KR101798359B1 - 구름 로울러의 제조방법 및 이를 이용하여 제조되는 구름 로울러 - Google Patents

구름 로울러의 제조방법 및 이를 이용하여 제조되는 구름 로울러 Download PDF

Info

Publication number
KR101798359B1
KR101798359B1 KR1020170059205A KR20170059205A KR101798359B1 KR 101798359 B1 KR101798359 B1 KR 101798359B1 KR 1020170059205 A KR1020170059205 A KR 1020170059205A KR 20170059205 A KR20170059205 A KR 20170059205A KR 101798359 B1 KR101798359 B1 KR 101798359B1
Authority
KR
South Korea
Prior art keywords
thin film
metal
hardness
chromium
aluminum
Prior art date
Application number
KR1020170059205A
Other languages
English (en)
Inventor
이유창
Original Assignee
이유창
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이유창 filed Critical 이유창
Priority to KR1020170059205A priority Critical patent/KR101798359B1/ko
Application granted granted Critical
Publication of KR101798359B1 publication Critical patent/KR101798359B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5886Mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은, 표면에 박막을 코팅하되, 상기 박막 코팅은 알루미늄 및 크롬을 포함하는 금속 타깃을 배치하고 PVD(물리기상증착: Physical Vapor Deposition)로 침식한 후 이와 동시에 질소를 공급하여 금속 타깃으로부터 증착된 금속입자를 활성화된 질소원자와 반응시켜 알루미늄-크롬-질소(AlCrN)로 이루어진 재료를 표면에 코팅하는 것으로서, 이에 경도, 내마찰성 및 내부식성을 향상시킬 수 있도록 한 구름 로울러의 제조방법 및 이를 이용하여 제조되는 구름 로울러를 제공한다.

Description

구름 로울러의 제조방법 및 이를 이용하여 제조되는 구름 로울러{MANUFACTURING METHOD OF SUPER ROLLER AND THE SAME USING THEREFOR}
본 발명은 구름 로울러의 제조방법 및 이를 이용하여 제조되는 구름 로울러에 관한 것으로서, 보다 상세하게는 구름 로울러의 표면에 박막을 코팅하되, 상기 박막 코팅은 알루미늄 및 크롬을 포함하는 금속 타깃을 배치하고 PVD(물리기상증착: Physical Vapor Deposition)로 침식한 후 이와 동시에 질소를 공급하여 금속 타깃으로부터 증착된 금속입자를 활성화된 질소원자와 반응시켜 AlCrN(알루미늄-크롬-질소)로 이루어진 재료를 구름 로울러의 표면에 코팅하는 것으로서, 이에 구름 로울러의 경도, 내마찰성 및 내부식성을 향상시킬 수 있도록 한 구름 로울러의 제조방법 및 이를 이용하여 제조되는 구름 로울러에 관한 것이다.
구름 로울러는 무거운 물품을 이송하기 위해 물품 하면에 일정 간격으로 설치되는 것으로서, 물품 이송 틀의 바닥에 설치된 이동레일이 밀착되어 슬라이드 이동하도록 홈부를 가진다.
그러나, 종래의 구름 로울러는 진공상태 고온에서의 작업환경으로 인해 이동레일이 이동하면서 마찰이 일어나는 홈부의 경도 및 내마찰성이 약해 홈부의 이동레일 마찰면이 쉽고 빠르게 마모되는 문제가 있다.
특히, 이러한 마모에 의해 구름 로울러 중 일부가 미세분말로 발생하게 되는데, 이러한 미세분말은 양이 증가하면서 로울러의 구름을 방해하는 원인으로 작용하여 물품 이송시 레일이 로울러에 의해 원활히 슬라이딩 되지 못하게 되는 문제가 발생할 수 있다.
이러한 문제를 해소하기 위해 로울러 하부에 자석을 포함하는 포집 기구를 설치하고 있으나, 이 경우 장치의 구조 및 설치 비용이 증가하는 문제가 발생한다.
등록특허공보 제10-1673712호 등록특허공보 제10-1713830호
본 발명의 목적은, 구름 로울러의 표면에 AlCrN을 포함하는 재료로 된 박막을 형성하여 구름 로울러의 경도, 내마찰성 및 내부식성을 향상시킬 수 있는 구름 로울러의 제조방법 및 그 제조 방법을 이용하여 제조되는 구름 로울러를 제공하는 데 있다.
본 발명의 일 측면은, 이동레일 홈부를 갖는 구름 로울러의 바디를 가공하는 단계; 상기 가공된 바디는, 공구강인 SKD11 소재를 1,050℃에서 ??칭하고, 510℃에서 고온 템퍼링을 2회 이상 실시하여 가공한 후, 이를 열처리하는 상기 가공된 구름 로울러의 바디 열처리 단계; 상기 바디의 표면을 샌딩하여 열처리된 피막을 제거하는 단계; 표면 조도를 향상시켜 코팅 밀착력을 높이기 위하여 상기 바디를 래핑하고 1차 폴리싱하는 단계; 상기 바디의 표면경도가 높아지도록 금속표면 확산처리방식으로 질화처리하는 단계; 상기 바디를 2차 폴리싱하여 질화 확산처리에 따른 화합물층의 미세 찌꺼기를 표면에서 제거하는 단계; 상기 바디의 내경을 연마하는 단계; 상기 바디에 키홈을 가공하는 단계; 상기 바디의 표면을 니켈로 무전해도금하는 단계; 상기 바디를 3차 폴리싱하는 단계; 상기 바디의 표면에 AlCrN(알루미늄-크롬-질소)을 포함하는 박막을 형성하는 단계; 및 상기 바디를 4차 폴리싱하는 단계; 를 포함하며,
상기 박막 형성단계는, 상기 바디의 표면에 티타늄(Ti)을 0.1~0.5㎛의 두께로 PVD 증착하여 TiN(티타늄-질소)으로 이루어지는 내부층(Inter layer)를 형성하는 단계; 및 상기 내부층에 알루미늄(Al)과 크롬(Cr)을 사용하여 메탈아크(Metal arc)방식으로 코팅박막증착을 하여 알루미늄-크롬-질소(AlCrN)로 이루어지도록 하되, 질소 분위기 하에서 450℃를 유지한 체 챔버 안에 알루미늄(Al) 및 크롬(Cr)을 포함하는 금속 타깃을 배치하고 비활성가스를 공급하고 전류를 인가하여 플라즈마 방진을 일으켜 PVD(물리기상증착: Physical Vapor Deposition)로 금속타깃을 침식하여서 외부층을 형성하는 단계; 로 이루어지는 것을 특징으로 하는 구름 로울러의 제조방법을 제공한다.
삭제
삭제
삭제
본 발명의 바람직한 특징에 의하면, 상기 SKD11 소재의 경도는 58 내지 59 Hrc이고, 상기 질화처리 후 바디의 표면경도는 1,000HV이고, 상기 금속표면 확산처리시 확산 깊이가 40 내지 60 미크론(㎛)이 되도록 바디를 가공할 수 있다.
본 발명의 다른 측면은 상기 제조 방법에 의해 제조되는 구름 로울러를 제공한다.
본 발명의 일 실시 예에 따른 구름 로울러는, 표면에 금속질화물로 된 재료로 박막을 코팅하되, 상기 박막 코팅은 알루미늄 및 크롬을 포함하는 금속 타깃을 배치하고 PVD로 침식한 후 이와 동시에 질소를 공급하여 금속 타깃으로부터 증착된 금속입자를 활성화된 질소원자와 반응시켜 AlCrN(알루미늄-크롬-질소)으로 이루어진 재료를 구름 로울러의 표면에 코팅함으로써, 구름 로울러의 경도, 내마찰성 및 내부식성을 향상시킬 수 있는 효과가 있다.
도 1은 본 발명의 일 실시 예에 따른 구름 로울러를 제조하는 방법을 순서대로 나타낸 플로우차트(Flow Chart)이다.
도 2는 도 1에 의해 제조되는 구름 로울러 및 이동레일을 개략적으로 나타낸 사시도이다.
도 3은 도 2의 측면도이다.
도 4는 소재가 Polime로 이루어진 경우, 바디의 경도를 나타낸 그래프이다.
도 5는 본 발명의 일 실시 예에 따른 박막의 경도를 분석한 그래프이다.
도 6는 비교 예의 박막의 경도를 분석한 그래프이다
도 7은 실시 예와 비교 예에 따른 박막의 고온경도를 비교하여 나타낸 그래프이다.
도 8은 본 실시 예에 의한 박막의 SEM사진이다.
도 9는 실시 예와 비교 예에 따른 박막의 산화개시온도를 비교하여 나타낸 그래프이다.
도 10은 본 실시 예에 의해 박막이 형성된 구름 로울러(좌측)와 비교 예로서 박막이 형성되지 않은 구름 로울러(우측)를 각각 일정시간 사용 후 촬영한 사진이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 설명한다. 그러나, 본 발명의 실시 예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.
본 발명의 실시 예는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.
덧붙여, 명세서 전체에서 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
도 1은 본 발명의 일 실시 예에 따른 구름 로울러를 제조하는 방법을 순서대로 나타낸 플로우차트(Flow Chart)이다.
이하, 도 1을 참조하여 본 발명의 일 실시 예에 따른 구름 로울러의 제조방법에 대해 구체적으로 설명한다.
먼저 선반에서 이동레일 홈부를 갖는 구름 로울러의 바디를 가공한다(S10). 그리고, 바디를 열처리한다(S15). 일 실시 예로서, 상기 바디는, SKD11 소재를 1,050℃에서 ??칭하고, 510℃에서 고온 템퍼링을 2회 이상 실시하여 가공할 수 있다. 상기 SDK11 소재의 경도는 58 내지 59 Hrc일 수 있다.
다음으로, 후술하는 질화 처리에 앞서 바디의 표면에 열처리된 피막을 제거하기 위해 바디의 표면을 샌딩한다(S20).
다음으로, 바디를 래핑하고 1차 폴리싱하여(S30) 바디 표면의 조도를 개선함으로써 이동레일이 접촉되는 부분인 이동레일 홈부의 곡률이 향상되도록 한다. 이렇게 이동레일 홈부의 곡률이 향상되면 이동레일 접촉시 마찰이 감소하게 되므로 마찰력을 줄여 로울러의 수명을 증가시킬 수 있다.
다음으로, 바디를 질화 처리한다(S40). 이러한 질화로 가스질화, 염욕질화, 액체질화, 가스연질화 및 이온질화 등이 있으며, 본 실시 예에서는 바람직하게 저압 가스질화와 이온질화를 병행하여 사용할 수 있다. 상기 이온질화는 금속표면 조직의 선택생성과 저온에 의해 처리되어, 박막의 변형을 방지할 수 있고 품질을 향상시킬 수 있다. 이러한 이온질화는 질소를 이용하여 금속 내부에 확산층을 형성하는 것이며, 450 내지 580℃에서 진행될 수 있다. 이때, 상기 이온질화 처리는 금속표면 확산처리방식을 이용하여 확산 깊이 40 내지 60㎛으로 진행할 수 있으며, 이에 바디의 금속표면 경도가 1,000Hv 수준으로 크게 상승될 수 있다.
다음으로, 바디를 2차 폴리싱하여(S50) 질화처리 후 바디 표면에 남아있는 화합물층을 제거한다. 그리고, 바디의 내경을 연마하고(S60), 바디에 키홈을 가공한다(S70).
다음으로, 바디의 표면을 니켈로 무전해도금하여(S80) 내부식성을 향상시킨다. 앞에서 연마된 바디의 내경은 후술하는 박막이 제대로 형성되기 어렵기 때문에 이에 앞서 이러한 니켈 무전해도금 처리를 하면 내부식성을 향상시킬 수 있다.
다음으로, 니켈 무전해도금 처리된 바디를 3차 폴리싱하여(S90), 후술하는 박막 코팅시 박막의 수명이 더 증가되도록 하고 박막의 밀착력을 더 향상시킬 수 있도록 한다.
다음으로, 바디의 표면에 AlCrN(알루미늄-크롬-질소)을 포함하는 박막을 형성한다(S100). 이러한 박막은 티타늄(Ti)과 알루미늄(Al) 합금 타겟을 이용한 물리증착법(PVD) 및 메탈 아크(Metal Arc) 방식의 코팅박막증착을 이용하여 형성할 수 있으며, 내부층(Inter layer) 및 외부층으로 이루어질 수 있다.
상기 PVD는 진공 중에 금속을 기화시켜 기화된 금속원자가 산화하지 않은 채 방해물 없이 피도금물에 도금되는 방식으로, 본 실시 예에서는 진공증착법(Evaporation), 스퍼터링법(Sputtering) 및 이온 플레이팅(Ion-Plating) 중 어느 하나를 사용할 수 있다.
상기 내부층은 바디의 표면에 티타늄(Ti)을 0.1 내지 0.5㎛의 두께로 PVD 증착하여 TiN(티타늄-질소)으로 이루어지도록 형성할 수 있다.
상기 외부층은 내부층에 Al과 크롬(Cr)을 사용하여 메탈아크 방식으로 코팅박막 증착을 하여 AlCrN으로 이루어지도록 형성할 수 있다. 상기 외부층을 형성하기 위해서는, 질소 분위기 하에서 500℃이하 더 바람직하게는 약 450℃에서, 챔버 안에 알루미늄(Al) 및 크롬(Cr)을 포함하는 금속 타깃을 배치하고 비활성가스를 공급하고 전류를 인가하여 플라즈마 방진을 일으켜 PVD로 금속타깃을 침식한다.
그리고, 질소(N)를 공급하여 상기 금속 타깃으로부터 증착된 금속입자를 활성화된 질소원자와 반응시켜 로울러의 바디 표면에 다성분계 준안정 화합물인 AlCrN으로 이루어지는 박막을 코팅하는 것이다. 이렇게 질화를 하여 알루미늄-크롬 표면에 질소를 침투시키면 알루미늄과 크롬의 표면 경도가 높아져 코팅 형성되는 박막의 화학적 및 기계적 성질이 향상될 수 있다.
이후, 바디를 4차 폴리싱하여(S110), 박막 형성 후 표면에 남아있는 드랍렛(Drop let)을 제거하여 구름 로울러를 완성한다.
도 2 및 도 3에 도시된 바와 같이, 상기한 방법에 의해 제조되는 본 실시 예의 구름 로울러(100)는 상부에 배치된 물품이 이송할 때 이동레일이 닿게 되는 홈부(120)를 가지는 바디(110)와 바디(110) 표면에 형성되는 박막(도면부호 미표시)을 포함한다. 도면부호 300은 바디(110)의 중앙에 결합된 회전축을 나타낸다.
이때, 바디는 SKD11 소재 또는 Polime로 형성될 수 있다.
바디가 SKD11로 형성되는 경우, 바디의 경도는 58 내지 59HRc일 수 있다. 종래의 SUJ2 소재로 형성된 바디의 경도가 대체로 38 내지 40 HRc이므로, 본 실시 예의 바디의 경도가 상대적으로 우수한 것을 알 수 있다.
상기 Polime는 슈퍼엔지니어링 플라스틱 폴리이미드(Polyimid) 수지와 내윤활성 및 내화학성이 우수한 PTFE(Polytetrafluoroethylene: 폴리테트라 플루오로에틸렌)를 혼합하여 제조되는 열가소성 수지이다.
이러한 Polime는 240℃까지 장기 사용이 가능할 정도로 내열성이 우수하고, 낮고 안정된 동마찰계수 및 저마모량을 가지며, 아웃가스 및 금속불순물이 매우 적고, 우수한 플라즈마성, 내방사선성 및 전기특성을 가지며, 안정된 열팽창계수 및 양호한 크립 특성을 가진다.
30Ф×15T의 규격으로 로울러 샘플을 만들고 속도 1250RPM, 하중 10Kg의 조건에서 파티클(Particle) 테스트를 한 결과는 아래 도 4와 같다. 도 4를 참조하면, 본 실시 예에 적용되는 Polime의 경우 파티클 발생량이 최대 49, 평균 6.2 정도 발생하였고, 표면저항은 E2~E3으로 나타났다.
이는 Si3N4(질화규소) 소재를 사용하는 경우 파티클 발생량이 최대 18360, 평균 241.8이 측정되는 것과, 탄소강 소재를 사용하는 경우 파티클 발생량이 최대 72783, 평균 11511이 발생하는 것에 비하면 파티클 발생량이 극소화되는 것을 알 수 있으며, 이에 본 실시 예에서와 같이, 바디의 소재로 Polime를 사용하면, 바디의 내마모성을 크게 향상시킬 수 있다.
다만, 상기 Polime 소재의 경우, 고가소재로서 원가가 증가되고, 지나친 마찰로 인해 마모되어 미세분말이 발생하는 경우 SKD11의 경우 자석을 포함하는 포집 기구를 이용하여 제거할 수 있으나, 이 경우 이러한 이물질을 원활히 제거하기 곤란할 수 있다.
상기 박막은 AlCrN(알루미늄-크롬-질소)로 이루어질 수 있으며, 이때 표 1 및 도 5를 참조하면 박막의 평균 경도가 31.89Gpa(3029.55 Hv)일 수 있다. 종래의 박막은 크롬(Cr) 도금으로 형성되는데, 표 2 및 도 6에서 볼 수 있듯이, 박막의 평균 경도가 15.88Gpa(1508.6Hv)로서 본 실시 예에 따르면 박막의 경도가 상대적으로 우수한 것을 알 수 있으며, 결과적으로 본 실시 예에 따른 구름 로울러의 경도가 종래의 구름 로울러에 비해 크게 향상되는 것을 알 수 있다.
Figure 112017045227361-pat00001
Figure 112017045227361-pat00002
상기 실시 예와 종래 예의 박막의 경도는 둘 다 Nano-indentor(Standards: ISO 14577)을 이용하여 측정하며, ISO 기준으로 10포인트 지점에 대한 경도를 측정한 후 최대값과 최소값을 제외한 측정값들에 대한 값들의 평균을 계산한 것이다. 표 1 및 표 2에서, HIT(Hardness ImplanTation)는 실제 경도 데이터이고, HIT의 단위는 N/mm2(Mpa)이고, Hv는 Gpa에 98을 곱하여 계산한다.
그리고, 본 실시 예에 따른 구름 로울러의 성능을 알아보기 위해, 금속질화물 박막을 다른 성분의 박막과 비교해본다.
먼저 도 7을 참조하여 여러 가지 재료로 된 박막의 실시 예와 비교 예의 고온 경도를 비교해본다. 여기서, 실시 예는 AlCrN을 포함하는 박막이고, 비교 예 1 내지 3은 티타늄을 베이스로 하는 박막으로서, 비교 예 1은 TiAlN을 포함하고, 비교 예 2는 TiCN을 포함하고, 비교 예 3은 AlTiN을 포함한다. 이때, 실시 예와 비교 예 1 내지 3의 박막의 두께는 모두 0.5㎛로 하였다.
도 7을 참조하면, Al이 포함되지 않은 비교 예 2의 경우 700℃를 넘자 경도가 급격하게 저하되었고, 비교 예 1 및 3의 경우에도 온도가 900℃를 초과하자 경도가 급격히 저하되는 것을 알 수 있다. 반면에, 실시 예의 경우 900℃를 초과하더라도 경도의 급격한 저하는 발생하지 않았고, 1000℃에서도 2000 Hv0 .05 이상을 유지하였다.
따라서, 본 실시 예에서와 같이, AlCrN을 포함하는 물질로 박막을 형성하면 높은 온도 영역에서도 내마모성을 유지할 수 있다. 즉, 높은 열 응력이 박막의 경도에 영향을 미치는 것이 작기 때문에, 마찰이 잦아 순간적인 고열 발생이 잦은 구름 로울러의 이동레일 홈부에 적용시 우수한 작용을 할 수 있을 것으로 예상된다.
또한, 본 실시 예의 박막은 3.000 Hv0 .05 이상의 경도와 0.35 정도의 강에 대한 마찰계수를 가질 수 있다. 또한, 상기 박막은 블랙-그레이 계열의 색상을 가지므로, 구름 로울러에 은은한 금속 광택을 향상시키는 효과를 더 제공할 수 있다.
이때, 박막의 두께는 바람직하게 0.1 내지 5.0㎛일 수 있다. 상기 박막의 두께가 0.1㎛ 미만이면 경도가 3,000 미만으로 저하되고 박막의 안정성이 저하되어 극한 상황에서 막분리가 발생하는 문제가 있고, 상기 박막의 두께가 5.0㎛를 초과하면 경도와 마찰계수의 상승 효과가 미비하여 경제적 실익이 없다.
본 실시 예의 박막은 크롬 성분에 의해 경도가 향상되고 산화가 발생하지 않아 내부식성을 향상시킬 수 있다. 또한, 상기 크롬은 연성이 강한 알루미늄 성분을 포함하는 박막이 구름 로울러의 표면에 안정적으로 고정되도록 지지하는 작용을 할 수 있다.
또한, 본 실시 예에서와 같은 구성으로 박막이 형성되면 구름 로울러의 윤활성 및 내열성도 개선시킬 수 있다. 따라서, 이동레일 저면에 설치시 이동레일과 로울러 사이의 반응 발생(incidence of reaction)을 감소시킬 수 있어 공구를 안정적으로 사용할 수 있고, 공구의 수명을 연장시킬 수 있다.
도 8을 참조하면, 본 실시 예의 구름 로울러의 표면에 형성된 박막의 경도가 3,200 정도이고, 잔류압축능력은 -3.0 GPa이고, 최대 서비스 온도는 1100℃이고, 마찰계수는 0.35로 나타난다.
도 9는 실시 예와 비교 예에 따른 박막의 산화개시온도를 비교하여 나타낸 그래프이다.
도 9를 참조하면, Al이 포함되지 않은 비교 예 2의 경우 600℃를 초과하면서 산화가 급격하게 진행되었고 750℃에서 완전 산화되었다. 비교 예 1 및 3의 경우 온도가 800℃를 초과하면서 산화가 진행되었고 1000℃ 부근에서 완전 산화되었다.
반면에, 실시 예의 경우 1000℃를 초과하면서 산화가 진행되었고 1100℃에서도 산화된 층의 두께가 200nm를 넘지 않았으며, 산화된 층의 두께는 1200℃ 부근에서도 300nm 정도일 것으로 추정된다.
따라서, 본 실시 예에서와 같이, AlCrN을 포함하는 물질로 금속질화물 코팅 박막을 형성하면 산화개시 온도를 높일 수 있고, 1000℃를 초과하는 온도에서도 산화된 층의 두께가 높지 않아 티타늄 베이스인 비교 예 1 내지 3에 비해 내식성이 매우 우수함을 알 수 있다.
도 10은 본 실시 예에 의해 박막이 형성된 구름 로울러(좌측)와 비교 예로서 박막이 형성되지 않은 구름 로울러(우측)를 각각 일정시간 사용 후 촬영한 것으로, 본 실시 예에 의한 구름 로울러는 홈부의 마모가 거의 없음을 확인할 수 있다.
본 발명은 상술한 실시 예 및 첨부된 도면에 의해 한정되는 것이 아니며 첨부된 청구범위에 의해 한정하고자 한다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.
100: 구름 로울러
110: 바디
120: 홈부
130: 회전축
200: 이동레일

Claims (6)

  1. 이동레일 홈부를 갖는 구름 로울러의 바디를 가공하는 단계;
    상기 가공된 바디는, 공구강인 SKD11 소재를 1,050℃에서 ??칭하고, 510℃에서 고온 템퍼링을 2회 이상 실시하여 가공한 후, 이를 열처리하는 상기 가공된 구름 로울러의 바디 열처리 단계;
    상기 바디의 표면을 샌딩하여 열처리된 피막을 제거하는 단계;
    표면 조도를 향상시켜 코팅 밀착력을 높이기 위하여 상기 바디를 래핑하고 1차 폴리싱하는 단계;
    상기 바디의 표면경도가 높아지도록 금속표면 확산처리방식으로 질화처리하는 단계;
    상기 바디를 2차 폴리싱하여 질화 확산처리에 따른 화합물층의 미세 찌꺼기를 표면에서 제거하는 단계;
    상기 바디의 내경을 연마하는 단계;
    상기 바디에 키홈을 가공하는 단계;
    상기 바디의 표면을 니켈로 무전해도금하는 단계;
    상기 바디를 3차 폴리싱하는 단계;
    상기 바디의 표면에 AlCrN(알루미늄-크롬-질소)을 포함하는 박막을 형성하는 단계; 및
    상기 바디를 4차 폴리싱하는 단계; 를 포함하며,
    상기 박막 형성단계는,
    상기 바디의 표면에 티타늄(Ti)을 0.1~0.5㎛의 두께로 PVD 증착하여 TiN(티타늄-질소)으로 이루어지는 내부층(Inter layer)를 형성하는 단계; 및
    상기 내부층에 알루미늄(Al)과 크롬(Cr)을 사용하여 메탈아크(Metal arc)방식으로 코팅박막증착을 하여 알루미늄-크롬-질소(AlCrN)로 이루어지도록 하되, 질소 분위기 하에서 450℃를 유지한 체 챔버 안에 알루미늄(Al) 및 크롬(Cr)을 포함하는 금속 타깃을 배치하고 비활성가스를 공급하고 전류를 인가하여 플라즈마 방진을 일으켜 PVD(물리기상증착: Physical Vapor Deposition)로 금속타깃을 침식하여서 외부층을 형성하는 단계; 를 포함하는 것을 특징으로 하는 구름 로울러의 제조방법.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 제 1 항에 있어서,
    상기 SKD11 소재의 경도는 58 내지 59 Hrc이고,
    상기 질화처리 후 바디의 표면경도는 1,000HV이고,
    상기 금속표면 확산처리시 확산 깊이가 40 내지 60㎛이 되도록 바디를 가공하는 것을 특징으로 하는 구름 로울러의 제조방법.
  6. 제 1 항 또는 제 5 항의 제조방법에 의해 제조되는 것을 특징으로 하는 구름 로울러.
KR1020170059205A 2017-05-12 2017-05-12 구름 로울러의 제조방법 및 이를 이용하여 제조되는 구름 로울러 KR101798359B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170059205A KR101798359B1 (ko) 2017-05-12 2017-05-12 구름 로울러의 제조방법 및 이를 이용하여 제조되는 구름 로울러

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170059205A KR101798359B1 (ko) 2017-05-12 2017-05-12 구름 로울러의 제조방법 및 이를 이용하여 제조되는 구름 로울러

Publications (1)

Publication Number Publication Date
KR101798359B1 true KR101798359B1 (ko) 2017-11-15

Family

ID=60387262

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170059205A KR101798359B1 (ko) 2017-05-12 2017-05-12 구름 로울러의 제조방법 및 이를 이용하여 제조되는 구름 로울러

Country Status (1)

Country Link
KR (1) KR101798359B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111088416A (zh) * 2020-02-20 2020-05-01 常州艾柯轧辊有限公司 一种高强度轧辊的制造工艺及制造采用的热处理装置
CN115354275A (zh) * 2022-08-26 2022-11-18 中国科学院宁波材料技术与工程研究所 一种奥氏体不锈钢表面渗镀复合处理方法及应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111088416A (zh) * 2020-02-20 2020-05-01 常州艾柯轧辊有限公司 一种高强度轧辊的制造工艺及制造采用的热处理装置
CN111088416B (zh) * 2020-02-20 2021-10-01 常州艾柯轧辊有限公司 一种高强度轧辊的制造工艺及制造采用的热处理装置
CN115354275A (zh) * 2022-08-26 2022-11-18 中国科学院宁波材料技术与工程研究所 一种奥氏体不锈钢表面渗镀复合处理方法及应用
CN115354275B (zh) * 2022-08-26 2023-09-05 中国科学院宁波材料技术与工程研究所 一种奥氏体不锈钢表面渗镀复合处理方法及应用

Similar Documents

Publication Publication Date Title
Tyagi et al. A critical review of diamond like carbon coating for wear resistance applications
EP3287544B1 (en) Coated metal mold and method for manufacturing same
Mitterer et al. Industrial applications of PACVD hard coatings
EP2316983B1 (en) Nitrogen-containing amorphous carbon and amorphous carbon layered film, and sliding member
Pellizzari High temperature wear and friction behaviour of nitrided, PVD-duplex and CVD coated tool steel against 6082 Al alloy
JP5920681B2 (ja) 摺動特性に優れた塑性加工用被覆金型及びその製造方法
JP6015663B2 (ja) 摺動特性に優れた被覆部材
GB2458518A (en) An aerospace bearing
CA2825237A1 (en) Hot metal sheet forming or stamping tools with cr-si-n coatings
CN111108227B (zh) 滑动构件和活塞环
JP2010099735A (ja) 塑性加工用被覆金型
JP2008001951A (ja) ダイヤモンド状炭素膜およびその形成方法
KR101798359B1 (ko) 구름 로울러의 제조방법 및 이를 이용하여 제조되는 구름 로울러
JP2015528531A (ja) 摩擦低減特性および摩耗低減特性が強化されたアークpvdコーティング
Castillejo-Nieto et al. Wear resistance of vanadium-niobium carbide layers grown via TRD
Lyu et al. A novel post-processing method for 316L steel specimen generated by SLM using TiN/TiAlN multilayer coating
Macedo et al. Study of surface modification of niobium caused by nitriding and cathodic cage deposition
CN113574201A (zh) 被覆模具、被覆模具的制造方法及硬质皮膜形成用靶
JP5620649B2 (ja) 高硬度耐摩耗性皮膜の形成方法
JP5988144B2 (ja) 耐食性に優れた被覆物品およびその製造方法
JP3954739B2 (ja) 窒素含有Cr被膜の製造方法
JP2014172091A (ja) 冷間鍛造用金型
JP2013076124A (ja) 耐食性に優れた被覆物品の製造方法および被覆物品
JP4877502B2 (ja) 窒素含有Cr被膜およびこの被膜を有する機械部材
Lugmair et al. PACVD hard coatings for industrial applications

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
R401 Registration of restoration