KR101826962B1 - 구조광을 출력하는 광출력장치 및 마이크로렌즈어레이 제조방법 - Google Patents

구조광을 출력하는 광출력장치 및 마이크로렌즈어레이 제조방법 Download PDF

Info

Publication number
KR101826962B1
KR101826962B1 KR1020170068223A KR20170068223A KR101826962B1 KR 101826962 B1 KR101826962 B1 KR 101826962B1 KR 1020170068223 A KR1020170068223 A KR 1020170068223A KR 20170068223 A KR20170068223 A KR 20170068223A KR 101826962 B1 KR101826962 B1 KR 101826962B1
Authority
KR
South Korea
Prior art keywords
microlenses
microlens
light
lens
regions
Prior art date
Application number
KR1020170068223A
Other languages
English (en)
Inventor
이준엽
강영규
서정화
정기훈
김재범
양성표
Original Assignee
주식회사 나무가
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나무가, 한국과학기술원 filed Critical 주식회사 나무가
Priority to KR1020170068223A priority Critical patent/KR101826962B1/ko
Application granted granted Critical
Publication of KR101826962B1 publication Critical patent/KR101826962B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • F21V5/004Refractors for light sources using microoptical elements for redirecting or diffusing light using microlenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)

Abstract

본 발명은, 물체 표면에 구조광을 출력하는 광출력장치로서, 복수의 마이크로렌즈를 포함하고, 상기 복수의 마이크로렌즈 중 적어도 둘 이상의 마이크로렌즈는 렌즈면의 최고점 혹은 최저점이 중심으로부터 치우쳐져 위치하는 비대칭구조를 가지며, 상기 복수의 마이크로렌즈 중 제1그룹을 형성하는 제1마이크로렌즈와 제2그룹을 형성하는 제2마이크로렌즈는 각각의 마이크로렌즈영역에서 상기 최고점 혹은 상기 최저점의 위치가 서로 다른 마이크로렌즈어레이; 및 적어도 하나 이상의 광원을 이용하여 상기 마이크로렌즈어레이로 광을 출력하는 광원모듈을 포함하고, 상기 제1그룹에 의해 물체 표면에 형성되는 제1광점과 상기 제2그룹에 의해 상기 물체 표면에 형성되는 제2광점의 위치가 서로 다른 광출력장치를 제공한다.

