KR101835927B1 - 대칭 스위칭 및 단일 방향 전류 프로그래밍을 갖는 스핀-토크 전달 자기 메모리 셀 구조물 - Google Patents
대칭 스위칭 및 단일 방향 전류 프로그래밍을 갖는 스핀-토크 전달 자기 메모리 셀 구조물 Download PDFInfo
- Publication number
- KR101835927B1 KR101835927B1 KR1020147001682A KR20147001682A KR101835927B1 KR 101835927 B1 KR101835927 B1 KR 101835927B1 KR 1020147001682 A KR1020147001682 A KR 1020147001682A KR 20147001682 A KR20147001682 A KR 20147001682A KR 101835927 B1 KR101835927 B1 KR 101835927B1
- Authority
- KR
- South Korea
- Prior art keywords
- region
- magnetization orientation
- fixed
- magnetization
- free
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 81
- 230000005415 magnetization Effects 0.000 claims abstract description 230
- 238000000034 method Methods 0.000 claims abstract description 38
- 238000000151 deposition Methods 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- 125000006850 spacer group Chemical group 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 5
- 230000005381 magnetic domain Effects 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910003321 CoFe Inorganic materials 0.000 claims description 2
- 229910016551 CuPt Inorganic materials 0.000 claims description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 2
- 229910005811 NiMnSb Inorganic materials 0.000 claims description 2
- 238000007667 floating Methods 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 230000001902 propagating effect Effects 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- -1 CoNiFe Inorganic materials 0.000 claims 1
- 229910052796 boron Inorganic materials 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 229910052702 rhenium Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000000696 magnetic material Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 239000003302 ferromagnetic material Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 230000005294 ferromagnetic effect Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910019001 CoSi Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1659—Cell access
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/20—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
- H10B61/22—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Hall/Mr Elements (AREA)
Abstract
단방향 및/또는 대칭 프로그래밍 전류를 사용하여 STT-MRAM(spin torque transfer magnetic random access memory) 셀을 프로그래밍하는 기법이 제공된다. 단방향 프로그래밍 전류는 자유 영역의 자화를 적어도 2개의 상이한 방향으로 스위칭시키기 위해 STT-MRAM 셀의 자유 영역을 통해 한쪽 방향으로 흐른다. 대칭 프로그래밍 전류는 실질적으로 유사한 전류 크기를 사용하여 자유 영역의 자화를 2개의 상이한 방향 중 어느 하나로 스위칭시킨다. 어떤 실시예들에서, STT-MRAM 셀은 2개의 고정 영역 - 각각이 반대 방향으로 고정된 자화를 가짐 -, 및 자화가 고정 영역들 중 하나의 고정 영역의 자화에 대해 평행 또는 반평행이 되도록 스위칭되도록 구성되어 있는 자유 영역을 포함하고 있다. 자유 영역을 상이한 자화 방향으로 스위칭시키는 것은 프로그래밍 전류를 2개의 반대로 자화된 고정 영역들 중 하나의 고정 영역을 통해 보내는 것을 포함할 수 있다.
Description
본 발명의 실시예는 일반적으로 메모리에 관한 것으로서, 보다 상세하게는, 대칭 및 단방향 프로그래밍을 위해 구성된 STT-MRAM 셀에 관한 것이다.
이 섹션은 이하에 기술되고 및/또는 청구되어 있는 본 발명의 다양한 측면들에 관련되어 있을 수 있는 종래 기술의 다양한 측면들을 읽는 사람에게 소개하기 위한 것이다. 이 논의는 본 발명의 다양한 측면들에 대한 보다 나은 이해를 용이하게 해주기 위해 배경 기술 정보를 읽는 사람에게 제공하는 데 도움이 되는 것으로 생각된다. 그에 따라, 이들 설명이 종래 기술의 인정으로서가 아니라 이러한 관점에서 읽혀져야 한다는 것을 잘 알 것이다.
MRAM(Magnetic Random Access Memory)은 자기 저항(magnetoresistance)에 기초한 비휘발성 메모리 기술이다. 데이터를 전하로서 저장하는 전형적인 RAM(Random Access Memory) 기술과 달리, MRAM 데이터는 자기 저항 요소에 의해 저장된다. 일반적으로 MRAM 셀에서의 자기 저항 요소는 2개의 자기 영역(magnetic regions) - 각각이 자화(magnetization)를 보유함 - 으로 이루어져 있다. 한 영역["피닝 영역"(pinned region)]의 자화는 그의 자기 배향(magnetic orientation)이 고정되어 있고, 다른 영역["자유 영역"(free region)]의 자화는 프로그래밍 전류에 의해 발생된 외부 자계에 의해 변화될 수 있다. 이와 같이, 프로그래밍 전류의 자계는 2개의 자기 영역의 자기 배향을 평행하게[MRAM 셀의 자기 저항 요소에 걸쳐 낮은 전기 저항을 제공함("0" 상태)] 또는 반평행하게[MRAM 셀의 자기 저항 요소에 걸쳐 높은 전기 저항을 제공함("1" 상태)] 만들 수 있다. 자유 영역의 자기 배향의 스위칭 및 그에 따른 자기 저항 요소에 걸친 높은 또는 낮은 저항 상태는 전형적인 MRAM 셀의 기입 및 판독 동작을 제공한다.
STT-MRAM(spin torque transfer MRAM) 셀은 자기 저항 요소의 자화를 변화시킴으로써 프로그래밍되는 다른 유형의 메모리 셀이다. STT-MRAM 셀은 자유 영역 및 피닝 영역을 포함하는 자기 셀 스택(magnetic cell stack)을 통해 프로그래밍 전류를 전송함으로써 기입된다. 프로그래밍 전류는 피닝 영역에 의해 분극(polarize)된다. 스핀-분극 전류(spin-polarized current)는 이어서 자유 영역에 토크를 가하여, 자유 영역의 자화를 스위칭시킨다. 자유 영역의 자화는 피닝 영역에 평행하게 또는 반평행하게 정렬될 수 있고, 스택에 걸친 저항 상태가 변화된다.
전형적으로, 자유 영역 자화를 고정 영역의 자화에 대해 평행으로부터 반평행으로 그리고 반평행으로부터 평행으로 변화시키기 위해 양방향 프로그래밍 전류가 사용된다. 자유 영역 자화를 고정 영역의 자화에 대해 평행으로부터 반평행으로 변화시키기 위해, 자유 영역으로부터 고정 영역으로의 전자 흐름, 및 고정 영역의 자화와 반대 스핀을 가지는 고정된 영역으로부터 반사된 전자가 사용되어, 자유 영역의 자화를 스위칭시킨다. 고정 영역을 통해 흐를 때 스핀 분극되는 전자와 비교하여 고정 영역의 자화와 반대 스핀을 가지는 보다 적은 전자가 고정 영역으로부터 반사될 수 있다. 따라서, 자유 영역 자화를 고정 영역의 자화에 대해 평행으로부터 반평행으로 변화시키는 것은 일반적으로 자유 영역 자화를 고정 영역의 자화에 대해 반평행으로부터 평행으로 변화시키는 것보다 더 큰 프로그래밍 전류(예컨대, 고정 영역의 자화에 반대 스핀을 가지는 보다 많은 수의 반사된 전자들을 가짐)를 사용한다. 셀 프로그래밍에서의 이러한 비대칭의 결과, STT-MRAM 셀의 제조 및/또는 동작에 있어서 다양한 비효율이 생길 수 있다.
특정의 실시예들이 이하의 상세한 설명에서 첨부 도면을 참조하여 기술되어 있다.
도 1은 고정 영역의 자화에 대해 평행인 자화를 가지도록 프로그래밍되어 있는 자유 영역을 가지는 STT-MRAM 셀 구조물을 나타낸 도면.
도 2는 고정 영역의 자화에 대해 반평행인 자화를 가지도록 프로그래밍되어 있는 자유 영역을 가지는 STT-MRAM 셀 구조물을 나타낸 도면.
도 3은 도 1 및 도 2에 예시되어 있는 바와 같이, 고정 영역의 자화에 대해 평행 및 반평행인 자화를 가지도록 자유 영역을 스위칭시키기 위해 이용되는 추정된 프로그래밍 전류를 플로팅한 차트를 나타낸 도면.
도 4는 본 기술의 실시예들에 따른, 참조 고정 영역과 자유 영역 사이에 평행 자화를 가지도록 프로그래밍되는 대칭 프로그래밍을 위해 구성되어 있는 STT-MRAM 셀 구조물을 나타낸 도면.
도 5는 본 기술의 실시예들에 따른, 참조 고정 영역과 자유 영역 사이에 반평행 자화를 가지도록 프로그래밍되는 대칭 프로그래밍을 위해 구성되어 있는 STT-MRAM 셀 구조물을 나타낸 도면.
도 6은 본 기술의 실시예들에 따른, 비자기 영역(nonmagnetic region)에 스핀 축적하도록 구성되어 있는 STT-MRAM 셀 구조물을 나타낸 도면.
도 7a 내지 도 7j는 본 기술의 실시예들에 따른, 대칭 프로그래밍을 위해 구성되어 있는 STT-MRAM 셀을 형성하는 기술의 x-방향 및 y-방향에서의 일련의 측면도를 나타낸 도면.
도 8은 본 기술의 실시예들에 따른, 도 7a 내지 도 7e에 나타낸 기법들을 사용하여 형성된 STT-MRAM 셀 구조물을 나타낸 도면.
도 1은 고정 영역의 자화에 대해 평행인 자화를 가지도록 프로그래밍되어 있는 자유 영역을 가지는 STT-MRAM 셀 구조물을 나타낸 도면.
도 2는 고정 영역의 자화에 대해 반평행인 자화를 가지도록 프로그래밍되어 있는 자유 영역을 가지는 STT-MRAM 셀 구조물을 나타낸 도면.
도 3은 도 1 및 도 2에 예시되어 있는 바와 같이, 고정 영역의 자화에 대해 평행 및 반평행인 자화를 가지도록 자유 영역을 스위칭시키기 위해 이용되는 추정된 프로그래밍 전류를 플로팅한 차트를 나타낸 도면.
도 4는 본 기술의 실시예들에 따른, 참조 고정 영역과 자유 영역 사이에 평행 자화를 가지도록 프로그래밍되는 대칭 프로그래밍을 위해 구성되어 있는 STT-MRAM 셀 구조물을 나타낸 도면.
도 5는 본 기술의 실시예들에 따른, 참조 고정 영역과 자유 영역 사이에 반평행 자화를 가지도록 프로그래밍되는 대칭 프로그래밍을 위해 구성되어 있는 STT-MRAM 셀 구조물을 나타낸 도면.
도 6은 본 기술의 실시예들에 따른, 비자기 영역(nonmagnetic region)에 스핀 축적하도록 구성되어 있는 STT-MRAM 셀 구조물을 나타낸 도면.
도 7a 내지 도 7j는 본 기술의 실시예들에 따른, 대칭 프로그래밍을 위해 구성되어 있는 STT-MRAM 셀을 형성하는 기술의 x-방향 및 y-방향에서의 일련의 측면도를 나타낸 도면.
도 8은 본 기술의 실시예들에 따른, 도 7a 내지 도 7e에 나타낸 기법들을 사용하여 형성된 STT-MRAM 셀 구조물을 나타낸 도면.
자기 메모리 셀은 전형적으로 셀에서의 자기 저항을 변화시킴으로써 프로그래밍된다. 예를 들어, 자기 메모리 셀(본 명세서에서 셀이라고 함)은 자성 물질의 영역들을 포함할 수 있다. 프로그래밍 동안, 셀의 하나의 자기 영역("자유 영역"이라고 함)은 자화가 스위칭될 수 있고, 다른 자기 영역("피닝 영역(pinned region)"이라고 함)은 자화가 고정된 채로 있을 수 있다. 전형적으로, 자유 영역 자화는 피닝 영역 자화에 대해 평행 또는 반평행(antiparallel)이도록 2개의 정반대 방향 사이에서 스위칭될 수 있다. 자유 영역의 자화와 피닝 영역의 자화가 평행일 때, 그 영역들에 걸친 저항이 낮을 수 있고, 자유 영역의 자화와 피닝 영역의 자화가 반평행일 때, 그 영역들에 걸친 저항이 높을 수 있다. 이와 같이, 자기 메모리 셀이 자유 영역의 자화를 스위칭시킴으로써 낮은 또는 높은 저항 상태로 프로그래밍될 수 있다.
이러한 자기 메모리 셀의 한 예가 STT-MRAM(spin torque transfer magnetic random access memory) 셀이다. STT-MRAM 셀의 프로그래밍가능 구조물(셀 구조물이라고 함)을 프로그래밍하는 것은 도 1 및 도 2에 나타내어져 있다. 도 1은 자유 영역(14)의 자화와 고정 영역(10)의 자화가 평행인 제1 상태로 프로그래밍되어 있는 셀 구조물을 나타낸 것이고, 도 2는 자유 영역(14)의 자화와 고정 영역(10)의 자화가 반평행인 제2 상태로 프로그래밍되어 있는 셀 구조물을 나타낸 것이다.
전형적으로, 도 1 및 도 2에 예시되어 있는 것과 같은 셀 구조물을 프로그래밍하는 것은 양방향 프로그래밍 전류를 이용한다. 양방향 프로그래밍 전류는 자유층(14)의 자화를 제1 상태로[예컨대, 고정층(10)의 자화에 평행하도록] 스위칭시키기 위해 자유층(14)을 통해 제1 방향으로 인가되고 자유층(14)의 자화를 제2 상태로[예컨대, 고정층(10)의 자화에 반평행하도록] 스위칭시키기 위해 자유층(14)을 통해 제2(예컨대, 반대) 방향으로 인가되는 프로그래밍 전류를 말하는 것일 수 있다.
보다 구체적으로는, 도 1에 예시된 바와 같이, 프로그래밍 전류(Ip)(16)는 자유 영역(14)의 우측으로부터 인가된다. 프로그래밍 전류(16)의 전자들(18)은 프로그래밍 전류(16)의 방향과 반대 방향으로[즉, 자유 영역(14)의 좌측으로부터] 전파될 수 있다. 고정 영역(10)을 통과하는 전자들(18)은, 위쪽을 가리키는 화살표(20)로 나타낸 바와 같이, 고정 영역(10)의 스핀 극성을 갖도록 스핀 분극된다. 고정 영역(10)의 스핀 극성(20)을 가지는 전자들(18)은 고정 영역(10)의 자화에 평행한[자유 영역(14)에서 위쪽을 가리키는 화살표로 나타내어져 있음] 자화를 가지도록 자유 영역(14)의 자화를 스위칭시킴으로써 셀을 제1 상태로 프로그래밍하기 위해 비자기 영역(12)을 통해 전파될 수 있다.
셀을 제2 상태로 프로그래밍하기 위해, 도 2에 예시되어 있는 바와 같이, 프로그래밍 전류(16)가 자유 영역(14)의 좌측으로부터 인가될 수 있다. 프로그래밍 전류(16)의 전자들(18)은 프로그래밍 전류(16)의 방향과 반대 방향으로[즉, 자유 영역(14)의 우측으로부터] 전파될 수 있다. 전자들(18)은 자유 영역(14) 및 비자기 영역(12)을 통해 지나갈 수 있다. 자유 영역(14) 및 비자기 영역(12)이 강한 고정 극성을 갖지 않을 수 있기 때문에, 전자들(18)은 고정 영역(10)에 도달하기 전에 여전히 실질적으로 비분극된 채로 있을 수 있다. 전자들(18)이 고정 영역(10)에 도달하면, 전자들(18) 중 일부는 고정 영역(10)에 의해 스핀 분극되고 고정 영역(10)으로부터 반사될 수 있다. 반사된 전자들(18)은, 아래쪽을 가리키는 화살표(22)로 나타낸 바와 같이, 고정 영역(10)의 스핀 극성과 반대인 반사된 스핀 극성(reflected spin polarity)(22)을 가질 수 있다. 고정 영역(10)의 반대 스핀 극성(22)을 가지는 반사된 전자들은 고정 영역(10)의 자화에 반평행한[자유 영역(14)에서 아래쪽을 가리키는 화살표로 나타내어져 있음] 자화를 가지도록 자유 영역(14)의 자화를 스위칭시킴으로써 셀을 제2 상태로 프로그래밍하기 위해 비자기 영역(12)을 통해 전파될 수 있다.
도 1 및 도 2에 예시되어 있는 것과 같은 이러한 전형적인 셀 구성들에서, 동일한 크기를 가지는 프로그래밍 전류를 사용할 때, 고정 영역(10)의 자화와 반대인 스핀 분극(spin polarization)을 가지도록 고정 영역(10)에 의해 반사되는 전자들(18)의 양은 고정 영역(10)의 스핀 분극을 가지도록 고정 영역(10)을 통해 전파되는 전자들(18)의 양보다 적을 수 있다. 따라서, 자유 영역(14)의 자화를 고정 영역(10)의 자화에 대해 평행으로부터 반평행으로 스위칭시키기 위해서는 자유 영역(14)의 자화를 고정 영역(10)의 자화에 대해 반평행으로부터 평행으로 스위칭시키기 위해 이용되는 프로그래밍 전류보다 더 높은 프로그래밍 전류가 이용될 수 있다.
도 3의 그래프(30)는 플롯(36)으로 나타낸 바와 같은 자유 영역(14) 자화를 고정 영역(10)의 자화에 대해 반평행으로부터 평행으로 스위칭시키기 위한(제1 상태로의 스위칭이라고 함) 셀 구조물 직경 범위(32)(단위: nm)에 대한 프로그래밍 전류의 범위(단위: μA)(34), 및 플롯(38)으로 나타낸 바와 같은 자유 영역(14) 자화를 고정 영역(10)의 자화에 대해 평행으로부터 반평행으로 스위칭시키기 위한(제2 상태로의 스위칭이라고 함) 프로그래밍 전류를 플로팅한 것이다. 그래프(30)로 나타낸 바와 같이, 제2 상태로 스위칭시키기 위해 사용되는 프로그래밍 전류[플롯(38)]는 제1 상태로 스위칭시키기 위해 사용되는 프로그래밍 전류[플롯(36)]보다 상당히 더 높다.
양방향 프로그래밍 전류를 사용하여 및/또는 셀을 제2 상태로 프로그래밍하기 위해 보다 높은 전류 크기를 사용하여 STT-MRAM 셀을 동작시키는 것은 다양한 비효율을 야기할 수 있다. 양방향 프로그래밍 전류를 사용하여 셀을 프로그래밍하는 것은 단일 방향 동작을 위해 사용되는 회로보다 덜 효율적일 수 있는, 양방향 동작이 가능한 감지 증폭기를 필요로 할 수 있다. 게다가, 양방향 동작이 가능한 회로는 단일 방향 동작을 위해 사용되는 회로보다 더 많은 실리콘 공간을 차지할 수 있다. 셀을 제2 상태로 프로그래밍하기 위해 (셀을 제1 상태로 프로그래밍하는 것에 비해) 더 높은 전류 크기를 사용하는 것은 비대칭 프로그래밍이라고 한다. 비대칭 프로그래밍은 셀의 안정성을 저하시킬 수 있는데, 그 이유는 자유 영역을 통해 높은 전압을 인가하는 것과 낮은 전압을 인가하는 것 사이의 스위칭이 자유층에 대한 지연 및 외란을 증가시킬 수 있기 때문이다.
본 기술의 하나 이상의 실시예들은 단방향 프로그래밍 전류를 사용한 대칭 프로그래밍을 위해 구성되어 있는 셀 구조물을 가지는 STT-MRAM 셀을 포함한다. 단방향 프로그래밍 전류는 자유 영역의 자화를 2개의 상이한 방향 사이에서 스위칭시키기 위해 프로그래밍 전류를 자유 영역을 통해 한쪽 방향으로 보내는 것에 의해 STT-MRAM 셀 구조물을 프로그래밍하는 것을 말한다. 어떤 실시예들에서, 셀을 제1 상태로 프로그래밍하기 위해 단방향 프로그래밍 전류가 자유층을 통해 한쪽 방향으로 인가될 수 있고, 셀을 제2 상태로 프로그래밍하기 위해 단방향 프로그래밍 전류가 자유층을 통해 동일한 방향으로 인가될 수 있다. 대칭 프로그래밍은 실질적으로 유사한 전류 크기를 사용하여 자유 영역의 자화를 2개의 상이한 방향 중 어느 하나로 스위칭시키는 것을 말한다.
대칭 단방향 프로그래밍에 적당한 STT-MRAM 셀 구조물의 일 실시예가 도 4 및 도 5에 예시되어 있다. 도 4는 자유 영역(14)의 자화가 참조 고정 영역(10a)의 자화에 평행한 제1 상태로 프로그래밍되어 있는 셀 구조물(40)을 나타낸 것이고, 도 5는 자유 영역(14)의 자화가 참조 고정 영역(10a)의 자화에 반평행한 제2 상태로 프로그래밍되어 있는 셀 구조물(40)을 나타낸 것이다. 본 명세서에서 사용되는 바와 같이, 2개의 고정 영역(10)을 가지는 실시예를 기술할 시에 참조 고정 영역(10a)이 사용될 수 있고, 여기서 STT-MRAM 셀 구조물의 프로그래밍된 상태는 자유 영역(14) 및 2개의 고정 영역(10) 중 특정의 참조 고정 영역(10a)에 걸친 저항에 의해 결정된다.
도 4 및 도 5에 예시된 바와 같이, 어떤 실시예들은 2개의 고정 영역(10a 및 10b)을 포함할 수 있고, 각각의 고정 영역(10a 및 10b)에서 반대쪽을 가리키고 있는 화살표로 나타낸 바와 같이, 한쪽 고정 영역은 다른쪽 고정 영역의 반대 방향으로 고정된 자화를 가진다. 비자기 영역(12)이 2개의 고정 영역(10a 및 10b) 사이에 배치되어 있을 수 있다. 어떤 실시예들에서, 자유 영역(14)은 비자기 영역(12) 위에 배치되어 있을 수 있고, 상단 전극(42)은 자유 영역(14) 위에 배치되어 있을 수 있다. 어떤 실시예들에서, 자유 영역(14)과 비자기 영역(12) 사이에 터널 장벽(tunnel barrier)이 배치되어 있을 수 있다. 게다가, 자유 영역(14)이 유전체 물질(44)에 의해 고정 영역(10a 및 10b)으로부터 분리되어 있을 수 있다.
어떤 실시예들에서, 고정 영역(10a 및 10b) 및 자유 영역(14)은 동일한 또는 상이한 물질을 포함할 수 있다. 예를 들어, 고정 영역(10) 및 자유 영역(14) 각각은 Co, Fe, Ni 또는 그의 합금, NiFe, CoFe, CoNiFe, 또는 도핑된 합금 CoX, CoFeX, CoNiFeX (X= B, Cu, Re, Ru, Rh, Hf, Pd, Pt, C) 등의 자성 물질 또는 강자성 물질, 또는 Fe3O4, CrO2, NiMnSb, PtMnSb, 및 BiFeO 등의 다른 반금속 강자성 물질, 또는 상기 물질들의 임의의 조합을 포함할 수 있다.
비자기 영역(12)은 고정 영역(10a), 고정 영역(10b), 및 자유 영역(14)을 서로 분리시키는 데 적당할 수 있고, 고정 및 자유 영역들(10a, 10b, 및 14)의 자화들 사이의 결합을 실질적으로 방지하는 데 적당할 수 있다. 예를 들어, 비자기 영역(12)은 Cu, Au, Ta, Ag, CuPt, CuMn 등의 전도성 비자성 물질, AlxOy, MgOx, AlNx, SiNx, CaOx, NiOx, HfOx, TaxOy, ZrOx, NiMnOx, MgFx, SiC, SiOx, SiOxNy 등의 비전도성 비자성 물질, 또는 상기 물질들의 임의의 조합을 포함할 수 있다.
본 기법에 따르면, 셀 구조물(40)은 단방향 프로그래밍 전류를 사용하여 프로그래밍될 수 있다. 자유 영역(14)의 자화를 고정 영역들(10a 또는 10b) 중 하나의 고정 영역의 자화에 대해 평행 또는 반평행하도록 스위칭시키기 위해 단방향 프로그래밍 전류가 자유 영역(14)을 통해 한쪽 방향으로 지나갈 수 있다.
도 4는 자유 영역(14)이 참조 고정 영역(10a)에 대해 평행한 자화를 가지도록 STT-MRAM 셀 구조물(40)을 프로그래밍하는 것을 나타낸 것이다. 어떤 실시예들에서, 프로그래밍 전류(Ip)(16)는 자유 영역(14)으로부터 비자기 영역(12)을 거쳐 고정 영역(10a)으로의 방향으로 인가된다. 프로그래밍 전류(16)의 전자들(18)은 프로그래밍 전류(16)의 방향과 반대 방향으로 고정 영역(10a)으로부터 비자기 영역(12)을 거쳐 자유 영역(14)을 통해 상단 전극(42)으로 전파될 수 있다. 어떤 실시예들에서, 전자들(18)의 경로는, 셀 구조물(40)이 기입되어야 하는 상태에 따라, 고정 영역(10a 및 10b)의 전도성 리드 및 상단 전극(42)을 바이어스시킴으로써 제어될 수 있다. 예를 들어, 셀 구조물(40)을 제1 상태로 기입하기 위해, 도 4에 예시된 바와 같이, 프로그래밍 전류(16) 및 전자들(18)의 전파의 방향이 [고정 영역(10b)을 통하지 않고] 고정 영역(10a), 비자기 영역(12) 및 자유 영역(14) 사이에서 흐를 수 있도록, 고정 영역(10b)이 부유되어 있거나 비자기 영역(12)과 동일한 전위로 바이어스되어 있는 동안 고정 영역(10a)이 접지되어 있을 수 있다. 어떤 실시예들에서, 고정 영역들(10a 및 10b) 각각이 하부 전극 및/또는 셀 구조물(40)의 프로그래밍 상태에 따라 접지되어 있거나 바이어스될 접지로의 스위치(switch to ground)에 결합되어 있을 수 있다.
고정 영역(10a)을 통과하는 전자들(18)은, 위쪽을 가리키는 화살표로 나타내어져 있는, 고정 영역(10a)의 스핀 극성을 갖도록 스핀 분극된다. 고정 영역(10a)의 스핀 극성(20a)을 가지는 전자들(18)은 참조 고정 영역(10a)의 자화에 평행한[자유 영역(14)에서 위쪽을 가리키는 화살표로 나타내어져 있음] 자화를 가지도록 자유 영역(14)의 자화를 스위칭시킴으로써 셀을 제1 상태로 프로그래밍하기 위해 비자기 영역(12)을 통해 자유 영역(14) 쪽으로 전파될 수 있다.
도 5는 자유 영역(14)이 참조 고정 영역(10a)에 대해 반평행하고 고정 영역(10b)에 대해 평행한 자화를 가지도록 STT-MRAM 셀 구조물(40)을 프로그래밍하는 것을 나타낸 것이다. 셀을 제2 상태로 프로그래밍하기 위해, 프로그래밍 전류(16)는 자유 영역(14)으로부터 비자기 영역(12)을 거쳐 고정 영역(10b)으로의 방향으로 인가될 수 있다. 프로그래밍 전류(16)의 전자들(18)은 프로그래밍 전류(16)의 방향과 반대 방향으로 고정 영역(10b)으로부터 비자기 영역(12)을 거쳐 자유 영역(14)을 통해 상단 전극(42)으로 전파될 수 있다. 어떤 실시예들에서, 전자들(18)이 [고정 영역(10a)을 통하지 않고] 고정 영역(10b), 비자기 영역(12) 및 자유 영역(14) 사이에서 흐르도록, 고정 영역(10a)이 부유되어 있거나 비자기 영역(12)과 동일한 전위로 바이어스되어 있는 동안 고정 영역(10b)이 접지되어 있을 수 있다.
고정 영역(10b)을 통과하는 전자들(18)은, 아래쪽을 가리키는 화살표로 나타내어져 있는, 고정 영역(10b)의 스핀 극성(20b)을 갖도록 스핀 분극된다. 고정 영역(10b)의 스핀 극성(20)을 가지는 전자들(18)은 참조 고정 영역(10a)의 자화에 반평행한[자유 영역(14)에서 아래쪽을 가리키는 화살표로 나타내어져 있음] 자화를 가지도록 자유 영역(14)의 자화를 스위칭시킴으로써 셀을 제2 상태로 프로그래밍하기 위해 비자기 영역(12)을 통해 자유 영역(14) 쪽으로 전파될 수 있다.
어떤 실시예들에서, 프로그래밍 전류(16)는 셀 구조물(40)의 프로그래밍 상태에 따라 고정 영역들(10a 또는 10b) 중 어느 하나쪽으로 보내질 수 있는 반면, 판독 전류는 셀 구조물(40)의 프로그래밍된 상태에 관계없이 고정 영역들(10a 또는 10b) 중 하나쪽으로만 보내질 수 있다. 따라서, 고정 영역(10a) 또는 고정 영역(10b) 중 어느 하나의 하나의 고정된 자화에 대해 자유 영역(14)의 스위칭된 자화가 판독될 수 있다. 도 4 및 도 5에 나타낸 실시예들에서, 고정 영역(10a)의 고정된 자화에 대해 자유 영역(14)의 자화 배향이 판독된다. 다른 실시예들에서, 상이한 고정된 자화 배향[예컨대, 고정 영역(10b)의 자화]에 대해 자유 영역(14)의 자화가 또한 판독될 수 있다.
하나 이상의 실시예들은 또한, 도 6에 예시되어 있는 바와 같이, 프로그래밍 동안 셀 구조물(40)의 비자기 영역(12)에 스핀 필터 효과(spin filter effect)를 발생하는 것을 포함할 수 있다. 스핀 필터 효과는 스핀 분극된 전자들이 강자성 물질과 비자성 물질의 계면을 통해 흐르는 거동 및/또는 스핀 분극된 전자들이 비자성 물질과 강자성 물질의 계면으로부터 반사되는 거동을 말하는 것일 수 있다. 도 6에 예시된 바와 같이, 전자들(18)이 고정 영역(10a)으로부터 강자성/비자성 계면(46)을 거쳐 비자기 영역(12)으로의 방향으로 전파될 수 있다. 전자들(18)이 고정 영역(10a)의 자화에 대해 스핀 분극되어 있을 수 있고, 스핀 분극된 전자들이 비자기 영역(12)에 축적될 수 있다. 전자들(18)은 또한 비자성/강자성 계면(48)에서 반사되어 고정 영역(10b)의 자화와 반대 방향으로 스핀 분극될 수 있다. 따라서, 비자성/강자성 계면(48)으로부터 반사된 전자들(18)의 스핀 분극이 또한 고정 영역(10a)에 의해 스핀 분극된 전자들(18)과 동일한 방향으로 스핀 분극될 수 있다. 고정 영역(10a)의 자화의 방향으로[도 6의 비자기 영역(12)에서 위쪽을 가리키는 화살표로 나타내어져 있음] 스핀 분극된 전자들의 축적은 자유 영역(14)의 스위칭에 추가로 영향을 미칠 수 있다. 어떤 실시예들에서, 자유 영역(14)을 프로그래밍하는 데 이용되는 프로그래밍 전류(16)가 비자기 영역(12)에서의 스핀 필터 효과로 인해 조절 또는 감소될 수 있다.
도 4 내지 도 6에 예시되어 있는 셀 구조물(40)을 형성하는 공정이 도 7a 내지 도 7j에 제공되어 있다. 공정 단계들이 유전체 물질(58)에 3개의 STT-MRAM 셀 구조물(40)을 형성함에 있어서의 중간 셀 구조물(40)의 x-방향으로부터의 측면도(50x, 60x, 66x, 68x, 및 72x로 표시되어 있음) 및 y-방향으로부터의 대응하는 측면도(50y, 60y, 66y, 68y, 및 72y로 표시되어 있음)로 나타내어져 있다. 도 7a 내지 도 7j에 나타내어져 있는 공정은 공정의 단순화를 위해 x-방향(예컨대, 한 행의 셀 구조물(40)들의 뷰) 및 y-방향(예컨대, 한 열의 셀 구조물(40)들의 뷰) 각각에서의 3개의 셀의 측면도를 나타내고 있지만, 설명된 공정으로부터 임의의 수의 셀이 형성될 수 있다.
이 공정은, 뷰 50x 및 뷰 50y(도 7a 및 도 7b)에 예시되어 있는 바와 같이, 기판(58)에 트랜지스터(54) 및 측면 게이트(side gate)(56)를 형성하는 것으로 시작한다. 기판(58)은 상이한 셀 구조물(40)들을 분리시키기 위한 유전체 물질[유전체(58)라고도 할 수 있음] 또는 임의의 다른 적당한 물질을 포함할 수 있다. 일 실시예에서, 기판(58)을 리세스(recess)시키기 위해 포토리소그라피 및 건식 에칭 공정이 사용될 수 있다. 함몰부에 측면 게이트(56)를 형성하기 위해 티탄 질화물(TiN) 등의 적당한 금속이 사용될 수 있고, 뷰 50y에 예시되어 있는 바와 같이, 기판(58)의 함몰부에 트랜지스터(54)를 형성하기 위해, 2개의 측면 게이트(56) 사이에 P-도핑된 실리콘(54)이 퇴적 또는 형성될 수 있다. 어떤 실시예들에서, 실리콘 질화물(SiN) 등의 희생 물질(52)이 뷰 50x 및 뷰 50y에 예시되어 있는 바와 같은 셀 구조물(40)을 형성하기 위한 에칭 마스크로서 사용될 수 있다. 도 7c 및 도 7d에 예시된 바와 같이, 이 공정은 이어서, 뷰 60x 및 뷰 60y에 예시되어 있는 바와 같이, 희생 물질(52)을 제거하는 것 및 트랜지스터(54) 위에 N-도핑된 실리콘(62)을 퇴적 또는 형성하는 것 및 N-도핑된 실리콘(62) 위에 전도성 물질(64)(예컨대, CoSi2 또는 임의의 다른 적당한 금속 전도성 물질)을 퇴적 또는 형성하는 것을 포함할 수 있다. N-도핑된 실리콘(62) 및 전도성 물질(64)은 수직형 트랜지스터(vertical transistor)(54)의 드레인을 형성할 수 있다.
도 7e 및 도 7f의 뷰 66x 및 뷰 66y에 예시되어 있는 바와 같이, 상단 전극(42)이 전도성 물질(64) 위에 형성될 수 있다. 상단 전극(42)은 TiN, W 등과 같은 적당한 전도성 금속을 퇴적함으로써 형성될 수 있다. 어떤 실시예들에서, 유전체(58)는 상단 전극(42) 위에 함몰부의 측벽을 따라 퇴적될 수 있다. 유전체(58)는 유전체(58)의 내측 주변부(inner perimeter) 내에 퇴적되는 물질의 직경을 감소시키는 스페이서로서 기능할 수 있다. 뷰 66x 및 뷰 66y에 예시된 바와 같이, 자유 영역(14)은 상단 전극(42) 위에 그리고 유전체(58)에 의해 형성되는 스페이서 내에 형성될 수 있고, 비자성 물질(12)은 자유 영역(14) 위에 퇴적될 수 있다.
도 7g 및 도 7h에 예시된 바와 같이, 이 공정은 이어서 각각의 셀 구조물 위에 비자기 영역(12)을 형성하는 것을 포함할 수 있다. 비자기 영역(12)은 비자성 물질을 퇴적하는 것 및, 뷰 68y에 예시되어 있는 바와 같이, 비자기 영역(12)의 라인이 한 행의 셀 구조물(40)들 위에 형성되도록, 비자성 물질을 라인 모양으로 패턴화하는 것에 의해 형성될 수 있다. 뷰 68x에 예시된 바와 같이, 각각의 셀 구조물(40)에 대한 비자기 영역(12)의 어느 한 측에 고정 영역(10a 및 10b)이 형성될 수 있고, 금속 스트랩(metal strap)(70)이 각각의 고정 영역(10a 및 10b)의 대향하는 측면 상에 형성될 수 있다. 고정 영역(10a 및 10b)의 강자성 물질이 등방성 퇴적(conformal deposition)에 의해 형성될 수 있고, 이어서 스페이서 에칭 또는 스페이서 형성 공정이 뒤따를 수 있다. 게다가, 금속 스트랩(70)은 고정 영역(10a 및 10b)의 저항을 낮추도록 구성되어 있을 수 있고, 적당한 전도성 금속(예컨대, TiN, W 등)을 포함할 수 있다. 금속 스트랩(70)은 또한 고정 영역(10a 및 10b) 위에 등방성으로 퇴적될 수 있고, 이어서 스페이서 형성 공정이 뒤따를 수 있다. 도 7i 및 도 7j의 뷰 72x 및 뷰 72y에 예시되어 있는 바와 같이, 개별 셀 구조물(40)을 형성하기 위해 한 행의 비자기 영역(12)이 이어서 교차 라인 패턴화(cross-line patterning)에 의해 패턴화될 수 있다.
도 8은 도 7a 내지 도 7j에 예시되어 있는 공정에 의해 생성된 STT-MRAM 셀 구조물(40)의 확대도를 나타낸 것이다. 도 4 내지 도 6 및 도 8은 대칭 프로그래밍 및/또는 단방향 프로그래밍 전류를 사용한 프로그래밍에 적당한 STT-MRAM 셀 구조물(40)의 하나 이상의 실시예들을 포함하고 있다. 도 7a 내지 도 7j는 셀 구조물(40)을 형성하는 하나 이상의 실시예들을 포함하고 있다. 본 기법에 따르면, 실시예들은 대칭 프로그래밍 및/또는 단방향 프로그래밍에 적당할 수 있는 셀 구조물(40)의 다른 구성들을 포함할 수 있다. 더욱이, 실시예들은 또한 도 7a 내지 도 7j에 예시되어 있는 공정의 변형들을 포함하고 있다. 예를 들어, 다양한 유형의 마스킹, 에칭 및/또는 퇴적 기법들이 본 기법에 따라 셀 구조물(40)의 상이한 영역들을 형성하는 데 적당할 수 있다.
유의할 점은, 도 4 내지 도 6 및 도 8에 예시되어 있는 실시예들이 자화 배향을 페이지에 대해 z-방향으로 가리키는 것으로 나타내고 있지만(예컨대, 위쪽을 가리키는 및 아래쪽을 가리키는 화살표), 본 기법이 임의의 특정의 자화 배향으로 제한되지 않는다는 것이다. 어떤 실시예들에서, 자유 영역(14) 및 고정 영역(10a 및 10b)의 자화 배향이 도 4 내지 도 6 및 도 8에 도시된 자화 배향과 비교하여 상이한 방향으로(예컨대, x-방향 또는 y-방향으로) 있을 수 있다. 이러한 실시예들에서, 자유 영역(14) 자화 배향은 고정 영역(10a 및 10b)의 자화 배향에 대응할 수 있고, 고정 영역(10a 또는 10b)에 평행 또는 반평행(메모리 셀의 상이한 프로그래밍된 상태를 나타냄)하도록 프로그래밍될 수 있다.
본 명세서에서 사용되는 바와 같이, 셀 구조물(40)의 구성 및/또는 셀 구조물(40)을 형성하는 기법을 기술할 때(예컨대, 도 7a 내지 도 7j), "~ 위에", "~ 아래에", "~ 위에 형성", "~ 아래에 형성" "~ 위에 배치" 또는 "~ 아래에 배치"라는 용어들은 기술된 셀 구조물(40) 또는 공정의 단지 하나의 가능한 배향을 말하고, 본 실시예들을 임의의 특정의 배향으로 제한하지 않는다. 예를 들어, 도 4 내지 도 6에 예시되어 있는 셀 구조물(40)은 도 8에 예시되어 있는 셀 구조물(40)과 비교하여 (예컨대, x-방향을 따라) 뒤집힌 배향을 가질 수 있다.
게다가, 본 명세서에서 사용되는 바와 같이, 한 영역이 다른 영역 "위에 형성", "아래에 형성", "위에 배치", "아래에 배치", 또는 "배치"되는 것으로 말해질 때, 그 영역들 사이에 형성 또는 배치된 중간 영역이 있을 수 있다. 예를 들어, 어떤 실시예들에서, 자유 영역(14)은 비자기 영역(12) 위에 배치되어 있을 수 있고, 자유 영역(14)과 비자기 영역(12) 사이에 터널 장벽(15)이 배치되어 있을 수 있다. 이와 달리, 층 또는 물질이 "~ 바로 상에 형성되어", "~ 바로 아래에 형성되어", "~ 바로 상에 배치되어", "~ 바로 아래에 배치되어", "~를 따라 직접 배치", "~와 직접 접촉해 있는", 또는 "~를 터치하고 있는" 것으로 말해지고 있는 경우, 물질들 또는 층들이 그들 사이에 중간 물질 또는 층을 포함하지 않는다.
본 발명이 다양한 수정 및 대안의 형태를 가질 수 있지만, 특정의 실시예가 도면에 예시로서 도시되어 있으며 본 명세서에 상세히 기술되어 있다. 그렇지만, 본 발명이 개시된 특정의 형태로 제한되는 것으로 보아서는 안된다는 것을 잘 알 것이다. 오히려, 본 발명은 이하의 첨부된 청구항에 의해 한정되는 본 발명의 사상 및 범위 내에 속하는 모든 수정, 등가물 및 대안을 포함한다.
Claims (25)
- STT-MRAM(spin torque transfer magnetic random access memory) 셀 구조물로서,
적어도 제1 측면, 제2 측면 및 제3 측면을 갖는 비자성 영역(nonmagnetic region);
상기 비자성 영역의 상기 제1 측면과 직접 접촉하여 배치되어 있는 고정 자화 배향(fixed magnetization orientation)을 갖는 제1 영역;
상기 비자성 영역의 상기 제2 측면과 직접 접촉하여 배치되어 있는 고정 자화 배향을 갖는 제2 영역;
상기 비자성 영역의 상기 제3 측면을 따라 배치되어 있는 자유 자화 배향(free magnetization orientation)을 갖는 영역; 및
상기 자유 자화 배향을 갖는 영역을 따라 배치되어 있는 상단 전극(top electrode) - 상기 자유 자화 배향을 갖는 영역은 상기 상단 전극과 상기 비자성 영역 사이에 개재됨 -
을 포함하는 STT-MRAM 셀 구조물. - 제1항에 있어서, 상기 자유 자화 배향을 갖는 영역, 상기 고정 자화 배향을 갖는 제1 영역, 또는 상기 고정 자화 배향을 갖는 제2 영역 중 어느 것도 서로 직접 접촉해 있지 않는, STT-MRAM 셀 구조물.
- 삭제
- STT-MRAM(spin torque transfer magnetic random access memory) 셀 구조물로서,
적어도 제1 측면, 제2 측면 및 제3 측면을 갖는 비자성 영역;
상기 비자성 영역의 상기 제1 측면을 따라 배치되어 있는 고정 자화 배향을 갖는 제1 영역;
상기 비자성 영역의 상기 제2 측면을 따라 배치되어 있는 고정 자화 배향을 갖는 제2 영역; 및
상기 비자성 영역의 상기 제3 측면을 따라 배치되어 있는 자유 자화 배향을 갖는 영역
을 포함하고,
상기 자유 자화 배향을 갖는 영역을 통한 상기 비자성 영역 및 상기 고정 자화 배향을 갖는 제1 영역으로의 프로그래밍 전류로 인해 전자들이 상기 고정 자화 배향을 갖는 제1 영역으로부터 상기 비자성 영역 및 상기 자유 자화 배향을 갖는 영역을 통해 전파되어, 상기 영역의 자화를 상기 고정 자화 배향을 갖는 제1 영역의 자화에 대해 평행하게 스위칭시키도록, 상기 고정 자화 배향을 갖는 제1 영역이 접지되도록 구성되는, STT-MRAM 셀 구조물. - 제4항에 있어서, 상기 자유 자화 배향을 갖는 영역을 통한 상기 비자성 영역 및 상기 고정 자화 배향을 갖는 제2 영역으로 흐르는 프로그래밍 전류로 인해 전자들이 상기 고정 자화 배향을 갖는 제2 영역으로부터 상기 비자성 영역 및 상기 자유 자화 배향을 갖는 영역을 통해 전파되어, 상기 자유 자화 배향을 갖는 영역의 자화를 상기 고정 자화 배향을 갖는 제1 영역의 자화에 대해 반평행(antiparallel)하게 스위칭시키도록, 상기 고정 자화 배향을 갖는 제2 영역이 접지되도록 구성되는, STT-MRAM 셀 구조물.
- 제1항에 있어서, 상기 자유 자화 배향을 갖는 영역과 상기 비자성 영역 사이에 배치되어 있는 터널 장벽을 포함하는, STT-MRAM 셀 구조물.
- STT-MRAM(spin torque transfer magnetic random access memory) 셀 구조물로서,
적어도 제1 측면, 제2 측면 및 제3 측면을 갖는 비자성 영역;
상기 비자성 영역의 상기 제1 측면을 따라 배치되어 있는 고정 자화 배향을 갖는 제1 영역;
상기 비자성 영역의 상기 제2 측면을 따라 배치되어 있는 고정 자화 배향을 갖는 제2 영역;
상기 비자성 영역의 상기 제3 측면을 따라 배치되어 있는 자유 자화 배향을 갖는 영역;
상기 고정 자화 배향을 갖는 제1 영역이 상기 비자성 영역과 접촉하고 있는 제1 계면 - 상기 고정 자화 배향을 갖는 제1 영역으로부터 상기 제1 계면을 통해 통과하는 전자들이 상기 비자성 영역에 축적되고, 상기 통과하는 전자들은 상기 고정 자화 배향을 갖는 제1 영역의 자화에 스핀 분극됨(spin polarized) - ; 및
상기 고정 자화 배향을 갖는 제2 영역이 상기 비자성 영역과 접촉하고 있는 제2 계면 - 상기 고정 자화 배향을 갖는 제2 영역으로부터 상기 비자성 영역으로 반사하는 전자들이 상기 비자성 영역에 축적되고, 상기 반사하는 전자들은 상기 고정 자화 배향을 갖는 제2 영역의 반대의 자화에 스핀 분극됨 -
을 포함하고,
상기 통과하는 전자들과 상기 반사하는 전자들은 실질적으로 유사한 방향으로 스핀 분극되는, STT-MRAM 셀 구조물. - 단방향 프로그래밍 전류에 의해 프로그래밍되도록 구성된 STT-MRAM(spin torque transfer magnetic random access memory) 셀로서,
제1 방향의 자화를 갖는 고정 자화 배향을 갖는 제1 영역;
제2 방향의 자화를 갖는 고정 자화 배향을 갖는 제2 영역;
상기 고정 자화 배향을 갖는 제1 영역과 상기 고정 자화 배향을 갖는 제2 영역 사이의 비자성 영역; 및
상기 비자성 영역 바로 위에 배치되어 있는 자유 자화 배향을 갖는 영역
을 포함하고,
상기 자유 자화 배향을 갖는 영역은 단방향 프로그래밍 전류에 의해 자화로 스위칭되어, 상기 고정 자화 배향을 갖는 제1 영역의 자화와 평행한 자화 또는 반평행한 자화 중 어느 하나를 갖도록 구성되는, STT-MRAM 셀. - 제8항에 있어서, 상기 비자성 영역으로부터 상기 자유 자화 배향을 갖는 영역의 반대쪽에서 상기 자유 자화 배향을 갖는 영역 위에 배치되어 있는 상단 전극을 포함하는, STT-MRAM 셀.
- 제9항에 있어서, 상기 상단 전극 위에 배치되어 있는 트랜지스터를 포함하는, STT-MRAM 셀.
- 제8항에 있어서, 제1 구성에서 상기 고정 자화 배향을 갖는 제1 영역은 접지되며 상기 고정 자화 배향을 갖는 제2 영역은 부유되고(floating), 제2 구성에서 상기 고정 자화 배향을 갖는 제2 영역은 접지되며 상기 고정 자화 배향을 갖는 제1 영역은 부유되는, STT-MRAM 셀.
- 제8항에 있어서, 상기 자유 자화 배향을 갖는 영역은, 프로그래밍 전류가 상기 자유 자화 배향을 갖는 영역의 제1 측면으로부터 상기 자유 자화 배향을 갖는 영역의 제2 측면으로 흐를 때, 자화로 스위칭되도록 구성되고, 상기 자유 자화 배향을 갖는 영역의 상기 제2 측면은 상기 비자성 영역에 인접해 있는, STT-MRAM 셀.
- 대칭 프로그래밍하도록 구성된 STT-MRAM(spin torque transfer magnetic random access memory) 셀로서,
제1 자화를 갖는 고정 자화 배향을 갖는 제1 영역;
제2 자화를 갖는 고정 자화 배향을 갖는 제2 영역;
상기 고정 자화 배향을 갖는 제1 영역과 상기 고정 자화 배향을 갖는 제2 영역 사이에 배치되어 있는 비자성 영역; 및
상기 비자성 영역 바로 위에 배치되어 있는 자유 자화 배향을 갖는 영역
을 포함하고,
상기 자유 자화 배향을 갖는 영역은 제1 프로그래밍 전류에 의해 상기 제1 자화를 갖게 스위칭되거나 또는 제2 프로그래밍 전류에 의해 상기 제2 자화를 갖게 스위칭되도록 구성되고, 상기 제1 프로그래밍 전류의 크기는 상기 제2 프로그래밍 전류의 크기와 실질적으로 유사한, STT-MRAM 셀. - 제13항에 있어서, 상기 고정 자화 배향을 갖는 제1 영역, 상기 고정 자화 배향을 갖는 제2 영역, 및 상기 자유 자화 배향을 갖는 영역은 접촉하고 있지 않는, STT-MRAM 셀.
- 제13항에 있어서, 상기 고정 자화 배향을 갖는 제1 영역, 상기 고정 자화 배향을 갖는 제2 영역, 및 상기 자유 자화 배향을 갖는 영역 각각은 Co, Fe, Ni, NiFe와 CoFe와 CoNiFe와 CoX와 CoFeX와 CoNiFeX(X= B, Cu, Re, Ru, Rh, Hf, Pd, Pt, C)를 포함한 그의 합금, Fe3O4, CrO2, NiMnSb, PtMnSb, BiFeO, 또는 이들의 임의의 조합을 포함하는, STT-MRAM 셀.
- 제13항에 있어서, 상기 비자성 영역은 Cu, Au, Ta, Ag, CuPt, CuMn, AlxOy, MgOx, AlNx, SiNx, CaOx, NiOx, HfOx, TaxOy, ZrOx, NiMnOx, MgFx, SiC, SiOx, SiOxNy, 또는 이들의 임의의 조합을 포함하는, STT-MRAM 셀.
- 제13항에 있어서, 상기 비자성 영역은 상기 자유 자화 배향을 갖는 영역에 스핀 필터 효과를 전달하도록 구성되는, STT-MRAM 셀.
- 제13항에 있어서, 상기 제1 프로그래밍 전류 및 상기 제2 프로그래밍 전류 둘 다는 상기 자유 자화 배향을 갖는 영역을 통해 한쪽 방향으로 전파되는 단방향 프로그래밍 전류인, STT-MRAM 셀.
- STT-MRAM(spin torque transfer magnetic random access memory) 셀을 동작시키는 방법으로서,
상기 STT-MRAM 셀을 제1 상태에서 프로그래밍하도록 제1 프로그래밍 전류를 지향시키는 단계 - 고정 자화 배향을 갖는 제2 영역으로부터 흐르는 전자들이 제2 자화로 스핀 분극되고 자유 자화 배향을 갖는 영역의 자화를 상기 제2 자화로 스위칭시키도록, 상기 제1 프로그래밍 전류가 상기 자유 자화 배향을 갖는 영역 및 상기 제2 자화를 갖는 상기 고정 자화 배향을 갖는 제2 영역을 통해 지향됨 - ; 및
상기 STT-MRAM 셀을 제2 상태에서 프로그래밍하도록 제2 프로그래밍 전류를 지향시키는 단계 - 고정 자화 배향을 갖는 제1 영역으로부터 흐르는 전자들이 제1 자화로 스핀 분극되고 상기 자유 자화 배향을 갖는 영역의 자화를 상기 제1 자화로 스위칭시키도록, 상기 제2 프로그래밍 전류가 상기 자유 자화 배향을 갖는 영역 및 상기 제1 자화를 갖는 상기 고정 자화 배향을 갖는 제1 영역을 통해 지향됨 - ;
를 포함하고,
상기 제1 프로그래밍 전류 및 상기 제2 프로그래밍 전류는 실질적으로 유사한 크기를 갖고 동일한 방향으로 상기 자유 자화 배향을 갖는 영역을 통과하는, STT-MRAM 셀을 동작시키는 방법. - 제19항에 있어서, 상기 고정 자화 배향을 갖는 제1 영역과 상기 고정 자화 배향을 갖는 제2 영역 사이의 비자성 영역에서 스핀 필터 효과를 생성하는 단계를 포함하고, 상기 스핀 필터 효과는 상기 자유 자화 배향을 갖는 영역의 자화를 상기 제1 자화 또는 상기 제2 자화 중 어느 하나로 스위칭하는 것에 기여하는, STT-MRAM 셀을 동작시키는 방법.
- 제19항에 있어서, 상기 자유 자화 배향을 갖는 영역의 자화를 상기 제1 자화로 스위칭하는 것은 상기 STT-MRAM 셀을 제1 메모리 상태로 프로그래밍하고, 상기 자유 자화 배향을 갖는 영역의 자화를 상기 제2 자화로 스위칭하는 것은 상기 STT-MRAM 셀을 제2 메모리 상태로 프로그래밍하는, STT-MRAM 셀을 동작시키는 방법.
- 셀 구조물을 형성하기 위한 방법으로서,
기판에 리세스를 형성하는 단계;
상기 리세스 내에 트랜지스터를 형성하는 단계;
상기 리세스 내에 그리고 상기 트랜지스터 위에 자유 자화 배향을 갖는 영역을 형성하는 단계;
상기 자유 자화 배향을 갖는 영역이 비자성 영역의 제1 측면과 접촉하도록, 상기 자유 자화 배향을 갖는 영역 위에 상기 비자성 영역을 형성하는 단계; 및
고정 자화 배향을 갖는 제1 영역이 상기 비자성 영역의 제2 측면과 직접 접촉하고 고정 자화 배향을 갖는 제2 영역이 상기 비자성 영역의 제3 측면과 직접 접촉하도록, 상기 고정 자화 배향을 갖는 제1 영역 및 상기 고정 자화 배향을 갖는 제2 영역을 형성하는 단계
를 포함하고,
상기 자유 자화 배향을 갖는 영역, 상기 고정 자화 배향을 갖는 제1 영역, 또는 상기 고정 자화 배향을 갖는 제2 영역 중 어느 것도 접촉하지 않는, 셀 구조물을 형성하기 위한 방법. - 제22항에 있어서, 상기 트랜지스터 위에 상단 전극을 형성하고, 상기 상단 전극 위에 상기 자유 자화 배향을 갖는 영역을 형성하는 단계를 포함하는, 셀 구조물을 형성하기 위한 방법.
- 셀 구조물을 형성하기 위한 방법으로서,
기판에 리세스를 형성하는 단계;
상기 리세스 내에 트랜지스터를 형성하는 단계;
상기 리세스 내에 그리고 상기 트랜지스터 위에 자유 자화 배향을 갖는 영역을 형성하는 단계;
상기 자유 자화 배향을 갖는 영역이 비자성 영역의 제1 측면과 접촉하도록, 상기 자유 자화 배향을 갖는 영역 위에 상기 비자성 영역을 형성하는 단계;
고정 자화 배향을 갖는 제1 영역이 상기 비자성 영역의 제2 측면과 접촉하고 고정 자화 배향을 갖는 제2 영역이 상기 비자성 영역의 제3 측면과 인접해 있도록, 상기 고정 자화 배향을 갖는 제1 영역 및 상기 고정 자화 배향을 갖는 제2 영역을 형성하는 단계 - 상기 자유 자화 배향을 갖는 영역, 상기 고정 자화 배향을 갖는 제1 영역, 또는 상기 고정 자화 배향을 갖는 제2 영역 중 어느 것도 접촉하지 않음 - ;
상기 트랜지스터 위에 상단 전극을 형성하고, 상기 상단 전극 위에 상기 자유 자화 배향을 갖는 영역을 형성하는 단계; 및
상기 상단 전극 위에 스페이서 영역을 형성하고, 상기 스페이서 영역의 내측 주변부(inner perimeter) 내에 상기 자유 자화 배향을 갖는 영역을 퇴적시키는 단계
를 포함하는 셀 구조물을 형성하기 위한 방법. - 셀 구조물을 형성하기 위한 방법으로서,
기판에 리세스를 형성하는 단계;
상기 리세스 내에 트랜지스터를 형성하는 단계;
상기 리세스 내에 그리고 상기 트랜지스터 위에 자유 자화 배향을 갖는 영역을 형성하는 단계;
상기 자유 자화 배향을 갖는 영역이 비자성 영역의 제1 측면과 접촉하도록, 상기 자유 자화 배향을 갖는 영역 위에 상기 비자성 영역을 형성하는 단계;
고정 자화 배향을 갖는 제1 영역이 상기 비자성 영역의 제2 측면과 접촉하고 고정 자화 배향을 갖는 제2 영역이 상기 비자성 영역의 제3 측면과 인접해 있도록, 상기 고정 자화 배향을 갖는 제1 영역 및 상기 고정 자화 배향을 갖는 제2 영역을 형성하는 단계 - 상기 자유 자화 배향을 갖는 영역, 상기 고정 자화 배향을 갖는 제1 영역, 또는 상기 고정 자화 배향을 갖는 제2 영역 중 어느 것도 접촉하지 않음 - ; 및
상기 고정 자화 배향을 갖는 제1 영역 또는 상기 고정 자화 배향을 갖는 제2 영역 중 어느 하나를 접지시키도록 스위치를 형성하는 단계
를 포함하는 셀 구조물을 형성하기 위한 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/168,530 | 2011-06-24 | ||
US13/168,530 US8553451B2 (en) | 2011-06-24 | 2011-06-24 | Spin-torque transfer memory cell structures with symmetric switching and single direction programming |
PCT/US2012/042649 WO2012177502A1 (en) | 2011-06-24 | 2012-06-15 | Spin-torque transfer magnetic memory cell structures with symmetric switching and single direction current programming |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140047083A KR20140047083A (ko) | 2014-04-21 |
KR101835927B1 true KR101835927B1 (ko) | 2018-03-07 |
Family
ID=46457039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020147001682A KR101835927B1 (ko) | 2011-06-24 | 2012-06-15 | 대칭 스위칭 및 단일 방향 전류 프로그래밍을 갖는 스핀-토크 전달 자기 메모리 셀 구조물 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8553451B2 (ko) |
EP (1) | EP2724344B1 (ko) |
JP (1) | JP6034862B2 (ko) |
KR (1) | KR101835927B1 (ko) |
CN (1) | CN103650053B (ko) |
TW (1) | TWI503819B (ko) |
WO (1) | WO2012177502A1 (ko) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130017267A (ko) * | 2011-08-10 | 2013-02-20 | 에스케이하이닉스 주식회사 | 반도체 장치 및 그 제조 방법 |
US9019754B1 (en) | 2013-12-17 | 2015-04-28 | Micron Technology, Inc. | State determination in resistance variable memory |
KR20150106550A (ko) | 2014-03-12 | 2015-09-22 | 에스케이하이닉스 주식회사 | 전자 장치 및 그 제조 방법 |
KR101977866B1 (ko) | 2018-04-16 | 2019-05-13 | 단국대학교 산학협력단 | 병렬 tlc stt mram 기반 대용량 llc 및 이의 동작 제어 방법 |
CN110739010B (zh) * | 2019-10-21 | 2021-05-11 | 中国科学院上海微系统与信息技术研究所 | 低温存储单元及存储器件 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060227466A1 (en) | 2005-03-25 | 2006-10-12 | Kojiro Yagami | Spin-injection magnetoresistance effect element |
US20070279973A1 (en) * | 2006-05-24 | 2007-12-06 | Tdk Corporation | Magnetic memory |
US20100080047A1 (en) | 2008-09-30 | 2010-04-01 | Micron Technology, Inc. | Spin current generator for stt-mram or other spintronics applications |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000004555A2 (de) * | 1998-07-15 | 2000-01-27 | Infineon Technologies Ag | Speicherzellenanordnung, bei der ein elektrischer widerstand eines speicherelements eine information darstellt und durch ein magnetfeld beeinflussbar ist, und verfahren zu deren herstellung |
US6980469B2 (en) | 2003-08-19 | 2005-12-27 | New York University | High speed low power magnetic devices based on current induced spin-momentum transfer |
US7161829B2 (en) * | 2003-09-19 | 2007-01-09 | Grandis, Inc. | Current confined pass layer for magnetic elements utilizing spin-transfer and an MRAM device using such magnetic elements |
US6992359B2 (en) | 2004-02-26 | 2006-01-31 | Grandis, Inc. | Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization |
KR100648143B1 (ko) | 2004-11-03 | 2006-11-24 | 한국과학기술연구원 | 전류 인가 자기 저항 소자 |
JP4670326B2 (ja) * | 2004-11-25 | 2011-04-13 | ソニー株式会社 | メモリ |
US7230845B1 (en) * | 2005-07-29 | 2007-06-12 | Grandis, Inc. | Magnetic devices having a hard bias field and magnetic memory devices using the magnetic devices |
US7430135B2 (en) | 2005-12-23 | 2008-09-30 | Grandis Inc. | Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density |
US7760474B1 (en) | 2006-07-14 | 2010-07-20 | Grandis, Inc. | Magnetic element utilizing free layer engineering |
JP2008084950A (ja) * | 2006-09-26 | 2008-04-10 | Sony Corp | 記憶素子、メモリ |
US7682841B2 (en) | 2007-05-02 | 2010-03-23 | Qimonda Ag | Method of forming integrated circuit having a magnetic tunnel junction device |
US7881104B2 (en) | 2008-08-08 | 2011-02-01 | Seagate Technology Llc | Magnetic memory with separate read and write paths |
KR101004506B1 (ko) * | 2008-09-09 | 2010-12-31 | 주식회사 하이닉스반도체 | 공통 소스라인을 갖는 수직 자기형 비휘발성 메모리 장치 및 그 제조 방법 |
US8537604B2 (en) * | 2008-10-20 | 2013-09-17 | Nec Corporation | Magnetoresistance element, MRAM, and initialization method for magnetoresistance element |
EP2453482A4 (en) * | 2009-07-09 | 2013-04-24 | Univ Kyushu Nat Univ Corp | MAGNETIC INVERSION APPARATUS, MEMORY MEMBER, AND MAGNETIC FIELD GENERATION APPARATUS |
JP5123365B2 (ja) * | 2010-09-16 | 2013-01-23 | 株式会社東芝 | 磁気抵抗素子及び磁気メモリ |
-
2011
- 2011-06-24 US US13/168,530 patent/US8553451B2/en active Active
-
2012
- 2012-06-15 KR KR1020147001682A patent/KR101835927B1/ko active IP Right Grant
- 2012-06-15 WO PCT/US2012/042649 patent/WO2012177502A1/en active Application Filing
- 2012-06-15 CN CN201280035072.9A patent/CN103650053B/zh not_active Expired - Fee Related
- 2012-06-15 EP EP12731821.0A patent/EP2724344B1/en active Active
- 2012-06-15 JP JP2014517038A patent/JP6034862B2/ja not_active Expired - Fee Related
- 2012-06-22 TW TW101122523A patent/TWI503819B/zh not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060227466A1 (en) | 2005-03-25 | 2006-10-12 | Kojiro Yagami | Spin-injection magnetoresistance effect element |
US20070279973A1 (en) * | 2006-05-24 | 2007-12-06 | Tdk Corporation | Magnetic memory |
US20100080047A1 (en) | 2008-09-30 | 2010-04-01 | Micron Technology, Inc. | Spin current generator for stt-mram or other spintronics applications |
Also Published As
Publication number | Publication date |
---|---|
US20120327706A1 (en) | 2012-12-27 |
TW201310449A (zh) | 2013-03-01 |
CN103650053B (zh) | 2016-11-09 |
JP2014520402A (ja) | 2014-08-21 |
KR20140047083A (ko) | 2014-04-21 |
CN103650053A (zh) | 2014-03-19 |
JP6034862B2 (ja) | 2016-11-30 |
EP2724344B1 (en) | 2022-08-31 |
US8553451B2 (en) | 2013-10-08 |
WO2012177502A1 (en) | 2012-12-27 |
EP2724344A1 (en) | 2014-04-30 |
TWI503819B (zh) | 2015-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10290337B2 (en) | Three terminal SOT memory cell with anomalous hall effect | |
US9356229B2 (en) | Memory cells and methods of fabrication | |
KR101831504B1 (ko) | 메모리 셀, 제조 방법, 반도체 디바이스 구조, 및 메모리 시스템 | |
US11569439B2 (en) | Double spin filter tunnel junction | |
TW550639B (en) | Semiconductor memory device and its manufacturing method | |
US8513749B2 (en) | Composite hardmask architecture and method of creating non-uniform current path for spin torque driven magnetic tunnel junction | |
US7965543B2 (en) | Method for reducing current density in a magnetoelectronic device | |
US9461243B2 (en) | STT-MRAM and method of manufacturing the same | |
KR101835927B1 (ko) | 대칭 스위칭 및 단일 방향 전류 프로그래밍을 갖는 스핀-토크 전달 자기 메모리 셀 구조물 | |
US10355046B1 (en) | Steep slope field-effect transistor (FET) for a perpendicular magnetic tunnel junction (PMTJ) | |
US10243021B1 (en) | Steep slope field-effect transistor (FET) for a perpendicular magnetic tunnel junction (PMTJ) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |