KR20130057217A - A catalyst for preparation of ultra high molecular weight polyethylene and a preparation method of ultra high molecular weight polyethylene using the same - Google Patents

A catalyst for preparation of ultra high molecular weight polyethylene and a preparation method of ultra high molecular weight polyethylene using the same Download PDF

Info

Publication number
KR20130057217A
KR20130057217A KR1020110123029A KR20110123029A KR20130057217A KR 20130057217 A KR20130057217 A KR 20130057217A KR 1020110123029 A KR1020110123029 A KR 1020110123029A KR 20110123029 A KR20110123029 A KR 20110123029A KR 20130057217 A KR20130057217 A KR 20130057217A
Authority
KR
South Korea
Prior art keywords
catalyst
ticl
molecular weight
weight polyethylene
high molecular
Prior art date
Application number
KR1020110123029A
Other languages
Korean (ko)
Other versions
KR101339603B1 (en
Inventor
양춘병
박준려
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to KR1020110123029A priority Critical patent/KR101339603B1/en
Publication of KR20130057217A publication Critical patent/KR20130057217A/en
Application granted granted Critical
Publication of KR101339603B1 publication Critical patent/KR101339603B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/01High molecular weight, e.g. >800,000 Da.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE: A catalyst for manufacturing high molecular weight polyethylene is provided to have excellent catalyst activity through a simple manufacturing process and to manufacture a solid complex titanium catalyst with a controlled particle shape. CONSTITUTION: A catalyst for manufacturing high molecular weight polyethylene is manufactured by a step of preparing a support by conduct a reaction of magnesium alkoxide compound and organic aluminum compound; and a step of conduct a reaction of the support and titanium compound. A manufacturing method of a ultrahigh molecular weight polyethylene comprises a step of polymerizing ethylene under the presence of the solid complex titanium catalyst and organic metal compound. The organic metal compound is an organic aluminum compound.

Description

초고분자량 폴리에틸렌 제조용 촉매 및 이를 이용한 초고분자량 폴리에틸렌 제조방법{A Catalyst for Preparation of Ultra high Molecular Weight Polyethylene and A Preparation Method of Ultra high Molecular Weight Polyethylene Using the Same}Catalyst for Preparation of Ultra High Molecular Weight Polyethylene and A Preparation Method of Ultra High Molecular Weight Polyethylene Using the Same

본 발명은 초고분자량 폴리에틸렌의 제조에 사용되는, 마그네슘을 포함하는 담지체에 지지된 신규의 티타늄 고체 착물 촉매 및 이를 이용한 초고분자량 폴리에틸렌의 제조 방법에 관한 것이다.The present invention relates to a novel titanium solid complex catalyst supported on a support comprising magnesium and to a method for producing ultra high molecular weight polyethylene using the same, which is used in the production of ultra high molecular weight polyethylene.

초고분자량 폴리에틸렌은 폴리에틸렌 수지의 한 종류로서, 분자량이 최소 106g/mol 이상인 폴리에틸렌을 가르키며, ASTM 4020에서는 "데카하이드로나프탈렌 용액 100ml에 0.05%로 함유되어, 135℃하에서 상대점도가 2.30 내지 그 이상의 값을 가지는 선형 폴리에틸렌"이라 정의되어 있다.  초고분자량 폴리에틸렌은 범용 폴리에틸렌에 비해 분자량이 굉장히 크기 때문에 강성, 내마모성, 내환경 응력균일성, 자기 윤활성, 내화학 약품성 및 전기적 물성 등이 뛰어난 특징을 갖고 있다. 이와 같은 우수한 물성들로 인하여 초고분자량 폴리에틸렌은 범용 원료로부터 얻어지는 고품질의 특수 소재라고 할 수 있다.Ultra high molecular weight polyethylene is a kind of polyethylene resin, which refers to polyethylene having a molecular weight of at least 10 6 g / mol or more, and according to ASTM 4020, "it is contained 0.05% in 100 ml of decahydronaphthalene solution and has a relative viscosity of 2.30 or more at 135 ° C. Linear polyethylene having a value ". Ultra high molecular weight polyethylene has much higher molecular weight than general-purpose polyethylene, so it has excellent characteristics such as rigidity, abrasion resistance, environmental stress uniformity, self lubrication, chemical resistance and electrical properties. Due to such excellent properties, ultra high molecular weight polyethylene can be said to be a high quality special material obtained from general purpose raw materials.

중합공정을 거쳐 제조된 초고분자량 폴리에틸렌은 분자량이 커서 범용 폴리에틸렌과 같이 펠렛화 할 수 없어 파우더로 생산 판매되기 때문에 통상적인 폴리에틸렌의 가공법인 용융가공이 어려우며, 적절한 용매에 용해시켜 가공하는 것을 고려할 때 용해성이 우수하여야 하며, 이러한 용해성의 측면에서 초고분자량 폴리에틸렌 파우더의 입자크기 및 입자크기분포는 주요한 특성이라 할 수 있다. 이는 입자가 너무 크거나, 또는 입자가 작더라도 입자크기분포가 큰 경우에는 용해특성이 저해될 수 있기 때문이다. 따라서, 초고분자량 폴리에틸렌 제조용 촉매의 경우, 촉매를 이용한 중합공정의 결과로서 얻어진 중합체의 입자크기, 입자크기분포 및 미세입자 존재 여부 등이 중요한 촉매의 특성이라고 할 수 있다.Ultra-high molecular weight polyethylene produced through the polymerization process has a high molecular weight and cannot be pelletized like general purpose polyethylene, so it is produced and sold as a powder. Therefore, it is difficult to melt processing, which is a conventional polyethylene processing method. It should be excellent, and in terms of solubility, the particle size and particle size distribution of the ultra high molecular weight polyethylene powder are the main characteristics. This is because dissolution characteristics may be impaired when the particle size distribution is large even when the particles are too large or small. Therefore, in the case of a catalyst for producing ultra high molecular weight polyethylene, the particle size, particle size distribution and presence of fine particles of the polymer obtained as a result of the polymerization process using the catalyst are important characteristics of the catalyst.

마그네슘을 포함하고 티타늄에 기초를 둔 초고분자량 폴리에틸렌 제조용 촉매 및 촉매 제조 공정이 보고되어 왔다.  미국특허 제 4,962,167에서는 마그네슘 할라이드 화합물과 티타늄알콕사이드 화합물의 반응물과, 알루미늄 할라이드와 실리콘 알콕사이드 화합물의 반응물을 반응시켜 얻은 촉매 제조 공정을 공개하고 있다. 이와 같이 제조된 촉매는 비교적 높은 겉보기 밀도를 제공하나 아직 개선해야 할 점이 있고, 또한 촉매의 활성면에서도 개선해야할 여지가 있다.Catalysts for the production of ultra high molecular weight polyethylene and catalysts based on titanium have been reported. US Patent No. 4,962,167 discloses a catalyst preparation process obtained by reacting a reactant of a magnesium halide compound with a titanium alkoxide compound and a reactant of an aluminum halide and a silicon alkoxide compound. The catalyst thus prepared provides a relatively high apparent density, but there is still a need for improvement, and there is also room for improvement in the activity of the catalyst.

미국 특허 제5,587,440에서는 티타늄(Ⅳ)할라이드를 유기알루미늄 화합물로 환원시킨 다음 유기알루미늄화합물로 후처리 공정을 거쳐 입자 분포가 좁고, 겉보기 밀도가 높은 중합체를 제조하는 방법을 보고하고 있으나, 촉매의 활성이 상대적으로 낮은 단점이 있다.U.S. Patent 5,587,440 reports a method of preparing a polymer having a narrow particle distribution and a high apparent density by reducing the titanium (IV) halide to an organoaluminum compound and then subjecting it to an organoaluminum compound. It has a relatively low disadvantage.

위에서 살펴본 바와 같이 제조 공정이 간단하면서도, 높은 중합 활성과, 촉매 입자가 조절되어 있고, 특히 중합체의 입자 분포가 좁아서 큰 입자나 미세 입자가 적은 새로운 초고분자량 폴리에틸렌 제조용 촉매의 개발이 요구되고 있다.As described above, while the production process is simple, high polymerization activity, the catalyst particles are controlled, and in particular, since the particle distribution of the polymer is narrow, development of a new ultra high molecular weight polyethylene production catalyst having fewer large particles or fine particles is required.

본 발명의 목적은, 비용이 저렴한 화합물로부터 간단한 제조 공정을 거쳐 촉매 활성이 우수하며, 중합된 중합체의 입자크기분포가 좁아서 큰 입자나 미세 입자가 적은 새로운 초고분자량 폴리에틸렌 제조용 촉매 고체 성분을 제공하는 것이다.An object of the present invention is to provide a new catalyst solid component for preparing ultra-high molecular weight polyethylene, which is excellent in catalytic activity from a low-cost compound through a simple manufacturing process, and has a small particle size distribution of the polymerized polymer, and thus has less large particles or fine particles. .

구체적으로는, 촉매 입자의 형태가 조절되고, 중합체의 입자 분포가 좁아서 큰 입자나 미세 입자가 적은 초고분자량 폴리에틸렌 제조용 촉매의 제조 방법을 제공하는 것도 본 발명의 목적이다.Specifically, it is also an object of the present invention to provide a method for producing a catalyst for ultra-high molecular weight polyethylene production in which the form of the catalyst particles is controlled and the particle distribution of the polymer is narrow and there are few large particles and fine particles.

또한 본 발명의 촉매를 이용하는 초고분자량 폴리에틸렌의 제조방법을 제공하는 것도 본 발명의 또다른 목적이다.It is another object of the present invention to provide a method for producing ultra high molecular weight polyethylene using the catalyst of the present invention.

본 발명의 다른 목적들과 유익성은 다음의 설명과 본 발명의 청구 범위를 참조하면 더욱 명확해질 것이다.Other objects and benefits of the present invention will become more apparent with reference to the following description and claims of the present invention.

본 발명에서 제공하고자 하는, 중합체의 입자 분포가 좁아서 큰 입자나 미세 입자가 적은 초고분자량 폴리에틸렌 제조용 촉매는 다음의 단계들을 포함하여 이루어지는 제조방법에 의하여 제조되는 것을 특징으로 한다:The catalyst for preparing ultra-high molecular weight polyethylene having a small particle distribution of the polymer to be provided by the present invention having a small particle size and a small particle is characterized by being manufactured by a manufacturing method comprising the following steps:

(1) 마그네슘 알콕사이드 화합물을 하기 일반식 (I) 또는 (II)의 유기알루미늄 화합물과 반응시켜 담체를 제조하는 단계,(1) reacting a magnesium alkoxide compound with an organoaluminum compound of formula (I) or (II) to prepare a carrier,

RaAlXb   ‥‥‥ (I)R a AlX b    ‥‥‥ (I)

(여기서 R은 수소, 또는 탄소수 1~10의 알킬, 알콕시, 할로알킬 또는 아릴기이며, X는 염소, 브롬, 요오드, 플루오르 등의 할로겐 원자이고, a와 b는 자연수이며, a + b = 3이다) 또는Where R is hydrogen or an alkyl, alkoxy, haloalkyl or aryl group having 1 to 10 carbon atoms, X is a halogen atom such as chlorine, bromine, iodine or fluorine, a and b are natural numbers and a + b = 3 Or)

RaAl2Xb   ‥‥‥ (II)R a Al 2 X b    ‥‥‥ (II)

(여기서 R은 수소, 또는 탄소수 1~10의 알킬, 알콕시, 할로알킬 또는 아릴기이며, X는 염소, 브롬, 요오드, 플루오르 등의 할로겐 원자이고, a와 b는 자연수이며, a + b = 6이다); 및(Where R is hydrogen or an alkyl, alkoxy, haloalkyl or aryl group having 1 to 10 carbon atoms, X is a halogen atom such as chlorine, bromine, iodine, fluorine, a and b are natural numbers, a + b = 6 to be); And

(2) 상기 (1) 단계에서 제조된 담체를 하기 일반식 (1) 또는 (2)로 표시되는 티타늄 화합물과 반응시키는 단계,(2) reacting the carrier prepared in step (1) with a titanium compound represented by the following general formula (1) 'or (2),

(WRn)(WR'm)TiQx   ‥‥‥ (1)(WR n ) (WR ' m ) TiQ x    ‥‥‥ (One)

(여기서 W는 시클로펜타디에닐, 인데닐 또는 플루오레닐기이고, R과 R'는 각각 독립적으로 수소, 알킬, 알킬에테르(alkylether), 알릴에테르(allylether)이고, Q는 알킬, 알릴, 아릴알킬, 아미드(amide), 알콕시 또는 할로겐 원자를 나타내며, n은 0≤ n〈5,  m은 0≤ m〈5, x는 1≤ x≤ 4를 만족하는 정수이다) 또는(W is a cyclopentadienyl, indenyl or fluorenyl group, R and R 'are each independently hydrogen, alkyl, alkylether, allylether, and Q is alkyl, allyl, arylalkyl). Represents an amide, alkoxy or halogen atom, n is 0 ≦ n <5, m is 0 ≦ m <5, x is a x integer that satisfies 1 ≦ x ≦ 4) or

(C5H5 -y- xRx)(R'y)TiQp   ‥‥‥ (2) (C 5 H 5 -y- x R x) (R 'y) TiQ p    ‥‥‥ (2)

(여기서, R은 수소 또는 탄소수 1~20의 알킬 라디칼이고, R'는 탄소수 1 ~20의 알킬기 또는 알콕시기 또는 할로겐 원자이며, Q는 알킬, 알릴, 아릴알킬, 아미드, 알콕시 또는 할로겐 원자를 나타내고, x는 0. 1, 2, 3, 4 또는 5이고, y는 0 또는 1이고, p는 1≤ p≤ 4를 만족하는 정수이다).Wherein R is hydrogen or an alkyl radical having 1 to 20 carbon atoms, R 'is an alkyl or alkoxy group having 1 to 20 carbon atoms or a halogen atom, and Q represents an alkyl, allyl, arylalkyl, amide, alkoxy or halogen atom x is 0.1, 2, 3, 4, or 5, y is 0 or 1, and p is an integer that satisfies 1 ≦ p ≦ 4).

상기 (1) 단계에서 사용되는 마그네슘 알콕사이드 화합물의 종류로는, 마그네슘 메톡사이드, 마그네슘 에톡사이드, 마그네슘 프로폭사이드, 마그네슘 부톡사이드 등을 예로 들 수 있다. 상기 마그네슘 알콕사이드 화합물 중 2개 이상이 혼합물로 사용되어도 무방하며, 가장 바람직한 종류는 마그네슘 에톡사이드이다.Examples of the magnesium alkoxide compound used in the above step (1) include magnesium methoxide, magnesium ethoxide, magnesium propoxide, magnesium butoxide and the like. Two or more of the magnesium alkoxide compounds may be used as a mixture, and the most preferable type is magnesium ethoxide.

마그네슘 알콕사이드는 대한민국 특허공개번호 제2010-007076호, 공개번호 제2009-0071718호, 대한민국 특허등록번호 제0807895호 등의 특허들을 참고하여 제조할 수 있다. 이렇게 제조된 마그네슘 알콕사이드는 구형의 형태를 가지고 있으며, 입자 크기, 입자크기분포를 조절할 수 있어, 본 발명에서 제공하고자 하는, 중합체의 입자크기분포가 좁아서 큰 입자나 미세 입자가 적은 초고분자량 폴리에틸렌 제조용 촉매의 담체의 전구체로 사용이 가능하다.Magnesium alkoxide may be prepared with reference to patents such as Korean Patent Publication No. 2010-007076, Publication No. 2009-0071718, and Korean Patent Registration No. 00807895. Magnesium alkoxide prepared as described above has a spherical shape, and can control particle size and particle size distribution, and the catalyst for preparing ultra-high molecular weight polyethylene having a small particle size distribution of the polymer to be provided by the present invention has a small number of large particles or fine particles. It can be used as a precursor of the carrier.

상기 (1) 단계에서는, 상기와 같이 제조된 마그네슘 알콕사이드를 하기 일반식 (I) 또는 (II)의 유기알루미늄 화합물과 반응시켜 마그네슘 화합물 담체를 제조하게 된다:In step (1), the magnesium alkoxide prepared as described above is reacted with the organoaluminum compound of formula (I) or (II) to prepare a magnesium compound carrier:

RaAlXb   ‥‥‥ (I)R a AlX b    ‥‥‥ (I)

(여기서 R은 수소, 또는 탄소수 1~10의 알킬, 알콕시, 할로알킬 또는 아릴기이며, X는 염소, 브롬, 요오드, 플루오르 등의 할로겐 원자이고, a와 b는 자연수이며, a + b = 3이다) 또는Where R is hydrogen or an alkyl, alkoxy, haloalkyl or aryl group having 1 to 10 carbon atoms, X is a halogen atom such as chlorine, bromine, iodine or fluorine, a and b are natural numbers and a + b = 3 Or)

RaAl2Xb    ‥‥‥ (II)R a Al 2 X b     ‥‥‥ (II)

(여기서 R은 수소, 또는 탄소수 1~10의 알킬, 알콕시, 할로알킬 또는 아릴기이며, X는 염소, 브롬, 요오드, 플루오르 등의 할로겐 원자이고, a와 b는 자연수이며, a + b = 6이다).(Where R is hydrogen or an alkyl, alkoxy, haloalkyl or aryl group having 1 to 10 carbon atoms, X is a halogen atom such as chlorine, bromine, iodine, fluorine, a and b are natural numbers, a + b = 6 to be).

상기 (1) 단계의 반응시 사용되는 유기알루미늄 화합물의 양은 마그네슘 알콕사이드 화합물 1몰당 0.05내지 30몰, 바람직하게는 0.5몰 내지 10몰의 비율로 주입하는 것이 좋다. 유기 알루미늄 화합물을 0.05몰 미만으로 사용시 목적하는 효과를 얻기 어렵고, 30몰을 초과하면 촉매의 활성을 급격하게 떨어뜨리거나, 촉매의 형상을 파괴하게 된다. 또한, 반응 온도에 따라서도 촉매의 형태가 크게 변하기 때문에 충분히 낮은 온도에서 수행하는 것이 좋다. 바람직하게는 -50℃ 내지 80℃, 더욱 바람직하게는 -20℃ 내지 50℃에서 수행하는 것이 유리하다. 접촉 반응 후 서서히 반응 온도를 올려서 상온 (25 ℃) 내지 150 ℃에서 0.5 시간 내지 5시간 동안 반응시킨다.The amount of the organoaluminum compound used in the reaction of step (1) is preferably injected at a rate of 0.05 to 30 moles, preferably 0.5 to 10 moles per mole of magnesium magnesium alkoxide compound. When the organoaluminum compound is used at less than 0.05 mole, it is difficult to obtain a desired effect. When the organoaluminum compound is used at less than 30 mole, the activity of the catalyst is sharply lowered or the shape of the catalyst is destroyed. In addition, since the form of the catalyst changes greatly depending on the reaction temperature, it is preferable to carry out at a sufficiently low temperature. It is advantageously carried out at -50 ° C to 80 ° C, more preferably at -20 ° C to 50 ° C. After the contact reaction, the reaction temperature was gradually raised to react at room temperature (25 ° C.) to 150 ° C. for 0.5 to 5 hours.

상기 (2) 단계에서는 상기 (1)단계에서 제조된 마그네슘 화합물 담체에 하기 일반식 (1) 또는 (2)로 표시되는 티타늄 화합물을 투입하고, 온도를 올려서 반응시킴으로써 고체입자 촉매를 제조한다:In the step (2), the titanium compound represented by the following general formula (1) or (2) is added to the magnesium compound carrier prepared in step (1), and the temperature is increased to prepare a solid particle catalyst.

(WRn)(WR'm)TiQx  ‥‥‥ (1)(WR n ) (WR ' m ) TiQ x   ‥‥‥ (One)

(여기서 W는 시클로펜타디에닐, 인데닐 또는 플루오레닐기이고, R과 R'는 각각 독립적으로 수소, 알킬, 알킬에테르(alkylether), 알릴에테르(allylether)이고, Q는 알킬, 알릴, 아릴알킬, 아미드(amide), 알콕시 또는 할로겐 원자를 나타내며, n은 0≤n<5,  m은 0≤m<5, x는 1≤x≤4를 만족하는 정수이다) 또는 (W is a cyclopentadienyl, indenyl or fluorenyl group, R and R 'are each independently hydrogen, alkyl, alkylether, allylether, and Q is alkyl, allyl, arylalkyl). Represents an amide, alkoxy or halogen atom, n is 0 ≦ n <5, m is 0 ≦ m <5, and x is 1 ≦ x ≦ 4

(C5H5 -y- xRx)(R'y)TiQp   ‥‥‥ (2) (C 5 H 5 -y- x R x) (R 'y) TiQ p    ‥‥‥ (2)

(여기서, R은 수소 또는 탄소수 1~20의 알킬 라디칼이고, R'는 탄소수 1 ~20의 알킬기 또는 알콕시기 또는 할로겐 원자이며, Q는 알킬, 알릴, 아릴알킬, 아미드, 알콕시 또는 할로겐 원자를 나타내고, x는 0. 1, 2, 3, 4 또는 5이고, y는 0 또는 1 이고, p는 1≤ p≤ 4를 만족하는 정수이다).Where R is hydrogen or an alkyl radical of 1 to 20 carbon atoms, and R 'is of 1 to 20 carbon atoms An alkyl group or an alkoxy group or a halogen atom, Q represents an alkyl, allyl, arylalkyl, amide, alkoxy or halogen atom, x is 0.1, 2, 3, 4 or 5 and y is 0 or 1 P is an integer satisfying 1 ≦ p ≦ 4).

상기 일반식 (1) 또는 (2)를 만족하는 티타늄 화합물의 종류에는, 예로서 Cp2TiCl2, (Me5Cp)2TiCl2(여기서 Me는 메틸, Cp는 펜타디에닐, 이하 동일), (Me4Cp)2TiCl2, (n-BuCp)2TiCl2(여기서 n-Bu는 노르말 부틸, 이하 동일), (i-PrCp)2TiCl2(여기서 i-Pr은 이소프로필, 이하 동일), (EtCp)2TiCl2(여기서 Et는 에틸, 이하 동일), (인데닐)2TiCl2 등과 같은 디시클로펜타디에닐 티타늄 화합물과, CpTiCl3, (Me5Cp)TiCl3, (인데닐)TiCl3등과 같은 모노시클로펜타디에닐 티타늄 화합물이 포함된다. 또한, 상기한 티타늄 화합물의 혼합물도 본 발명에 사용될 수 있다.Examples of the titanium compound that satisfies the general formula (1) or (2) include, for example, Cp 2 TiCl 2 , (Me 5 Cp) 2 TiCl 2 (where Me is methyl, Cp is pentadienyl, the same below), (Me 4 Cp) 2 TiCl 2 , (n-BuCp) 2 TiCl 2 (where n-Bu is the same as butyl, hereinafter), (i-PrCp) 2 TiCl 2 (where i-Pr is isopropyl, hereinafter same) , Dicyclopentadienyl titanium compounds such as (EtCp) 2 TiCl 2 (where Et is ethyl, hereinafter), (indenyl) 2 TiCl 2 , and CpTiCl 3 , (Me 5 Cp) TiCl 3 , (indenyl) Monocyclopentadienyl titanium compounds such as TiCl 3 and the like. In addition, mixtures of the above titanium compounds can also be used in the present invention.

상기 (2) 단계에서, 마그네슘 화합물 담체와 티타늄 화합물과의 반응은 적당한 온도에서 행하여서 티타늄 성분을 마그네슘 화합물 담체에 고착시킨다. 이때 사용하는 티타늄 화합물의 양은 마그네슘 알콕사이드 화합물 1몰당 0.001 밀리몰 내지 500밀리몰이 적당하며, 바람직하기로는 0.01밀리몰 내지 300밀리몰이다. 티타늄 화합물의 사용량이 상기 범위를 벗어나는 경우에는 촉매 사용량 대비촉매의 활성이 크지 않아 촉매 사용 효율성이 떨어져 바람직하지 않다. 상기 (2) 단계의 반응은 바람직하기로는 0℃ 내지 120℃에서 접촉반응을 실시하는 것이 좋고, 더욱 바람직하기로는 30℃ 내지 110℃에서 0.5시간 내지 5시간 동안 충분히 반응시키는 것이 유리하다. 상기 반응 후, 액상의 혼합물을 분리한 후 헥산으로 세척한 후 건조시켜 촉매를 얻는다.In the step (2), the reaction between the magnesium compound carrier and the titanium compound is carried out at an appropriate temperature to fix the titanium component to the magnesium compound carrier. At this time, the amount of the titanium compound used is preferably 0.001 mmol to 500 mmol, per mole of magnesium alkoxide compound, and preferably 0.01 mmol to 300 mmol. When the amount of the titanium compound is out of the above range, the activity of the catalyst is not large compared to the amount of the catalyst used, so the efficiency of using the catalyst is inferior. Preferably, the reaction of step (2) is preferably carried out at 0 ° C. to 120 ° C., and more preferably at 30 ° C. to 110 ° C. for 0.5 hours to 5 hours. After the reaction, the liquid mixture is separated, washed with hexane and dried to obtain a catalyst.

본 발명에서 제시된 방법에 의해 제조된 촉매는 초고분자량 폴리에틸렌을 제조하기 위하여 에틸렌의 중합 및 공중합에 사용된다.The catalyst prepared by the process presented in the present invention is used for the polymerization and copolymerization of ethylene to produce ultra high molecular weight polyethylene.

본 발명의 촉매 존재하에서의 초고분자량 폴리에틸렌 중합 반응은 (ⅰ) 마그네슘, 티타늄 및 할로겐으로 이루어진 본 발명에 의한 고체 착물 티타늄 촉매와, (ⅱ) 주기율표 제 Ⅱ족 또는 제 Ⅲ족 유기금속 화합물을 포함하는 촉매계를 사용하여 수행된다.Ultrahigh molecular weight polyethylene polymerization in the presence of the catalyst of the present invention is a catalyst system comprising (i) a solid complex titanium catalyst according to the invention consisting of magnesium, titanium and halogen, and (ii) an organometallic compound of Group II or III of the periodic table. Is performed using

본 발명의 고체 착물 티타늄 촉매 성분은 중합 반응에 성분으로 사용되기 전에 에틸렌 또는 α-올레핀으로 전중합하여 사용할수 있다. 전중합은 헥산과 같은 탄화수소 용매 존재하에서 충분히 낮은 온도와 에틸렌 또는 α-올레핀 압력 조건에서 상기의 촉매 성분과 트리에틸알루미늄과 같은 유기알루미늄 화합물의 존재하에 행할 수 있다. 전중합은 촉매 입자를 폴리머로 둘러싸서 촉매 형상을 유지시켜 중합후에 폴리머의 형상을 좋게 하는데 도움을 준다. 전중합후의 폴리머/촉매의 무게비는 대개 0.1:1 내지 60:1이다.The solid complex titanium catalyst component of the present invention may be prepolymerized with ethylene or α-olefin before being used as a component in the polymerization reaction. Prepolymerization can be carried out in the presence of a hydrocarbon solvent such as hexane and at the sufficiently low temperature and ethylene or α-olefin pressure conditions in the presence of the above catalyst component and an organoaluminum compound such as triethylaluminum. Prepolymerization helps to improve the shape of the polymer after polymerization by surrounding the catalyst particles with a polymer to maintain the catalyst shape. The weight ratio of polymer / catalyst after prepolymerization is usually from 0.1: 1 to 60: 1.

본 발명에서 유익한 유기금속 화합물은 MRn의 일반식으로 표기할 수 있는데, 여기에서 M은 마그네슘, 칼슘, 아연, 보론, 알루미늄, 갈륨과 같은 주기율표 Ⅱ족 또는 ⅢA족 금속 성분이며, R은 메틸, 에틸, 부틸, 헥실, 옥틸, 데실과 같은 탄소수 1~20의 알킬기를 나타내며, n은 금속 성분의 원자가를 표시한다. 보다 바람직한 유기금속 화합물로는 트리에틸알루미늄, 트리이소부틸알루미늄과 같은 탄소수 1~6의 알킬기를 가진 트리알킬알루미늄 또는 이들의 혼합물이 유익하다. 경우에 따라서는 에틸알루미늄 디클로라이드, 디에틸알루미늄 클로라이드, 에틸알루미늄 세스퀴클로라이드, 디이소부틸알루미늄히드리드와 같은 한개 이상의 할로겐 또는 히드리드기를 갖는 유기알루미늄 화합물이 사용될 수 있다.The organometallic compound beneficial in the present invention may be represented by the general formula of MR n , wherein M is a periodic table group II or IIIA metal component such as magnesium, calcium, zinc, boron, aluminum, gallium, and R is methyl, An alkyl group having 1 to 20 carbon atoms, such as ethyl, butyl, hexyl, octyl and decyl, n represents the valence of the metal component. As a more preferable organometallic compound, trialkylaluminum having an alkyl group having 1 to 6 carbon atoms such as triethylaluminum and triisobutylaluminum or a mixture thereof is advantageous. In some cases, an organoaluminum compound having one or more halogen or hydride groups such as ethylaluminum dichloride, diethylaluminum chloride, ethylaluminum sesquichloride, diisobutylaluminum hydride may be used.

중합 반응은 유기용매 부재하에서 기상 또는 벌크 중합이나, 유기용매 존재하에서 액상 슬러리 중합 방법으로 가능하다. 이들 중합법은 산소, 물, 그리고 촉매독으로 작용할 수 있는 기타 화합물의 부재하에서 수행된다. 액상 슬러리 중합의 경우에 바람직한 고체 착물 티타늄 촉매(ⅰ)의 중합 반응계상의 농도는 용제 1리터에 대하여 촉매의 티타늄 원자로 약 0.001 내지 5 밀리몰, 바람직하게는 약 0.001 내지 0.5 밀리몰이다. 용제로는 펜탄, 헥산, 헵탄, n-옥탄, 이소옥탄, 시클로헥산, 메틸시클로헥산과 같은 알칸 또는 시클로알칸, 톨루엔, 자이렌, 에틸벤젠, 이소프로필벤젠, 에틸톨루엔, n-프로필벤젠, 디에틸벤젠과 같은 알킬아로마틱, 클로로벤젠, 클로로나프탈렌, 오소-디클로로벤젠과 같은 할로겐화 아로마틱, 그리고 이들의 혼합물이 유익하다. 기상중합의 경우 고체 착물 티타늄 촉매(ⅰ)의 양은 중합대역 1리터에 대하여 촉매의 티타늄 원자로 약 0.001 내지 5 밀리몰, 바람직하게는 약 0.001 내지 1.0 밀리몰, 더욱 바람직하게로는 약 0.01 내지 0.5 밀리몰로 하는 것이 좋다. 유기 금속 화합물(ⅱ)의 바람직한 농도는 금속 원자로 계산하여 촉매(ⅰ)중 티타늄 원자의 몰당 약 1 내지 2000몰이며, 더욱 바람직하게는 약 5 내지 500몰이 유익하다.The polymerization reaction can be carried out by gas phase or bulk polymerization in the absence of an organic solvent, or by liquid phase slurry polymerization in the presence of an organic solvent. These polymerization methods are carried out in the absence of oxygen, water and other compounds that can act as catalyst poisons. In the case of liquid phase slurry polymerization, the preferred concentration of the solid complex titanium catalyst on the polymerization reaction system is about 0.001 to 5 millimoles, preferably about 0.001 to 0.5 millimoles, of titanium atoms of the catalyst per 1 liter of solvent. Solvents include alkanes or cycloalkanes such as pentane, hexane, heptane, n-octane, isooctane, cyclohexane, methylcyclohexane, toluene, xylene, ethylbenzene, isopropylbenzene, ethyltoluene, n-propylbenzene, diethyl Alkylaromatics such as benzene, halogenated aromatics such as chlorobenzene, chloronaphthalene, ortho-dichlorobenzene, and mixtures thereof are advantageous. In the case of gas phase polymerization, the amount of the solid complex titanium catalyst is about 0.001 to 5 millimoles, preferably about 0.001 to 1.0 millimoles, and more preferably about 0.01 to 0.5 millimoles of titanium atoms of the catalyst per 1 liter of the polymerization zone. It is good. The preferred concentration of the organometallic compound (ii) is from about 1 to 2000 moles per mole of titanium atoms in the catalyst, calculated from metal atoms, more preferably from about 5 to 500 moles.

높은 중합속도를 얻기 위해 중합 반응은 중합 공정에 상관없이 충분히 높은 온도 에서 수행한다. 일반적으로 약 20 내지 200℃가 적당하며, 더욱 바람직하기로는 20 내지 95℃가 좋다.  중합시의 단량체의 압력은 대기압 내지 100기압이 적절하며, 더욱 바람직하기로는 2 내지 50기압의 압력이 적당하다.In order to obtain a high polymerization rate, the polymerization reaction is carried out at a sufficiently high temperature regardless of the polymerization process. Generally, about 20 to 200 ° C is suitable, and more preferably 20 to 95 ° C. As for the pressure of the monomer at the time of superposition | polymerization, atmospheric pressure-100 atmospheres are suitable, More preferably, the pressure of 2-50 atmospheres is suitable.

본 발명의 중합방법에서 얻어진 생성물은 고체의 초고분자량 폴리에틸렌 단독중합체이며, 고유점도가 10 ~ 40dl/g이고, 평균입자크기가 90~140㎛이며, 중합체의 수율도 충분히 높아서 촉매 잔사의 제거가 필요하지 않고, 우수한 겉보기 밀도와 유동성을 갖고 있다.The product obtained in the polymerization method of the present invention is a solid ultra high molecular weight polyethylene homopolymer, has an intrinsic viscosity of 10 to 40 dl / g, an average particle size of 90 to 140 µm, and a high yield of the polymer, thus requiring removal of the catalyst residue. Rather, it has excellent apparent density and fluidity.

이하 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나, 이들 실시예들은 예시적인 목적일 뿐 본 발명이 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to examples. However, these embodiments are for illustrative purposes only.   The invention is not limited to these examples.

실시예Example 1 One

[초고분자량 폴리에틸렌 제조용 고체촉매의 제조][Preparation of Solid Catalyst for Ultra High Molecular Weight Polyethylene Production]

촉매는 하기의 2단계를 거쳐 제조되었다.The catalyst was prepared through the following two steps.

 

(1) 단계: 마그네슘 (1) Step: Magnesium 알콕사이드Alkoxide  화합물과 유기알루미늄 화합물의 반응 Reaction of Compounds with Organoaluminum Compounds

질소 분위기로 치환된 기계식 교반기가 설치된 1L 반응기를 5℃에 맞춘후 Mg(OEt)2 (구형, 평균크기 17마이크론, 크기 분포 1.2, 아래 레이저 입자 분석기 설명 참조) 10g과 헥산 50mL를 투입하고, 300rpm으로 교반하면서 디에틸알루미늄클로라이드(1.0M, 헥산) 용액 280mL를 60분에 걸쳐 주입하였다. 주입이 완료된 다음, 5℃에서 30분간 유지한후 50℃로 승온 후 3시간 동안 유지시켜 반응을 진행시켰다. 반응이 완료된 후 온도를 상온으로 내리고, 교반기를 멈추고 담체를 가라 앉히고, 상부의 용액을 제거하였다. 반응기 안에 남은 슬러리는 200mL의 헥산을 투입하고, 교반, 정치, 상등액 제거과정을 3회 반복하여 세척하였다. 이후 담체를 건조하여 8.9g의 담체를 수득하였다.A 1 L reactor equipped with a mechanical stirrer replaced with a nitrogen atmosphere was set at 5 ° C., and then 10 g of Mg (OEt) 2 (spherical, average size of 17 microns, size distribution 1.2, see the laser particle analyzer description below) and 50 mL of hexane were added, and 300 rpm. 280 mL of diethylaluminum chloride (1.0M, hexane) solution was injected over 60 minutes with stirring. After the injection was completed, the reaction was carried out by maintaining at 5 ° C. for 30 minutes and then raising the temperature to 50 ° C. for 3 hours. After the reaction was completed, the temperature was lowered to room temperature, the stirrer was stopped, the carrier was allowed to settle, and the upper solution was removed. 200 mL of hexane was added to the slurry remaining in the reactor, and the mixture was washed three times by stirring, standing, and removing the supernatant. The carrier was then dried to yield 8.9 g of carrier.

(2) 단계: 촉매 제조(2) step: preparing the catalyst

상기 (1) 단계에서 제조된 담체 0.4g에 톨루엔 10mL를 상온에서 반응기에 주입하고, 상기 담체 1g당 Cp2TiCl2 100 마이크로몰(μmol)을 톨루엔 5mL에 녹여 투입한 후 교반하면서 반응을 시작하였다. 반응기의 온도를 60℃로 승온한 후, 2시간 동안 유지시킨 후 반응기의 온도를 상온으로 내렸다.  교반을 멈추고 정치시켜 침전물을 가라 앉힌 뒤 상등액을 분리하였다. 제조된 촉매 슬러리는 정제된 톨루엔 20mL로 4회 세척하였다. 세척 후 촉매를 진공 건조하여 최종 고체 촉매를 제조하였다.10 mL of toluene was injected into the reactor at room temperature in 0.4 g of the carrier prepared in step (1), 100 micromole (μmol) of Cp 2 TiCl 2 per 1 g of the carrier was added to 5 mL of toluene, and the reaction was started with stirring. . After raising the temperature of the reactor to 60 ℃, it was maintained for 2 hours and then the temperature of the reactor was lowered to room temperature. After stirring was stopped, the precipitate was allowed to settle and the supernatant was separated. The prepared catalyst slurry was washed four times with 20 mL of purified toluene. After washing, the catalyst was vacuum dried to prepare the final solid catalyst.

 

[중합][polymerization]

용량 2 리터의 고압 반응기를 오븐에 말린후 뜨거운 상태로 조립한후 질소와 진공을 교대로 3회 조작하여 반응기 안을 질소 분위기로 만들었다. n-헥산 1000ml를 반응기에 주입한 후, 트리이소부틸알루미늄 1밀리몰을 주입하였다. 교반기로 700rpm으로 교반시키면서 반응기의 온도를 80℃로 올리고, 에틸렌 압력을 200psig로 조정한 다음, 상기에서 제조한 고체 촉매 25mg을 주입하고, 한 시간 동안 중합을 실시하였다. 중합이 끝난후 반응기의 온도를 상온으로 내리고, 중합 내용물에 과량의 에탄올 용액을 가하였다. 생성된 중합체는 분리수집하고, 50의 진공오븐에서 최소한 6시간 동안 건조시켜 백색 분말의 초고분자량 폴리에틸렌을 얻었다.The high-pressure reactor with a capacity of 2 liters was dried in an oven and assembled in a hot state, and then nitrogen and vacuum were operated three times in alternation to make the reactor into a nitrogen atmosphere. 1000 ml of n-hexane was injected into the reactor, followed by 1 mmol of triisobutylaluminum. The temperature of the reactor was raised to 80 ° C. while stirring at 700 rpm with a stirrer, the ethylene pressure was adjusted to 200 psig, and then 25 mg of the solid catalyst prepared above was injected, and polymerization was performed for one hour. After completion of the polymerization, the temperature of the reactor was lowered to room temperature, and excess ethanol solution was added to the polymerization contents. The resulting polymer was collected separately and dried in a vacuum oven at 50 ° C. for at least 6 hours to obtain a white powdery ultra high molecular weight polyethylene.

담체 및 중합체의 입자크기 및 입자크기분포는 레이저 입자 분석기(Mastersizer X, Malvern Instruments)를 이용하여 측정하였고, 입자크기는 평균크기 D(v,0.5)로, 입자크기분포는 (D(v,0.9)-D(v,0.1))/D(v,0.5)로 나타내었다, 여기서 D(v,0.5)는 50%의 샘플이 나타내는 입자크기를 나타내며,  D(v,0.9) 와 D(v,0.1)는 각각 90%와 10%의 샘플이 나타내는 입자크기를 표시한다. 입자크기분포의 수치가 작을수록 분포가 좁음을 의미한다. 촉매의 조성은 ICP로 분석하였다. 중합 결과는 중합체의 겉보기 밀도(g/ml)와 함께 표1에 나타내었다. 중합체의 상대점도는 ISO 1628 Part3에 따라 데카하이드로나프탈렌(Decahydronaphthalene) 용매를 사용하여 중합체를 녹여 점도를 측정하여 산출하였다. 이로부터 당 업계에 잘 알려진 Margolie’s equation (Mv= 5.34 x 104 x [η]1.49, Mv=점도평균 분자량, η=고유 점도)를 사용하여 평균분자량(Mv)을 계산하였다.The particle size and particle size distribution of the carrier and polymer were measured using a laser particle analyzer (Mastersizer X, Malvern Instruments) .The particle size was average size D (v, 0.5) and the particle size distribution was (D (v, 0.9) ) -D (v, 0.1)) / D (v, 0.5), where D (v, 0.5) represents the particle size represented by 50% of the sample, and D (v, 0.9) and D (v, 0.1) indicates the particle size indicated by 90% and 10% of the samples, respectively. The smaller the particle size distribution, the narrower the distribution. The composition of the catalyst was analyzed by ICP. The polymerization results are shown in Table 1 together with the apparent density (g / ml) of the polymer. The relative viscosity of the polymer was calculated by measuring the viscosity by melting the polymer using a decahydronaphthalene solvent according to ISO 1628 Part3. From this the average molecular weight (Mv) was calculated using Margolie's equation (Mv = 5.34 x 10 4 x [η] 1.49 , Mv = viscosity average molecular weight, η = intrinsic viscosity) well known in the art.

 

실시예Example 2 2

실시예 1의 (2) 단계에서, Cp2TiCl2 대신에 (t-BuCp)2TiCl2를 사용한 것을 제외하고는 실시예 1과 동일한 조건으로 촉매를 제조하고, 얻어진 촉매를 사용하여 동일하게 중합을 실시하였다. 결과는 표 1에 정리하였다.In step (2) of Example 1, Cp 2 TiCl 2 A catalyst was prepared under the same conditions as in Example 1 except that (t-BuCp) 2 TiCl 2 was used, and polymerization was carried out in the same manner using the obtained catalyst. The results are summarized in Table 1.

 

실시예Example 3 3

실시예 1의 (2) 단계에서, Cp2TiCl2 대신에 (i-PrCp)2TiCl2를  사용한 것을 제외하고는 실시예 1과 동일한 조건으로 촉매를 제조하고, 얻어진 촉매를 사용하여 동일하게 중합을 실시하였다. 결과는 표 1에 정리하였다.In step (2) of Example 1, a catalyst was prepared under the same conditions as in Example 1 except that (i-PrCp) 2 TiCl 2 was used instead of Cp 2 TiCl 2 , and the polymerization was carried out in the same manner using the obtained catalyst. Was carried out. The results are summarized in Table 1.

 

실시예Example 4 4

실시예 1의 (2) 단계에서, Cp2TiCl2 대신에 (Me5Cp)(2,6-i-Pr페녹시)TiCl2를 사용한 것을 제외하고는 실시예 1과 동일한 조건으로 촉매를 제조하고, 얻어진 촉매를 사용하여 동일하게 중합을 실시하였다. 결과는 표 1에 정리하였다.In Step (2) of Example 1, a catalyst was prepared under the same conditions as in Example 1, except that (Me 5 Cp) (2,6-i-Prphenoxy) TiCl 2 was used instead of Cp 2 TiCl 2. And superposition | polymerization was similarly performed using the obtained catalyst. The results are summarized in Table 1.

 

실시예Example 5 5

실시예 1의 (2) 단계에서, Cp2TiCl2 대신에 CpTiCl3를 사용한 것을 제외하고는 실시예1과 동일한 조건으로 촉매를 제조하고, 얻어진 촉매를 사용하여 동일하게 중합을 실시하였다. 결과는 표 1에 정리하였다.
In step (2) of Example 1, a catalyst was prepared under the same conditions as in Example 1 except that CpTiCl 3 was used instead of Cp 2 TiCl 2 , and polymerization was carried out in the same manner using the obtained catalyst. The results are summarized in Table 1.

실시예Example 6 6

실시예 1의 (2) 단계에서, Cp2TiCl2 대신에 (Me5Cp)TiCl3를 사용한 것을 제외하고는 실시예 1과 동일한 조건으로 촉매를 제조하고, 얻어진 촉매를 사용하여 동일하게 중합을 실시하였다. 결과는 표 1에 정리하였다.In step (2) of Example 1, a catalyst was prepared under the same conditions as in Example 1, except that (Me 5 Cp) TiCl 3 was used instead of Cp 2 TiCl 2 , and polymerization was carried out in the same manner using the obtained catalyst. Was carried out. The results are summarized in Table 1.

 

실시예Example 7 7

실시예 1의 (2) 단계에서, Cp2TiCl2 대신에 (Indenyl)TiCl3를 사용한 것을 제외하고는 실시예 1과 동일한 조건으로 촉매를 제조하고, 얻어진 촉매를 사용하여 동일하게 중합을 실시하였다. 결과는 표 1에 정리하였다.In step (2) of Example 1, a catalyst was prepared under the same conditions as in Example 1 except that (Indenyl) TiCl 3 was used instead of Cp 2 TiCl 2 , and the polymerization was carried out in the same manner using the obtained catalyst. . The results are summarized in Table 1.

 

비교예Comparative example 1 One

실시예 1에서, 마그네슘알콕사이드 화합물을 유기알루미늄과 반응시키는 (1) 단계를 생략하고, 마그네슘알콕사이드 화합물을 그대로 담체로 사용하여 실시예1과 동일한 조건으로 촉매를 제조하고, 얻어진 촉매를 사용하여 동일하게 중합을 실시하였다. 결과는 표 1에 정리하였다.In Example 1, the step (1) of reacting the magnesium alkoxide compound with organoaluminum was omitted, and the catalyst was prepared under the same conditions as in Example 1 using the magnesium alkoxide compound as a carrier, and the same catalyst was used as the obtained catalyst. The polymerization was carried out. The results are summarized in Table 1.

 

비교예Comparative example 2 2

 (ⅰ) 단계(I)

질소 분위기로 치환된, 기계식 교반기가 설치된 1.0L 반응기에 MgCl2 95g과 톨루엔 4000ml를 넣고, 300rpm으로 교반시킨 다음, 2-에틸헥산올 620ml를 투입한 후, 온도를 120℃로 올린 다음 3시간 동안 반응시켰다. 반응후에 얻어진 마그네슘 균일용액을 70℃로 식혔다.95 g of MgCl 2 and 4000 ml of toluene were added to a 1.0L reactor equipped with a mechanical stirrer, which was replaced with a nitrogen atmosphere, stirred at 300 rpm. Then, 620 ml of 2-ethylhexanol was added thereto, and the temperature was raised to 120 ° C. for 3 hours. Reacted. The magnesium homogeneous solution obtained after the reaction was cooled to 70 deg.

 

 (ⅱ) 단계  (Ii)

70℃로 식힌 마그네슘 용액에 실리콘테트라에톡사이드 100.0ml를 첨가하여 1시간 동안 반응시켰다.
100.0 ml of silicon tetraethoxide was added to the magnesium solution cooled to 70 ° C. and reacted for 1 hour.

(ⅲ) 단계(Iii) step

상기 용액을 실온(25℃)으로 조정하고, 사염화티타늄 600ml를 1시간 동안 적가하였다. 적가가 완료된 후, 디에틸프탈레이트 32 mL를 투입하고, 1시간에 걸쳐 반응기의 온도를 70℃로 승온시켜 1시간 동안 유지하였다. 교반을 정지한 후 상층의 용액을 분리한 다음, 남은 고체층에 톨루엔 3000ml와 사염화티타늄 1000ml를 연속으로 주입하고, 온도를 100℃로 상승시킨 후 2시간 유지하였다. 반응 후, 반응기를 실온으로 냉각하여 미반응 유리 사염화타타늄이 제거될 때까지 헥산 4000ml를 주입하여 세척하였다. 제조된 고체 촉매의 타타늄 함량은 3.5중량%이었다.  얻어진 촉매를 사용하여 실시예 1과 동일하게 중합을 실시하였고, 결과는 표 1에 정리하였다.The solution was adjusted to room temperature (25 ° C.) and 600 ml of titanium tetrachloride were added dropwise for 1 hour. After completion of the dropwise addition, 32 mL of diethylphthalate was added thereto, and the temperature of the reactor was raised to 70 ° C. over 1 hour, and maintained for 1 hour. After the stirring was stopped, the solution of the upper layer was separated, and then 3000 ml of toluene and 1000 ml of titanium tetrachloride were continuously injected into the remaining solid layer, and the temperature was raised to 100 ° C. and maintained for 2 hours. After the reaction, the reactor was cooled to room temperature, and washed with 4000 ml of hexane until unreacted free titanium tetrachloride was removed. The titanium content of the prepared solid catalyst was 3.5% by weight. The polymerization was carried out in the same manner as in Example 1 using the obtained catalyst, and the results are summarized in Table 1.

 

비교예Comparative example 3 3

비교예 1의 (ii) 단계에서, 실리콘테트라에톡사이드을 사용하지 않고, 1시간 동안 유지시킨 것을 제외하고는 비교예1과 동일한 조건으로 촉매를 제조하고, 얻어진 촉매를 사용하여 동일하게 중합을 실시하였다. 결과는 표 1에 정리하였다.In step (ii) of Comparative Example 1, a catalyst was prepared under the same conditions as in Comparative Example 1, except that silicon tetraethoxide was not used and maintained for 1 hour, and polymerization was performed using the obtained catalyst in the same manner. It was. The results are summarized in Table 1.

실시예Example 활성
(kg-PE/mol-Ti/atm/hr)
activation
(kg-PE / mol-Ti / atm / hr)
겉보기
밀도
(g/ml)
surface
density
(g / ml)
평균
분자량(g/mol)
(x 106)
Average
Molecular Weight (g / mol)
(x 10 6 )
중합체
평균입자
크기
(㎛)
polymer
Average particle
size
(Μm)
입자크기
분포
(span ratio)
Particle size
Distribution
(span ratio)
1One 15301530 0.360.36 3.053.05 111.3111.3 0.870.87 22 16701670 0.350.35 3.803.80 111.9111.9 0.850.85 33 780780 0.350.35 2.812.81 97.197.1 0.850.85 44 19501950 0.350.35 3.733.73 112.4112.4 0.840.84 55 39703970 0.350.35 3.263.26 120.9120.9 0.790.79 66 980980 0.340.34 3.233.23 102.5102.5 0.850.85 77 69006900 0.360.36 4.574.57 132.2132.2 0.930.93 비교예1Comparative Example 1 210210 -- 0.650.65 -- -- 비교예2Comparative Example 2 58705870 0.320.32 0.910.91 145.7145.7 1.51.5 비교예3Comparative Example 3 66206620 0.280.28 0.820.82 151.2151.2 3.63.6

   

Claims (5)

다음의 단계들을 포함하는 방법에 따라 제조되는 초고분자량 폴리에틸렌 제조용 고체 착물 티타늄 촉매:
(1) 마그네슘 알콕사이드 화합물을 하기 일반식 (I) 또는 (II)의 유기알루미늄 화합물과 반응시켜 담체를 제조하는 단계,
RaAlXb   ‥‥‥ (I)
(여기서 R은 수소, 또는 탄소수 1~10의 알킬, 알콕시, 할로알킬 또는 아릴기이며, X는 할로겐 원자이고, a와 b는 자연수이며, a + b = 3이다) 또는
RaAl2Xb    ‥‥‥ (II)
(여기서 R은 수소, 또는 탄소수 1~10의 알킬, 알콕시, 할로알킬 또는 아릴기이며, X는 할로겐 원자이고, a와 b는 자연수이며, a + b = 6이다); 및
(2) 상기 (1) 단계에서 제조된 담체를 하기 일반식 (1) 또는 (2)로 표시되는 티타늄 화합물과 반응시키는 단계,  
(WRn)(WR'm)TiQx   ‥‥‥ (1)
(여기서 W는 시클로펜타디에닐, 인데닐 또는 플루오레닐기이고, R과 R'는 각각 독립적으로 수소, 알킬, 알킬에테르, 알릴에테르이고, Q는 알킬, 알릴, 아릴알킬, 아미드, 알콕시 또는 할로겐 원자를 나타내며, n은 0≤ n〈5,  m은 0≤ m〈5, x는 1≤ x≤ 4를 만족하는 정수이다) 또는
(C5H5 -y- xRx)(R'y)TiQp   ‥‥‥ (2)
(여기서, R은 수소 또는 탄소수 1~20의 알킬 라디칼이고, R'는 탄소수 1 ~20의 알킬기 또는 알콕시기 또는 할로겐 원자이며, Q는 알킬, 알릴, 아릴알킬, 아미드, 알콕시 또는 할로겐 원자를 나타내고, x는 0. 1, 2, 3, 4 또는 5이고, y는 0 또는 1이다).
Solid complex titanium catalyst for preparing ultra high molecular weight polyethylene prepared according to the method comprising the following steps:
(1) reacting a magnesium alkoxide compound with an organoaluminum compound of formula (I) or (II) to prepare a carrier,
R a AlX b    ‥‥‥ (I)
(Where R is hydrogen or an alkyl, alkoxy, haloalkyl or aryl group having 1 to 10 carbon atoms, X is a halogen atom, a and b are natural numbers and a + b = 3) or
R a Al 2 X b     ‥‥‥ (II)
(Wherein R is hydrogen or an alkyl, alkoxy, haloalkyl or aryl group having 1 to 10 carbon atoms, X is a halogen atom, a and b are natural numbers and a + b = 6); And
(2) reacting the carrier prepared in step (1) with a titanium compound represented by the following general formula (1) or (2),
(WR n ) (WR ' m ) TiQ x    ‥‥‥ (One)
Wherein W is a cyclopentadienyl, indenyl or fluorenyl group, R and R 'are each independently hydrogen, alkyl, alkylether, allylether, Q is alkyl, allyl, arylalkyl, amide, alkoxy or halogen Represents an atom, n is 0 ≦ n <5, m is 0 ≦ m <5, and x is an integer satisfying 1 ≦ x ≦ 4) or
(C 5 H 5 -y- x R x) (R 'y) TiQ p    ‥‥‥ (2)
Wherein R is hydrogen or an alkyl radical having 1 to 20 carbon atoms, R 'is an alkyl or alkoxy group having 1 to 20 carbon atoms or a halogen atom, and Q represents an alkyl, allyl, arylalkyl, amide, alkoxy or halogen atom , x is 0.1, 2, 3, 4 or 5 and y is 0 or 1).
제 1항에 있어서, 상기 (1) 단계에서 사용되는  유기알루미늄 화합물은, 메틸알루미늄디클로라이드, 에틸알루미늄디클로라이드, 프로필알루미늄디클로라이드, 부틸알루미늄디클로라이드, 에틸알루미늄세스퀴클로라이드, 디메틸알루미늄클로라이드, 디에틸알루미늄클로라이드, 디프로필알루미늄클로라이드 또는 디부틸알루미늄클로라이드인 것을 특징으로 하는 초고분자량 폴리에틸렌 제조용 고체 착물 티타늄 촉매. According to claim 1, wherein the organic aluminum compound used in step (1) is methyl aluminum dichloride, ethyl aluminum dichloride, propyl aluminum dichloride, butyl aluminum dichloride, ethyl aluminum sesquichloride, dimethyl aluminum chloride, di Solid complex titanium catalyst for producing ultra high molecular weight polyethylene, characterized in that the ethyl aluminum chloride, dipropyl aluminum chloride or dibutyl aluminum chloride. 제1항에 있어서, 상기 (2) 단계에서 사용되는   티타늄 화합물은, Cp2TiCl2, (Me5Cp)2TiCl2, (Me4Cp)2TiCl2, (n-BuCp)2TiCl2, (t-BuCp)2TiCl2, (i-PrCp)2TiCl2, (EtCp)2TiCl2, (인데닐)2TiCl2, CpTiCl3, (Me5Cp)TiCl3 또는 (인데닐)TiCl3인 것을 특징으로 하는 초고분자량 폴리에틸렌 제조용 고체 착물 티타늄 촉매. According to claim 1, wherein the titanium compound used in step (2), Cp 2 TiCl 2 , (Me 5 Cp) 2 TiCl 2 , (Me 4 Cp) 2 TiCl 2 , (n-BuCp) 2 TiCl 2 , (t-BuCp) 2 TiCl 2 , (i-PrCp) 2 TiCl 2 , (EtCp) 2 TiCl 2 , (Indenyl) 2 TiCl 2 , CpTiCl 3 , (Me 5 Cp) TiCl 3 or (Indenyl) TiCl 3 Solid complex titanium catalyst for ultra-high molecular weight polyethylene production, characterized in that. 제 1항 내지 제 3항 중 어느 한 항에 따른 고체 착물 티타늄 촉매와 유기금속 화합물의 존재하에 에틸렌을 중합하는 것을 포함하는 초고분자량 폴리에틸렌의 제조방법.  A process for producing ultra high molecular weight polyethylene comprising polymerizing ethylene in the presence of a solid complex titanium catalyst and an organometallic compound according to claim 1. 제 4항에 있어서, 상기 유기금속 화합물은 유기알루미늄 화합물인 것을 특징으로 하는 초고분자량 폴리에틸렌의 제조방법.The method of claim 4, wherein the organometallic compound is an organoaluminum compound.
KR1020110123029A 2011-11-23 2011-11-23 A Catalyst for Preparation of Ultra high Molecular Weight Polyethylene and A Preparation Method of Ultra high Molecular Weight Polyethylene Using the Same KR101339603B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110123029A KR101339603B1 (en) 2011-11-23 2011-11-23 A Catalyst for Preparation of Ultra high Molecular Weight Polyethylene and A Preparation Method of Ultra high Molecular Weight Polyethylene Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110123029A KR101339603B1 (en) 2011-11-23 2011-11-23 A Catalyst for Preparation of Ultra high Molecular Weight Polyethylene and A Preparation Method of Ultra high Molecular Weight Polyethylene Using the Same

Publications (2)

Publication Number Publication Date
KR20130057217A true KR20130057217A (en) 2013-05-31
KR101339603B1 KR101339603B1 (en) 2013-12-10

Family

ID=48665005

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110123029A KR101339603B1 (en) 2011-11-23 2011-11-23 A Catalyst for Preparation of Ultra high Molecular Weight Polyethylene and A Preparation Method of Ultra high Molecular Weight Polyethylene Using the Same

Country Status (1)

Country Link
KR (1) KR101339603B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076618A1 (en) * 2013-11-21 2015-05-28 주식회사 엘지화학 Method for preparing polyolefin and polyolefin prepared thereby
KR101882110B1 (en) * 2016-12-26 2018-07-25 한화토탈 주식회사 The preparation method of ultra high molecular weight polyethylene

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100275772B1 (en) * 1993-09-27 2001-01-15 윤종용 Laser diode and manufacturing method thereof
KR100531248B1 (en) * 2003-01-22 2005-11-28 삼성토탈 주식회사 A catalyst and a preparation method for ultra high molecular weight polyethylene using the same
KR100958676B1 (en) * 2008-01-11 2010-05-20 한화케미칼 주식회사 Synthesis, Characterization, and Polymerization of dinuclear CGC Complexes
KR20100100433A (en) * 2009-03-06 2010-09-15 삼성토탈 주식회사 A method for preparation of catalyst for ethylene (co)polymerization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076618A1 (en) * 2013-11-21 2015-05-28 주식회사 엘지화학 Method for preparing polyolefin and polyolefin prepared thereby
US9975969B2 (en) 2013-11-21 2018-05-22 Lg Chem, Ltd. Method of preparing polyolefin, and polyolefin prepared thereby
KR101882110B1 (en) * 2016-12-26 2018-07-25 한화토탈 주식회사 The preparation method of ultra high molecular weight polyethylene

Also Published As

Publication number Publication date
KR101339603B1 (en) 2013-12-10

Similar Documents

Publication Publication Date Title
US4952540A (en) Finely divided aluminoxane, process for producing same and its use
KR101795748B1 (en) Method for preparing polyolefin
KR20110115015A (en) A catalyst for ultra high molecular weight polyethylene(uhmwpe) and production method of uhmpe using the same
KR20160058543A (en) Preparing method of catalyst for polymerization of polyethylene and process for polymerization of polyethylene using the same
KR101049662B1 (en) Ultra high molecular weight polyethylene polymerization catalyst and preparation method of ultra high molecular weight polyethylene using the same
KR101339603B1 (en) A Catalyst for Preparation of Ultra high Molecular Weight Polyethylene and A Preparation Method of Ultra high Molecular Weight Polyethylene Using the Same
EP1863856B1 (en) Process for preparing crystalline ethylene (co)polymers
KR20100100433A (en) A method for preparation of catalyst for ethylene (co)polymerization
KR102342077B1 (en) The preparation method of catalyst for ethylene polymerization
KR102259312B1 (en) The preparation method of catalyst for ethylene polymerization
KR102487346B1 (en) A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene
KR20090092023A (en) A preparation method of catalyst for ethylene (co)polymerization
KR20140136239A (en) A preparation method of the size-controllable catalyst for ethylene (co)polymerization
EP1863853B1 (en) Catalyst components for the polymerization of olefins
WO2006103171A1 (en) Catalyst components for the polymerization of olefins
KR102487347B1 (en) A preparation methods of Ziegler-Natta catalysts to control molecular weight distribution of ultra-high molecular weight polyethylene
KR101265418B1 (en) A preparation method of catalyst for ethylene (co)polymerization
JP5242482B2 (en) Polyethylene resin composition and method for producing the same
US7094726B2 (en) Catalyst composition and process for olefin polymerization and copolymerization using supported metallocene catalyst systems
KR101265405B1 (en) A Preparation Method of Catalyst for Ethylene (Co)Polymerization
KR101222712B1 (en) A Preparation Method of Catalyst for Ethylene (Co)Polymerization
KR20100100432A (en) A method for preparation of catalyst for ethylene (co)polymerization
KR20110115016A (en) A catalyst for ultra high molecular weight polyethylene(uhmwpe) and production method of uhmwpe using the same
KR20110134653A (en) A preparation method of catalyst for ethylene (co)polymerization
KR20090092024A (en) A preparation method of catalyst for ethylene (co)polymerization

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160927

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170920

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180905

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190923

Year of fee payment: 7