Description

구조광을 출력하는 광출력장치 및 마이크로렌즈어레이 제조방법{LIGHT PROJECTOR FOR OUTPUTTING STRUCTURED LIGHT AND METHOD OF MANUFACTURING MICROLENS ARRAY}
본 발명은 구조광을 출력하는 기술과 구조광 출력에 사용되는 마이크로렌즈어레이를 제조하는 방법에 관한 것이다.
기존의 2차원 이미지와 비교하여 3차원 이미지는 관측자에게 더 많은 정보를 제공할 수 있다. 일반적으로 3차원 이미지에 포함되는 영상 정보는 물체의 형상 정보와 색 정보를 포함하는데, 형상 정보는 깊이(depth) 정보에 대한 측정을 통하여 획득될 수 있다.
3차원 이미지를 위한 깊이 정보는 크게 세가지 방법에 의해 획득될 수 있는데, 하나는 스테레오스코픽(stereoscopic) 방법이고, 다른 하나는 ToF(Time of Flight) 방법이며, 또 다른 하나는 구조광(structured light) 방법이다.
스테레오스코픽 방법은 서로 다른 위치와 시각을 갖는 2개의 카메라로 획득한 서로 다른 스테레오이미지의 차이를 계산하여 깊이 정보를 추출한다. 스테레오스코픽 방법은 간단하고 직관적인 시스템으로 깊이 정보를 획득할 수 있다는 장점이 있지만 카메라모듈의 개수가 2개 이상 필요하다는 단점이 있다.
최근, 이러한 소형화에서의 단점을 극복하기 위해 1개의 카메라모듈만을 사용하는 방법이 개발되고 있다. 예를 들어, 카메라모듈에 포함된 센서를 반으로 나누어 좌우 이미지를 얻는 공간분할 방법이 스테레오스코픽 방법에서 연구되고 있으며, 1개의 카메라모듈을 이용하여 좌우 이미지를 순차적으로 획득하는 시간분할 방법이 또한 스테레오스코픽 방법에서 연구되고 있다.
그런데, 이러한 연구에도 불구하고, 스테레오스코픽 방법의 3차원 표면 추출은 무늬가 없고 단색의 3차원 곡면을 갖는 물체의 경우 좌우 이미지에 대한 비교가 어려워 깊이 정보를 정확하게 획득하기 어렵다는 한계가 있다.
ToF방법은 3차원 물체와의 거리를 광원부에서부터 나온 펄스(pulse) 형태의 광파가 물체에 반사되어 돌아오는 이동거리를 위상차이를 통해 측정하고 이러한 위상차이와 주파수의 정보를 통해 깊이 정보를 획득하는 방법이다.
기존의 ToF방법은 1대1로 물체의 한 점에 대한 거리를 측정하면서 추가적인 스캐너모듈을 이용하여 2차원 혹은 3차원 정보-예를 들어, 깊이 정보-를 추출하였으나 최근 반도체 산업의 발달에 따라 2차원의 ToF센서가 개발되면서 3차원 정보에 대한 추출이 더 빨라지고 있다.
하지만, ToF방법은 다른 깊이 정보 획득 방법과 비교하여 거리분해능 및 해상도가 낮고 추가적으로 구비해야 하는 수광부센서 및 스캐너의 물리적인 크기로 인해 소형화가 어려운 단점이 있다.
구조광 방법은 동적이거나 고정된 패턴을 갖는 빛을 광원으로 사용하여 물체의 3차원 표면에 의한 각 패턴의 위치변화 혹은 왜곡 정도를 측정하여 3차원 정보-예를 들어, 깊이 정보-를 추출하는 방법이다.
구조광 방법은 광원을 통해 특정한 패턴을 물체에 조사하기 때문에 무늬가 없거나 단색의 부드러운 곡면을 갖는 3차원 물체를 측정할 때, 스테레오스코픽 방법보다 정확하게 깊이 정보를 획득할 수 있고, ToF방법보다 빠르고 높은 분해능을 가지는 깊이 정보를 획득할 수 있다.
한편, 구조광 방법에서 종래에는 DMD(Digital-Micromirror-Device)와 같은 공간광변조기(spatial light modulator)를 광출력장치로 사용하였는데, 이러한 공간광변조기는 물리적인 크기가 커서 소형화에 제약이 있다.
이러한 배경에서, 본 발명의 목적은, 일 측면에서, 단일파장 레이저광원과 광학소자를 이용하여 물리적인 크기가 작고 소형화가 가능한 광출력장치에 대한 기술을 제공하는 것이다.
다른 측면에서, 본 발명의 목적은, 3차원 정보-예를 들어, 깊이 정보-의 해상도를 높이기 위해 구조광의 패턴에 포함된 광점의 밀도를 증가시키는 기술을 제공하는 것이다. 유사한 관점으로 본 발명의 목적은, 단일 면적 혹은 단일 각도에 출력되는 광점의 밀도를 증가시키는 마이크로렌즈어레이의 형상에 관한 기술을 제공하는 것이다.
또 다른 측면에서, 본 발명의 목적은, 전술한 기술에 적용될 수 있는 마이크로렌즈어레이의 제조 방법에 관한 기술을 제공하는 것이다.
전술한 목적을 달성하기 위하여, 일 측면에서, 본 발명은, 물체 표면에 구조광을 출력하는 광출력장치로서, 복수의 마이크로렌즈를 포함하고, 상기 복수의 마이크로렌즈 중 적어도 둘 이상의 마이크로렌즈는 렌즈면의 최고점 혹은 최저점이 중심으로부터 치우쳐져 위치하는 비대칭구조를 가지며, 상기 복수의 마이크로렌즈 중 제1그룹을 형성하는 제1마이크로렌즈와 제2그룹을 형성하는 제2마이크로렌즈는 각각의 마이크로렌즈영역에서 상기 최고점 혹은 상기 최저점의 위치가 서로 다른 마이크로렌즈어레이; 및 적어도 하나 이상의 광원을 이용하여 상기 마이크로렌즈어레이로 광을 출력하는 광원모듈을 포함하고, 상기 제1그룹에 의해 물체 표면에 형성되는 제1광점과 상기 제2그룹에 의해 상기 물체 표면에 형성되는 제2광점의 위치가 서로 다른 광출력장치를 제공한다.
다른 측면에서, 본 발명은, 마이크로렌즈어레이를 제조하는 방법에 있어서, 웨이퍼 상면에서의 N(N은 2 이상의 자연수)개의 셀영역 각각에 열경화성의 제1PR(Photoresist)로 기둥을 형성하되, 상기 N개의 셀영역 중 적어도 둘 이상의 셀영역에는 상기 기둥이 중심으로부터 치우쳐지도록 위치되고, 상기 N개의 셀영역 중 제1그룹의 영역에 형성되는 제1기둥과 제2그룹의 영역에 형성되는 제2기둥이 각 셀영역에서 서로 다른 지점에 위치되도록 상기 기둥이 형성되는 단계; 열가소성의 제2PR을 이용하여 각 셀영역별로 상기 기둥을 덮는 단계; 열처리를 통해 각 셀영역에 비대칭구조의 비구면을 갖는 렌즈모형을 형성하는 단계; 상기 렌즈모형 사이의 갭을 채우기 위해 상기 N개의 셀영역 전체를 코팅물질로 코팅하는 단계; 상기 N개의 셀영역 전체에서 상기 코팅을 덮도록 몰드를 형성하는 단계; 및 상기 몰드에 렌즈구성물질을 채우고 경화시켜 각 셀영역별로 마이크로렌즈를 형성하는 단계를 포함하는 마이크로렌즈어레이 제조방법을 제공한다.
또 다른 측면에서, 본 발명은, 마이크로렌즈어레이를 제조하는 방법에 있어서, 웨이퍼 상면에서의 N(N은 2 이상의 자연수)개의 셀영역 각각에 열경화성의 제1PR(Photoresist)로 기둥을 형성하되, 상기 N개의 셀영역 중 적어도 둘 이상의 셀영역에는 상기 기둥이 중심으로부터 치우쳐지도록 위치되고, 상기 N개의 셀영역 중 제1그룹의 영역에 형성되는 제1기둥과 제2그룹의 영역에 형성되는 제2기둥이 각 셀영역에서 서로 다른 지점에 위치되도록 상기 기둥이 형성되는 단계; 열가소성의 제2PR을 이용하여 각 셀영역별로 상기 기둥을 덮는 단계; 열처리를 통해 각 셀영역에 비대칭구조의 비구면을 갖는 렌즈모형을 형성하는 단계; 상기 렌즈모형 사이의 갭을 채우기 위해 상기 N개의 셀영역 전체를 코팅물질로 코팅하는 단계; 상기 N개의 셀영역 전체에서 상기 코팅을 덮도록 제1PDMS(Polydimethysiloxane)몰드를 형성하는 단계; 상기 제1PDMS몰드를 통해 양각 형태의 제2PDMS몰드를 형성하는 단계; 및 상기 제2PDMS몰드에 렌즈구성물질을 채우고 경화시켜 각 셀영역별로 마이크로렌즈를 형성하는 단계를 포함하는 마이크로렌즈어레이 제조방법을 제공한다.
또 다른 측면에서, 본 발명은, 마이크로렌즈어레이를 제조하는 방법에 있어서, 웨이퍼 상면에서의 N(N은 2 이상의 자연수)개의 셀영역 각각에 열가소성의 AZ9260물질을 적층하고 패터닝하는 단계; 마이크로렌즈의 종횡비를 높이기 위해 상기 AZ9260물질 상에 테프론(Teflon)을 코팅하는 단계; 상기 AZ9260물질의 유리전이온도보다 높은 온도로 테프론 코팅된 상기 AZ9260을 가열하여 비구면을 갖는 렌즈모형을 형성하는 단계; 상기 렌즈모형 사이의 갭을 채우기 위해 상기 N개의 셀영역 전체를 페릴린(parylene)으로 코팅하는 단계; 페릴린 코팅된 상기 렌즈모형을 덮는 PDMS(Polydimethysiloxane)몰드를 형성하는 단계; 및 상기 PDMS몰드에 자외선경화폴리머를 채우고 글라스로 덮은 후 자외선을 주사하여 마이크로렌즈를 형성하는 단계를 포함하는 마이크로렌즈어레이 제조방법을 제공한다.
이상에서 설명한 바와 같이 본 발명에 의하면, 단일파장 레이저광원과 광학소자를 이용하여 물리적인 크기가 작고 소형화가 가능한 광출력장치를 제조할 수 있다. 그리고, 본 발명에 의하면, 구조광의 패턴에 포함된 광점의 밀도를 증가시켜 3차원 정보-예를 들어, 깊이 정보-의 해상도를 높일 수 있게 된다. 그리고, 본 발명에 의하면, 전술한 기술에 적용될 수 있는 마이크로렌즈어레이를 정확하면서도 간단한 방법으로 제조할 수 있게 된다. 그리고, 본 발명에 의하면, 마이크로렌즈어레이의 제조 과정에서 마이크로렌즈 사이의 갭을 제거하여 갭에 의한 광노이즈를 제거할 수 있게 된다.
도 1은 본 발명의 일 실시예에 따른 3차원 정보 획득 시스템의 구성도이다.
도 2는 본 발명의 일 실시예에 따른 광출력장치의 구성 및 광출력장치에 의해 출력되는 구조광이 물체 표면에 형성된 모습을 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따른 마이크로렌즈어레이의 제1예시 도면이다.
도 4는 도 3에 도시된 마이크로렌즈어레이를 A-A'로 절단한 단면도이다.
도 5는 도 3에 도시된 마이크로렌즈어레이가 그룹별로 서로 다른 위치에 광점을 형성하는 것을 나타내는 도면이다.
도 6은 본 발명의 일 실시예에 따른 마이크로렌즈어레이의 제2예시 도면이다.
도 7은 본 발명의 일 실시예에 따른 마이크로렌즈어레이의 제3예시 도면이다.
도 8은 본 발명의 일 실시예에 따른 마이크로렌즈어레이의 제4예시 도면이다.
도 9는 본 발명의 일 실시예에 따른 마이크로렌즈어레이의 제5예시 도면이다.
도 10a 내지 도 10h는 본 발명의 일 실시예에 따른 마이크로렌즈어레이의 제조방법이다.
도 11a 내지 도 11g는 본 발명의 다른 실시예에 따른 마이크로렌즈어레이의 제조방법이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 본 발명의 일 실시예에 따른 3차원 정보 획득 시스템의 구성도이다.
도 1을 참조하면, 3차원 정보 획득 시스템(100)은 광출력장치(110) 및 카메라장치(120를 포함할 수 있다.
광출력장치(110)는 물체(10)로 구조광을 출력할 수 있다. 구조광에는 특정 패턴이 형성될 수 있다.
그리고, 카메라장치(120)는 물체(10)의 표면에 형성된 특정 패턴을 센싱하고 특정 패턴의 위치변화 혹은 왜곡정도를 측정하여 물체(10)에 대한 3차원 정보-예를 들어, 깊이 정보-를 획득할 수 있다.
도 2는 본 발명의 일 실시예에 따른 광출력장치의 구성 및 광출력장치에 의해 출력되는 구조광이 물체 표면에 형성된 모습을 나타내는 도면이다.
도 2를 참조하면, 광출력장치(110)는 광원모듈(220) 및 마이크로렌즈어레이(210)를 포함할 수 있다.
광원모듈(220)은 적어도 하나 이상의 광원을 이용하여 마이크로렌즈어레이(210)로 광을 출력할 수 있다.
광원은 복수의 광출구(aperture)를 가지는 VCSEL(Vertical-Cavity Surface-Emitting Laser)어레이일 수 있다. VCSEL어레이에서 광출구는 격자 형태로 배치되고 각각의 광출구는 일정한 간격-예를 들어, 50um-으로 위치할 수 있다.
VCSEL어레이에서 각각의 광출구에서 출력되는 광은 일정한 발산각(divergence angle; 예를 들어, +/-16도)을 가질 수 있다.
마이크로렌즈어레이(210)에는 다수의 마이크로렌즈(212)가 배치되는데, VCSEL어레이의 광출구 개수는 마이크로렌즈어레이(210)에 배치되는 마이크로렌즈(212)의 개수보다 작을 수 있다.
그리고, 마이크로렌즈어레이(210)에 배치되는 다수의 마이크로렌즈(212)는 격자 형태로 일정한 간격을 가지면서 배치될 수 있는데, 마이크로렌즈(212)의 배치 간격과 VCSEL어레이에서 광출구의 배치 간격은 실질적으로 동일할 수 있다.
VCSEL어레이에서 출력되는 광은 마이크로렌즈어레이(210)에서 회절되어 출력되고, 마이크로렌즈어레이(210)에서 출력되는 회절광은 상호 간섭을 통해 상쇄 혹은 보강되면서 물체 표면(20)에 다수의 광점(22)을 형성할 수 있다.
마이크로렌즈어레이(210)는 기판(211)-예를 들어, 유리-과 기판(211) 상에 배치되는 다수의 마이크로렌즈(212)를 포함할 수 있다.
도 3은 본 발명의 일 실시예에 따른 마이크로렌즈어레이의 제1예시 도면이다.
도 3을 참조하면, 마이크로렌즈어레이(210)는 복수의 마이크로렌즈(212)를 포함하고, 복수의 마이크로렌즈(212) 중 적어도 둘 이상의 마이크로렌즈는 렌즈면의 최고점 혹은 최저점(314)이 중심(C)으로부터 치우쳐져 위치하는 비대칭구조를 가질 수 있다.
마이크로렌즈어레이(210)에서 좌상단의 마이크로렌즈(212)를 확대한 도면을 참조하면, 마이크로렌즈(212) 렌즈면의 최고점 혹은 최저점(314)은 중심(C)에 위치하지 않고 중심(C)으로부터 일정한 방향으로 치우쳐져 위치할 수 있다. 일반적으로 마이크로렌즈(212)의 렌즈면이 대칭 구조-예를 들어, 구면-를 가지는 경우, 마이크로렌즈(212) 렌즈면의 최고점 혹은 최저점은 중심(C)과 일치하게 된다.
하지만, 일 실시예에 따른 마이크로렌즈어레이(210)에 포함된 적어도 둘 이상의 마이크로렌즈(212)는 렌즈면의 최고점 혹은 최저점(314)이 중심(C)으로부터 치우쳐져 위치할 수 있다. 마이크로렌즈(212)가 볼록한 형태를 가지고 볼록한 부분이 상측에 위치한다고 할 때, 마이크로렌즈(212)의 최고점(314)은 중심(C)으로부터 일정한 방향으로 치우쳐져 위치할 수 있다.
마이크로렌즈(212)가 오목한 형태를 가지고 오목한 부분이 상측에 위치한다고 할 때, 마이크로렌즈(212)의 최저점(314)은 중심(C)으로부터 일정한 방향으로 치우쳐져 위치할 수 있다.
이하에서는 설명의 편의를 위해 마이크로렌즈(212)가 볼록한 형태를 가지고 볼록한 부분이 상측에 위치하는 것으로 설명하나, 본 발명이 이로 제한되는 것은 아니다.
한편, 전술한 마이크로렌즈(212)의 형상을 다른 관점에서 보면, 마이크로렌즈(212)가 편심되어 있다고 볼 수도 있다. 마이크로렌즈(212)는 광출력축이 중심축으로부터 일정한 방향으로 편심되어 위치할 수 있다.
또 다른 관점에서, 마이크로렌즈(212)는 렌즈면의 곡률반경의 중심축이 기판의 수직된 방향으로부터 기울어져 있다고 볼 수도 있다.
한편, 마이크로렌즈어레이(210)에서 적어도 둘 이상의 마이크로렌즈(212a, 212b, 212c, 212d)는 각 마이크로렌즈영역에서 최고점(314a, 314b, 314c, 314d)의 위치가 서로 다를 수 있다.
도 3에서 마이크로렌즈어레이(210)의 가운데 부분을 확대한 도면을 참조하면, 제1마이크로렌즈(212a)는 최고점(314a)이 좌상측에 위치한다. 마이크로렌즈영역을 4분하는 가상의 사분면을 기준으로 할 때, 제1마이크로렌즈(212a)는 최고점(314a)이 제2사분면에 위치한다.
그리고, 제2마이크로렌즈(212b)는 최고점(314b)이 우상측에 위치한다. 사분면을 기준으로 할 때, 제2마이크로렌즈(212b)는 최고점(314b)이 제1사분면에 위치한다.
그리고, 제3마이크로렌즈(212c)는 최고점(314c)이 우하측에 위치한다. 사분면을 기준으로 할 때, 제3마이크로렌즈(212c)는 최고점(314c)이 제4사분면에 위치한다.
그리고, 제4마이크로렌즈(212d)는 최고점(314d)이 좌하측에 위치한다. 사분면을 기준으로 할 때, 제4마이크로렌즈(212d)는 최고점(314d)이 제3사분면에 위치한다.
도 4는 도 3에 도시된 마이크로렌즈어레이를 A-A'로 절단한 단면도이다.
도 4를 참조하면, 기판(210위에 제1마이크로렌즈(212a)와 제2마이크로렌즈(212b)가 위치하고, 제1마이크로렌즈(212a)는 최고점(314a)이 중심으로부터 좌측으로 치우쳐져 있고, 제2마이크로렌즈(212b)는 최고점(314b)이 중심으로부터 우측으로 치우쳐져 있다.
최고점이 치우쳐져 위치하는 이러한 마이크로렌즈(212a, 212b)는 패턴 형성을 위한 광회절 효율을 높이는 기능 이외에 광굴절을 야기하는 프리즘 기능을 동시에 수행하는 구조를 가지고 있다. 이에 따라, 제1마이크로렌즈(212a)의 광출력방향과 제2마이크로렌즈(212b)의 광출력방향이 서로 다를 수 있다.
한편, 제1마이크로렌즈(212a)의 광출력방향과 제2마이크로렌즈(212b)의 광출력방향이 다름에 따라 제1마이크로렌즈(212a)와 동일한 형상의 마이크로렌즈로 구성되는 제1그룹에 의해 물체 표면에 형성되는 제1광점과 제2마이크로렌즈(212b)와 동일한 형상의 마이크로렌즈로 구성되는 제2그룹에 의해 물체 표면에 형성되는 제2광점의 위치가 서로 다를 수 있다.
도 5는 도 3에 도시된 마이크로렌즈어레이가 그룹별로 서로 다른 위치에 광점을 형성하는 것을 나타내는 도면이다.
도 5를 참조하면, 마이크로렌즈어레이(210)는 복수의 영역(516a, 516b, 516c, 516d)으로 분할되고, 최고점이 다른 마이크로렌즈(212a, 212b, 212c, 212d)는 서로 다른 영역(516a, 516b, 516c, 516d)에 위치할 수 있다. 다른 측면에서 각각의 영역(516a, 516b, 516c, 516d)에는 최고점이 서로 같은 마이크로렌즈(212a, 212b, 212c, 212d)가 위치할 수 있다.
마이크로렌즈어레이(210)에서 제1영역(516a)에는 제1마이크로렌즈(212a)들이 위치할 수 있다. 그리고, 제2영역(516b)에는 제2마이크로렌즈(212b)들이 위치하고, 제3영역(516c)에는 제3마이크로렌즈(212c)들이 위치하며, 제4영역(516d)에는 제4마이크로렌즈(212d)들이 위치할 수 있다.
형상이 실질적으로 동일한 마이크로렌즈들의 무리를 그룹이라고 할 때, 제1마이크로렌즈(212a)들로 구성되는 제1그룹은 제1영역(516a)에 위치하고, 제2마이크로렌즈(212b)들로 구성되는 제2그룹은 제2영역(516b)에 위치하며, 제3마이크로렌즈(212c)들로 구성되는 제3그룹은 제3영역(516c)에 위치하고, 제4마이크로렌즈(212d)들로 구성되는 제4그룹은 제4영역(516d)에 위치할 수 있다.
각각의 영역(516a, 516b, 516c, 516d)에 위치하는 마이크로렌즈(212a, 212b, 212c, 212d)들은 각각 물체의 표면(20)에 서로 다른 위치의 광점을 형성할 수 있다.
물체의 표면(20)을 셀(24) 단위로 분할하여 관찰할 때, 물체의 표면(20)에는 동일한 광점 패턴을 가지는 셀(24)이 반복해서 나타나게 되는데, 각각의 셀(24)에는 서로 다른 그룹에서 형성한 광점(26a, 26b, 26c, 26d)이 서로 다른 위치에 형성되어 있을 수 있다.
이렇게 각 그룹에 포함된 마이크로렌즈(212a, 212b, 212c, 212d)들이 서로 다른 광출력방향을 통해 셀(24) 내에서 서로 다른 위치에 광점을 형성하기 때문에 물체의 표면(20)에서의 광점의 밀도가 높아지게 된다. 광점의 밀도가 높아진다는 것은 3차원 정보의 해상도가 높아지는 것을 의미하게 된다.
한편, 도 3 내지 도 5를 참조하여, 마이크로렌즈어레이가 4분할된 영역에 원형이며 볼록한 구조의 마이크로렌즈를 배치하는 실시예에 대해 설명하였는데, 마이크로렌즈어레이는 이외에도 다양한 형태의 변형 실시예를 가질 수 있다. 도 6 내지 도 9를 참조하여, 마이크로렌즈어레이의 다른 실시예에 대해 설명한다.
도 6은 본 발명의 일 실시예에 따른 마이크로렌즈어레이의 제2예시 도면이다.
도 6을 참조하면, 마이크로렌즈어레이(610)는 사각형상의 마이크로렌즈(612)로 구성될 수 있다.
마이크로렌즈어레이(610)는 복수의 영역-예를 들어, 4개의 영역(616a, 616b, 616c, 616d)-으로 구분되고, 각각의 영역에는 사각형상이며 최고점이 서로 같은 마이크로렌즈(612)가 위치하고, 서로 다른 영역(616a, 616b, 616c, 616d)에는 최고점이 서로 다른 마이크로렌즈(612)가 위치할 수 있다.
그리고, 마이크로렌즈(612)를 각각의 마이크로렌즈영역(616a, 616b, 616c, 616d)에서 4분면으로 나누어 볼 때, 서로 다른 영역(616a, 616b, 616c, 616d)에 위치하는 마이크로렌즈(612)는 최고점이 서로 다른 4분면에 위치할 수 있다. 4분면에서의 최고점 위치는 도 3의 예시를 참조할 수 있다.
도 7은 본 발명의 일 실시예에 따른 마이크로렌즈어레이의 제3예시 도면이다.
도 7을 참조하면, 마이크로렌즈어레이(710)는 복수의 영역(716)으로 분할되고, 각각의 영역(716)에는 최고점의 위치가 서로 다른 마이크로렌즈(212)가 위치하며, 마이크로렌즈의 배치 형태는 각 영역(716)마다 동일할 수 있다.
다른 관점에서 보면, 최고점의 위치가 서로 다른 복수의 마이크로렌즈(212)가 인접하여 위치하고 이러한 복수의 마이크로렌즈(212)가 하나의 영역(716)을 구성하며, 마이크로렌즈어레이(710)는 이러한 영역(716)이 반복해서 배치되는 형태를 가질 수 있다.
도 7을 참조하면, 각 영역(716)에는 9개의 마이크로렌즈(212)가 배치되고, 9개의 마이크로렌즈(212)는 최고점이 각각 좌상, 중상, 우상, 좌중, 정중, 우중, 좌하, 중하 및 우하부분에 위치할 수 있다.
이러한 마이크로렌즈어레이(710) 구조는 이론적으로 물체의 표면에 형성되는 하나의 셀 속에 9개의 광점을 형성할 수 있다.
마이크로렌즈어레이의 각 영역에 배치되는 형태는 9개 뿐만 아니라 다양할 수 있다.
도 8은 본 발명의 일 실시예에 따른 마이크로렌즈어레이의 제4예시 도면이다.
도 8을 참조하면, 마이크로렌즈어레이(810)는 복수의 영역(816)으로 분할될 수 있고, 각각의 영역(816)에서의 마이크로렌즈(212)의 배치 패턴은 동일할 수 있다.
도 8의 예시에서는 각 영역(816)이 마이크로렌즈 단위로 2 by 3의 크기를 가지고 있다. 그리고, 각 영역(816)에 배치되는 마이크로렌즈(212)는 최고점의 위치가 서로 다를 수 있다. 예를 들어, 각 영역(816)에 위치하는 6개의 마이크로렌즈(212)는 최고점이 각각 좌상, 중상, 우상, 좌하, 중하 및 우하부분에 위치할 수 있다.
이외에도 마이크로렌즈어레이는 반복되는 영역의 크기가 마이크로렌즈 단위로 다양한 형태-예를 들어, 2 by 2, 3 by 4, 4 by 4 등-를 가질 수 있다.
한편, 각 영역에는 최고점이 서로 다른 마이크로렌즈-서로 다른 형상을 가지는 마이크로렌즈-가 배치될 수도 있고, 일부는 최고점이 같고, 다른 일부는 최고점이 다른 마이크로렌즈가 배치될 수도 있다. 각 영역에서는 마이크로렌즈의 배치 형태는 실시예에 따라 달라질 수 있다.
한편, 앞서 설명한 것과 같이 마이크로렌즈는 위로 볼록한 렌즈면을 가지면서 렌즈면 상에 편심되어 있는 최고점을 가질 수도 있고, 아래로 오목한 렌즈면을 가지면서 렌즈면 상에 편심되어 있는 최저점을 가질 수도 있다.
도 9는 본 발명의 일 실시예에 따른 마이크로렌즈어레이의 제5예시 도면이다.
도 9는 도 4에 대응되는 도면으로서, 도 4가 위로 볼록한 렌즈면을 가지는 마이크로렌즈로 구성되는 마이크로렌즈어레이에 대한 도면이라면, 도 9는 아래로 오목한 렌즈면을 가지는 마이크로렌즈(912a, 912b)로 구성되는 마이크로렌즈어레이(910)에 대한 도면이다.
도 9를 참조하면, 마이크로렌즈(912a, 912b)는 렌즈면이 오목한 형태를 가지고 오목한 부분이 기판(211)의 상츨에 위치하고 있다. 이에 따라, 마이크로렌즈(912a, 912b)의 렌즈면에는 최저점(914a, 914b)이 존재하고, 제1마이크로렌즈(912a)의 최저점(914a)과 제2마이크로렌즈(912b)의 최저점(914b)이 각각의 마이크로렌즈영역에서 서로 다른 방향, 서로 다른 지점에 위치하고 있다.
이상에서 본 발명의 일 실시예에 따른 3차원 정보 획득 시스템에 대해 설명하였는데, 아래에서는 본 발명의 일 실시예에 따른 마이크로렌즈어레이의 제조방법에 대해 설명한다.
도 10a 내지 도 10h는 본 발명의 일 실시예에 따른 마이크로렌즈어레이의 제조방법이다.
도 10a에서 상측 도면은 마이크로렌즈어레이의 단면도이고, 하측 도면은 마이크로렌즈어레이의 상면도이다.
도 10a를 참조하면, 웨이퍼(1010) 상면에 N(N은 2 이상의 자연수)개의 셀영역(1001) 각각에 열경화성의 제1PR(Photoresist)이 코팅되고 제1마스크에 의해 패터닝되면서, 제1PR이 기둥(1020)을 형성할 수 있다.
이때, N개의 셀영역(1001) 중 적어도 둘 이상의 셀영역에는 기둥(1020)이 중심으로부터 치우쳐지도록 위치되고, N개의 셀영역(1001) 중 제1그룹의 영역(1001a)에 형성되는 제1기둥(1020a)과 제2그룹의 영역(1001b)에 형성되는 제2기둥(1020b)이 각 셀영역에서 서로 다른 지점에 위치하도록 기둥(1020)이 형성될 수 있다.
기둥(1020)은 후공정에서 마이크로렌즈의 최고점 혹은 최저점을 형성하는 역할을 수행하는데, 기둥(1020)이 형성될 때, 각 셀영역(1001)의 중심에서 치우쳐져 위치함으로써 후공정에서 형성되는 마이크로렌즈의 최고점 혹은 최저점이 중심으로부터 치우쳐져 위치할 수 있게 된다.
제1PR에 의해 기둥(1020)이 형성될 때, 웨이퍼(101) 상면에는 접착층(1021)이 함께 형성될 수 있다.
제1PR은 열경화성 PR로서 SU-8이 사용될 수 있다. SU-8은 일반적으로 많이 사용되는 에폭시 기반의 네거티브 PR이다.
도 10b를 참조하면, 기둥(1020) 위로 열가소성의 제2PR이 적층되고 제2마스크에 의해 각 셀영역별로 패터닝되면서 각 셀영역에 제2PR뭉치(1030)를 형성할 수 있다.
열가소성의 제2PR로서는 AZ9260이 사용될 수 있다.
제2PR뭉치(1030)를 형성한 후에 열처리를 통해 렌즈모형을 형성하게 되는데, 열처리 단계에서 종횡비가 높은 렌즈모형을 형성하기 위해 제2PR 상에 테프론(Teflon)을 코팅할 수 있다.
도 10c를 참조하면, 제2PR뭉치(1030) 상에 테프론(1040)이 코팅되고 있다.
도 10d를 참조하면, 제2PR뭉치(1030)와 기둥(1020)은 AZ9260의 유리전이온도보다 높은 온도로 가열되면서 열처리되는데, 이에 따라, 제2PR뭉치(1030)는 녹아내리면서 렌즈모형(1050)을 형성하게 되는데, 렌즈모형(1050)은 열경화성의 기둥(1020)에 의해 편심되면서 비대칭구조의 비구면을 갖게 된다.
한편, 렌즈모형(1050)은 인접한 렌즈모형(1050)과의 사이에 갭(G)을 가지게 되는데, 이러한 갭(G)은 공정 후에 마이크로렌즈 사이의 갭으로 나타나게 된다. 그런데, 마이크로렌즈 사이에 갭이 존재하면 갭에서 발생하는 광굴절 혹은 광회절의 노이즈에 의해 광점이 흐려지거나 광점에 노이즈가 나타나는 문제가 발생할 수 있다.
이러한 갭을 줄이기 위해, 일 실시예에 따른 제조방법은 도 10e와 같이 렌즈모형(1050) 사이의 갭을 채우기 위해 N개의 셀영역 전체를 코팅물질(1060)로 코팅할 수 있다.
이때, 코팅물질은 페릴렌(parylene)일 수 있다. 이러한 페릴렌 코팅에 의해 렌즈모형(1050) 사이의 갭이 채워질 수 있다.
도 10f를 참조하면, 페릴렌 코팅 이후에 N개의 셀영역 전체에서 코팅을 덮도록 몰드(1070)가 형성될 수 있다.
이때, 몰드는 Ni몰드이거나 PDMS(Polydimethysiloxane)몰드일 수 있다.
도 10g를 참조하면, 몰드만 따로 분리된 후에 몰드에 렌즈구성물질이 채워지고 자외선에 의해 경화되면서 각 셀영역별로 마이크로렌즈(1080)가 형성될 수 있다.
이때, 렌즈구성물질은 UV(자외선)에 의해 경화되는 폴리머(자외선경화폴리머)-예를 들어, NOA 68-일 수 있다.
마이크로렌즈가 형성될 때, 몰드(1070)에 자외선경화폴리머가 채워지고 그 위에 유리기판(1090)이 덮어진 후에 자외선이 쬐여지면서 유리기판(1090)에 부착된 마이크로렌즈(1080)가 형성될 수 있다.
도 10h는 전술한 제조방법에 의해 형성된 마이크로렌즈어레이(1000)의 단면도이다.
마이크로렌즈어레이(1000)는 전술한 제조방법에 따라 유리기판(1090) 위에 최고점이 편심되어 있는 마이크로렌즈(1080)가 부착된 형태를 가질 수 있다.
도 10a 내지 도 10h를 참조하여, 마이크로렌즈가 위로 볼록한 형태를 가지는 마이크로렌즈어레이의 제조방법을 설명하였는데, 이러한 제조방법에서 일부 공정을 수정하여 아래로 오목한 형태를 가지는 마이크로렌즈어레이를 제조할 수 있다.
아래로 오목한 형태를 가지는 마이크로렌즈어레이를 제조하는 방법에 있어서, 도 10a 내지 도 10f를 참조하여 설명한 공정을 동일하게 진행하여 도 10f에 도시된 제1몰드(1070)를 형성할 수 있다.
이후, 제1몰드(1070)를 통해 양각 형태의 제2몰드를 형성하고, 제2몰드에 렌즈구성물질을 채우고 경화시켜 각 셀영역별로 마이크로렌즈를 형성할 수 있다.
이때, 제2몰드는 제1몰드와 같이 PDMS몰드로 구성될 수 있고, Ni몰드로 구성될 수도 있다.
도 11a 내지 도 11g는 본 발명의 다른 실시예에 따른 마이크로렌즈어레이의 제조방법이다.
도 11a를 참조하면, 웨이퍼(1110) 상면에서의 N(N은 2 이상의 자연수)개의 셀영역 각각에 열가소성의 PR을 적층하고 패터닝하여 PR뭉치(1120)를 형성할 수 있다.
열가소성의 PR로서는 AZ9260이 사용될 수 있다.
PR뭉치(1120)를 형성한 후에 열처리를 통해 렌즈모형을 형성하게 되는데, 열처리 단계에서 종횡비가 높은 렌즈모형을 형성하기 위해 PR 상에 테프론을 코팅할 수 있다.
도 11b를 참조하면, PR뭉치(1120) 상에 테프론(1130)이 코팅되고 있다.
도 11c를 참조하면, PR뭉치(1120)는 AZ9260의 유리전이온도보다 높은 온도로 가열되면서 열처리되는데, 이에 따라, PR뭉치(1120)는 녹아내리면서 렌즈모형(1140)을 형성하게 된다. 이때, 렌즈모형(1140)은 대칭구조를 가지는 비구면을 갖을 수 있다.
한편, 렌즈모형(1140)은 인접한 렌즈모형(1140)과의 사이에 갭(G)을 가지게 되는데, 이러한 갭(G)은 공정 후에 마이크로렌즈 사이의 갭으로 나타나게 된다. 그런데, 마이크로렌즈 사이에 갭이 존재하면 갭에서 발생하는 광굴절 혹은 광회절의 노이즈에 의해 광점이 흐려지거나 광점에 노이즈가 나타나는 문제가 발생할 수 있다.
이러한 갭을 줄이기 위해, 다른 실시예에 따른 제조방법은 도 11d와 같이 렌즈모형(1140) 사이의 갭을 채우기 위해 N개의 셀영역 전체를 코팅물질(1150)로 코팅할 수 있다.
이때, 코팅물질은 페릴렌(parylene)일 수 있다. 이러한 페릴렌 코팅에 의해 렌즈모형(1140) 사이의 갭이 채워질 수 있다.
도 11e를 참조하면, 페릴렌 코팅 이후에 N개의 셀영역 전체에서 코팅을 덮도록 몰드(1160)가 형성될 수 있다.
이때, 몰드는 Ni몰드이거나 PDMS(Polydimethysiloxane)몰드일 수 있다.
도 11f를 참조하면, 몰드만 따로 분리된 후에 몰드에 렌즈구성물질이 채워지고 자외선에 의해 경화되면서 각 셀영역별로 마이크로렌즈(1170)가 형성될 수 있다.
이때, 렌즈구성물질은 UV(자외선)에 의해 경화되는 폴리머(자외선경화폴리머)-예를 들어, NOA 68-일 수 있다.
마이크로렌즈가 형성될 때, 몰드(1160)에 자외선경화폴리머가 채워지고 그 위에 유리기판(1180)이 덮어진 후에 자외선이 쬐여지면서 유리기판(1180)에 부착된 마이크로렌즈(1170)가 형성될 수 있다.
도 11g는 전술한 제조방법에 의해 형성된 마이크로렌즈어레이(1100)의 단면도이다.
마이크로렌즈어레이(1100)는 마이크로렌즈(1170)들이 서로 갭이 없이 부착된 형상을 가지게 된다.
이상에서 본 발명의 일 실시예와 다른 실시예에 대해 설명하였는데, 이러한 실시예에 의하면, 단일파장 레이저광원과 광학소자를 이용하여 물리적인 크기가 작고 소형화가 가능한 광출력장치를 제조할 수 있다. 그리고, 이러한 실시예에 의하면, 구조광의 패턴에 포함된 광점의 밀도를 증가시켜 3차원 정보-예를 들어, 깊이 정보-의 해상도를 높일 수 있게 된다. 그리고, 이러한 실시예에 의하면, 전술한 기술에 적용될 수 있는 마이크로렌즈어레이를 정확하면서도 간단한 방법으로 제조할 수 있게 된다. 그리고, 이러한 실시예에 의하면, 마이크로렌즈어레이의 제조 과정에서 마이크로렌즈 사이의 갭을 제거하여 갭에 의한 광노이즈를 제거할 수 있게 된다.
이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (18)

  1. 물체 표면에 구조광을 출력하는 광출력장치로서,
    격자 형태로 일정한 간격을 가지며 배치되는 복수의 마이크로렌즈를 포함하고, 상기 복수의 마이크로렌즈 중 적어도 둘 이상의 마이크로렌즈는 렌즈면의 최고점 혹은 최저점이 중심으로부터 치우쳐져 위치하는 비대칭구조를 가지며, 상기 복수의 마이크로렌즈 중 제1그룹을 형성하는 제1마이크로렌즈와 제2그룹을 형성하는 제2마이크로렌즈는 각각의 마이크로렌즈영역에서 상기 최고점 혹은 상기 최저점의 위치가 서로 다른 마이크로렌즈어레이; 및
    적어도 하나 이상의 광원을 이용하여 상기 마이크로렌즈어레이로 광을 출력하는 광원모듈을 포함하고,
    상기 최고점 혹은 상기 최저점의 위치가 상이하여 상기 제1마이크로렌즈의 광출력방향과 상기 제2마이크로렌즈의 광출력방향이 상이하며,
    상기 광원모듈에서 출력된 광은 상기 제1그룹을 형성하는 복수의 제1마이크로렌즈에서 회절되어 출력되고, 상기 복수의 제1마이크로렌즈에서 출력되는 회절광은 상호 간섭을 통해 상쇄 혹은 보강되면서 상기 물체 표면에 복수의 제1광점을 형성하고,
    상기 광원모듈에서 출력된 광은 상기 제2그룹을 형성하는 복수의 제2마이크로렌즈에서 회절되어 출력되고, 상기 복수의 제2마이크로렌즈에서 출력되는 회절광은 상호 간섭을 통해 상쇄 혹은 보강되면서 상기 물체 표면에 복수의 제2광점을 형성하며,
    상기 제1그룹에 의해 상기 물체 표면에 형성되는 상기 제1광점과 상기 제2그룹에 의해 상기 물체 표면에 형성되는 상기 제2광점의 위치가 서로 다른 광출력장치.
  2. 제1항에 있어서,
    상기 광원은 복수의 광출구(aperture)를 가지는 VCSEL(Vertical-Cavity Surface-Emitting Laser)어레이인 광출력장치.
  3. 제1항에 있어서,
    상기 마이크로렌즈어레이는 복수의 영역으로 분할되고, 상기 제1마이크로렌즈와 상기 제2마이크로렌즈는 서로 다른 영역에 위치하는 광출력장치.
  4. 제1항에 있어서,
    상기 마이크로렌즈어레이는 복수의 영역으로 분할되고, 각각의 영역에는 상기 최고점 혹은 상기 최저점 위치가 서로 같은 마이크로렌즈가 위치하고, 서로 다른 영역에는 상기 최고점 혹은 상기 최저점 위치가 서로 다른 마이크로렌즈가 위치하는 광출력장치.
  5. 제4항에 있어서,
    마이크로렌즈를 4분면으로 나눌 때, 서로 다른 영역에 위치하는 마이크로렌즈는 상기 최고점 혹은 상기 최저점이 서로 다른 사분면에 위치하는 광출력장치.
  6. 제1항에 있어서,
    상기 마이크로렌즈어레이는 복수의 영역으로 분할되고, 각각의 영역에는 상기 최고점 혹은 상기 최저점의 위치가 서로 다른 마이크로렌즈가 위치하며, 마이크로렌즈의 배치 형태는 각 영역마다 동일한 광출력장치.
  7. 제6항에 있어서,
    각각의 영역에는 9개의 마이크로렌즈가 배치되고, 상기 9개의 마이크로렌즈는 상기 최고점 혹은 상기 최저점이 각각 좌상, 중상, 우상, 좌중, 정중, 우중, 좌하, 중하 및 우하부분에 위치하는 광출력장치.
  8. 제6항에 있어서,
    각각의 영역은 마이크로렌즈 단위로 2 by 3의 크기를 가지는 광출력장치.
  9. 제1항에 있어서,
    상기 복수의 마이크로렌즈는 위로 볼록한 렌즈면에 상기 최고점이 위치하거나 아래로 오목한 렌즈면에 상기 최저점이 위치하는 광출력장치.
  10. 마이크로렌즈어레이를 제조하는 방법에 있어서,
    웨이퍼 상면에서의 N(N은 2 이상의 자연수)개의 셀영역 각각에 열경화성의 제1PR(Photoresist)로 기둥을 형성하되, 상기 N개의 셀영역 중 적어도 둘 이상의 셀영역에는 상기 기둥이 중심으로부터 치우쳐지도록 위치되고, 상기 N개의 셀영역 중 제1그룹의 영역에 형성되는 제1기둥과 제2그룹의 영역에 형성되는 제2기둥이 각 셀영역에서 서로 다른 지점에 위치되도록 상기 기둥이 형성되는 단계;
    열가소성의 제2PR을 이용하여 각 셀영역별로 상기 기둥을 덮는 단계;
    상기 제2PR 상에 테프론(Teflon)을 코팅하는 단계;
    상기 테프론을 코팅한 후에, 열처리를 통해 각 셀영역에 비대칭구조의 비구면을 갖는 렌즈모형을 형성하는 단계;
    상기 렌즈모형 사이의 갭을 채우기 위해 상기 N개의 셀영역 전체를 코팅물질로 코팅하는 단계;
    상기 N개의 셀영역 전체에서 상기 코팅을 덮도록 몰드를 형성하는 단계; 및
    상기 몰드에 렌즈구성물질을 채우고 경화시켜 각 셀영역별로 마이크로렌즈를 형성하는 단계
    를 포함하는 마이크로렌즈어레이 제조방법.
  11. 제10항에 있어서,
    상기 제1PR은 열경화성의 SU-8이고, 상기 제2PR은 열가소성의 AZ9260인 마이크로렌즈어레이 제조방법.
  12. 제11항에 있어서,
    상기 렌즈모형을 형성하는 단계에서,
    상기 AZ9260의 유리전이온도보다 높은 온도로 가열하는 마이크로렌즈어레이 제조방법.
  13. 제10항에 있어서,
    상기 렌즈구성물질은 자외선경화폴리머인 마이크로렌즈어레이 제조방법.
  14. 제10항에 있어서,
    상기 코팅물질은 페릴렌(parylene)인 마이크로렌즈어레이 제조방법.
  15. 제13항에 있어서,
    상기 마이크로렌즈를 형성하는 단계에서,
    상기 몰드에 상기 자외선경화폴리머를 채우고 자외선으로 경화시켜 상기 마이크로렌즈를 형성하는 마이크로렌즈어레이 제조방법.
  16. 제10항에 있어서,
    상기 몰드는 Ni몰드 혹은 PDMS(Polydimethysiloxane)몰드인 마이크로렌즈어레이 제조방법.
  17. 마이크로렌즈어레이를 제조하는 방법에 있어서,
    웨이퍼 상면에서의 N(N은 2 이상의 자연수)개의 셀영역 각각에 열경화성의 제1PR(Photoresister)로 기둥을 형성하되, 상기 N개의 셀영역 중 적어도 둘 이상의 셀영역에는 상기 기둥이 중심으로부터 치우쳐지도록 위치되고, 상기 N개의 셀영역 중 제1그룹의 영역에 형성되는 제1기둥과 제2그룹의 영역에 형성되는 제2기둥이 각 셀영역에서 서로 다른 지점에 위치되도록 상기 기둥이 형성되는 단계;
    열가소성의 제2PR을 이용하여 각 셀영역별로 상기 기둥을 덮는 단계;
    상기 제2PR 상에 테프론(Teflon)을 코팅하는 단계;
    상기 테프론을 코팅한 후에, 열처리를 통해 각 셀영역에 비대칭구조의 비구면을 갖는 렌즈모형을 형성하는 단계;
    상기 렌즈모형 사이의 갭을 채우기 위해 상기 N개의 셀영역 전체를 코팅물질로 코팅하는 단계;
    상기 N개의 셀영역 전체에서 상기 코팅을 덮도록 제1PDMS(Polydimethysiloxane)몰드를 형성하는 단계;
    상기 제1PDMS몰드를 통해 양각 형태의 제2PDMS몰드를 형성하는 단계; 및
    상기 제2PDMS몰드에 렌즈구성물질을 채우고 경화시켜 각 셀영역별로 마이크로렌즈를 형성하는 단계
    를 포함하는 마이크로렌즈어레이 제조방법.
  18. 마이크로렌즈어레이를 제조하는 방법에 있어서,
    웨이퍼 상면에서의 N(N은 2 이상의 자연수)개의 셀영역 각각에 열가소성의 AZ9260물질을 적층하고 패터닝하는 단계;
    마이크로렌즈의 종횡비를 높이기 위해 상기 AZ9260물질 상에 테프론(Teflon)을 코팅하는 단계;
    상기 AZ9260물질의 유리전이온도보다 높은 온도로 테프론 코팅된 상기 AZ9260을 가열하여 비구면을 갖는 렌즈모형을 형성하는 단계;
    상기 렌즈모형 사이의 갭을 채우기 위해 상기 N개의 셀영역 전체를 페릴린(parylene)으로 코팅하는 단계;
    페릴린 코팅된 상기 렌즈모형을 덮는 PDMS(Polydimethysiloxane)몰드를 형성하는 단계; 및
    상기 PDMS몰드에 자외선경화폴리머를 채우고 글라스로 덮은 후 자외선을 주사하여 마이크로렌즈를 형성하는 단계
    를 포함하는 마이크로렌즈어레이 제조방법.
KR1020170068223A 2017-06-01 2017-06-01 구조광을 출력하는 광출력장치 및 마이크로렌즈어레이 제조방법 KR101826962B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170068223A KR101826962B1 (ko) 2017-06-01 2017-06-01 구조광을 출력하는 광출력장치 및 마이크로렌즈어레이 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170068223A KR101826962B1 (ko) 2017-06-01 2017-06-01 구조광을 출력하는 광출력장치 및 마이크로렌즈어레이 제조방법

Publications (1)

Publication Number Publication Date
KR101826962B1 true KR101826962B1 (ko) 2018-02-08

Family

ID=61232349

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170068223A KR101826962B1 (ko) 2017-06-01 2017-06-01 구조광을 출력하는 광출력장치 및 마이크로렌즈어레이 제조방법

Country Status (1)

Country Link
KR (1) KR101826962B1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133853A (zh) * 2018-02-09 2019-08-16 舜宇光学(浙江)研究院有限公司 可调散斑图案的调节方法及其投射方法
EP3647833A1 (en) * 2018-10-26 2020-05-06 Viavi Solutions Inc. Optical element including a plurality of regions
JP2020173422A (ja) * 2018-10-23 2020-10-22 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. 複数の領域を含む光学素子
US11204587B2 (en) 2018-11-08 2021-12-21 Samsung Electronics Co., Ltd. Holographic display apparatus
US11207235B2 (en) 2018-07-13 2021-12-28 Samsung Electronics Co., Ltd. Walking assistance apparatus
US11543740B2 (en) 2018-08-07 2023-01-03 Samsung Electronics Co., Ltd. Structured light projector and electronic apparatus including the same
TWI803862B (zh) * 2020-10-27 2023-06-01 奇景光電股份有限公司 微透鏡陣列裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239417B2 (ja) * 2008-03-14 2013-07-17 凸版印刷株式会社 マイクロレンズアレイの製造方法及び濃度分布マスク及びその設計方法
JP2016118675A (ja) * 2014-12-22 2016-06-30 キヤノン株式会社 マイクロレンズ及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239417B2 (ja) * 2008-03-14 2013-07-17 凸版印刷株式会社 マイクロレンズアレイの製造方法及び濃度分布マスク及びその設計方法
JP2016118675A (ja) * 2014-12-22 2016-06-30 キヤノン株式会社 マイクロレンズ及びその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133853A (zh) * 2018-02-09 2019-08-16 舜宇光学(浙江)研究院有限公司 可调散斑图案的调节方法及其投射方法
US11207235B2 (en) 2018-07-13 2021-12-28 Samsung Electronics Co., Ltd. Walking assistance apparatus
US11543740B2 (en) 2018-08-07 2023-01-03 Samsung Electronics Co., Ltd. Structured light projector and electronic apparatus including the same
US11815795B2 (en) 2018-08-07 2023-11-14 Samsung Electronics Co., Ltd. Structured light projector and electronic apparatus including the same
JP2020173422A (ja) * 2018-10-23 2020-10-22 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. 複数の領域を含む光学素子
JP7030757B2 (ja) 2018-10-23 2022-03-07 ヴァイアヴィ・ソリューションズ・インコーポレイテッド 複数の領域を含む光学素子、該光学素子を備えた光学系、及び該光学系を使用する方法
EP3647833A1 (en) * 2018-10-26 2020-05-06 Viavi Solutions Inc. Optical element including a plurality of regions
US11442282B2 (en) 2018-10-26 2022-09-13 Viavi Solutions Inc. Optical element including a plurality of regions
US11204587B2 (en) 2018-11-08 2021-12-21 Samsung Electronics Co., Ltd. Holographic display apparatus
TWI803862B (zh) * 2020-10-27 2023-06-01 奇景光電股份有限公司 微透鏡陣列裝置
US11808953B2 (en) 2020-10-27 2023-11-07 Himax Technologies Limited Microlens array device used to project at least two patterns for improving control of projecting light

Similar Documents

Publication Publication Date Title
KR101826962B1 (ko) 구조광을 출력하는 광출력장치 및 마이크로렌즈어레이 제조방법
US9419049B2 (en) Optical assembly including plenoptic microlens array
US11988844B2 (en) Transmissive metasurface lens integration
JP4874350B2 (ja) カメラ・デバイス、ならびに、カメラ・デバイスおよびウェハスケールパッケージの製造方法
EP3250882B1 (en) Apparatus for producing patterned illumination
CN108780165B (zh) 基于阵列的相机透镜系统
TWI781085B (zh) 複眼透鏡模組及複眼相機模組
US10386616B2 (en) Method of fabricating a wafer level optical lens assembly
US8629930B2 (en) Device, image processing device and method for optical imaging
US9117717B2 (en) Solid-state image pickup device having a multilayer interference filter including an upper laminated structure, a control structure and lower laminated structure
US10509147B2 (en) Apparatus for producing patterned illumination using arrays of light sources and lenses
JP2018525684A (ja) 積層レンズ構造体およびその製造方法、並びに電子機器
US9121994B2 (en) Method of fabricating a wafer level optical lens assembly
EP2943820B1 (en) A lens array and a method of making a lens array
JP7462760B2 (ja) 画像センサ及びその作成方法並びに電子装置
KR102433712B1 (ko) 광학 소자 스택 어셈블리들
CN110192127A (zh) 微透镜阵列
TWI625541B (zh) 基於有槽基板的透鏡製造方法以及相關透鏡系統
US20170077162A1 (en) Optical devices and opto-electronic modules and methods for manufacturing the same
US8472762B2 (en) Biomimetic compound eye optical sensor and fabricating method thereof
US20220406838A1 (en) Method for Manufacturing a Biometric Imaging Device by Means of Nanoimprint Lithography
TW201520631A (zh) 光學鏡頭及其陣列式鏡片模組與製造方法
WO2019244353A1 (ja) レンズアレイ、撮像素子およびレンズアレイの製造方法
JP2021012055A (ja) 測距装置
TW201415614A (zh) 精巧型光學模組及其製造方法

Legal Events

Date Code Title Description
GRNT Written decision to grant