 잔기의 입체 구조에 있어서의 위치나 종류에 따라서 상이하지만, 구체적으로는 2 내지 20 개, 보다 구체적으로는 2 내지 10 개, 보다 더 구체적으로는 2 내지 5 개이나, 이에 제한되지 않는다.)의 아미노산이 치환, 결실, 삽입, 첨가 또는 역위된 아미노산 서열을 포함할 수 있는데, 상기 목적 단백질의 분비 발현을 향상시킬 수 있는 한, 서열번호 9 내지 32 중 어느 하나의 아미노산 서열에 대하여, 80 % 이상, 구체적으로는 90 % 이상, 보다 구체적으로는 95 % 이상, 특히 구체적으로는 97 % 이상의 상동성을 갖는 아미노산 서열을 포함할 수 있고, 상기 아미노산의 치환, 결실, 삽입, 첨가 또는 역위 등에는 상기 TFP의 활성을 함유하는 미생물에서 천연적으로 생기는 돌연변이 서열 또는 인위적인 변이 서열까지도 포함할 수 있다.Thus, the TFP may comprise an amino acid sequence of any one of SEQ ID NOS: 9 to 32. Alternatively, the TFP may contain one or more amino acid residues at one or more positions (including amino acid residues in the amino acid sequence of SEQ ID NOS: 9 to 32) Specifically, 2 to 20 amino acid residues, more specifically 2 to 10 amino acid residues, more specifically 2 to 5 amino acid residues, more specifically 2 to 5 amino acid residues) As long as it can improve the secretory expression of the target protein, 80% or more, specifically 90% or more, more particularly 95% or more, of the amino acid sequence of SEQ ID NOS: 9 to 32 , Specifically, an amino acid sequence having a homology of 97% or more, and substitution, deletion, insertion, addition, or inversion of the amino acid may include It can be included in a microorganism containing a mutant sequence of the TFP activated even or artificial mutant sequence produced naturally.

나아가, 상기 재조합 레반 과당전이효소가, 아쓰로박터 우레아파시엔스 (Arthrobacter ureafaciens) 유래인 경우 레반 과당전이효소와 서열번호 15의 TFP 7, 서열번호 16의 TFP 8, 서열번호 17의 TFP 9, 서열번호 21의 TFP 13 또는 서열번호 27의 TFP 19가 연결된 것일 수 있으나, 이에 제한되는 것은 아니다.Further, when the recombinant levan fructose transferase is derived from Arthrobacter ureafaciens , it is preferable that the Levan fructosyl transferase is selected from the group consisting of TFP7 of SEQ ID NO: 15, TFP8 of SEQ ID NO: 16, TFP9 of SEQ ID NO: 17, TFP 13 of SEQ ID NO: 21 or TFP 19 of SEQ ID NO: 27 may be linked, but are not limited thereto.

상기 레반 과당전이효소 분비 발현 카세트에 있어서, 포함되는 레반 과당전이효소를 코딩하는 핵산 및 단백질 분비 융합 인자를 코딩하는 핵산은 링커 (linker)로 서로 연결된 것일 수 있다.In the Levan fructosyltransferase expression cassette, the nucleic acid encoding the contained levan fructose transferase and the nucleic acid encoding the protein secretion fusion factor may be linked to each other by a linker.

상기 링커는 프로테아제 인식 서열 또는 친화성 태그 (affinity tag)를 포함하는 것일 수 있다.The linker may comprise a protease recognition sequence or an affinity tag.

또한, 본 발명에서 사용되는 레반 과당전이효소를 코딩하는 핵산 서열은 본 발명의 선형 벡터와 세포 내에서 재조합 시키는데 사용되는 링커 DNA를 포함할 수 있다. 이러한 링커 서열을 레반 과당전이효소를 코딩하는 핵산 서열에 부가하는 것은 일반적인 DNA 기술, 예컨대 PCR 및/또는 제한효소 절단 및 연결로 수행할 수 있다.In addition, the nucleic acid sequence coding for the levan fructose transferase used in the present invention may include linker DNA used for recombination in cells with the linear vector of the present invention. Addition of such a linker sequence to a nucleic acid sequence encoding a levan fructosyltransferase can be carried out by conventional DNA techniques such as PCR and / or restriction enzyme cleavage and linkage.

본 발명의 링커 DNA는 충분한 길이여야 하고, 숙주 세포 내로 도입되어 세포 내에서 레반 과당전이효소를 코딩하는 핵산 서열이 TFP를 코딩하는 핵산 서열을 포함하는 선형 벡터안에 재조합을 일으킬 수 있도록 선형 벡터의 핵산 서열 일부와 충분한 상동성을 가지는 것일 수 있다. 구체적으로, 상기 링커 DNA는 20 bp 이상의 길이, 예컨대 30 또는 40 bp 이상의 길이를 가질 수 있으나, 이에 제한되지 않는다. 보다 구체적으로, 상기 링커 DNA는 선형 벡터와 최소 80 % 정도 상동성을 가지며, 85 %, 90 %, 95 % 또는 99 %의 상동성을 가질 수 있으나, 이에 제한되지 않는다.The linker DNA of the present invention should be of sufficient length and introduced into a host cell so that the nucleic acid sequence encoding the Levan fucosyltransferase in the cell can be recombined into a linear vector containing the nucleic acid sequence encoding TFP, May be of sufficient homology with a portion of the sequence. Specifically, the linker DNA may have a length of 20 bp or more, such as 30 or 40 bp or more, but is not limited thereto. More specifically, the linker DNA is at least 80% homologous to the linear vector and may have 85%, 90%, 95% or 99% homology, but is not limited thereto.

일례로서, 링커 DNA는 프로테아제 인식 서열을 코딩하여 TFP와 목적 단백질 간의 접합 부위에서 절단을 일으킬 수 있다. 예컨대, 링커 DNA는 효모 kex2p 프로테아제 인식 서열 (Lys-Arg를 포함하는 아미노산 서열), 포유동물 퓨린 인식 서열 (Arg-X-X-Arg를 포함하는 아미노산 서열), Factor-Xa 인식 서열 (Ile-Glu-Gly-Arg를 포함하는 아미노산 서열), 엔테로키나제-인식 서열 (Asp-Asp-Lys를 포함하는 아미노산 서열), 서브틸리신 인식 서열 (Ala-Ala-His-Tyr를 포함하는 아미노산 서열), 담배식각바이러스 인식 서열 (Glu-Asn-Leu-Tyr-Phe-Gln-Gly를 포함하는 아미노산 서열), 유비퀴틴 가수분해효소 인식 서열 (Arg-Gly-Gly를 포함하는 아미노산 서열) 또는 트롬빈 인식 서열 (Arg-Gly-Pro-Arg를 포함하는 아미노산 서열)을 코딩할 수 있다.As an example, the linker DNA can encode a protease recognition sequence to cause cleavage at the junction between TFP and the target protein. For example, the linker DNA comprises a yeast kex2p protease recognition sequence (amino acid sequence comprising Lys-Arg), a mammal purine recognition sequence (amino acid sequence comprising Arg-XX-Arg), a Factor-Xa recognition sequence (Ile-Glu-Gly -Ag), an enterokinase-recognition sequence (amino acid sequence containing Asp-Asp-Lys), a subtilisin recognition sequence (amino acid sequence comprising Ala-His-Tyr) (Amino acid sequence containing Glu-Asn-Leu-Tyr-Phe-Gln-Gly), ubiquitin hydrolase recognition sequence (amino acid sequence containing Arg-Gly-Gly) or thrombin recognition sequence (Arg- Pro-Arg). ≪ / RTI >

본 발명에서 용어 “친화성 태그”는 재조합 융합 단백질 또는 이를 코딩하는 핵산에 도입될 수 있는 펩타이드 또는 핵산 서열로서 다양한 목적으로 사용될 수 있으며, 예를 들어 목적 단백질의 정제 효율을 높이기 위한 것일 수 있다. 상기 친화성 태그는 GST, MBP, NusA, 티오레독신 (thioredoxin), 유비퀴틴, FLAG, BAP, HIS, STREP, CBP, CBD, 또는 S-태그일 수 있고, 구체적으로는 HIS 태그일 수 있으나, 이에 제한되는 것은 아니다.The term " affinity tag " in the present invention can be used for various purposes as a peptide or nucleic acid sequence that can be introduced into a recombinant fusion protein or a nucleic acid encoding the same, for example, to enhance purification efficiency of a target protein. The affinity tag may be GST, MBP, NusA, thioredoxin, ubiquitin, FLAG, BAP, HIS, STREP, CBP, CBD or S-tag, But is not limited to.

상기 친화성 태그는 레반 과당전이효소의 카르복시 말단 또는 아미노 말단에 연결된 것일 수 있고, 특히 카르복시 말단에 연결된 것일 수 있으나 이에 제한되는 것은 아니다.
The affinity tag may be linked to the carboxy terminus or the amino terminus of the levan fructosyl transferase, in particular, but not exclusively, to the carboxy terminus.

본 발명에서 용어 “핵산”은, DNA (gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 갖으며, 핵산 분자에서 기본 구성단위인 뉴클레오티드는 자연의 뉴클레오티드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체 (analogue)도 포함한다. 본 발명에서는 레반 과당전이효소를 코딩하는 핵산 및 단백질 분비 융합 인자를 코딩하는 핵산을 포함하는 레반 과당전이효소 분비 발현 카세트를 제공한다.The term " nucleic acid " in the present invention has a meaning inclusive of DNA (gDNA and cDNA) and RNA molecules, and the nucleotide, which is a basic constituent unit in the nucleic acid molecule, includes not only natural nucleotides, It also includes analogues. The present invention provides a Levan fructitetransferase expression cassette comprising a nucleic acid encoding levan fructose transferase and a nucleic acid encoding a protein secretion fusion factor.

본 발명의 용어, “발현 카세트”는 세포 내에서 구조 유전자의 발현에 영향을 줄 수 있는 핵산 요소를 지닌다. 자연적으로 발생되거나 합성된 핵산구조로서 일반적으로 발현 카세트는 전사되는 핵산과 프로모터를 포함한다. 본 발명의 목적상 상기 발현 카세트는 단백질 분비 융합 인자를 코딩하는 핵산 및 레반 과당전이효소를 코딩하는 핵산을 포함할 수 있으며, 특히 레반 과당전이효소의 분비를 유도하는 “레반 과당전이효소 분비 발현 카세트”로서, 레반 과당전이효소를 발현하여 분비시킬 수 있다.The term " expression cassette " of the present invention has a nucleic acid element capable of affecting the expression of a structural gene in a cell. Naturally occurring or synthesized nucleic acid constructs generally include an expression cassette that contains a transcribed nucleic acid and a promoter. For the purpose of the present invention, the expression cassette may comprise a nucleic acid encoding a protein secretion fusion factor and a nucleic acid encoding a levan fructose transferase, and in particular, a " Levan fructose transferase secretion expression cassette " "And can secrete the levan fructose transgene by expressing it.

일례로, 본 발명의 아쓰로박터 우레아파시엔스 유래 레반 과당전이효소는 서열번호 1의 핵산 서열로 코딩되는 것일 수 있으나, 이에 제한되지 않는다.For example, the Archaeobacter Ureapassin-derived levan fructose transferase of the present invention may be, but is not limited to, be encoded by the nucleic acid sequence of SEQ ID NO: 1.

또한, 일례로 본 발명의 단백질 분비 융합 인자로서, TFP 1은 서열번호 33, TFP 2는 서열번호 34, TFP 3은 서열번호 35, TFP 4는 서열번호 36, TFP 5는 서열번호 37, TFP 6은 서열번호 38, TFP 7은 서열번호 39, TFP 8은 서열번호 40, TFP 9는 서열번호 41, TFP 10은 서열번호 42, TFP 11은 서열번호 43, TFP 12는 서열번호 44, TFP 13은 서열번호 45, TFP 14는 서열번호 46, TFP 15는 서열번호 47, TFP 16은 서열번호 48, TFP 17은 서열번호 49, TFP 18은 서열번호 50, TFP 19는 서열번호 51, TFP 20은 서열번호 52, TFP 21은 서열번호 53, TFP 22는 서열번호 54, TFP 23은 서열번호 55, 또는 TFP 24는 서열번호 56의 핵산 서열로 코딩되는 것일 수 있으나, 이에 제한되지 않는다.
As examples of the fusion protein of the present invention, TFP 1 is SEQ ID NO: 33, TFP 2 is SEQ ID NO: 34, TFP 3 is SEQ ID NO: 35, TFP 4 is SEQ ID NO: 36, TFP 5 is SEQ ID NO: SEQ ID NO: 38, TFP 7, SEQ ID NO: 39, TFP 8, SEQ ID NO: 40, TFP 9, SEQ ID NO: 41, TFP 10, SEQ ID NO: SEQ ID NO: 45, TFP 14 is SEQ ID NO: 46, TFP 15 is SEQ ID NO: 47, TFP 16 is SEQ ID NO: 48, TFP 17 is SEQ ID NO 49, TFP 18 is SEQ ID NO 50, TFP 19 is SEQ ID NO 51, 52, TFP 21 is SEQ ID NO: 53, TFP 22 is SEQ ID NO: 54, TFP 23 is SEQ ID NO: 55, or TFP 24 is SEQ ID NO: 56.

본 발명은 또 다른 하나의 양태로서 상기 카세트를 포함하는 벡터를 제공한다.The present invention provides, as yet another aspect, a vector comprising said cassette.

카세트에 대하여는 상기 설명한 바와 같다.The cassette is as described above.

본 발명에서 용어 “벡터”는, 적합한 숙주 내에서 목적 단백질을 발현 시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 암호화하는 핵산의 염기서열을 함유하는 DNA 생산물을 의미하며, 특히 본 발명에서 상기 목적 단백질은 레반 과당전이효소 및 단백질 분비 융합 인자를 포함하는 재조합 융합 단백질을 의미한다. The term " vector " in the present invention means a DNA product containing a nucleotide sequence encoding a desired protein operably linked to a suitable regulatory sequence so as to be able to express the desired protein in a suitable host, , The target protein refers to a recombinant fusion protein comprising a levan fructose transferase and a protein secretion fusion factor.

상기 벡터에는, 목적 유전자의 발현의 억제 또는 증폭, 또는 유도를 위한 각종의 기능을 가진 발현 조절용 단편이나, 형질전환체의 선택을 위한 마커나 항생물질에 대한 내성 유전자, 난발현성 단백질의 분비 발현에 적합한 맞춤형 융합인자 등을 추가로 포함할 수 있다. 특히, 상기 난발현성 단백질에 적합한 맞춤형 융합 인자로서, 상기 단백질 분비 융합 인자를 사용함이 바람직할 수 있다.These vectors include expression-regulating fragments having various functions for suppressing, amplifying, or inducing expression of a target gene, genes encoding a marker for selection of a transformant, a gene resistant to antibiotics, A suitable customized fusion factor, and the like. In particular, it may be preferable to use the protein secretion fusion factor as a customized fusion factor suitable for the above-mentioned hairless protein.

본 발명의 구체적인 일실시예에서는 아쓰로박터 우레아파시엔스 유래 레반 과당전이효소를 고분비 생산하는 발현 벡터로, TFP 13 및 아쓰로박터 우레아파시엔스 유래 레반 과당전이효소 유전자를 포함하는 YGaST13-lftA-6H를 제작하였다 (도 7).
In a specific example of the present invention, YGaST13-lftA-6H containing TFP13 and Levantub fucoxan-transferase gene derived from Astrobepture urea pathces as an expression vector producing high secretion of Levan fructosyltransferase derived from Agrobacterium ureapathianae (Fig. 7).

본 발명은 또 다른 하나의 양태로서, 레반 과당전이효소 (levan fructotransferase)를 코딩하는 핵산 및 단백질 분비 융합 인자를 코딩하는 핵산을 포함하는, 레반 과당전이효소 분비 발현 카세트를 함유하는, 재조합 미생물을 제공한다.The present invention provides, in yet another aspect, a recombinant microorganism containing a Levan fructose transferase secretion expression cassette, comprising a nucleic acid encoding levan fructotransferase and a nucleic acid encoding a protein secretion fusion factor do.

레반 과당전이효소, 단백질 분비 융합 인자, 핵산, 및 레반 과당전이효소 분비 발현 카세트에 대해서는 상기 설명한 바와 같다.Levan fructosyltransferase, protein secretion fusion factor, nucleic acid, and levansucose transferase secretion expression cassette have been described above.

상기 재조합 미생물은 상기 핵산으로 형질전환시킨 미생물일 수 있다.The recombinant microorganism may be a microorganism transformed with the nucleic acid.

본 발명의 용어, “형질전환”은 핵산을 숙주세포로 도입하여 핵산이 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다.The term " transformed " of the present invention means that a nucleic acid is introduced into a host cell so that the nucleic acid becomes replicable as an extrachromosomal element or by chromosome integration completion.

본 발명의 형질전환 방법은 임의의 형질전환 방법이 사용될 수 있으며, 당업계의 통상적인 방법에 따라 용이하게 수행할 수 있다.Any transformation method of the present invention can be used, and can be easily carried out according to a conventional method in the art.

본 발명에 따른 형질전환에 사용되는 숙주 세포는 당업계에 널리 알려져 있는 숙주 세포라면 어떤 것이나 사용할 수 있으나, 본 발명의 레반 과당전이효소 유전자의 도입 효율과 발현 효율이 높은 숙주를 사용할 수 있는데, 예를 들면 박테리아, 곰팡이, 효모를 포함할 수 있다. 구체적으로 상기 재조합 미생물은 효모일 수 있고, 더 구체적으로 상기 효모는 캔디다 (Candida), 디베리오마이세스 (Debaryomyces), 한세눌라 (Hansenula), 클루이베로마이세스 (Kluyveromyces), 피키아 (Pichia), 스키조사카로마이세스 (Schizosaccharomyces), 야로이야 (Yarrowia), 사카로마이시스 (Saccharomyces), 슈완니오마이세스 (Schwanniomyces) 또는 아르술라 (Arxula) 속에 속하는 것일 수 있으며, 보다 더 구체적으로는 캔디다 유틸리스 (Candida utilis), 캔디다 보이디니 (Candida boidinii), 캔디다 알비칸스 (Candida albicans), 클루이베로마이세스 락티스 (Kluyveromyces lactis), 피키아 파스토리스 (Pichia pastoris), 피키아 스티피티스 (Pichia stipitis), 스키조사카로마이세스 폼베 (Schizosaccharomyces pombe), 사카로마이시스 세레비지에 (Saccharomyces cerevisiae), 한세눌라 폴리모르파 (Hansenula polymorpha), 야로이야 리폴리티카 (Yarrowia lipolytica), 슈완니오마이세스 옥시덴탈리스 (Schwanniomyces occidentalis) 또는 아르술라 아데니니보란스 (Arxula adeninivorans)일 수 있으나, 이에 제한되는 것은 아니다.
The host cell used for transformation according to the present invention may be any host cell well known in the art. However, it is possible to use a host having a high efficiency of introduction and expression efficiency of the levan fructose transferase gene of the present invention, For example, it can include bacteria, fungi, and yeast. Specifically, the recombinant microorganism may be yeast. More specifically, the yeast may be selected from the group consisting of Candida , Debaryomyces , Hansenula , Kluyveromyces , Pichia , The skiing can be one belonging to the genus Schizosaccharomyces , Yarrowia , Saccharomyces , Schwanniomyces or Arxula , more particularly Candida utilis Candida utilis , Candida boidinii), Candida albicans (Candida albicans), Cluj Vero Mai Seth lactis (Kluyveromyces lactis , Pichia pastoris , Pichia stipitis ), skiing investigation Schizosaccharomyces pombe ), Saccharomyces cerevisiae , Hansenula ( Hansenula polymorpha , Yarrowia lipolytica , Schwanniomyces occidentalis , or Arxula adeninivorans , but are not limited thereto.

본 발명의 구체적인 일실시예에서는 아쓰로박터 우레아파시엔스 (Arthrobacter ureafaciens) 유래 레반 과당전이효소 (levan fructotransferase) 유전자를 분비 발현할 수 있는 최적의 효모 분비 융합인자를 선별하고, 이로부터 제작된 각각의 발현 벡터 및 각각의 벡터로 형질전환된 효모를 이용하여 재조합 레반 과당전이효소의 생산을 확인하였다 (도 2 내지 도 10 및 표 3).In a specific embodiment of the present invention, an optimal yeast secretion fusion factor capable of secretion and expression of Levan fructotransferase gene derived from Arthrobacter ureafaciens is selected, and each expression The production of recombinant levan fructose transferase was confirmed using the vector and the yeast transformed with each vector (FIGS. 2 to 10 and Table 3).

본 발명에서 일례로, 레반 과당전이효소 발현에 사용한 GAL10 프로모터는 갈락토스에 의하여 전사가 유도되는 프로모터이지만, GAL80 유전자가 불활성화된 균주에서는 갈락토스 존재 여부와 관계없이 높은 유전자 발현을 유지할 수 있다. 이러한 이유로 본 발명에서는 GAL80 유전자가 불활성화된 균주를 이용하여 레반 과당전이효소를 발현하였다.In the present invention, for example, the GAL10 promoter used for the expression of levan fructose transferase is a promoter that is induced to be transcribed by galactose, but a strain in which the GAL80 gene is inactivated can maintain high gene expression regardless of the presence or absence of galactose. For this reason, in the present invention, Levan fugetransferase was expressed using a strain in which the GAL80 gene was inactivated.

상기 재조합 미생물을 제작하기 위한 구체적인 일실시예로서, LNK39 (서열번호 4)와 HisGT50R 프라이머 (서열번호 5)로 증폭한 PCR 산물은 벡터의 링커 (linker) 말단과 40 염기, GAL7 전사종결자 말단과 50 염기가 동일하기 때문에, 선형화된 벡터와 함께 효모 세포로 도입하면 세포 내에서 교차가 일어나서 레반 과당전이효소 유전자와 단백질 분비 융합 인자 벡터가 일정한 방향으로 연결될 수 있다. 나아가, 상기 PCR 산물 및 벡터가 도입된 효모를 우라실 (uracil)이 없는 선택 배지인 SD-Ura 배지 (0.67 % 아미노산이 결여된 효모 기질, 0.77 % 우라실이 결핍된 영양 보충물, 2 % 포도당)에서 선별하면 대장균을 이용한 벡터 제작 과정 없이 곧바로 각각의 발현벡터가 도입된 형질전환체를 제작할 수 있다 (도 1). As a specific example for constructing the recombinant microorganism, the PCR product amplified with LNK39 (SEQ ID NO: 4) and HisGT50R primer (SEQ ID NO: 5) was linked with the linker end of the vector and 40 base, the GAL7 transcription terminator end Since the 50 bases are the same, when introduced into yeast cells together with the linearized vector, crossing occurs in the cells, and the levan fugetransferase gene and the protein secretion factor vector can be connected in a certain direction. Further, the PCR product and the vector into which the vector was introduced were subjected to SD-Ura medium (0.67% amino acid-deficient yeast substrate, 0.77% uracil-deficient nutritional supplement, 2% glucose) as a selective medium without uracil When selected, the transformant into which each expression vector is introduced can be prepared directly without vector production using E. coli (FIG. 1).

또한, 상기 형질전환된 효모를 유가식 배양하여 레반 과당전이효소를 정제한 뒤 정제한 효소를 이용하여 디프럭토스 언하이드리드 IV를 생산하거나 (도 11, 도 12, 및 표 5), 또는 상기 형질전환된 효모를 발효하여 디프럭토스 언하이드리드 IV를 생산할 수 있음을 확인하였다 (도 13). Also, the transfected yeast may be fed in an oil-in-water culture to refrain the levan fructose transferase, and then the purified enzyme may be used to produce diprolactone anhydride IV (FIGS. 11, 12, and 5) It was confirmed that the transformed yeast could be fermented to produce diprolactone anhydride IV (FIG. 13).

구체적으로, 분비 생산된 레반 과당전이효소의 디프럭토스 언하이드리드 IV 생산능을 분석한 결과, 특히 5 배 농축된 재조합 효모의 발효 배양액은 대장균에서 생산된 레반 과당전이효소보다 128 % 높은 활성을 나타내는 것을 확인하였다. 또한 상기 형질전환된 재조합 효모를 레반 (levan)을 함유하는 배지에서 배양한 경우 배양과정에서 세포 밖으로 분비된 레반 과당전이효소에 의하여 레반으로부터 디프럭토스 언하이드리드 IV가 생산되는 것을 확인하였다.
Specifically, an analysis of the production ability of dipeptide anhydride IV of secreted recombinant fibrin glycosyltransferase showed that the fermentation broth of 5-fold concentrated recombinant yeast was 128% higher than that of E. coli-produced fibrin glycosyltransferase Respectively. Also, when the transformed recombinant yeast was cultured in a culture medium containing levan, it was confirmed that levulinic anhydride IV was produced from levan by the levan fructose transferase secreted out of the cells during the culturing process.

본 발명은 또 다른 하나의 양태로서 (i) 상기 재조합 미생물을 배양하는 단계; 및 상기 배양된 미생물 또는 이의 배양 상등액으로부터 레반 과당전이효소를 회수하는 단계를 포함하는, 레반 과당전이효소의 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a recombinant microorganism, comprising: (i) culturing the recombinant microorganism; And recovering the levan fumaryl transferase from the cultured microorganism or culture supernatant thereof.

재조합 미생물 및 레반 과당전이효소에 대하여는 상기 설명한 바와 같다.The recombinant microorganism and levansucose transferase are as described above.

상기 재조합 미생물을 배양하기 위한 배지 및 배양 조건은 숙주 세포에 따라 적절히 선택 이용할 수 있다. 구체적으로는 탄소원으로 포도당이 포함된 YEPD 배지 (4 % 효모 추출물, 2 % 포도당, 1 % 펩톤)에서 배양하며, 포도당 소모에 따라 공급 배지 (30 % 포도당, 15 % 효모 추출물)를 추가하면서 50 시간 배양하는 것일 수 있으나, 이에 제한되는 것은 아니다.The medium for culturing the recombinant microorganism and the culture conditions may be appropriately selected depending on the host cell. Specifically, the cells were cultured in a YEPD medium (4% yeast extract, 2% glucose, 1% peptone) containing glucose as a carbon source, and supplemented with feed medium (30% glucose, 15% yeast extract) But is not limited thereto.

본 발명의 구체적인 일실시예에서는, 상기 재조합 미생물을 이용해 유가식 배양을 수행하여, 레반 과당전이효소를 확보하였다.In one specific embodiment of the present invention, the recombinant microorganism was used for fed-batch culture to obtain levan fructose transferase.

본 발명의 용어, “유가식 배양”은 생산물의 높은 최종 농도와 생산성을 가지는 배양 방법으로서, 고농도 세포 배양에 매우 자주 이용되며, 초기에 한 번 배지를 채운 후, 새로운 배양액이나 성장 제한 기질 용액 또는 생산물의 전구체 등을 추가로 공급하지만 반응 생성물은 발효조에 남아있게 하는 방법일 수 있다.The term " fed-batch cultivation " of the present invention is a method of culturing having high final concentration and productivity of a product, and is very often used for culturing high-concentration cells. After initially filling the culture medium with a new culture medium, A precursor of the product, etc., but the reaction product may remain in the fermenter.

예를 들어, 이에 제한되는 것은 아니나, 상기 유가식 배양의 바람직한 방법은 50 ㎖의 최소 액체 배지 (0.67 % 아미노산이 결여된 효모 질소원 기질, 0.5 % 카사미노산, 2 % 포도당)에 1 단계 종균 배양한 후, 다시 200 ㎖의 YEPD 액체배지에서 배양하여 활성화시킨 후, 본 배양액에 접종하여 30 ℃에서 50 시간 동안 배양하면서 세포 성장 속도에 따라 유가 배양식 배지 (15 % 효모 추출물, 30 % 포도당)를 추가 공급하는 것일 수 있다.
For example, but not by way of limitation, the preferred method of fed-batch cultivation is a one-step seed culture in 50 ml of minimal liquid medium (yeast nitrogen source substrate lacking 0.67% amino acid, 0.5% casamino acid, 2% glucose) Then, the cells were cultured in 200 ml of YEPD liquid medium, and the cells were inoculated into the culture medium. The cells were cultured at 30 ° C. for 50 hours, and then fed with a culture medium (15% yeast extract, 30% glucose) It may be to supply.

본 발명은 또 다른 하나의 양태로서, 상기 재조합 미생물 또는 상기 제조방법으로 제조된 레반 과당전이효소를 레반과 반응시키는 단계를 포함하는, 디프럭토스 언하이드리드 IV의 제조방법을 제공한다.According to another aspect of the present invention, there is provided a process for producing diprolactone anhydride IV, which comprises reacting the recombinant microorganism or the levan fructose transferase produced by the production method with Levan.

재조합 미생물, 레반 과당전이효소의 제조방법, 및 디프럭토스 언하이드리드 IV에 대하여는 상기 설명한 바와 같다.The recombinant microorganism, the method for producing levan fructose transferase, and the difluntosanhydride IV are as described above.

상기 반응은 pH 3.5 내지 pH 9.5에서 수행되는 것일 수 있고, 상기 반응은 1 ℃ 내지 70 ℃에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.The reaction may be carried out at a pH of from 3.5 to 9.5, and the reaction may be conducted at a temperature of from 1 ° C to 70 ° C, but is not limited thereto.

레반 과당전이효소를 레반과 반응시키는 것과 관련하여, 본 발명의 구체적인 일실시예에서는 제조된 레반 과당전이효소를 친화성 크로마토그래피를 이용하여 정제하였고 (도 10), 정제된 레반 과당전이효소의 활성 최적조건을 분석하였으며 (표 4, 도 11 및 도 12), 그 결과 레반 과당전이효소로부터 디프럭토스 언하이드리드 IV가 우수한 수율로 생산될 수 있음을 확인하였다 (표 5).With respect to reacting levan fructose transferase with Levan, in one specific embodiment of the present invention, the prepared levan fumetate transferase was purified using affinity chromatography (FIG. 10), and the activity of the purified levan fructose transferase Optimal conditions were analyzed (Table 4, Figs. 11 and 12), and it was confirmed that diphenylmethane dihydroidide IV can be produced in good yield from levan fructose transferase (Table 5).

한편, 상기 재조합 미생물을 레반과 반응시키는 단계는 재조합 미생물을 레반을 포함하는 배지에서 발효시키는 것일 수 있으나, 이에 제한되지 않는다.Meanwhile, the step of reacting the recombinant microorganism with Levan may include, but not limited to, fermentation of the recombinant microorganism in a medium containing Levan.

레반 과당전이효소를 생산한 후 레반과 반응하여 디프럭토스 언하이드리드 IV를 생산하는 효소 공정에 비하여 형질전환 균주를 레반을 포함하는 배지에서 직접 발효하여 디프럭토스 언하이드리드 IV를 생산함으로써, 효소 생산 및 정제 비용이 들지 않고, 레반 과당전이효소의 작용으로 생성되는 과당 및 포도당을 형질전환 균주가 탄소원으로 사용 가능하기 때문에 고순도의 디프럭토스 언하이드리드 IV의 생산이 가능할 수 있다.Compared to an enzyme process in which levansucrose transition enzyme is produced and then reacted with levan to produce diprolactone anhydride IV, the transformant strain is directly fermented in a medium containing Levan to produce diproprathone anhydride IV, Production of high purity diproprathone anhydride IV can be possible because the conversion product can be used as a carbon source for fructose and glucose produced by the action of levan fructose transferase without the cost of enzyme production and purification.

본 발명의 구체적인 일실시예에서는 아쓰로박터 우레아파시엔스 유래 레반 과당전이효소를 분비 생산하는 재조합 효모 균주를 4 % 레반이 첨가되어 있는 배지에서 배양하여 디프럭토스 언하이드리드 IV가 고수율로 생산되는 것을 확인하였다 (도 13).
In a specific embodiment of the present invention, a recombinant yeast strain secreted and produced from Avian influenza-derived levan fructose-transferase is cultivated in a medium supplemented with 4% levan to produce diproprathone anhydride IV in a high yield (Fig. 13).

본 발명의 재조합 미생물은 단백질 분비 융합 인자에 의하여 재조합 레반 과당전이효소를 우수한 효율로 분비 발현할 수 있으며, 상기 미생물로부터 생산된 레반 과당전이효소를 레반과 반응시키거나, 또는 상기 미생물을 레반을 포함한 배지에서 발효시켜 디프럭토스 언하이드리드 IV를 효과적으로 생산할 수 있다.
The recombinant microorganism of the present invention can secrete and express the recombinant levan fructosyltransferase by a protein secretion fusion factor with excellent efficiency and can be obtained by reacting the levan fructose transactivation enzyme produced from the microorganism with Levan or by reacting the microorganism with levan And can be fermented in a medium to effectively produce diproprathiane hydride IV.

도 1은 lftA 유전자 및 24 종의 단백질 분비 융합 인자 (TFP)를 GAL10 프로모터에 연결하여 사카로마이세스 세레비지에 (Saccharomyces cerevisiae) 균주에 도입하기 위한 세포 내 상동 재조합 과정을 보여주는 모식도이다.
도 2는 사카로마이세스 세레비지에 균주 24 종에서 발현되어 세포 밖으로 분비된 단백질 상등액을 SDS-PAGE로 분석한 결과이다.
도 3은 사카로마이세스 세레비지에 균주 24 종에서 발현되어 세포 밖으로 분비된 단백질 상등액을 항-HIS 항체를 이용하여 웨스턴블랏으로 확인한 결과이다.
도 4는 24 종의 TFP 균주 중에서 1 차로 선별된 5 종의 균주에서 3 개씩 단일 균주를 배양하여 분비된 단백질 상등액을 SDS-PAGE로 분석한 결과이다.
도 5는 24 종의 TFP 균주 중에서 1 차로 선별된 5 종의 균주에서 3 개씩 단일균주를 배양하여 분비된 단백질 상등액을 항-HIS 항체를 이용하여 웨스턴블랏으로 확인한 결과이다.
도 6은 효모 분비시그널 MFα를 이용한 발현과 선별된 TFP를 이용한 레반 과당전이효소 발현 결과를 비교하기 위한 SDS-PAGE 분석 결과이다.
도 7은 단백질분비융합인자 TFP 13번 및 lftA유전자를 포함하는 YGaST13-lftA-6H 발현 벡터를 모식한 그림이다.
도 8은 재조합 벡터인 YGaSTP13-lftA-6H를 함유한 효모 사카로마이세스 세리비지에 균주를 5 L 발효조에서 유가식 발효하여 세포의 성장을 확인한 결과이다.
도 9는 재조합 벡터인 YGaSTP13-lftA-6H를 함유한 효모 사카로마이세스 세리비지에 균주를 5 L 발효조에서 유가식 발효하여 시간별로 취한 배지 10 ㎕를 SDS-PAGE 분석한 결과이다.
도 10은 (A) Ni-NTA 흡착 컬럼을 이용하여 단백질을 정제한 크로마토그래피 및 (B) 각 분획을 SDS-PAGE로 분석한 결과이다.
도 11은 정제된 레반 과당전이효소의 최적 pH를 확인한 결과이다
도 12는 정제된 레반 과당전이효소의 최적 온도를 확인한 결과이다
도 13은 YGaST13-lftA-6H를 함유한 효모 사카로마이세스 세리비지에 균주를 레반이 함유된 배지에 배양하여 균주의 성장과 DFA IV 생성량을 보여주는 그래프이다.
Figure 1 shows that the lftA gene and 24 protein secretion fusion factors (TFP) were ligated to the GAL 10 promoter to produce Saccharomyces cerevisiae cerevisiae strain of the present invention is a schematic view showing intracellular homologous recombination process.
Fig. 2 shows the result of SDS-PAGE analysis of the protein supernatant expressed in 24 strains of Saccharomyces cerevisiae and secreted out of the cells.
FIG. 3 is a result of Western blot analysis of protein supernatant expressed in 24 strains of Saccharomyces cerevisiae and secreted out of the cells using an anti-HIS antibody.
FIG. 4 shows the results of SDS-PAGE analysis of secreted protein supernatants obtained by culturing a single strain in three strains of the five strains selected first among the 24 TFP strains.
FIG. 5 shows the result of Western blotting using the anti-HIS antibody to determine the secreted protein supernatant by culturing three strains of 5 strains selected from the 24 TFP strains.
Fig. 6 shows SDS-PAGE analysis results for comparison of the expression using yeast secretion signal MFa and the results of selection of levansucrose transferase using selected TFP.
FIG. 7 is a diagram illustrating a YGaST13-lftA-6H expression vector containing the protein secretion factor TFP 13 and the lftA gene.
FIG. 8 shows the result of confirming the growth of cells by fermentation of the strain in a 5 L fermenter in yeast Saccharomyces cerevisiae containing the recombinant vector YGaSTP13-lftA-6H.
FIG. 9 is a result of SDS-PAGE analysis of 10 μl of a strain obtained by fermenting a yeast Saccharomyces cerevisiae strain containing YGaSTP13-lftA-6H as a recombinant vector in a 5 L fermenter by time course.
FIG. 10 shows the results of (A) chromatographic analysis of protein purified using Ni-NTA adsorption column and (B) analysis of each fraction by SDS-PAGE.
Fig. 11 shows the results of confirming the optimum pH of the purified levan fructose transferase
Figure 12 shows the result of confirming the optimal temperature of the purified levan fructose transferase
13 is a graph showing the growth of the strain and the amount of DFA IV produced by culturing the yeast Saccharomyces cerevisiae containing YGaST13-lftA-6H in a medium containing Levan.

이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안된다. 본 발명의 실시예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
Hereinafter, embodiments of the present invention will be described in detail to facilitate understanding of the present invention. However, the embodiments according to the present invention can be modified in various forms, and the scope of the present invention should not be construed as being limited to the following embodiments. Embodiments of the invention are provided to more fully describe the present invention to those skilled in the art.

실시예Example 1.  One. 레반Levan 과당전이효소의Fructose-transferase 분비생산을 위한 효모 단백질분비  Yeast protein secretion for secretion production 융합인자Fusion factor (TFP) 선별(TFP) selection

아쓰로박터 우레아파시엔스 (Arthrobacter ureafaciens) 유래 레반 과당전이효소 분비 발현 벡터를 제작하기 위하여, pUDFA81 (Lett Appl Microbiol. 2005, 40(3): 228-34)를 주형으로 사용하여 시그널 펩티드를 제외한 성숙 단백질 부위에 해당하는 유전자 (lftA, 서열번호 1)를 서열번호 2 및 서열번호 3의 프라이머를 이용하여 1 차 PCR (95 ℃ 5 분 1 회; 95 30 초, 55 30 초, 72 1 분 사이클 25 회; 72 ℃ 7 분 1 회) 반응으로 증폭하였다. 상기 1 차 PCR로 증폭된 유전자는 다시 LNK39 (서열번호 4)와 HisGT50R (서열번호 5) 프라이머로 2 차 증폭하여, 벡터와 세포 내 재조합 (in vivo recombination)에 필요한 서열이 도입되고 카르복시말단에는 히스티딘 태그 (Histidine tag)가 도입된 유전자를 확보하였다. Arthrobacter < RTI ID = 0.0 > ureafaciens ) was used as a template to amplify the gene (lftA (SEQ ID NO: 1)) corresponding to the mature protein region except for the signal peptide using pUDFA81 (Lett Appl Microbiol. 2005, , SEQ ID NO: 1) was subjected to first PCR (95 DEG C for 5 minutes, 95 to 30 seconds, 55 to 30 seconds, 72 for 1 minute, 25 cycles, 72 DEG C for 7 minutes, and 1 time using primers of SEQ ID NO: ). The gene amplified by the first PCR is amplified again by the second LNK39 (SEQ ID NO: 4) and HisGT50R (SEQ ID NO: 5) primers, vectors and recombinant cells (in vivo recombination was introduced and a gene in which a histidine tag was introduced at the carboxy terminal was obtained.

상기 증폭된 유전자는 단백질 분비 발현을 도와주는 24 종의 단백질 분비 융합 인자 (한국특허 제0975596호)를 함유한 선형의 벡터와 함께 효모 균주 Y2805GS (Mat a pep4::HIS3 prb1 can1 his3-200 ura3-52, gal80, suc2)에 도입하여 세포 내 재조합을 통하여 형질전환체가 형성되도록 하였다 (도 1). 본 발명에 사용된 단백질 분비 융합 인자의 아미노산 서열 (표 1) 및 뉴클레오티드 서열 (표 2)은 하기와 같다.
The amplified gene was transformed with a linear vector containing 24 protein secretion fusion factors (Korean Patent No. 0975596) that helped express the protein secretion, and a yeast strain Y2805GS (Mat a pep4 :: HIS3 prb1 can1 his3-200 ura3- 52, gal80, suc2) to produce a transformant through intracellular recombination (Fig. 1). The amino acid sequences (Table 1) and the nucleotide sequences (Table 2) of the protein secretion fusion factors used in the present invention are as follows.

단백질 분비 융합 인자의 아미노산 서열Amino acid sequence of protein secretion fusion factor 단백질 분비 융합 인자Protein secretion factor 아미노산 서열Amino acid sequence TFP 1TFP 1 MFNRFNKFQAAVALALLSRGALGDSYTNSTSSADLSSITSVSSASASATASDSLSSSDGTVYLPSTTISGDLTVTGKVIATEAVEVAAGGKLTLLDGEKYVFSSEAASASAGLALDKR (서열번호 9)MFNRFNKFQAAVALALLSRGALGDSYTNSTSSADLSSITSVSSASASATASDSLSSSDGTVYLPSTTISGDLTVTGKVIATEAVEVAAGGKLTLLDGEKYVFSSEAASASAGLALDKR (SEQ ID NO: 9) TFP 2TFP 2 MTPYAVAITVALLIVTVSALQVNNSCVAFPPSNLRGKNGDGTNEQYATALLSIPWNGPPESSRDINLIELEPQVALYLLENYINHYYNTTRDNKCPNNHYLMGGQLGSSSDNRSLNEAASASAGLALDKR (서열번호 10)MTPYAVAITVALLIVTVSALQVNNSCVAFPPSNLRGKNGDGTNEQYATALLSIPWNGPPESSRDINLIELEPQVALYLLENYINHYYNTTRDNKCPNNHYLMGGQLGSSSDNRSLNEAASASAGLALDKR (SEQ ID NO: 10) TFP 3TFP 3 MQFKNVALAASVAALSATASAEGYTPGEPWSTLTPTGSISCGAAEYTTTFGIAVQAITSSKAKRDVISQIGDGQVQATSAATAQATDSQAQATTTATPTSSEKMAASASAGLALDKR (서열번호 11)MQFKNVALAASVAALSATASAEGYTPGEPWSTLTPTGSISCGAAEYTTTFGIAVQAITSSKAKRDVISQIGDGQVQATSAATAQATDSQAQATTTATPTSSEKMAASASAGLALDKR (SEQ ID NO: 11) TFP 4TFP 4 MRFAEFLVVFATLGGGMAAPVESLAGTQRYLVQMKERFTTEKLCALDDKAASASAGLALDKR (서열번호 12)MRFAEFLVVFATLGGGMAAPVESLAGTQRYLVQMKERFTTEKLCALDDKAASASAGLALDKR (SEQ ID NO: 12) TFP 5TFP 5 MFNRFNKFQAAVALALLSRGALGAPVNTTTEDETALIPAEAVIGYLDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGVAASASAGLALDKR (서열번호 13)MFNRFNKFQAAVALALLSRGALGAPVNTTTEDETALIPAEAVIGYLDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGVAASASAGLALDKR (SEQ ID NO: 13) TFP 6TFP 6 MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIGYLDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGVAASASAGLALDKR (서열번호 14)MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIGYLDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGVAASASAGLALDKR (SEQ ID NO: 14) TFP 7TFP 7 MVFGQLYALFIFTLSCCISKTVQADSSKESSSFISFDKESNWDTISTISSTADVISSVDSAIAVFEFDNFSLLDSLMIDEEYPFFNRFFANDVSLTVHDDSPLNISQSLSPIMEQFTVDELPESASDLLYEYSLDDKSIVLFKFTSDAYDLKKLDEFIDSCLSFLEDKSGDNLTVVINSLGWAFEDEDGDDEYATEETLSHHDNNKGKEGDDLAASASAGLALDKR (서열번호 15)MVFGQLYALFIFTLSCCISKTVQADSSKESSSFISFDKESNWDTISTISSTADVISSVDSAIAVFEFDNFSLLDSLMIDEEYPFFNRFFANDVSLTVHDDSPLNISQSLSPIMEQFTVDELPESASDLLYEYSLDDKSIVLFKFTSDAYDLKKLDEFIDSCLSFLEDKSGDNLTVVINSLGWAFEDEDGDDEYATEETLSHHDNNKGKEGDDLAASASAGLALDKR (SEQ ID NO: 15) TFP 8TFP 8 MLQSVVFFALLTFASSVSAIYSNNTVSTTTTLAPSYSLVPQETTISYADDLAASASAGLALDKR (서열번호 16)MLQSVVFFALLTFASSVSAIYSNNTVSTTTTLAPSYSLVPQETTISYADDLAASASAGLALDKR (SEQ ID NO: 16) TFP 9TFP 9 MKFSTAVTTLISSGAIVSALPHVDVHQEDAHQHKRAVAYKYVYETVVVDSDGHTVTPAASEVATAATSAIITTSVLAPTSSAAAADSSASIAVSSAALAKNEKISDAAASATASTSQGASSSSYLAASASAGLALDKR (서열번호 17)MKFSTAVTTLISSGAIVSALPHVDVHQEDAHQHKRAVAYKYVYETVVVDSDGHTVTPAASEVATAATSAIITTSVLAPTSSAAAADSSASIAVSSAALAKNEKISDAAASATASTSQGASSSSYLAASASAGLALDKR (SEQ ID NO: 17) TFP 10TFP 10 MNWLFLVSLVFFCGVSTHPALAMSSNRLLKLANKSPKKIIPLKDSSFENILAPPHENAYIVALFTATAPEIGCSLCLELESEYDTIVASWFDDHPDAKSSNSDTSIFFTKVNLEDPSKTIPKAFQFFQLNNVPRLFIFKLNSPSILDHSVISISTDTGSERMKQIIQAIKQFSQVNDFSLHLPVGLAASASAGLALDKR (서열번호 18)MNWLFLVSLVFFCGVSTHPALAMSSNRLLKLANKSPKKIIPLKDSSFENILAPPHENAYIVALFTATAPEIGCSLCLELESEYDTIVASWFDDHPDAKSSNSDTSIFFTKVNLEDPSKTIPKAFQFFQLNNVPRLFIFKLNSPSILDHSVISISTDTGSERMKQIIQAIKQFSQVNDFSLHLPVGLAASASAGLALDKR (SEQ ID NO: 18) TFP 11TFP 11 MKFSSVTAITLATVATVATAKKGEHDFTTTLTLSSDGSLTTTTSTHTTHKYGKFNKTSKSKTPLAASASAGLALDKR (서열번호 19)≪ / RTI & TFP 12TFP 12 MASFATKFVIACFLFFSASAHNVLLPAYGRRCFFEDLSKGDELSISFQFGDRNPQSSSQLTGDFIIYGPERHEVLKTVRELAASASAGLALDKR (서열번호 20)MASFATKFVIACFLFFSASAHNVLLPAYGRRCFFEDLSKGDELSISFQFGDRNPQSSSQLTGDFIIYGPERHEVLKTVRELAASASAGLALDKR (SEQ ID NO: 20) TFP 13TFP 13 MQYKKTLVASALAATTLAAYAPSEPWSTLTPTATYSGGVTDYASTFGIAVQPISTTSSASSAATTASSKAKRAASQIGDGQVQAATTTASVSTKSTAAAVSQIGDGQIQATTKTTAAAVSQIGDGQIQATTKTTSAKTTAAAVSQISDGQIQATTTTLAPLAASASAGLALDKR (서열번호 21)MQYKKTLVASALAATTLAAYAPSEPWSTLTPTATYSGGVTDYASTFGIAVQPISTTSSASSAATTASSKAKRAASQIGDGQVQAATTTASVSTKSTAAAVSQIGDGQIQATTKTTAAAVSQIGDGQIQATTKTTSAKTTAAAVSQISDGQIQATTTTLAPLAASASAGLALDKR (SEQ ID NO: 21) TFP 14TFP 14 MQFKNALTATAILSASALAANSTTSIPSSCSIGTSATATAQATDSQAQATTTAPLAASASAGLALDKR (서열번호 22)MQFKNALTATAILSASALAANSTTSIPSSCSIGTSATATAQATDSQAQATTTAPLAASASAGLALDKR (SEQ ID NO: 22) TFP 15TFP 15 MVSKTWICGFISIITVVQALSCEKHDVLKKYQVGKFSSLTSTERDTPPSTTIEKWWINVCEEHNVEPPEECKKNDMLCGLTDVILPGKDAITTQIIDFDKNIGFNVEETESALTLTLNGATWGANSFDAKLEFQCNDNMKQDELAASASAGLALDKR (서열번호 23)MVSKTWICGFISIITVVQALSCEKHDVLKKYQVGKFSSLTSTERDTPPSTTIEKWWINVCEEHNVEPPEECKKNDMLCGLTDVILPGKDAITTQIIDFDKNIGFNVEETESALTLTLNGATWGANSFDAKLEFQCNDNMKQDELAASASAGLALDKR (SEQ ID NO: 23) TFP 16TFP 16 MKLSALLALSASTAVLAAPAVHHSDNHHHNDKRAVVTVTQYVNADGAVVIPAATTATSAAADGKVESVAAATTTLSSTAAAATTLAASASAGLALDKR (서열번호 24)MKLSALLALSASTAVLAAPAVHHSDNHHHNDKRAVVTVTQYVNADGAVVIPAATTATSAAADGKVESVAAATTTLSSTAAAATTLAASASAGLALDKR (SEQ ID NO: 24) TFP 17TFP 17 MKLSTVLLSAGLASTTLAQFSNSTSASSTDVTSSSSISTSSGSVTITSSEAPESDNGTSTAAPTETSTEAPTTAIPTNGTSTEAPTTAIPTNGTSTEAPTDTTTEAPTTALPTNGTSTEAPTDTTTEAPTTGLPTNGTTSAFPPTTSLPPSNTTTTPPYNPSTDYTTDYTVVTEYTTYCPERAASASAGLALDKR (서열번호 25)MKLSTVLLSAGLASTTLAQFSNSTSASSTDVTSSSSISTSSGSVTITSSEAPESDNGTSTAAPTETSTEAPTTAIPTNGTSTEAPTTAIPTNGTSTEAPTDTTTEAPTTALPTNGTSTEAPTDTTTEAPTTGLPTNGTTSAFPPTTSLPPSNTTTTPPYNPSTDYTTDYTVVTEYTTYCPERAASASAGLALDKR (SEQ ID NO: 25) TFP 18TFP 18 MRFSTTLATAATALFFTASQVSAIGELAFNLGVKNNDGTCKSTSDYETELQALKSYTSTVKVYAASDCNTLQNLGPAAEAEGFTIFVGVWPLAASASAGLALDKR (서열번호 26)MRFSTTLATAATALFFTASQVSAIGELAFNLGVKNNDGTCKSTSDYETELQALKSYTSTVKVYAASDCNTLQNLGPAAEAEGFTIFVGVWPLAASASAGLALDKR (SEQ ID NO: 26) TFP 19TFP 19 MRLSNLIASASLLSAATLAAPANHEHKDKRAVVTTTVQKQTTIIVNGAASTPVAALEENAVVNSAPAAATSTTSSAASVATAASSSENNSQVSAAASPASSSAATSTQSSLAASASAGLALDKR (서열번호 27)MRLSNLIASASLLSAATLAAPANHEHKDKRAVVTTTVQKQTTIIVNGAASTPVAALEENAVVNSAPAAATSTTSSAASVATAASSSENNSQVSAAASPASSSAATSTQSSLAASASAGLALDKR (SEQ ID NO: 27) TFP 20TFP 20 MQFSTVASIAAVAAVASAAANVTTATVSQESTTLVTITSCEDHVCSETVSPALVSTATVTVDDVITQYTTWCPLTTEAPKNGTSTAAPVTSTEAPKNTTSAAPTHSVTSYTGAAAKALPAAGALLAASASAGLALDKR (서열번호 28)≪ RTI ID = TFP 21TFP 21 MKFSSALVLSAVAATALAESITTTITATKNGHVYTKTVTQDATFVWGGEDSYASSTSAAESSAAETSAAETSAAATTSAAATTSAAETSSAAETSSADEGSGSSITTTITATKNGHVYTKTVTQDATFVWTGEGSSNTWSPSSTSTSSEAATSSASTTATTLLAASASAGLALDKR (서열번호 29)MKFSSALVLSAVAATALAESITTTITATKNGHVYTKTVTQDATFVWGGEDSYASSTSAAESSAAETSAAETSAAATTSAAATTSAAETSSAAETSSADEGSGSSITTTITATKNGHVYTKTVTQDATFVWTGEGSSNTWSPSSTSTSSEAATSSASTTATTLLAASASAGLALDKR (SEQ ID NO: 29) TFP 22TFP 22 MKFQVVLSALLACSSAVVASPIENLFKYRAVKASHSKNINSTLPAWNGSNSSNVTYANGTNSTTNTTTAESSQLQIIVTGGQVPITNSSLTHTNYTRLFNSSSALNITELYNVARVVNETIQDNLAASASAGLALDKR (서열번호 30)MKFQVVLSLSACSAVVASPIENLFKYRAVKASHSKNINSTLPAWNGSNSSNVTYANGTNSTTNTTTAESSQLQIIVTGGQVPITNSSLTHTNYTRLFNSSSALNITELYNVARVVNETIQDNLAASASAGLALDKR (SEQ ID NO: 30) TFP 23TFP 23 MRAITLLSSVVSLALLSKEVLATPPACLLACVAQVGKSSSTCDSLNQVTCYCEHENSAVKKCLDSICPNNDADAAYSAFKSSCSEQNASLGDSSGSASSSVLAASASAGLALDKR (서열번호 31)≪ RTI ID = TFP 24TFP 24 MKLSTVLLSAGLASTTLAQFSNSTSASSTDVTSSSSISTSSGSVTITSSEAPESDNGTSTAAPTETSTEAPTTAIPTNGTSTEAPTTAIPTNGTSTEAPTDTTTEAPTTALPTNGTSTEAPTDTTTEAPTTGLPTNGTTSAFPPTTSLPPSNTTTTLAASASAGLALDKR (서열번호 32)MKLSTVLLSAGLASTTLAQFSNSTSASSTDVTSSSSISTSSGSVTITSSEAPESDNGTSTAAPTETSTEAPTTAIPTNGTSTEAPTTAIPTNGTSTEAPTDTTTEAPTTALPTNGTSTEAPTDTTTEAPTTGLPTNGTTSAFPPTTSLPPSNTTTTLAASASAGLALDKR (SEQ ID NO: 32)

단백질 분비 융합 인자의 뉴클레오티드 서열The nucleotide sequence of the protein secretion fusion factor 단백질 분비 융합 인자Protein secretion factor 뉴클레오티드 서열Nucleotide sequence TFP 1TFP 1 ATGTTCAATCGTTTTAACAAATTCCAAGCTGCTGTCGCTTTGGCCCTACTCTCTCGCGGCGCTCTCGGTGACTCTTACACCAATAGCACCTCCTCCGCAGACTTGAGTTCTATCACTTCCGTCTCGTCAGCTAGTGCAAGTGCCACCGCTTCCGACTCACTTTCTTCCAGTGACGGTACCGTTTATTTGCCATCCACAACAATTAGCGGTGATCTCACAGTTACTGGTAAAGTAATTGCAACCGAGGCCGTGGAAGTCGCTGCCGGTGGTAAGTTGACTTTACTTGACGGTGAAAAATACGTCTTCTCATCTGAGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 33)ATGTTCAATCGTTTTAACAAATTCCAAGCTGCTGTCGCTTTGGCCCTACTCTCTCGCGGCGCTCTCGGTGACTCTTACACCAATAGCACCTCCTCCGCAGACTTGAGTTCTATCACTTCCGTCTCGTCAGCTAGTGCAAGTGCCACCGCTTCCGACTCACTTTCTTCCAGTGACGGTACCGTTTATTTGCCATCCACAACAATTAGCGGTGATCTCACAGTTACTGGTAAAGTAATTGCAACCGAGGCCGTGGAAGTCGCTGCCGGTGGTAAGTTGACTTTACTTGACGGTGAAAAATACGTCTTCTCATCTGAGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 33) TFP 2TFP 2 ATGACGCCCTATGCAGTAGCAATTACCGTGGCCTTACTAATTGTAACAGTGAGCGCACTCCAGGTCAACAATTCATGTGTCGCTTTTCCGCCATCAAATCTCAGGGGCAAGAATGGAGACGGTACTAATGAACAGTATGCAACTGCACTACTTTCTATTCCCTGGAATGGGCCTCCTGAGTCATCGAGGGATATTAATCTTATCGAACTCGAACCGCAAGTTGCACTCTATTTGCTCGAAAATTATATTAACCATTACTACAACACCACAAGAGACAATAAGTGCCCTAATAACCACTACCTAATGGGAGGGCAGTTGGGTAGCTCATCGGATAATAGGAGTTTGAACGAGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 34)ATGACGCCCTATGCAGTAGCAATTACCGTGGCCTTACTAATTGTAACAGTGAGCGCACTCCAGGTCAACAATTCATGTGTCGCTTTTCCGCCATCAAATCTCAGGGGCAAGAATGGAGACGGTACTAATGAACAGTATGCAACTGCACTACTTTCTATTCCCTGGAATGGGCCTCCTGAGTCATCGAGGGATATTAATCTTATCGAACTCGAACCGCAAGTTGCACTCTATTTGCTCGAAAATTATATTAACCATTACTACAACACCACAAGAGACAATAAGTGCCCTAATAACCACTACCTAATGGGAGGGCAGTTGGGTAGCTCATCGGATAATAGGAGTTTGAACGAGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 34) TFP 3TFP 3 ATGCAATTCAAAAACGTCGCCCTAGCTGCCTCCGTTGCTGCTCTATCCGCCACTGCTTCTGCTGAAGGTTACACTCCAGGTGAACCATGGTCCACCTTAACCCCAACCGGCTCCATCTCTTGTGGTGCAGCCGAATACACTACCACCTTTGGTATTGCTGTTCAAGCTATTACCTCTTCAAAAGCTAAGAGAGACGTTATCTCTCAAATTGGTGACGGTCAAGTCCAAGCCACTTCTGCTGCTACTGCTCAAGCCACCGATAGTCAAGCCCAAGCTACTACTACCGCTACCCCAACCAGCTCCGAAAAGATGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 35)ATGCAATTCAAAAACGTCGCCCTAGCTGCCTCCGTTGCTGCTCTATCCGCCACTGCTTCTGCTGAAGGTTACACTCCAGGTGAACCATGGTCCACCTTAACCCCAACCGGCTCCATCTCTTGTGGTGCAGCCGAATACACTACCACCTTTGGTATTGCTGTTCAAGCTATTACCTCTTCAAAAGCTAAGAGAGACGTTATCTCTCAAATTGGTGACGGTCAAGTCCAAGCCACTTCTGCTGCTACTGCTCAAGCCACCGATAGTCAAGCCCAAGCTACTACTACCGCTACCCCAACCAGCTCCGAAAAGATGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 35) TFP 4TFP 4 ATGAGATTTGCAGAATTCTTGGTGGTATTTGCCACGTTAGGCGGGGGGATGGCTGCACCGGTTGAGTCTCTGGCCGGGACCCAACGGTATCTGGTGCAAATGAAGGAGCGGTTCACCACAGAGAAGCTGTGTGCTTTGGACGACAAGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 36)ATGAGATTTGCAGAATTCTTGGTGGTATTTGCCGTTAGGCGGGGGGATGGCTGCACCGGTTGAGTCTCTGGCCGGGACCCAACGGTATCTGGTGCAAATGAAGGAGCGGTTCACCACAGAGAAGCTGTGTGCTTTGGACGACAAGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 36) TFP 5TFP 5 ATGTTCAATCGTTTTAACAAATTCCAAGCTGCTGTCGCTTTGGCCCTACTCTCTCGCGGCGCTCTCGGTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACTAATTCCGGCTGAAGCTGTCATCGGTTACTTAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 37)ATGTTCAATCGTTTTAACAAATTCCAAGCTGCTGTCGCTTTGGCCCTACTCTCTCGCGGCGCTCTCGGTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACTAATTCCGGCTGAAGCTGTCATCGGTTACTTAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 37) TFP 6TFP 6 ATGAGATTTCCTTCAATTTTTACTGCAGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTTAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 38)ATGAGATTTCCTTCAATTTTTACTGCAGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTTAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 38) TFP 7TFP 7 ATGGTGTTCGGTCAGCTGTATGCCCTTTTCATCTTCACGTTATCATGTTGTATTTCCAAAACTGTGCAAGCAGATTCATCCAAGGAAAGCTCTTCCTTTATTTCGTTCGACAAAGAGAGTAACTGGGATACCATCAGCACTATATCTTCAACGGCAGATGTTATATCATCCGTTGACAGTGCTATCGCTGTTTTTGAATTTGACAATTTCTCATTATTGGACAGCTTGATGATTGACGAAGAATACCCATTCTTCAATAGATTCTTTGCCAATGATGTCAGTTTAACTGTTCATGACGATTCGCCTTTGAACATCTCTCAATCATTATCTCCCATTATGGAACAATTTACTGTGGATGAATTACCTGAAAGTGCCTCTGACTTACTATATGAATACTCCTTAGATGATAAAAGCATCGTTTTGTTCAAGTTTACCTCGGATGCCTACGATTTGAAAAAATTAGATGAATTTATTGATTCTTGCTTATCGTTTTTGGAAGATAAATCTGGCGACAATTTGACTGTGGTTATTAACTCTCTTGGTTGGGCTTTTGAAGATGAAGATGGTGACGATGAATATGCAACAGAAGAGACTTTGAGCCATCATGATAACAACAAGGGTAAAGAAGGCGACGATCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 39)ATGGTGTTCGGTCAGCTGTATGCCCTTTTCATCTTCACGTTATCATGTTGTATTTCCAAAACTGTGCAAGCAGATTCATCCAAGGAAAGCTCTTCCTTTATTTCGTTCGACAAAGAGAGTAACTGGGATACCATCAGCACTATATCTTCAACGGCAGATGTTATATCATCCGTTGACAGTGCTATCGCTGTTTTTGAATTTGACAATTTCTCATTATTGGACAGCTTGATGATTGACGAAGAATACCCATTCTTCAATAGATTCTTTGCCAATGATGTCAGTTTAACTGTTCATGACGATTCGCCTTTGAACATCTCTCAATCATTATCTCCCATTATGGAACAATTTACTGTGGATGAATTACCTGAAAGTGCCTCTGACTTACTATATGAATACTCCTTAGATGATAAAAGCATCGTTTTGTTCAAGTTTACCTCGGATGCCTACGATTTGAAAAAATTAGATGAATTTATTGATTCTTGCTTATCGTTTTTGGAAGATAAATCTGGCGACAATTTGACTGTGGTTATTAACTCTCTTGGTTGGGCTTTTGAAGATGAAGATGGTGACGATGAATATGCAACAGAAGAGACTTTGAGCCATCATGATAACAACAAGGGTAAAGAAGGCGACGATCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 39) TFP 8TFP 8 ATGCTTCAATCCGTTGTCTTTTTCGCTCTTTTAACCTTCGCAAGTTCTGTGTCAGCGATTTATTCAAACAATACTGTTTCTACAACTACCACTTTAGCGCCCAGCTACTCCTTGGTGCCCCAAGAGACTACCATATCGTACGCCGACGACCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 40)ATGCTTCAATCCGTTGTCTTTTTCGCTCTTTTAACCTTCGCAAGTTCTGTGTCAGCGATTTATTCAAACAATACTGTTTCTACAACTACCACTTTAGCGCCCAGCTACTCCTTGGTGCCCCAAGAGACTACCATATCGTACGCCGACGACCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 40) TFP 9TFP 9 ATGAAATTCTCAACTGCCGTTACTACGTTGATTAGTTCTGGTGCCATCGTGTCTGCTTTACCACACGTGGATGTTCACCAAGAAGATGCCCACCAACATAAGAGGGCCGTTGCGTACAAATACGTTTACGAAACTGTTGTTGTCGATTCTGATGGCCACACTGTAACTCCTGCTGCTTCAGAAGTCGCTACTGCTGCTACCTCTGCTATCATTACAACATCTGTGTTGGCTCCAACCTCCTCCGCAGCCGCTGCGGATAGCTCCGCTTCCATTGCTGTTTCATCTGCTGCCTTAGCCAAGAATGAGAAAATCTCTGATGCCGCTGCATCTGCCACTGCCTCAACATCTCAAGGGGCATCCTCCTCATCCTACCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 41)ATGAAATTCTCAACTGCCGTTACTACGTTGATTAGTTCTGGTGCCATCGTGTCTGCTTTACCACACGTGGATGTTCACCAAGAAGATGCCCACCAACATAAGAGGGCCGTTGCGTACAAATACGTTTACGAAACTGTTGTTGTCGATTCTGATGGCCACACTGTAACTCCTGCTGCTTCAGAAGTCGCTACTGCTGCTACCTCTGCTATCATTACAACATCTGTGTTGGCTCCAACCTCCTCCGCAGCCGCTGCGGATAGCTCCGCTTCCATTGCTGTTTCATCTGCTGCCTTAGCCAAGAATGAGAAAATCTCTGATGCCGCTGCATCTGCCACTGCCTCAACATCTCAAGGGGCATCCTCCTCATCCTACCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 41) TFP 10TFP 10 ATGAATTGGCTGTTTTTGGTCTCGCTGGTTTTCTTCTGCGGCGTGTCAACCCATCCTGCCCTGGCAATGTCCAGCAACAGACTACTAAAGCTGGCTAATAAATCTCCCAAGAAAATTATACCTCTGAAGGACTCAAGTTTTGAAAACATCTTGGCACCACCTCACGAAAATGCCTATATAGTTGCTCTGTTTACTGCCACAGCGCCCGAAATTGGCTGTTCTCTGTGTCTCGAGCTAGAATCCGAATACGACACCATAGTGGCCTCCTGGTTTGATGATCATCCGGATGCAAAATCGTCCAATTCCGATACATCTATTTTCTTCACAAAGGTCAATTTGGAGGACCCTTCTAAGACCATTCCTAAAGCGTTCCAGTTTTTCCAACTAAACAATGTTCCTAGATTGTTCATCTTCAAACTAAACTCTCCCTCTATTCTGGACCACAGCGTGATCAGTATTTCCACTGATACTGGCTCAGAAAGAATGAAGCAAATCATACAAGCCATTAAGCAGTTCTCGCAAGTAAACGACTTCTCTTTACACTTACCTGTGGGTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 42)ATGAATTGGCTGTTTTTGGTCTCGCTGGTTTTCTTCTGCGGCGTGTCAACCCATCCTGCCCTGGCAATGTCCAGCAACAGACTACTAAAGCTGGCTAATAAATCTCCCAAGAAAATTATACCTCTGAAGGACTCAAGTTTTGAAAACATCTTGGCACCACCTCACGAAAATGCCTATATAGTTGCTCTGTTTACTGCCACAGCGCCCGAAATTGGCTGTTCTCTGTGTCTCGAGCTAGAATCCGAATACGACACCATAGTGGCCTCCTGGTTTGATGATCATCCGGATGCAAAATCGTCCAATTCCGATACATCTATTTTCTTCACAAAGGTCAATTTGGAGGACCCTTCTAAGACCATTCCTAAAGCGTTCCAGTTTTTCCAACTAAACAATGTTCCTAGATTGTTCATCTTCAAACTAAACTCTCCCTCTATTCTGGACCACAGCGTGATCAGTATTTCCACTGATACTGGCTCAGAAAGAATGAAGCAAATCATACAAGCCATTAAGCAGTTCTCGCAAGTAAACGACTTCTCTTTACACTTACCTGTGGGTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 42) TFP 11TFP 11 ATGAAGTTCTCTTCTGTTACTGCTATTACTCTAGCCACCGTTGCCACCGTTGCCACTGCTAAGAAGGGTGAACATGATTTCACTACCACTTTAACTTTGTCATCGGACGGTAGTTTAACTACTACCACCTCTACTCATACCACTCACAAGTATGGTAAGTTCAACAAGACTTCCAAGTCCAAGACCCCCCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 43)ATGAAGTTCTCTTCTGTTACTGCTATTACTCTAGCCACCGTTGCCACCGTTGCCACTGCTAAGAAGGGTGAACATGATTTCACTACCACTTTAACTTTGTCATCGGACGGTAGTTTAACTACTACCACCTCTACTCATACCACTCACAAGTATGGTAAGTTCAACAAGACTTCCAAGTCCAAGACCCCCCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 43) TFP 12TFP 12 ATGGCCTCATTTGCTACTAAGTTTGTCATTGCTTGCTTCCTGTTCTTCTCGGCGTCCGCCCATAATGTCCTTCTTCCAGCTTATGGCCGTAGATGCTTCTTCGAAGACTTGAGTAAGGGTGACGAGCTCTCCATTTCGTTCCAGTTCGGTGATAGAAACCCTCAATCCAGTAGCCAGCTGACTGGTGACTTTATCATCTACGGGCCGGAAAGACATGAAGTTTTGAAAACGGTTAGGGAACTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 44)ATGGCCTCATTTGCTACTAAGTTTGTCATTGCTTGCTTCCTGTTCTTCTCGGCGTCCGCCCATAATGTCCTTCTTCCAGCTTATGGCCGTAGATGCTTCTTCGAAGACTTGAGTAAGGGTGACGAGCTCTCCATTTCGTTCCAGTTCGGTGATAGAAACCCTCAATCCAGTAGCCAGCTGACTGGTGACTTTATCATCTACGGGCCGGAAAGACATGAAGTTTTGAAAACGGTTAGGGAACTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 44) TFP 13TFP 13 ATGCAATACAAAAAGACTTTGGTTGCCTCTGCTTTGGCCGCTACTACATTGGCCGCCTATGCTCCATCTGAGCCTTGGTCCACTTTGACTCCAACAGCCACTTACAGCGGTGGTGTTACCGACTACGCTTCCACCTTCGGTATTGCCGTTCAACCAATCTCCACTACATCCAGCGCATCATCTGCAGCCACCACAGCCTCATCTAAGGCCAAGAGAGCTGCTTCCCAAATTGGTGATGGTCAAGTCCAAGCTGCTACCACTACTGCTTCTGTCTCTACCAAGAGTACCGCTGCCGCCGTTTCTCAGATCGGTGATGGTCAAATCCAAGCTACTACCAAGACTACCGCTGCTGCTGTCTCTCAAATTGGTGATGGTCAAATTCAAGCTACCACCAAGACTACCTCTGCTAAGACTACCGCCGCTGCCGTTTCTCAAATCAGTGATGGTCAAATCCAAGCTACCACCACTACTTTAGCCCCTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 45)ATGCAATACAAAAAGACTTTGGTTGCCTCTGCTTTGGCCGCTACTACATTGGCCGCCTATGCTCCATCTGAGCCTTGGTCCACTTTGACTCCAACAGCCACTTACAGCGGTGGTGTTACCGACTACGCTTCCACCTTCGGTATTGCCGTTCAACCAATCTCCACTACATCCAGCGCATCATCTGCAGCCACCACAGCCTCATCTAAGGCCAAGAGAGCTGCTTCCCAAATTGGTGATGGTCAAGTCCAAGCTGCTACCACTACTGCTTCTGTCTCTACCAAGAGTACCGCTGCCGCCGTTTCTCAGATCGGTGATGGTCAAATCCAAGCTACTACCAAGACTACCGCTGCTGCTGTCTCTCAAATTGGTGATGGTCAAATTCAAGCTACCACCAAGACTACCTCTGCTAAGACTACCGCCGCTGCCGTTTCTCAAATCAGTGATGGTCAAATCCAAGCTACCACCACTACTTTAGCCCCTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 45) TFP 14TFP 14 ATGCAATTCAAGAACGCTTTGACTGCTACTGCTATTCTAAGTGCCTCCGCTCTAGCTGCTAACTCAACTACTTCTATTCCATCTTCATGTAGTATTGGTACTTCTGCCACTGCTACTGCTCAAGCCACCGATAGTCAAGCCCAAGCTACTACTACCGCACCCCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 46)ATGCAATTCAAGAACGCTTTGACTGCTACTGCTATTCTAAGTGCCTCCGCTCTAGCTGCTAACTCAACTACTTCTATTCCATCTTCATGTAGTATTGGTACTTCTGCCACTGCTACTGCTCAAGCCACCGATAGTCAAGCCCAAGCTACTACTACCGCACCCCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 46) TFP 15TFP 15 ATGGTATCGAAGACTTGGATATGTGGCTTCATCAGTATAATTACAGTGGTACAGGCCTTGTCCTGCGAGAAGCATGATGTATTGAAAAAGTATCAGGTGGGAAAATTTAGCTCACTAACTTCTACGGAAAGGGATACTCCGCCAAGCACAACTATTGAAAAGTGGTGGATAAACGTTTGCGAAGAGCATAACGTAGAACCTCCTGAAGAATGTAAAAAAAATGACATGCTATGTGGTTTAACAGATGTCATCTTGCCCGGTAAGGATGCTATCACCACTCAAATTATAGATTTTGACAAAAACATTGGCTTCAATGTCGAGGAAACTGAGAGTGCGCTTACATTGACACTAAACGGCGCTACGTGGGGCGCCAATTCTTTTGACGCAAAACTAGAATTTCAGTGTAATGACAATATGAAACAAGACGAACTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 47)ATGGTATCGAAGACTTGGATATGTGGCTTCATCAGTATAATTACAGTGGTACAGGCCTTGTCCTGCGAGAAGCATGATGTATTGAAAAAGTATCAGGTGGGAAAATTTAGCTCACTAACTTCTACGGAAAGGGATACTCCGCCAAGCACAACTATTGAAAAGTGGTGGATAAACGTTTGCGAAGAGCATAACGTAGAACCTCCTGAAGAATGTAAAAAAAATGACATGCTATGTGGTTTAACAGATGTCATCTTGCCCGGTAAGGATGCTATCACCACTCAAATTATAGATTTTGACAAAAACATTGGCTTCAATGTCGAGGAAACTGAGAGTGCGCTTACATTGACACTAAACGGCGCTACGTGGGGCGCCAATTCTTTTGACGCAAAACTAGAATTTCAGTGTAATGACAATATGAAACAAGACGAACTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 47) TFP 16TFP 16 ATGAAATTATCCGCTCTATTAGCTTTATCAGCCTCCACCGCCGTCTTGGCCGCTCCAGCTGTCCACCATAGTGACAACCACCACCACAACGACAAGCGTGCCGTTGTCACCGTTACTCAGTACGTCAACGCAGACGGCGCTGTTGTTATTCCAGCTGCCACCACCGCTACCTCGGCGGCTGCTGATGGAAAGGTCGAGTCTGTTGCTGCTGCCACCACTACTTTGTCCTCGACTGCCGCCGCCGCTACAACCCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 48)ATGAAATTATCCGCTCTATTAGCTTTATCAGCCTCCACCGCCGTCTTGGCCGCTCCAGCTGTCCACCATAGTGACAACCACCACCACAACGACAAGCGTGCCGTTGTCACCGTTACTCAGTACGTCAACGCAGACGGCGCTGTTGTTATTCCAGCTGCCACCACCGCTACCTCGGCGGCTGCTGATGGAAAGGTCGAGTCTGTTGCTGCTGCCACCACTACTTTGTCCTCGACTGCCGCCGCCGCTACAACCCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 48) TFP 17TFP 17 ATGAAATTATCAACTGTCCTATTATCTGCCGGTTTAGCCTCGACTACTTTGGCCCAATTTTCCAACAGTACATCTGCTTCTTCCACCGATGTCACTTCCTCCTCTTCCATCTCCACTTCCTCTGGCTCAGTAACTATCACATCTTCTGAAGCTCCAGAATCCGACAACGGTACCAGCACAGCTGCACCAACTGAAACCTCAACAGAGGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGCTCTTCCAACTAACGGTACTTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGGTCTTCCAACCAACGGTACCACTTCAGCTTTCCCACCAACTACATCTTTGCCACCAAGCAACACTACCACCACTCCTCCTTACAACCCATCTACTGACTACACCACTGACTACACTGTAGTCACTGAATATACTACTTACTGTCCGGAACGGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 49)ATGAAATTATCAACTGTCCTATTATCTGCCGGTTTAGCCTCGACTACTTTGGCCCAATTTTCCAACAGTACATCTGCTTCTTCCACCGATGTCACTTCCTCCTCTTCCATCTCCACTTCCTCTGGCTCAGTAACTATCACATCTTCTGAAGCTCCAGAATCCGACAACGGTACCAGCACAGCTGCACCAACTGAAACCTCAACAGAGGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGCTCTTCCAACTAACGGTACTTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGGTCTTCCAACCAACGGTACCACTTCAGCTTTCCCACCAACTACATCTTTGCCACCAAGCAACACTACCACCACTCCTCCTTACAACCCATCTACTGACTACACCACTGACTACACTGTAGTCACTGAATATACTACTTACTGTCCGGAACGGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 49) TFP 18TFP 18 ATGCGTTTCTCTACTACACTCGCTACTGCAGCTACTGCGCTATTTTTCACAGCCTCCCAAGTTTCAGCTATTGGTGAACTAGCCTTTAACTTGGGTGTCAAGAACAACGATGGTACTTGTAAGTCCACTTCCGACTATGAAACCGAATTACAAGCTTTGAAGAGCTACACTTCCACCGTCAAAGTTTACGCTGCCTCAGATTGTAACACTTTGCAAAACTTAGGTCCTGCTGCTGAAGCTGAGGGATTTACTATCTTTGTCGGTGTTTGGCCACTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 50)ATGCGTTTCTCTACTACACTCGCTACTGCAGCTACTGCGCTATTTTTCACAGCCTCCCAAGTTTCAGCTATTGGTGAACTAGCCTTTAACTTGGGTGTCAAGAACAACGATGGTACTTGTAAGTCCACTTCCGACTATGAAACCGAATTACAAGCTTTGAAGAGCTACACTTCCACCGTCAAAGTTTACGCTGCCTCAGATTGTAACACTTTGCAAAACTTAGGTCCTGCTGCTGAAGCTGAGGGATTTACTATCTTTGTCGGTGTTTGGCCACTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 50) TFP 19TFP 19 ATGCGTCTCTCTAACCTAATTGCTTCTGCCTCTCTTTTATCTGCTGCTACTCTTGCTGCTCCCGCTAACCACGAACACAAGGACAAGCGTGCTGTGGTCACTACCACTGTTCAAAAACAAACCACTATCATTGTTAATGGTGCCGCTTCAACTCCAGTTGCTGCTTTGGAAGAAAATGCTGTTGTCAACTCCGCTCCAGCTGCCGCTACCAGTACAACATCGTCTGCTGCTTCTGTAGCTACCGCTGCTTCCTCTTCTGAGAACAACTCACAAGTTTCTGCTGCCGCATCTCCAGCCTCCAGCTCTGCTGCTACATCTACTCAATCTTCTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 51)ATGCGTCTCTCTAACCTAATTGCTTCTGCCTCTCTTTTATCTGCTGCTACTCTTGCTGCTCCCGCTAACCACGAACACAAGGACAAGCGTGCTGTGGTCACTACCACTGTTCAAAAACAAACCACTATCATTGTTAATGGTGCCGCTTCAACTCCAGTTGCTGCTTTGGAAGAAAATGCTGTTGTCAACTCCGCTCCAGCTGCCGCTACCAGTACAACATCGTCTGCTGCTTCTGTAGCTACCGCTGCTTCCTCTTCTGAGAACAACTCACAAGTTTCTGCTGCCGCATCTCCAGCCTCCAGCTCTGCTGCTACATCTACTCAATCTTCTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 51) TFP 20TFP 20 ATGCAATTTTCTACTGTCGCTTCTATCGCCGCTGTCGCCGCTGTCGCTTCTGCCGCTGCTAACGTTACCACTGCTACTGTCAGCCAAGAATCTACCACTTTGGTCACCATCACTTCTTGTGAAGACCACGTCTGTTCTGAAACTGTCTCCCCAGCTTTGGTTTCCACCGCTACCGTCACCGTCGATGACGTTATCACTCAATACACCACCTGGTGCCCATTGACCACTGAAGCCCCAAAGAACGGTACTTCTACTGCTGCTCCAGTTACCTCTACTGAAGCTCCAAAGAACACCACCTCTGCTGCTCCAACTCACTCTGTCACCTCTTACACTGGTGCTGCTGCTAAGGCTTTGCCAGCTGCTGGTGCTTTGCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 52)ATGCAATTTTCTACTGTCGCTTCTATCGCCGCTGTCGCCGCTGTCGCTTCTGCCGCTGCTAACGTTACCACTGCTACTGTCAGCCAAGAATCTACCACTTTGGTCACCATCACTTCTTGTGAAGACCACGTCTGTTCTGAAACTGTCTCCCCAGCTTTGGTTTCCACCGCTACCGTCACCGTCGATGACGTTATCACTCAATACACCACCTGGTGCCCATTGACCACTGAAGCCCCAAAGAACGGTACTTCTACTGCTGCTCCAGTTACCTCTACTGAAGCTCCAAAGAACACCACCTCTGCTGCTCCAACTCACTCTGTCACCTCTTACACTGGTGCTGCTGCTAAGGCTTTGCCAGCTGCTGGTGCTTTGCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 52) TFP 21TFP 21 ATGAAATTCTCTTCCGCTTTGGTTCTATCTGCTGTTGCCGCTACTGCTCTTGCTGAGAGTATCACCACCACCATCACTGCCACCAAGAACGGTCATGTCTACACTAAGACTGTCACCCAAGATGCTACTTTTGTTTGGGGTGGTGAAGACTCTTACGCCAGCAGCACTTCTGCCGCTGAATCTTCTGCCGCCGAAACTTCTGCCGCCGAAACCTCTGCTGCCGCTACCACTTCTGCTGCCGCTACCACTTCTGCTGCTGAGACTTCTTCTGCTGCTGAGACTTCTTCTGCTGATGAAGGTTCTGGTTCTAGTATCACTACCACTATCACTGCCACCAAGAACGGTCACGTCTACACTAAGACTGTCACCCAAGATGCTACTTTTGTCTGGACTGGTGAAGGCAGCAGCAACACCTGGTCTCCAAGTAGTACCTCTACCAGCTCAGAAGCTGCTACCTCTTCTGCTTCAACCACTGCAACCACCCTGCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 53)ATGAAATTCTCTTCCGCTTTGGTTCTATCTGCTGTTGCCGCTACTGCTCTTGCTGAGAGTATCACCACCACCATCACTGCCACCAAGAACGGTCATGTCTACACTAAGACTGTCACCCAAGATGCTACTTTTGTTTGGGGTGGTGAAGACTCTTACGCCAGCAGCACTTCTGCCGCTGAATCTTCTGCCGCCGAAACTTCTGCCGCCGAAACCTCTGCTGCCGCTACCACTTCTGCTGCCGCTACCACTTCTGCTGCTGAGACTTCTTCTGCTGCTGAGACTTCTTCTGCTGATGAAGGTTCTGGTTCTAGTATCACTACCACTATCACTGCCACCAAGAACGGTCACGTCTACACTAAGACTGTCACCCAAGATGCTACTTTTGTCTGGACTGGTGAAGGCAGCAGCAACACCTGGTCTCCAAGTAGTACCTCTACCAGCTCAGAAGCTGCTACCTCTTCTGCTTCAACCACTGCAACCACCCTGCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 53) TFP 22TFP 22 ATGAAGTTCCAAGTTGTTTTATCTGCCCTTTTGGCATGTTCATCTGCCGTCGTCGCAAGCCCAATCGAAAACCTATTCAAATACAGGGCAGTTAAGGCATCTCACAGTAAGAATATCAACTCCACTTTGCCGGCCTGGAATGGGTCTAACTCTAGCAATGTTACCTACGCTAATGGAACAAACAGTACTACCAATACTACTACTGCCGAAAGCAGTCAATTACAAATCATTGTAACAGGTGGTCAAGTACCAATCACCAACAGTTCTTTGACCCACACAAACTACACCAGATTATTCAACAGTTCTTCTGCTTTGAACATTACCGAATTGTACAATGTTGCCCGTGTTGTTAACGAAACGATCCAAGATAACCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 54)ATGAAGTTCCAAGTTGTTTTATCTGCCCTTTTGGCATGTTCATCTGCCGTCGTCGCAAGCCCAATCGAAAACCTATTCAAATACAGGGCAGTTAAGGCATCTCACAGTAAGAATATCAACTCCACTTTGCCGGCCTGGAATGGGTCTAACTCTAGCAATGTTACCTACGCTAATGGAACAAACAGTACTACCAATACTACTACTGCCGAAAGCAGTCAATTACAAATCATTGTAACAGGTGGTCAAGTACCAATCACCAACAGTTCTTTGACCCACACAAACTACACCAGATTATTCAACAGTTCTTCTGCTTTGAACATTACCGAATTGTACAATGTTGCCCGTGTTGTTAACGAAACGATCCAAGATAACCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 54) TFP 23TFP 23 ATGCGTGCCATCACTTTATTATCTTCAGTCGTTTCTTTGGCATTGTTGTCGAAGGAAGTCTTAGCAACACCTCCAGCTTGTTTATTGGCCTGTGTTGCGCAAGTCGGCAAATCCTCTTCCACATGTGACTCTTTGAATCAAGTCACCTGTTACTGTGAACACGAAAACTCCGCCGTCAAGAAATGTCTAGACTCCATCTGCCCAAACAATGACGCTGATGCTGCTTATTCTGCTTTCAAGAGTTCTTGTTCCGAACAAAATGCTTCATTGGGCGATTCCAGCGGCAGTGCCTCCTCATCCGTTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 55)ATGCGTGCCATCACTTTATTATCTTCAGTCGTTTCTTTGGCATTGTTGTCGAAGGAAGTCTTAGCAACACCTCCAGCTTGTTTATTGGCCTGTGTTGCGCAAGTCGGCAAATCCTCTTCCACATGTGACTCTTTGAATCAAGTCACCTGTTACTGTGAACACGAAAACTCCGCCGTCAAGAAATGTCTAGACTCCATCTGCCCAAACAATGACGCTGATGCTGCTTATTCTGCTTTCAAGAGTTCTTGTTCCGAACAAAATGCTTCATTGGGCGATTCCAGCGGCAGTGCCTCCTCATCCGTTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 55) TFP 24TFP 24 ATGAAATTATCAACTGTCCTATTATCTGCCGGTTTGGCCTCGACTACTTTGGCCCAATTTTCCAACAGTACATCTGCTTCTTCCACCGATGTCACTTCCTCCTCTTCCATCTCCACTTCCTCTGGCTCAGTAACTATCACATCTTCTGAAGCTCCAGAATCCGACAACGGTACCAGCACAGCTGCACCAACTGAAACCTCAACAGAGGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGCTCTTCCAACTAACGGTACTTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGGTCTTCCAACCAACGGTACCACTTCAGCTTTCCCACCAACTACATCTTTGCCACCAAGCAACACTACCACCACTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (서열번호 56)ATGAAATTATCAACTGTCCTATTATCTGCCGGTTTGGCCTCGACTACTTTGGCCCAATTTTCCAACAGTACATCTGCTTCTTCCACCGATGTCACTTCCTCCTCTTCCATCTCCACTTCCTCTGGCTCAGTAACTATCACATCTTCTGAAGCTCCAGAATCCGACAACGGTACCAGCACAGCTGCACCAACTGAAACCTCAACAGAGGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACCACTGCTATCCCAACTAACGGTACCTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGCTCTTCCAACTAACGGTACTTCTACTGAAGCTCCAACTGATACTACTACTGAAGCTCCAACCACCGGTCTTCCAACCAACGGTACCACTTCAGCTTTCCCACCAACTACATCTTTGCCACCAAGCAACACTACCACCACTCTGGCCGCCTCGGCCTCTGCTGGCCTCGCCTTAGATAAAAGA (SEQ ID NO: 56)

24 종의 형질전환체를 각각 YPD 배지 (1 % 효모추출물, 2 % 펩톤, 2 % 포도당)에서 40 시간 배양한 후 원심분리하여 균체를 제거하고 배양상등액 0.6 ㎖에 0.4 ㎖의 아세톤을 첨가하여 침전시킨 후 SDS-PAGE 분석하고 (도 2), 항-HIS 항체를 이용한 웨스턴블랏으로 lftA의 분비 발현 여부를 확인하였다 (도 3). Twenty-four transformants were cultured in YPD medium (1% yeast extract, 2% peptone, 2% glucose) for 40 hours, centrifuged to remove the cells, and 0.4 ml of acetone was added to the culture supernatant (0.6 ml) , Followed by SDS-PAGE analysis (FIG. 2), and Western blotting using an anti-HIS antibody confirmed the expression of lftA (FIG. 3).

레반 과당전이효소는 효모에서 분비생산이 어려운 단백질로 알려져 있으나, 단백질 분비융합인자 기술을 이용할 경우 도 3에서 보는 바와 같이 24 종의 단백질 분비융합인자 중 대부분이 lftA를 분비생산 할 수 있음을 확인하였다. 이중 상대적으로 레반 과당전이효소 분비 발현능이 우수한 5 종 (TFP 7, TFP 8, TFP 9, TFP 13 및 TFP 19)의 TFP를 선별하였다. Levan fructose transferase is known to be a protein difficult to secrete in yeast. However, when the protein secretion factor technique is used, as shown in FIG. 3, most of the 24 protein secretion fusion factors can secrete lftA . Among these, TFP of five species (TFP 7, TFP 8, TFP 9, TFP 13, and TFP 19) which are relatively excellent in the ability to express levansuclease transferase were selected.

상기와 같은 방법으로 선별된 균주는 단일 콜로니를 분석한 결과가 아니고 형질전환체를 혼합하여 분석한 결과이기 때문에 정확한 분석을 위해, 단일 콜로니로부터 균주를 배양하여 단백질 합성을 분석하였다. 각각의 균주로부터 단일 균주를 확보하기 위하여 각 TFP 별로 단일 콜로니를 3 개씩 골라서 동일하게 배양한 뒤, 배양 배지를 동일한 방법으로 SDS-PAGE 분석 (도 4)을 수행하고, 항-HIS 항체로 웨스턴블랏을 수행하였다 (도 5). 이와 함께 각 TFP의 레반 과당전이효소 분비능을 비교하기 위하여 효모에서 분비 시그널로 가장 널리 사용되고 있는 MFα 분비시그널을 이용하여 레반 과당전이효소를 분비 발현한 경우와 비교하였다 (도 6). Since the strains selected by the above method were obtained by analyzing the transformants rather than the single colonies, the strains were cultured from a single colony to analyze the protein synthesis for accurate analysis. In order to obtain a single strain from each strain, three single colonies were selected for each TFP and cultured in the same manner. The culture medium was subjected to SDS-PAGE analysis (FIG. 4) in the same manner and Western blot (Fig. 5). In addition, in order to compare the secretion ability of levansuclease transferase of each TFP, the MFα secretion signal which is most widely used as a secretion signal in yeast was used to compare with the secretory expression of levansuclease transferase (FIG. 6).

확인 결과 상기 선별한 TFP는 모두 MFα 분비시그널보다 레반 과당전이효소를 효과적으로 분비 발현 함을 확인하였으며 이중 TFP 13이 레반 과당전이효소를 가장 효율적으로 분비 생산할 수 있음을 확인하였다.As a result, it was confirmed that all of the selected TFPs secreted Levan-fructose-transferase more efficiently than MFa secretion signal, and it was confirmed that TFP 13 can secrete Levan-fructose-transferase most efficiently.

상기 결과에 따라 최종적으로 아쓰로박터 우레아파시엔스 유래 레반 과당전이효소를 고분비 생산하는 발현벡터로, YGaST13-lftA-6H를 제작하였으며 (도 7), 상기 발현벡터로 형질전환된 균주는 부다페스트 조약하의 국제기탁기관인 한국생명공학연구원 생물자원센터 (Korean Collection for Type Culture; KCTC)에 2015년 6월 30일자로 기탁하고, 수탁번호 KCTC18396P를 부여받았다.
Based on the above results, YGaST13-lftA-6H was produced as an expression vector which was finally produced by high-yield production of Levan fructosyltransferase derived from Agrobacterium tumefaciens (Fig. 7), and the strain transformed with the expression vector under the Budapest Treaty Was deposited on June 30, 2015 and granted accession number KCTC18396P to the international depositary, the Korean Collection for Type Culture (KCTC).

실시예Example 2.  2. 레반Levan 과당전이효소의Fructose-transferase 효소활성 확인 Enzyme activity confirmation

상기 실시예1에서 확보한 레반 과당전이효소 생산 균주의 레반 분해활성을 DNS 방법을 이용하여 비교하였다. DNS 분석방법을 위하여 37 ℃에서 분당 1 μM의 환원당을 생성하는 효소의 양을 1 유닛 (unit)으로 정의하였다. 50 mM 소듐 포스페이트 완충액 (sodium phosphate buffer, pH 6.0)에 녹아있는 4 % 레반 (levan) 100 ㎕에 시험 튜브 (test tube) 배양액 5 ㎕씩을 첨가하고, 완충액을 95 ㎕ 넣어 총액을 200 ㎕로 맞춰 준 뒤, 37 ℃에서 수 시간 (2 내지 24 시간) 반응시켰다. 그 다음 DNS 700 ㎕를 넣고 5 분간 끓여준 후, 550 nm에서 흡광도를 측정하여 효소활성을 계산하였다. 글루코스를 이용하여 표준 곡선 (standard curve)을 그리고 이를 통해 효소의 양을 확인하였다. The Levansolytic activity of the Levan fructose transferase-producing strains obtained in Example 1 was compared using the DNS method. For the DNS analysis method, the amount of enzyme producing 1 μM of reducing sugar per minute at 37 ° C was defined as one unit. Add 5 μl of the test tube culture to 100 μl of 4% levan in 50 mM sodium phosphate buffer (pH 6.0), add 95 μl of the buffer solution, and adjust the total volume to 200 μl And then reacted at 37 ° C for several hours (2 to 24 hours). Then, 700 μl of DNS was added, boiled for 5 minutes, and the absorbance at 550 nm was measured to calculate the enzyme activity. Glucose was used to determine the standard curve and the amount of enzyme.

그 결과, 상기 SDS-PAGE 분석 결과 (도 6)와 마찬가지로, 선별된 상기 5 종의 TFP를 각각 포함하는 벡터로 형질전환된 균주는 MFα 분비시그널을 이용하여 발현한 경우보다 높은 활성을 나타내었으며, 특히 YGaST13-lftA-6H 벡터로 형질전환된 균주는 MFα 분비시그널을 이용하여 발현한 경우보다 1.8 배 높은 활성을 나타냈다 (표 3).
As a result, as in the above SDS-PAGE analysis (FIG. 6), the strain transformed with the vector containing each of the above-mentioned five TFPs exhibited higher activity than that expressed using the MFa secretion signal, In particular, the strain transformed with the YGaST13-lftA-6H vector showed a 1.8-fold higher activity than that expressed using the MFa secretion signal (Table 3).

TFPTFP ODOD 550550 U/㎖/minU / ml / min MfαMfα 0.4230.423 1.601.60 ST7ST7 0.4570.457 1.711.71 ST8ST8 0.5350.535 1.971.97 ST9ST9 0.6470.647 2.332.33 ST13ST13 0.7960.796 2.822.82 ST19ST19 0.6370.637 2.302.30

상기 레반 과당전이효소를 고분비 생산하는 발현 벡터, YGaST13-lftA-6H (도 7)는 갈락토스에 의하여 발현이 강력히 유도되는 GAL10 프로모터에 의하여 lftA 유전자가 전사되고 TFP 13 (서열번호 6)에 의하여 레반 과당전이효소의 단백질합성과 분비가 유도되는 구조이다. TFP 13에 연결된 레반 과당전이효소의 아미노산 서열 (서열번호 7)에는 효소정제를 위하여 카르복시 말단에 6 개의 히스티딘 (histidine) 아미노산이 추가되었으며, YEG-HIR525 벡터 (Sohn 등, Process Biochem. 1995, 30, 653)의 골격을 사용하였다.
The expression vector YGaST13-lftA-6H (FIG. 7), which expresses the levan fructosyltransferase at high secretion level, was transfected with the GAL10 promoter which is strongly induced by galactose expression and the lftA gene was transcribed by TFP 13 (SEQ ID NO: 6) It is a structure in which protein synthesis and secretion of fructose transferase are induced. Six histidine amino acids were added to the carboxy terminus for the enzyme purification in the amino acid sequence (SEQ ID NO: 7) of the levan fructose transferase linked to TFP 13. YEG-HIR525 vector (Sohn et al., Process Biochem. 1995, 653) were used.

실시예Example 3. 재조합 효모  3. Recombinant yeast 유가식Oil price formula 발효를 통한  Through fermentation 레반Levan 과당전이효소Fructose transferase 대량생산 massive production

레반 과당전이효소를 대량생산하기 위하여 상기한 YGaST13-lftA-6H 벡터를 함유하는 재조합 효모 (YGaST13-lftA-6H/Y2805GS)를 5 L 발효조를 이용하여 유가식 배양하였다. 본 배양에 들어가기 전에 50 ㎖ YNB (0.67 % 아미노산이 결여된 효모기질, 0.5 % 카사미노에시드, 2 % 글루코스) 배지에 초기 배양한 후 다시 200 ㎖의 YEPD 액체배지 (2 % 포도당, 4 % 효모추출물, 1 % 펩톤)에서 배양하여 활성화하고 1.8 L의 본 배양액 (2 % 포도당, 4 % 효모추출물, 1 % 펩톤)에 접종하여 30 ℃에서 발효하였다. 배양 중 포도당이 완전히 소모되면 공급 배지 (30 % 포도당, 15 % 효모 추출물)를 균체의 성장에 따라 시간당 2 g/L에서 20 g/L로 점차로 추가하면서 50 시간 동안 발효하였다. 배양 중 세포의 성장 정도는 시간 별로 시료를 취하여 600 nm 파장에서 흡광도를 측정하였고 (도 8), 배지에 분비 생산된 lftA는 농축하지 않은 배양 상등액 10 ㎕를 SDS-PAGE 분석하여 확인하였다 (도 9). Recombinant yeast (YGaST13-lftA-6H / Y2805GS) containing the above-mentioned YGaST13-lftA-6H vector was cultivated in a 5 L fermenter to mass-produce levan fructose transferase. The cells were cultured in a 50 ml YNB medium (yeast substrate lacking 0.67% amino acid, 0.5% casamino ester, 2% glucose) medium, and then resuspended in 200 ml YEPD liquid medium (2% glucose, 4% yeast extract , 1% peptone), and inoculated into 1.8 L of the culture medium (2% glucose, 4% yeast extract, 1% peptone) and fermented at 30 ° C. When the glucose was completely consumed during the culture, the feed medium (30% glucose, 15% yeast extract) was fermented for 50 hours with the addition of 2 g / L to 20 g / L per hour gradually as the cells were grown. The degree of cell growth during the culture was measured by taking samples over time and measuring the absorbance at a wavelength of 600 nm (FIG. 8). The lftA secreted in the medium was confirmed by SDS-PAGE analysis of 10 μl of the culture supernatant not concentrated ).

발효 생산된 단백질은 정제를 위하여 3500 rpm으로 20 분간 원심분리한 후 0.1 마이크론 크기의 여과막을 통과시켜 균체를 완전히 제거하였다. 그 다음 20 mM 트리스 버퍼 (pH 7.5)를 반복적으로 첨가한 후 한외여과 (분자량 30kDa 컷-오프) 막을 통과시키는 방법으로 배양액을 농축하였다(도 9).
The fermented protein was centrifuged at 3500 rpm for 20 minutes for purification, and then passed through a 0.1 micron filter membrane to completely remove the cells. Then, the culture was concentrated by repeatedly adding 20 mM Tris buffer (pH 7.5) and passing ultrafiltration (cut-off molecular weight: 30 kDa) membrane (FIG. 9).

실시예Example 4. 친화성 크로마토그래피 (Affinity chromatography) 방법을 이용한 레반  4. Levan using affinity chromatography method 과당전이효소의Fructose-transferase 정제 refine

본 발명에서 생산된 레반 과당전이효소는 모두 카르복시 말단에 6X 히스티딘 태깅 (Histidine tagging)이 되어 있어, Ni-NTA 레진을 이용한 친화성 크로마토그래피 방법으로 정제가 가능하다. The levan fructosyltransferase produced in the present invention has 6X histidine tagging at the carboxy terminus and can be purified by an affinity chromatography method using Ni-NTA resin.

상기 실시예 3에서 확보한 발효배지 농축액 150 ㎖를 HisPrep FF 컬럼에 적용하여 융합 단백질을 Ni-NTA 레진에 결합시킨 후, AKTA FPLC (Fast Protein Liquid Chromatography, GE healthcare)를 이용하여 50 mM Tris-HCl (pH 7.5), 0.5 M NaCl, 0.25 M 이미다졸 (imidazole) 용액으로 단백질을 용출하였다. 그리고 최종 정제된 분획은 Hiprep Desalting 컬럼을 이용하여 탈염과정을 거쳐 최종 정제산물을 확보하였다 (도 10).
The fusion protein was bound to the Ni-NTA resin by applying 150 ml of the fermentation medium concentrate obtained in Example 3 to the HisPrep FF column, and then the supernatant was digested with 50 mM Tris-HCl (pH 7.4) using AKTA FPLC (Fast Protein Liquid Chromatography, GE healthcare) (pH 7.5), 0.5 M NaCl, and 0.25 M imidazole. The final purified fractions were desalted using a Hiprep Desalting column to obtain a final purified product (FIG. 10).

실시예Example 5. 정제된  5. Refined 레반Levan 과당전이효소를Fructose transferase 이용한 최적조건 검증 Optimal condition verification using

상기 실시예 4에서 정제된 레반 과당전이효소의 최적 pH를 확인하기 위하여 100 ㎕의 1 % 레반 용액에 다양한 pH 범위의 50 mM 완충액 (표 4) 100 ㎕를 혼합한 후, 1 ㎍/㎕의 정제 효소를 첨가하여 37 ℃의 온도에서 1 시간 동안 효소 반응을 수행하였다. 반응 후에는 레반으로부터 유리된 환원당을 측정하기 위해 DNS 용액 300 ㎕를 넣고 5 분간 끓여준 후, 550 nm에서 흡광도를 측정하여 상대 활성을 비교하였다.
To confirm the optimal pH of the levan fructose transferase purified in Example 4, 100 μl of 1% Levan solution was mixed with 100 μl of 50 mM buffer (Table 4) in various pH ranges, and then 1 μg / Enzyme was added and enzyme reaction was performed at a temperature of 37 ° C for 1 hour. After the reaction, 300 μl of DNS solution was added to measure the reducing sugar liberated from Levan, boiled for 5 minutes, and the absorbance at 550 nm was measured to compare the relative activities.

pHpH 33 44 55 66 77 88 99 완충액Buffer glycine-
HCl
glycine-
HCl
AcetateAcetate AcetateAcetate MaleateMaleate Tris-
maleate
Tris-
maleate
Tris-
maleate
Tris-
maleate
Tris-
HCl
Tris-
HCl

또한 효소의 최적 온도를 확인하기 위하여, 100 ㎕의 1 % 레반 용액에 최적 pH 조건인 pH 5.0 완충액 100 ㎕를 혼합한 뒤, 다양한 범위의 온도 (4, 20, 30, 37, 50 및 60 ℃)에서 1 ㎍/㎕의 정제효소를 첨가하고 1 시간 동안 반응시켰다. 그 다음 상기 과정과 동일하게 DNS 법으로 상대 활성을 비교하였다. In order to determine the optimal temperature of the enzyme, 100 μl of 1% Levan solution was mixed with 100 μl of pH 5.0 buffer, which was an optimal pH condition. Then, the mixture was incubated at various temperatures (4, 20, 30, 37, 50, And 1 μg / μl of the purified enzyme was added and reacted for 1 hour. Then, the relative activities were compared by the DNS method in the same manner as above.

반응 결과, 재조합 레반 과당전이효소의 최적 pH는 pH 5.0 이였으며 (도 11), 최적 온도는 50 ℃로 확인되었다 (도 12).
As a result, the optimum pH of the recombinant levan fructose transferase was pH 5.0 (FIG. 11) and the optimum temperature was 50 ° C. (FIG. 12).

실시예Example 6.  6. HPLCHPLC 를 이용한 Using DFADFA -VI 생산성 분석-VI Productivity Analysis

상기 실시예 3에서 확인한 바와 같이 레반 과당전이효소를 분비 발현하는 재조합 효모 (YGaST13-lftA-6H/Y2805GS)의 배양액을 농축한 경우 대부분의 단백질은 재조합 레반 과당전이효소이기 때문에, 추가적인 정제과정 없이 배양액을 5 배 농축한 효소 용액을 이용하여 DFA-IV 생산에 적용하였다. As shown in Example 3, when the culture solution of the recombinant yeast (YGaST13-lftA-6H / Y2805GS) secreted and expressed by the levan fructose transferase was concentrated, most of the proteins were recombinant levan fructose transferase, The culture was applied to DFA-IV production using an enzyme solution 5-fold concentrated without further purification.

4 % 레반용액 (pH 5.0) 0.9 ㎖에 0.1 ㎖의 효소 용액을 첨가한 후, 45 ℃에서 30 분간 효소반응한 산물을 물을 용매로 이용하여 YMC-pack ODS-AQ (250X10 mm) 컬럼으로 분석하였다. 0.1 ml of the enzyme solution was added to 0.9 ml of a 4% Levan solution (pH 5.0), and the product was subjected to enzymatic reaction at 45 ° C for 30 minutes. The product was analyzed with a YMC-pack ODS-AQ (250 × 10 mm) Respectively.

대장균에서 생산된 레반 과당전이효소와 효모에서 생산된 레반 과당전이효소를 비교한 결과, 5 배 농축된 재조합 효모의 발효 배양액은 대장균에서 생산된 레반 과당전이효소보다 128 % 높은 활성을 나타내었다 (표 5).
As a result of comparing the levan fructose transferase produced from Escherichia coli with the levan fructose transferase produced from yeast, the fermentation broth of 5-fold concentrated recombinant yeast was 128% higher than that of E. coli-produced levan fructose transferase 5).

레반Levan 과당전이효소Fructose transferase 활성(U/㎖)Activity (U / ml) 상대적 활성 (%)Relative activity (%) YGaST13-lftA-6H/Y2805GS 배양액YGaST13-lftA-6H / Y2805GS culture medium 67836783 4848 YGaST13-lftA-6H/Y2805GS 배양 농축액YGaST13-lftA-6H / Y2805GS culture concentrate 1808818088 128128 재조합 대장균 유래 레반 과당전이효소Recombinant E. coli-derived levan fructose transferase 1418314183 100100

따라서 상기 효모에서 생산된 레반 과당전이효소는 레반으로부터 DFA-VI 생산이 가능하며, 별도의 정제과정 없이 배양액을 농축한 발효농축액으로도 대장균 유래의 레반 과당전이효소보다 향상된 효율로 DFA-VI를 생산할 수 있음을 확인하였다.
Therefore, the levan fructose transferase produced from the yeast can produce DFA-VI from levan, and can produce DFA-VI at a higher efficiency than the E. coli-derived levan fructose transferase even if the culture solution is concentrated without further purification Respectively.

실시예Example 7.  7. 레반이Levan 함유된 배지에서 재조합 효모 직접발효를 통한  Through direct fermentation of recombinant yeast in the medium containing DFADFA -IV 생산-IV Production

기존 DFA-IV 생산 공정은 세포 내에서 생산된 효소를 추출 및 부분 정제한 후 레반 기질을 DFA-IV로 전환하는 것이나, 이러한 방식에는 효소의 추출 및 정제비용이 요구된다. 그러나, 레반 과당전이효소를 분비 생산하는 효모 균주를 레반이 함유된 배지에서 직접 배양하여 DFA-IV를 생산할 수 있다면 생산비용의 절감을 기대할 수 있다. 또한 레반으로부터 DFA-IV 생산과정에서 생성되는 포도당과 과당은 효모의 탄소원으로 사용되기 때문에 생산된 DFA-IV의 순도를 증가시킬 수 있다. The existing DFA-IV production process involves extracting and partially purifying the enzyme produced in the cell and then converting the Levan substrate to DFA-IV, but this method requires the extraction and purification cost of the enzyme. However, if the yeast strain secreted by the levan fructose transferase can be directly cultured in a medium containing Levan to produce DFA-IV, the production cost can be reduced. Also, since the glucose and fructose produced in the DFA-IV production process from levan are used as the carbon source of the yeast, the purity of the produced DFA-IV can be increased.

이에, 본 발명자들은 상기 제조한 재조합 효모 (YGaST13-lftA-6H/Y2805)의 직접 발효를 통하여 DFA-IV 생산 가능성을 확인하였다. 구체적으로, 4 % 레반이 포함된 YP배지 (1 % 효모추출물, 2 % 펩톤, 4 % 레반)에서 레반 과당전이효소를 발현하는 효모 (YGaST13-lftA-6H/Y2805GS)를 배양하여 24 시간 간격으로 배양액의 흡광도를 540 nm에서 측정하고, 원심분리 후 상등액은 물을 이용하여 YMC-pack ODS-AQ (250X10mm) 컬럼으로 생성된 DFA-IV의 양을 정량분석하였다 (도 13). Thus, the present inventors confirmed the possibility of producing DFA-IV through direct fermentation of the recombinant yeast (YGaST13-lftA-6H / Y2805) prepared above. Specifically, yeast (YGaST13-lftA-6H / Y2805GS) expressing levan fructose transferase was cultured in YP medium (1% yeast extract, 2% peptone, 4% Levan) containing 4% The absorbance of the culture was measured at 540 nm, and the amount of DFA-IV produced by the YMC-pack ODS-AQ (250 X 10 mm) column was quantitatively analyzed using water as a supernatant after centrifugation (FIG. 13).

분석결과, 4 % 레반을 포함하는 배지에서 재조합 효모균주의 발효를 통해 약 20 g/L의 DFA IV 생산이 가능하였으며, 이는 약 50 %의 전환율에 해당하여 효소 반응보다 DFA-IV 생산효율이 높음을 확인하였다.
As a result, about 20 g / L of DFA IV was produced through fermentation of recombinant yeast strains in a medium containing 4% Levan, which corresponds to a conversion rate of about 50%, indicating that DFA-IV production efficiency is higher than enzyme reaction Respectively.

이상의 설명으로부터, 본 발명이 속하는 기술분야의 다른 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
From the above description, it will be understood by those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. In this regard, it should be understood that the embodiments described above are illustrative in all aspects and not restrictive. The scope of the present invention should be construed as being included in the scope of the present invention without departing from the spirit and scope of the present invention as defined by the appended claims.

한국생명공학연구원 생물자원센터Korea Research Institute of Bioscience and Biotechnology KCTC18396PKCTC18396P 2015063020150630

<110> KOREA RESEARCH INSTITUTE OF BIOSCIENCE AND BIOTECHNOLOGY <120> A microorganism having enhanced levan fructotransferase productivity and a method of producing difructose anhydride IV using the microorganism <130> KPA150510-KR <160> 56 <170> KopatentIn 2.0 <210> 1 <211> 1467 <212> DNA <213> Artificial Sequence <220> <223> lftA <400> 1 tccgctccgg gctcgctccg tgccgtctac cacatgacgc cccccagcgg ctggctctgc 60 gacccccaac gcccggtcac cacccacggc gcctaccagc tgtactacct gcactccgac 120 cagaacaacg gccccggcgg ctgggaccac gcgagcacga ccgacggcgt cgccttcacg 180 caccacggca ccgtgatgcc gctgcggccc gacttccccg tgtggtccgg gtcggcggtc 240 gtcggcaccg cgaacacggc agggttcggc gccggcgcgg tcgtcgcgct cgcgacccag 300 ccgaccgacg gcgtccgcaa gtaccaggag cagtacctct actggtcgac cgacggcggg 360 ttcacgttca ccgccctgcc cgaccccgtc atcgtcaaca ccgacggtcg cgccgccacc 420 acgcccgccg agatcgagaa cgccgagtgg ttccgcgacc ccaagatcca ctgggacacc 480 gcccgcggag aatgggtctg cgtcatcgga cgactgcggt acgccgcgtt ctacacctcg 540 ccgaacctgc gcgactggac acttcgccgc aacttcgact acccgaacca cgccctcggc 600 ggcatcgagt gccccgacct gttcgagatc accgcagacg acgggacacg ccactgggtg 660 ctcgccgcca gcatggacgc ctacggcatc ggcctcccca tgacgtacgc ctactggaca 720 ggcacctggg acggcgagca gttccacgcc gacgacctca ccccgcaatg gctcgactgg 780 ggctgggact ggtacgcggc cgtcacctgg ccatcgatcg acgcgcccga gaccaagcgc 840 ctcgccatcg cgtggatgaa caactggaag tacgccgcac gcgacgtccc caccgacgca 900 tccgacggct acaacgggca gaactcgatc gtccgcgagc tgcggctcgc ccgacagcct 960 ggcggctggt acaccctcct gagcaccccc gtggcagcgc tgacgaacta cgtcaccgcc 1020 accaccacac tccccgaccg gaccgtcgac ggcagcgccg tcctgccatg gaacggacgc 1080 gcatacgaga tcgagctcga catcgcctgg gacaccgcga cgaacgtcgg catctcggtg 1140 ggccgctccc ccgacggaac ccggcacacg aacatcggca agtacggagc agacctgtac 1200 gtcgaccgag gaccctccga cctcgccggg tactcgctcg ccccctactc gcgagccgcc 1260 gcccccatcg accccggcgc ccgatccgtg cacctgcgca tcctcgtcga cacccagagc 1320 gtcgaggtct tcgtcaacgc cggccacacc gtgctctccc agcaggtcca cttcgccgag 1380 ggcgacacgg gaatctcgct ctacaccgac ggcggccccg cacacttcac cggcatcgtc 1440 gtccgcgaga ttggccaggc gatctag 1467 <210> 2 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> lftA primer 1 <400> 2 ctcgccttag ataaaagatc cgctccgggc tcgctccg 38 <210> 3 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> lftA primer 2 <400> 3 gtgatggtga tggtgatgga tcgcctggcc aatctcgc 38 <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> LNK39 primer <400> 4 ggccgcctcg gcctctgctg gcctcgcctt agataaaaga 40 <210> 5 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> HisGT50R primer <400> 5 gtcattatta aatatatata tatatatatt gtcactccgt tcaagtcgac ttagtgatgg 60 tgatggtgat g 71 <210> 6 <211> 522 <212> DNA <213> Artificial Sequence <220> <223> TFP13 <400> 6 atgcaataca aaaagacttt ggttgcctct gctttggccg ctactacatt ggccgcctat 60 gctccatctg agccttggtc cactttgact ccaacagcca cttacagcgg tggtgttacc 120 gactacgctt ccaccttcgg tattgccgtt caaccaatct ccactacatc cagcgcatca 180 tctgcagcca ccacagcctc atctaaggcc aagagagctg cttcccaaat tggtgatggt 240 caagtccaag ctgctaccac tactgcttct gtctctacca agagtaccgc tgccgccgtt 300 tctcagatcg gtgatggtca aatccaagct actaccaaga ctaccgctgc tgctgtctct 360 caaattggtg atggtcaaat tcaagctacc accaagacta cctctgctaa gactaccgcc 420 gctgccgttt ctcaaatcag tgatggtcaa atccaagcta ccaccactac tttagcccct 480 ctggccgcct cggcctctgc tggcctcgcc ttagataaaa ga 522 <210> 7 <211> 668 <212> PRT <213> Artificial Sequence <220> <223> TFP13-lftA amino acid <400> 7 Met Gln Tyr Lys Lys Thr Leu Val Ala Ser Ala Leu Ala Ala Thr Thr 1 5 10 15 Leu Ala Ala Tyr Ala Pro Ser Glu Pro Trp Ser Thr Leu Thr Pro Thr 20 25 30 Ala Thr Tyr Ser Gly Gly Val Thr Asp Tyr Ala Ser Thr Phe Gly Ile 35 40 45 Ala Val Gln Pro Ile Ser Thr Thr Ser Ser Ala Ser Ser Ala Ala Thr 50 55 60 Thr Ala Ser Ser Lys Ala Lys Arg Ala Ala Ser Gln Ile Gly Asp Gly 65 70 75 80 Gln Val Gln Ala Ala Thr Thr Thr Ala Ser Val Ser Thr Lys Ser Thr 85 90 95 Ala Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Ile Gln Ala Thr Thr 100 105 110 Lys Thr Thr Ala Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Ile Gln 115 120 125 Ala Thr Thr Lys Thr Thr Ser Ala Lys Thr Thr Ala Ala Ala Val Ser 130 135 140 Gln Ile Ser Asp Gly Gln Ile Gln Ala Thr Thr Thr Thr Leu Ala Pro 145 150 155 160 Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg Ser Ala 165 170 175 Pro Gly Ser Leu Arg Ala Val Tyr His Met Thr Pro Pro Ser Gly Trp 180 185 190 Leu Cys Asp Pro Gln Arg Pro Val Thr Thr His Gly Ala Tyr Gln Leu 195 200 205 Tyr Tyr Leu His Ser Asp Gln Asn Asn Gly Pro Gly Gly Trp Asp His 210 215 220 Ala Ser Thr Thr Asp Gly Val Ala Phe Thr His His Gly Thr Val Met 225 230 235 240 Pro Leu Arg Pro Asp Phe Pro Val Trp Ser Gly Ser Ala Val Val Gly 245 250 255 Thr Ala Asn Thr Ala Gly Phe Gly Ala Gly Ala Val Val Ala Leu Ala 260 265 270 Thr Gln Pro Thr Asp Gly Val Arg Lys Tyr Gln Glu Gln Tyr Leu Tyr 275 280 285 Trp Ser Thr Asp Gly Gly Phe Thr Phe Thr Ala Leu Pro Asp Pro Val 290 295 300 Ile Val Asn Thr Asp Gly Arg Ala Ala Thr Thr Pro Ala Glu Ile Glu 305 310 315 320 Asn Ala Glu Trp Phe Arg Asp Pro Lys Ile His Trp Asp Thr Ala Arg 325 330 335 Gly Glu Trp Val Cys Val Ile Gly Arg Leu Arg Tyr Ala Ala Phe Tyr 340 345 350 Thr Ser Pro Asn Leu Arg Asp Trp Thr Leu Arg Arg Asn Phe Asp Tyr 355 360 365 Pro Asn His Ala Leu Gly Gly Ile Glu Cys Pro Asp Leu Phe Glu Ile 370 375 380 Thr Ala Asp Asp Gly Thr Arg His Trp Val Leu Ala Ala Ser Met Asp 385 390 395 400 Ala Tyr Gly Ile Gly Leu Pro Met Thr Tyr Ala Tyr Trp Thr Gly Thr 405 410 415 Trp Asp Gly Glu Gln Phe His Ala Asp Asp Leu Thr Pro Gln Trp Leu 420 425 430 Asp Trp Gly Trp Asp Trp Tyr Ala Ala Val Thr Trp Pro Ser Ile Asp 435 440 445 Ala Pro Glu Thr Lys Arg Leu Ala Ile Ala Trp Met Asn Asn Trp Lys 450 455 460 Tyr Ala Ala Arg Asp Val Pro Thr Asp Ala Ser Asp Gly Tyr Asn Gly 465 470 475 480 Gln Asn Ser Ile Val Arg Glu Leu Arg Leu Ala Arg Gln Pro Gly Gly 485 490 495 Trp Tyr Thr Leu Leu Ser Thr Pro Val Ala Ala Leu Thr Asn Tyr Val 500 505 510 Thr Ala Thr Thr Thr Leu Pro Asp Arg Thr Val Asp Gly Ser Ala Val 515 520 525 Leu Pro Trp Asn Gly Arg Ala Tyr Glu Ile Glu Leu Asp Ile Ala Trp 530 535 540 Asp Thr Ala Thr Asn Val Gly Ile Ser Val Gly Arg Ser Pro Asp Gly 545 550 555 560 Thr Arg His Thr Asn Ile Gly Lys Tyr Gly Ala Asp Leu Tyr Val Asp 565 570 575 Arg Gly Pro Ser Asp Leu Ala Gly Tyr Ser Leu Ala Pro Tyr Ser Arg 580 585 590 Ala Ala Ala Pro Ile Asp Pro Gly Ala Arg Ser Val His Leu Arg Ile 595 600 605 Leu Val Asp Thr Gln Ser Val Glu Val Phe Val Asn Ala Gly His Thr 610 615 620 Val Leu Ser Gln Gln Val His Phe Ala Glu Gly Asp Thr Gly Ile Ser 625 630 635 640 Leu Tyr Thr Asp Gly Gly Pro Ala His Phe Thr Gly Ile Val Val Arg 645 650 655 Glu Ile Gly Gln Ala Ile His His His His His His 660 665 <210> 8 <211> 477 <212> PRT <213> Artificial Sequence <220> <223> lftA amino acid <400> 8 Met Thr Pro Pro Ser Gly Trp Leu Cys Asp Pro Gln Arg Pro Val Thr 1 5 10 15 Thr His Gly Ala Tyr Gln Leu Tyr Tyr Leu His Ser Asp Gln Asn Asn 20 25 30 Gly Pro Gly Gly Trp Asp His Ala Ser Thr Thr Asp Gly Val Ala Phe 35 40 45 Thr His His Gly Thr Val Met Pro Leu Arg Pro Asp Phe Pro Val Trp 50 55 60 Ser Gly Ser Ala Val Val Gly Thr Ala Asn Thr Ala Gly Phe Gly Ala 65 70 75 80 Gly Ala Val Val Ala Leu Ala Thr Gln Pro Thr Asp Gly Val Arg Lys 85 90 95 Tyr Gln Glu Gln Tyr Leu Tyr Trp Ser Thr Asp Gly Gly Phe Thr Phe 100 105 110 Thr Ala Leu Pro Asp Pro Val Ile Val Asn Thr Asp Gly Arg Ala Ala 115 120 125 Thr Thr Pro Ala Glu Ile Glu Asn Ala Glu Trp Phe Arg Asp Pro Lys 130 135 140 Ile His Trp Asp Thr Ala Arg Gly Glu Trp Val Cys Val Ile Gly Arg 145 150 155 160 Leu Arg Tyr Ala Ala Phe Tyr Thr Ser Pro Asn Leu Arg Asp Trp Thr 165 170 175 Leu Arg Arg Asn Phe Asp Tyr Pro Asn His Ala Leu Gly Gly Ile Glu 180 185 190 Cys Pro Asp Leu Phe Glu Ile Thr Ala Asp Asp Gly Thr Arg His Trp 195 200 205 Val Leu Ala Ala Ser Met Asp Ala Tyr Gly Ile Gly Leu Pro Met Thr 210 215 220 Tyr Ala Tyr Trp Thr Gly Thr Trp Asp Gly Glu Gln Phe His Ala Asp 225 230 235 240 Asp Leu Thr Pro Gln Trp Leu Asp Trp Gly Trp Asp Trp Tyr Ala Ala 245 250 255 Val Thr Trp Pro Ser Ile Asp Ala Pro Glu Thr Lys Arg Leu Ala Ile 260 265 270 Ala Trp Met Asn Asn Trp Lys Tyr Ala Ala Arg Asp Val Pro Thr Asp 275 280 285 Ala Ser Asp Gly Tyr Asn Gly Gln Asn Ser Ile Val Arg Glu Leu Arg 290 295 300 Leu Ala Arg Gln Pro Gly Gly Trp Tyr Thr Leu Leu Ser Thr Pro Val 305 310 315 320 Ala Ala Leu Thr Asn Tyr Val Thr Ala Thr Thr Thr Leu Pro Asp Arg 325 330 335 Thr Val Asp Gly Ser Ala Val Leu Pro Trp Asn Gly Arg Ala Tyr Glu 340 345 350 Ile Glu Leu Asp Ile Ala Trp Asp Thr Ala Thr Asn Val Gly Ile Ser 355 360 365 Val Gly Arg Ser Pro Asp Gly Thr Arg His Thr Asn Ile Gly Lys Tyr 370 375 380 Gly Ala Asp Leu Tyr Val Asp Arg Gly Pro Ser Asp Leu Ala Gly Tyr 385 390 395 400 Ser Leu Ala Pro Tyr Ser Arg Ala Ala Ala Pro Ile Asp Pro Gly Ala 405 410 415 Arg Ser Val His Leu Arg Ile Leu Val Asp Thr Gln Ser Val Glu Val 420 425 430 Phe Val Asn Ala Gly His Thr Val Leu Ser Gln Gln Val His Phe Ala 435 440 445 Glu Gly Asp Thr Gly Ile Ser Leu Tyr Thr Asp Gly Gly Pro Ala His 450 455 460 Phe Thr Gly Ile Val Val Arg Glu Ile Gly Gln Ala Ile 465 470 475 <210> 9 <211> 118 <212> PRT <213> Artificial Sequence <220> <223> TFP 1 <400> 9 Met Phe Asn Arg Phe Asn Lys Phe Gln Ala Ala Val Ala Leu Ala Leu 1 5 10 15 Leu Ser Arg Gly Ala Leu Gly Asp Ser Tyr Thr Asn Ser Thr Ser Ser 20 25 30 Ala Asp Leu Ser Ser Ile Thr Ser Val Ser Ser Ala Ser Ala Ser Ala 35 40 45 Thr Ala Ser Asp Ser Leu Ser Ser Ser Asp Gly Thr Val Tyr Leu Pro 50 55 60 Ser Thr Thr Ile Ser Gly Asp Leu Thr Val Thr Gly Lys Val Ile Ala 65 70 75 80 Thr Glu Ala Val Glu Val Ala Ala Gly Gly Lys Leu Thr Leu Leu Asp 85 90 95 Gly Glu Lys Tyr Val Phe Ser Ser Glu Ala Ala Ser Ala Ser Ala Gly 100 105 110 Leu Ala Leu Asp Lys Arg 115 <210> 10 <211> 130 <212> PRT <213> Artificial Sequence <220> <223> TFP 2 <400> 10 Met Thr Pro Tyr Ala Val Ala Ile Thr Val Ala Leu Leu Ile Val Thr 1 5 10 15 Val Ser Ala Leu Gln Val Asn Asn Ser Cys Val Ala Phe Pro Pro Ser 20 25 30 Asn Leu Arg Gly Lys Asn Gly Asp Gly Thr Asn Glu Gln Tyr Ala Thr 35 40 45 Ala Leu Leu Ser Ile Pro Trp Asn Gly Pro Pro Glu Ser Ser Arg Asp 50 55 60 Ile Asn Leu Ile Glu Leu Glu Pro Gln Val Ala Leu Tyr Leu Leu Glu 65 70 75 80 Asn Tyr Ile Asn His Tyr Tyr Asn Thr Thr Arg Asp Asn Lys Cys Pro 85 90 95 Asn Asn His Tyr Leu Met Gly Gly Gln Leu Gly Ser Ser Ser Asp Asn 100 105 110 Arg Ser Leu Asn Glu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp 115 120 125 Lys Arg 130 <210> 11 <211> 117 <212> PRT <213> Artificial Sequence <220> <223> TFP 3 <400> 11 Met Gln Phe Lys Asn Val Ala Leu Ala Ala Ser Val Ala Ala Leu Ser 1 5 10 15 Ala Thr Ala Ser Ala Glu Gly Tyr Thr Pro Gly Glu Pro Trp Ser Thr 20 25 30 Leu Thr Pro Thr Gly Ser Ile Ser Cys Gly Ala Ala Glu Tyr Thr Thr 35 40 45 Thr Phe Gly Ile Ala Val Gln Ala Ile Thr Ser Ser Lys Ala Lys Arg 50 55 60 Asp Val Ile Ser Gln Ile Gly Asp Gly Gln Val Gln Ala Thr Ser Ala 65 70 75 80 Ala Thr Ala Gln Ala Thr Asp Ser Gln Ala Gln Ala Thr Thr Thr Ala 85 90 95 Thr Pro Thr Ser Ser Glu Lys Met Ala Ala Ser Ala Ser Ala Gly Leu 100 105 110 Ala Leu Asp Lys Arg 115 <210> 12 <211> 62 <212> PRT <213> Artificial Sequence <220> <223> TFP 4 <400> 12 Met Arg Phe Ala Glu Phe Leu Val Val Phe Ala Thr Leu Gly Gly Gly 1 5 10 15 Met Ala Ala Pro Val Glu Ser Leu Ala Gly Thr Gln Arg Tyr Leu Val 20 25 30 Gln Met Lys Glu Arg Phe Thr Thr Glu Lys Leu Cys Ala Leu Asp Asp 35 40 45 Lys Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 50 55 60 <210> 13 <211> 97 <212> PRT <213> Artificial Sequence <220> <223> TFP 5 <400> 13 Met Phe Asn Arg Phe Asn Lys Phe Gln Ala Ala Val Ala Leu Ala Leu 1 5 10 15 Leu Ser Arg Gly Ala Leu Gly Ala Pro Val Asn Thr Thr Thr Glu Asp 20 25 30 Glu Thr Ala Leu Ile Pro Ala Glu Ala Val Ile Gly Tyr Leu Asp Leu 35 40 45 Glu Gly Asp Phe Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn 50 55 60 Asn Gly Leu Leu Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys 65 70 75 80 Glu Glu Gly Val Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys 85 90 95 Arg <210> 14 <211> 93 <212> PRT <213> Artificial Sequence <220> <223> TFP 6 <400> 14 Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser 1 5 10 15 Ala Leu Ala Ala Pro Val Asn Thr Thr Thr Glu Asp Glu Thr Ala Gln 20 25 30 Ile Pro Ala Glu Ala Val Ile Gly Tyr Leu Asp Leu Glu Gly Asp Phe 35 40 45 Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu 50 55 60 Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val 65 70 75 80 Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 85 90 <210> 15 <211> 226 <212> PRT <213> Artificial Sequence <220> <223> TFP 7 <400> 15 Met Val Phe Gly Gln Leu Tyr Ala Leu Phe Ile Phe Thr Leu Ser Cys 1 5 10 15 Cys Ile Ser Lys Thr Val Gln Ala Asp Ser Ser Lys Glu Ser Ser Ser 20 25 30 Phe Ile Ser Phe Asp Lys Glu Ser Asn Trp Asp Thr Ile Ser Thr Ile 35 40 45 Ser Ser Thr Ala Asp Val Ile Ser Ser Val Asp Ser Ala Ile Ala Val 50 55 60 Phe Glu Phe Asp Asn Phe Ser Leu Leu Asp Ser Leu Met Ile Asp Glu 65 70 75 80 Glu Tyr Pro Phe Phe Asn Arg Phe Phe Ala Asn Asp Val Ser Leu Thr 85 90 95 Val His Asp Asp Ser Pro Leu Asn Ile Ser Gln Ser Leu Ser Pro Ile 100 105 110 Met Glu Gln Phe Thr Val Asp Glu Leu Pro Glu Ser Ala Ser Asp Leu 115 120 125 Leu Tyr Glu Tyr Ser Leu Asp Asp Lys Ser Ile Val Leu Phe Lys Phe 130 135 140 Thr Ser Asp Ala Tyr Asp Leu Lys Lys Leu Asp Glu Phe Ile Asp Ser 145 150 155 160 Cys Leu Ser Phe Leu Glu Asp Lys Ser Gly Asp Asn Leu Thr Val Val 165 170 175 Ile Asn Ser Leu Gly Trp Ala Phe Glu Asp Glu Asp Gly Asp Asp Glu 180 185 190 Tyr Ala Thr Glu Glu Thr Leu Ser His His Asp Asn Asn Lys Gly Lys 195 200 205 Glu Gly Asp Asp Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp 210 215 220 Lys Arg 225 <210> 16 <211> 64 <212> PRT <213> Artificial Sequence <220> <223> TFP 8 <400> 16 Met Leu Gln Ser Val Val Phe Phe Ala Leu Leu Thr Phe Ala Ser Ser 1 5 10 15 Val Ser Ala Ile Tyr Ser Asn Asn Thr Val Ser Thr Thr Thr Thr Leu 20 25 30 Ala Pro Ser Tyr Ser Leu Val Pro Gln Glu Thr Thr Ile Ser Tyr Ala 35 40 45 Asp Asp Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 50 55 60 <210> 17 <211> 138 <212> PRT <213> Artificial Sequence <220> <223> TFP 9 <400> 17 Met Lys Phe Ser Thr Ala Val Thr Thr Leu Ile Ser Ser Gly Ala Ile 1 5 10 15 Val Ser Ala Leu Pro His Val Asp Val His Gln Glu Asp Ala His Gln 20 25 30 His Lys Arg Ala Val Ala Tyr Lys Tyr Val Tyr Glu Thr Val Val Val 35 40 45 Asp Ser Asp Gly His Thr Val Thr Pro Ala Ala Ser Glu Val Ala Thr 50 55 60 Ala Ala Thr Ser Ala Ile Ile Thr Thr Ser Val Leu Ala Pro Thr Ser 65 70 75 80 Ser Ala Ala Ala Ala Asp Ser Ser Ala Ser Ile Ala Val Ser Ser Ala 85 90 95 Ala Leu Ala Lys Asn Glu Lys Ile Ser Asp Ala Ala Ala Ser Ala Thr 100 105 110 Ala Ser Thr Ser Gln Gly Ala Ser Ser Ser Ser Tyr Leu Ala Ala Ser 115 120 125 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 130 135 <210> 18 <211> 199 <212> PRT <213> Artificial Sequence <220> <223> TFP 10 <400> 18 Met Asn Trp Leu Phe Leu Val Ser Leu Val Phe Phe Cys Gly Val Ser 1 5 10 15 Thr His Pro Ala Leu Ala Met Ser Ser Asn Arg Leu Leu Lys Leu Ala 20 25 30 Asn Lys Ser Pro Lys Lys Ile Ile Pro Leu Lys Asp Ser Ser Phe Glu 35 40 45 Asn Ile Leu Ala Pro Pro His Glu Asn Ala Tyr Ile Val Ala Leu Phe 50 55 60 Thr Ala Thr Ala Pro Glu Ile Gly Cys Ser Leu Cys Leu Glu Leu Glu 65 70 75 80 Ser Glu Tyr Asp Thr Ile Val Ala Ser Trp Phe Asp Asp His Pro Asp 85 90 95 Ala Lys Ser Ser Asn Ser Asp Thr Ser Ile Phe Phe Thr Lys Val Asn 100 105 110 Leu Glu Asp Pro Ser Lys Thr Ile Pro Lys Ala Phe Gln Phe Phe Gln 115 120 125 Leu Asn Asn Val Pro Arg Leu Phe Ile Phe Lys Leu Asn Ser Pro Ser 130 135 140 Ile Leu Asp His Ser Val Ile Ser Ile Ser Thr Asp Thr Gly Ser Glu 145 150 155 160 Arg Met Lys Gln Ile Ile Gln Ala Ile Lys Gln Phe Ser Gln Val Asn 165 170 175 Asp Phe Ser Leu His Leu Pro Val Gly Leu Ala Ala Ser Ala Ser Ala 180 185 190 Gly Leu Ala Leu Asp Lys Arg 195 <210> 19 <211> 77 <212> PRT <213> Artificial Sequence <220> <223> TFP 11 <400> 19 Met Lys Phe Ser Ser Val Thr Ala Ile Thr Leu Ala Thr Val Ala Thr 1 5 10 15 Val Ala Thr Ala Lys Lys Gly Glu His Asp Phe Thr Thr Thr Leu Thr 20 25 30 Leu Ser Ser Asp Gly Ser Leu Thr Thr Thr Thr Ser Thr His Thr Thr 35 40 45 His Lys Tyr Gly Lys Phe Asn Lys Thr Ser Lys Ser Lys Thr Pro Leu 50 55 60 Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 65 70 75 <210> 20 <211> 94 <212> PRT <213> Artificial Sequence <220> <223> TFP 12 <400> 20 Met Ala Ser Phe Ala Thr Lys Phe Val Ile Ala Cys Phe Leu Phe Phe 1 5 10 15 Ser Ala Ser Ala His Asn Val Leu Leu Pro Ala Tyr Gly Arg Arg Cys 20 25 30 Phe Phe Glu Asp Leu Ser Lys Gly Asp Glu Leu Ser Ile Ser Phe Gln 35 40 45 Phe Gly Asp Arg Asn Pro Gln Ser Ser Ser Gln Leu Thr Gly Asp Phe 50 55 60 Ile Ile Tyr Gly Pro Glu Arg His Glu Val Leu Lys Thr Val Arg Glu 65 70 75 80 Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 85 90 <210> 21 <211> 174 <212> PRT <213> Artificial Sequence <220> <223> TFP 13 <400> 21 Met Gln Tyr Lys Lys Thr Leu Val Ala Ser Ala Leu Ala Ala Thr Thr 1 5 10 15 Leu Ala Ala Tyr Ala Pro Ser Glu Pro Trp Ser Thr Leu Thr Pro Thr 20 25 30 Ala Thr Tyr Ser Gly Gly Val Thr Asp Tyr Ala Ser Thr Phe Gly Ile 35 40 45 Ala Val Gln Pro Ile Ser Thr Thr Ser Ser Ala Ser Ser Ala Ala Thr 50 55 60 Thr Ala Ser Ser Lys Ala Lys Arg Ala Ala Ser Gln Ile Gly Asp Gly 65 70 75 80 Gln Val Gln Ala Ala Thr Thr Thr Ala Ser Val Ser Thr Lys Ser Thr 85 90 95 Ala Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Ile Gln Ala Thr Thr 100 105 110 Lys Thr Thr Ala Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Ile Gln 115 120 125 Ala Thr Thr Lys Thr Thr Ser Ala Lys Thr Thr Ala Ala Ala Val Ser 130 135 140 Gln Ile Ser Asp Gly Gln Ile Gln Ala Thr Thr Thr Thr Leu Ala Pro 145 150 155 160 Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 165 170 <210> 22 <211> 68 <212> PRT <213> Artificial Sequence <220> <223> TFP 14 <400> 22 Met Gln Phe Lys Asn Ala Leu Thr Ala Thr Ala Ile Leu Ser Ala Ser 1 5 10 15 Ala Leu Ala Ala Asn Ser Thr Thr Ser Ile Pro Ser Ser Cys Ser Ile 20 25 30 Gly Thr Ser Ala Thr Ala Thr Ala Gln Ala Thr Asp Ser Gln Ala Gln 35 40 45 Ala Thr Thr Thr Ala Pro Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala 50 55 60 Leu Asp Lys Arg 65 <210> 23 <211> 157 <212> PRT <213> Artificial Sequence <220> <223> TFP 15 <400> 23 Met Val Ser Lys Thr Trp Ile Cys Gly Phe Ile Ser Ile Ile Thr Val 1 5 10 15 Val Gln Ala Leu Ser Cys Glu Lys His Asp Val Leu Lys Lys Tyr Gln 20 25 30 Val Gly Lys Phe Ser Ser Leu Thr Ser Thr Glu Arg Asp Thr Pro Pro 35 40 45 Ser Thr Thr Ile Glu Lys Trp Trp Ile Asn Val Cys Glu Glu His Asn 50 55 60 Val Glu Pro Pro Glu Glu Cys Lys Lys Asn Asp Met Leu Cys Gly Leu 65 70 75 80 Thr Asp Val Ile Leu Pro Gly Lys Asp Ala Ile Thr Thr Gln Ile Ile 85 90 95 Asp Phe Asp Lys Asn Ile Gly Phe Asn Val Glu Glu Thr Glu Ser Ala 100 105 110 Leu Thr Leu Thr Leu Asn Gly Ala Thr Trp Gly Ala Asn Ser Phe Asp 115 120 125 Ala Lys Leu Glu Phe Gln Cys Asn Asp Asn Met Lys Gln Asp Glu Leu 130 135 140 Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 145 150 155 <210> 24 <211> 98 <212> PRT <213> Artificial Sequence <220> <223> TFP 16 <400> 24 Met Lys Leu Ser Ala Leu Leu Ala Leu Ser Ala Ser Thr Ala Val Leu 1 5 10 15 Ala Ala Pro Ala Val His His Ser Asp Asn His His His Asn Asp Lys 20 25 30 Arg Ala Val Val Thr Val Thr Gln Tyr Val Asn Ala Asp Gly Ala Val 35 40 45 Val Ile Pro Ala Ala Thr Thr Ala Thr Ser Ala Ala Ala Asp Gly Lys 50 55 60 Val Glu Ser Val Ala Ala Ala Thr Thr Thr Leu Ser Ser Thr Ala Ala 65 70 75 80 Ala Ala Thr Thr Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp 85 90 95 Lys Arg <210> 25 <211> 195 <212> PRT <213> Artificial Sequence <220> <223> TFP 17 <400> 25 Met Lys Leu Ser Thr Val Leu Leu Ser Ala Gly Leu Ala Ser Thr Thr 1 5 10 15 Leu Ala Gln Phe Ser Asn Ser Thr Ser Ala Ser Ser Thr Asp Val Thr 20 25 30 Ser Ser Ser Ser Ile Ser Thr Ser Ser Gly Ser Val Thr Ile Thr Ser 35 40 45 Ser Glu Ala Pro Glu Ser Asp Asn Gly Thr Ser Thr Ala Ala Pro Thr 50 55 60 Glu Thr Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr 65 70 75 80 Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr Ser Thr 85 90 95 Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala Pro Thr Thr Ala Leu Pro 100 105 110 Thr Asn Gly Thr Ser Thr Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala 115 120 125 Pro Thr Thr Gly Leu Pro Thr Asn Gly Thr Thr Ser Ala Phe Pro Pro 130 135 140 Thr Thr Ser Leu Pro Pro Ser Asn Thr Thr Thr Thr Pro Pro Tyr Asn 145 150 155 160 Pro Ser Thr Asp Tyr Thr Thr Asp Tyr Thr Val Val Thr Glu Tyr Thr 165 170 175 Thr Tyr Cys Pro Glu Arg Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu 180 185 190 Asp Lys Arg 195 <210> 26 <211> 105 <212> PRT <213> Artificial Sequence <220> <223> TFP 18 <400> 26 Met Arg Phe Ser Thr Thr Leu Ala Thr Ala Ala Thr Ala Leu Phe Phe 1 5 10 15 Thr Ala Ser Gln Val Ser Ala Ile Gly Glu Leu Ala Phe Asn Leu Gly 20 25 30 Val Lys Asn Asn Asp Gly Thr Cys Lys Ser Thr Ser Asp Tyr Glu Thr 35 40 45 Glu Leu Gln Ala Leu Lys Ser Tyr Thr Ser Thr Val Lys Val Tyr Ala 50 55 60 Ala Ser Asp Cys Asn Thr Leu Gln Asn Leu Gly Pro Ala Ala Glu Ala 65 70 75 80 Glu Gly Phe Thr Ile Phe Val Gly Val Trp Pro Leu Ala Ala Ser Ala 85 90 95 Ser Ala Gly Leu Ala Leu Asp Lys Arg 100 105 <210> 27 <211> 124 <212> PRT <213> Artificial Sequence <220> <223> TFP 19 <400> 27 Met Arg Leu Ser Asn Leu Ile Ala Ser Ala Ser Leu Leu Ser Ala Ala 1 5 10 15 Thr Leu Ala Ala Pro Ala Asn His Glu His Lys Asp Lys Arg Ala Val 20 25 30 Val Thr Thr Thr Val Gln Lys Gln Thr Thr Ile Ile Val Asn Gly Ala 35 40 45 Ala Ser Thr Pro Val Ala Ala Leu Glu Glu Asn Ala Val Val Asn Ser 50 55 60 Ala Pro Ala Ala Ala Thr Ser Thr Thr Ser Ser Ala Ala Ser Val Ala 65 70 75 80 Thr Ala Ala Ser Ser Ser Glu Asn Asn Ser Gln Val Ser Ala Ala Ala 85 90 95 Ser Pro Ala Ser Ser Ser Ala Ala Thr Ser Thr Gln Ser Ser Leu Ala 100 105 110 Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 115 120 <210> 28 <211> 138 <212> PRT <213> Artificial Sequence <220> <223> TFP 20 <400> 28 Met Gln Phe Ser Thr Val Ala Ser Ile Ala Ala Val Ala Ala Val Ala 1 5 10 15 Ser Ala Ala Ala Asn Val Thr Thr Ala Thr Val Ser Gln Glu Ser Thr 20 25 30 Thr Leu Val Thr Ile Thr Ser Cys Glu Asp His Val Cys Ser Glu Thr 35 40 45 Val Ser Pro Ala Leu Val Ser Thr Ala Thr Val Thr Val Asp Asp Val 50 55 60 Ile Thr Gln Tyr Thr Thr Trp Cys Pro Leu Thr Thr Glu Ala Pro Lys 65 70 75 80 Asn Gly Thr Ser Thr Ala Ala Pro Val Thr Ser Thr Glu Ala Pro Lys 85 90 95 Asn Thr Thr Ser Ala Ala Pro Thr His Ser Val Thr Ser Tyr Thr Gly 100 105 110 Ala Ala Ala Lys Ala Leu Pro Ala Ala Gly Ala Leu Leu Ala Ala Ser 115 120 125 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 130 135 <210> 29 <211> 176 <212> PRT <213> Artificial Sequence <220> <223> TFP 21 <400> 29 Met Lys Phe Ser Ser Ala Leu Val Leu Ser Ala Val Ala Ala Thr Ala 1 5 10 15 Leu Ala Glu Ser Ile Thr Thr Thr Ile Thr Ala Thr Lys Asn Gly His 20 25 30 Val Tyr Thr Lys Thr Val Thr Gln Asp Ala Thr Phe Val Trp Gly Gly 35 40 45 Glu Asp Ser Tyr Ala Ser Ser Thr Ser Ala Ala Glu Ser Ser Ala Ala 50 55 60 Glu Thr Ser Ala Ala Glu Thr Ser Ala Ala Ala Thr Thr Ser Ala Ala 65 70 75 80 Ala Thr Thr Ser Ala Ala Glu Thr Ser Ser Ala Ala Glu Thr Ser Ser 85 90 95 Ala Asp Glu Gly Ser Gly Ser Ser Ile Thr Thr Thr Ile Thr Ala Thr 100 105 110 Lys Asn Gly His Val Tyr Thr Lys Thr Val Thr Gln Asp Ala Thr Phe 115 120 125 Val Trp Thr Gly Glu Gly Ser Ser Asn Thr Trp Ser Pro Ser Ser Thr 130 135 140 Ser Thr Ser Ser Glu Ala Ala Thr Ser Ser Ala Ser Thr Thr Ala Thr 145 150 155 160 Thr Leu Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 165 170 175 <210> 30 <211> 138 <212> PRT <213> Artificial Sequence <220> <223> TFP 22 <400> 30 Met Lys Phe Gln Val Val Leu Ser Ala Leu Leu Ala Cys Ser Ser Ala 1 5 10 15 Val Val Ala Ser Pro Ile Glu Asn Leu Phe Lys Tyr Arg Ala Val Lys 20 25 30 Ala Ser His Ser Lys Asn Ile Asn Ser Thr Leu Pro Ala Trp Asn Gly 35 40 45 Ser Asn Ser Ser Asn Val Thr Tyr Ala Asn Gly Thr Asn Ser Thr Thr 50 55 60 Asn Thr Thr Thr Ala Glu Ser Ser Gln Leu Gln Ile Ile Val Thr Gly 65 70 75 80 Gly Gln Val Pro Ile Thr Asn Ser Ser Leu Thr His Thr Asn Tyr Thr 85 90 95 Arg Leu Phe Asn Ser Ser Ser Ala Leu Asn Ile Thr Glu Leu Tyr Asn 100 105 110 Val Ala Arg Val Val Asn Glu Thr Ile Gln Asp Asn Leu Ala Ala Ser 115 120 125 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 130 135 <210> 31 <211> 115 <212> PRT <213> Artificial Sequence <220> <223> TFP 23 <400> 31 Met Arg Ala Ile Thr Leu Leu Ser Ser Val Val Ser Leu Ala Leu Leu 1 5 10 15 Ser Lys Glu Val Leu Ala Thr Pro Pro Ala Cys Leu Leu Ala Cys Val 20 25 30 Ala Gln Val Gly Lys Ser Ser Ser Thr Cys Asp Ser Leu Asn Gln Val 35 40 45 Thr Cys Tyr Cys Glu His Glu Asn Ser Ala Val Lys Lys Cys Leu Asp 50 55 60 Ser Ile Cys Pro Asn Asn Asp Ala Asp Ala Ala Tyr Ser Ala Phe Lys 65 70 75 80 Ser Ser Cys Ser Glu Gln Asn Ala Ser Leu Gly Asp Ser Ser Gly Ser 85 90 95 Ala Ser Ser Ser Val Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu 100 105 110 Asp Lys Arg 115 <210> 32 <211> 170 <212> PRT <213> Artificial Sequence <220> <223> TFP 24 <400> 32 Met Lys Leu Ser Thr Val Leu Leu Ser Ala Gly Leu Ala Ser Thr Thr 1 5 10 15 Leu Ala Gln Phe Ser Asn Ser Thr Ser Ala Ser Ser Thr Asp Val Thr 20 25 30 Ser Ser Ser Ser Ile Ser Thr Ser Ser Gly Ser Val Thr Ile Thr Ser 35 40 45 Ser Glu Ala Pro Glu Ser Asp Asn Gly Thr Ser Thr Ala Ala Pro Thr 50 55 60 Glu Thr Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr 65 70 75 80 Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr Ser Thr 85 90 95 Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala Pro Thr Thr Ala Leu Pro 100 105 110 Thr Asn Gly Thr Ser Thr Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala 115 120 125 Pro Thr Thr Gly Leu Pro Thr Asn Gly Thr Thr Ser Ala Phe Pro Pro 130 135 140 Thr Thr Ser Leu Pro Pro Ser Asn Thr Thr Thr Thr Leu Ala Ala Ser 145 150 155 160 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 165 170 <210> 33 <211> 354 <212> DNA <213> Artificial Sequence <220> <223> TFP 1 <400> 33 atgttcaatc gttttaacaa attccaagct gctgtcgctt tggccctact ctctcgcggc 60 gctctcggtg actcttacac caatagcacc tcctccgcag acttgagttc tatcacttcc 120 gtctcgtcag ctagtgcaag tgccaccgct tccgactcac tttcttccag tgacggtacc 180 gtttatttgc catccacaac aattagcggt gatctcacag ttactggtaa agtaattgca 240 accgaggccg tggaagtcgc tgccggtggt aagttgactt tacttgacgg tgaaaaatac 300 gtcttctcat ctgaggccgc ctcggcctct gctggcctcg ccttagataa aaga 354 <210> 34 <211> 390 <212> DNA <213> Artificial Sequence <220> <223> TFP 2 <400> 34 atgacgccct atgcagtagc aattaccgtg gccttactaa ttgtaacagt gagcgcactc 60 caggtcaaca attcatgtgt cgcttttccg ccatcaaatc tcaggggcaa gaatggagac 120 ggtactaatg aacagtatgc aactgcacta ctttctattc cctggaatgg gcctcctgag 180 tcatcgaggg atattaatct tatcgaactc gaaccgcaag ttgcactcta tttgctcgaa 240 aattatatta accattacta caacaccaca agagacaata agtgccctaa taaccactac 300 ctaatgggag ggcagttggg tagctcatcg gataatagga gtttgaacga ggccgcctcg 360 gcctctgctg gcctcgcctt agataaaaga 390 <210> 35 <211> 351 <212> DNA <213> Artificial Sequence <220> <223> TFP 3 <400> 35 atgcaattca aaaacgtcgc cctagctgcc tccgttgctg ctctatccgc cactgcttct 60 gctgaaggtt acactccagg tgaaccatgg tccaccttaa ccccaaccgg ctccatctct 120 tgtggtgcag ccgaatacac taccaccttt ggtattgctg ttcaagctat tacctcttca 180 aaagctaaga gagacgttat ctctcaaatt ggtgacggtc aagtccaagc cacttctgct 240 gctactgctc aagccaccga tagtcaagcc caagctacta ctaccgctac cccaaccagc 300 tccgaaaaga tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 351 <210> 36 <211> 186 <212> DNA <213> Artificial Sequence <220> <223> TFP 4 <400> 36 atgagatttg cagaattctt ggtggtattt gccacgttag gcggggggat ggctgcaccg 60 gttgagtctc tggccgggac ccaacggtat ctggtgcaaa tgaaggagcg gttcaccaca 120 gagaagctgt gtgctttgga cgacaaggcc gcctcggcct ctgctggcct cgccttagat 180 aaaaga 186 <210> 37 <211> 291 <212> DNA <213> Artificial Sequence <220> <223> TFP 5 <400> 37 atgttcaatc gttttaacaa attccaagct gctgtcgctt tggccctact ctctcgcggc 60 gctctcggtg ctccagtcaa cactacaaca gaagatgaaa cggcactaat tccggctgaa 120 gctgtcatcg gttacttaga tttagaaggg gatttcgatg ttgctgtttt gccattttcc 180 aacagcacaa ataacgggtt attgtttata aatactacta ttgccagcat tgctgctaaa 240 gaagaagggg tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 291 <210> 38 <211> 279 <212> DNA <213> Artificial Sequence <220> <223> TFP 6 <400> 38 atgagatttc cttcaatttt tactgcagtt ttattcgcag catcctccgc attagctgct 60 ccagtcaaca ctacaacaga agatgaaacg gcacaaattc cggctgaagc tgtcatcggt 120 tacttagatt tagaagggga tttcgatgtt gctgttttgc cattttccaa cagcacaaat 180 aacgggttat tgtttataaa tactactatt gccagcattg ctgctaaaga agaaggggtg 240 gccgcctcgg cctctgctgg cctcgcctta gataaaaga 279 <210> 39 <211> 678 <212> DNA <213> Artificial Sequence <220> <223> TFP 7 <400> 39 atggtgttcg gtcagctgta tgcccttttc atcttcacgt tatcatgttg tatttccaaa 60 actgtgcaag cagattcatc caaggaaagc tcttccttta tttcgttcga caaagagagt 120 aactgggata ccatcagcac tatatcttca acggcagatg ttatatcatc cgttgacagt 180 gctatcgctg tttttgaatt tgacaatttc tcattattgg acagcttgat gattgacgaa 240 gaatacccat tcttcaatag attctttgcc aatgatgtca gtttaactgt tcatgacgat 300 tcgcctttga acatctctca atcattatct cccattatgg aacaatttac tgtggatgaa 360 ttacctgaaa gtgcctctga cttactatat gaatactcct tagatgataa aagcatcgtt 420 ttgttcaagt ttacctcgga tgcctacgat ttgaaaaaat tagatgaatt tattgattct 480 tgcttatcgt ttttggaaga taaatctggc gacaatttga ctgtggttat taactctctt 540 ggttgggctt ttgaagatga agatggtgac gatgaatatg caacagaaga gactttgagc 600 catcatgata acaacaaggg taaagaaggc gacgatctgg ccgcctcggc ctctgctggc 660 ctcgccttag ataaaaga 678 <210> 40 <211> 192 <212> DNA <213> Artificial Sequence <220> <223> TFP 8 <400> 40 atgcttcaat ccgttgtctt tttcgctctt ttaaccttcg caagttctgt gtcagcgatt 60 tattcaaaca atactgtttc tacaactacc actttagcgc ccagctactc cttggtgccc 120 caagagacta ccatatcgta cgccgacgac ctggccgcct cggcctctgc tggcctcgcc 180 ttagataaaa ga 192 <210> 41 <211> 414 <212> DNA <213> Artificial Sequence <220> <223> TFP 9 <400> 41 atgaaattct caactgccgt tactacgttg attagttctg gtgccatcgt gtctgcttta 60 ccacacgtgg atgttcacca agaagatgcc caccaacata agagggccgt tgcgtacaaa 120 tacgtttacg aaactgttgt tgtcgattct gatggccaca ctgtaactcc tgctgcttca 180 gaagtcgcta ctgctgctac ctctgctatc attacaacat ctgtgttggc tccaacctcc 240 tccgcagccg ctgcggatag ctccgcttcc attgctgttt catctgctgc cttagccaag 300 aatgagaaaa tctctgatgc cgctgcatct gccactgcct caacatctca aggggcatcc 360 tcctcatcct acctggccgc ctcggcctct gctggcctcg ccttagataa aaga 414 <210> 42 <211> 597 <212> DNA <213> Artificial Sequence <220> <223> TFP 10 <400> 42 atgaattggc tgtttttggt ctcgctggtt ttcttctgcg gcgtgtcaac ccatcctgcc 60 ctggcaatgt ccagcaacag actactaaag ctggctaata aatctcccaa gaaaattata 120 cctctgaagg actcaagttt tgaaaacatc ttggcaccac ctcacgaaaa tgcctatata 180 gttgctctgt ttactgccac agcgcccgaa attggctgtt ctctgtgtct cgagctagaa 240 tccgaatacg acaccatagt ggcctcctgg tttgatgatc atccggatgc aaaatcgtcc 300 aattccgata catctatttt cttcacaaag gtcaatttgg aggacccttc taagaccatt 360 cctaaagcgt tccagttttt ccaactaaac aatgttccta gattgttcat cttcaaacta 420 aactctccct ctattctgga ccacagcgtg atcagtattt ccactgatac tggctcagaa 480 agaatgaagc aaatcataca agccattaag cagttctcgc aagtaaacga cttctcttta 540 cacttacctg tgggtctggc cgcctcggcc tctgctggcc tcgccttaga taaaaga 597 <210> 43 <211> 231 <212> DNA <213> Artificial Sequence <220> <223> TFP 11 <400> 43 atgaagttct cttctgttac tgctattact ctagccaccg ttgccaccgt tgccactgct 60 aagaagggtg aacatgattt cactaccact ttaactttgt catcggacgg tagtttaact 120 actaccacct ctactcatac cactcacaag tatggtaagt tcaacaagac ttccaagtcc 180 aagacccccc tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 231 <210> 44 <211> 282 <212> DNA <213> Artificial Sequence <220> <223> TFP 12 <400> 44 atggcctcat ttgctactaa gtttgtcatt gcttgcttcc tgttcttctc ggcgtccgcc 60 cataatgtcc ttcttccagc ttatggccgt agatgcttct tcgaagactt gagtaagggt 120 gacgagctct ccatttcgtt ccagttcggt gatagaaacc ctcaatccag tagccagctg 180 actggtgact ttatcatcta cgggccggaa agacatgaag ttttgaaaac ggttagggaa 240 ctggccgcct cggcctctgc tggcctcgcc ttagataaaa ga 282 <210> 45 <211> 522 <212> DNA <213> Artificial Sequence <220> <223> TFP 13 <400> 45 atgcaataca aaaagacttt ggttgcctct gctttggccg ctactacatt ggccgcctat 60 gctccatctg agccttggtc cactttgact ccaacagcca cttacagcgg tggtgttacc 120 gactacgctt ccaccttcgg tattgccgtt caaccaatct ccactacatc cagcgcatca 180 tctgcagcca ccacagcctc atctaaggcc aagagagctg cttcccaaat tggtgatggt 240 caagtccaag ctgctaccac tactgcttct gtctctacca agagtaccgc tgccgccgtt 300 tctcagatcg gtgatggtca aatccaagct actaccaaga ctaccgctgc tgctgtctct 360 caaattggtg atggtcaaat tcaagctacc accaagacta cctctgctaa gactaccgcc 420 gctgccgttt ctcaaatcag tgatggtcaa atccaagcta ccaccactac tttagcccct 480 ctggccgcct cggcctctgc tggcctcgcc ttagataaaa ga 522 <210> 46 <211> 204 <212> DNA <213> Artificial Sequence <220> <223> TFP 14 <400> 46 atgcaattca agaacgcttt gactgctact gctattctaa gtgcctccgc tctagctgct 60 aactcaacta cttctattcc atcttcatgt agtattggta cttctgccac tgctactgct 120 caagccaccg atagtcaagc ccaagctact actaccgcac ccctggccgc ctcggcctct 180 gctggcctcg ccttagataa aaga 204 <210> 47 <211> 471 <212> DNA <213> Artificial Sequence <220> <223> TFP 15 <400> 47 atggtatcga agacttggat atgtggcttc atcagtataa ttacagtggt acaggccttg 60 tcctgcgaga agcatgatgt attgaaaaag tatcaggtgg gaaaatttag ctcactaact 120 tctacggaaa gggatactcc gccaagcaca actattgaaa agtggtggat aaacgtttgc 180 gaagagcata acgtagaacc tcctgaagaa tgtaaaaaaa atgacatgct atgtggttta 240 acagatgtca tcttgcccgg taaggatgct atcaccactc aaattataga ttttgacaaa 300 aacattggct tcaatgtcga ggaaactgag agtgcgctta cattgacact aaacggcgct 360 acgtggggcg ccaattcttt tgacgcaaaa ctagaatttc agtgtaatga caatatgaaa 420 caagacgaac tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 471 <210> 48 <211> 294 <212> DNA <213> Artificial Sequence <220> <223> TFP 16 <400> 48 atgaaattat ccgctctatt agctttatca gcctccaccg ccgtcttggc cgctccagct 60 gtccaccata gtgacaacca ccaccacaac gacaagcgtg ccgttgtcac cgttactcag 120 tacgtcaacg cagacggcgc tgttgttatt ccagctgcca ccaccgctac ctcggcggct 180 gctgatggaa aggtcgagtc tgttgctgct gccaccacta ctttgtcctc gactgccgcc 240 gccgctacaa ccctggccgc ctcggcctct gctggcctcg ccttagataa aaga 294 <210> 49 <211> 585 <212> DNA <213> Artificial Sequence <220> <223> TFP 17 <400> 49 atgaaattat caactgtcct attatctgcc ggtttagcct cgactacttt ggcccaattt 60 tccaacagta catctgcttc ttccaccgat gtcacttcct cctcttccat ctccacttcc 120 tctggctcag taactatcac atcttctgaa gctccagaat ccgacaacgg taccagcaca 180 gctgcaccaa ctgaaacctc aacagaggct ccaaccactg ctatcccaac taacggtacc 240 tctactgaag ctccaaccac tgctatccca actaacggta cctctactga agctccaact 300 gatactacta ctgaagctcc aaccaccgct cttccaacta acggtacttc tactgaagct 360 ccaactgata ctactactga agctccaacc accggtcttc caaccaacgg taccacttca 420 gctttcccac caactacatc tttgccacca agcaacacta ccaccactcc tccttacaac 480 ccatctactg actacaccac tgactacact gtagtcactg aatatactac ttactgtccg 540 gaacgggccg cctcggcctc tgctggcctc gccttagata aaaga 585 <210> 50 <211> 315 <212> DNA <213> Artificial Sequence <220> <223> TFP 18 <400> 50 atgcgtttct ctactacact cgctactgca gctactgcgc tatttttcac agcctcccaa 60 gtttcagcta ttggtgaact agcctttaac ttgggtgtca agaacaacga tggtacttgt 120 aagtccactt ccgactatga aaccgaatta caagctttga agagctacac ttccaccgtc 180 aaagtttacg ctgcctcaga ttgtaacact ttgcaaaact taggtcctgc tgctgaagct 240 gagggattta ctatctttgt cggtgtttgg ccactggccg cctcggcctc tgctggcctc 300 gccttagata aaaga 315 <210> 51 <211> 372 <212> DNA <213> Artificial Sequence <220> <223> TFP 19 <400> 51 atgcgtctct ctaacctaat tgcttctgcc tctcttttat ctgctgctac tcttgctgct 60 cccgctaacc acgaacacaa ggacaagcgt gctgtggtca ctaccactgt tcaaaaacaa 120 accactatca ttgttaatgg tgccgcttca actccagttg ctgctttgga agaaaatgct 180 gttgtcaact ccgctccagc tgccgctacc agtacaacat cgtctgctgc ttctgtagct 240 accgctgctt cctcttctga gaacaactca caagtttctg ctgccgcatc tccagcctcc 300 agctctgctg ctacatctac tcaatcttct ctggccgcct cggcctctgc tggcctcgcc 360 ttagataaaa ga 372 <210> 52 <211> 414 <212> DNA <213> Artificial Sequence <220> <223> TFP 20 <400> 52 atgcaatttt ctactgtcgc ttctatcgcc gctgtcgccg ctgtcgcttc tgccgctgct 60 aacgttacca ctgctactgt cagccaagaa tctaccactt tggtcaccat cacttcttgt 120 gaagaccacg tctgttctga aactgtctcc ccagctttgg tttccaccgc taccgtcacc 180 gtcgatgacg ttatcactca atacaccacc tggtgcccat tgaccactga agccccaaag 240 aacggtactt ctactgctgc tccagttacc tctactgaag ctccaaagaa caccacctct 300 gctgctccaa ctcactctgt cacctcttac actggtgctg ctgctaaggc tttgccagct 360 gctggtgctt tgctggccgc ctcggcctct gctggcctcg ccttagataa aaga 414 <210> 53 <211> 528 <212> DNA <213> Artificial Sequence <220> <223> TFP 21 <400> 53 atgaaattct cttccgcttt ggttctatct gctgttgccg ctactgctct tgctgagagt 60 atcaccacca ccatcactgc caccaagaac ggtcatgtct acactaagac tgtcacccaa 120 gatgctactt ttgtttgggg tggtgaagac tcttacgcca gcagcacttc tgccgctgaa 180 tcttctgccg ccgaaacttc tgccgccgaa acctctgctg ccgctaccac ttctgctgcc 240 gctaccactt ctgctgctga gacttcttct gctgctgaga cttcttctgc tgatgaaggt 300 tctggttcta gtatcactac cactatcact gccaccaaga acggtcacgt ctacactaag 360 actgtcaccc aagatgctac ttttgtctgg actggtgaag gcagcagcaa cacctggtct 420 ccaagtagta cctctaccag ctcagaagct gctacctctt ctgcttcaac cactgcaacc 480 accctgctgg ccgcctcggc ctctgctggc ctcgccttag ataaaaga 528 <210> 54 <211> 414 <212> DNA <213> Artificial Sequence <220> <223> TFP 22 <400> 54 atgaagttcc aagttgtttt atctgccctt ttggcatgtt catctgccgt cgtcgcaagc 60 ccaatcgaaa acctattcaa atacagggca gttaaggcat ctcacagtaa gaatatcaac 120 tccactttgc cggcctggaa tgggtctaac tctagcaatg ttacctacgc taatggaaca 180 aacagtacta ccaatactac tactgccgaa agcagtcaat tacaaatcat tgtaacaggt 240 ggtcaagtac caatcaccaa cagttctttg acccacacaa actacaccag attattcaac 300 agttcttctg ctttgaacat taccgaattg tacaatgttg cccgtgttgt taacgaaacg 360 atccaagata acctggccgc ctcggcctct gctggcctcg ccttagataa aaga 414 <210> 55 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> TFP 23 <400> 55 atgcgtgcca tcactttatt atcttcagtc gtttctttgg cattgttgtc gaaggaagtc 60 ttagcaacac ctccagcttg tttattggcc tgtgttgcgc aagtcggcaa atcctcttcc 120 acatgtgact ctttgaatca agtcacctgt tactgtgaac acgaaaactc cgccgtcaag 180 aaatgtctag actccatctg cccaaacaat gacgctgatg ctgcttattc tgctttcaag 240 agttcttgtt ccgaacaaaa tgcttcattg ggcgattcca gcggcagtgc ctcctcatcc 300 gttctggccg cctcggcctc tgctggcctc gccttagata aaaga 345 <210> 56 <211> 510 <212> DNA <213> Artificial Sequence <220> <223> TFP 24 <400> 56 atgaaattat caactgtcct attatctgcc ggtttggcct cgactacttt ggcccaattt 60 tccaacagta catctgcttc ttccaccgat gtcacttcct cctcttccat ctccacttcc 120 tctggctcag taactatcac atcttctgaa gctccagaat ccgacaacgg taccagcaca 180 gctgcaccaa ctgaaacctc aacagaggct ccaaccactg ctatcccaac taacggtacc 240 tctactgaag ctccaaccac tgctatccca actaacggta cctctactga agctccaact 300 gatactacta ctgaagctcc aaccaccgct cttccaacta acggtacttc tactgaagct 360 ccaactgata ctactactga agctccaacc accggtcttc caaccaacgg taccacttca 420 gctttcccac caactacatc tttgccacca agcaacacta ccaccactct ggccgcctcg 480 gcctctgctg gcctcgcctt agataaaaga 510 <110> KOREA RESEARCH INSTITUTE OF BIOSCIENCE AND BIOTECHNOLOGY <120> A microorganism having enhanced levan fructotransferase          productivity and a method of producing difructose anhydride IV          using the microorganism <130> KPA150510-KR <160> 56 <170> Kopatentin 2.0 <210> 1 <211> 1467 <212> DNA <213> Artificial Sequence <220> <223> lftA <400> 1 tccgctccgg gctcgctccg tgccgtctac cacatgacgc cccccagcgg ctggctctgc 60 gacccccaac gcccggtcac cacccacggc gcctaccagc tgtactacct gcactccgac 120 cagaacaacg gccccggcgg ctgggaccac gcgagcacga ccgacggcgt cgccttcacg 180 caccacggca ccgtgatgcc gctgcggccc gacttccccg tgtggtccgg gtcggcggtc 240 gtcggcaccg cgaacacggc agggttcggc gccggcgcgg tcgtcgcgct cgcgacccag 300 ccgaccgacg gcgtccgcaa gtaccaggag cagtacctct actggtcgac cgacggcggg 360 ttcacgttca ccgccctgcc cgaccccgtc atcgtcaaca ccgacggtcg cgccgccacc 420 acgcccgccg agatcgagaa cgccgagtgg ttccgcgacc ccaagatcca ctgggacacc 480 gcccgcggag aatgggtctg cgtcatcgga cgactgcggt acgccgcgtt ctacacctcg 540 ccgaacctgc gcgactggac acttcgccgc aacttcgact acccgaacca cgccctcggc 600 ggcatcgagt gccccgacct gttcgagatc accgcagacg acgggacacg ccactgggtg 660 ctcgccgcca gcatggacgc ctacggcatc ggcctcccca tgacgtacgc ctactggaca 720 ggcacctggg acggcgagca gttccacgcc gacgacctca ccccgcaatg gctcgactgg 780 ggctgggact ggtacgcggc cgtcacctgg ccatcgatcg acgcgcccga gaccaagcgc 840 ctcgccatcg cgtggatgaa caactggaag tacgccgcac gcgacgtccc caccgacgca 900 tccgacggct acaacgggca gaactcgatc gtccgcgagc tgcggctcgc ccgacagcct 960 ggcggctggt acaccctcct gagcaccccc gtggcagcgc tgacgaacta cgtcaccgcc 1020 accaccacac tccccgaccg gaccgtcgac ggcagcgccg tcctgccatg gaacggacgc 1080 gcatacgaga tcgagctcga catcgcctgg gacaccgcga cgaacgtcgg catctcggtg 1140 ggccgctccc ccgacggaac ccggcacacg aacatcggca agtacggagc agacctgtac 1200 gtcgaccgag gaccctccga cctcgccggg tactcgctcg ccccctactc gcgagccgcc 1260 gcccccatcg accccggcgc ccgatccgtg cacctgcgca tcctcgtcga cacccagagc 1320 gtcgaggtct tcgtcaacgc cggccacacc gtgctctccc agcaggtcca cttcgccgag 1380 ggcgacacgg gaatctcgct ctacaccgac ggcggccccg cacacttcac cggcatcgtc 1440 gtccgcgaga ttggccaggc gatctag 1467 <210> 2 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> lftA primer 1 <400> 2 ctcgccttag ataaagatc cgctccgggc tcgctccg 38 <210> 3 <211> 38 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > lftA primer 2 <400> 3 gtgatggtga tggtgatgga tcgcctggcc aatctcgc 38 <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> LNK39 primer <400> 4 ggccgcctcg gcctctgctg gcctcgcctt agataaaaga 40 <210> 5 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> HisGT50R primer <400> 5 gtcattatta aatatatata tatatatatt gtcactccgt tcaagtcgac ttagtgatgg 60 tgatggtgat g 71 <210> 6 <211> 522 <212> DNA <213> Artificial Sequence <220> <223> TFP13 <400> 6 atgcaataca aaaagacttt ggttgcctct gctttggccg ctactacatt ggccgcctat 60 gctccatctg agccttggtc cactttgact ccaacagcca cttacagcgg tggtgttacc 120 gactacgctt ccaccttcgg tattgccgtt caaccaatct ccactacatc cagcgcatca 180 tctgcagcca ccacagcctc atctaaggcc aagagagctg cttcccaaat tggtgatggt 240 caagtccaag ctgctaccac tactgcttct gtctctacca agagtaccgc tgccgccgtt 300 tctcagatcg gtgatggtca aatccaagct actaccaaga ctaccgctgc tgctgtctct 360 caaattggtg atggtcaaat tcaagctacc accaagacta cctctgctaa gactaccgcc 420 gctgccgttt ctcaaatcag tgatggtcaa atccaagcta ccaccactac tttagcccct 480 ctggccgcct cggcctctgc tggcctcgcc ttagataaaa ga 522 <210> 7 <211> 668 <212> PRT <213> Artificial Sequence <220> <223> TFP13-lftA amino acid <400> 7 Met Gln Tyr Lys Lys Thr Leu Val Ala Ser Ala Leu Ala Ala Thr Thr   1 5 10 15 Leu Ala Ala Tyr Ala Pro Ser Glu Pro Trp Ser Thr Leu Thr Pro Thr              20 25 30 Ala Thr Tyr Ser Gly Gly Val Thr Asp Tyr Ala Ser Thr Phe Gly Ile          35 40 45 Ala Val Gln Pro Ile Ser Thr Thr Ser Ser Ala Ser Ser Ala Ala Thr      50 55 60 Thr Ala Ser Ser Lys Ala Lys Arg Ala Ser Ser Gln Ile Gly Asp Gly  65 70 75 80 Gln Val Gln Ala Ala Thr Thr Thr Ala Ser Val Ser Thr Lys Ser Thr                  85 90 95 Ala Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Ile Gln Ala Thr Thr             100 105 110 Lys Thr Thr Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Ile Gln         115 120 125 Ala Thr Thr Lys Thr Thr Ser Ala Lys Thr Thr Ala Ala Ala Val Ser     130 135 140 Gln Ile Ser Asp Gly Gln Ile Gln Ala Thr Thr Thr Thr Leu Ala Pro 145 150 155 160 Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg Ser Ala                 165 170 175 Pro Gly Ser Leu Arg Ala Val Tyr His Met Thr Pro Pro Ser Gly Trp             180 185 190 Leu Cys Asp Pro Gln Arg Pro Val Thr Thr His Gly Ala Tyr Gln Leu         195 200 205 Tyr Tyr Leu His Ser Asp Gln Asn Asn Gly Pro Gly Gly Trp Asp His     210 215 220 Ala Ser Thr Thr Asp Gly Val Ala Phe Thr His His Gly Thr Val Met 225 230 235 240 Pro Leu Arg Pro Asp Phe Pro Val Trp Ser Gly Ser Ala Val Val Gly                 245 250 255 Thr Ala Asn Thr Ala Gly Ply Gly Ala Gly Ala Val Val Ala Leu Ala             260 265 270 Thr Gln Pro Thr Asp Gly Val Arg Lys Tyr Gln Glu Gln Tyr Leu Tyr         275 280 285 Trp Ser Thr Asp Gly Gly Phe Thr Phe Thr Ala Leu Pro Asp Pro Val     290 295 300 Ile Val Asn Thr Asp Gly Arg Ala Ala Thr Thr Pro Ala Glu Ile Glu 305 310 315 320 Asn Ala Glu Trp Phe Arg Asp Pro Lys Ile His Trp Asp Thr Ala Arg                 325 330 335 Gly Glu Trp Val Cys Val Ile Gly Arg Leu Arg Tyr Ala Ala Phe Tyr             340 345 350 Thr Ser Pro Asn Leu Arg Asp Trp Thr Leu Arg Arg Asn Phe Asp Tyr         355 360 365 Pro Asn His Ala Leu Gly Gly Ile Glu Cys Pro Asp Leu Phe Glu Ile     370 375 380 Thr Ala Asp Asp Gly Thr Arg His Trp Val Leu Ala Ala Ser Met Asp 385 390 395 400 Ala Tyr Gly Ile Gly Leu Pro Met Thr Tyr Ala Tyr Trp Thr Gly Thr                 405 410 415 Trp Asp Gly Glu Gln Phe His Ala Asp Asp Leu Thr Pro Gln Trp Leu             420 425 430 Asp Trp Gly Trp Asp Trp Tyr Ala Ala Val Thr Trp Pro Ser Ile Asp         435 440 445 Ala Pro Glu Thr Lys Arg Leu Ala Ile Ala Trp Met Asn Asn Trp Lys     450 455 460 Tyr Ala Ala Arg Asp Val Pro Thr Asp Ala Ser Asp Gly Tyr Asn Gly 465 470 475 480 Gln Asn Ser Ile Val Arg Glu Leu Arg Leu Ala Arg Gln Pro Gly Gly                 485 490 495 Trp Tyr Thr Leu Leu Thr Asn Tyr Val             500 505 510 Thr Ala Thr Thr Thr Leu Pro Asp Arg Thr Val Asp Gly Ser Ala Val         515 520 525 Leu Pro Trp Asn Gly Arg Ala Tyr Glu Ile Glu Leu Asp Ile Ala Trp     530 535 540 Asp Thr Ala Thr Asn Val Gly Ile Ser Val Gly Arg Ser Pro Asp Gly 545 550 555 560 Thr Arg His Thr Asn Ile Gly Lys Tyr Gly Ala Asp Leu Tyr Val Asp                 565 570 575 Arg Gly Pro Ser Asp Leu Ala Gly Tyr Ser Leu Ala Pro Tyr Ser Arg             580 585 590 Ala Ala Ala Pro Ile Asp Pro Gly Ala Arg Ser Val His Leu Arg Ile         595 600 605 Leu Val Asp Thr Gln Ser Val Glu Val Phe Val Asn Ala Gly His Thr     610 615 620 Val Leu Ser Gln Gln Val His Phe Ala Glu Gly Asp Thr Gly Ile Ser 625 630 635 640 Leu Tyr Thr Asp Gly Gly Pro Ala His Phe Thr Gly Ile Val Val Arg                 645 650 655 Glu Ile Gly Gln Ala Ile His His His His His             660 665 <210> 8 <211> 477 <212> PRT <213> Artificial Sequence <220> <223> lftA amino acid <400> 8 Met Thr Pro Pro Ser Gly Trp Leu Cys Asp Pro Gln Arg Pro Val Thr   1 5 10 15 Thr His Gly Ala Tyr Gln Leu Tyr Tyr Leu His Ser Asp Gln Asn Asn              20 25 30 Gly Pro Gly Gly Trp Asp His Ala Ser Thr Thr Asp Gly Val Ala Phe          35 40 45 Thr His His Gly Thr Val Met Pro Leu Arg Pro Asp Phe Pro Val Trp      50 55 60 Ser Gly Ser Ala Val Val Gly Thr Ala Asn Thr Ala Gly Phe Gly Ala  65 70 75 80 Gly Ala Val Val Ala Leu Ala Thr Gln Pro Thr Asp Gly Val Arg Lys                  85 90 95 Tyr Gln Glu Gln Tyr Leu Tyr Trp Ser Thr Asp Gly Gly Phe Thr Phe             100 105 110 Thr Ala Leu Pro Asp Pro Val Ile Val Asn Thr Asp Gly Arg Ala Ala         115 120 125 Thr Thr Pro Ala Glu Ile Glu Asn Ala Glu Trp Phe Arg Asp Pro Lys     130 135 140 Ile His Trp Asp Thr Ala Arg Gly Glu Trp Val Cys Val Ile Gly Arg 145 150 155 160 Leu Arg Tyr Ala Phe Tyr Thr Ser Pro Asn Leu Arg Asp Trp Thr                 165 170 175 Leu Arg Arg Asn Phe Asp Tyr Pro Asn His Ala Leu Gly Gly Ile Glu             180 185 190 Cys Pro Asp Leu Phe Glu Ile Thr Ala Asp Asp Gly Thr Arg His Trp         195 200 205 Val Leu Ala Ala Ser Met Asp Ala Tyr Gly Ile Gly Leu Pro Met Thr     210 215 220 Tyr Ala Tyr Trp Thr Gly Thr Trp Asp Gly Glu Gln Phe His Ala Asp 225 230 235 240 Asp Leu Thr Pro Gln Trp Leu Asp Trp Gly Trp Asp Trp Tyr Ala Ala                 245 250 255 Val Thr Trp Pro Ser Ile Asp Ala Pro Glu Thr Lys Arg Leu Ala Ile             260 265 270 Ala Trp Met Asn Asn Trp Lys Tyr Ala Ala Arg Asp Val Pro Thr Asp         275 280 285 Ala Ser Asp Gly Tyr Asn Gly Gln Asn Ser Ile Val Arg Glu Leu Arg     290 295 300 Leu Ala Arg Gln Pro Gly Gly Trp Tyr Thr Leu Leu Ser Thr Pro Val 305 310 315 320 Ala Ala Leu Thr Asn Tyr Val Thr Ala Thr Thr Thr Leu Pro Asp Arg                 325 330 335 Thr Val Asp Gly Ser Ala Val Leu Pro Trp Asn Gly Arg Ala Tyr Glu             340 345 350 Ile Glu Leu Asp Ile Ala Trp Asp Thr Ala Thr Asn Val Gly Ile Ser         355 360 365 Val Gly Arg Ser Pro Asp Gly Thr Arg His Thr Asn Ile Gly Lys Tyr     370 375 380 Gly Ala Asp Leu Tyr Val Asp Arg Gly Pro Ser Asp Leu Ala Gly Tyr 385 390 395 400 Ser Leu Ala Pro Tyr Ser Arg Ala Ala Ala Pro Ile Asp Pro Gly Ala                 405 410 415 Arg Ser Val His Leu Arg Ile Leu Val Asp Thr Gln Ser Val Glu Val             420 425 430 Phe Val Asn Ala Gly His Thr Val Leu Ser Gln Gln Val His Phe Ala         435 440 445 Glu Gly Asp Thr Gly Ile Ser Leu Tyr Thr Asp Gly Gly Pro Ala His     450 455 460 Phe Thr Gly Ile Val Val Arg Glu Ile Gly Gln Ala Ile 465 470 475 <210> 9 <211> 118 <212> PRT <213> Artificial Sequence <220> <223> TFP 1 <400> 9 Met Phe Asn Arg Phe Asn Lys Phe Gln Ala Ala Val Ala Leu Ala Leu   1 5 10 15 Leu Ser Arg Gly Ala Leu Gly Asp Ser Tyr Thr Asn Ser Thr Ser Ser              20 25 30 Ala Asp Leu Ser Ser Ile Thr Ser Val Ser Ser Ala Ser Ala Ser Ala          35 40 45 Thr Ala Ser Asp Ser Ser Ser Ser Ser Asp Gly Thr Val Tyr Leu Pro      50 55 60 Ser Thr Thr Ile Ser Gly Asp Leu Thr Val Thr Gly Lys Val Ile Ala  65 70 75 80 Thr Glu Ala Val Glu Val Ala Ala Gly Gly Lys Leu Thr Leu Leu Asp                  85 90 95 Gly Glu Lys Tyr Val Phe Ser Ser Glu Ala Ala Ser Ala Ser Ala Gly             100 105 110 Leu Ala Leu Asp Lys Arg         115 <210> 10 <211> 130 <212> PRT <213> Artificial Sequence <220> <223> TFP 2 <400> 10 Met Thr Pro Tyr Ala Val Ala Ile Thr Val Ala Leu Leu Ile Val Thr   1 5 10 15 Val Ser Ala Leu Gln Val Asn Asn Ser Cys Val Ala Phe Pro Ser Ser              20 25 30 Asn Leu Arg Gly Lys Asn Gly Asp Gly Thr Asn Glu Gln Tyr Ala Thr          35 40 45 Ala Leu Leu Ser Ile Pro Trp Asn Gly Pro Pro Glu Ser Ser Arg Asp      50 55 60 Ile Asn Leu Ile Glu Leu Glu Pro Gln Val Ala Leu Tyr Leu Leu Glu  65 70 75 80 Asn Tyr Ile Asn His Tyr Tyr Asn Thr Thr Arg Asp Asn Lys Cys Pro                  85 90 95 Asn Asn His Tyr Leu Met Gly Gly Gln Leu Gly Ser Ser Ser Asp Asn             100 105 110 Arg Ser Leu Asn Glu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp         115 120 125 Lys Arg     130 <210> 11 <211> 117 <212> PRT <213> Artificial Sequence <220> <223> TFP 3 <400> 11 Met Gln Phe Lys Asn Val Ala Leu Ala Ala Ser Val Ala Ala Leu Ser   1 5 10 15 Ala Thr Ala Ser Ala Glu Gly Tyr Thr Pro Gly Glu Pro Trp Ser Thr              20 25 30 Leu Thr Pro Thr Gly Ser Ile Ser Cys Gly Ala Ala Glu Tyr Thr Thr          35 40 45 Thr Phe Gly Ile Ala Val Gln Ala Ile Thr Ser Ser Lys Ala Lys Arg      50 55 60 Asp Val Ile Ser Gln Ile Gly Asp Gly Gln Val Gln Ala Thr Ser Ala  65 70 75 80 Ala Thr Ala Gln Ala Thr Asp Ser Gln Ala Gln Ala Thr Thr Thr Ala                  85 90 95 Thr Pro Thr Ser Ser Glu Lys Met Ala Ala Ser Ala Ser Ala Gly Leu             100 105 110 Ala Leu Asp Lys Arg         115 <210> 12 <211> 62 <212> PRT <213> Artificial Sequence <220> <223> TFP 4 <400> 12 Met Arg Phe Ala Glu Phe Leu Val Val Phe Ala Thr Leu Gly Gly Gly   1 5 10 15 Met Ala Ala Pro Val Glu Ser Leu Ala Gly Thr Gln Arg Tyr Leu Val              20 25 30 Gln Met Lys Glu Arg Phe Thr Thr Glu Lys Leu Cys Ala Leu Asp Asp          35 40 45 Lys Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg      50 55 60 <210> 13 <211> 97 <212> PRT <213> Artificial Sequence <220> <223> TFP 5 <400> 13 Met Phe Asn Arg Phe Asn Lys Phe Gln Ala Ala Val Ala Leu Ala Leu   1 5 10 15 Leu Ser Arg Gly Ala Leu Gly Ala Pro Val Asn Thr Thr Thr Glu Asp              20 25 30 Glu Thr Ala Leu Ile Pro Ala Glu Ala Val Ile Gly Tyr Leu Asp Leu          35 40 45 Glu Gly Asp Phe Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn      50 55 60 Asn Gly Leu Leu Phe Ile Asn Thr Ile Ala Ser Ile Ala Ala Lys  65 70 75 80 Glu Glu Gly Val Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys                  85 90 95 Arg     <210> 14 <211> 93 <212> PRT <213> Artificial Sequence <220> <223> TFP 6 <400> 14 Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser   1 5 10 15 Ala Leu Ala Ala Pro Val Asn Thr Thr Thr Glu Asp Glu Thr Ala Gln              20 25 30 Ile Pro Ala Glu Ala Val Ile Gly Tyr Leu Asp Leu Glu Gly Asp Phe          35 40 45 Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu      50 55 60 Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val  65 70 75 80 Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg                  85 90 <210> 15 <211> 226 <212> PRT <213> Artificial Sequence <220> <223> TFP 7 <400> 15 Met Val Phe Gly Gln Leu Tyr Ala Leu Phe Ile Phe Thr Leu Ser Cys   1 5 10 15 Cys Ile Ser Lys Thr Val Gln Ala Asp Ser Ser Lys Glu Ser Ser Ser              20 25 30 Phe Ile Ser Phe Asp Lys Glu Ser Asn Trp Asp Thr Ile Ser Thr Ile          35 40 45 Ser Ser Thr Ser Ala Val Val Ser Ser Val Asp Ser Ala Ile Ala Val      50 55 60 Phe Glu Phe Asp Asn Phe Ser Leu Leu Asp Ser Leu Met Ile Asp Glu  65 70 75 80 Glu Tyr Pro Phe Phe Asn Arg Phe Phe Ala Asn Asp Val Ser Leu Thr                  85 90 95 Val His Asp Asp Ser Pro Leu Asn Ile Ser Gln Ser Leu Ser Pro Ile             100 105 110 Met Glu Gln Phe Thr Val Asp Glu Leu Pro Glu Ser Ala Ser Asp Leu         115 120 125 Leu Tyr Glu Tyr Ser Leu Asp Asp Lys Ser Ile Val Leu Phe Lys Phe     130 135 140 Thr Ser Asp Ala Tyr Asp Leu Lys Lys Leu Asp Glu Phe Ile Asp Ser 145 150 155 160 Cys Leu Ser Phe Leu Glu Asp Lys Ser Gly Asp Asn Leu Thr Val Val                 165 170 175 Ile Asn Ser Leu Gly Trp Ala Phe Glu Asp Glu Asp Gly Asp Asp Glu             180 185 190 Tyr Ala Thr Glu Glu Thr Leu Ser His His Asp Asn Asn Lys Gly Lys         195 200 205 Glu Gly Asp Asp Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp     210 215 220 Lys Arg 225 <210> 16 <211> 64 <212> PRT <213> Artificial Sequence <220> <223> TFP 8 <400> 16 Met Leu Gln Ser Val Val Phe Phe Ala Leu Leu Thr Phe Ala Ser Ser   1 5 10 15 Val Ser Ala Ile Tyr Ser Asn Asn Thr Val Ser Thr Thr Thr Thr Leu              20 25 30 Ala Pro Ser Tyr Ser Leu Val Pro Gln Glu Thr Thr Ile Ser Tyr Ala          35 40 45 Asp Asp Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg      50 55 60 <210> 17 <211> 138 <212> PRT <213> Artificial Sequence <220> <223> TFP 9 <400> 17 Met Lys Phe Ser Thr Ala Val Thr Thr Leu Ile Ser Ser Gly Ala Ile   1 5 10 15 Val Ser Ala Leu Pro His Val Asp Val His Gln Glu Asp Ala His Gln              20 25 30 His Lys Arg Ala Val Ala Tyr Lys Tyr Val Tyr Glu Thr Val Val Val          35 40 45 Asp Ser Asp Gly His Thr Val Thr Pro Ala Ala Ser Glu Val Ala Thr      50 55 60 Ala Ala Thr Ser Ala Ile Ile Thr Thr Ser  65 70 75 80 Ser Ala Ala Ala Asp Ser Ser Ala Ser Ile Ala Val Ser Ser Ala                  85 90 95 Ala Leu Ala Lys Asn Glu Lys Ile Ser Asp Ala Ala Ala Ser Ala Thr             100 105 110 Ala Ser Thr Ser Gln Gly Ala Ser Ser Ser Ser Tyr Leu Ala Ala Ser         115 120 125 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg     130 135 <210> 18 <211> 199 <212> PRT <213> Artificial Sequence <220> <223> TFP 10 <400> 18 Met Asn Trp Leu Phe Leu Val Ser Leu Val Phe Phe Cys Gly Val Ser   1 5 10 15 Thr His Pro Ala Leu Ala Met Ser Ser Asn Arg Leu Leu Lys Leu Ala              20 25 30 Asn Lys Ser Pro Lys Lys Ile Ile Pro Leu Lys Asp Ser Ser Phe Glu          35 40 45 Asn Ile Leu Ala Pro Pro His Glu Asn Ala Tyr Ile Val Ala Leu Phe      50 55 60 Thr Ala Thr Ala Pro Glu Ile Gly Cys Ser Leu Cys Leu Glu Leu Glu  65 70 75 80 Ser Glu Tyr Asp Thr Ile Val Ala Ser Trp Phe Asp Asp His Pro Asp                  85 90 95 Ala Lys Ser Ser Asn Ser Asp Thr Ser Ile Phe Phe Thr Lys Val Asn             100 105 110 Leu Glu Asp Pro Ser Lys Thr Ile Pro Lys Ala Phe Gln Phe Phe Gln         115 120 125 Leu Asn Asn Val Pro Arg Leu Phe Ile Phe Lys Leu Asn Ser Ser Ser     130 135 140 Ile Leu Asp His Ser Val Ile Ser Ile Ser Thr Asp Thr Gly Ser Glu 145 150 155 160 Arg Met Lys Gln Ile Ile Gln Ala Ile Lys Gln Phe Ser Gln Val Asn                 165 170 175 Asp Phe Ser Leu His Leu Pro Val Gly Leu Ala Ala Ser Ala Ser Ala             180 185 190 Gly Leu Ala Leu Asp Lys Arg         195 <210> 19 <211> 77 <212> PRT <213> Artificial Sequence <220> <223> TFP 11 <400> 19 Met Lys Phe Ser Ser Val Thr Ala Ile Thr Leu Ala Thr Val Ala Thr   1 5 10 15 Val Ala Thr Ala Lys Lys Gly Glu His Asp Phe Thr Thr Thr Leu Thr              20 25 30 Leu Ser Ser Asp Gly Ser Leu Thr Thr Thr Thr Ser Thr His Thr Thr          35 40 45 His Lys Tyr Gly Lys Phe Asn Lys Thr Ser Lys Ser Lys Thr Pro Leu      50 55 60 Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg  65 70 75 <210> 20 <211> 94 <212> PRT <213> Artificial Sequence <220> <223> TFP 12 <400> 20 Met Ala Ser Phe Ala Thr Lys Phe Val Ile Ala Cys Phe Leu Phe Phe   1 5 10 15 Ser Ala Ser Ala His Asn Val Leu Leu Pro Ala Tyr Gly Arg Arg Cys              20 25 30 Phe Phe Glu Asp Leu Ser Lys Gly Asp Glu Leu Ser Ile Ser Phe Gln          35 40 45 Phe Gly Asp Arg Asn Pro Gln Ser Ser Ser Gln Leu Thr Gly Asp Phe      50 55 60 Ile Ile Tyr Gly Pro Glu Arg His Glu Val Leu Lys Thr Val Arg Glu  65 70 75 80 Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg                  85 90 <210> 21 <211> 174 <212> PRT <213> Artificial Sequence <220> <223> TFP 13 <400> 21 Met Gln Tyr Lys Lys Thr Leu Val Ala Ser Ala Leu Ala Ala Thr Thr   1 5 10 15 Leu Ala Ala Tyr Ala Pro Ser Glu Pro Trp Ser Thr Leu Thr Pro Thr              20 25 30 Ala Thr Tyr Ser Gly Gly Val Thr Asp Tyr Ala Ser Thr Phe Gly Ile          35 40 45 Ala Val Gln Pro Ile Ser Thr Thr Ser Ser Ala Ser Ser Ala Ala Thr      50 55 60 Thr Ala Ser Ser Lys Ala Lys Arg Ala Ser Ser Gln Ile Gly Asp Gly  65 70 75 80 Gln Val Gln Ala Ala Thr Thr Thr Ala Ser Val Ser Thr Lys Ser Thr                  85 90 95 Ala Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Ile Gln Ala Thr Thr             100 105 110 Lys Thr Thr Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Ile Gln         115 120 125 Ala Thr Thr Lys Thr Thr Ser Ala Lys Thr Thr Ala Ala Ala Val Ser     130 135 140 Gln Ile Ser Asp Gly Gln Ile Gln Ala Thr Thr Thr Thr Leu Ala Pro 145 150 155 160 Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg                 165 170 <210> 22 <211> 68 <212> PRT <213> Artificial Sequence <220> <223> TFP 14 <400> 22 Met Gln Phe Lys Asn Ala Leu Thr Ala Thr Ala Ile Leu Ser Ala Ser   1 5 10 15 Ala Leu Ala Ala Asn Ser Thr Thr Ser Ile Pro Ser Ser Cys Ser Ile              20 25 30 Gly Thr Ser Ala Thr Ala Thr Ala Gln Ala Thr Asp Ser Gln Ala Gln          35 40 45 Ala Thr Thr Ala Pro Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala      50 55 60 Leu Asp Lys Arg  65 <210> 23 <211> 157 <212> PRT <213> Artificial Sequence <220> <223> TFP 15 <400> 23 Met Val Ser Lys Thr Trp Ile Cys Gly Phe Ile Ser Ile Ile Thr Val   1 5 10 15 Val Gln Ala Leu Ser Cys Glu Lys His Asp Val Leu Lys Lys Tyr Gln              20 25 30 Val Gly Lys Phe Ser Ser Leu Thr Ser Thr Glu Arg Asp Thr Pro Pro          35 40 45 Ser Thr Thr Ile Glu Lys Trp Trp Ile Asn Val Cys Glu Glu His Asn      50 55 60 Val Glu Pro Pro Glu Glu Cys Lys Lys Asn Asp Met Leu Cys Gly Leu  65 70 75 80 Thr Asp Val Ile Leu Pro Gly Lys Asp Ala Ile Thr Thr Gln Ile Ile                  85 90 95 Asp Phe Asp Lys Asn Ile Gly Phe Asn Val Glu Glu Thr Glu Ser Ala             100 105 110 Leu Thr Leu Thr Leu Asn Gly Ala Thr Trp Gly Ala Asn Ser Phe Asp         115 120 125 Ala Lys Leu Glu Phe Gln Cys Asn Asp Asn Met Lys Gln Asp Glu Leu     130 135 140 Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg 145 150 155 <210> 24 <211> 98 <212> PRT <213> Artificial Sequence <220> <223> TFP 16 <400> 24 Met Lys Leu Ser Ala Leu Le Ala Leu Ser Ala Ser Thr Ala Val Leu   1 5 10 15 Ala Ala Pro Ala Val His His Ser Asp Asn His His His Asn Asp Lys              20 25 30 Arg Ala Val Val Thr Val Thr Gln Tyr Val Asn Ala Asp Gly Ala Val          35 40 45 Val Ile Pro Ala Ala Thr Ala Thr Ser Ala Ala Ala Asp Gly Lys      50 55 60 Val Glu Ser Val Ala Ala Thr Thr Thr Leu Ser Ser Thr Ala Ala  65 70 75 80 Ala Ala Thr Thr Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp                  85 90 95 Lys Arg         <210> 25 <211> 195 <212> PRT <213> Artificial Sequence <220> <223> TFP 17 <400> 25 Met Lys Leu Ser Thr Val Leu Leu Ser Ala Gly Leu Ala Ser Thr Thr   1 5 10 15 Leu Ala Gln Phe Ser Asn Ser Thr Ser Ala Ser Ser Thr Asp Val Thr              20 25 30 Ser Ser Ser Ser Ser Thr Ser Ser Ser Ser Val Thr Ile Thr Ser          35 40 45 Ser Glu Ala Pro Glu Ser Asp Asn Gly Thr Ser Thr Ala Ala Pro Thr      50 55 60 Glu Thr Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr  65 70 75 80 Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr Ser Thr                  85 90 95 Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala Pro Thr Thr Ala Leu Pro             100 105 110 Thr Asn Gly Thr Ser Thr Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala         115 120 125 Pro Thr Thr Gly Leu Pro Thr Asn Gly Thr Thr Ser Ala Phe Pro Pro     130 135 140 Thr Thr Ser Leu Pro Pro Ser Asn Thr Thr Thr Thr Pro Pro Tyr Asn 145 150 155 160 Pro Ser Thr Asp Tyr Thr Thr Asp Tyr Thr Val Val Thr Glu Tyr Thr                 165 170 175 Thr Tyr Cys Pro Glu Arg Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu             180 185 190 Asp Lys Arg         195 <210> 26 <211> 105 <212> PRT <213> Artificial Sequence <220> <223> TFP 18 <400> 26 Met Arg Phe Ser Thr Thr Leu Ala Thr Ala Ala Thr Ala Leu Phe Phe   1 5 10 15 Thr Ala Ser Gln Val Ser Ala Ile Gly Glu Leu Ala Phe Asn Leu Gly              20 25 30 Val Lys Asn Asn Asp Gly Thr Cys Lys Ser Thr Ser Asp Tyr Glu Thr          35 40 45 Glu Leu Gln Ala Leu Lys Ser Tyr Thr Ser Thr Val Lys Val Tyr Ala      50 55 60 Ala Ser Asp Cys Asn Thr Leu Gln Asn Leu Gly Pro Ala Ala Glu Ala  65 70 75 80 Glu Gly Phe Thr Ile Phe Val Gly Val Trp Pro Leu Ala Ala Ser Ala                  85 90 95 Ser Ala Gly Leu Ala Leu Asp Lys Arg             100 105 <210> 27 <211> 124 <212> PRT <213> Artificial Sequence <220> <223> TFP 19 <400> 27 Met Arg Leu Ser Asn Leu Ile Ala Ser Ala Ser Leu Leu Ser Ala Ala   1 5 10 15 Thr Leu Ala Ala Pro Ala Asn His Glu His Lys Asp Lys Arg Ala Val              20 25 30 Val Thr Thr Thr Val Gln Lys Gln Thr Thr Ile Ile Val Asn Gly Ala          35 40 45 Ala Ser Thr Pro Val Ala Ala Leu Glu Glu Asn Ala Val Val Asn Ser      50 55 60 Ala Pro Ala Ala Ala Thr Ser Thr Ser Ser Ala Ala Ser Val Ala  65 70 75 80 Thr Ala Ala Ser Ser Glu Asn Asn Ser Gln Val Ser Ala Ala Ala                  85 90 95 Ser Pro Ala Ser Ser Ala Ala Thr Ser Thr Gln Ser Ser Leu Ala             100 105 110 Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg         115 120 <210> 28 <211> 138 <212> PRT <213> Artificial Sequence <220> <223> TFP 20 <400> 28 Met Gln Phe Ser Thr Val Ala Ser Ile Ala Ala Val Ala Ala Val Ala   1 5 10 15 Ser Ala Ala Asn Val Thr Thr Ala Thr Val Ser Gln Glu Ser Thr              20 25 30 Thr Leu Val Thr Ile Thr Ser Cys Glu Asp His Val Cys Ser Glu Thr          35 40 45 Val Ser Pro Ala Leu Val Ser Thr Ala Thr Val Thr Val Asp Asp Val      50 55 60 Ile Thr Gln Tyr Thr Thr Trp Cys Pro Leu Thr Thr Glu Ala Pro Lys  65 70 75 80 Asn Gly Thr Ser Thr Ala Ala Pro Val Thr Ser Thr Glu Ala Pro Lys                  85 90 95 Asn Thr Thr Ser Ala Ala Pro Thr His Ser Val Thr Ser Tyr Thr Gly             100 105 110 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Leu Ala Ala Ser         115 120 125 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg     130 135 <210> 29 <211> 176 <212> PRT <213> Artificial Sequence <220> <223> TFP 21 <400> 29 Met Lys Phe Ser Ser Ala Leu Val Seru Ser Ala Val Ala Ala Thr Ala   1 5 10 15 Leu Ala Glu Ser Ile Thr Thr Thr Ile Thr Ala Thr Lys Asn Gly His              20 25 30 Val Tyr Thr Lys Thr Val Thr Gln Asp Ala Thr Phe Val Trp Gly Gly          35 40 45 Glu Asp Ser Tyr Ala Ser Ser Thr Ser Ala Ala Glu Ser Ser Ala Ala      50 55 60 Glu Thr Ser Ala Ala Glu Thr Ser Ala Ala Ala Thr Thr Ser Ala Ala  65 70 75 80 Ala Thr Thr Ser Ala Glu Thr Ser Ser Ala Ala Glu Thr Ser Ser                  85 90 95 Ala Asp Glu Gly Ser Gly Ser Ser Ile Thr Thr Thr Ile Thr Ala Thr             100 105 110 Lys Asn Gly His Val Tyr Thr Lys Thr Val Thr Gln Asp Ala Thr Phe         115 120 125 Val Trp Thr Gly Glu Gly Ser Ser Asn Thr Trp Ser Pro Ser Ser Thr     130 135 140 Ser Thr Ser Ala Thr Ser Ser Ala Thr 145 150 155 160 Thr Leu Leu Ala Ala Ser Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg                 165 170 175 <210> 30 <211> 138 <212> PRT <213> Artificial Sequence <220> <223> TFP 22 <400> 30 Met Lys Phe Gln Val Val Leu Ser Ala Leu Leu Ala Cys Ser Ser Ala   1 5 10 15 Val Val Ala Ser Pro Ile Glu Asn Leu Phe Lys Tyr Arg Ala Val Lys              20 25 30 Ala Ser His Ser Lys Asn Ile Asn Ser Thr Leu Pro Ala Trp Asn Gly          35 40 45 Ser Asn Ser Ser Asn Val Thr Tyr Ala Asn Gly Thr Asn Ser Thr Thr      50 55 60 Asn Thr Thr Thr Ala Glu Ser Ser Gln Leu Gln Ile Ile Val Thr Gly  65 70 75 80 Gly Gln Val Pro Ile Thr Asn Ser Ser Leu Thr His Thr Asn Tyr Thr                  85 90 95 Arg Leu Phe Asn Ser Ser Ser Ala Leu Asn Ile Thr Glu Leu Tyr Asn             100 105 110 Val Ala Arg Val Val Asn Glu Thr Ile Gln Asp Asn Leu Ala Ala Ser         115 120 125 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg     130 135 <210> 31 <211> 115 <212> PRT <213> Artificial Sequence <220> <223> TFP 23 <400> 31 Met Arg Ala Ile Thr Leu Leu Ser Ser Val Val Ser Leu Ala Leu Leu   1 5 10 15 Ser Lys Glu Val Leu Ala Thr Pro Pro Ala Cys Leu Leu Ala Cys Val              20 25 30 Ala Gln Val Gly Lys Ser Ser Ser Thr Cys Asp Ser Leu Asn Gln Val          35 40 45 Thr Cys Tyr Cys Glu His Glu Asn Ser Ala Val Lys Lys Cys Leu Asp      50 55 60 Ser Ile Cys Pro Asn Asn Asp Ala Asp Ala Ala Tyr Ser Ala Phe Lys  65 70 75 80 Ser Ser Cys Ser Glu Gln Asn Ala Ser Leu Gly Asp Ser Ser Gly Ser                  85 90 95 Ala Ser Ser Ala Ser Ala Ser Ala Gly             100 105 110 Asp Lys Arg         115 <210> 32 <211> 170 <212> PRT <213> Artificial Sequence <220> <223> TFP 24 <400> 32 Met Lys Leu Ser Thr Val Leu Leu Ser Ala Gly Leu Ala Ser Thr Thr   1 5 10 15 Leu Ala Gln Phe Ser Asn Ser Thr Ser Ala Ser Ser Thr Asp Val Thr              20 25 30 Ser Ser Ser Ser Ser Thr Ser Ser Ser Ser Val Thr Ile Thr Ser          35 40 45 Ser Glu Ala Pro Glu Ser Asp Asn Gly Thr Ser Thr Ala Ala Pro Thr      50 55 60 Glu Thr Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr  65 70 75 80 Ser Thr Glu Ala Pro Thr Thr Ala Ile Pro Thr Asn Gly Thr Ser Thr                  85 90 95 Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala Pro Thr Thr Ala Leu Pro             100 105 110 Thr Asn Gly Thr Ser Thr Glu Ala Pro Thr Asp Thr Thr Thr Glu Ala         115 120 125 Pro Thr Thr Gly Leu Pro Thr Asn Gly Thr Thr Ser Ala Phe Pro Pro     130 135 140 Thr Thr Ser Leu Pro Ser Ser Asn Thr Thr Thr Thr Leu Ala Ala Ser 145 150 155 160 Ala Ser Ala Gly Leu Ala Leu Asp Lys Arg                 165 170 <210> 33 <211> 354 <212> DNA <213> Artificial Sequence <220> <223> TFP 1 <400> 33 atgttcaatc gttttaacaa attccaagct gctgtcgctt tggccctact ctctcgcggc 60 gctctcggtg actcttacac caatagcacc tcctccgcag acttgagttc tatcacttcc 120 gtctcgtcag ctagtgcaag tgccaccgct tccgactcac tttcttccag tgacggtacc 180 gtttatttgc catccacaac aattagcggt gatctcacag ttactggtaa agtaattgca 240 accgaggccg tggaagtcgc tgccggtggt aagttgactt tacttgacgg tgaaaaatac 300 gtcttctcat ctgaggccgc ctcggcctct gctggcctcg ccttagataa aaga 354 <210> 34 <211> 390 <212> DNA <213> Artificial Sequence <220> <223> TFP 2 <400> 34 atgacgccct atgcagtagc aattaccgtg gccttactaa ttgtaacagt gagcgcactc 60 caggtcaaca attcatgtgt cgcttttccg ccatcaaatc tcaggggcaa gaatggagac 120 ggtactaatg aacagtatgc aactgcacta ctttctattc cctggaatgg gcctcctgag 180 tcatcgaggg atattaatct tatcgaactc gaaccgcaag ttgcactcta tttgctcgaa 240 aattatatta accattacta caacaccaca agagacaata agtgccctaa taaccactac 300 ctaatgggag ggcagttggg tagctcatcg gataatagga gtttgaacga ggccgcctcg 360 gcctctgctg gcctcgcctt agataaaaga 390 <210> 35 <211> 351 <212> DNA <213> Artificial Sequence <220> <223> TFP 3 <400> 35 atgcaattca aaaacgtcgc cctagctgcc tccgttgctg ctctatccgc cactgcttct 60 gctgaaggtt acactccagg tgaaccatgg tccaccttaa ccccaaccgg ctccatctct 120 tgtggtgcag ccgaatacac taccaccttt ggtattgctg ttcaagctat tacctcttca 180 aaagctaaga gagacgttat ctctcaaatt ggtgacggtc aagtccaagc cacttctgct 240 gctactgctc aagccaccga tagtcaagcc caagctacta ctaccgctac cccaaccagc 300 tccgaaaaga tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 351 <210> 36 <211> 186 <212> DNA <213> Artificial Sequence <220> <223> TFP 4 <400> 36 atgagatttg cagaattctt ggtggtattt gccacgttag gcggggggat ggctgcaccg 60 gttgagtctc tggccgggac ccaacggtat ctggtgcaaa tgaaggagcg gttcaccaca 120 gagaagctgt gtgctttgga cgacaaggcc gcctcggcct ctgctggcct cgccttagat 180 aaaaga 186 <210> 37 <211> 291 <212> DNA <213> Artificial Sequence <220> <223> TFP 5 <400> 37 atgttcaatc gttttaacaa attccaagct gctgtcgctt tggccctact ctctcgcggc 60 gctctcggtg ctccagtcaa cactacaaca gaagatgaaa cggcactaat tccggctgaa 120 gctgtcatcg gttacttaga tttagaaggg gatttcgatg ttgctgtttt gccattttcc 180 aacagcacaa ataacgggtt attgtttata aatactacta ttgccagcat tgctgctaaa 240 gaagaagggg tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 291 <210> 38 <211> 279 <212> DNA <213> Artificial Sequence <220> <223> TFP 6 <400> 38 atgagatttc cttcaatttt tactgcagtt ttattcgcag catcctccgc attagctgct 60 ccagtcaaca ctacaacaga agatgaaacg gcacaaattc cggctgaagc tgtcatcggt 120 tacttagatt tagaagggga tttcgatgtt gctgttttgc cattttccaa cagcacaaat 180 aacgggttat tgtttataaa tactactatt gccagcattg ctgctaaaga agaaggggtg 240 gccgcctcgg cctctgctgg cctcgcctta gataaaaga 279 <210> 39 <211> 678 <212> DNA <213> Artificial Sequence <220> <223> TFP 7 <400> 39 atggtgttcg gtcagctgta tgcccttttc atcttcacgt tatcatgttg tatttccaaa 60 actgtgcaag cagattcatc caaggaaagc tcttccttta tttcgttcga caaagagagt 120 aactgggata ccatcagcac tatatcttca acggcagatg ttatatcatc cgttgacagt 180 gctatcgctg tttttgaatt tgacaatttc tcattattgg acagcttgat gattgacgaa 240 gaatacccat tcttcaatag attctttgcc aatgatgtca gtttaactgt tcatgacgat 300 tcgcctttga acatctctca atcattatct cccattatgg aacaatttac tgtggatgaa 360 ttacctgaaa gtgcctctga cttactatat gaatactcct tagatgataa aagcatcgtt 420 ttgttcaagt ttacctcgga tgcctacgat ttgaaaaaat tagatgaatt tattgattct 480 tgcttatcgt ttttggaaga taaatctggc gacaatttga ctgtggttat taactctctt 540 ggttgggctt ttgaagatga agatggtgac gatgaatatg caacagaaga gactttgagc 600 catcatgata acaacaaggg taaagaaggc gacgatctgg ccgcctcggc ctctgctggc 660 ctcgccttag ataaaaga 678 <210> 40 <211> 192 <212> DNA <213> Artificial Sequence <220> <223> TFP 8 <400> 40 atgcttcaat ccgttgtctt tttcgctctt ttaaccttcg caagttctgt gtcagcgatt 60 tattcaaaca atactgtttc tacaactacc actttagcgc ccagctactc cttggtgccc 120 caagagacta ccatatcgta cgccgacgac ctggccgcct cggcctctgc tggcctcgcc 180 ttagataaaa ga 192 <210> 41 <211> 414 <212> DNA <213> Artificial Sequence <220> <223> TFP 9 <400> 41 atgaaattct caactgccgt tactacgttg attagttctg gtgccatcgt gtctgcttta 60 ccacacgtgg atgttcacca agaagatgcc caccaacata agagggccgt tgcgtacaaa 120 tacgtttacg aaactgttgt tgtcgattct gatggccaca ctgtaactcc tgctgcttca 180 gaagtcgcta ctgctgctac ctctgctatc attacaacat ctgtgttggc tccaacctcc 240 tccgcagccg ctgcggatag ctccgcttcc attgctgttt catctgctgc cttagccaag 300 aatgagaaaa tctctgatgc cgctgcatct gccactgcct caacatctca aggggcatcc 360 tcctcatcct acctggccgc ctcggcctct gctggcctcg ccttagataa aaga 414 <210> 42 <211> 597 <212> DNA <213> Artificial Sequence <220> <223> TFP 10 <400> 42 atgaattggc tgtttttggt ctcgctggtt ttcttctgcg gcgtgtcaac ccatcctgcc 60 ctggcaatgt ccagcaacag actactaaag ctggctaata aatctcccaa gaaaattata 120 cctctgaagg actcaagttt tgaaaacatc ttggcaccac ctcacgaaaa tgcctatata 180 gttgctctgt ttactgccac agcgcccgaa attggctgtt ctctgtgtct cgagctagaa 240 tccgaatacg acaccatagt ggcctcctgg tttgatgatc atccggatgc aaaatcgtcc 300 aattccgata catctatttt cttcacaaag gtcaatttgg aggacccttc taagaccatt 360 cctaaagcgt tccagttttt ccaactaaac aatgttccta gattgttcat cttcaaacta 420 aactctccct ctattctgga ccacagcgtg atcagtattt ccactgatac tggctcagaa 480 agaatgaagc aaatcataca agccattaag cagttctcgc aagtaaacga cttctcttta 540 cacttacctg tgggtctggc cgcctcggcc tctgctggcc tcgccttaga taaaaga 597 <210> 43 <211> 231 <212> DNA <213> Artificial Sequence <220> <223> TFP 11 <400> 43 atgaagttct cttctgttac tgctattact ctagccaccg ttgccaccgt tgccactgct 60 aagaagggtg aacatgattt cactaccact ttaactttgt catcggacgg tagtttaact 120 actaccacct ctactcatac cactcacaag tatggtaagt tcaacaagac ttccaagtcc 180 aagacccccc tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 231 <210> 44 <211> 282 <212> DNA <213> Artificial Sequence <220> <223> TFP 12 <400> 44 atggcctcat ttgctactaa gtttgtcatt gcttgcttcc tgttcttctc ggcgtccgcc 60 cataatgtcc ttcttccagc ttatggccgt agatgcttct tcgaagactt gagtaagggt 120 gacgagctct ccatttcgtt ccagttcggt gatagaaacc ctcaatccag tagccagctg 180 actggtgact ttatcatcta cgggccggaa agacatgaag ttttgaaaac ggttagggaa 240 ctggccgcct cggcctctgc tggcctcgcc ttagataaaa ga 282 <210> 45 <211> 522 <212> DNA <213> Artificial Sequence <220> <223> TFP 13 <400> 45 atgcaataca aaaagacttt ggttgcctct gctttggccg ctactacatt ggccgcctat 60 gctccatctg agccttggtc cactttgact ccaacagcca cttacagcgg tggtgttacc 120 gactacgctt ccaccttcgg tattgccgtt caaccaatct ccactacatc cagcgcatca 180 tctgcagcca ccacagcctc atctaaggcc aagagagctg cttcccaaat tggtgatggt 240 caagtccaag ctgctaccac tactgcttct gtctctacca agagtaccgc tgccgccgtt 300 tctcagatcg gtgatggtca aatccaagct actaccaaga ctaccgctgc tgctgtctct 360 caaattggtg atggtcaaat tcaagctacc accaagacta cctctgctaa gactaccgcc 420 gctgccgttt ctcaaatcag tgatggtcaa atccaagcta ccaccactac tttagcccct 480 ctggccgcct cggcctctgc tggcctcgcc ttagataaaa ga 522 <210> 46 <211> 204 <212> DNA <213> Artificial Sequence <220> <223> TFP 14 <400> 46 atgcaattca agaacgcttt gactgctact gctattctaa gtgcctccgc tctagctgct 60 aactcaacta cttctattcc atcttcatgt agtattggta cttctgccac tgctactgct 120 caagccaccg atagtcaagc ccaagctact actaccgcac ccctggccgc ctcggcctct 180 gctggcctcg ccttagataa aaga 204 <210> 47 <211> 471 <212> DNA <213> Artificial Sequence <220> <223> TFP 15 <400> 47 atggatatcga agacttggat atgtggcttc atcagtataa ttacagtggt acaggccttg 60 tcctgcgaga agcatgatgt attgaaaaag tatcaggtgg gaaaatttag ctcactaact 120 tctacggaaa gggatactcc gccaagcaca actattgaaa agtggtggat aaacgtttgc 180 gaagagcata acgtagaacc tcctgaagaa tgtaaaaaaa atgacatgct atgtggttta 240 acagatgtca tcttgcccgg taaggatgct atcaccactc aaattataga ttttgacaaa 300 aacattggct tcaatgtcga ggaaactgag agtgcgctta cattgacact aaacggcgct 360 acgtggggcg ccaattcttt tgacgcaaaa ctagaatttc agtgtaatga caatatgaaa 420 caagacgaac tggccgcctc ggcctctgct ggcctcgcct tagataaaag a 471 <210> 48 <211> 294 <212> DNA <213> Artificial Sequence <220> <223> TFP 16 <400> 48 atgaaattat ccgctctatt agctttatca gcctccaccg ccgtcttggc cgctccagct 60 gtccaccata gtgacaacca ccaccacaac gacaagcgtg ccgttgtcac cgttactcag 120 tacgtcaacg cagacggcgc tgttgttatt ccagctgcca ccaccgctac ctcggcggct 180 gctgatggaa aggtcgagtc tgttgctgct gccaccacta ctttgtcctc gactgccgcc 240 gccgctacaa ccctggccgc ctcggcctct gctggcctcg ccttagataa aaga 294 <210> 49 <211> 585 <212> DNA <213> Artificial Sequence <220> <223> TFP 17 <400> 49 atgaaattat caactgtcct attatctgcc ggtttagcct cgactacttt ggcccaattt 60 tccaacagta catctgcttc ttccaccgat gtcacttcct cctcttccat ctccacttcc 120 tctggctcag taactatcac atcttctgaa gctccagaat ccgacaacgg taccagcaca 180 gctgcaccaa ctgaaacctc aacagaggct ccaaccactg ctatcccaac taacggtacc 240 tctactgaag ctccaaccac tgctatccca actaacggta cctctactga agctccaact 300 gatactacta ctgaagctcc aaccaccgct cttccaacta acggtacttc tactgaagct 360 ccaactgata ctactactga agctccaacc accggtcttc caaccaacgg taccacttca 420 gctttcccac caactacatc tttgccacca agcaacacta ccaccactcc tccttacaac 480 ccatctactg actacaccac tgactacact gtagtcactg aatatactac ttactgtccg 540 gaacgggccg cctcggcctc tgctggcctc gccttagata aaaga 585 <210> 50 <211> 315 <212> DNA <213> Artificial Sequence <220> <223> TFP 18 <400> 50 atgcgtttct ctactacact cgctactgca gctactgcgc tatttttcac agcctcccaa 60 gtttcagcta ttggtgaact agcctttaac ttgggtgtca agaacaacga tggtacttgt 120 aagtccactt ccgactatga aaccgaatta caagctttga agagctacac ttccaccgtc 180 aaagtttacg ctgcctcaga ttgtaacact ttgcaaaact taggtcctgc tgctgaagct 240 gagggattta ctatctttgt cggtgtttgg ccactggccg cctcggcctc tgctggcctc 300 gccttagata aaaga 315 <210> 51 <211> 372 <212> DNA <213> Artificial Sequence <220> <223> TFP 19 <400> 51 atgcgtctct ctaacctaat tgcttctgcc tctcttttat ctgctgctac tcttgctgct 60 cccgctaacc acgaacacaa ggacaagcgt gctgtggtca ctaccactgt tcaaaaacaa 120 accactatca ttgttaatgg tgccgcttca actccagttg ctgctttgga agaaaatgct 180 gttgtcaact ccgctccagc tgccgctacc agtacaacat cgtctgctgc ttctgtagct 240 accgctgctt cctcttctga gaacaactca caagtttctg ctgccgcatc tccagcctcc 300 agctctgctg ctacatctac tcaatcttct ctggccgcct cggcctctgc tggcctcgcc 360 ttagataaaa ga 372 <210> 52 <211> 414 <212> DNA <213> Artificial Sequence <220> <223> TFP 20 <400> 52 atgcaatttt ctactgtcgc ttctatcgcc gctgtcgccg ctgtcgcttc tgccgctgct 60 aacgttacca ctgctactgt cagccaagaa tctaccactt tggtcaccat cacttcttgt 120 gaagaccacg tctgttctga aactgtctcc ccagctttgg tttccaccgc taccgtcacc 180 gtcgatgacg ttatcactca atacaccacc tggtgcccat tgaccactga agccccaaag 240 aacggtactt ctactgctgc tccagttacc tctactgaag ctccaaagaa caccacctct 300 gctgctccaa ctcactctgt cacctcttac actggtgctg ctgctaaggc tttgccagct 360 gctggtgctt tgctggccgc ctcggcctct gctggcctcg ccttagataa aaga 414 <210> 53 <211> 528 <212> DNA <213> Artificial Sequence <220> <223> TFP 21 <400> 53 atgaaattct cttccgcttt ggttctatct gctgttgccg ctactgctct tgctgagagt 60 atcaccacca ccatcactgc caccaagaac ggtcatgtct acactaagac tgtcacccaa 120 gatgctactt ttgtttgggg tggtgaagac tcttacgcca gcagcacttc tgccgctgaa 180 tcttctgccg ccgaaacttc tgccgccgaa acctctgctg ccgctaccac ttctgctgcc 240 gctaccactt ctgctgctga gacttcttct gctgctgaga cttcttctgc tgatgaaggt 300 tctggttcta gtatcactac cactatcact gccaccaaga acggtcacgt ctacactaag 360 actgtcaccc aagatgctac ttttgtctgg actggtgaag gcagcagcaa cacctggtct 420 ccaagtagta cctctaccag ctcagaagct gctacctctt ctgcttcaac cactgcaacc 480 accctgctgg ccgcctcggc ctctgctggc ctcgccttag ataaaaga 528 <210> 54 <211> 414 <212> DNA <213> Artificial Sequence <220> <223> TFP 22 <400> 54 atgaagttcc aagttgtttt atctgccctt ttggcatgtt catctgccgt cgtcgcaagc 60 ccaatcgaaa acctattcaa atacagggca gttaaggcat ctcacagtaa gaatatcaac 120 tccactttgc cggcctggaa tgggtctaac tctagcaatg ttacctacgc taatggaaca 180 aacagtacta ccaatactac tactgccgaa agcagtcaat tacaaatcat tgtaacaggt 240 ggtcaagtac caatcaccaa cagttctttg acccacacaa actacaccag attattcaac 300 agttcttctg ctttgaacat taccgaattg tacaatgttg cccgtgttgt taacgaaacg 360 atccaagata acctggccgc ctcggcctct gctggcctcg ccttagataa aaga 414 <210> 55 <211> 345 <212> DNA <213> Artificial Sequence <220> <223> TFP 23 <400> 55 atgcgtgcca tcactttatt atcttcagtc gtttctttgg cattgttgtc gaaggaagtc 60 ttagcaacac ctccagcttg tttattggcc tgtgttgcgc aagtcggcaa atcctcttcc 120 acatgtgact ctttgaatca agtcacctgt tactgtgaac acgaaaactc cgccgtcaag 180 aaatgtctag actccatctg cccaaacaat gacgctgatg ctgcttattc tgctttcaag 240 agttcttgtt ccgaacaaaa tgcttcattg ggcgattcca gcggcagtgc ctcctcatcc 300 gttctggccg cctcggcctc tgctggcctc gccttagata aaaga 345 <210> 56 <211> 510 <212> DNA <213> Artificial Sequence <220> <223> TFP 24 <400> 56 atgaaattat caactgtcct attatctgcc ggtttggcct cgactacttt ggcccaattt 60 tccaacagta catctgcttc ttccaccgat gtcacttcct cctcttccat ctccacttcc 120 tctggctcag taactatcac atcttctgaa gctccagaat ccgacaacgg taccagcaca 180 gctgcaccaa ctgaaacctc aacagaggct ccaaccactg ctatcccaac taacggtacc 240 tctactgaag ctccaaccac tgctatccca actaacggta cctctactga agctccaact 300 gatactacta ctgaagctcc aaccaccgct cttccaacta acggtacttc tactgaagct 360 ccaactgata ctactactga agctccaacc accggtcttc caaccaacgg taccacttca 420 gctttcccac caactacatc tttgccacca agcaacacta ccaccactct ggccgcctcg 480 gcctctgctg gcctcgcctt agataaaaga 510

