KR101826447B1 - The preparation method of ultra-high molecular weight polyethylene - Google Patents

The preparation method of ultra-high molecular weight polyethylene Download PDF

Info

Publication number
KR101826447B1
KR101826447B1 KR1020160166666A KR20160166666A KR101826447B1 KR 101826447 B1 KR101826447 B1 KR 101826447B1 KR 1020160166666 A KR1020160166666 A KR 1020160166666A KR 20160166666 A KR20160166666 A KR 20160166666A KR 101826447 B1 KR101826447 B1 KR 101826447B1
Authority
KR
South Korea
Prior art keywords
molecular weight
weight polyethylene
catalyst
magnesium
preparing
Prior art date
Application number
KR1020160166666A
Other languages
Korean (ko)
Inventor
박준려
김은일
이진우
Original Assignee
한화토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화토탈 주식회사 filed Critical 한화토탈 주식회사
Priority to KR1020160166666A priority Critical patent/KR101826447B1/en
Application granted granted Critical
Publication of KR101826447B1 publication Critical patent/KR101826447B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • C08F4/6543Pretreating with metals or metal-containing compounds with magnesium or compounds thereof halides of magnesium
    • C08F4/6545Pretreating with metals or metal-containing compounds with magnesium or compounds thereof halides of magnesium and metals of C08F4/64 or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/01High molecular weight, e.g. >800,000 Da.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to a magnesium supported titanium solid catalyst and a method for preparing ultrahigh molecular weight polyethylene using the same and, more specifically, to a method for preparing ultrahigh molecular weight polyethylene having uniform grain size and high apparent density using a catalyst manufactured by the following steps: (1) dissolving a magnesium dichloride compound using an alcohol, making the dissolved resultant with titanium tetrachloride and preparing a precursor; and (2) making the precursor prepared in the step (1) react with titanium tetrachloride and a carbonyl compound.

Description

초고분자량 폴리에틸렌의 제조방법{The preparation method of ultra-high molecular weight polyethylene}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a preparation method of ultra high molecular weight polyethylene,

본 발명은 마그네슘 담지 티타늄 고체 촉매 및 이를 이용한 초고분자량 폴리에틸렌의 제조방법에 관한 것으로서, 사염화티타늄과 카르보닐 화합물을 함유한 고체 촉매를 제조한 후 중합반응을 수행함으로써, 균일한 입도와 높은 겉보기 밀도를 가지는 초고분자량 폴리에틸렌을 제조할 수 있는 방법을 제공한다.The present invention relates to a magnesium-supported titanium solid catalyst and a process for producing ultra-high molecular weight polyethylene using the same, wherein a solid catalyst containing titanium tetrachloride and a carbonyl compound is prepared and then subjected to a polymerization reaction to obtain a uniform particle size and a high apparent density ≪ / RTI > provides a method for preparing ultra high molecular weight polyethylene.

초고분자량 폴리에틸렌은 분자량이 최소 1000000g/mol 이상인 폴리에틸렌을 의미하며, 범용 폴리에틸렌에 비해 분자량이 굉장히 크기 때문에 강성, 내마모성, 내화학성 및 전기적 물성 등이 뛰어난 특성을 가진다. 초고분자량 폴리에틸렌은 열가소성 엔지니어링 플라스틱 중에서 기계적 물성과 내마모성이 우수하기 때문에 기어, 베어링, 캠 등의 내마모성이 요구되는 기계부품에 사용되어 왔을 뿐만 아니라, 특히 내마모성과 더불어 충격강도와 생체친화도가 우수하여 인공관절의 재료로도 사용된다.Ultrahigh molecular weight polyethylene means polyethylene having a molecular weight of at least 1000000 g / mol and has remarkably high molecular weight as compared with general purpose polyethylene, and thus has excellent properties such as rigidity, abrasion resistance, chemical resistance and electrical properties. Since ultra high molecular weight polyethylene has excellent mechanical properties and abrasion resistance among thermoplastic engineering plastics, it has been used not only in abrasion resistance of mechanical parts such as gears, bearings and cams but also in impact resistance and biocompatibility, It is also used as a material for joints.

초고분자량 폴리에틸렌은 분자량이 매우 커서 용융상태에서의 흐름성이 거의 없기에 범용 폴리에틸렌과 같이 펠렛화할 수 없어 대부분 파우더 형태로 생산 판매되기 때문에 파우더의 입도 및 분포 그리고 겉보기 밀도가 매우 중요하다. 초고분자량 폴리에틸렌은 용융가공이 어려운 특성으로 인하여 적절한 용매에 용해시켜 가공하는 방법을 사용하는데, 입도가 큰 파우더는 용해특성이 저해될 수 있기 때문에 파우더의 입도 및 겉보기 밀도는 가공과정에서 생산성에 영향을 주는 중요한 요소로 작용한다.Because ultrahigh molecular weight polyethylene has very high molecular weight and has little flowability in molten state, it can not be pelletized like general polyethylene. Therefore, particle size and distribution and apparent density of powder are very important because they are mostly produced and sold in powder form. Because ultrafine molecular weight polyethylene is difficult to melt process, it is dissolved and dissolved in a suitable solvent. However, since the powder having a large particle size may be deteriorated in dissolution characteristics, the particle size and apparent density of the powder may affect productivity It acts as an important factor.

마그네슘과 티타늄 화합물을 함유한 촉매 제조 및 이를 이용한 초고분자량 폴리에틸렌의 제조 방법은 여러 특허에서 보고되었다. 한국등록특허 제0822616호에서는 촉매 활성이 높고 입도 분포가 균일한 초고분자량 폴리올레핀 중합체를 제조할 수 있는 마그네슘, 티타늄 및 실란화합물을 포함하는 촉매의 제조 방법을 개시하였으나 겉보기 밀도 측면에서 개선의 여지가 있으며, 미국특허 제 4,962,167호에서는 마그네슘 할라이드 화합물, 티타늄알콕사이드, 알루미늄 할라이드 및 실리콘 알콕사이드 화합물을 반응시켜 초고분자량 폴리에틸렌 촉매 제조 방법이 보고되었으나, 촉매 활성과 겉보기 밀도가 상대적으로 낮은 단점이 있다. The preparation of catalysts containing magnesium and titanium compounds and the production of ultrahigh molecular weight polyethylene using them have been reported in various patents. Korean Patent No. 0822616 discloses a process for preparing a catalyst comprising magnesium, titanium and a silane compound capable of producing an ultra-high molecular weight polyolefin polymer having high catalytic activity and uniform particle size distribution, but there is room for improvement in terms of apparent density , U.S. Patent No. 4,962,167 discloses a method for preparing ultra high molecular weight polyethylene catalyst by reacting a magnesium halide compound, a titanium alkoxide, an aluminum halide and a silicon alkoxide compound, but has a disadvantage in that the catalytic activity and the apparent density are relatively low.

미국특허 제 5,587,440에서는 티타늄 화합물을 유기알루미늄과 반응시켜 얻은 촉매를 사용하여 균일한 입도분포와 높은 겉보기 밀도를 가지는 초고분자량 폴리에틸렌의 제조 방법을 개시하고 있으나, 촉매의 중합 활성이 낮은 단점이 있다. U.S. Patent No. 5,587,440 discloses a method for producing ultra-high molecular weight polyethylene having a uniform particle size distribution and a high apparent density using a catalyst obtained by reacting a titanium compound with an organoaluminum, but has a disadvantage in that the polymerization activity of the catalyst is low.

따라서 본 발명에서는 초고분자량 폴리에틸렌의 요구 특성인 균일한 입도분포와 높은 겉보기 밀도를 충족시키면서 높은 중합 활성을 제공할 수 있는 초고분자량 폴리에틸렌용 촉매의 제조 방법을 제공하고자 한다. Accordingly, the present invention provides a method for preparing a catalyst for ultrahigh molecular weight polyethylene which can provide a high polymerization activity while satisfying uniform particle size distribution and high apparent density, which are required characteristics of ultrahigh molecular weight polyethylene.

본 발명에서는 중합 활성이 우수하면서 균일한 입도와 높은 겉보기 밀도를 가지는 초고분자량 폴리에틸렌을 제공할 수 있는 촉매 제조 방법을 제공하고자 한다.The present invention provides a method for preparing a catalyst capable of providing ultrahigh molecular weight polyethylene having excellent polymerization activity and uniform particle size and high apparent density.

상기 목적을 달성할 수 있는 촉매의 제조 방법은 다음 단계를 포함하여 제조되는 것을 특징으로 한다.A process for producing a catalyst capable of achieving the above object is characterized in that it is produced by the following steps.

(1) 이염화 마그네슘 (MgCl2)을 알코올과 반응시켜 마그네슘 화합물 용액을 제조하는 단계; (1) reacting magnesium dichloride (MgCl 2 ) with an alcohol to prepare a magnesium compound solution;

(2) 상기 (1) 단계에서 제조된 마그네슘 화합물 용액에 사염화 티타늄과 반응시켜 전구체를 제조하는 단계;(2) reacting the magnesium compound solution prepared in the step (1) with titanium tetrachloride to prepare a precursor;

(3) 상기 전구체를 사염화 티타늄 및 카르보닐 화합물과 반응시켜 촉매를 제조하는 단계(3) reacting the precursor with titanium tetrachloride and a carbonyl compound to prepare a catalyst

본 발명에서 사용한 마그네슘 용액은 이염화 마그네슘을 탄화수소 용매의 존재하에서 알코올을 사용하여 마그네슘 화합물 용액을 제조 할 수 있다.  여기에 사용될 수 있는 탄화수소 용매의 종류로는 펜탄, 헥산, 헵탄, 옥탄, 데칸, 그리고 케로센과 같은 지방족 탄화수소, 시클로펜탄, 메틸시클로펜탄, 시클로헥산, 그리고 메틸시클로헥산과 같은 지환족 탄화수소, 벤젠, 톨루엔, 크실렌, 에틸벤젠, 큐멘, 그리고 시멘과 같은 방향족 탄화수소, 디클로로프로판, 디클로로에틸렌, 트리클로로에틸렌, 사염화탄소, 그리고 클로로벤젠과 같은 할로겐화 탄화수소 등이 가능하다. The magnesium solution used in the present invention can be prepared by using magnesium dichloride as a solvent in the presence of a hydrocarbon solvent. Examples of the hydrocarbon solvent usable herein include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane and kerosene, alicyclic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane and methylcyclohexane, Aromatic hydrocarbons such as toluene, xylene, ethylbenzene, cumene and cymene, halogenated hydrocarbons such as dichloropropane, dichloroethylene, trichlorethylene, carbon tetrachloride, and chlorobenzene.

상기 (1) 단계에서 마그네슘 화합물 용액을 준비하기 위해 사용되는 알코올은 특별히 한정되지는 않으나, 탄소수가 4~20 개인 알코올이 바람직하다.The alcohol used for preparing the magnesium compound solution in the step (1) is not particularly limited, but an alcohol having 4 to 20 carbon atoms is preferable.

상기 (3) 단계에서 사용하는 카르보닐 화합물은 하기 일반식 (I) 또는 (II)로 나타낼 수 있다. The carbonyl compound used in the step (3) may be represented by the following general formula (I) or (II).

R1(CO)R2 ‥‥‥ (I)R 1 (CO) R 2 (I)

R1(CO)OR2 ‥‥‥ (II)R 1 (CO) OR 2 (II)

[여기에서 R1, R2는 탄소원자 1 내지 10개의 선형, 고리형 및 방향족 탄화수소를 나타낸다.]Wherein R 1 and R 2 represent linear, cyclic and aromatic hydrocarbons having 1 to 10 carbon atoms.

본 발명의 중합 반응은 상기 방법에 의해 제조된 마그네슘 담지 티타늄 촉매와 주기율표 제 Ⅱ족 및 제 Ⅲ족 유기금속 화합물을 사용하여 수행된다. The polymerization reaction of the present invention is carried out using the magnesium-supported titanium catalyst prepared by the above method and the Group II and Group III organometallic compounds of the Periodic Table.

본 발명에서 유익한 유기금속 화합물은 MRn의 일반식으로 표기할 수 있는데, 여기에서 M은 마그네슘, 칼슘, 징크, 보론, 알루미늄, 갈륨과 같은 주기율표 Ⅱ족 또는 ⅢA족 금속 성분이며, R은 메틸, 에틸, 부틸, 헥실, 옥틸, 데실과 같은 탄소수 1 내지 20개의 알킬기를 나타내며, n은 금속 성분의 원자가를 표시한다. 보다 바람직한 유기금속 화합물로는 트리에틸알루미늄, 트리이소부틸알루미늄과 같은 탄소수 1개 내지 6개의 알킬기를 가진 트리알킬알루미늄과 이들의 혼합물이 유익하다. 경우에 따라서는 에틸알루미늄 디클로라이드, 디에틸알루미늄 클로라이드, 에틸알루미늄 세스퀴클로라이드, 디이소부틸알루미늄히드리드와 같은 한개 이상의 할로겐 또는 히드리드기를 유기알루미늄 화합물이 사용될 수 있다.The organometallic compounds useful in the present invention can be represented by the general formula of MRn wherein M is a Group II or Group IIIA metal element of the Periodic Table such as magnesium, calcium, zinc, boron, aluminum, gallium, and R is methyl, ethyl , Butyl, hexyl, octyl, decyl, and n represents the valence of the metal component. More preferred organometallic compounds are trialkylaluminums having alkyl groups with 1 to 6 carbon atoms, such as triethylaluminum and triisobutylaluminum, and mixtures thereof. In some cases, one or more halogen or hydride groups such as ethylaluminum dichloride, diethylaluminum chloride, ethylaluminum sesquichloride, diisobutylaluminum hydride and the like can be used.

중합 반응은 유기용매 부재 하에서 기상 또는 벌크 중합이나 유기용매 존재하 에서 액상 슬러리 중합 방법으로 가능하다. 이들 중합법은 산소, 물, 그리고 촉매 독으로 작용할 수 있는 기타 화합물의 부재 하에서 수행된다. 용제로는 펜탄, 헥산, 헵탄, n-옥탄, 이소옥탄, 시클로헥산, 메틸시클로헥산과 같은 알칸 또는 시클로알칸; 톨루엔, 자이렌, 에틸벤젠, 이소프로필벤젠, 에틸톨루엔, n-프로필벤젠, 디에틸벤젠과 같은 알킬아로마틱; 클로로벤젠, 클로로나프탈렌, 오소-디클로로벤젠과 같은 할로겐화 아로마틱; 그리고 이들의 혼합물이 유익하다. The polymerization reaction can be carried out by liquid-phase slurry polymerization in the presence of an organic solvent in the presence of a gaseous or bulk polymerization or an organic solvent. These polymerization processes are carried out in the absence of oxygen, water, and other compounds that can act as catalyst poisons. Solvents include alkanes or cycloalkanes such as pentane, hexane, heptane, n-octane, isooctane, cyclohexane, methylcyclohexane; Alkylaromatics such as toluene, xylene, ethylbenzene, isopropylbenzene, ethyltoluene, n-propylbenzene, diethylbenzene; Halogenated aromatics such as chlorobenzene, chloronaphthalene, o-dichlorobenzene; And mixtures thereof.

본 발명은 중합 활성이 우수하면서 균일한 입도와 높은 겉보기 밀도를 가지는 초고분자량 폴리에틸렌을 제공할 수 있는 촉매를 간단하면서도 효율적으로 제조할 수 있는 방법을 제공한다.The present invention provides a method for simply and efficiently producing a catalyst capable of providing ultrahigh molecular weight polyethylene having excellent polymerization activity and uniform particle size and high apparent density.

이하 본 발명을 하기의 실시예를 통하여 더욱 구체적으로 설명한다. 그러나, 이들 실시예들은 예시적인 목적일 뿐 본 발명이 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described more specifically with reference to the following examples. These embodiments, however, are for illustrative purposes only.   The invention is not limited to these examples.

실시예Example

실시예Example 1 One

[초고분자량 폴리에틸렌 제조용 고체 촉매의 제조][Preparation of a solid catalyst for preparing ultrahigh molecular weight polyethylene]

(1) 단계: 마그네슘 할라이드 화합물 용액 제조(1) Step: Preparation of magnesium halide compound solution

기계식 교반기가 설치된 1L 반응기를 질소 분위기로 치환시킨 후 이염화마그네슘 (MgCl2) 25g, 톨루엔 300ml, 노말부탄올 100ml를 투입하고 350 rpm으로 교반하면서 온도를 1시간 동안 65℃로 승온시킨 후, 2시간 동안 유지하여 균일한 마그네슘 할라이드 화합물 용액을 얻었다.
25 g of magnesium dichloride (MgCl 2 ), 300 ml of toluene and 100 ml of n-butanol were charged, the temperature was elevated to 65 ° C for 1 hour while stirring at 350 rpm, To obtain a uniform magnesium halide compound solution.

(2) 단계: 고체 착물 티타늄 촉매 제조(2) Step: Preparation of solid complex titanium catalyst

(1) 단계에서 제조된 용액의 온도를 40℃로 냉각한 후 TiCl4 70ml를 1시간동안 천천히 주입하였다. 주입이 완료되면 반응기의 온도를 1시간동안 60℃로 승온하고 추가적으로 1시간 동안 숙성시켰다. 모든 과정이 완료되면 반응기를 정치시켜 고체 성분을 완전히 가라앉혀 상등액을 제거한 후, 반응기 안의 고체 성분을 200ml의 헥산을 사용하여 세척하였다. 상기 고체 성분에 헥산 200ml와 TiCl4 60ml, 에틸 벤조에이트 8ml를 주입한 후 350 rpm으로 교반하면서 반응기의 온도를 1시간에 걸쳐 70℃로 승온한 후 2시간 동안 숙성시켰다. 모든 과정이 완료되면 반응기를 정치시켜 고체 성분을 완전히 가라앉힌 후 상등액을 제거하였다. 제조된 고체 촉매는 헥산 200ml로 6회 세척하였다.
After the temperature of the solution prepared in the step (1) was cooled to 40 ° C, 70 ml of TiCl 4 was slowly injected for 1 hour. Upon completion of the injection, the temperature of the reactor was raised to 60 ° C for 1 hour and aged for an additional 1 hour. When all the process was completed, the reactor was allowed to stand to completely quench the solid component to remove the supernatant, and then the solid component in the reactor was washed with 200 ml of hexane. 200 ml of hexane, 60 ml of TiCl 4 and 8 ml of ethyl benzoate were poured into the solid component, and the temperature of the reactor was raised to 70 ° C over 1 hour while stirring at 350 rpm, followed by aging for 2 hours. When all the procedures were completed, the reactor was allowed to stand to completely quench the solid components and remove the supernatant. The prepared solid catalyst was washed six times with 200 ml of hexane.

[초고분자량 폴리에틸렌 중합][Ultra High Molecular Weight Polyethylene Polymerization]

2 리터 용량의 고압 반응기를 오븐에 말린 후 뜨거운 상태로 조립한 뒤 질소와 진공을 교대로 3회 조작하여 반응기 안을 질소 분위기로 만든다. 헥산 1000ml를 반응기에 주입한 후, 트리에틸알루미늄 1밀리몰과 고체 촉매를 티타늄 원자 기준으로 0.005밀리몰을 주입하였다. 700rpm으로 교반시키면서 반응기의 온도를 60℃로 올리고 에틸렌 압력을 130 psig로 조정한 후, 3 시간 동안 중합을 실시하였다. 중합이 끝나면 반응기의 온도를 상온으로 내리고 생성된 중합체를 분리수집하여 50oC의 진공오븐에서 최소한 6시간 동안 건조하여 백색 분말의 중합체를 얻었다. The 2-liter high-pressure reactor is dried in an oven and then assembled into a hot state, and nitrogen and vacuum are alternately operated three times to make the inside of the reactor nitrogen atmosphere. After injecting 1000 ml of hexane into the reactor, 1 mmol of triethylaluminum and 0.005 mmol of titanium catalyst based on the solid catalyst were injected. The temperature of the reactor was raised to 60 DEG C while stirring at 700 rpm, the ethylene pressure was adjusted to 130 psig, and polymerization was carried out for 3 hours. After the polymerization was completed, the temperature of the reactor was lowered to room temperature, and the resulting polymer was collected and dried in a vacuum oven at 50 ° C. for at least 6 hours to obtain a white powder polymer.

중합 활성 (kg-PE/g-촉매)은 사용한 촉매량당 생성된 중합체의 무게비로 계산하였다. 중합체의 입자 크기 분포도는 레이저 입자 분석기(Mastersizer X, Malvern Instruments)를 이용하여 측정하였고, 결과는 평균입자 크기는 D(v,0.5)로, 입자크기 분포는 (D(v,0.9)-D(v,0.1))/D(v,0.5)로 나타내었다. 여기서 D(v,0.5)는 50%의 샘플이 나타내는 입자 크기를 나타내며,  D(v,0.9)와 D(v,0.1)는 각각 90%와 10%의 샘플이 나타내는 입자 크기를 표시한다. 분포의 숫자가 작을수록 분포가 좁음을 의미한다. 중합체의 고유점도는 ISO 1628 Part3에 따라 데카하이드로나프탈렌 (Decahydronaphthalene) 용매를 사용하여 중 합체를 녹여 상대점도를 측정한 후, 이 상대점도 값을 농도가 0인 경우의 값으로 외삽하여 산출할 수 있다. 이로부터 당 업계에 잘 알려진 마르골리스(Margolies's) 수식 (Mv=5.34 × 104 × [η]1.49, Mv=점도평균분자량, η=고유점도)을 사용하여 평균분자량(Mv)을 계산하였다. 중합 결과는 중합체의 겉보기 밀도(g/ml)와 함께 표 1에 나타내었다.
The polymerization activity (kg-PE / g-catalyst) was calculated as the weight ratio of polymer produced per catalytic amount used. The particle size distribution of the polymer was measured using a laser particle analyzer (Mastersizer X, Malvern Instruments) and the result was an average particle size of D (v, 0.5) and a particle size distribution of D (v, 0.9) -D v, 0.1)) / D (v, 0.5). Where D (v, 0.9) and D (v, 0.5) represent the particle sizes represented by the samples at 90% and 10%, respectively. The smaller the number of distributions, the narrower the distribution. The intrinsic viscosity of the polymer can be calculated by dissolving the polymer by dissolving the polymer in decahydronaphthalene solvent according to ISO 1628 Part 3 and then extrapolating the relative viscosity to a value of zero concentration . From this, the average molecular weight (Mv) was calculated using Margolies's formula (Mv = 5.34 × 10 4 × [η] 1.49 , Mv = viscosity average molecular weight, η = intrinsic viscosity) well known in the art. The polymerization results are shown in Table 1 together with the apparent density (g / ml) of the polymer.

실시예Example 2 2

실시예 1에서 ethyl benzoate 대신에 2,4-dimethyl-3-pentanone 8ml로 조정한 것을 제외하고는 실시예 1과 동일하게 수행하였다.
The procedure of Example 1 was repeated except that 8 ml of 2,4-dimethyl-3-pentanone was used instead of ethyl benzoate in Example 1.

실시예Example 3 3

실시예 1에서 ethyl benzoate 대신에 benzophenone 8ml로 조정한 것을 제외하고는 실시예 1과 동일하게 수행하였다. The procedure of Example 1 was repeated except that 8 ml of benzophenone was used instead of ethyl benzoate in Example 1.

  

비교예Comparative Example 1 One

실시예 1에서 ethyl benzoate 8ml대신에 diisobutyl phthalate 8 ml를 사용한 것을 제외하고는 실시예 1과 동일하게 수행하였다.
The procedure of Example 1 was repeated except that 8 ml of diisobutyl phthalate was used instead of 8 ml of ethyl benzoate in Example 1.

비교예Comparative Example 2 2

실시예 1에서 ethyl benzoate 사용하지 않은 것을 제외하고는 실시예 1과 동일하게 수행하였다.
The procedure of Example 1 was repeated except that ethyl benzoate was not used in Example 1.

구분division 촉매내 티타늄 함량 (중량wt%)Titanium content (wt%) in the catalyst 활성
(kg-PE/g-촉매)
activation
(kg-PE / g-catalyst)
겉보기 밀도 (g/ml)Apparent density (g / ml) 고유점도
(dl/g)
Intrinsic viscosity
(dl / g)
점도평균 분자량
(106g/mol)
Viscosity average molecular weight
(10 6 g / mol)
평균 입자 크기
(μm)
Average particle size
(μm)
입자크기 분포Particle size distribution
실시예 1Example 1 2.12.1 4040 0.420.42 27.827.8 7.67.6 132132 0.50.5 실시예 2Example 2 2.32.3 4242 0.390.39 25.925.9 6.86.8 129129 0.70.7 실시예 3Example 3 2.22.2 3333 0.410.41 29.329.3 8.28.2 134134 0.60.6 비교예 1Comparative Example 1 4.34.3 1010 0.280.28 28.428.4 7.87.8 536536 2.12.1 비교예 2Comparative Example 2 7.17.1 3636 0.330.33 22.422.4 5.55.5 234234 1.21.2

상기 표1에 나타낸 바와 같이, 실시예 1 ~ 3의 방법으로 제조된 촉매는 중합 활성이 우수하면서 균일한 입도와 높은 겉보기 밀도를 가지는 초고분자량 폴리에틸렌을 제공할 수 있다.As shown in Table 1, the catalysts prepared by the methods of Examples 1 to 3 can provide ultrahigh molecular weight polyethylene having excellent polymerization activity and uniform particle size and high apparent density.

Claims (3)

다음 단계를 포함하는 것을 특징으로 하는 초고분자량 폴리에틸렌 제조용 촉매의 제조 방법:
(1) 이염화 마그네슘 (MgCl2)을 알코올과 반응시켜 마그네슘 화합물 용액을 제조하는 단계;
(2) 상기 (1) 단계에서 제조된 마그네슘 화합물 용액에 사염화 티타늄과 반응시켜 전구체를 제조하는 단계;
(3) 상기 전구체를 사염화 티타늄 및 카르보닐 화합물과 반응시켜 촉매를 제조하는 단계.
A process for preparing a catalyst for preparing ultra high molecular weight polyethylene, comprising the steps of:
(1) reacting magnesium dichloride (MgCl 2 ) with an alcohol to prepare a magnesium compound solution;
(2) reacting the magnesium compound solution prepared in the step (1) with titanium tetrachloride to prepare a precursor;
(3) reacting the precursor with titanium tetrachloride and a carbonyl compound to prepare a catalyst.
제 1항에 있어서, 상기 알코올은 탄소수가 4~20인 알코올인 것을 특징으로 하는 초고분자량 폴리에틸렌 제조용 촉매의 제조 방법.The process according to claim 1, wherein the alcohol is an alcohol having 4 to 20 carbon atoms. 제 1항에서 있어서, 하기 일반식 (I) 또는 (II)로 표현되는 카르보닐 화합물을 사용하는 것을 특징으로 하는 초고분자량 폴리에틸렌 제조용 촉매의 제조 방법:
R1(CO)R2 ‥‥‥ (I)
R1(CO)OR2 ‥‥‥ (II)
[여기에서 R1, R2는 탄소원자 1 내지 10개의 선형, 고리형 및 방향족 탄화수소를 나타낸다.].
The process according to claim 1, wherein the carbonyl compound represented by the following general formula (I) or (II) is used:
R 1 (CO) R 2 (I)
R 1 (CO) OR 2 (II)
Wherein R 1 and R 2 represent linear, cyclic and aromatic hydrocarbons having 1 to 10 carbon atoms.
KR1020160166666A 2016-12-08 2016-12-08 The preparation method of ultra-high molecular weight polyethylene KR101826447B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160166666A KR101826447B1 (en) 2016-12-08 2016-12-08 The preparation method of ultra-high molecular weight polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160166666A KR101826447B1 (en) 2016-12-08 2016-12-08 The preparation method of ultra-high molecular weight polyethylene

Publications (1)

Publication Number Publication Date
KR101826447B1 true KR101826447B1 (en) 2018-02-06

Family

ID=61227921

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160166666A KR101826447B1 (en) 2016-12-08 2016-12-08 The preparation method of ultra-high molecular weight polyethylene

Country Status (1)

Country Link
KR (1) KR101826447B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102259312B1 (en) * 2019-12-24 2021-05-31 한화토탈 주식회사 The preparation method of catalyst for ethylene polymerization
KR102263236B1 (en) * 2019-12-18 2021-06-09 한화토탈 주식회사 Polyethylene resin for secondary battery separator and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102263236B1 (en) * 2019-12-18 2021-06-09 한화토탈 주식회사 Polyethylene resin for secondary battery separator and its manufacturing method
CN113004446A (en) * 2019-12-18 2021-06-22 韩华道达尔有限公司 Polyethylene resin for secondary battery separator and secondary battery separator comprising same
CN113004446B (en) * 2019-12-18 2022-10-25 韩华道达尔能源有限公司 Polyethylene resin for secondary battery separator and secondary battery separator comprising same
KR102259312B1 (en) * 2019-12-24 2021-05-31 한화토탈 주식회사 The preparation method of catalyst for ethylene polymerization
CN113024701A (en) * 2019-12-24 2021-06-25 韩华道达尔有限公司 Process for preparing catalyst for ethylene polymerization
EP3842464A1 (en) * 2019-12-24 2021-06-30 Hanwha Total Petrochemical Co., Ltd. Preparation method of catalyst for ethylene polymerization
CN113024701B (en) * 2019-12-24 2023-12-01 韩华道达尔能源有限公司 Process for preparing catalyst for ethylene polymerization

Similar Documents

Publication Publication Date Title
JP2015120784A (en) Polyethylene powder
KR20140107368A (en) A catalyst system and a process for the production of ultra high molecular weight polyethylene in presence of this catalyst system
KR101826447B1 (en) The preparation method of ultra-high molecular weight polyethylene
KR20110115015A (en) A catalyst for ultra high molecular weight polyethylene(uhmwpe) and production method of uhmpe using the same
CN114133470A (en) Preparation method and application of alpha-diimine nickel heterogeneous catalyst loaded on olefine acid aluminum salt polymer particles
CN113024701B (en) Process for preparing catalyst for ethylene polymerization
CN113024697B (en) Process for preparing catalyst for ethylene polymerization
KR20090087631A (en) A catalyst and a preparation mehtod for ultra high molecular weight polyethylene using the same
KR20100100433A (en) A method for preparation of catalyst for ethylene (co)polymerization
KR101705951B1 (en) A preparation method of catalyst for ethylene (co)polymerization
KR101553203B1 (en) Preparation method for polyethylene resin and polyethylene resin having high escr and melt tension
KR102487347B1 (en) A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene
KR102487346B1 (en) A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene
KR20140136239A (en) A preparation method of the size-controllable catalyst for ethylene (co)polymerization
KR101776458B1 (en) The preparation method of catalyst for ethylene (co)polymerization
KR102287922B1 (en) Method for producing catalyst composition for synthesis of high density polyolefin
KR101686178B1 (en) Preparation method for polyolefin resin having high escr and excellent workability
KR101948387B1 (en) Methods for preparing silica-supported catalyst and ultra high molecular weight polyethylene using the same
KR102467589B1 (en) Method for producing catalyst for polymerization of ethylene and method for producing polyethylene using the same
KR20130057217A (en) A catalyst for preparation of ultra high molecular weight polyethylene and a preparation method of ultra high molecular weight polyethylene using the same
CN107880169B (en) Catalyst component for olefin polymerization and preparation and application thereof
CN107880172B (en) Catalyst component for olefin polymerization and preparation and application thereof
KR101699869B1 (en) Preparation method of food container
KR20240086292A (en) Polyethylene resin powder for secondary battery separator, method of manufacturing the same, and secondary battery separator including the same
KR20230111499A (en) Polymerization Method of Ultrahigh Molecular Weight Polyethylene and method for preparing catalyst thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant