KR20110115016A - A catalyst for ultra high molecular weight polyethylene(uhmwpe) and production method of uhmwpe using the same - Google Patents
A catalyst for ultra high molecular weight polyethylene(uhmwpe) and production method of uhmwpe using the same Download PDFInfo
- Publication number
- KR20110115016A KR20110115016A KR1020100034462A KR20100034462A KR20110115016A KR 20110115016 A KR20110115016 A KR 20110115016A KR 1020100034462 A KR1020100034462 A KR 1020100034462A KR 20100034462 A KR20100034462 A KR 20100034462A KR 20110115016 A KR20110115016 A KR 20110115016A
- Authority
- KR
- South Korea
- Prior art keywords
- compound
- catalyst
- molecular weight
- high molecular
- weight polyethylene
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/642—Component covered by group C08F4/64 with an organo-aluminium compound
- C08F4/6421—Titanium tetrahalides with organo-aluminium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/65—Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
- C08F4/652—Pretreating with metals or metal-containing compounds
- C08F4/654—Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
- C08F4/6546—Pretreating with metals or metal-containing compounds with magnesium or compounds thereof organo-magnesium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65916—Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/01—High molecular weight, e.g. >800,000 Da.
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
본 발명은 초고분자량 폴리에틸렌 제조용 촉매 및 이를 이용한 초고분자량 폴리에틸렌 제조방법에 관한 것으로서, (ⅰ) 마그네슘 할라이드 화합물을 알코올과 접촉 반응시켜 마그네슘 용액을 제조하는 단계; (ⅱ) 상기 마그네슘 화합물 용액과 디에스테르(Diester) 화합물을 반응시키는 단계; 및 (ⅲ) 상기 마그네슘 화합물 용액과 디에스테르 화합물의 반응물에 티타늄 화합물을 반응시키는 단계를 포함하는 방법에 의해 제조되어, 제어된 입자모양을 갖고, 입자 크기를 용이하게 조절할 수 있는 촉매, 및 상기 촉매를 이용한, 겉보기 밀도가 높고, 중합체의 평균 입자크기가 80~140㎛이고, 입자 크기 분포가 좁은 초고분자량 폴리에틸렌의 제조방법에 관한 것이다.The present invention relates to a catalyst for preparing ultra high molecular weight polyethylene and a method for producing ultra high molecular weight polyethylene using the same, comprising: (i) preparing a magnesium solution by bringing a magnesium halide compound into contact with an alcohol; (Ii) reacting the magnesium compound solution with a diester compound; And (iii) reacting the titanium compound with the reactant of the magnesium compound solution and the diester compound, the catalyst having a controlled particle shape and easily controlling the particle size, and the catalyst. The present invention relates to a method for producing ultra-high molecular weight polyethylene having a high apparent density, a polymer having an average particle size of 80 to 140 µm, and a narrow particle size distribution.
Description
본 발명은 초고분자량 폴리에틸렌 제조용 촉매 및 이를 이용한 초고분자량 폴리에틸렌의 중합방법에 관한 것으로, 보다 상세하게는, 초고분자량 폴리에틸렌 제조용의 마그네슘을 포함하는 담지체에 지지된 고체 착물 티타늄 촉매, 및 상기 촉매를 이용하여 제조되는, 겉보기 밀도가 높고 입자 크기 분포가 좁아서 큰 입자나 미세입자가 없는 초고분자량 폴리에틸렌의 제조방법에 관한 것이다.The present invention relates to a catalyst for preparing ultra high molecular weight polyethylene and a polymerization method of ultra high molecular weight polyethylene using the same, and more particularly, to a solid complex titanium catalyst supported on a support containing magnesium for preparing ultra high molecular weight polyethylene, and using the catalyst The present invention relates to a method for producing ultra-high molecular weight polyethylene prepared by the present invention, which has a high apparent density and a narrow particle size distribution, and thus contains no large particles or fine particles.
초고분자량 폴리에틸렌은 폴리에틸렌 수지의 한 종류로서, 분자량이 최소 106g/mol 이상인 폴리에틸렌을 가르키며, ASTM 4020에서는 "데카하이드로나프탈렌 용액 100ml에 0.05%로 함유되어 135℃하에서 상대점도가 2.30 내지 그 이상의 값을 가지는 선형 폴리에틸렌"이라 정의되고 있다. 초고분자량 폴리에틸렌은 범용 폴리에틸렌에 비해 분자량이 굉장히 크기 때문에 강성, 내마모성, 내환경 응력균일성, 자기 윤활성, 내화학 약품성 및 전기적 물성등이 뛰어난 특징을 갖고 있다. 이와같은 우수한 물성들로 인하여 초고분자량 폴리에틸렌은 범용 원료로부터 얻어지는 고품질의 특수 소재라고 할 수 있다.
Ultra high molecular weight polyethylene is a kind of polyethylene resin, and refers to polyethylene having a molecular weight of at least 10 6 g / mol or more, and according to ASTM 4020, "the relative viscosity at 135 ° C is 2.30 to more than 100% in 100 ml of decahydronaphthalene solution. Linear polyethylene with " Ultra high molecular weight polyethylene has much higher molecular weight than general-purpose polyethylene, so it has excellent characteristics such as rigidity, abrasion resistance, environmental stress uniformity, self lubrication, chemical resistance and electrical properties. Due to such excellent properties, ultra high molecular weight polyethylene can be said to be a high quality special material obtained from general purpose raw materials.
중합공정을 거쳐 제조된 초고분자량 폴리에틸렌은 분자량이 커서 범용 폴리에틸렌과 같이 펠렛화 할 수 없으므로 파우더 형태로 생산 판매되기 때문에, 파우더의 크기 및 분포가 매우 중요하다. 특히, 중합체 파우더의 입자 크기 분포 및 미세입자 존재 여부 등이 중요한 특성이라고 할 수 있다. 중합 파우더의 적절한 크기와 분포는 가공시 초고분자량 폴리에틸렌의 특성으로 통상적인 폴리에틸렌의 가공법인 용융가공이 어려우며, 적절한 용매에 용해시켜 가공하는 것으로 고려할 때 용이성 측면에서 주요한 특성이라 할수 있다. 이는 입자가 너무 크거나, 작더라도 입자 분포가 큰 경우에는 용해특성이 저해될 수 있기 때문이다.
Ultra-high molecular weight polyethylene produced through the polymerization process is a large molecular weight and can not be pelletized like a general-purpose polyethylene, so it is produced and sold in powder form, the size and distribution of the powder is very important. In particular, the particle size distribution and the presence of microparticles of the polymer powder is an important characteristic. Appropriate size and distribution of the polymerized powder is characteristic of ultra high molecular weight polyethylene during processing, which is difficult to melt processing, which is a conventional polyethylene processing method, and can be regarded as a major characteristic in terms of ease in consideration of processing by dissolving in an appropriate solvent. This is because dissolution characteristics may be impaired when the particle distribution is large even if the particles are too large or small.
이러한 초고분자량 폴리에틸렌 제조용 촉매로서, 마그네슘을 포함하고 티타늄에 기초를 둔 초고분자량 폴리에틸렌 제조용 촉매 및 촉매 제조 공정이 보고되어 왔다. 특히 위에서 언급한 겉보기 밀도가 높은 올레핀 중합용 촉매를 얻기 위해 마그네슘 화합물 용액을 이용한 촉매 제조 방법이 알려져 있다.As such a catalyst for producing ultra high molecular weight polyethylene, a catalyst for producing an ultra high molecular weight polyethylene and a catalyst production process based on titanium has been reported. In particular, a catalyst production method using a magnesium compound solution is known to obtain the catalyst for olefin polymerization having a high apparent density.
미국특허 제 4,962,167호에서는 마그네슘 할라이드 화합물과 티타늄알콕사이드 화합물의 반응물과, 알루미늄 할라이드와 실리콘 알콕사이드 화합물의 반응물을 함께 반응시켜 얻은 촉매 제조 공정을 공개하고 있다. 이와 같이 제조된 촉매는 비교적 높은 겉보기 밀도를 제공하나, 여전히 개선해야 할 점들이 있으며, 특히 촉매의 활성 면에서 개선해야할 여지가 있었다.US Patent No. 4,962,167 discloses a catalyst preparation process obtained by reacting a reactant of a magnesium halide compound with a titanium alkoxide compound and a reactant of an aluminum halide and a silicon alkoxide compound together. The catalyst thus prepared provides a relatively high apparent density, but there are still improvements to be made, particularly in terms of catalyst activity.
미국특허 제5,587,440호에서는 티타늄(Ⅳ)할라이드를 유기알루미늄 화합물로 환원시킨 다음 유기알루미늄화합물로 후처리 공정을 거쳐, 입자 크기 분포가 좁고, 겉보기 밀도가 높은 중합체를 제조하는 방법을 개시하고 있으나, 촉매의 활성이 상대적으로 낮은 단점이 있었다.U.S. Patent No. 5,587,440 discloses a method of preparing a polymer having a narrow particle size distribution and a high apparent density by reducing titanium (IV) halide to an organoaluminum compound and then subjecting it to an organoaluminum compound. There was a disadvantage of relatively low activity.
상기에서 살펴본 바와 같이, 제조 공정이 간단하면서도, 높은 중합 활성과, 촉매 입자가 조절되어 높은 폴리머 겉보기 밀도를 제공할 수 있으며, 특히 이에 의해 제조된 중합체의 입자 크기 분포가 좁아서 큰 입자나 미세 입자가 적은 새로운 초고분자량 폴리에틸렌 제조용 촉매의 개발이 요구되고 있다.
As described above, while the manufacturing process is simple, the high polymerization activity and the catalyst particles can be controlled to provide a high polymer apparent density, in particular the particle size distribution of the polymer produced is narrow, so that large particles or fine particles There is a need for development of new ultra high molecular weight polyethylene catalysts.
본 발명의 목적은 간단한 제조공정을 통해, 촉매 활성이 우수하며 촉매 입자의 형태가 조절되고, 중합된 중합체의 겉보기 밀도가 높고, 중합체의 입자 크기 분포가 좁아서 큰 입자나 미세 입자가 적은 새로운 초고분자량 폴리에틸렌 제조용 촉매 및 그 제조방법을 제공하는 것이다.The object of the present invention is a new ultra-high molecular weight with a small number of large particles or fine particles due to a simple manufacturing process, excellent catalyst activity, the shape of the catalyst particles is controlled, the apparent density of the polymerized polymer, the particle size distribution of the polymer is narrow The present invention provides a catalyst for producing polyethylene and a method for producing the same.
본 발명의 또 다른 목적은 본 발명의 초고분자량 폴리에틸렌 제조용 촉매를 이용한 초고분자량 폴리에틸렌의 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a method for producing ultra high molecular weight polyethylene using the catalyst for producing ultra high molecular weight polyethylene of the present invention.
본 발명의 다른 목적들과 유익성은 다음의 설명과 본 발명의 청구 범위를 참조하면 더욱 명확해질 것이다.
Other objects and benefits of the present invention will become more apparent with reference to the following description and claims of the present invention.
본 발명에 따른 초고분자량 폴리에틸렌 제조용 촉매는, 다음 단계들을 포함하는 방법에 따라 제조되는 것을 특징으로 한다:The ultrahigh molecular weight polyethylene production catalyst according to the invention is characterized in that it is prepared according to a process comprising the following steps:
(ⅰ) 마그네슘 할라이드 화합물을 알코올과 접촉 반응시켜 마그네슘 화합물 용액을 제조하는 단계;(Iii) contacting the magnesium halide compound with an alcohol to prepare a magnesium compound solution;
(ⅱ) 상기 마그네슘 화합물 용액과 디에스테르 화합물을 반응시키는 단계; 및(Ii) reacting the magnesium compound solution with a diester compound; And
(ⅲ) 상기 마그네슘 화합물 용액과 디에스테르 화합물의 반응물에 티타늄 화합물을 반응시켜 촉매를 제조하는 단계.(Iii) preparing a catalyst by reacting the titanium compound with the reactant of the magnesium compound solution and the diester compound.
상기 마그네슘 화합물 용액을 제조하는 단계 (i)에 있어서, 상기 마그네슘 할라이드 화합물로는 하기 군으로부터 선택되는 1종 또는 2종 이상의 혼합물을 사용할 수 있고, 또는 이들과 다른 금속과의 착화합물의 형태로도 사용될 수 있다: 염화마그네슘, 요오드화마그네슘, 불화마그네슘 및 브롬화마그네슘과 같은 디할로겐화마그네슘; 메틸마그네슘 할라이드, 에틸마그네슘 할라이드, 프로필마그네슘 할라이드, 부틸마그네슘 할라이드, 이소부틸마그네슘 할라이드, 헥실마그네슘 할라이드, 아밀마그네슘 할라이드 등과 같은 알킬마그네슘 할라이드; 메톡시마그네슘 할라이드, 에톡시마그네슘 할라이드, 이소프로폭시마그네슘 할라이드, 부톡시마그네슘 할라이드 및 옥톡시마그네슘 할라이드와 같은 알콕시마그네슘 할라이드; 및 페녹시마그네슘 할라이드 및 메틸페녹시마그네슘 할라이드와 같은 아릴옥시마그네슘 할라이드.In the step (i) of preparing the magnesium compound solution, the magnesium halide compound may be one or a mixture of two or more selected from the group below, or may be used in the form of a complex of these metals with other metals. May be: magnesium halides such as magnesium chloride, magnesium iodide, magnesium fluoride and magnesium bromide; Alkylmagnesium halides such as methylmagnesium halide, ethylmagnesium halide, propylmagnesium halide, butylmagnesium halide, isobutylmagnesium halide, hexylmagnesium halide, amylmagnesium halide and the like; Alkoxymagnesium halides such as methoxymagnesium halide, ethoxymagnesium halide, isopropoxymagnesium halide, butoxymagnesium halide and octoxymagnesium halide; And aryloxymagnesium halides such as phenoxyshimamium halide and methylphenoxymagnesium halide.
위에서 열거한 화합물들은 간단한 화학식으로 나타낼 수 있으나, 어떤 경우에는 마그네슘 화합물의 제조방법에 따라 간단한 식으로 나타낼 수 없는 경우가 있다. 이런 경우에는 일반적으로 열거한 마그네슘 화합물의 혼합물로 간주할 수 있다. 예를 들어, 마그네슘 화합물을 폴리실록산 화합물, 할로겐 함유 실란 화합물, 에스테르, 알코올 등과 반응시켜 얻은 화합물; 마그네슘 금속을 할로 실란, 오염화인, 또는 염화티오닐 존재 하에서 알코올, 페놀 또는 에테르와 반응시켜 얻은 화합물들도 본 발명에 사용될 수 있다. 바람직한 마그네슘 화합물은 마그네슘 할라이드, 특히 염화 마그네슘, 알킬 마그네슘 클로라이드, 바람직하기로는 C1~C10의 알킬기를 갖는 것, 알콕시 마그네슘 클로라이드, 바람직하기로는 C1~C10의 알콕시기를 갖는 것, 그리고 아릴옥시 마그네슘 클로라이드, 바람직하기로는 C6~C20의 아릴옥시기를 갖는 것이다.The compounds listed above may be represented by simple chemical formulas, but in some cases, they may not be represented by simple formulas depending on the method of preparing magnesium compounds. In this case, it can be regarded as a mixture of magnesium compounds listed generally. For example, a compound obtained by reacting a magnesium compound with a polysiloxane compound, a halogen-containing silane compound, an ester, an alcohol, or the like; Compounds obtained by reacting magnesium metal with an alcohol, phenol or ether in the presence of halo silane, phosphorus pentachloride, or thionyl chloride can also be used in the present invention. Preferred magnesium compounds are magnesium halides, in particular magnesium chloride, alkyl magnesium chloride, preferably having alkyl groups of C1 to C10, alkoxy magnesium chloride, preferably having alkoxy groups of C1 to C10, and aryloxy magnesium chloride, preferably Below, it has C6-C20 aryloxy group.
상기 마그네슘 화합물 용액을 제조하는 단계 (i)에 있어서, 상기 마그네슘 화합물 용액은, 탄화수소 용매의 존재 또는 부재 하에서, 상기 마그네슘 화합물에 알코올을 접촉반응시켜 제조할 수 있으며, 바람직하게는 탄화수소 용매 존재 하에서 제조된다.In the step (i) of preparing the magnesium compound solution, the magnesium compound solution may be prepared by contacting an alcohol to the magnesium compound in the presence or absence of a hydrocarbon solvent, preferably in the presence of a hydrocarbon solvent. do.
여기에서 사용되는 알코올로는 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올, 헥산올, 옥탄올, 데칸올, 도데칸올, 옥타데실알코올, 벤질알코올, 페닐에틸알코올, 이소프로필벤질알코올, 쿠밀알코올과 같은 탄소수 1 내지 20의 알코올이 1종 이상 사용될 수 있고, 바람직하게는 탄소수 1 내지 12의 알코올이 사용될 수 있다.Alcohols used here include methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, dodecanol, octadecyl alcohol, benzyl alcohol, phenylethyl alcohol, isopropylbenzyl alcohol, cumyl alcohol, and the like. One or more alcohols having 1 to 20 carbon atoms may be used, and preferably, alcohols having 1 to 12 carbon atoms may be used.
상기 마그네슘 화합물 용액의 제조 단계에서, 상기 알코올의 사용량은 원하는 촉매의 평균 입자크기 및 입자 크기 분포에 따라 다를 수 있으나, 마그네슘 화합물 1몰 당 적어도 0.5몰, 바람직하게는 약 1.0몰 내지 20몰, 더욱 바람직하게는 약 2.0몰 내지 10몰이다. 상기 알코올의 사용량이 0.5몰 미만인 경우 마그네슘 화합물의 용해가 어렵고, 20몰을 초과하는 경우에는 촉매 제조과정 중 촉매입자를 얻기 위해 투입되는 티타늄 화합물의 양이 지나치게 많아지며, 입자 크기의 조절이 어려워진다.In the preparation of the magnesium compound solution, the amount of alcohol used may vary depending on the average particle size and particle size distribution of the desired catalyst, but at least 0.5 mole, preferably about 1.0 mole to 20 mole, more preferably per mole of magnesium compound. Preferably from about 2.0 moles to 10 moles. When the amount of the alcohol is less than 0.5 mole, dissolution of the magnesium compound is difficult, and when the amount of the alcohol exceeds 20 mole, the amount of the titanium compound added to obtain the catalyst particles during the preparation of the catalyst becomes too large, and the particle size becomes difficult to control. .
상기 마그네슘 화합물 용액의 제조 단계에서, 상기 탄화수소 용매로는 펜탄, 헥산, 헵탄, 옥탄, 데칸 및 케로센과 같은 지방족 탄화수소; 시클로펜탄, 메틸시클로펜탄, 시클로헥산 및 메틸시클로헥산과 같은 지환족 탄화수소; 벤젠, 톨루엔, 크실렌, 에틸벤젠, 큐멘 및 시멘과 같은 방향족 탄화수소; 디클로로프로판, 디클로로에틸렌, 트리클로로에틸렌, 사염화탄소 및 클로로벤젠과 같은 할로겐화 탄화수소가 사용될 수 있다.In the preparation of the magnesium compound solution, the hydrocarbon solvent may include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane and kerosene; Alicyclic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane and methylcyclohexane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene and cymene; Halogenated hydrocarbons such as dichloropropane, dichloroethylene, trichloroethylene, carbon tetrachloride and chlorobenzene can be used.
마그네슘 화합물 용액의 제조 단계에서, 상기 마그네슘 할라이드 화합물과 알코올의 접촉 반응시 반응온도는 알코올의 종류 및 양에 따라 다르지만, 적어도 약 -25℃, 바람직하게는 -10~200℃, 더욱 바람직하게는 약 0~150℃이고, 반응시간은 약 15분~5시간이고, 바람직하게는 약 30분~4시간이다.
In the step of preparing a magnesium compound solution, the reaction temperature during the contact reaction between the magnesium halide compound and the alcohol depends on the type and amount of the alcohol, but at least about -25 ° C, preferably -10 to 200 ° C, more preferably about It is 0-150 degreeC, reaction time is about 15 minutes-5 hours, Preferably it is about 30 minutes-4 hours.
상기 마그네슘 화합물 용액과 전자공여체로서 사용되는 디에스테르 화합물을 반응시키는 (ii)단계에 있어서, 상기 디에스테르 화합물은 두 개의 에스테르기를 가진 유기화합물을 총칭하며, 다음의 일반식으로 표시된다:In the step (ii) of reacting the magnesium compound solution with a diester compound used as an electron donor, the diester compound is a generic term for an organic compound having two ester groups, and is represented by the following general formula:
C6H4-1-[CO2-R]-a-[CO2-R']2 C 6 H 4 -1- [CO 2 -R] -a- [CO 2 -R '] 2
(여기에서 R, R'는 C1~C20의 탄화수소로, 알킬, 이소알킬, 터셔리알킬, 알케닐, 아릴 등이며, 같거나 다를 수도 있으며, a는 2, 3 또는 4의 자연수이다).(Wherein R and R 'are C1-C20 hydrocarbons, alkyl, isoalkyl, tertiaryalkyl, alkenyl, aryl, etc., may be the same or different, and a is a natural number of 2, 3 or 4).
상기 디에스테르 화합물로는 디메틸프탈레이트, 디에틸프탈레이트, 디프로필프탈레이트, 디부틸프탈레이트, 디이소부틸프탈레이트, 디옥틸프탈레이트, 디알릴프탈레이트, 디시클로헥실프탈레이트, 벤질부틸프탈레이트, 디페닐프탈레이트, 디메틸이소프탈레이트, 디페닐이소프탈레이트, 디메틸테레프탈레이트, 디옥틸테레프탈레이트 등이 있으며, 이 외에도 상기 일반식을 만족하는 다른 화합물들이 사용될 수 있다.Examples of the diester compound include dimethyl phthalate, diethyl phthalate, dipropyl phthalate, dibutyl phthalate, diisobutyl phthalate, dioctyl phthalate, diallyl phthalate, dicyclohexyl phthalate, benzyl butyl phthalate, diphenyl phthalate, and dimethyl isophthalate. , Diphenyl isophthalate, dimethyl terephthalate, dioctyl terephthalate, and the like, and other compounds satisfying the above general formula may be used.
상기 디에스테르 화합물의 사용량은 마그네슘 할라이드 화합물 1몰 당 0.5~0.01몰이 적당하며, 더욱 바람직하게는 0.2~0.05몰이 적당하며, 상기 범위에서 본 발명에서 수득하고자 하는 촉매 특징이 가장 잘 나타난다.The amount of the diester compound used is 0.5 to 0.01 mole per mole of magnesium halide compound, more preferably 0.2 to 0.05 mole is appropriate, the catalyst characteristics to be obtained in the present invention is most well represented in the above range.
상기 마그네슘 화합물 용액과 디에스테르 화합물을 반응시키는 (ii)단계에 있어서, 반응온도는 0~100℃가 적당하며, 바람직하게는 10~70℃의 온도가 사용될 수 있다.
In the step (ii) of reacting the magnesium compound solution with the diester compound, the reaction temperature is suitably 0 to 100 ° C., preferably 10 to 70 ° C. may be used.
상기 촉매를 제조하는 단계 (iii)에 있어서, 상기 마그네슘 화합물 용액에 하기 일반식으로 표시되는 액상의 티타늄 화합물을 반응시켜 촉매입자를 재결정시킨다:In step (iii) of preparing the catalyst, catalyst particles are recrystallized by reacting the magnesium compound solution with a liquid titanium compound represented by the following general formula:
Ti(OR)aX4-a Ti (OR) a X 4-a
(여기에서, R은 탄소수 1~10의 알킬기, X는 할로겐원자 및 a는 0≤a≤4의 자연수).(Wherein R is an alkyl group having 1 to 10 carbon atoms, X is a halogen atom and a is a natural number of 0 ≦ a ≦ 4).
상기 일반식을 만족하는 티타늄 화합물로는, TiCl4, TiBr4, TiI4와 같은 사할로겐화 티타늄; Ti(OCH3)Cl3, Ti(OC2H5)Cl3, Ti(OC2H5)Br3 및 Ti(O(i-C4H9)Br3과 같은 삼할로겐화 알콕시티타늄; Ti(OCH3)2Cl2, Ti(OC2H5)2Cl2, Ti(O(i-C4H9)2Cl2 및 Ti(OC2H5)2Br2와 같은 이할로겐화 알콕시티타늄; 및 Ti(OCH3)4, Ti(OC2H5)4 및 Ti(OC4H9)4와 같은 테트라알콕시티타늄이 있으며, 단독으로 또는 혼합물로서 상기 촉매 제조단계에 사용될 수 있다. 바람직한 티타늄 화합물은 할로겐 함유 티타늄 화합물이며, 더욱 바람직한 티타늄 화합물은 사염화티타늄이다.Examples of the titanium compound satisfying the general formula include titanium tetrahalide such as TiCl 4 , TiBr 4 , and TiI 4 ; Ti (OCH 3) Cl 3, Ti (OC 2 H 5) Cl 3, Ti (OC 2 H 5) Br 3 and Ti (O (iC 4 H 9 ) three halogenated alkoxy titanium such as Br 3; Ti (OCH 3 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Cl 2 , dihalogenated alkoxytitanium titanium such as Ti (O (iC 4 H 9 ) 2 Cl 2 and Ti (OC 2 H 5 ) 2 Br 2 ; and Ti (OCH 3 ) tetraalkoxytitaniums such as 4 , Ti (OC 2 H 5 ) 4 and Ti (OC 4 H 9 ) 4 , which may be used alone or as a mixture in the catalyst preparation step. Compound, and a more preferable titanium compound is titanium tetrachloride.
상기 티타늄 화합물은 마그네슘 화합물 용액을 재결정시키기 위해 사용하는 것으로, 상기 티타늄 화합물의 양은 마그네슘 할라이드 화합물 1몰 당 0.1~200몰이 적당하며, 바람직하게는 0.1~100몰이고, 더욱 바람직하게는 0.2~80몰이다.The titanium compound is used to recrystallize the magnesium compound solution, the amount of the titanium compound is preferably 0.1 to 200 moles per mole of magnesium halide compound, preferably 0.1 to 100 moles, more preferably 0.2 to 80 moles to be.
마그네슘 화합물 용액과 티타늄 화합물을 접촉 반응시킬 때의 반응조건에 따라 재결정된 고체 성분의 모양, 크기는 많이 변화한다. 따라서 마그네슘 화합물 용액과 티타늄 화합물의 접촉 반응은 충분히 낮은 온도에서 행하는 것이 좋으며, 바람직하게는 -70~70℃, 더욱 바람직하게는 -50~50℃에서 접촉 반응을 수행하는 것이 좋다. 접촉 반응 후 서서히 반응 온도를 올려서 50~150℃에서 0.5시간 내지 5시간 동안 충분히 반응시킨다.The shape and size of the recrystallized solid component vary greatly depending on the reaction conditions when the magnesium compound solution and the titanium compound are brought into contact with each other. Therefore, the contact reaction between the magnesium compound solution and the titanium compound is preferably performed at a sufficiently low temperature, preferably, the contact reaction is performed at -70 to 70 ° C, more preferably at -50 to 50 ° C. After the contact reaction, the reaction temperature was gradually raised to fully react for 0.5 hours to 5 hours at 50 to 150 ° C.
상기 단계 (iii)에서 수득된 고체 촉매 입자는 추가의 티타늄 화합물과 더 반응시킬 수 있다. 상기 추가의 티타늄 화합물로는 티타늄 할라이드 및 알콕시기의 탄소수가 1 내지 20인 할로겐화알콕시 티타늄이 단독으로 또는 혼합물로서 사용될 수 있으며, 바람직하게는 티타늄 할라이드 및 알콕시기의 탄소수가 1 내지 8인 할로겐화알콕시 티타늄, 보다 바람직하게는 티타늄 테트라할라이드가 사용된다.
The solid catalyst particles obtained in step (iii) can be further reacted with additional titanium compounds. The further titanium compound may be used alone or as a mixture of halogenated alkoxy titanium having 1 to 20 carbon atoms of titanium halide and alkoxy group, preferably halogenated alkoxy titanium having 1 to 8 carbon atoms of titanium halide and alkoxy group More preferably titanium tetrahalide is used.
본 발명에 따른 방법에 의해 제조된 촉매는 초고분자량 폴리에틸렌의 제조를 위해 에틸렌의 중합 및 공중합, 특히 에틸렌의 단독 중합 및 에틸렌과 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센과 같은 탄소수 3 이상의 α-올레핀과의 공중합에 사용된다.The catalysts produced by the process according to the invention are suitable for the polymerization and copolymerization of ethylene for the production of ultra high molecular weight polyethylene, in particular homopolymerization of ethylene and ethylene and propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, It is used for copolymerization with an α-olefin having 3 or more carbon atoms such as 1-hexene.
본 발명의 촉매 존재 하에서의 중합 반응은 (ⅰ) 마그네슘, 티타늄, 할로겐 원자 및 전자공여체로 이루어진 본 발명에 의한 고체 착물 티타늄 촉매와, (ⅱ) 주기율표 제 Ⅱ족 또는 제 Ⅲ족 유기금속 화합물을 포함하는 촉매계를 사용하여 수행된다.The polymerization reaction in the presence of the catalyst of the present invention comprises (i) a solid complex titanium catalyst according to the invention consisting of magnesium, titanium, a halogen atom and an electron donor, and (ii) an organometallic compound of Group II or III of the periodic table. It is carried out using a catalyst system.
본 발명의 고체 착물 티타늄 촉매 성분은 중합 반응에 성분으로 사용되기 전에 에틸렌 또는α-올레핀으로 전중합하여 사용할수 있다. 전중합은 촉매 입자를 폴리머로 둘러싸서 촉매 형상을 유지시켜 중합 후에 폴리머의 형상을 좋게 하는데 도움을 준다. 전중합은 헥산과 같은 탄화수소 용매 존재 하에서, 충분히 낮은 온도 및 에틸렌 또는 α-올레핀 압력 조건 하에서, 상기 촉매 성분 및 트리에틸알루미늄과 같은 유기알루미늄 화합물의 존재 하에 행할 수 있다. 전중합 후의 폴리머/촉매의 중량비는 대개 0.1:1 내지 20:1 이다.The solid complex titanium catalyst component of the present invention may be prepolymerized with ethylene or α-olefin before being used as a component in the polymerization reaction. Prepolymerization helps to improve the shape of the polymer after polymerization by surrounding the catalyst particles with a polymer to maintain the catalyst shape. Prepolymerization can be carried out in the presence of a hydrocarbon solvent such as hexane, at sufficiently low temperatures and under conditions of ethylene or α-olefin pressure, in the presence of the catalyst component and an organoaluminum compound such as triethylaluminum. The weight ratio of polymer / catalyst after prepolymerization is usually from 0.1: 1 to 20: 1.
상기 (ii) 유기금속 화합물의 일반식은 MRn으로, 여기에서 M은 마그네슘, 칼슘, 아연, 붕소, 알루미늄, 갈륨과 같은 주기율표 Ⅱ족 또는 ⅢA족 금속 성분이며, R은 메틸, 에틸, 부틸, 헥실, 옥틸, 데실과 같은 C1~C20의 알킬기를 나타내며, n은 금속 성분의 원자가를 표시한다. 상기 유기금속 화합물로는, 트리에틸알루미늄, 트리이소부틸알루미늄과 같이 C1~C6의 알킬기를 갖는 트리알킬알루미늄 및 이들의 혼합물이 유익하다. 경우에 따라서는, 에틸알루미늄 디클로라이드, 디에틸알루미늄 클로라이드, 에틸알루미늄 세스퀴클로라이드 및 디이소부틸알루미늄히드리드와 같은 한 개 이상의 할로겐 원자 또는 히드리드기를 갖는 유기알루미늄 화합물이 사용될 수 있다. 상기 (ii) 유기 금속 화합물의 농도는 유기금속 화합물 중의 금속 원자로 계산하여 촉매 (ⅰ)중 티타늄 원자의 몰 당 약 1~2000몰이며, 더욱 바람직하게는 약 5~500몰이다.The general formula of the above (ii) organometallic compound is MR n , where M is a periodic table group II or IIIA metal component such as magnesium, calcium, zinc, boron, aluminum, gallium, and R is methyl, ethyl, butyl, hexyl C1-C20 alkyl groups, such as, octyl, and decyl, are represented, and n represents the valence of a metal component. As said organometallic compound, trialkylaluminum which has C1-C6 alkyl groups like triethylaluminum and triisobutylaluminum, and a mixture thereof are advantageous. In some cases, organoaluminum compounds having one or more halogen atoms or hydride groups may be used, such as ethylaluminum dichloride, diethylaluminum chloride, ethylaluminum sesquichloride and diisobutylaluminum hydride. The concentration of the (ii) organometallic compound is about 1 to 2000 moles, more preferably about 5 to 500 moles per mole of titanium atoms in the catalyst (i), calculated from the metal atoms in the organometallic compound.
본 발명의 촉매를 이용한 중합 반응은 유기용매 부재하에서 기상 또는 벌크 중합 방법 또는 유기용매 존재 하에서 액상 슬러리 중합 방법으로 실시하는 것이 가능하다. 상기 중합 방법은 산소, 물, 그리고 촉매독으로 작용할 수 있는 기타 화합물의 부재 하에서 수행된다. 기상 중합의 경우에 상기 (i) 고체 착물 티타늄 촉매의 양은 중합대역 1리터에 대하여 촉매의 티타늄 원자로 약 0.001~5밀리몰, 바람직하게는 약 0.001~1.0밀리몰, 더욱 바람직하게는 약 0.01~0.5밀리몰인 것이 좋다. 액상 슬러리 중합의 경우에 상기 본 발명의 (i) 고체 착물 티타늄 촉매의 중합 반응계상의 농도는 용매 1리터에 대하여 촉매의 티타늄 원자로 약 0.001~5밀리몰, 바람직하게는 약 0.001~0.5밀리몰이다. 상기 액상 슬러리 중합에서 사용될 수 있는 용매로는 펜탄, 헥산, 헵탄, n-옥탄, 이소옥탄, 시클로헥산, 메틸시클로헥산과 같은 알칸 또는 시클로알칸; 톨루엔, 자이렌, 에틸벤젠, 이소프로필벤젠, 에틸톨루엔, n-프로필벤젠, 디에틸벤젠과 같은 알킬아로마틱; 클로로벤젠, 클로로나프탈렌 및 오소-디클로로벤젠과 같은 할로겐화 아로마틱; 및 이들의 혼합물이 바람직하다.The polymerization reaction using the catalyst of the present invention can be carried out by a gas phase or bulk polymerization method in the absence of an organic solvent or a liquid slurry polymerization method in the presence of an organic solvent. The polymerization process is carried out in the absence of oxygen, water and other compounds that can act as catalyst poisons. In the case of gas phase polymerization, the amount of the (i) solid complex titanium catalyst is about 0.001 to 5 millimoles, preferably about 0.001 to 1.0 millimoles, more preferably about 0.01 to 0.5 millimoles of titanium atoms of the catalyst per liter of the polymerization zone. It is good. In the case of liquid phase slurry polymerization, the concentration of the (i) solid complex titanium catalyst of the present invention on the polymerization reaction system is about 0.001 to 5 mmol, preferably about 0.001 to 0.5 mmol, of titanium atoms of the catalyst per 1 liter of solvent. Solvents that can be used in the liquid slurry polymerization include alkanes or cycloalkanes such as pentane, hexane, heptane, n-octane, isooctane, cyclohexane, methylcyclohexane; Alkylaromatics such as toluene, xylene, ethylbenzene, isopropylbenzene, ethyltoluene, n-propylbenzene, diethylbenzene; Halogenated aromatics such as chlorobenzene, chloronaphthalene and ortho-dichlorobenzene; And mixtures thereof.
높은 중합속도를 얻기 위해 중합 반응은 중합 공정에 상관없이 충분히 높은 온도에서 수행한다. 일반적으로 약 20~200℃가 적당하며, 바람직하게는 20~95℃가 좋다. 중합시의 단량체의 압력은 대기압 내지 100기압이 적절하며, 더욱 바람직하게는 2 내지 50기압의 압력이 적당하다.In order to obtain a high polymerization rate, the polymerization reaction is carried out at a sufficiently high temperature regardless of the polymerization process. Generally about 20-200 degreeC is suitable, Preferably 20-95 degreeC is good. As for the pressure of the monomer at the time of superposition | polymerization, atmospheric pressure-100 atmospheres are suitable, More preferably, the pressure of 2-50 atmospheres is suitable.
본 발명의 중합방법에서 얻어진 생성물은, 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체일 수 있는, 고체의 초고분자량 폴리에틸렌으로, 고유점도가 3~50dl/g이고, 평균입자크기가 80~140㎛이며, 중합체의 수율도 충분히 높아서 촉매 잔사의 제거가 필요하지 않고, 우수한 겉보기 밀도와 유동성을 갖고 있다.
The product obtained by the polymerization method of the present invention is a solid ultra high molecular weight polyethylene, which may be an ethylene homopolymer or a copolymer of ethylene and an α-olefin, has an intrinsic viscosity of 3 to 50 dl / g, and an average particle size of 80 to 140 It is micrometer, and the yield of a polymer is also high enough, and the removal of a catalyst residue is not necessary and it has the outstanding apparent density and fluidity.
본 발명의 촉매 제조방법을 통해, 촉매 활성이 우수하며 촉매 입자의 형태가 조절될 수 있는 촉매를 제조할 수 있고, 상기 제조된 중합된 중합체의 겉보기 밀도가 높고, 중합체의 입자 크기 분포가 좁아서 큰 입자나 미세 입자가 적은 새로운 초고분자량 폴리에틸렌을 얻을 수 있다.
Through the catalyst preparation method of the present invention, it is possible to prepare a catalyst having excellent catalyst activity and controllable form of catalyst particles, high apparent density of the prepared polymerized polymer, and narrow particle size distribution of the polymer. It is possible to obtain new ultra high molecular weight polyethylene with few particles or fine particles.
이하 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나, 이들 실시예들은 예시적인 목적일 뿐 본 발명이 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these examples are for illustrative purposes only, and the present invention is not limited to these examples.
실시예Example 1 One
[초고분자량 폴리에틸렌 제조용 고체 촉매의 제조][Preparation of solid catalyst for the production of ultra high molecular weight polyethylene]
촉매를 하기의 3단계를 거쳐 제조하였다.The catalyst was prepared through the following three steps.
(ⅰ) 단계: 마그네슘 화합물 용액의 제조(Iii) Step: Preparation of Magnesium Compound Solution
질소 분위기로 치환된 기계식 교반기가 설치된 10L 반응기에 MgCl2 11.5g, 데칸 400ml를 넣고 300rpm으로 교반시킨 후, 2-에틸헥산올 80ml를 투입하고 온도를 120℃로 승온시키고 3시간 동안 반응시켰다. 반응 후에 얻어진 균일한 용액을 상온(25℃)으로 식혔다.11.5 g of MgCl 2 and 400 ml of decane were added to a 10 L reactor equipped with a mechanical stirrer replaced with a nitrogen atmosphere, and stirred at 300 rpm. 80 ml of 2-ethylhexanol was added thereto, and the temperature was raised to 120 ° C. and reacted for 3 hours. The homogeneous solution obtained after the reaction was cooled to room temperature (25 ° C).
(ⅱ) 단계: 마그네슘 화합물 용액과 (Ii) step: magnesium compound solution 디에스테르Diester 화합물의 접촉반응 Contact reaction of compounds
(i) 단계에서 수득된 마그네슘 화합물 용액에 디에틸프탈레이트 3.3ml를 첨가하여 1시간 동안 반응시켰다.3.3 ml of diethylphthalate was added to the magnesium compound solution obtained in step (i) and reacted for 1 hour.
(ⅲ) 단계: 티타늄 화합물의 첨가(Iii) step: addition of titanium compound
(ii) 단계에서 수득된 마그네슘 화합물 용액과 디에스테르 화합물의 반응 용액을 실온(25℃)으로 냉각하고, 사염화티타늄 60ml를 데칸 50ml으로 희석시킨 용액을 1시간 동안 적가하였다. 적가가 완료되면, 1시간에 걸쳐 반응기의 온도를 80℃로 승온시켜 1시간 동안 유지하였다. 교반을 정지한 후 상층의 용액을 분리한 다음 남은 고체층에 데칸 300ml와 사염화티타늄 100ml를 연속으로 주입하고, 온도를 100℃로 승온시킨 후 2시간 동안 유지하였다. 그 후, 반응기를 실온으로 냉각하여 미반응 유리 사염화타타늄이 제거될 때까지 헥산 400ml를 주입하여 세척하였다.The reaction solution of the magnesium compound solution and diester compound obtained in step (ii) was cooled to room temperature (25 ° C.), and a solution of 60 ml of titanium tetrachloride diluted with 50 ml of decane was added dropwise for 1 hour. When the dropping was completed, the temperature of the reactor was raised to 80 ° C. over 1 hour and maintained for 1 hour. After the stirring was stopped, the solution of the upper layer was separated, and then 300 ml of decane and 100 ml of titanium tetrachloride were continuously injected into the remaining solid layer, and the temperature was raised to 100 ° C. and maintained for 2 hours. Thereafter, the reactor was cooled to room temperature and 400 ml of hexane was washed until unreacted free titanium tetrachloride was removed.
이렇게 제조된 고체 촉매의 티타늄 함량은 3.2중량%이었다. The titanium content of the solid catalyst thus prepared was 3.2% by weight.
[중합][polymerization]
용량 2 리터의 고압 반응기를 오븐에 말려 뜨거운 상태로 조립한 후, 질소와 진공을 교대로 3회 조작하여 반응기 안을 질소 분위기로 만들었다. n-헥산 1000ml를 반응기에 주입한 후 트리이소부틸알루미늄 1밀리몰 및 상기에서 제조된 고체 촉매를 티타늄 원자 기준으로 0.005밀리몰 주입하였다. 700rpm으로 교반시키면서 반응기의 온도를 70℃로 올리고 에틸렌 압력을 200psi로 조정하면서 두 시간 동안 중합을 실시하였다. 중합이 끝난 후 반응기의 온도를 상온으로 내리고, 중합 내용물에 과량의 에탄올 용액을 가하였다. 생성된 중합체는 분리수집하고, 50℃의 진공오븐에서 최소한 6시간 동안 건조하여 백색 분말의 폴리에틸렌을 얻었다.
After the high-pressure reactor with a capacity of 2 liters was dried in an oven and assembled in a hot state, nitrogen and vacuum were alternately operated three times to make the inside of the reactor into a nitrogen atmosphere. After 1000 ml of n-hexane was injected into the reactor, 1 mmol of triisobutylaluminum and the solid catalyst prepared above were injected at 0.005 mmol based on the titanium atom. The polymerization was carried out for two hours while raising the temperature of the reactor to 70 ° C. while stirring at 700 rpm and adjusting the ethylene pressure to 200 psi. After the polymerization was completed, the temperature of the reactor was lowered to room temperature, and excess ethanol solution was added to the polymerization contents. The resulting polymer was collected separately and dried in a vacuum oven at 50 ° C. for at least 6 hours to obtain a white powder of polyethylene.
중합 활성(kg 폴리에틸렌/g 촉매)은 사용한 촉매량(g) 당 생성된 중합체의 무게(g)비로 계산하였다.
Polymerization activity (kg polyethylene / g catalyst) was calculated as the weight (g) ratio of the resulting polymer per gram of catalyst used.
중합체의 입자크기 분포도는 레이저 입자 분석기(Mastersizer X, Malvern Instruments)를 이용하여 측정하였고, 중합체의 분포도는 (d90-d10 ))/d50으로 계산하였다. 여기서 d10, d50 및 d90은 각각 10%, 50% 및 90%의 샘플이 나타내는 입자크기를 의미하며, d50은 평균 입자크기를 나타낸다. 중합 결과는 중합체의 겉보기 밀도(g/ml)와 함께 표 1에 나타내었다.
The particle size distribution of the polymer was measured using a laser particle analyzer (Mastersizer X, Malvern Instruments), and the distribution of the polymer was calculated as (d 90 -d 10 ) ) / d 50 . Where d 10 , d 50 and d 90 refer to particle sizes indicated by 10%, 50% and 90% of the sample, respectively, and d 50 represents the average particle size. The polymerization results are shown in Table 1 together with the apparent density (g / ml) of the polymer.
중합체의 고유점도는 ISO 1628 Part3에 따라 데카하이드로나프탈렌 (Decahydronaphthalene) 용매를 사용하여 중합체를 녹여 상대점도를 측정한 후, 이 상대점도 값을 농도가 0인 경우의 값으로 외삽하여 산출할 수 있다. 이로부터 당 업계에 잘 알려진 마르골리스(Margolies's) 수식 (Mv=5.34×104×[η]1.49, Mv=점도평균분자량, η=고유점도)을 사용하여 평균분자량(Mv)을 계산하였다.
The intrinsic viscosity of the polymer can be calculated by dissolving the polymer using a decahydronaphthalene solvent according to ISO 1628 Part 3 to measure the relative viscosity, and then extrapolating the relative viscosity value to a value of zero concentration. From this, the average molecular weight (Mv) was calculated using the Margolies's formula (Mv = 5.34 × 10 4 × [η] 1.49 , Mv = viscosity average molecular weight, η = intrinsic viscosity) which is well known in the art.
실시예Example 2 2
실시예 1의 촉매제조과정 중 (ii) 단계에서, 디에틸프탈레이트를 1.7mL로 조정한 것을 제외하고는, 실시예 1과 동일한 조건으로 촉매를 제조하고, 얻어진 촉매를 이용하여 실시예 1과 동일하게 중합을 실시하였다. 결과는 표 1에 정리하였다.
In the step (ii) of the preparation of the catalyst of Example 1, the catalyst was prepared under the same conditions as in Example 1, except that diethylphthalate was adjusted to 1.7 mL, and the catalyst was obtained in the same manner as in Example 1. It superposed | polymerized easily. The results are summarized in Table 1.
실시예Example 3 3
실시예 1의 촉매제조과정 중 (ii) 단계에서, 디에틸프탈레이트를 0.9mL로 조정한 것을 제외하고는, 실시예 1과 동일한 조건으로 촉매를 제조하고, 얻어진 촉매를 이용하여 실시예 1과 동일하게 중합을 실시하였다. 결과는 표 1에 정리하였다.
In the step (ii) of the preparation of the catalyst of Example 1, except that the diethyl phthalate was adjusted to 0.9 mL, the catalyst was prepared under the same conditions as in Example 1, and the catalyst was obtained in the same manner as in Example 1 It superposed | polymerized easily. The results are summarized in Table 1.
실시예Example 4 4
실시예 1의 촉매제조과정 중 (ii) 단계에서, 디에틸프탈레이트 대신에 디이소부틸프탈레이트 3.4mL를 사용한 것을 제외하고는, 실시예 1과 동일한 조건으로 촉매를 제조하고, 얻어진 촉매를 이용하여 실시예 1과 동일하게 중합을 실시하였다. 결과는 표 1에 정리하였다.
In the step (ii) of preparing the catalyst of Example 1, except that 3.4 mL of diisobutyl phthalate was used instead of diethyl phthalate, a catalyst was prepared under the same conditions as in Example 1, and the reaction was performed using the obtained catalyst. The polymerization was carried out in the same manner as in Example 1. The results are summarized in Table 1.
실시예Example 5 5
실시예 1의 촉매제조과정 중 (ii) 단계에서, 디에틸프탈레이트 대신에 디-n-부틸프탈레이트 3.4ml를 사용한 것을 제외하고는, 실시예 1과 동일한 조건으로 촉매를 제조하고, 얻어진 촉매를 이용하여 실시예 1과 동일하게 중합을 실시하였다. 결과는 표 1에 정리하였다.
In the step (ii) of preparing the catalyst of Example 1, a catalyst was prepared under the same conditions as in Example 1, except that 3.4 ml of di-n-butylphthalate was used instead of diethyl phthalate, and the obtained catalyst was used. The polymerization was carried out in the same manner as in Example 1. The results are summarized in Table 1.
비교예Comparative example 1 One
실시예 1의 촉매제조과정 중 (ⅱ) 단계에서, 디에틸프탈레이트를 사용하지 않은 것을 제외하고는, 실시예 1과 동일한 조건으로 촉매를 제조하였다. 제조된 촉매의 티타늄 함량은 4.8중량%이었다. 이렇게 제조된 촉매를 이용하여 실시예 1과 동일하게 중합을 실시하였다. 결과는 표 1에 나타내었다.In step (ii) of the catalyst preparation process of Example 1, a catalyst was prepared under the same conditions as in Example 1, except that diethylphthalate was not used. The titanium content of the prepared catalyst was 4.8 wt%. The polymerization was carried out in the same manner as in Example 1 using the catalyst thus prepared. The results are shown in Table 1.
(kg PE/g촉매)activation
(kg PE / g catalyst)
(g/ml)Apparent density
(g / ml)
(Intrinsic Viscosity)(dl/g)Intrinsic viscosity
(Intrinsic Viscosity) (dl / g)
(g/몰)Average molecular weight, Mv
(g / mol)
크기(㎛)Average particle
Size (μm)
Claims (7)
(ⅰ) 마그네슘 할라이드 화합물을 알코올과 접촉 반응시켜 마그네슘 화합물 용액을 제조하는 단계;
(ⅱ) 상기 마그네슘 화합물 용액과 디에스테르 화합물을 반응시키는 단계; 및
(ⅲ) 상기 마그네슘 화합물 용액과 디에스테르 화합물의 반응물에 티타늄 화합물을 첨가하여 촉매를 제조하는 단계.
Solid complex titanium catalyst for preparing ultra high molecular weight polyethylene prepared according to a method comprising the following steps:
(Iii) contacting the magnesium halide compound with an alcohol to prepare a magnesium compound solution;
(Ii) reacting the magnesium compound solution with a diester compound; And
(Iii) preparing a catalyst by adding a titanium compound to the reactant of the magnesium compound solution and the diester compound.
C6H4-1-[CO2-R]-a-[CO2-R']2
(여기에서, R 및 R'는 탄소수 1~20의 탄화수소로, 같거나 다를 수 있고, a는 2, 3, 또는 4의 자연수이다).
The solid catalyst titanium catalyst for preparing ultra high molecular weight polyethylene according to claim 1, wherein the diester compound of step (ii) is a compound represented by the following general formula:
C 6 H 4 -1- [CO 2 -R] -a- [CO 2 -R '] 2
(Wherein R and R ′ are hydrocarbons having 1 to 20 carbon atoms, which may be the same or different, and a is a natural number of 2, 3, or 4).
The method of claim 1, wherein the titanium compound of step (iii) is a general formula Ti (OR) a X 4-a (R is a hydrocarbon group having 1 to 20 carbon atoms, X is a halogen atom, and a is 0≤a≤4 Solid complex titanium catalyst for ultra-high molecular weight polyethylene production, characterized in that the compound).
The method of claim 1, wherein the titanium compound of step (iii) is TiCl 4 , TiBr 4 , TiI 4 , Ti (OCH 3 ) Cl 3 , Ti (OC 2 H 5 ) Cl 3 , Ti (OC 2 H 5 ) Br 3 , Ti (O (iC 4 H 9 )) Br 3 , Ti (OCH 3 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Cl 2 , Ti (O (iC 4 H 9 )) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Br 2 , Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti (OC 4 H 9 ) 4 It is characterized in that the solid complex titanium catalyst for producing ultra high molecular weight polyethylene.
The solid complex titanium catalyst for preparing ultra high molecular weight polyethylene according to claim 1, further comprising further reacting the catalyst prepared in step (iii) with an additional titanium compound.
A process for producing ultra high molecular weight polyethylene comprising polymerizing or copolymerizing ethylene in the presence of a solid complex titanium catalyst according to any one of claims 1 to 5 and an organometallic compound.
The method of claim 6, wherein the organometallic compound is an organoaluminum compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100034462A KR20110115016A (en) | 2010-04-14 | 2010-04-14 | A catalyst for ultra high molecular weight polyethylene(uhmwpe) and production method of uhmwpe using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100034462A KR20110115016A (en) | 2010-04-14 | 2010-04-14 | A catalyst for ultra high molecular weight polyethylene(uhmwpe) and production method of uhmwpe using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20110115016A true KR20110115016A (en) | 2011-10-20 |
Family
ID=45029799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100034462A KR20110115016A (en) | 2010-04-14 | 2010-04-14 | A catalyst for ultra high molecular weight polyethylene(uhmwpe) and production method of uhmwpe using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20110115016A (en) |
-
2010
- 2010-04-14 KR KR1020100034462A patent/KR20110115016A/en active IP Right Grant
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100389962B1 (en) | Preparation method of catalyst for ethylene polymeration or copolymeration | |
KR100546499B1 (en) | A catalyst for ethylene homo- and co-polymerization | |
KR20110115015A (en) | A catalyst for ultra high molecular weight polyethylene(uhmwpe) and production method of uhmpe using the same | |
KR100430844B1 (en) | Catalyst having increased average particle size for olefin polymerization and copolymerization | |
KR101049662B1 (en) | Ultra high molecular weight polyethylene polymerization catalyst and preparation method of ultra high molecular weight polyethylene using the same | |
KR100496776B1 (en) | Catalyst for polymerization and copolymerization of ethylene | |
EP1401882B1 (en) | Catalyst for polymerization and copolymerization of ethylene | |
KR100530795B1 (en) | A method for ethylene homo- and copolymerization | |
EP1421122B1 (en) | Catalyst for polymerization and copolymerization of ethylene | |
EP1587845B1 (en) | Method of polymerization and copolymerization of ethylene | |
KR20100100433A (en) | A method for preparation of catalyst for ethylene (co)polymerization | |
KR101339603B1 (en) | A Catalyst for Preparation of Ultra high Molecular Weight Polyethylene and A Preparation Method of Ultra high Molecular Weight Polyethylene Using the Same | |
KR20090092023A (en) | A preparation method of catalyst for ethylene (co)polymerization | |
KR100435980B1 (en) | Olefin polymerization and copolymerization method using solid complex titanium catalyst for producing polymer having high apparent density | |
KR20110115016A (en) | A catalyst for ultra high molecular weight polyethylene(uhmwpe) and production method of uhmwpe using the same | |
KR100715266B1 (en) | Ethylene polymerization and copolymerization method | |
EP1358221A4 (en) | Method for producing ethylene home-and co-polymer | |
KR101265418B1 (en) | A preparation method of catalyst for ethylene (co)polymerization | |
KR20140136239A (en) | A preparation method of the size-controllable catalyst for ethylene (co)polymerization | |
KR102487347B1 (en) | A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene | |
KR102487346B1 (en) | A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene | |
KR100828287B1 (en) | A method for producing a solid titanium complex catalyst for ehtylene homo- and copolymerization and a catalyst produced therefrom | |
KR100416181B1 (en) | Method for olefin polymerization or copolymerization | |
KR100712975B1 (en) | Preparation method of ethylene polymerization and copolymerization solid titanium complex catalyst | |
KR101222712B1 (en) | A Preparation Method of Catalyst for Ethylene (Co)Polymerization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
NORF | Unpaid initial registration fee |