Claims (19)

레반 과당전이효소 (levan fructotransferase)를 코딩하는 핵산, 및 세포 외로 단백질을 분비시키는 단백질 분비 융합 인자 (Translational fusion partner, TFP)를 코딩하는 핵산을 포함하는, 레반 과당전이효소 분비 발현 카세트로서,
상기 단백질 분비 융합 인자는 서열번호 17의 TFP9, 서열번호 21의 TFP13 또는 서열번호 27의 TFP19인, 분비 발현 카세트.
A levan fructose transferase secretion expression cassette comprising a nucleic acid encoding levan fructotransferase and a nucleic acid encoding a translational fusion partner (TFP) that secretes the protein extracellularly,
Wherein said protein secretion fusion factor is TFP9 of SEQ ID NO: 17, TFP13 of SEQ ID NO: 21 or TFP19 of SEQ ID NO: 27.
제1항에 있어서, 상기 레반 과당전이효소는 아쓰로박터 우레아파시엔스 (Arthrobacter ureafaciens) 유래인 것인, 분비 발현 카세트.
The secretory expression cassette according to claim 1, wherein the levan fructose transferase is derived from Arthrobacter ureafaciens .
제1항에 있어서, 상기 레반 과당전이효소는 서열번호 8의 아미노산 서열로 이루어진 것인, 분비 발현 카세트.
The secretory expression cassette of claim 1, wherein the levan fructose transferase comprises the amino acid sequence of SEQ ID NO: 8.
삭제delete 삭제delete 제1항에 있어서, 상기 레반 과당전이효소를 코딩하는 핵산 및 단백질 분비 융합 인자를 코딩하는 핵산은 링커로 서로 연결된 것인, 분비 발현 카세트.
The secretory expression cassette according to claim 1, wherein the nucleic acid encoding the levan fructosyltransferase and the nucleic acid encoding the protein secretion fusion factor are linked to each other by a linker.
제6항에 있어서, 상기 링커는 프로테아제 인식 서열 또는 친화성 태그를 포함하는 것인, 분비 발현 카세트.
The secretory expression cassette of claim 6, wherein the linker comprises a protease recognition sequence or affinity tag.
제1항에 있어서, 상기 레반 과당전이효소는 친화성 태그를 추가로 포함하는 것인, 분비 발현 카세트.
The secretory expression cassette of claim 1, wherein the levan fructose transferase further comprises an affinity tag.
제8항에 있어서, 상기 친화성 태그는 GST, MBP, NusA, 티오레독신 (thioredoxin), 유비퀴틴, FLAG, BAP, HIS, STREP, CBP, CBD, 및 S-태그로 이루어진 그룹에서 선택되는 것인, 분비 발현 카세트.
9. The method of claim 8, wherein the affinity tag is selected from the group consisting of GST, MBP, NusA, thioredoxin, ubiquitin, FLAG, BAP, HIS, STREP, CBP, CBD, , Secreted expression cassette.
제1항 내지 제3항 및 제6항 내지 제9항 중 어느 한 항의 레반 과당전이효소 분비 발현 카세트를 포함하는, 벡터.
9. A vector comprising a levan fructose transferase secretion expression cassette of any one of claims 1 to 3 and 6 to 9.
레반 과당전이효소 (levan fructotransferase)를 코딩하는 핵산, 및 세포 외로 단백질을 분비시키는 단백질 분비 융합 인자(Translational fusion partner, TFP)를 코딩하는 핵산을 포함하는, 레반 과당전이효소 분비 발현 카세트를 함유하는, 재조합 미생물로서,
상기 단백질 분비 융합 인자는 서열번호 17의 TFP9, 서열번호 21의 TFP13 또는 서열번호 27의 TFP19인, 재조합 미생물.
Which contains a Levan fructosyltransferase expression cassette, comprising a nucleic acid encoding levan fructotransferase, and a nucleic acid encoding a protein secretion fusion partner (TFP) that secretes the protein ex vivo. As recombinant microorganisms,
Wherein said protein secretion fusion factor is TFP9 of SEQ ID NO: 17, TFP13 of SEQ ID NO: 21 or TFP19 of SEQ ID NO: 27.
제11항에 있어서, 상기 재조합 미생물은 효모인 것인, 미생물.
12. The microorganism according to claim 11, wherein the recombinant microorganism is yeast.
제12항에 있어서, 상기 효모는 캔디다 (Candida), 디베리오마이세스 (Debaryomyces), 한세눌라 (Hansenula), 클루이베로마이세스 (Kluyveromyces), 피키아 (Pichia), 스키조사카로마이세스 (Schizosaccharomyces), 야로이야 (Yarrowia), 사카로마이시스 (Saccharomyces), 슈완니오마이세스 (Schwanniomyces) 및 아르술라 (Arxula) 속으로 이루어진 그룹에서 선택되는 것인, 미생물.
13. The method of claim 12, wherein the yeast is selected from the group consisting of Candida , Debaryomyces , Hansenula , Kluyveromyces , Pichia , Schizosaccharomyces , , Jaroslaw's (Yarrowia), Saccharomyces Roman Isis (Saccharomyces), shoe Oh My wanni access (Schwanniomyces) and Sula are in, microorganisms are selected from the group consisting in (Arxula).
제12항에 있어서, 상기 효모는 캔디다 유틸리스 (Candida utilis), 캔디다 보이디니 (Candida boidinii), 캔디다 알비칸스 (Candida albicans), 클루이베로마이세스 락티스 (Kluyveromyces lactis), 피키아 파스토리스 (Pichia pastoris), 피키아 스티피티스 (Pichia stipitis), 스키조사카로마이세스 폼베 (Schizosaccharomyces pombe), 사카로마이시스 세레비지에 (Saccharomyces cerevisiae), 한세눌라 폴리모르파 (Hansenula polymorpha), 야로이야 리폴리티카 (Yarrowia lipolytica), 슈완니오마이세스 옥시덴탈리스 (Schwanniomyces occidentalis) 및 아르술라 아데니니보란스 (Arxula adeninivorans)로 이루어진 그룹에서 선택되는 것인, 미생물.
13. The method according to claim 12, wherein the yeast is Candida utilis , Candida boidinii), Candida albicans (Candida albicans), Cluj Vero Mai Seth lactis (Kluyveromyces lactis , Pichia pastoris , Pichia stipitis , skiing, Schizosaccharomyces pombe , Saccharomyces cerevisiae , Hansenula ( Hansenula &lt; RTI ID = 0.0 & gt ; polymorpha , Yarrowia lipolytica , Schwanniomyces occidentalis , and Arxula &lt; RTI ID = 0.0 &gt; adeninivorans ). &lt; / RTI &gt;
(i) 제11항의 재조합 미생물을 배양하는 단계; 및
(ii) 상기 배양된 미생물 또는 이의 배양 상등액으로부터 레반 과당전이효소를 회수하는 단계를 포함하는, 레반 과당전이효소 (levan fructotransferase)의 제조방법.
(i) culturing the recombinant microorganism of claim 11; And
(ii) recovering levan fructose transfection enzyme from the cultured microorganism or culture supernatant thereof.
제11항의 재조합 미생물 또는 제15항의 방법으로 제조된 레반 과당전이효소를 레반과 반응시키는 단계를 포함하는, 디프럭토스 언하이드리드 IV (difructose anhydride IV)의 제조방법.
A process for preparing difructose anhydride IV comprising reacting the recombinant microorganism of claim 11 or the levan fructose transferase produced by the method of claim 15 with Levan.
제16항에 있어서, 상기 반응은 pH 3.5 내지 pH 9.5에서 수행되는 것인, 제조방법.
17. The process according to claim 16, wherein the reaction is carried out at a pH of from 3.5 to 9.5.
제16항에 있어서, 상기 반응은 1 ℃ 내지 70 ℃에서 수행되는 것인, 제조방법.
17. The process according to claim 16, wherein the reaction is carried out at a temperature of from 1 占 폚 to 70 占 폚.
제16항에 있어서,
상기 레반과 반응시키는 단계는 재조합 미생물을 레반을 포함하는 배지에서 발효시키는 것을 포함하는 것인, 디프럭토스 언하이드리드 IV의 제조방법.
17. The method of claim 16,
Wherein the step of reacting with Levan comprises fermenting the recombinant microorganism in a medium comprising Levan.
KR1020150094730A 2015-07-02 2015-07-02 A microorganism having enhanced levan fructotransferase productivity and a method of producing difructose anhydride IV using the microorganism KR101779890B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150094730A KR101779890B1 (en) 2015-07-02 2015-07-02 A microorganism having enhanced levan fructotransferase productivity and a method of producing difructose anhydride IV using the microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150094730A KR101779890B1 (en) 2015-07-02 2015-07-02 A microorganism having enhanced levan fructotransferase productivity and a method of producing difructose anhydride IV using the microorganism

Publications (2)

Publication Number Publication Date
KR20170004415A KR20170004415A (en) 2017-01-11
KR101779890B1 true KR101779890B1 (en) 2017-09-19

Family

ID=57833051

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150094730A KR101779890B1 (en) 2015-07-02 2015-07-02 A microorganism having enhanced levan fructotransferase productivity and a method of producing difructose anhydride IV using the microorganism

Country Status (1)

Country Link
KR (1) KR101779890B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109280631B (en) * 2018-10-24 2021-07-09 哈尔滨商业大学 Sulfadimidine degrading bacterium S-2 and application thereof
KR102171224B1 (en) * 2019-07-16 2020-10-28 한국생명공학연구원 Recombinant yeast secreting inulin fructotransferase and a method of producing fructooligosaccharides and difructose anhydride III
KR102237465B1 (en) * 2019-12-18 2021-04-07 한국생명공학연구원 Recombinant yeast secreting inulosucrase and a method of producing fructooligosaccharides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jeewon Lee 등. FEMS Microbiology Letters. Vol. 195, No. 2, 페이지 127-132 (2001.02.20.)*

Also Published As

Publication number Publication date
KR20170004415A (en) 2017-01-11

Similar Documents

Publication Publication Date Title
CN107574159B (en) Mutant of glutamine transaminase expressed in active form
WO2016127083A1 (en) Modified glucoamylase enzymes and yeast strains having enhanced bioproduct production
CN110117601B (en) Grifola frondosa glucan synthase, encoding gene and application thereof
CN113755468B (en) Zearalenone hydrolase with improved resistance to trypsin
KR101779890B1 (en) A microorganism having enhanced levan fructotransferase productivity and a method of producing difructose anhydride IV using the microorganism
KR101026526B1 (en) Method for the secretory production of heterologous protein in Escherichia coli
JP5662363B2 (en) Method for clarifying protein fusion factor (TFP) for secretion of difficult-to-express protein, method for producing protein fusion factor (TFP) library, and method for recombinant production of difficult-to-express protein
EP2703484A1 (en) Transformant of yeast of genus schizosaccharomyces, method for producing same, method for producing beta-glucosidase, and method for decomposing cellulose
KR20130000883A (en) Enhanced protein production in kluyveromyces marxianus
CN107746836B (en) Glutamine transaminase mutant expressed in active form
KR102237465B1 (en) Recombinant yeast secreting inulosucrase and a method of producing fructooligosaccharides
CN114761553A (en) Nucleic acids, vectors, host cells and methods for producing beta-fructofuranosidase from aspergillus niger
KR101826927B1 (en) A microorganism having enhanced levansucrase productivity and a method of producing levan using the microorganism
KR20230098493A (en) Rebaudioside production
CN112266923B (en) Bacillus subtilis for expressing adenomethionine synthase and application thereof
KR102171224B1 (en) Recombinant yeast secreting inulin fructotransferase and a method of producing fructooligosaccharides and difructose anhydride III
KR102181315B1 (en) Mutant lipases of Rhizomucor miehei having enhanced transesterification activity and a method of producing the lipase
Lim et al. Recombinant production of an inulinase in a Saccharomyces cerevisiae gal80 strain
KR101837130B1 (en) Novel lipase from yeast Candida butyri SH-14 and the Use thereof
KR20220108113A (en) Nucleic acids, vectors, host cells and methods for the production of fructosyltransferases from Aspergillus japonicus
WO2012060389A1 (en) Transformant of yeast of genus schizosaccharomyces and method for producing same
KR102613936B1 (en) Kexin enzyme with reduced autolysis and production method thereof
CN114806899B (en) Trichoderma reesei engineering bacteria for producing L-malic acid and application thereof
KR101828580B1 (en) Methods of utilizing xylose as a carbon source using secretory expression of xylose isomerase
KR101960450B1 (en) Method of producing product using microorganism containing Daucus carota Hsp17.7 gene

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant