KR102487347B1 - A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene - Google Patents

A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene Download PDF

Info

Publication number
KR102487347B1
KR102487347B1 KR1020200168250A KR20200168250A KR102487347B1 KR 102487347 B1 KR102487347 B1 KR 102487347B1 KR 1020200168250 A KR1020200168250 A KR 1020200168250A KR 20200168250 A KR20200168250 A KR 20200168250A KR 102487347 B1 KR102487347 B1 KR 102487347B1
Authority
KR
South Korea
Prior art keywords
molecular weight
compound
preparing
catalyst
ultra
Prior art date
Application number
KR1020200168250A
Other languages
Korean (ko)
Other versions
KR20220078953A (en
Inventor
이승엽
박준려
이진우
Original Assignee
한화토탈에너지스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화토탈에너지스 주식회사 filed Critical 한화토탈에너지스 주식회사
Priority to KR1020200168250A priority Critical patent/KR102487347B1/en
Priority to CN202110931181.XA priority patent/CN114605574A/en
Publication of KR20220078953A publication Critical patent/KR20220078953A/en
Application granted granted Critical
Publication of KR102487347B1 publication Critical patent/KR102487347B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/643Component covered by group C08F4/64 with a metal or compound covered by group C08F4/44 other than an organo-aluminium compound
    • C08F4/6432Component of C08F4/64 containing at least two different metals
    • C08F4/6435Component of C08F4/64 containing at least two different metals containing magnesium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 사염화티타늄, 디에테르 화합물 및 유기 할라이드 화합물을 함유한 고체 촉매를 제조한 후 중합반응을 수행함으로써, 사용된 유기 화합물에 따라 분자량 분포를 조절할 수 있는 촉매를 제조하는 방법으로서, 중합 활성이 우수하면서 균일한 입도 및 높은 겉보기 밀도를 가짐과 동시에 초고분자량 폴리에틸렌의 분자량 분포를 쉽게 조절할 수 있는 촉매를 간단하면서도 효율적으로 제조할 수 있다.The present invention is a method for preparing a catalyst whose molecular weight distribution can be adjusted according to the organic compound used by preparing a solid catalyst containing titanium tetrachloride, a diether compound and an organic halide compound and then performing a polymerization reaction, wherein the polymerization activity is A catalyst capable of easily controlling the molecular weight distribution of ultra-high molecular weight polyethylene while having excellent uniform particle size and high apparent density can be prepared simply and efficiently.

Description

초고분자량 폴리에틸렌의 분자량분포 조절을 위한 지글러-나타 촉매의 제조방법 {A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene}A preparation method of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene}

본 발명은 초고분자량 폴리에틸렌을 제조하기 위한 마그네슘 담지 티타늄 고체 촉매의 제조방법에 관한 것이다. 사염화티타늄, 디에테르 화합물 및 유기할라이드 화합물을 함유한 고체 촉매를 제조한 후 중합반응을 수행함으로써, 사용된 유기 화합물에 따라 분자량 분포를 조절할 수 있는 촉매를 제조하는 방법이다.The present invention relates to a method for preparing a magnesium-supported titanium solid catalyst for producing ultrahigh molecular weight polyethylene. This is a method for preparing a catalyst whose molecular weight distribution can be controlled according to the organic compound used by preparing a solid catalyst containing titanium tetrachloride, a diether compound and an organic halide compound and then performing a polymerization reaction.

초고분자량 폴리에틸렌은 무게평균분자량이 250,000 - 10,000,000 g/mol 인 폴리에틸렌을 의미하며, 범용 폴리에틸렌에 비해 분자량이 굉장히 크기 때문에 강성, 내마모성, 내화학성 및 전기적 물성 등이 뛰어난 특성을 가진다. 초고분자량 폴리에틸렌은 열가소성 엔지니어링 플라스틱 중에서 기계적 물성과 내마모성이 우수하기 때문에 기어, 베어링, 캠 등의 내마모성이 요구되는 기계부품에 사용되어 왔을 뿐만 아니라, 특히 내마모성과 더불어 충격강도와 생체친화도가 우수하여 인공관절의 재료로도 사용된다.Ultra-high molecular weight polyethylene refers to polyethylene with a weight average molecular weight of 250,000 - 10,000,000 g/mol, and has excellent properties such as stiffness, abrasion resistance, chemical resistance and electrical properties because the molecular weight is very large compared to general-purpose polyethylene. Ultrahigh molecular weight polyethylene has excellent mechanical properties and wear resistance among thermoplastic engineering plastics, so it has been used for mechanical parts requiring wear resistance such as gears, bearings, and cams. It is also used as a joint material.

초고분자량 폴리에틸렌은 분자량이 매우 커서 용융상태에서의 흐름성이 거의 없어 파우더 형태로 생산 된다. 따라서 파우더의 입도 및 분포 그리고 겉보기 밀도가 매우 중요하다. 초고분자량 폴리에틸렌은 용융가공이 어려운 특성으로 인하여 적절한 용매에 용해시켜 가공하는 방법을 사용하는데, 입도가 큰 파우더는 용해특성이 저해될 수 있다. 또한 겉보기 밀도가 낮을 경우 파우더의 이송에 문제가 발생하기 때문에, 파우더의 입도 및 겉보기 밀도는 가공과정에서 생산성에 영향을 주는 중요한 요소로 작용한다.Ultra-high molecular weight polyethylene has a very high molecular weight and has little flowability in a molten state, so it is produced in powder form. Therefore, the particle size, distribution and apparent density of the powder are very important. Ultra-high molecular weight polyethylene uses a method of processing by dissolving it in an appropriate solvent due to its difficult melt processing. In addition, when the apparent density is low, a problem occurs in the transport of the powder, so the particle size and apparent density of the powder act as important factors affecting productivity in the processing process.

폴리올레핀 물질의 물성과 가공성은 분자량분포의 다분산도(polydispersity)에 영향을 받는다. 일반적으로 다분산도가 작을수록 물성 및 냄새 특성이 좋아지지만 가공성 및 환경스트레스 저항성이 떨어진다. 다분산도가 넓을수록 가공성 및 환경스트레스 저항성은 좋아지지만 물성 및 냄새 특성이 저해되게 된다.The physical properties and processability of polyolefin materials are affected by the polydispersity of molecular weight distribution. In general, the smaller the polydispersity, the better the physical and odor properties, but the lower the processability and environmental stress resistance. The wider the polydispersity, the better the processability and environmental stress resistance, but the physical properties and odor characteristics are deteriorated.

폴리프로필렌의 경우 사용하는 지글러-나타 촉매의 전자공여체를 조절하여 분자량 분포를 조절한다. 전자공여체의 역할이 불분명한 폴리에틸렌의 경우는 지글러-나타 촉매 대신 크롬 혹은 메탈로센으로 촉매를 변경하여 다분산도를 조절하거나, 다단계 반응기 혹은 2종이상의 촉매 혼합물을 이용하여 이중 분자량 분포를 가지는 폴리에틸렌을 만드는 방법들을 주로 이용한다.In the case of polypropylene, the molecular weight distribution is controlled by adjusting the electron donor of the Ziegler-Natta catalyst used. In the case of polyethylene, where the role of the electron donor is unclear, the polydispersity can be controlled by changing the catalyst to chromium or metallocene instead of the Ziegler-Natta catalyst, or polyethylene having a double molecular weight distribution by using a multi-stage reactor or a mixture of two or more catalysts. are mainly used to create

마그네슘과 티타늄 화합물을 함유한 지글러-나타 촉매 제조 및 이를 이용한 초고분자량 폴리에틸렌의 제조 방법은 여러 특허에서 보고되었다. 한국 등록특허 제0822616호에서는 촉매 활성이 높고 입도 분포가 균일한 초고분자량 폴리올레핀 중합체를 제조할 수 있는 마그네슘, 티타늄 및 실란화합물을 포함하는 촉매의 제조 방법을 개시하였으나 겉보기 밀도 측면에서 개선의 여지가 있으며, 미국특허 제 4,962,167호에서는 마그네슘 할라이드 화합물, 티타늄알콕사이드, 알루미늄 할라이드 및 실리콘 알콕사이드 화합물을 반응시켜 초고분자량 폴리에틸렌 촉매 제조 방법이 보고되었으나, 촉매 활성과 겉보기 밀도가 상대적으로 낮은 특징이 있다. 미국특허 제 5,587,440에서는 티타늄 화합물을 유기알루미늄과 반응시켜 얻은 촉매를 사용하여 균일한 입도분포와 높은 겉보기 밀도를 가지는 초고분자량 폴리에틸렌의 제조 방법을 개시하고 있으나, 촉매의 중합 활성이 낮은 단점이 있다. Preparation of a Ziegler-Natta catalyst containing a magnesium and titanium compound and a method for preparing ultra-high molecular weight polyethylene using the catalyst have been reported in several patents. Korean Patent Registration No. 0822616 discloses a method for preparing a catalyst containing magnesium, titanium, and a silane compound capable of producing an ultra-high molecular weight polyolefin polymer having high catalytic activity and uniform particle size distribution, but there is room for improvement in terms of apparent density. , U.S. Patent No. 4,962,167 reported a method for preparing an ultra-high molecular weight polyethylene catalyst by reacting a magnesium halide compound, a titanium alkoxide, an aluminum halide, and a silicon alkoxide compound, but has relatively low catalytic activity and apparent density. U.S. Patent No. 5,587,440 discloses a method for producing ultra-high molecular weight polyethylene having a uniform particle size distribution and high apparent density using a catalyst obtained by reacting a titanium compound with organoaluminum, but has a disadvantage in that the polymerization activity of the catalyst is low.

한국 등록특허 1959694호에서 서로 다른 두가지 촉매를 섞어서 분자량 분포 및 다분산도를 조절하는 것을 개시하였으나, 메탈로센 단일 활성점 촉매에 한정되어 있다. 미국특허 제9725535호에서는 두가지 이상의 활성 금속을 가지는 지글러-나타 촉매를 통하여 다분산도를 조절하였으나 다분산도가 최대 4.5에 불과한 한계점을 가지고 있다. 미국특허 제 8557935호 에서는 지글러-나타 촉매와 메탈로센 촉매를 혼합하여 다분산도가 15이상인 촉매 조성을 보고 하였으나 활성이 낮은 단점이 있다. 또한 이러한 방식의 촉매 조합법은 중합 파우더의 균일한 입도와 높은 겉보기 밀도가 필수적인 초고분자량 폴리에틸렌에 적용하는데 있어 부적합하다.Korean Patent Registration No. 1959694 discloses mixing two different catalysts to control molecular weight distribution and polydispersity, but it is limited to metallocene single active site catalysts. In U.S. Patent No. 9725535, the polydispersity was controlled through a Ziegler-Natta catalyst having two or more active metals, but the polydispersity was limited to a maximum of 4.5. US Patent No. 8557935 reported a catalyst composition having a polydispersity of 15 or more by mixing a Ziegler-Natta catalyst and a metallocene catalyst, but has a disadvantage of low activity. In addition, this type of catalyst preparation method is unsuitable for application to ultra-high molecular weight polyethylene, which requires uniform particle size and high apparent density of polymerized powder.

따라서 본 발명에서는 초고분자량 폴리에틸렌의 요구 특성인 균일한 입도분포, 높은 겉보기 밀도 및 높은 중합 활성을 충족시키면서 분자량 분포 및 다분산도 조절이 용이한 초고분자량 폴리에틸렌용 촉매의 제조 방법을 제공하고자 한다.Therefore, the present invention is intended to provide a method for preparing a catalyst for ultra-high molecular weight polyethylene that can easily control molecular weight distribution and polydispersity while satisfying uniform particle size distribution, high apparent density, and high polymerization activity, which are required characteristics of ultra-high molecular weight polyethylene.

본 발명은 중합 활성이 우수하면서 균일한 입도 및 높은 겉보기 밀도를 가짐과 동시에 초고분자량 폴리에틸렌의 분자량 분포를 쉽게 조절할 수 있는 촉매를 간단하면서도 효율적으로 제조할 수 있는 방법을 제공하고자 한다.An object of the present invention is to provide a method for simply and efficiently preparing a catalyst capable of easily controlling the molecular weight distribution of ultrahigh molecular weight polyethylene, while having excellent polymerization activity, uniform particle size and high apparent density.

다음 단계를 포함하는 것을 특징으로 하는 초고분자량 폴리에틸렌 제조용 촉매의 제조 방법으로 과제를 해결하고자 한다.A method for preparing a catalyst for producing ultra-high molecular weight polyethylene comprising the following steps is intended to solve the problem.

(1) 이염화마그네슘(MgCl2)을 테트라하이드로퓨란 및 알코올과 반응시켜 마그네슘 화합물 용액을 제조하는 단계;(1) preparing a magnesium compound solution by reacting magnesium dichloride (MgCl 2 ) with tetrahydrofuran and alcohol;

(2) 상기 (1)단계에서 제조된 상기 마그네슘 화합물 용액에 사염화티타늄을 첨가하여 반응시켜 전구체를 제조하는 단계;(2) preparing a precursor by adding and reacting titanium tetrachloride to the magnesium compound solution prepared in step (1);

(3) 상기 전구체를 사염화티타늄과 1차 반응시키고, 이어서 그 반응물에 하기 일반식 (I)로 표시되는 디에테르 화합물 및 유기할라이드 화합물의 혼합물을 첨가하여 2차 반응시켜 촉매를 제조하는 단계.(3) Preparing a catalyst by first reacting the precursor with titanium tetrachloride and then adding a mixture of a diether compound and an organohalide compound represented by the following general formula (I) to the reactant to perform a second reaction.

R1O-R2-OR3 …… (I)R 1 OR 2 -OR 3 . . . … (I)

(상기 R1, R2 및 R3는 각각 독립적으로 치환 또는 비치환된 탄소원자 1 내지 10개의 선형, 가지형, 고리형 또는 방향족 탄화수소를 나타낸다)(The above R 1 , R 2 and R 3 each independently represent a substituted or unsubstituted linear, branched, cyclic or aromatic hydrocarbon having 1 to 10 carbon atoms)

상기 유기할라이드 화합물은 할로겐 원소인 F, Cl, Br, I 중 한 종 또는 2 종 이상을 포함하는 알케인, 알켄, 사이클로알케인 또는 아렌 화합물을 지칭한다.The organic halide compound refers to an alkane, alkene, cycloalkane, or arene compound containing one or more of halogen elements F, Cl, Br, and I.

상기 (1) 단계에서 상기 알코올은 탄소수가 2~8인 1차 알코올이다.In step (1), the alcohol is a primary alcohol having 2 to 8 carbon atoms.

상기 (3) 단계에서 상기 디에테르 화합물 및 유기할라이드 화합물의 혼합물에 있어서 그 몰비는 0.05:1 ~ 50:1 (디에테르 화합물:유기할라이드 화합물)이다.In the step (3), in the mixture of the diether compound and the organohalide compound, the molar ratio is 0.05:1 to 50:1 (diether compound:organohalide compound).

본 발명의 중합 반응은 상기 방법에 의해 제조된 촉매인 마그네슘 담지 티타늄 촉매로서 지글러-나타 고체촉매와 주기율표 제 Ⅱ족 또는 제 ⅢA족 유기금속 화합물을 사용하여 수행된다.The polymerization reaction of the present invention is carried out using a Ziegler-Natta solid catalyst and a group II or IIIA organometallic compound of the periodic table as a magnesium-supported titanium catalyst prepared by the above method.

본 발명에서 폴리에틸렌 중합 시 조촉매로서 사용되는 유익한 상기 유기금속 화합물은 MRn의 일반식으로 표기할 수 있는데, 여기에서 M은 마그네슘, 칼슘, 징크, 보론, 알루미늄, 갈륨과 같은 주기율표 Ⅱ족 또는 ⅢA족 금속 성분이며, R은 메틸, 에틸, 부틸, 헥실, 옥틸, 데실과 같은 탄소수 1 내지 20개의 알킬기를 나타내며, n은 상기 금속 성분의 원자가를 표시한다. In the present invention, the beneficial organometallic compound used as a cocatalyst for polyethylene polymerization can be represented by the general formula of MR n , where M is a member of periodic table group II or IIIA such as magnesium, calcium, zinc, boron, aluminum, and gallium It is a group metal component, R represents an alkyl group having 1 to 20 carbon atoms such as methyl, ethyl, butyl, hexyl, octyl, and decyl, and n represents the valence of the metal component.

보다 바람직한 유기금속 화합물로는 트리에틸알루미늄, 트리이소부틸알루미늄과 같은 탄소수 1개 내지 6개의 알킬기를 가진 트리알킬알루미늄; 또는 상기 트리알킬알루미늄의 혼합물이 촉매의 활성화 및 중합기 내의 불순물 제거에 유익하다. 경우에 따라서는 에틸알루미늄 디클로라이드, 디에틸알루미늄 클로라이드, 에틸알루미늄 세스퀴클로라이드, 디이소부틸알루미늄히드리드와 같은 유기알루미늄 화합물이 사용될 수 있다.More preferable organometallic compounds include trialkyl aluminum having an alkyl group having 1 to 6 carbon atoms such as triethyl aluminum and triisobutyl aluminum; or a mixture of the trialkylaluminum is beneficial for activating the catalyst and removing impurities in the polymerizer. In some cases, organic aluminum compounds such as ethyl aluminum dichloride, diethyl aluminum chloride, ethyl aluminum sesquichloride, and diisobutyl aluminum hydride may be used.

중합 반응은 유기용매 부재 하에서 기상 또는 벌크 중합이나 유기용매 존재 하 에서 액상 슬러리 중합 방법으로 가능하다. 이들 중합법은 산소, 물, 그리고 촉매독으로 작용할 수 있는 기타 화합물의 부재 하에서 수행된다. 유기용매로는 펜탄, 헥산, 헵탄, n-옥탄, 이소옥탄, 시클로헥산, 메틸시클로헥산과 같은 알칸 또는 시클로알칸; 톨루엔, 자이렌, 에틸벤젠, 이소프로필벤젠, 에틸톨루엔, n-프로필벤젠, 디에틸벤젠과 같은 알킬아로마틱; 클로로벤젠, 클로로나프탈렌, 오소-디클로로벤젠과 같은 할로겐화 아로마틱; 또는 이들의 혼합물이 중합열의 제거 및 높은 촉매 활성을 얻는데 유익하다.The polymerization reaction is possible by gas phase or bulk polymerization in the absence of an organic solvent or liquid phase slurry polymerization in the presence of an organic solvent. These polymerizations are carried out in the absence of oxygen, water and other compounds that can act as catalyst poisons. Examples of the organic solvent include alkanes or cycloalkanes such as pentane, hexane, heptane, n-octane, isooctane, cyclohexane, and methylcyclohexane; alkylaromatics such as toluene, xylene, ethylbenzene, isopropylbenzene, ethyltoluene, n-propylbenzene and diethylbenzene; halogenated aromatics such as chlorobenzene, chloronaphthalene, and ortho-dichlorobenzene; or mixtures thereof are beneficial for removing the heat of polymerization and obtaining high catalytic activity.

본 발명은 중합 활성이 우수하면서 균일한 입도 높은 겉보기 밀도를 가짐과 동시에 초고분자량 폴리에틸렌의 분자량 분포를 쉽게 조절할 수 있는 촉매를 간단하면서도 효율적으로 제조할 수 있는 방법을 제공한다.The present invention provides a method for simply and efficiently preparing a catalyst capable of easily controlling the molecular weight distribution of ultra-high molecular weight polyethylene, while having excellent polymerization activity, uniform particle size and high bulk density.

이하 본 발명을 하기의 실시예를 통하여 더욱 구체적으로 설명한다. 그러나, 이들 실시예들은 예시적인 목적일 뿐 본 발명이 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through the following examples. However, these examples are for illustrative purposes only. The invention is not limited to these examples.

실시예Example

실시예 1Example 1

[초고분자량 폴리에틸렌 제조용 고체 촉매의 제조][Preparation of Solid Catalyst for Production of Ultra High Molecular Weight Polyethylene]

(1) 단계: 마그네슘 할라이드 알코올 부가물 (adduct) 용액 제조Step (1): Preparation of magnesium halide alcohol adduct solution

기계식 교반기가 설치된 1L 반응기를 질소 분위기로 치환시킨 후 고체 이염화마그네슘 (MgCl2) 20g, 톨루엔 120ml, 노말부탄올 60ml, 테트라하이드로퓨란 30ml를 투입하고 350 rpm으로 교반하였다. 온도를 1시간 동안 80°C로 승온시킨 후, 2시간 동안 유지하여 마그네슘 화합물로서, 용매에 잘 녹아 있는 균일한 마그네슘 할라이드 알코올 부가물 용액을 얻었다.After replacing the 1L reactor equipped with a mechanical stirrer with a nitrogen atmosphere, 20 g of solid magnesium dichloride (MgCl 2 ), 120 ml of toluene, 60 ml of normal butanol, and 30 ml of tetrahydrofuran were added and stirred at 350 rpm. After the temperature was raised to 80 ° C for 1 hour and maintained for 2 hours, a magnesium compound, a uniform magnesium halide alcohol adduct solution well dissolved in a solvent was obtained.

(2) 단계: 마그네슘 할라이드 담체 제조Step (2): Preparation of magnesium halide support

상기 (1) 단계에서 제조된 용액의 온도를 30°C로 냉각한 후, 상기 용액에 TiCl4 67ml를 120분동안 천천히 주입하였다. 이 때 반응기의 온도가 25°C 이상으로 올라가지 않도록 유의하여 온도를 유지 하였다. 주입이 완료되면 반응기의 온도를 1시간동안 60°C로 승온하고 추가적으로 1시간동안 유지 하였다. 모든 과정이 완료되면 반응기를 정치시켜 고체 성분을 완전히 가라앉혀 상등액을 제거한 후, 반응기 안의 고체 성분을 300ml의 톨루엔으로 1회 세척 및 침전 시켜 액상의 불순물을 완전히 제거하여 전구체로서 깨끗한 염화마그네슘 담체를 고체로 얻었다.After cooling the temperature of the solution prepared in step (1) to 30 °C, 67 ml of TiCl 4 was slowly injected into the solution for 120 minutes. At this time, the temperature of the reactor was carefully maintained so that the temperature of the reactor did not rise above 25°C. When the injection was completed, the temperature of the reactor was raised to 60 ° C for 1 hour and maintained for an additional 1 hour. When all processes are completed, the reactor is allowed to stand still to completely sink the solid components to remove the supernatant, and then the solid components in the reactor are washed and precipitated once with 300ml of toluene to completely remove liquid impurities, and a clean magnesium chloride carrier as a precursor is used as a solid got it with

(3) 단계: 사염화티타늄, 디에테르 및 클로로시클로헥산이 담지 된 촉매 제조Step (3): Preparation of titanium tetrachloride, diether and chlorocyclohexane-supported catalyst

상기 염화마그네슘 담체에 톨루엔 200ml을 넣고 250 rpm으로 교반하면서 25oC를 유지하였다. 그 이후 상기 담체에 TiCl4 34 ml를 한번에 주입하고 1시간동안 유지하여 1차 반응을 시켰다. 이후 클로로시클로헥산 1 ml 및 디에테르로서 2-이소부틸-2-이소프로필-1,3-디메톡시프로판(2-isobutyl-2-isopropyl-1,3-dimethoxypropane) 3 ml 주입한 후 반응기 온도를 60도로 승온한 후 1시간 동안 유지하여 TiCl4와 담체를 2차 반응시켰다. 모든 과정이 완료되면 반응기를 정치시켜 고체 성분을 완전히 가라앉힌 후 상등액을 제거하였다. 제조된 상기 가라앉은 고체 성분을 톨루엔 200ml로 1회, 헥산 200ml로 6회 세척 및 침전하여 불순물을 제거함으로써, 폴리에틸렌 제조용 지글러-나타 고체촉매를 제조하였다.200 ml of toluene was added to the magnesium chloride carrier and maintained at 25 ° C. while stirring at 250 rpm. Thereafter, 34 ml of TiCl 4 was injected into the carrier at once and maintained for 1 hour to perform the first reaction. Then, after injecting 1 ml of chlorocyclohexane and 3 ml of 2-isobutyl-2-isopropyl-1,3-dimethoxypropane as diether, the temperature of the reactor was increased. After raising the temperature to 60 degrees, the TiCl 4 and the carrier were subjected to a secondary reaction by maintaining the temperature for 1 hour. When all processes were completed, the reactor was allowed to stand to completely settle the solid components, and then the supernatant was removed. The precipitated solid component was washed once with 200 ml of toluene and 6 times with 200 ml of hexane to remove impurities, thereby preparing a Ziegler-Natta solid catalyst for polyethylene production.

[초고분자량 폴리에틸렌 중합][Ultra high molecular weight polyethylene polymerization]

2 리터 용량의 배치 반응기를 질소와 진공을 교대로 3회 조작하여 반응기 안을 질소 분위기를 조성했다. 헥산 1000ml를 반응기에 주입한 후, 트리에틸알루미늄 1밀리몰과 상기 수득된 고체 촉매를 티타늄 원자 기준으로 0.005밀리몰을 주입하였다. 수소를 9 psi주입 한 후, 700rpm으로 교반시키면서 반응기의 온도를 80℃로 올리고 에틸렌 압력을120 psig로 조정한 후, 90분 동안 슬러리 중합을 실시하였다. 중합이 끝나면 반응기의 온도를 상온으로 내리고 중합체를 포함한 헥산 슬러리를 필터 및 건조하여 백색 분말의 중합체를 얻었다. A 2-liter batch reactor was operated by alternating nitrogen and vacuum three times to create a nitrogen atmosphere in the reactor. After 1000 ml of hexane was injected into the reactor, 1 mmol of triethylaluminum and 0.005 mmol of the obtained solid catalyst based on titanium atoms were injected. After hydrogen was injected at 9 psi, the temperature of the reactor was raised to 80° C. while stirring at 700 rpm, and the ethylene pressure was adjusted to 120 psig, followed by slurry polymerization for 90 minutes. After the polymerization was completed, the temperature of the reactor was lowered to room temperature, and the hexane slurry containing the polymer was filtered and dried to obtain a white powdery polymer.

중합 활성 (kg-PE/g-촉매)은 사용한 촉매량당 생성된 중합체의 무게비로 계산하였다. Polymerization activity (kg-PE/g-catalyst) was calculated as the weight ratio of the polymer produced per amount of catalyst used.

중합체의 입자 크기 분포도는 레이저 입자 분석기(Mastersizer X, Malvern Instruments)를 이용하여 측정하였고, 결과는 평균입자 크기는 D(v,0.5)로, 입자크기 분포는 (D(v,0.9)-D(v,0.1))/D(v,0.5)로 나타내었다. 여기서 D(v,0.5)는 샘플에 포함된 입자들의 크기 중간값을 나타내며, 상기 D(v,0.9)와 D(v,0.1)는 각각 크기 분포 기준 90%와 10%에 위치하는 입자 크기를 의미한다. 입자크기 분포의 숫자가 작을수록 입자 크기 분포가 좁음을 의미한다. The particle size distribution of the polymer was measured using a laser particle analyzer (Mastersizer X, Malvern Instruments), and the result was that the average particle size was D(v,0.5) and the particle size distribution was (D(v,0.9)-D( v,0.1))/D(v,0.5). Here, D(v,0.5) represents the median size of particles included in the sample, and D(v,0.9) and D(v,0.1) represent particle sizes located at 90% and 10% of the size distribution, respectively. it means. The smaller the number of the particle size distribution, the narrower the particle size distribution.

중합체의 Mw(무게 평균 분자량), Mn (숫자 평균 분자량) 및 분자량분포 (Polydispersity Index, PDI, Mw/Mn)는 겔투과크로마토그래피를 통해 측정 및 분석하였다.M w (weight average molecular weight), Mn (number average molecular weight) and molecular weight distribution (Polydispersity Index, PDI, M w /M n ) of the polymer were measured and analyzed through gel permeation chromatography.

상기 중합 결과는 중합체의 겉보기 밀도(g/ml)와 함께 표 1에 나타내었다.The polymerization results are shown in Table 1 together with the apparent density (g/ml) of the polymer.

실시예 2Example 2

실시예 1에서 클로로시클로헥산의 양을 0.5 ml로 조정한 것을 제외하고는 실시예 1과 동일하게 수행하였다.Example 1 was performed in the same manner as in Example 1 except that the amount of chlorocyclohexane was adjusted to 0.5 ml.

실시예 3Example 3

실시예 1에서 클로로시클로헥산의 양을 0.1 ml로 조정한 것을 제외하고는 실시예 1과 동일하게 수행하였다.Example 1 was performed in the same manner as in Example 1 except that the amount of chlorocyclohexane was adjusted to 0.1 ml.

실시예 4Example 4

실시예 1에서 클로로시클로헥산의 양을 2.0 ml로 조정한 것을 제외하고는 실시예 1과 동일하게 수행하였다.Example 1 was performed in the same manner as in Example 1, except that the amount of chlorocyclohexane was adjusted to 2.0 ml.

실시예 5Example 5

실시예 1에서 클로로시클로헥산을 클로로포름으로 조정한 것을 제외하고는 실시예 1과 동일하게 수행하였다.Example 1 was performed in the same manner as in Example 1, except that chlorocyclohexane was adjusted to chloroform.

비교예 1Comparative Example 1

실시예 1 에서 클로로시클로헥산을 사용하지 않은 것을 제외하고는 실시예 1과 동일하게 수행하였다.Example 1 was performed in the same manner as in Example 1, except that chlorocyclohexane was not used.

비교예 2Comparative Example 2

실시예 1 에서 클로로시클로헥산 및 2-이소부틸-2-이소프로필-1,3-디메톡시프로판(2-isobutyl-2-isopropyl-1,3-dimethoxypropane)을 사용하지 않은 것을 제외하고는 실시예 1과 동일하게 수행하였다.Example 1 except that chlorocyclohexane and 2-isobutyl-2-isopropyl-1,3-dimethoxypropane were not used. The same as in 1 was performed.

Figure 112020131440098-pat00001
Figure 112020131440098-pat00001

상기 표1에 나타낸 바와 같이, 전구체인 염화마그네슘 담체에 사염화티타늄으로 1차 반응 후 디에테르 화합물 및 유기할라이드 화합물의 조합과 2차 반응시키는 실시예 1 ~ 5의 방법으로 제조한 촉매의 경우 비교예 1, 2의 방법으로 제조된 촉매 대비 균일한 입도 분포와 높은 겉보기 밀도를 가짐을 알 수 있다. 또한 실시예 1~4를 비교해보면 유기할라이드를 적정량을 주입하여야 높은 분자량분포와 겉보기밀도 값을 얻을 수 있다. 또한, 사용하는 유기할라이드의 양 및 종류에 따라 분자량 분포를 선택적으로 조절할 수 있다.As shown in Table 1, in the case of the catalyst prepared by the method of Examples 1 to 5, in which the magnesium chloride carrier as a precursor is first reacted with titanium tetrachloride and then reacted secondarily with a combination of a diether compound and an organic halide compound, Comparative Example It can be seen that it has a uniform particle size distribution and a high apparent density compared to the catalysts prepared by the methods 1 and 2. In addition, comparing Examples 1 to 4, a high molecular weight distribution and apparent density values can be obtained only when an appropriate amount of organic halide is injected. In addition, the molecular weight distribution can be selectively adjusted according to the amount and type of organic halide used.

Claims (3)

폴리에틸렌 제조용 지글러-나타 고체촉매의 제조방법에 있어서,
(1) 이염화마그네슘 (MgCl2)을 테트라하이드로퓨란 및 알코올과 반응시켜 마그네슘 화합물 용액을 제조하는 단계;
(2) 상기 (1) 단계에서 제조된 마그네슘 화합물 용액에 사염화티타늄과 반응시켜 전구체를 제조하는 단계; 및
(3) 상기 전구체를 사염화 티타늄과 1차 반응 후, 상기 1차 반응에서의 생성물과 하기 일반식 (I)로 표시되는
디에테르 화합물 및 유기할라이드 화합물의 혼합물을 2차 반응시켜 고체촉매를 제조하는 단계를 포함하고,
R1O-R2-OR3 ……(I)
(상기 R1, R2, 및 R3는 각각 독립적으로 치환 또는 비치환된 탄소원자 1내지 10개의 선형, 가지형, 고리형 또는 방향족 탄화수소이다.)
상기 유기할라이드 화합물은 할로겐원소인 F, Cl, Br, I 중 한 종 혹은 두 종 이상을 포함하는 알케인, 알켄, 사이클로알케인 또는 아렌 화합물인 것을 특징으로 하는 폴리에틸렌 제조용 지글러-나타 고체촉매의 제조방법.
In the method for producing a Ziegler-Natta solid catalyst for producing polyethylene,
(1) preparing a magnesium compound solution by reacting magnesium dichloride (MgCl 2 ) with tetrahydrofuran and alcohol;
(2) preparing a precursor by reacting the magnesium compound solution prepared in step (1) with titanium tetrachloride; and
(3) After the first reaction of the precursor with titanium tetrachloride, the product from the first reaction and the following general formula (I)
Preparing a solid catalyst by secondary reaction of a mixture of a diether compound and an organohalide compound;
R 1 OR 2 -OR 3 . . . … (I)
(The above R 1 , R 2 , and R 3 are each independently a substituted or unsubstituted linear, branched, cyclic or aromatic hydrocarbon having 1 to 10 carbon atoms.)
The organic halide compound is an alkane, alkene, cycloalkane or arene compound containing one or more of halogen elements F, Cl, Br, and I. Preparation of a Ziegler-Natta solid catalyst for polyethylene production, characterized in that Way.
제1항에 있어서, 상기 알코올은 탄소수가 2~8인 1차 알코올인 것을 특징으로 하는 폴리에틸렌 제조용 지글러-나타 고체촉매의 제조방법.The method of claim 1, wherein the alcohol is a primary alcohol having 2 to 8 carbon atoms. 제1항에 있어서, 상기 (3) 단계에서의 디에테르 화합물 및 유기할라이드 화합물의 혼합물은 0.05:1 에서 50:1 의 몰비를 가지는 것을 특징으로 하는 폴리에틸렌 제조용 지글러-나타 고체촉매의 제조방법.The method of claim 1, wherein the mixture of the diether compound and the organohalide compound in step (3) has a molar ratio of 0.05:1 to 50:1.
KR1020200168250A 2020-12-04 2020-12-04 A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene KR102487347B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200168250A KR102487347B1 (en) 2020-12-04 2020-12-04 A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene
CN202110931181.XA CN114605574A (en) 2020-12-04 2021-08-13 Preparation method of Ziegler-Natta catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200168250A KR102487347B1 (en) 2020-12-04 2020-12-04 A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene

Publications (2)

Publication Number Publication Date
KR20220078953A KR20220078953A (en) 2022-06-13
KR102487347B1 true KR102487347B1 (en) 2023-01-11

Family

ID=81857919

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200168250A KR102487347B1 (en) 2020-12-04 2020-12-04 A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene

Country Status (2)

Country Link
KR (1) KR102487347B1 (en)
CN (1) CN114605574A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245116A (en) 2007-02-16 2008-08-20 北京金鼎科化工科技有限公司 Catalytic system for producing ultrahigh molecular weight polyethylene
CN107868151A (en) 2016-09-27 2018-04-03 中国石油天然气股份有限公司 A kind of catalyst for propylene polymerization and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297574C (en) * 2003-08-20 2007-01-31 中国石油化工股份有限公司 Catalyst component for olefine polymerization and catalyst thereof
KR20110115015A (en) * 2010-04-14 2011-10-20 삼성토탈 주식회사 A catalyst for ultra high molecular weight polyethylene(uhmwpe) and production method of uhmpe using the same
WO2014045260A2 (en) * 2012-09-24 2014-03-27 Indian Oil Corporation Limited Organometallic compound in solid form, process for preparing the same and use thereof
MY172451A (en) * 2013-10-18 2019-11-26 China Petroleum & Chem Corp Spherical carriers for olefin polymerization catalyst, catalyst components, catalyst, and preparation methods therefor
CN105940021A (en) * 2013-12-20 2016-09-14 沙特基础工业公司 Catalyst system for polymerisation of an olefin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245116A (en) 2007-02-16 2008-08-20 北京金鼎科化工科技有限公司 Catalytic system for producing ultrahigh molecular weight polyethylene
CN107868151A (en) 2016-09-27 2018-04-03 中国石油天然气股份有限公司 A kind of catalyst for propylene polymerization and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Appl. Poly. Sci., 2010, 117, pp1780-1786(2010.03.29.)*

Also Published As

Publication number Publication date
CN114605574A (en) 2022-06-10
KR20220078953A (en) 2022-06-13

Similar Documents

Publication Publication Date Title
KR102001440B1 (en) A process for the production of bimodal polyethylene in the presence of this catalyst system
JP2004527633A (en) Method for producing olefin polymer and selected catalyst
KR20110115015A (en) A catalyst for ultra high molecular weight polyethylene(uhmwpe) and production method of uhmpe using the same
KR101049662B1 (en) Ultra high molecular weight polyethylene polymerization catalyst and preparation method of ultra high molecular weight polyethylene using the same
KR100496776B1 (en) Catalyst for polymerization and copolymerization of ethylene
KR102487347B1 (en) A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene
KR102487346B1 (en) A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene
US7193022B2 (en) Method of polymerization and copolymerization of ethylene
EP1421122B1 (en) Catalyst for polymerization and copolymerization of ethylene
KR101826447B1 (en) The preparation method of ultra-high molecular weight polyethylene
KR102342077B1 (en) The preparation method of catalyst for ethylene polymerization
KR102259312B1 (en) The preparation method of catalyst for ethylene polymerization
JP4316885B2 (en) Catalyst composition for olefin polymerization and process for its preparation
KR101339603B1 (en) A Catalyst for Preparation of Ultra high Molecular Weight Polyethylene and A Preparation Method of Ultra high Molecular Weight Polyethylene Using the Same
KR20090092023A (en) A preparation method of catalyst for ethylene (co)polymerization
KR101265418B1 (en) A preparation method of catalyst for ethylene (co)polymerization
KR20140136239A (en) A preparation method of the size-controllable catalyst for ethylene (co)polymerization
KR101948387B1 (en) Methods for preparing silica-supported catalyst and ultra high molecular weight polyethylene using the same
KR100416181B1 (en) Method for olefin polymerization or copolymerization
KR101222712B1 (en) A Preparation Method of Catalyst for Ethylene (Co)Polymerization
CN107880169B (en) Catalyst component for olefin polymerization and preparation and application thereof
KR101265405B1 (en) A Preparation Method of Catalyst for Ethylene (Co)Polymerization
CN107880163B (en) Catalyst component for olefin polymerization and preparation and application thereof
KR20100100432A (en) A method for preparation of catalyst for ethylene (co)polymerization
KR20110115016A (en) A catalyst for ultra high molecular weight polyethylene(uhmwpe) and production method of uhmwpe using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right