KR101825614B1 - C-메틸이소플라본과 그 유도체 및 그 합성방법 - Google Patents

C-메틸이소플라본과 그 유도체 및 그 합성방법 Download PDF

Info

Publication number
KR101825614B1
KR101825614B1 KR1020160157039A KR20160157039A KR101825614B1 KR 101825614 B1 KR101825614 B1 KR 101825614B1 KR 1020160157039 A KR1020160157039 A KR 1020160157039A KR 20160157039 A KR20160157039 A KR 20160157039A KR 101825614 B1 KR101825614 B1 KR 101825614B1
Authority
KR
South Korea
Prior art keywords
dimethyl
chromen
hydroxy
dimethoxy
methoxy
Prior art date
Application number
KR1020160157039A
Other languages
English (en)
Inventor
전종갑
정종운
Original Assignee
한림대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한림대학교 산학협력단 filed Critical 한림대학교 산학협력단
Priority to KR1020160157039A priority Critical patent/KR101825614B1/ko
Application granted granted Critical
Publication of KR101825614B1 publication Critical patent/KR101825614B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/34Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 3 only
    • C07D311/36Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 3 only not hydrogenated in the hetero ring, e.g. isoflavones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명자들은 생물학적 활성을 지닌 천연 화합물인 C-메틸이소플라본 화합물 이소시더록실린 (화합물 1), 6,8-다이메틸제니스테인 (화합물 2) 및 그 유도체들 (화합물 3~8)을 상업적으로 입수 가능한 전구체로부터 전체 수율 16~24%로 7~8 단계로 간단하고 효율적으로 합성하였다. 이 전략에서 빌스마이어-해크 반응 (Vilsmeier-Haack reaction), 프리델-크라프츠 아실화 (Friedel-Crafts acylation)와 탈메틸화 동시반응, 개밀의 프로토콜 (Gammill's protocol) 및 스즈키 커플링 반응 (Suzuki coupling reactions)이 주요 단계로 적용되었다. 또한, 본 발명에서는 화합물 1~8에 대하여 LPS로 유도된 RAW264.7 대식세포에서 NO 생성을 억제하는 능력을 분석하였다. 시험한 모든 시료들은 농도 의존적으로 NO 생성을 감소시켰고 고농도 (10 μmol/L)에서 명확한 세포독성을 나타내지 않았으며, 10.17 내지 33.88 μmol/L 범위의 IC50 값으로 효율적인 저해 효과를 나타냈다. 중요한 점은 화합물 3 (IC50 = 10.17 μmol/L), 화합물 1 (IC50 = 13.2 μmol/L), 화합물 7 (IC50 = 13.21 μmol/L)과 화합물 8 (IC50 = 14.67 μmol/L)이 양성 대조군으로 이용되는 L-NMMA (N-monomethyl-L-arginine) (IC50 = 7.82 μmol/L)와 비교하여 상당한 억제효과를 나타냈다.

Description

C-메틸이소플라본과 그 유도체 및 그 합성방법 {C-methylisoflavones and their derivatives and producing methods thereof}
본 발명은 C-메틸이소플라본과 그 유도체 및 그 합성방법에 관한 것으로서, 좀 더 구체적으로는 생물학적 활성을 지닌 천연 화합물인 C-메틸이소플라본 화합물 이소시더록실린 (화합물 1), 6,8-다이메틸제니스테인 (화합물 2) 및 그 유도체들 (화합물 3~8)을 상업적으로 입수 가능한 전구체로부터 전체 수율 16~24%로 7~8 단계로 간단하고 효율적으로 합성하였다.
염증은 감염 및/또는 부상 후 시작되는 숙주의 초기 방어반응이다. 이 복잡하지만 잘 통합된 과정은 상처입거나 감염된 조직에서 상주 세포 (resident cell) (즉, 조직 대식세포, 백혈구, 섬유아세포, 내피세포 및 비만세포)에 의하여 케모카인, 사이토카인, (산화질소 (NO)와 같은) 자유라디칼 및 아이코사노이드 (프로스타글란딘)를 포함하는 다양한 수용성 매개물질의 생산을 증가시킨다 [1]. 최근, 염증관련 질환의 치료는 주로 이들 매개물질의 합성 또는 활성을 저해하는 것과 관련되어 있다. 다기능성 기체상 자유라디칼인 산화질소는 산화질소 합성효소 (내피-NOS, 신경-NOS 및 유도-NOS)에 의해 아미노산 L-아르기닌으로부터 합성되는 중요한 신호전달분자 중 하나이다. 이것은 다양한 생리적 및 병리생리학적 과정을 조절하며 염증 발생에서의 역할은 그 농도에 밀접하게 의존한다 [2]. NO가 오랫동안 과발현되면 조직 손상과 류마티스성 관절염, 천식, 당뇨, 뇌졸중, 암 및 신경퇴행성 질환과 같은 급성 및 만성 염증과 관련된 친염증성 매개물질의 활성화를 초래한다 [3]. 그리하여, NO의 과발현 억제는 유익한 치료전략이 된다.
사이클로옥시게네이즈 (COX-1과 COX-2)에 작용하는 비스테로이드성 항염증 약제 (Nonsteroidal anti-inflammatory drugs; NSAIDs), 고전적인 스테로이드성 항염증 약제 (steroidal anti-inflammatory drugs; SAIDs), 항히스타민제 및 선택적 COX-2 억제제 (COXIBs)는 일반적으로 광범위한 염증질환을 치료하기 위해 이용되어 왔다. 비록 이들 소분자 억제제들이 통증과 염증을 겪는 환자들의 고통을 줄여주었지만, 이 약제들은 단점이 있다. 따라서, 좀 더 안전하고 효과적이며 새로운 항염증제 개발이 필요하다.
이소플라본은 플라보노이드 패밀리의 하나로서, 식물, 특히 콩, 병아리콩 및 호로파 (fenugreek)와 같은 콩과 식물 (Fabaceae)에서 발견되는 중요한 생물학적 활성을 지닌 2차 대사산물이다. 일반적으로, 이 화합물은 배당체 (glycoside) 형태로 존재한다. 이들의 건강증진효과는 오래전부터 알려져 왔다. 이소플라본의 광범위한 생물학적 활성으로는 항염증 [5], 항산화 [6], 항암 [7], 항바이러스 [8], 항진균 [9], 항균 [10], 항백내장 (anticataracts) [11] 및 항번식작용 (antifertility) [12]을 포함한다. 이와 별개로, 어떤 이소플라본은 카이네이즈 저해제로 연구되고 있다 [13]. 이들은 인간 비만에도 효과적이며 혈장 콜레스테롤에 긍정적인 영향을 미친다 [14]. 서양인들과 비교하여 아시아인들에게서 전립선암과 유방암 발병률이 낮은 까닭은 서양식에서 이소플라본 소비량 (0.15-1.7 mg/day)과 비교하여 아시아인들의 식사에서 이소플라본 소비량 (15-47 mg/day)이 현저한 차이가 있는 것과 관련이 있을 수 있다 [15]. 최근 들어 이소플라본과 관련 화합물에 관한 연구가 세계적으로 상당한 관심을 받고 있는데, 이는 이 화합물들이 자연에 풍부하게 존재하며, 구조적 변형이 용이하며, 합성이 용이하고, 다양한 생물학적 활성을 가지고 있기 때문이다.
J.N. Fullerton, D.W. Gilroy, Resolution of inflammation: a new therapeutic frontier, Nat. Rev. Drug Discov. 15 (2016) 551-567. C. Bogdan, Nitric oxide and the immune response, Nat. Immunol. 2 (2001) 907-916. (a) A.J. Duncan, S.J. Heales, Nitric oxide and neurological disorders, Mol. Aspects Med. 26 (2005) 67-96. (b) K. Bian, F. Murad, Nitric oxide (NO)-biogeneration, regulation, and relevance to human diseases, Front. Biosci. 8 (2003) d264-d278. E.R. Gilbert, D. Liu, Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic b-cell function, Food Funct. 4 (2013) 200-212. (a) J. Yu, X. Bi, B. Yu, et al., Isoflavones: Anti-inflammatory benefit and possible caveats, Nutrients 8 (2016) 361. (b) B.H. Kim, E.Y. Chung, B.-K. Min, et al., Anti-inflammatory action of legume isoflavonoid sophoricoside through inhibition on cyclooxygenase-2 activity, Planta Med. 69 (2003) 474-476. (a) C.E. Rufer, S.E. Kulling, Antioxidant activity of isoflavones and their major metabolites using different in vitro assays, J. Agric. Food Chem. 54 (2006) 2926-2931. (b) C.H. Lee, L. Yang, J.Z. Xu, et al., Relative antioxidant activity of soybean isoflavones and their glycosides, Food Chem. 90 (2005) 735-741. (a) S. Andres, K. Abraham, K.E. Appel, et al., Risks and benefits of dietary isoflavones for cancer, Crit. Rev. Toxicol. 41 (2011) 463-506. (b) Y. kown, Effect of soy isoflavones on the growt h of human breasttumors: findings from preclinical studies, Food Sci. Nutr. 2 (2014) 613-622. A. Andres, S.M. Donovan, M.S. Kuhlenschmidt, Soy isoflavones and virus infections, J. Nutr. Biochem. 20 (2009) 563-569. R.P. Kramer, H. Hindorf, H.C. Jha, Antifungal activity of soybean and chickpea isoflavones and their reduced derivatives, Phytochemistry 23 (1984) 2203-2205. (a) C. Morel, F.R. Stermitz, G. Tegos, K. Lewis, Isoflavones as potentiators of antibacterial activity, J. Agric. Food Chem. 51 (2003) 5677-5679. (b) M. Sato, H. Tanaka, N. Tani, Different antibacterial actions of isoflavones isolated from Erythrina poeppigiana against methicillin-resistant Staphylococcus aureus, Lett. Appl. Microbiol. 43 (2006) 243-248. S.D. Varma, I. Mikuni, J.H. Kinoshita, Flavonoids as inhibitors of lens aldose reductase, Science 188 (1975) 1215-1216. G.W. Moersch, D.F. Morrow, W.A. Neuklis, The antifertility activity of isoflavones related to genistein, J. Med. Chem. 10 (1967) 154-158. H. Ogawara, T. Akiyama, S. Watanabe, et al., Inhibition of tyrosine protein kinase activity by synthetic isoflavones and flavones, J. Antibiot. 42 (1989) 340-343. A. Orgaard, L. Jensen, The effects of soy isoflavones on obesity, Exp. Biol. Med. 233 (2008) 1066-1080. (a) T. Marugame, K. Katanoda, International comparisons of cumulative risk of breast and prostate cancer, from cancer incidence in five continents Vol. VIII., Jpn. J. Clin. Oncol. 36 (2006) 399-400. (b) A.H. Wu, R.G. Ziegler, A. Nomura, et al., Soy intake and risk of breast cancer in Asians and Asian Americans, Am. J. Clin. Nutr. 68 (1998) 1437S-1443S. (c) S. Medjakovic, M. Mueller, A. Jungbauer, Potential health-modulating effects of isoflavones and metabolites via activation of PPAR and AhR, Nutrients 2 (2010) 241-279. (a) K. Damodar, J.-K. Kim, J.-G. Jun, Synthesis and pharmacological properties of naturally occurring prenylated and pyranochalcones as potent anti-inflammatory agents, Chin. Chem. Lett. 27 (2016) 698-702. Y.H. Seo, K. Damodar, J.-K. Kim, J.-G. Jun, Synthesis and biological evaluation of 2-aroylbenzofurans, rugchalcones A, B and their derivatives as potent anti-inflammatory agents, Bioorg. Med. Chem. Lett. 26 (2016) 1521-1524. D. Tian, J.R. Porter, An isoflavone from Leiophyllum buxifolium and its antiproliferative effect, J. Nat. Prod. 78 (2015) 1748-1751. A.I. Calderon, C. Terreaux, K. Schenk, et al., Isolation and structure elucidation of an isoflavone and a sesterterpenoic acid from Henriettella fascicularis, J. Nat. Prod. 65 (2002) 1749-1753. B.R. Gammill, A new and efficient synthesis of 3-halogenated 4H-1-benzopyran-4-ones. Synthesis (1979) 901-903. (a) C. Dittmer, G. Raabe, L. Hintermann, Asymmetric cyclization of 2H-hydroxychalcones to flavanones: Catalysis by chiral Br?nsted acids and bases, Eur. J. Org. Chem. (2007) 5886-5898. (b) L. Shi, X.E. Feng, J.R.Cui, et al., Synthesis and biological activity of flavanone derivatives, Bioorg. Med. Chem. Lett. 20 (2010) 5466-5468. S. Balasubramanian, M.G. Nair, An efficient 'one pot' synthesis of isoflavones, Synth. Commun. 30 (2000) 469-484. D. Giustarini, R. Rossi, A. Milzani, I. Dalle-Donne, Nitrite and nitrate measurement by Griess reagent in human plasma: Evaluation of interferences and standardization, in: E. Cadenas, L. Packer (Eds.), Methods in Enzymology, Elsevier Inc., Richmond, 2008, pp. 361-380. (a) L. Salerno, V. Sorrenti, Di C. Giacomo, G. Romeo, M.A. Siracusa, Progress in the development of selective nitric oxide synthase (NOS) inhibitors. Curr. Pharm. Des. 8 (2002) 177-200. (b) J.-L. Song, Y.Yuan, H.-B. Tan, J.-W. Wu, R.-M. Huang, H. Li, Z.-F. Xu, N. Na, S.-X. Qiu, Euryachins A and B, a new type of diterpenoids from Eurya chinensis with potent NO production inhibitory activity, RSC Adv. 6 (2016) 85958-85961. (c) C.A. Kontogiorgis, D. Hadjipavlou-Litina, Current trends in QSAR on NO donors and inhibitors of nitric oxide synthase (NOS), Med. Res. Rev. 22 (2002) 385-418.
본 발명의 목표는 생물활성을 지닌 천연 산물을 상업적으로 입수 가능한 전구체로부터 간단하고 효율적으로 합성하는 방법 및 합성된 C-메틸이소플라본 화합물을 제공하려는 것이다.
산화질소 억제제로서 생물활성을 지닌 천연 산물 및 그 유사체의 합성과 평가에 초점을 맞춘 지속되는 연구의 일환으로 본 발명에서는 자연에서 생성되는 C-메틸이소플라본인 이소시더록실린 (isosideroxylin)(화합물 1), 6,8-다이메틸제니스테인 (6,8-dimethylgenistein)(화합물 2) 및 그들의 유도체들 (화합물 3~8)을 처음 합성하였으며, 항염증 효과의 지시자로서 지다당으로 유도한 대식세포주 RAW264.7의 NO 저해능을 연구하였다. 이소시더록실린 (화합물 1)은 레이오필룸 벅시폴리움 (Leiophyllum buxifolium)에서 분리되었고, IC50 값 7.0 μM로 MDAMB-231 세포에 대하여 선택적인 항증식효과를 나타내며, MCF-7 세포에 대해서도 약한 저해효과를 나타냈다 [17]. 6,8-다이메틸제니스테인 (화합물 2)은 헨리에텔라 파시큘라리스 (Henriettella fascicularis)에서 분리되었으며, IC50 값 0.88 μM로 에스트로겐 수용체-β에 현저하게 경쟁적으로 결합하며 배양된 이시카와 세포에 알맞은 항에스트로겐 활성을 나타냈다 [18].
본 발명에서는 생물학적 활성을 지닌 천연 화합물인 C-메틸이소플라본 화합물 이소시더록실린 (화합물 1), 6,8-다이메틸제니스테인 (화합물 2) 및 그 유도체들 (화합물 3~8)을 상업적으로 입수 가능한 전구체로부터 전체 수율 16~24%로 7~8 단계로 간단하고 효율적으로 합성하였다. 이 전략에서 빌스마이어-해크 반응 (Vilsmeier-Haack reaction), 프리델-크라프츠 아실화 (Friedel-Crafts acylation)와 탈메틸화 동시반응, 개밀의 프로토콜 (Gammill's protocol) 및 스즈키 커플링 반응 (Suzuki coupling reactions)이 주요 단계로 적용되었다. 또한, 본 발명에서는 화합물 1~8에 대하여 LPS로 유도된 RAW264.7 대식세포에서 NO 생성을 억제하는 능력을 분석하였다. 시험한 모든 시료들은 농도 의존적으로 NO 생성을 감소시켰고 고농도 (10 μmol/L)에서 명확한 세포독성을 나타내지 않았으며, 10.17 내지 33.88 μmol/L 범위의 IC50 값으로 효율적인 저해 효과를 나타냈다. 중요한 점은 화합물 3 (IC50 = 10.17 μmol/L), 화합물 1 (IC50 = 13.2 μmol/L), 화합물 7 (IC50 = 13.21 μmol/L)과 화합물 8 (IC50 = 14.67 μmol/L)이 양성 대조군으로 이용되는 L-NMMA ((N-monomethyl-L-arginine) (IC50 = 7.82 μmol/L)와 비교하여 상당한 억제효과를 나타냈다.
이소플라본 화합물 1~8에 대한 본 발명자들의 역합성 분석 결과는 도 2에 나타냈다. 우리는 화합물 3, 9~13의 선택적 또는 완전한 O-탈메틸화를 계획하였고, 화합물 3, 9~13은 3-아이오도크로멘 화합물 14와 해당 붕산 간의 스즈키 커플링으로 표적 화합물을 얻는다. 화합물 14는 화합물 15와 DMF-DMA의 응축을 포함하는 Gammill의 프로토콜 (Gammill's protocol) [19]에 의해 충분히 작용기화된 아세토페논 화합물 15로부터 용이하게 생성되는 엔아미노케톤 (enaminoketone)(화합물 21)의 요오드-매개 고리화 반응으로 얻었다. 화합물 15는 플루로글루시놀 (화합물 16)로부터 빌스마이어-해크 반응 (Vilsmeier-Haack reaction), 환원, 메틸화 및 프리델-크라프츠 아실화 (Friedel-Crafts acylation)와 탈메틸화 동시반응으로 이루어진 네 단계의 합성 순서에 의해 간편하게 제조될 수 있다.
그리하여, 본 발명은 플루로글루시놀 (화합물 16)의 빌스마이어-해크 반응 (Vilsmeier-Haack reaction)으로부터 시작하였다 (도 3). 플루로글루시놀 (화합물 16)을 DMF와 POCl3로부터 반응기 내에서 (in situ) 합성된 2 당량의 빌스마이어 시약으로 처리하여 다이알데하이드 화합물 17을 87% 수율로 얻었다. 클레멘젠 환원형 조건 (Clemmensen reduction type condition)을 이용한 두 카보닐기의 손쉬운 환원반응으로 화합물 18을 얻었다. THF 용액 내에서 3 당량의 소듐 시아노보로하이드라이드/3N HCl과 메틸 오렌지 지시약을 이용한 화합물 17의 환원반응으로 약 98% 수율로 화합물 18을 얻었다. 앞서 화합물 18을 제조하는 두 가지 방법이 보고된 바 있었지만, 이 두 가지 공정은 수율이 낮고, 반응조건이 가혹하고, 독성 물질을 사용해야 했기 때문에 바람직하지 않았다 [20]. 화합물 18과 2-(4-하이드록시페닐)아세트산 간의 반응 및 PCl5/DMF (phosphorus pentachloride/N,N-dimethylformamide)와의 연속된 원폿 반응을 하면 화합물 2를 낮은 수율 (17%)로 얻을 수 있다 [21]. 다음으로, BF3.Et2O (boron trifluoride diethyl etherate) 또는 AlCl3 존재 하에서 아세틸 클로라이드 (AcCl)를 이용한 화합물 18에 대한 프리델-크라프츠 아실화 반응을 하면 주요 화합물로서 원하지 않는 O-아세틸화 산물만을 얻었다. 수산화기로 인해 발생하는 부반응을 막기 위하여 다이메틸설페이트를 이용하여 화합물 18을 화합물 19로 변환하였다. 화합물 19는 AcCl 및 AlCl3를 이용하여 프리델-크라프츠 아실화하였다. 다이에틸에테르 또는 THF 용액에서 반응을 진행하여 아세틸화 산물인 화합물 20을 각각 수율 51%와 76%로 얻었고, 반면, 무용제 조건에서 Ac2O/BF3.Et2O로 반응하여 원하는 2'-하이드록시아세토페논 화합물 15를 75% 수율로 얻었다. 다음으로, 엔아미노케톤 화합물 21 형성을 통해 아이오도크로멘 화합물 14를 제조하기 위하여 화합물 15를 Gammill의 방법에 적용하였다. DMF-DMA (N,N-dimethylformamide dimethyl acetal)로 화합물 15를 응축하여 화합물 21을 92% 수율로 얻었다. 엔아미노케톤 화합물 21의 탠덤 요오드화와 고리화 반응을 CHCl3에서 수행하여 3-아이오도크로멘 화합물 14를 67% 수율로 얻었다.
필수적인 전구체 화합물 14를 가지고, 화합물 1~8을 합성하기 위하여 스즈키 커플링을 수행하였다. 화합물 14를 1.5 당량의 붕산 화합물 22~27, 1.5 당량의 Cs2CO3 (cesium carbonate)와 0.1 당량의 Pd(PPh3)2Cl2 (bis(triphenylphosphine)palladium(ii) dichloride)와 함께 밀봉튜브에 넣어 75 ℃로 반응시켜 이소플라본 화합물 3과 9~13을 69~85% 수율로 얻었다. 최종적으로, CH2Cl2에서 1.0 M의 삼염화붕소 용액을 이용하여 0 ℃에서 한 시간 동안 화합물 3 및 9~13을 선택적 오르쏘-탈메틸화하여 이소시더록실린 (화합물 1) 및 그 유사체 화합물 4~8을 94~99% 수율로 얻었다. 또 다른 천연 이소플라본 화합물인 6,8-다이메틸제니스테인 (화합물 2)은 CH2Cl2 내에서 1.0 M의 삼브롬화붕산 용액을 이용하여 화합물 3의 완전한 O-탈메틸화로 얻었다. 모든 화합물 1-8은 스펙트럼 (1H NMR & 13C NMR 및 MS) 데이터로 구조를 확인하였다.
본 발명은
(a) 밀봉 튜브에 화학식 14로 표시되는 3-아이오도-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-Iodo-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}, 화학식 22로 표시되는 붕산 화합물, Cs2CO3N,N-다이메틸포름아마이드를 혼합하여 가스를 제거하는 단계;
(b) Pd(PPh3)2Cl2를 상기 (a) 단계에서 얻어진 반응 혼합물에 첨가하고, 추가로 가스를 제거하고, 교반하는 단계; 및
(c) 상기 (b) 단계를 거친 반응 혼합물을 상온으로 냉각시키고, 물을 가하고 에테르로 추출하는 단계;를 포함하는 화학식 3으로 표시되는 C-메틸이소플라본 화합물 합성방법에 관한 것이다.
<화학식 14>
Figure 112016114939301-pat00001
<화학식 22>
Figure 112016114939301-pat00002
<화학식 3>
Figure 112016114939301-pat00003
또한, 본 발명은 상기 화학식 14로 표시되는 3-아이오도-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 1 당량에 대하여 붕산 화합물 1.5 당량, Cs2CO3 1.5 당량, Pd(PPh3)2Cl2 0.1 당량을 가하여 반응시킴을 특징으로 하는 C-메틸이소플라본 화합물 합성방법에 관한 것이다.
또한, 본 발명은 상기 화학식 14로 표시되는 3-아이오도-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온이
(가) 화학식 16으로 표시되는 플로로글루시놀을 둥근 바닥 플라스크에 넣고 무수 1,4-다이옥산으로 용해시키고 냉각한 후 빌스마이어 시약을 질소 분위기 하에서 한 방울씩 가하여 화학식 17로 표시되는 2,4,6-트리하이드록시이소프탈알데하이드 (2,4,6-Trihydroxyisophthal aldehyde)를 생성하는 단계;
(나) 상기 2,4,6-트리하이드록시이소프탈알데하이드와 소듐 시아노보로하이드라이드를 THF에 넣고 교반한 용액에 수성 HCl 용액을 천천히 가하고 교반하여 화학식 18로 표시되는 2,4-다이메틸벤젠-1,3,5-트리올 (2,4-Dimethylbenzene-1,3,5-triol)을 생성하는 단계;
(다) 상기 2,4-다이메틸벤젠-1,3,5-트리올과 K2CO3를 무수 아세톤에 넣고 교반한 용액에 다이메틸 설페이트를 상온 질소 분위기 하에서 한 방울씩 가하고, 생성된 혼합물을 12시간 동안 환류시켜 화학식 19로 표시되는 1,3,5-트리메톡시-2,4-다이메틸벤젠 (1,3,5-Trimethoxy-2,4-dimethylbenzene)을 생성하는 단계;
(라) 보론 트리플루오라이드 다이에틸 에터레이트를 상기 1,3,5-트리메톡시- 2,4-다이메틸벤젠과 무수 아세트산의 혼합물에 0℃, 질소 분위기 하에서 한 방울씩 가하고, 반응 완료 후 반응 혼합물을 80~90℃로 가온하여 1~2시간 동안 교반하고, 상온에서 15~20시간 동안 방치하여 화학식 15로 표시되는 1-(2-하이드록시-4,6-다이메톡시-3,5-다이메틸페닐)에타논 {1-(2-Hydroxy-4,6-dimethoxy-3,5-dimethylphenyl)ethanone}을 생성하는 단계;
(마) 상기 1-(2-하이드록시-4,6-다이메톡시-3,5-다이메틸페닐)에타논을 무수 N,N-다이메틸포름아마이드에 넣고 교반한 용액에 N,N-다이메틸포름아마이드-다이메틸 아세탈을 상온, 질소 분위기 하에서 한 방울씩 가하여 생성된 혼합물을 75℃로 올리고, 2시간 30분 동안 교반하여 화학식 21로 표시되는 (E)-3-(다이메틸아미노)-1-(2-하이드록시-4,6-다이메톡시-3,5-다이메틸페닐)프로프-2-엔-1-온 {(E)-3-(Dimethylamino)-1-(2-hydroxy-4,6-dimethoxy-3,5-dimethylphenyl)prop-2-en-1-one}을 생성하는 단계; 및
(바) 상기 (E)-3-(다이메틸아미노)-1-(2-하이드록시-4,6-다이메톡시-3,5-다이메틸페닐)프로프-2-엔-1-온을 CHCl3에 넣고 교반한 용액에 상온에서 요오드 분자를 가하고 생성된 혼합물을 10~12시간 동안 교반하여 반응 완료 후, 포화 Na2S2O3 용액으로 반응을 종결하고 두 층을 분리한 후 수용액층을 CH2Cl2로 추출하여 3-아이오도-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-Iodo-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}을 생성하는 단계;로부터 얻어진 것임을 특징으로 하는 C-메틸이소플라본 화합물 합성방법에 관한 것이다.
<화학식 16>
Figure 112016114939301-pat00004
<화학식 17>
Figure 112016114939301-pat00005
<화학식 18>
Figure 112016114939301-pat00006
<화학식 19>
Figure 112016114939301-pat00007
<화학식 15>
Figure 112016114939301-pat00008
<화학식 21>
Figure 112016114939301-pat00009
또한, 본 발명은 상기 (가) 단계의 빌스마이어 시약이 N,N-다이메틸포름아마이드를 교반한 용액에 0℃에서 옥시염화인을 첨가 및 교반하여 반응기 내에서 (in situ) 합성된 것임을 특징으로 하는 C-메틸이소플라본 화합물 합성방법에 관한 것이다.
또한, 본 발명은 상기 (나) 단계에서 지시약으로서 메틸 오렌지를 이용함을 특징으로 하는 C-메틸이소플라본 화합물 합성방법에 관한 것이다.
또한, 본 발명은 삼염화 붕소를 이용하여 C-메틸이소플라본 화합물인 3-(4-하이드록시페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Hydroxyphenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}의 오르쏘-탈메틸화 반응으로 화학식 1로 표시되는 이소시더록실린을 합성하는 C-메틸이소플라본 화합물 합성방법에 관한 것이다.
<화학식 1>
Figure 112016114939301-pat00010
또한, 본 발명은 상기 삼염화 붕소를 이용한 C-메틸이소플라본 화합물의 오르쏘-탈메틸화 반응은 C-메틸이소플라본 화합물을 무수 CH2Cl2에 넣고 교반한 용액에 0℃, 질소 분위기 하에서 삼염화 붕소를 한 방울씩 가하고 교반하여 진행하는 것임을 특징으로 하는 C-메틸이소플라본 화합물 합성방법에 관한 것이다.
또한, 본 발명은 3-(4-하이드록시페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Hydroxyphenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen -4-one}을 무수 CH2Cl2에 넣고 교반한 용액에 0℃, 질소 분위기 하에서 삼브롬화 붕소를 한 방울씩 가하고, 실온으로 가온하여 45~50시간 동안 교반하여 반응 완료 후, 과량의 시약을 메탄올로 반응 종결하고 화학식 2로 표시되는 5,7-다이하이드록시-3-(4-하이드록시페닐)-6,8-다이메틸-4H-크로멘-4-온 {5,7-Dihydroxy-3-(4-hydroxyphenyl)-6,8-dimethyl- 4H-chromen-4-one}을 합성하는, C-메틸이소플라본 화합물 합성방법에 관한 것이다.
<화학식 2>
Figure 112016114939301-pat00011
또한, 본 발명은
(a) 밀봉 튜브에 화학식 14로 표시되는 3-아이오도-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-Iodo-5,7-dimethoxy-6,8-dimethyl-4H-chromen- 4-one}, 화학식 23으로 표시되는 붕산 화합물, Cs2CO3N,N-다이메틸포름아마이드를 혼합하여 가스를 제거하는 단계;
(b) Pd(PPh3)2Cl2를 상기 (a) 단계에서 얻어진 반응 혼합물에 첨가하고, 추가로 가스를 제거하고, 교반하는 단계;
(c) 상기 (b) 단계를 거친 반응 혼합물을 상온으로 냉각시키고, 물을 가하고 에테르로 추출하여 화학식 9로 표시되는 C-메틸이소플라본 화합물을 생성하는 단계; 및
(d) 삼염화 붕소를 이용하여 화학식 9로 표시되는 C-메틸이소플라본 화합물의 오르쏘-탈메틸화 반응으로 화학식 4로 표시되는 C-메틸이소플라본 화합물을 생성하는 단계;를 포함하는 C-메틸이소플라본 화합물 합성방법에 관한 것이다.
<화학식 23>
Figure 112016114939301-pat00012
<화학식 9>
Figure 112016114939301-pat00013
<화학식 4>
Figure 112016114939301-pat00014
또한, 본 발명은
(a) 단계에서 화학식 23으로 표시되는 붕산 화합물로서 R=H인 붕산 화합물을 선택한 경우
(c) 단계에서 화학식 9로 표시되는 C-메틸이소플라본 화합물로서 5,7-다이메톡시-6,8-다이메틸-3-페닐-4H-크로멘-4-온 (5,7-Dimethoxy-6,8-dimethyl-3-phenyl-4H-chromen-4-one)이 생성되고,
(d) 단계에서 화학식 4로 표시되는 C-메틸이소플라본 화합물로서 5-하이드록시-7-메톡시-6,8-다이메틸-3-페닐-4H-크로멘-4-온 (5-Hydroxy-7-methoxy-6,8-dimethyl-3-phenyl-4H-chromen-4-one)이 생성됨을 특징으로 하는, C-메틸이소플라본 화합물 합성방법에 관한 것이다.
또한, 본 발명은
(a) 단계에서 화학식 23으로 표시되는 붕산 화합물로서 R=OMe인 붕산 화합물을 선택한 경우
(c) 단계에서 화학식 9로 표시되는 C-메틸이소플라본 화합물로서 3-(4-메톡시페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Methoxyphenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}이 생성되고,
(d) 단계에서 화학식 4로 표시되는 C-메틸이소플라본 화합물로서 5-하이드록시-7-메톡시-3-(4-메톡시페닐)-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-7-methoxy-3-(4-methoxyphenyl)-6,8-dimethyl-4H-chromen-4-one}이 생성됨을 특징으로 하는, C-메틸이소플라본 화합물 합성방법에 관한 것이다.
또한, 본 발명은
(a) 단계에서 화학식 23으로 표시되는 붕산 화합물로서 R=F인 붕산 화합물을 선택한 경우
(c) 단계에서 화학식 9로 표시되는 C-메틸이소플라본 화합물로서 3-(4-플루오르페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Fluorophenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}이 생성되고,
(d) 단계에서 화학식 4로 표시되는 C-메틸이소플라본 화합물로서 3-(4-플루오르페닐)-5-하이드록시-7-메톡시-6,8-다이메틸-4H-크로멘-4-온{3-(4-Fluorophenyl)-5-hydroxy-7-methoxy-6,8-dimethyl-4H-chromen-4-one}이 생성됨을 특징으로 하는, C-메틸이소플라본 화합물 합성방법에 관한 것이다.
또한, 본 발명은
(a) 단계에서 화학식 23으로 표시되는 붕산 화합물로서 R=CN인 붕산 화합물을 선택한 경우
(c) 단계에서 화학식 9로 표시되는 C-메틸이소플라본 화합물로서 5-하이드록시-3-(4-시아노페닐)-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-3-(4-cyanophenyl)-7-methoxy-6,8-dimethyl-4H-chromen-4-one}이 생성되고,
(d) 단계에서 화학식 4로 표시되는 C-메틸이소플라본 화합물로서 5-하이드록시-3-(4-시아노페닐)-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-3-(4-cyanophenyl)-7-methoxy-6,8-dimethyl-4H-chromen-4-one}이 생성됨을 특징으로 하는, C-메틸이소플라본 화합물 합성방법에 관한 것이다.
또한, 본 발명은
(a) 단계에서 화학식 23으로 표시되는 붕산 화합물로서 R=Ac인 붕산 화합물을 선택한 경우
(c) 단계에서 화학식 9로 표시되는 C-메틸이소플라본 화합물로서 3-(4-아세틸페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Acetylphenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}이 생성되고,
(d) 단계에서 화학식 4로 표시되는 C-메틸이소플라본 화합물로서 3-(4-아세틸페닐)-5-하이드록시-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Acetylphenyl)-5-hydroxy-7-methoxy-6,8-dimethyl-4H-chromen-4-one}이 생성됨을 특징으로 하는, C-메틸이소플라본 화합물 합성방법에 관한 것이다.
또한, 본 발명은 이소시더록실린, 6,8-다이메틸제니스테인, 3-(4-하이드록시페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Hydroxyphenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}, 5-하이드록시-7-메톡시-6,8-다이메틸-3-페닐-4H-크로멘-4-온 {5-Hydroxy-7-methoxy-6,8-dimethyl-3-phenyl-4H-chromen-4-one}, 5-하이드록시-7-메톡시-3-(4-메톡시페닐)-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-7-methoxy-3-(4-methoxyphenyl)-6,8-dimethyl-4H-chromen-4-one}, 3-(4-플루오르페닐)-5-하이드록시-7-메톡시-6,8-다이메틸-4H-크로멘-4-온{3-(4-Fluorophenyl)-5-hydroxy-7-methoxy-6,8-dimethyl-4H-chromen-4-one}, 5-하이드록시-3-(4-시아노페닐)-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-3-(4-cyanophenyl)-7-methoxy-6,8-dimethyl-4H-chromen-4-one} 및 3-(4-아세틸페닐)-5-하이드록시-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Acetylphenyl)-5-hydroxy-7-methoxy-6,8-dimethyl-4H-chromen-4-one} 중 선택된 한 가지 이상의 C-메틸이소플라본 화합물을 포함하는 항염증 약학 조성물에 관한 것이다.
뿐만 아니라, 본 발명은 상기 화합물들 중 특히 이소시더록실린, 3-(4-하이드록시페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Hydroxyphenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}, 5-하이드록시-3-(4-시아노페닐)-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-3-(4-cyanophenyl)-7-methoxy-6,8-dimethyl-4H-chromen-4-one} 및 3-(4-아세틸페닐)-5-하이드록시-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Acetylphenyl)-5-hydroxy-7-methoxy-6,8-dimethyl-4H-chromen-4-one} 중 선택된 한 가지 이상의 C-메틸이소플라본 화합물을 포함하는 항염증 약학 조성물에 관한 것이다.
본 발명의 C-메틸이소플라본 (화합물 1~8) 중 1종 이상을 유효성분으로 함유하는 약제학적 조성물은 약제학적 분야에서 통상적으로 허용되는 담체와 함께 배합하여 통상적인 방법에 의해 경구 또는 주사 형태로 제형화할 수 있다. 경구용 조성물로는 예를 들면 정제 및 젤라틴 캡슐이 있으며, 이들은 활성 성분 이외에도 희석제(예: 락토스, 덱스트로스, 수크로스, 만니톨, 솔비톨, 셀룰로즈 및/또는 글리신), 활탁제(예: 실리카, 탤크, 스테아르산 및 그의 마그네슘 또는 칼슘염 및/또는 폴리에틸렌 글리콜)을 함유하고, 정제는 또한 결합제(예: 마그네슘 알루미늄 실리케이트, 전분 페이스트, 젤라틴, 메틸셀룰로스, 나트륨 카복시메틸셀룰로스 및/또는 폴리비닐피롤리돈)를 함유하며, 경우에 따라서 붕해제(예: 전분, 한천, 알긴산 또는 그의 나트륨염) 또는 비등 혼합물 및/또는 흡수제, 착색제, 향미제 및 감미제를 함유하는 것이 바람직하다. 주사용 조성물은 등장성 수용액 또는 현탁액이 바람직하고, 언급한 조성물은 멸균되고/되거나 보조제(예: 방부제, 안정화제, 습윤제 또는 유화제 용액 촉진제, 삼투압 조절을 위함 염/또는 완충제)를 함유한다. 또한, 이들은 기타 치료적으로 유용한 물질을 함유할 수 있다.
이와 같이 제조된 약제학적 제제는 목적하는 바에 따라 경구로 투여하거나, 비경구 방식 즉, 정맥 내, 피하, 복강 내 투여 또는 국소적용할 수 있다. 용량은 일일 투여량 0.0001~100㎎/㎏을 1 내지 수회에 나누어 투여할 수 있다. 특정 환자에 대한 투여용량 수준은 환자의 체중, 연령, 성별, 건강상태, 투여시간, 투여방법, 배설율, 질환의 중증도 등에 따라 변화될 수 있다.
나아가, 본 발명은 상기 C-메틸이소플라본 (화합물 1~8)을 유효성분으로 하고 약학적으로 허용되는 담체를 포함하는 것을 특징으로 하는, 아토피, 피부소양증과 같은 피부염증을 비롯한 염증질환의 예방과 치료에 유용한 약제학적 조성물을 제공한다.
본 발명에서 정의되는 염증질환이란 아토피 피부염을 포함하는 피부염증질환, 신경교종세포 등 신경세포 염증질환, 척추염, 요도염, 방광염, 신염, 신우신염, 혈관염, 비염, 인후염, 편도염, 급성통증 또는 염증성 장질환 등이며, 바람직하게는 피부염증질환, 요도염, 방광염, 신염, 신우신염, 비염, 인후염, 편도염 또는 염증성 장질환이다.
본 발명자들은 생물학적 활성을 지닌 천연 화합물인 C-메틸이소플라본 화합물 이소시더록실린 (화합물 1), 6,8-다이메틸제니스테인 (화합물 2) 및 그 유도체들 (화합물 3~8)을 상업적으로 입수 가능한 전구체로부터 전체 수율 16~24%로 7~8 단계로 간단하고 효율적으로 합성하였다.
또한, 본 발명에서 합성된 이소시더록실린 (화합물 1), 6,8-다이메틸제니스테인 (화합물 2) 및 그 유도체들 (화합물 3~8)은 농도 의존적으로 산화질소 합성을 억제하였고, 세포 독성을 나타내지 않았다.
따라서, 본 발명에서 합성된 이소시더록실린 (화합물 1), 6,8-다이메틸제니스테인 (화합물 2) 및 그 유도체들 (화합물 3~8)은 항염증제로서 염증의 예방 또는 치료에 이용할 수 있을 것으로 예상된다.
도 1은 이소시더록실린 (화합물 1), 6,8-다이메틸제니스테인 (화합물 2) 및 그 유도체들 (화합물 3~8)의 화학구조식이다.
도 2는 이소시더록실린 (화합물 1), 6,8-다이메틸제니스테인 (화합물 2) 및 그 유도체들 (화합물 3~8)을 역합성 분석한 것이다.
도 3은 이소시더록실린 (화합물 1), 6,8-다이메틸제니스테인 (화합물 2) 및 그 유도체들 (화합물 3~8)의 합성방법을 나타낸 것이다.
아래에서는 구체적인 실시예와 시험예를 들어 본 발명의 구성을 좀 더 자세히 설명한다. 그러나, 본 발명의 범위가 실시예 및 시험예의 기재에만 한정되는 것이 아님은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다.
모든 화학제품은 특별한 언급이 없는 한 구입한 그대로 정제하지 않고 사용하였다. 반응에 사용한 모든 용매는 질소 분위기 하에서 적절한 탈수제로부터 증류하였다. 크로마토그래피에 사용한 모든 용매는 구입하여 별도의 정제 없이 바로 사용하였다. 1H-NMR 스펙트럼은 Varian Mercury-300 MHz FT-NMR 및 13C에 대해서는 75 MHz로 기록하였고, 화학적 이동 (δ)은 TMS에 대하여 ppm (parts per million)으로 나타내었고, 커플링 상수 (J)는 Hz로 인용하였다. 피크 분할양상은 s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet) 및 m (multiplet)과 같이 약자로 표시하였고, CDCl₃/CD3OD/acetone-d 6/DMSO-d 6는 용매 및 내부 스탠다드로 이용하였다. 저해상도 질량 스펙트럼 (전자 이온화, EI)은 Agilent-5977E spectrometer를 이용하여 기록하였고, 고해상도 질량 스펙트럼은 JMS-700 (JEOL, Japan)을 이용하여 기록하였다. 녹는점은 MEL-TEMP Ⅱ 장치에서 측정하고, 보정하지 않았다. 박막 크로마토그래피 (TLC)는 DC-Plastikfolien 60, F254 (Merck, 층 두께 0.2 mm) 플라스틱 판에 실리카젤을 입힌 플레이트를 이용하였고, UV (254 nm)를 이용하여 관찰하거나 또는 p-아니스알데하이드와 포스포몰리브딕산 (PMA)으로 염색하여 관찰하였다. 크로마토그래피 정제는 Kieselgel 60 (60-120 mesh, Merck)을 이용하여 수행하였다.
2,4,6- 트리하이드록시이소프탈알데하이드 {2,4,6- Trihydroxyisophthal aldehyde}(화합물 17)
N,N-다이메틸포름아마이드 (2.45 mL, 31.72 mmol)를 교반한 용액에 0℃에서 옥시염화인 (2.96 mL, 31.72 mmol)을 첨가하여 30분 동안 교반하여 빌스마이어 시약을 형성하였다 (황색 점성 오일로 전환됨). 플로로글루시놀 (2.00 g, 15.85 mmol)을 다른 둥근 바닥 플라스크에 넣고 무수 1,4-다이옥산 (40 ㎖)으로 용해시키고 0℃로 냉각했다. 이 용액에 상기 빌스마이어 시약을 질소 분위기 하에서 주사기로 한 방울씩 가하였다. 완전히 첨가한 후, 혼합물을 서서히 상온으로 가온하고 하룻밤 동안 교반하였다 (고체가 형성되는 것을 관찰함). 고체를 여과하고 물로 세척하고 건조하여 오렌지빛 나는 황색 고체로서 순수한 화합물 (2.80g, 87%)을 수득하여 추가 정제과정 없이 다음 단계에서 사용하였다. Rf= 0.59 (CH2Cl2/MeOH=10/1); 녹는점 218-220℃; 1H NMR (300 MHz, DMSO-d 6) δ 9.99 (s, 2H), 5.89 (s, 1H); 13C NMR (75 MHz, DMSO-d 6) δ 191.9, 170.0, 169.6, 104.4, 94.8.
2,4- 다이메틸벤젠 -1,3,5-트리올 {2,4- Dimethylbenzene -1,3,5- triol }(화합물 18)
화합물 17 (1.50 g, 8.24 mmol)과 소듐 시아노보로하이드라이드 (2.58 g, 41.06 mmol)를 THF (20 mL)에 넣고 교반한 용액에 지시약으로 메틸 오렌지를 가하였다 (황색 용액이 됨). 수성 3N HCl 용액 (13.7 mL, 41.10 mmol)을 천천히 반응계에 가하였고, 용액은 오렌지색으로 유지되었다. 생성된 혼합물을 상온에서 세 시간 동안 교반하였다. 반응 완료 후, 정제수를 가하고 EtOAc (3 x 40 mL)로 추출하였다. 혼합 유기용매층은 물 (40 mL), 식염수 (2 x 40 mL)로 세척한 후 무수 Na2SO4로 건조하고 진공농축하여 황색 고체 화합물 18 (1.24 g, 98%)을 얻어 추가 정제 없이 다음 단계에서 사용하였다. Rf = 0.18 (CH2Cl2/MeOH=10/1); 연황색 고체; 녹는점 158-160℃; 1H NMR (300 MHz, CD3OD) δ 5.96 (s, 1H), 1.99 (s, 6H); 13C NMR (75 MHz, CD3OD) δ 153.1, 103.1, 95.0, 7.56, 7.5.
1,3,5- 트리메톡시 -2,4- 다이메틸벤젠 {1,3,5- Trimethoxy -2,4- dimethyl benzene}(화합물 19)
화합물 18 (0.50 g, 3.24 mmol)과 K2CO3 (2.69 g, 19.47 mmol)를 무수 아세톤 (10 mL)에 넣고 교반한 용액에 다이메틸 설페이트 (1.85 mL, 19.47 mmol)를 상온 질소 분위기 하에서 한 방울씩 가하였다. 생성된 혼합물을 12시간 동안 환류시켰다. 반응 완료 후 상온으로 냉각하고, Celite 패드로 여과하여 아세톤 (10 mL)으로 세척하고 진공농축하였다. EtOAc (25 mL)를 조잔류물에 가하고, 물 (2 x 10 mL), 식염수 (10 mL)로 세척한 후 무수 Na2SO4로 건조하고 진공농축하였다. 조화합물은 컬럼 크로마토그래피 (EtOAc/Hexane=1/10)로 정제하여 무색 액체의 순수한 화합물 19 (0.48 g, 75%)를 얻었다. Rf = 0.72 (EtOAc/Hexane=1/8); 1H NMR (300 MHz, CDCl₃) δ 6.26 (s, 1H), 3.81 (s, 6H), 3.67 (s, 3H), 2.09 (s, 6H); 13C NMR (75 MHz, CDCl₃) δ 157.6, 156.4, 111.4, 91.6, 60.1, 55.8, 8.6.
1-(2- 하이드록시 -4,6- 다이메톡시 -3,5- 다이메틸페닐 ) 에타논 {1-(2-Hydroxy-4,6-dimethoxy-3,5-dimethylphenyl)ethanone}(화합물 15)
보론 트리플루오라이드 다이에틸 에터레이트 (0.46 mL, 3.67 mmol, 2.0 당량)을 화합물 19 (0.36 g, 1.83 mmol, 1.0 당량)와 무수 아세트산 (0.95 mL, 10.09 mmol, 5.5 당량) 혼합물에 0℃, 질소 분위기 하에서 한 방울씩 가하였다. 반응 완료 후, 반응 혼합물을 90℃로 가온하여, 1시간 30분 동안 교반하고, 상온에서 16시간 동안 교반하지 않고 방치하였다. 물 (10 mL)을 첨가하고 10분 동안 교반하였다. 생성된 혼합물을 EtOAc (3 x 25 mL)로 추출하였다. 혼합 유기용매층은 물 (2 x 20 mL), 식염수 (2 x 20 mL)로 씻고, 무수 Na2SO4로 건조하고 진공농축하였다. 조화합물은 컬럼 크로마토 그래피 (EtOAc/Hexane=1/15)로 정제하여 연황색 고체의 순수한 화합물 15 (0.31 g, 75%)를 얻었다. Rf = 0.52 (EtOAc/Hexane=1/8); 녹는점 49-51℃; 1H NMR (300 MHz, CDCl₃) δ 13.17 (s, 1H), 3.73 (s, 3H), 3.72 (s, 3H), 2.71 (s, 3H), 2.16 (s, 3H), 2.13 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 204.4, 163.8, 161.4, 159.2, 115.7, 115.4, 111.8, 61.8, 60.3, 31.8, 9.49, 8.9.
(E)-3-( 다이메틸아미노 )-1-(2- 하이드록시 -4,6- 다이메톡시 -3,5- 다이메틸페닐 )프로프-2-엔-1-온 {(E)-3-( Dimethylamino )-1-(2- hydroxy -4,6- dimethoxy -3,5-dimethylphenyl)prop-2-en-1-one}(화합물 21)
화합물 15 (0.10 g, 0.45 mmol)를 무수 N,N-다이메틸포름아마이드 (2 mL)에 넣고 교반한 용액에 N,N-다이메틸포름아마이드-다이메틸 아세탈 (0.30 mL, 2.23 mmol)을 상온, 질소 분위기 하에서 한 방울씩 가하였다. 생성된 혼합물을 75℃로 올리고, 2시간 30분 동안 교반하였다. 반응 완료 후, 상온으로 냉각하고, 물 (15 mL)로 반응종결하고 EtOAc (3 x 25 mL)로 추출하였다. 혼합 유기용매층은 물 (3 x 15 mL), 식염수 (2 x 15 mL)로 세척하고, 무수 Na2SO4로 건조하고 진공농축하였다. 조화합물은 컬럼 크로마토그래피 (Ether/Hexane=1/2)로 정제하여 황색 고체상의 정제 화합물 21 (0.12 g, 92%)을 얻었다. Rf = 0.33 (EtOAc/Hexane=1/2); 녹는점 92-94℃; 1H NMR (300 MHz, CDCl₃) δ 14.14 (s, 1H) 7.96 (d, 1H, J = 12.3 Hz), 6.34 (d, 1H, J = 12.3 Hz) 3.70 (s, 3H), 3.66 (s, 3H), 3.17 (s, 3H), 2.94 (s, 3H), 2.14 (s, 6H); 13C NMR (75 MHz, CDCl₃) δ 190.6, 160.9, 160.8, 157.2, 154.8, 115.0, 114.4, 111.5, 96.1, 61.5, 60.0, 45.3, 37.5, 8.9, 8.8.
3- 아이오도 -5,7- 다이메톡시 -6,8- 다이메틸 - 4H - 크로멘 -4-온 {3- Iodo -5,7-dimethoxy-6,8-dimethyl- 4H -chromen-4-one}(화합물 14)
화합물 21 (0.15 g, 0.54 mmol)을 CHCl3 (3 mL)에 넣고 교반한 용액에 상온에서 요오드 분자 (0.18 g, 0.70 mmol)를 가하였다. 생성된 혼합물을 12시간 동안 교반하였다. 반응 완료 후, 포화 Na2S2O3 용액 (2 mL)으로 반응종결하고 두 층을 분리하였다. 수용액층을 CH2Cl2 (2 x 15 mL)로 추출하였다. 혼합 유기용매층을 H2O (2 x 10 mL), 식염수 (10 mL)로 세척하고 무수 Na2SO4로 건조하고 진공 농축하였다. 조화합물은 컬럼 크로마토그래피 (EtOAc/Hexane=1/20)로 정제하여 백색 고체의 순수한 화합물 14 (0.13 g, 67%)를 얻었다. Rf = 0.47 (EtOAc/Hexane=1/10); 1H NMR (300 MHz, CDCl₃) δ 8.19 (s, 1H) 3.81 (s, 3H), 3.75 (s, 3H), 2.28 (s, 3H), 2.25 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 171.5, 161.4, 155.9, 155.7, 154.5, 123.4, 115.6, 113.3, 88.6, 61.5, 60.4, 9.12, 9.03.
3-(4- 하이드록시페닐 )-5,7- 다이메톡시 -6,8- 다이메틸 - 4H - 크로멘 -4-온 {3-(4-Hydroxyphenyl)-5,7-dimethoxy-6,8-dimethyl- 4H -chromen-4-one}(화합물 3) : 수율: 80%; Rf = 0.67 (EtOAc/Hexane=1/10); 갈색 고체; 녹는점 228-230℃; 1H NMR (300 MHz, DMSO-d 6) δ 9.53 (s, 1H) 8.28 (s, 1H) 7.32 (d, 2H, J = 7.8 Hz), 6.78 (d, 2H, J = 7.8 Hz), 3.73 (s, 3H), 3.70 (s, 3H), 2.26 (s, 3H) 2.18 (s, 3H); 13C NMR (75 MHz, DMSO-d 6) δ 174.7, 160.8, 157.2, 155.8, 154.4, 151.7, 130.5, 124.6, 122.8, 122.2, 115.5, 115.3, 115.2, 61.2, 60.6, 9.2, 9.1 EI-MS m/z 326 (M+), 312 (base), 118; EI-HRMS: Calcd for C19H18O5 (M+): 326.1154, found: 326.1145.
5,7- 다이메톡시 -6,8- 다이메틸 -3-페닐-4 H - 크로멘 -4-온 {5,7- Dimethoxy -6,8-dimethyl-3-phenyl-4 H -chromen-4-one}(화합물 9) : 수율: 77%; Rf = 0.31 (EtOAc/Hexane=1/3); 갈색 액체; 1H NMR (300 MHz, CDCl₃) δ 7.92 (s, 1H) 7.53 (d, 2H, J = 7.5 Hz), 7.39 (m, 3H) 3.85 (s, 3H), 3.79 (s, 3H), 2.35 (s, 3H) 2.29 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 175.5, 161.4, 156.7, 155.0, 151.4, 132.3, 129.3, 128.5, 128.1, 126.0, 123.0, 116.1, 115.9, 61.7, 60.7, 9.3, 9.3.
3-(4- 메톡시페닐 )-5,7- 다이메톡시 -6,8- 다이메틸 - 4H - 크로멘 -4-온 {3-(4-Methoxyphenyl)-5,7-dimethoxy-6,8-dimethyl- 4H -chromen-4-one}(화합물 10) : 수율: 85%; Rf = 0.23 (EtOAc/Hexane=1/3); 황색 고체; 녹는점 104-106℃; 1H NMR (300 MHz, DMSO-d 6) δ 9.50 (s, 1H) 8.29 (s, 1H) 7.32 (d, 2H, J = 8.4 Hz), 6.78 (d, 2H, J = 8.1 Hz), 3.73 (s, 3H) 3.70 (s, 3H), 2.28 (s, 3H), 2.18 (s, 3H); 13C NMR (75 MHz, DMSO-d 6) δ 174.3, 160.5, 157.0, 155.6, 154.1, 151.4, 130.1, 124.4, 122.4, 121.8, 115.1, 114.8, 99.3, 60.9, 60.3, 54.8, 8.9, 8.8.
3-(4- 플루오르페닐 )-5,7- 다이메톡시 -6,8- 다이메틸 - 4H - 크로멘 -4-온 {3-(4-Fluorophenyl)-5,7-dimethoxy-6,8-dimethyl- 4H -chromen-4-one}(화합물 11) : 수율: 69%; Rf = 0.51 (EtOAc/Hexane=1/2); 갈색 액체; 1H NMR (300 MHz, CDCl₃) δ 7.90 (s, 1H) 7.49 (dd, 2H, J = 8.1, 5.7 Hz), 7.09 (t, 2H, J = 8.4 Hz), 3.84 (s, 3H), 3.79 (s, 3H) 2.35 (s, 3H), 2.29 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 175.5, 162.7 (d, J = 245.4 Hz), 161.5, 156.6, 155.0, 151.3, 131.0 (d, J = 8.2 Hz), 128.1 (d, J = 3.4 Hz), 125.1, 123.1, 116.4, 115.9 (d, J = 3.4 Hz), 115.5 (d, J = 21.4 Hz), 61.7, 60.7, 9.3, 9.2.
5- 하이드록시 -3-(4- 시아노페닐 )-7- 메톡시 -6,8- 다이메틸 - 4H - 크로멘 -4-온 {5-Hydroxy-3-(4-cyanophenyl)-7-methoxy-6,8-dimethyl- 4H -chromen-4-one}(화합물 12) : 수율: 79%; Rf = 0.47 (EtOAc/Hexane=1/3); 백색 고체; 녹는점 146-148℃; 1H NMR (300 MHz, CDCl₃) δ 7.97 (s, 1H), 7.67 (dd, 2H, J = 8.4, 3.9 Hz), 7.67 (dd, 2H, J = 8.4, 3.9 Hz), 3.84 (s, 3H), 3.80 (s, 3H), 2.36 (s, 3H, 2.29 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 174.9, 161.9, 156.6, 154.9, 152.2, 137.1, 134.0, 132.2, 1298, 124.4, 123.6, 118.8, 116.5, 116.1, 115.7, 111.7, 61.7, 60.7, 9.3, 9.2
3-(4- 아세틸페닐 )-5,7- 다이메톡시 -6,8- 다이메틸 - 4H - 크로멘 -4-온 {3-(4-Acetylphenyl)-5,7-dimethoxy-6,8-dimethyl- 4H -chromen-4-one}(화합물 13) : 수율: 82%; Rf = 0.29 (EtOAc/Hexane=1/3); 백색 고체; 녹는점 196-198℃; 1H NMR (300 MHz, CDCl₃) δ 8.00 (d, 2H, J = 6.9 Hz), 7.99 (s, 1H), 7.65 (d, 2H, J = 8.4 Hz), 3.85 (s, 3H), 3.80 (s, 3H), 2.62 (s, 3H), 2.36 (s, 3H), 2.29 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 197.8, 175.1, 161.6, 156.7, 154.9, 151.9, 137.2, 136.5, 129.4, 128.5, 125.0, 123.3, 116.0, 115.9, 61.7, 60.7, 27.0, 9.3, 9.2.
5- 하이드록시 -3-(4- 하이드록시페닐 )-7- 메톡시 -6,8- 다이메틸 - 4H - 크로멘 -4-온 {5-Hydroxy-3-(4-hydroxyphenyl)-7-methoxy-6,8-dimethyl- 4H -chromen-4-one}(Isosideroxylin)(화합물 1) : 수율: 95%; Rf = 0.23 (EtOAc/Hexane=1/3); 황색 고체; 녹는점 158-160℃; 1H NMR (300 MHz, DMSO-d 6) δ 13.05 (s, 1H) 9.61 (s, 1H) 8.49 (s, 1H) 7.38 (d, 2H, J = 6.6 Hz), 6.82 (d, 2H, J = 6.9 Hz) 3.74 (s, 3H), 2.22 (s, 3H) 2.10 (s, 3H); 13C NMR (75 MHz, DMSO-d 6) δ 180.8, 161.9, 157.2, 156.6, 154.5, 152.5, 130.0, 122.0, 121.0, 114.9, 112.9, 108.3, 107.2, 60.3, 8.2, 8.1; EI-MS m/z 312 (M+, base), 297 (M+-CH3), 118; EI-HRMS: Calcd for C18H16O5 (M+): 312.0998, found: 312.1004.
5- 하이드록시 -7- 메톡시 -6,8- 다이메틸 -3-페닐- 4H - 크로멘 -4-온 {5- Hydroxy -7-methoxy-6,8-dimethyl-3-phenyl- 4H -chromen-4-one}(화합물 4) : 수율: 98%; Rf = 0.50 (EtOAc/Hexane=1/3); 황색 고체; 녹는점 135-136℃; 1H NMR (300 MHz, CDCl₃) δ 12.86 (s, 1H) 7.97 (s, 1H) 7.50 (dd, 2H, J = 7.8, 1.5 Hz), 7.41 (m, 3H), 3.77 (s, 3H), 2.28 (s, 3H), 2.20 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 181.4, 162.8, 157.9, 153.6, 153.4, 131.1, 129.0, 128.7, 128.5, 123.7, 114.4, 109.0, 108.3, 60.7, 8.6, 8.6; EI-MS m/z 296 (M+, base), 281 (M+-CH3), 102; EI-HRMS: Calcd for C18H16O4 (M+): 296.1049, found: 296.1038.
5- 하이드록시 -7- 메톡시 -3-(4- 메톡시페닐 )-6,8- 다이메틸 - 4H - 크로멘 -4-온 {5-Hydroxy-7-methoxy-3-(4-methoxyphenyl)-6,8-dimethyl- 4H -chromen-4-one}(화합물 5) : 수율: 96%; Rf = 0.50 (EtOAc/Hexane=1/3); 황색 고체; 녹는점 118-119℃; 1H NMR (300 MHz, DMSO-d 6) δ 12.98 (s, 1H) 8.49 (s, 1H) 7.48 (d, 2H, J = 8.1 Hz) 6.98 (d, 2H, J = 8.1 Hz) 3.77 (s, 3H), 3.72 (s, 3H), 2.20 (s, 3H), 2.08 (s, 3H); 13C NMR (75 MHz, DMSO-d 6) δ 180.7, 162.0, 159.0, 156.6, 154.8, 152.5, 130.0, 122.7, 121.7, 113.6, 113.0, 108.3, 107.2, 60.3, 55.1, 8.21, 8.12; EI-MS m/z 326 (M+, base), 311 (M+-CH3), 132; EI-HRMS: Calcd for C19H18O5 (M+): 326.1154, found: 326.1150.
3-(4- 플루오르페닐 )-5- 하이드록시 -7- 메톡시 -6,8- 다이메틸 - 4H - 크로멘 -4-온{3-(4-Fluorophenyl)-5-hydroxy-7-methoxy-6,8-dimethyl- 4H -chromen-4-one}(화합물 6) : 수율: 99%; Rf = 0.60 (EtOAc/Hexane=1/4); 황색 고체; 녹는점 177-179℃; 1H NMR (300 MHz, CDCl₃) δ 12.78 (s, 1H), 7.96 (s, 1H) 7.49 (dd, 2H, J = 8.7, 5.4 Hz), 7.12 (t, 2H, J = 9.0 Hz) 3.78 (s, 3H), 2.29 (s, 3H), 2.21 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 181.3, 162. 9 (d, J = 245.9 Hz), 157.8, 153.5, 153.4, 130.8 (d, J = 8.2 Hz), 127.0 (d, J = 3.4 Hz), 122.9, 115.8 (d, J = 21.4 Hz), 114.6, 109.1, 108.2, 60.7, 8.7, 8.6; EI-MS m/z 314 (M+, base), 299 (M+-CH3), 120; EI-HRMS: Calcd for C18H15FO4 (M+): 314.0954, found: 314.0948.
5- 하이드록시 -3-(4- 시아노페닐 )-7- 메톡시 -6,8- 다이메틸 - 4H - 크로멘 -4-온 {5-Hydroxy-3-(4-cyanophenyl)-7-methoxy-6,8-dimethyl- 4H -chromen-4-one}(화합물 7) : 수율: 97%; Rf = 0.30 (EtOAc/Hexane=1/3); 황색 고체; 녹는점 180-182℃; 1H NMR (300 MHz, CDCl₃) δ 12.62 (s, 1H), 8.04 (s, 1H), 7.69 (q, 4H, J = 8.1 Hz), 3.79 (s, 3H), 2.29 (s, 3H), 2.21 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 180.6, 163.2, 157.9, 154.2, 153.2, 136.0, 132.4, 129.6, 122.1, 118.7, 115.1, 112.1, 109.3, 108.1, 100.0, 60.8, 8.7, 8.6; EI-MS m/z 321 (M+, base), 306 (M+-CH3), 130 (base); EI-HRMS: Calcd for C19H15NO4 (M+): 321.1001, found: 321.1006.
3-(4- 아세틸페닐 )-5- 하이드록시 -7- 메톡시 -6,8- 다이메틸 - 4H - 크로멘 -4-온 {3-(4-Acetylphenyl)-5-hydroxy-7-methoxy-6,8-dimethyl- 4H -chromen-4-one}(화합물 8) : 수율: 94%; Rf = 0.50 (EtOAc/Hexane=1/3); 황색 고체; 녹는점 165-166℃; 1H NMR (300 MHz, CDCl₃) δ 12.72 (s, 1H), 8.04 (s, 1H), 8.00 (d, 2H, J = 8.4 Hz), 7.63 (d, 2H, J = 8.7 Hz), 3.78 (s, 3H), 2.62 (s, 3H), 2.28 (s, 3H), 2.20 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 197.5, 180.9, 163.1, 157.9, 154.0, 153.2, 136.8, 136.0, 129.1, 128.6, 122.7, 114.8, 109.2, 108.1, 60.7, 26.9, 8.7, 8.6; EI-MS m/z 338 (M+), 144, 130 (base); EI-HRMS: Calcd for C20H18O5 (M+): 338.1154, found: 338.1142.
5,7- 다이하이드록시 -3-(4- 하이드록시페닐 )-6,8- 다이메틸 - 4H - 크로멘 -4-온 {5,7-Dihydroxy-3-(4-hydroxyphenyl)-6,8-dimethyl- 4H -chromen-4-one}(6,8-다이메틸제니스테인) (화합물 2)
화합물 3 (0.04 g, 0.28 mmol, 1.0 당량)을 무수 CH2Cl2 (3 mL)에 넣고 교반한 용액에 0℃, 질소 분위기 하에서 삼브롬화 붕소 (1.4 mL, 1.0 M in CH2Cl2, 5.0 당량)를 한 방울씩 가하였다. 반응 혼합물을 실온으로 가온하여 48시간 동안 교반하였다. 반응 완료 후, 과량의 시약을 메탄올로 반응종결하고, 진공 농축하였다. 조화합물은 컬럼 크로마토그래피 (EtOAc/Hexane=1/4-1/2)로 정제하여 연황색 고체의 순수한 이소플라본 화합물 2(0.02 g, 68%)를 얻었다. Rf= 0.27 (EtOAc/Hexane=1/3); mp 253-254℃; 1H NMR (300 MHz, Acetone-d 6) δ 13.22 (s, 1H), 8.49 (bs, 2H), 8.21 (s, 1H), 7.45 (d, 2H, J = 8.7 Hz), 6.89 (d, 2H, J = 8.7 Hz), 2.25 (s, 3H), 2.15 (s, 3H); 13C NMR (75 MHz, Acetone-d 6) δ 181.2, 159.7, 157.6, 153.4, 131.3, 130.5, 128.9, 122.8, 122.7, 115.2, 107.1, 105.3, 101.5, 7.4; EI-MS m/z 298 (M+), 297 (M+-1, base), 281, 118; EI-HRMS: Calcd for C17H14O5 (M+): 298.0841, found: 298.0849.
스즈키 커플링을 위한 일반적인 절차
자기 교반막대가 장착된 15 mL 밀봉 튜브에 요오드 화합물 14 (0.07 g, 0.2 mmol, 1.0 당량), 붕산 (화합물 22~27) (1.5 당량), Cs2CO3 (0.10 g, 0.3 mmol, 1.5 당량) 및 N,N-다이메틸포름아마이드 (2 mL)를 혼합하여, 2분 동안 가스를 제거하였다. Pd(PPh3)2Cl2 (0.01 g, 0.02 mmol, 0.1 당량)를 혼합물에 첨가하고, 추가로 2분 동안 가스를 제거하였다. 혼합물을 75℃에서 12시간 동안 교반하였다. 상온으로 냉각시키고, 물 (10 mL)을 가하고 에테르 (3 × 15 mL)로 추출하였다. 혼합 유기용매층은 H2O (3 x 10 mL), 식염수 (2 x 10 mL)로 세척하고, 무수 Na2SO4로 건조하고 진공 농축하였다. 조화합물은 컬럼 크로마토그래피 (EtOAc/Hexane=1/5-1/3)로 정제하여 순수한 이소플라본 화합물을 얻었다 (화합물 3, 화합물 9~13).
삼염화 붕소를 이용한 이소플라본의 오르쏘-탈메틸화의 일반적인 절차
이소플라본 (화합물 3, 9~13) (0.12 mmol, 1.0 당량)을 무수 CH2Cl2 (3 mL)에 넣고 교반한 용액에 0℃, 질소 분위기 하에서 삼염화 붕소 (0.6 mL, 1.0 M in CH2Cl2, 5.0 당량)를 한 방울씩 가하고, 1시간 동안 교반하였다. 반응 완료 후, 과량의 시약을 MeOH (1 mL)로 반응종결하고, CH2Cl2 (2 x 15 mL)로 추출하였다. 혼합 유기용매층은 H2O (2 x 10 mL), 식염수 (2 x 10 mL)로 세척하고, 무수 Na2SO4로 건조하고 진공 농축하였다. 조화합물은 컬럼 크로마토그래피 (EtOAc/Hexane=1/5-1/3)로 정제하여 순수한 화합물을 얻었다 (화합물 1, 화합물 4~8).
합성된 이소플라보노이드 화합물 1~8에 대하여 LPS로 자극한 쥐 Raw264.7 대식세포에서 산화질소 생산 억제능을 시험하였다. 알려진 바와 같이 산화질소는 O2 및 다른 청소분자의 존재 하에서 아주 짧은 반감기 (혈액에서 1초 미만)를 갖는 매우 반응성이 높은 분자이며 따라서 정량하기가 어렵다 [22]. 산화질소의 안정적인 산화 최종 산물인 아질산염 (NO2 -)과 질산염 (NO3 -)은 산화질소 생성의 지표로서 산성 Griess 시약을 채용하여 분광학적 방법으로 측정된다. 화합물 1~8을 1 및 10 μmol/L 농도로 12시간 동안 선처리한 세포를 LPS (500 ng/mL)로 18시간 동안 활성화하였다. 세포 생존율을 MTT 분석으로 측정하였고 L-NMMA (N G -monomethyl-L-arginine acetate)를 양성 대조군으로 이용하였다. 표 1과 같이, 모든 이소플라보노이드 화합물 1~8은 산화질소 생산에 대하여 농도 의존적 억제 효과를 나타내었다. 가장 낮은 농도 (1 μmol/L)에서 화합물 2 (80.53 ± 3.07), 그 다음으로 화합물 3 (86.79 ± 1.58), 이어서 화합물 4 (88.78 ± 2.49)가 소량의 NO를 방출하여 양성 대조군 L-NMMA (88.88 ± 9.32)와 비교하여 NO 억제효과가 우수함을 알 수 있다. 높은 농도 (10 μmol/L)에서는 화합물 3 (51.58 ± 2.27), 화합물 1 (66.34 ± 3.46) 및 화합물 6 (67.69 ± 5.33) 순으로 L-NMMA (40.95 ± 5.98)와 비교할 때 상당한 양의 산화질소를 방출하였다.
다음으로, 세포 사멸이 NO 생산 감소에 의한 것이 아님을 확인하기 위하여 RAW264.7 세포 생존율에 대한 이소플라본의 세포독성을 분석하였다. 1 μmol/L 및 10 μmol/L 농도의 이소플라본과 함께 배양하였을 때 대조군과 비교하여 어떤 현저한 생존율 변화도 관찰되지 않았으며, 이는 이 화합물들이 세포독성을 나타내지 않으며 정상세포 성장에 영향을 미치지 않음을 말해준다 (표 1). 화합물 1~8의 IC50 값은 GraphPad Prism 4.0 소프트웨어를 이용하여 평가하였고, 그 값은 각각 13.2, 10.17, 20.09, 20.89, 33.88, 21.93, 13.21 및 14.67 μmol/L였고 대조군 L-NMMA의 값은 7.82 μmol/L였다. 약학적 결과를 바탕으로 화합물 3은 현저한 세포독성 없이 LPS로 자극된 산화질소 생성을 강하게 억제하므로 산화질소 생성 억제제로서 이용할 수 있을 것으로 예측된다.
Figure 112016114939301-pat00015

Claims (16)

  1. (a) 밀봉 튜브에 화학식 14로 표시되는 3-아이오도-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-Iodo-5,7-dimethoxy-6,8-dimethyl-4H-chromen- 4-one}, 화학식 22로 표시되는 붕산 화합물, Cs2CO3N,N-다이메틸포름아마이드를 혼합하여 가스를 제거하는 단계;
    (b) Pd(PPh3)2Cl2를 상기 (a) 단계에서 얻어진 반응 혼합물에 첨가하고, 추가로 가스를 제거하고 교반하는 단계; 및
    (c) 상기 (b) 단계를 거친 반응 혼합물을 상온으로 냉각시키고 추출하는 단계;를 포함하는 화학식 3으로 표시되는 C-메틸이소플라본 화합물 합성방법.
    <화학식 14>
    Figure 112016114939301-pat00016

    <화학식 22>
    Figure 112016114939301-pat00017

    <화학식 3>
    Figure 112016114939301-pat00018

  2. 청구항 1에 있어서,
    화학식 14로 표시되는 3-아이오도-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 1 당량에 대하여 붕산 화합물 1.5 당량, Cs2CO3 1.5 당량, Pd(PPh3)2Cl2 0.1 당량을 가하여 반응시킴을 특징으로 하는 C-메틸이소플라본 화합물 합성방법.
  3. 청구항 1에 있어서,
    화학식 14로 표시되는 3-아이오도-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온은
    (가) 화학식 16으로 표시되는 플로로글루시놀을 둥근 바닥 플라스크에 넣고 무수 1,4-다이옥산으로 용해시키고 냉각한 후 빌스마이어 시약을 질소 분위기 하에서 한 방울씩 가하여 화학식 17로 표시되는 2,4,6-트리하이드록시이소프탈알데하이드 (2,4,6-Trihydroxyisophthal aldehyde)를 생성하는 단계;
    (나) 상기 2,4,6-트리하이드록시이소프탈알데하이드와 소듐 시아노보로하이드라이드를 THF에 넣고 교반한 용액에 수성 HCl 용액을 천천히 가하고 교반하여 화학식 18로 표시되는 2,4-다이메틸벤젠-1,3,5-트리올 (2,4-Dimethylbenzene-1,3,5-triol)을 생성하는 단계;
    (다) 상기 2,4-다이메틸벤젠-1,3,5-트리올과 K2CO3를 무수 아세톤에 넣고 교반한 용액에 다이메틸 설페이트를 상온 질소 분위기 하에서 한 방울씩 가하고, 생성된 혼합물을 환류시켜 화학식 19로 표시되는 1,3,5-트리메톡시-2,4-다이메틸벤젠 (1,3,5-Trimethoxy-2,4-dimethyl benzene)을 생성하는 단계;
    (라) 보론 트리플루오라이드 다이에틸 에터레이트를 상기 1,3,5-트리메톡시-2,4-다이메틸벤젠과 무수 아세트산의 혼합물에 0℃, 질소 분위기 하에서 한 방울씩 가하고, 반응 완료 후 반응 혼합물을 80~90℃로 가온하여 1~2시간 동안 교반하고, 상온에서 15~20시간 동안 방치하여 화학식 15로 표시되는 1-(2-하이드록시-4,6-다이메톡시-3,5-다이메틸페닐)에타논 {1-(2-Hydroxy-4,6-dimethoxy-3,5-dimethylphenyl)ethanone}을 생성하는 단계;
    (마) 상기 1-(2-하이드록시-4,6-다이메톡시-3,5-다이메틸페닐)에타논을 무수 N,N-다이메틸포름아마이드에 넣고 교반한 용액에 N,N-다이메틸포름아마이드-다이메틸 아세탈을 상온, 질소 분위기 하에서 한 방울씩 가하여 생성된 혼합물을 70~80℃로 올리고, 2~3시간 동안 교반하여 화학식 21로 표시되는 (E)-3-(다이메틸아미노)-1-(2-하이드록시-4,6-다이메톡시-3,5-다이메틸페닐)프로프-2-엔-1-온 {(E)-3-(Dimethylamino)-1-(2-hydroxy-4,6-dimethoxy-3,5-dimethylphenyl)prop-2-en-1-one}을 생성하는 단계; 및
    (바) 상기 (E)-3-(다이메틸아미노)-1-(2-하이드록시-4,6-다이메톡시-3,5-다이메틸페닐)프로프-2-엔-1-온을 CHCl3에 넣고 교반한 용액에 상온에서 요오드 분자를 가하고 생성된 혼합물을 10~12시간 동안 교반하여 반응 완료 후, 포화 Na2S2O3 용액으로 반응종결하고 두 층을 분리한 후 수용액층을 추출하여 3-아이오도-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-Iodo-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}을 생성하는 단계;로부터 얻어진 것임을 특징으로 하는 C-메틸이소플라본 화합물 합성방법.
    <화학식 16>
    Figure 112016114939301-pat00019

    <화학식 17>
    Figure 112016114939301-pat00020

    <화학식 18>
    Figure 112016114939301-pat00021

    <화학식 19>
    Figure 112016114939301-pat00022

    <화학식 15>
    Figure 112016114939301-pat00023

    <화학식 21>
    Figure 112016114939301-pat00024

  4. 청구항 3에 있어서,
    상기 (가) 단계의 빌스마이어 시약은 N,N-다이메틸포름아마이드를 교반한 용액에 0℃에서 옥시염화인을 첨가 및 교반하여 반응기 내에서 합성된 것임을 특징으로 하는 C-메틸이소플라본 화합물 합성방법.
  5. 청구항 3에 있어서,
    상기 (나) 단계에서는 지시약으로서 메틸 오렌지를 이용함을 특징으로 하는 C-메틸이소플라본 화합물 합성방법.
  6. 삼염화 붕소를 이용하여 3-(4-하이드록시페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Hydroxyphenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}의 오르쏘-탈메틸화 반응으로 화학식 1로 표시되는 C-메틸이소플라본 화합물인 이소시더록실린을 합성하는 방법.
    <화학식 1>
    Figure 112017108705586-pat00025

  7. 청구항 6에 있어서,
    상기 삼염화 붕소를 이용한 3-(4-하이드록시페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온의 오르쏘-탈메틸화 반응은 3-(4-하이드록시페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온을 무수 CH2Cl2에 넣고 교반한 용액에 0℃, 질소 분위기 하에서 삼염화 붕소를 한 방울씩 가하고 교반하여 진행하는 것임을 특징으로 하는 이소시더록실린을 합성하는 방법.
  8. 3-(4-하이드록시페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Hydroxyphenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}을 무수 CH2Cl2에 넣고 교반한 용액에 0℃, 질소 분위기 하에서 삼브롬화 붕소를 한 방울씩 가하고, 실온으로 가온하여 45~50시간 동안 교반하여 반응 완료 후, 과량의 시약을 메탄올로 반응종결하고 화학식 2로 표시되는 C-메틸이소플라본 화합물인 6,8-다이메틸제니스테인을 합성하는 방법.
    <화학식 2>
    Figure 112017108705586-pat00026

  9. (a) 밀봉 튜브에 화학식 14로 표시되는 3-아이오도-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-Iodo-5,7-dimethoxy-6,8-dimethyl-4H-chromen- 4-one}, 화학식 23으로 표시되는 붕산 화합물, Cs2CO3N,N-다이메틸포름아마이드를 혼합하여 가스를 제거하는 단계;
    (b) Pd(PPh3)2Cl2를 상기 (a) 단계에서 얻어진 반응 혼합물에 첨가하고, 추가로 가스를 제거하고, 교반하는 단계;
    (c) 상기 (b) 단계를 거친 반응 혼합물을 상온으로 냉각시키고, 물을 가하고 에테르로 추출하여 화학식 9로 표시되는 C-메틸이소플라본 화합물을 생성하는 단계; 및
    (d) 삼염화 붕소를 이용하여 화학식 9로 표시되는 C-메틸이소플라본 화합물의 오르쏘-탈메틸화 반응으로 화학식 4로 표시되는 C-메틸이소플라본 화합물을 생성하는 단계;를 포함하며,
    (a) 단계에서 화학식 23으로 표시되는 붕산 화합물로서 R=H인 붕산 화합물 23을 선택한 경우
    (c) 단계에서 화학식 9로 표시되는 화합물 9인 5,7-다이메톡시-6,8-다이메틸-3-페닐-4H-크로멘-4-온 (5,7-Dimethoxy-6,8-dimethyl-3-phenyl-4H-chromen-4-one)이 생성되고,
    (d) 단계에서 화학식 4로 표시되는 C-메틸이소플라본 화합물 4인 5-하이드록시-7-메톡시-6,8-다이메틸-3-페닐-4H-크로멘-4-온 (5-Hydroxy-7-methoxy-6,8-dimethyl-3-phenyl-4H-chromen-4-one)이 생성되며,
    (a) 단계에서 화학식 23으로 표시되는 붕산 화합물로서 R=OMe인 붕산 화합물 24를 선택한 경우
    (c) 단계에서 화학식 9로 표시되는 화합물 중 R=OMe인 화합물 10, 3-(4-메톡시페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Methoxyphenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}이 생성되고,
    (d) 단계에서 화학식 4로 표시되는 C-메틸이소플라본 화합물 중 R=OMe인 화합물 5, 5-하이드록시-7-메톡시-3-(4-메톡시페닐)-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-7-methoxy-3-(4-methoxyphenyl)-6,8-dimethyl-4H-chromen-4-one}이 생성되며,
    (a) 단계에서 화학식 23으로 표시되는 붕산 화합물로서 R=F인 붕산 화합물 25를 선택한 경우
    (c) 단계에서 화학식 9로 표시되는 화합물 중 R=F인 화합물 11, 3-(4-플루오르페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Fluorophenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}이 생성되고,
    (d) 단계에서 화학식 4로 표시되는 C-메틸이소플라본 화합물 중 R=F인 화합물 6, 3-(4-플루오르페닐)-5-하이드록시-7-메톡시-6,8-다이메틸-4H-크로멘-4-온{3-(4-Fluorophenyl)-5-hydroxy-7-methoxy-6,8-dimethyl-4H-chromen-4-one}이 생성되며,
    (a) 단계에서 화학식 23으로 표시되는 붕산 화합물로서 R=CN인 붕산 화합물 26을 선택한 경우
    (c) 단계에서 화학식 9로 표시되는 화합물 중 R=CN인 화합물 12, 5-하이드록시-3-(4-시아노페닐)-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-3-(4-cyanophenyl)-7-methoxy-6,8-dimethyl-4H-chromen-4-one}이 생성되고,
    (d) 단계에서 화학식 4로 표시되는 C-메틸이소플라본 화합물 중 R=CN인 화합물 7, 5-하이드록시-3-(4-시아노페닐)-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-3-(4-cyanophenyl)-7-methoxy-6,8-dimethyl-4H-chromen-4-one}이 생성되며,
    (a) 단계에서 화학식 23으로 표시되는 붕산 화합물로서 R=Ac인 붕산 화합물 27을 선택한 경우
    (c) 단계에서 화학식 9로 표시되는 화합물 중 R=Ac인 화합물 13, 3-(4-아세틸페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Acetylphenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}이 생성되고,
    (d) 단계에서 화학식 4로 표시되는 C-메틸이소플라본 화합물 중 R=Ac인 화합물 8, 3-(4-아세틸페닐)-5-하이드록시-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Acetylphenyl)-5-hydroxy-7-methoxy-6,8-dimethyl-4H-chromen-4-one}이 생성됨을 특징으로 하는,
    5,7-다이메톡시-6,8-다이메틸-3-페닐-4H-크로멘-4-온 (5,7-Dimethoxy-6,8-dimethyl-3-phenyl-4H-chromen-4-one), 3-(4-메톡시페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Methoxyphenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}, 3-(4-플루오르페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Fluorophenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}, 5-하이드록시-3-(4-시아노페닐)-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-3-(4-cyanophenyl)-7-methoxy-6,8-dimethyl-4H-chromen-4-one}, 3-(4-아세틸페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Acetylphenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}, 5-하이드록시-7-메톡시-6,8-다이메틸-3-페닐-4H-크로멘-4-온 (5-Hydroxy-7-methoxy-6,8-dimethyl-3-phenyl-4H-chromen-4-one), 5-하이드록시-7-메톡시-3-(4-메톡시페닐)-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-7-methoxy-3-(4-methoxyphenyl)-6,8-dimethyl-4H-chromen-4-one}, 3-(4-플루오르페닐)-5-하이드록시-7-메톡시-6,8-다이메틸-4H-크로멘-4-온{3-(4-Fluorophenyl)-5-hydroxy-7-methoxy-6,8-dimethyl-4H-chromen-4-one}, 5-하이드록시-3-(4-시아노페닐)-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-3-(4-cyanophenyl)-7-methoxy-6,8-dimethyl-4H-chromen-4-one} 및 3-(4-아세틸페닐)-5-하이드록시-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Acetylphenyl)-5-hydroxy-7-methoxy-6,8-dimethyl-4H-chromen-4-one} 중 선택된 1종 이상의 C-메틸이소플라본 화합물 합성방법.
    <화학식 14>
    Figure 112017108705586-pat00027

    <화학식 23>
    Figure 112017108705586-pat00028

    <화학식 9>
    Figure 112017108705586-pat00029

    <화학식 4>
    Figure 112017108705586-pat00030

  10. 이소시더록실린, 6,8-다이메틸제니스테인, 3-(4-하이드록시페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Hydroxyphenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}, 5-하이드록시-7-메톡시-6,8-다이메틸-3-페닐-4H-크로멘-4-온 {5-Hydroxy-7-methoxy-6,8-dimethyl-3-phenyl-4H-chromen-4-one}, 5-하이드록시-7-메톡시-3-(4-메톡시페닐)-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-7-methoxy-3-(4-methoxyphenyl)-6,8-dimethyl-4H-chromen-4-one}, 3-(4-플루오르페닐)-5-하이드록시-7-메톡시-6,8-다이메틸-4H-크로멘-4-온{3-(4-Fluorophenyl)-5-hydroxy-7-methoxy-6,8-dimethyl-4H-chromen-4-one}, 5-하이드록시-3-(4-시아노페닐)-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-3-(4-cyanophenyl)-7-methoxy-6,8-dimethyl-4H-chromen-4-one} 및 3-(4-아세틸페닐)-5-하이드록시-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Acetylphenyl)-5-hydroxy-7-methoxy-6,8-dimethyl-4H-chromen-4-one} 중 선택된 한 가지 이상의 C-메틸이소플라본 화합물을 포함하는 항염증 약학 조성물.
  11. 청구항 10에 있어서,
    이소시더록실린, 3-(4-하이드록시페닐)-5,7-다이메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Hydroxyphenyl)-5,7-dimethoxy-6,8-dimethyl-4H-chromen-4-one}, 5-하이드록시-3-(4-시아노페닐)-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {5-Hydroxy-3-(4-cyanophenyl)-7-methoxy-6,8-dimethyl-4H-chromen-4-one} 및 3-(4-아세틸페닐)-5-하이드록시-7-메톡시-6,8-다이메틸-4H-크로멘-4-온 {3-(4-Acetylphenyl)-5-hydroxy-7-methoxy-6,8-dimethyl-4H-chromen-4-one} 중 선택된 한 가지 이상의 C-메틸이소플라본 화합물을 포함하는 항염증 약학 조성물.
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
KR1020160157039A 2016-11-24 2016-11-24 C-메틸이소플라본과 그 유도체 및 그 합성방법 KR101825614B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160157039A KR101825614B1 (ko) 2016-11-24 2016-11-24 C-메틸이소플라본과 그 유도체 및 그 합성방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160157039A KR101825614B1 (ko) 2016-11-24 2016-11-24 C-메틸이소플라본과 그 유도체 및 그 합성방법

Publications (1)

Publication Number Publication Date
KR101825614B1 true KR101825614B1 (ko) 2018-02-05

Family

ID=61224732

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160157039A KR101825614B1 (ko) 2016-11-24 2016-11-24 C-메틸이소플라본과 그 유도체 및 그 합성방법

Country Status (1)

Country Link
KR (1) KR101825614B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112225716A (zh) * 2020-10-30 2021-01-15 陕西嘉禾生物科技股份有限公司 一种鹰嘴豆牙素a的合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문(HETEROCYCLES, Vol. 78, No. 8, 2009, pp. 2061~2065)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112225716A (zh) * 2020-10-30 2021-01-15 陕西嘉禾生物科技股份有限公司 一种鹰嘴豆牙素a的合成方法

Similar Documents

Publication Publication Date Title
Rao et al. Differential effects of synthesized 2′-oxygenated chalcone derivatives: modulation of human cell cycle phase distribution
Pan et al. Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species
Dong et al. Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents
Baek et al. Furanocoumarins from the root of Angelica dahurica
Dixit et al. Constituents of Dalbergia sissoo Roxb. leaves with osteogenic activity
Mielcke et al. Activity of novel quinoxaline-derived chalcones on in vitro glioma cell proliferation
Nguyen et al. New prenylated isoflavonoids as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Erythrina addisoniae
Kwon et al. Inhibitory effects of phenolic compounds from needles of Pinus densiflora on nitric oxide and PGE 2 production
Nie et al. Discovery and anti-diabetic effects of novel isoxazole based flavonoid derivatives
Yang et al. Development of a novel nitric oxide (NO) production inhibitor with potential therapeutic effect on chronic inflammation
Rao et al. Synthesis, growth inhibition, and cell cycle evaluations of novel flavonoid derivatives
Higgins et al. Growth inhibitory activity of extracted material and isolated compounds from the fruits of Kigelia pinnata
CN101094844B (zh) 苯并二氢吡喃衍生物,药物及其在治疗中的应用
Wang et al. Constituents with potent α-glucosidase inhibitory activity from Pueraria lobata (Willd.) ohwi.
Fan et al. Occurrence, synthesis and biological activity of 2-(2-phenyethyl) chromones
Wang et al. Synthesis and cancer cell growth inhibitory activity of icaritin derivatives
He et al. Penchinones A–D, two pairs of cis-trans isomers with rearranged neolignane carbon skeletons from Penthorum chinense
Chopra Chalcones: a brief review
Shoaib et al. Synthetic flavonols and flavones: A future perspective as anticancer agents.
Talhi et al. Organic synthesis of C-prenylated phenolic compounds
Peng et al. Biologically active secoiridoids: A comprehensive update
KR101825614B1 (ko) C-메틸이소플라본과 그 유도체 및 그 합성방법
CN113735814B (zh) 桃金娘酮类化合物及其在制备抗流感病毒药物中的应用
Li et al. Two new 1, 4-naphthoquinone derivatives from Impatiens balsamina L. flowers
Jung et al. First synthesis and in vitro biological assessment of isosideroxylin, 6, 8-dimethylgenistein and their analogues as nitric oxide production inhibition agents

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant