KR101772446B1 - 고강성 직물형 섬유기반 구조전지 복합재 - Google Patents

고강성 직물형 섬유기반 구조전지 복합재 Download PDF

Info

Publication number
KR101772446B1
KR101772446B1 KR1020170045171A KR20170045171A KR101772446B1 KR 101772446 B1 KR101772446 B1 KR 101772446B1 KR 1020170045171 A KR1020170045171 A KR 1020170045171A KR 20170045171 A KR20170045171 A KR 20170045171A KR 101772446 B1 KR101772446 B1 KR 101772446B1
Authority
KR
South Korea
Prior art keywords
layer
anode
fiber
surface layer
cathode
Prior art date
Application number
KR1020170045171A
Other languages
English (en)
Inventor
김천곤
박미영
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020170045171A priority Critical patent/KR101772446B1/ko
Application granted granted Critical
Publication of KR101772446B1 publication Critical patent/KR101772446B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M2/1633
    • H01M2/1686
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/12
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 구조전지 복합재에 관한 것으로, 특히 하중을 받는 환경하에서의 배터리 셀 내부의 열적 특성과 내부 및 외부의 기계적 특성을 동시에 강화시킬 수 있는 다기능 에너지 저장 구조 디바이스로써, 섬유기반 배터리 셀로 구성된 고강성 섬유강화 구조전지 복합재에 관한 것이다.
또한, 본 발명에 따르면, 각각 통 형상으로 되어 있으며, 외부로부터 중심을 향하여 순차 적층된 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층을 포함하고, 상기 외부 표면층과 상기 내부 표면층은 섬유강화플라스틱으로 형성되어 있고, 상기 캐소드층, 상기 분리막층 및 상기 애노드층은 섬유층을 각각 포함하는 고강성 직물형 섬유기반의 구조전지 복합재가 제공된다.

Description

고강성 직물형 섬유기반 구조전지 복합재{High Stiffness Fiber Woven Fabric Based Structural Battery Composites}
본 발명은 구조전지 복합재에 관한 것으로, 특히 하중을 받는 환경하에서의 배터리 셀 내부의 열적 특성과 내부 및 외부의 기계적 특성을 동시에 강화시킬 수 있는 다기능 에너지 저장 구조 디바이스로써, 섬유기반 배터리 셀로 구성된 고강성 섬유강화 구조전지 복합재에 관한 것이다.
근래에 가장 활발하게 발전되어 왔고 향후에도 지속적인 수요와 파급효과가 높은 산업 기술 분야 중의 하나는 에너지 기기 및 시스템, 전력 변환 장치 등 에너지 분야라고 할 수 있다.
최근의 기술 추이는 특히 시스템 레벨에서 에너지 효용성을 빠르게 확보하는 쪽으로 지향하고 있다.
휴대용 디바이스의 지속가능한 전원에 대한 급격한 수요와 함께, 전기를 주동력 및 보조동력원으로 사용하는 전기 추진시스템을 갖는 수송수단들에 있어서 배터리는 이미 1차 전원의 자리를 점유해 가고 있는 실정이다.
한 예로 이러한 배터리가 드론과 같은 무인 수송시스템에 적용하기 위한 목적으로 주요 동력원으로 사용되거나 구조전지의 형태로 사용될 경우에 체공성의 획기적 향상이 기대된다.
그러나 현재는 짧은 배터리 사용시간으로 인한 낮은 체공성이 가장 큰 기술적 장애요소이다. 배터리가 사용되는 많은 시스템에서 배터리가 차지하는 질량과 부피가 상당 부분으로, 배터리가 다목적성을 가지도록 하려는 시도가 종래에 많이 이루어져 왔다.
그러나 이러한 다양한 시도들에도 불구하고 아직까지 기존 이차 전지 및 슈퍼 커패시터용 전기화학 디바이스에 우수한 기계적 성능을 확보하여 다기능성을 가지도록 하는 재료 구조적 접근방법에는 한계점을 보이고 있다.
즉, 어느 한 쪽을 개선하기 위하여 다른 쪽을 일정부분 희생해야 하는 상충적인 관계를 지닌다.
이러한 상충적 관계에 있어서 아래 항에서 인용되는 선행문헌들의 경우 전기화학적 특성을 희생하지 않으려는 대신에 기계적 성능 보완을 통해서 전기화학 디바이스의 기능성은 확보하면서 기계적 성질이 강화되는 다기능성 개념을 채택하고 있다.
즉 이러한 디바이스 기반 개념에서 주로 희생을 감당하게 되는 성질이 기계적 특성이다.
국제특허출원공개번호 WO2014/021970호(선행문헌1)는 구조적 응용을 위한 다기능 셀이 파우치로 밀봉된 bi-cell 구조의 층상형으로 적층되어 전기화학 디바이스로 구현된다.
상기 선행문헌1은 방탄패널 후면에 리튬 이온 배터리 셀과 섬유 덮개 층을 본딩한 후 패널 앞에서 탄도 시험시에 탄도성능에 영향이 없음을 제시하고 있다.
특히, 전기화학 역할을 하는 재료가 배터리 셀의 주요 부재로 구성되고 이를 봉합하여 복합재 패널 위에 2차 본딩하여 일체화시킴으로 구조적 특성을 구현하려는 개념이다.
그러나 이와 같은 선행문헌1은 성능을 내기 위한 에너지 저장 디바이스(배터리 파우치 셀)를 방호력을 갖는 고강도 복합재 패널에 임베딩하는 방식으로 구조적 결합 가능성을 본 것으로 각 구성품이 아직 독립적 수준에 머물러 있다.
또한, 선행문헌1은 사용되는 분리막은 전기화학 특성을 낼 수 있는 수준의 다양한 재질이 가능하고, 유리섬유 분리막이 포함될 수 있으나, 연속섬유로 된 유리섬유 분리막은 하중지지가 가능하지만 유리섬유의 하중지지 기능이 주요한 특징으로 구성되지 않는다.
한편, 층상형 구조로 적층된 종래의 이차전지 배터리 셀이 판재(laminates)에 수직방향의 하중을 받을 때 내부에 적층된 배터리 셀의 미끄러지는 현상(sliding)으로 인해 구조의 손상 및 파괴가 야기된다.
이와 같은 문제점을 해결하기 위하여 국제특허출원공개번호 WO2016/127122호(선행문헌2)는 기존 배터리 셀이 다층으로 적층된 구조에서, 즉 battery stacks이 갖는 전단 하중에 취약한 점을 보완하고 굽힘 강성(bending stiffness)을 증대하기 위하여 배터리 셀 외피를 CFRP(탄소섬유강화) 복합재 face skin으로 보강하고, 배터리 셀 내부에 고분자 수지를 이용한 polymer reinforcement를 리벳(rivet) 개념으로 주입하여 CFRP face skin과 T-joint 형상으로 고정한다.
하지만, 이러한 선행문헌2는 다기능 에너지 저장 구조의 제작시에, 종래에 전기화학 디바이스로서의 파우치 형태의 이차전지가 갖는 구조 변형 및 손상 등의 문제를 해결하고 추가적으로 기계적 성질을 부여하여 다기능성을 향상시킬 수 있지만 폴리머 부재가 갖는 열적 특성과 기계적 강도에 한계가 있다.
따라서 하중을 받는 환경하에서의 배터리 셀 내부의 열적 특성을 안정적으로 유지하면서 배터리 내부 및 외부의 기계적 특성을 동시에 향상시킬 수 있는 다기능 에너지 저장 구조 디바이스가 필요하다.
국제특허출원공개번호 WO2014/021970호 국제특허출원공개번호 WO2016/127122호
상기와 같은 문제점을 해결하기 위한 본 발명은 하중을 받는 환경하에서의 배터리 셀 내부의 열적 특성의 향상과 배터리 셀 내부 및 외부의 기계적 특성의 희생없이 더욱 강화되어 고강도 고강성을 갖는 다기능 에너지 저장 구조 디바이스인 고강성 직물형 섬유기반의 구조전지 복합재를 제공하는 데 있다.
1) 임베딩 본딩 구조: 기존에 사용되고 있는 전기화학 성능을 확보한 금속 포일 집전체 기반의 Anode와 Cathode 전극을 사용하고, 분리막으로 직물 기반 Glass Fabric을 사용하여 배터리 셀을 구성한다.
분리막에 함침되는 유기전해액의 누액 방지를 위한 파우치 형태의 봉합층이 필요하다. 유기전해액을 사용하지 않는 경우, 예를 들어 고체전해질이 적용되는 경우에는 이와 같은 별도의 봉합층이 필요 없다.
2) 일체형 적층 구조: GF(Glass Fabric)에 CNT와 같은 나노물질을 코팅 또는 성장시켜서 적절한 수율과 접촉면적을 확보시에 배터리 셀의 Anode 전극으로 사용 가능하고, 반면 GF에 리튬 산화물계 Cathode 전극 물질인 LFP(Li Iron Phosphate), LCO(Li Cobalt Oxide), 또는 LMP(Li Manganese Phosphate) 등을 바인더 물질 및 도전재 물질과 슬러리 형태로 합성하여 코팅할 경우 배터리 셀의 Cathode 전극으로 사용 가능하다.
따라서 이 구조에서는 유리섬유로 사용된 분리막과 Anode 및 cathode 전극 지지체가 모두 하중지지 역할의 구조적 기능을 담당하게 되며, 유리섬유가 분리막 기능 외에 전체 배터리 구조에서 하중지지를 담당하는 역할로 확장되므로 강화된 형태의 구조전지 복합재로서의 특징을 가지게 되어 선행기술과의 차별성을 지닌다.
마찬가지로 CF(Carbon Fabric)에 이와 같은 방법을 사용하여 Anode 및 Cathode 전극을 만들어서 배터리 셀로 결합할 수 있다. 이 때에는 탄소섬유(CF)가 사용된 Anode 및 Cathode 전극 지지체와 유리섬유(GF) 분리막이 하중지지 역할을 하는 구조적 기능을 담당한다.
GF 전극 지지체와 CF 전극 지지체는 방향성을 가지면서 하중을 지지하는 직물 재료로써 모두 우수한 기계적 성능을 보유하고 있으며, 전기화학적 특성에 있어서는 GF는 절연 특성을 지니면서 우수한 열적 특성을 지님으로 높은 온도와 반복되는 사이클에서도 표면에 코팅된 나노물질이나 전극활물질과 반응성이 거의 없으므로 본연의 기계적 특성을 유지할 수 있는 장점이 있다.
반면, CF는 우수한 전도성을 지니면서 열적 특성도 우수한 편으로 온도에 따른 구조 안정성이 우수할뿐만 아니라 내화학성도 우수하여 사이클 특성이 좋다.
반면, 탄소 구조 내에 리튬 이온이 삽입되고 탈리되는 리튬 치환반응을 수용하기때문에 전기화학 반응시에 기계적 특성이 희생된다.
한편, 본 발명의 일측면은 각각 통 형상으로 되어 있으며, 외부로부터 중심을 향하여 순차 적층된 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층을 포함하고, 상기 외부 표면층과 상기 내부 표면층은 섬유강화플라스틱으로 형성되어 있고, 상기 캐소드층, 상기 분리막층 및 상기 애노드층은 섬유층을 각각 포함한다.
또한, 본 발명의 일 측면의 상기 외부 표면층과 상기 내부 표면층은 탄소섬유강화플라스틱(CFRP : carbon fiber reinforced plastics), 유리섬유강화플라스틱(GFRP : glass fiber reinforced plastics) 및 아라미드섬유강화플라스틱(AFRP: Aramid Fiber Reinforced Plastic) 중에 하나로 형성된다.
또한, 본 발명의 일 측면은 상기 외부 표면층의 내부에 형성된 통 형상의 외부 보호층; 상기 외부 보호층의 내부에 형성된 통 형상의 캐소드 집전체; 상기 애노드층의 내부에 형성된 애노드 집전체; 및 상기 애노드 집전체와 상기 내부 표면층 사이에 형성된 내부 보호층을 포함한다.
또한, 본 발명의 일 측면의 상기 외부 보호층은 상기 외부 표면층의 내부에 통 형상의 유리 섬유 또는 탄소 섬유에 에폭시 레진을 합성하여 형성된 외부 절연층; 및 상기 외부 절연층의 내부에 통 형상의 테프론(Teflon) 실링으로 형성된 외부 봉합층을 포함하며, 상기 내부 보호층은 상기 애노드 집전체의 내부에 통 형상의 테프론(Teflon) 실링으로 형성된 내부 봉합층; 및 상기 애노드 집전체의 내부에 통 형상의 유리 섬유 또는 탄소 섬유에 에폭시 레진을 합성하여 형성된 내부 절연층을 포함한다.
또한, 본 발명의 일 측면의 상기 캐소드층은, LFP(Li Iron Phosphate), LCO(Li Cobalt Oxide), 또는 LMP(Li Manganese Phosphate)를 바인더 물질 및 도전재 물질과 슬러리 형태로 합성하여 유리 섬유층 위에 코팅한 형태인 것을 특징으로 한다.
또한, 본 발명의 일 측면의 상기 캐소드층은, LFP(Li Iron Phosphate), LCO(Li Cobalt Oxide), 또는 LMP(Li Manganese Phosphate)를 바인더 물질 및 도전재 물질과 슬러리 형태로 합성하여 탄소 섬유층 위에 코팅한 형태인 것을 특징으로 한다.
또한, 본 발명의 일 측면의 상기 분리막층은 GF 층 위에 유기 전해질로서 Li 이온염과 소정의 가소제가 혼합된 층을 포함하는 것을 특징으로 한다.
또한, 본 발명의 일 측면의 상기 Li 이온염은 LiPF6이고, 상기 가소제는 EC(Ethylene carbonate)와 DEC(Diethylene carbonate)를 혼합한 전해액이나, EC(Ethylene carbonate)와 DMC(Dimethyl carbonate)를 혼합한 전해액을 포함하는 것을 특징으로 한다.
또한, 본 발명의 일 측면의 상기 분리막층은 유리 직물 형태의 유리 섬유 분리막층; 상기 유리 섬유 분리막층의 일측에 형성된 상부 폴리머 필름; 및 상기 유리 섬유 분리막층의 타측에 형성된 하부 폴리머 필름을 포함하고 있다.
또한, 본 발명의 일 측면의 상기 분리막층은 탄소 섬유로 이루어진 탄소 섬유층; 상기 탄소 섬유층의 일측에 위치하는 유리 섬유로 이루어진 상부 유리 섬유 분리막; 및 상기 탄소 섬유층의 타측에 위치하는 유리 섬유로 이루어진 하부 유리 섬유 분리막을 포함한다.
또한, 본 발명의 일 측면의 상기 분리막층은 상기 상부 유리 섬유 분리막과 상기 탄소 섬유층 사이에 위치하는 알루미나로 이루어진 상부 알루미나층; 및 상기 하부 유리 섬유 분리막과 상기 탄소 섬유층 사이에 위치하는 알루미나로 이루어진 하부 알루미나층을 포함한다.
또한, 본 발명의 일 측면의 상기 애노드층은 GF-CNT(Glass Fabric - Carbon Nano Tube)층을 포함한다.
또한, 본 발명의 일 측면의 상기 애노드층은 GF 층 위에 CNT를 수직 성장시키고, SEI(solid electrolyte interface) 박막층을 코팅한 형태인 것을 특징으로 한다.
또한, 본 발명의 일 측면의 상기 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층은 사각통 형상이다.
또한, 본 발명의 일 측면의 상기 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층은 삼각통 형상이다.
또한, 본 발명의 일 측면의 상기 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층은 원통 형상이다.
또한, 본 발명의 일 측면은 내부 표면층 내부에 형성된 충진재를 더 포함한다.
또한, 본 발명의 일 측면의 상기 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층은 판재로 형성되어 있으며 양끝단의 접촉 부분은 양 끝을 비스듬히 잘라서 접합하는 스카프 접합(scarf joint) 방식으로 연결되어 있다.
또한, 본 발명의 일 측면의 외부로부터 중심을 향하여 순차 적층된 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층을 관통하며, 표면이 절연성 물질로 코팅되어 있고, 전도성을 가지고 있는 다수의 패스너를 더 포함한다.
또한, 본 발명의 일 측면의 상기 다수의 패스너는 T 접합 구조 패스너이며, 상기 T 접합 구조 패스너는 상판부와 관통부로 이루어져, 상기 상판부는 항공기 날개의 외피 내부에 위치하고 있고, 상기 관통부는 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층을 관통하여 형성되어 있다.
종래의 구조전지(선행문헌 2개 참조)는 복합재 내부에 상용 또는 이와 동등/유사한 전기화학 특성을 내는 이차전지용 배터리 셀 부재가 층상형으로 적층된 개념에서 기계적 성질을 강화하는 특징을 가진다.
반면, 본 발명은 배터리 셀의 부재가 일반적인 이차전지의 에너지 특성을 유지하면서 기계적 성질도 희생되지 않고 오히려 더 확장 강화될 수 있는 구조로써, 전기화학적 특성과 기계적 특성이 TRADE-OFF(상충적)가 아닌 EQUIVALENT(동등, 대등한) 특징을 가진다.
이러한 기술이 가능한 이유는 구조와 재료적 접근방법에 있어서 기계적 성능과 전기화학적 성능을 동시에 충족할 수 있는 가장 효과적인 기하학적 형상과 재료를 채택하고 있기 때문이다.
종래의 구조전지와 같은 층상형 구조로 구현하되, 본 발명은 판형이 아닌 중공 형태의 실린더 구조로 다층 셀이 적층되는 형태이다.
이 구조의 장점은 실린더 형상을 목적에 맞게 원형 또는 각형으로 제작할 수 있으며, 판형 구조에 비해서 비틀림 강성(torsional stiffness)을 크게 증가시킬 수 있다.
따라서 기계적 성질을 극대화할 수 있기 때문에 더 많은 배터리 셀의 적층을 통해서 전기화학적 성능 역시 극대화할 수 있다.
다른 한편으로는 요구되는 기계적 성능을 만족하는 범위에서 보다 적은 배터리 셀의 적층을 통해서 전기화학적 성능을 만족할 수 있기 때문에 구조체의 경량화가 가능하다.
한편, 본 발명의 배터리 셀 적층 개념에서는 전기화학적 성능 유지를 위해서 종래에 사용되는 배터리 셀을 사용하거나 이와 동등한 품질의 셀을 임베딩 구조로 본딩하여 전기화학적 성질과 기계적 성질을 만족시킬 수 있다.
또한, 본 발명은 배터리 셀 내/외부 전체를 직물 기반의 섬유강화 복합재 구조로 만들어 완전한 형태의 일체형 본딩 구조가 되도록 하여 배터리 셀 내부에서는 전기화학적 특성과 기계적 특성을 동시에 만족하도록 하고, 외부에서는 기계적 특성을 만족하면서 일반적인 배터리의 파우치 셀에 요구되는 캐핑층(capping layer)의 역할도 분담하여 심플한 구조로 보다 가벼우면서도 기계적 성질을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 직물형 섬유기반의 복합재를 이용한 바 타입 구조전지(Bar-Structural Batteries)를 설명하기 위한 도면이다.
도 2는 도 1의 바 타입 구조전지(Bar-Structural Batteries)의 일부분을 나타내는 단면도이다.
도 3은 본 발명의 다른 실시예에 따른 직물형 섬유기반의 복합재를 이용한 빔 타입 구조전지(Beam-Structural Batteries)를 설명하기 위한 도면이다.
도 4는 본 발명의 또 다른 실시예에 따른 직물형 섬유기반의 복합재를 이용한 빔 타입 구조전지(Beam-Structural Batteries)를 설명하기 위한 도면이다.
도 5는 본 발명의 또 다른 실시예에 따른 직물형 섬유기반의 복합재를 이용한 로드 타입 구조전지(Rod-Structural Batteries)를 설명하기 위한 도면이다.
도 6은 본 발명의 또 다른 실시예에 따른 직물형 섬유기반의 복합재를 이용한 쉬프트 타입 구조전지(Shaft-Structural Batteries)를 설명하기 위한 도면이다.
도 7은 도 1 내지 도 6의 분리막층의 다른 실시예에 따른 단면도이다.
도 8은 도 1 내지 도 6의 분리막층의 다른 실시예에 따른 단면도이다.
도 9a는 본 발명에 따른 직물형 섬유기반 구조전지 복합재가 적용되는 운항중인 항공기의 날개 표면에서의 공기력에 의한 하중을 설명하기 위한 정면도이고, 도 9b는 본 발명에 따른 직물형 섬유기반 구조전지 복합재가 적용되는 운항중인 항공기의 날개 표면에서의 공기력에 의한 하중을 설명하기 위한 측면도이다.
도 10은 본 발명에 따른 직물형 섬유기반 구조전지 복합재가 적용되는 운항중인 항공기의 날개 구조를 나타내는 도면이다.
도 11a 내지 도 11e는 본 발명에 따른 직물형 섬유기반 구조전지 복합재가 항공기의 날개에 설치된 구조를 나타내는 도면이다.
도 12는 본 발명에 따른 직물형 섬유기반 구조전지 복합재를 드론에 응용한 실시예를 나타내는 도면이다.
도 13은 종래 기술에 따른 구조전지 복합재에서의 패스너(fastener)의 적용 예를 보여주는 도면이다.
도 14는 본 발명에 따른 구조전지 복합재에서의 패스너(fastener)의 적용예를 보여주는 도면이다.
도 15는 본 발명에 따른 직물형 섬유기반 구조전지 복합재에 패스너 관통홀이 구비된 경우를 보여주는 도면이다.
도 16은 도 15의 절단면도로서 관통홀에 대응되는 패스너를 보여주는 도면이다.
이하에서는 첨부된 도면들을 참조하여 본 발명에 대해서 자세히 설명한다. 이때, 각각의 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타낸다. 또한, 이미 공지된 기능 및/또는 구성에 대한 상세한 설명은 생략한다. 이하에 개시된 내용은, 다양한 실시 예에 따른 동작을 이해하는데 필요한 부분을 중점적으로 설명하며, 그 설명의 요지를 흐릴 수 있는 요소들에 대한 설명은 생략한다. 또한 도면의 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시될 수 있다. 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니며, 따라서 각각의 도면에 그려진 구성요소들의 상대적인 크기나 간격에 의해 여기에 기재되는 내용들이 제한되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 직물형 섬유기반의 복합재를 이용한 바 타입 구조전지(Bar-Structural Batteries)(100)를 설명하기 위한 도면이며, 도 2는 도 1의 바 타입 구조전지(Bar-Structural Batteries)의 일부분을 나타내는 단면도이다.
도 1과 2를 참조하면, 본 발명의 일 실시예에 따른 직물형 섬유기반의 복합재를 이용한 바 타입 구조전지(100)는, 외부 표면층(110), 외부 보호층(120), 캐소드 집전체(130), 캐소드층(140), 분리막층(150), 애노드층(160), 애노드 집전체(170), 내부 보호층(180) 및 내부 표면층(190)을 포함한다.
상기 외부 표면층(110)은 바 타입 구조 전지(100)의 외부 표면을 이루는 것으로, 사각통형으로 이루어져 있으며, 탄소섬유강화플라스틱(CFRP : carbon fiber reinforced plastics), 유리섬유강화플라스틱(GFRP : glass fiber reinforced plastics), 아라미드섬유강화플라스틱(AFRP: Aramid Fiber Reinforced Plastic)등이 사용된다.
그리고, 상기 외부 보호층(120)은 상기 외부 표면층(110)보다 작은 사각통형으로 이루어져 있으며, 상기 외부 표면층(110)의 내부에 위치하고 있다.
이와 같은 외부 보호층(120)은 외부쪽으로부터 안쪽(전극쪽)을 향하여 순차 적층되어 있는 외부 절연층(Insulator Layer)(122)과 외부 봉합층(124)을 포함한다.
이와 같은 외부 보호층(120)은 하중 지지 역할과 함께 누설 전류 방지(protector), 단위 셀 간에 접촉방지(insulator) 및 구조체에서의 인터페이스(interface) 역할 등을 수행한다.
이를 위하여 외부 절연층(122)은 GF/Ep, 즉, GF(Glass Fabric, 유리 섬유)와 Ep(Epoxy resin, 에폭시 레진)를 적절히 합성하여 겔화하여 사용된 물질층일 수 있다. 또는 외부 절연층(122)은 AF/Ep, 즉, AF(Aramid Fabric, 아라미드 섬유)와 Ep(Epoxy resin, 에폭시 레진)를 적절히 합성하여 겔화하여 사용된 물질층일 수 있다.
그리고, 외부 봉합층(124)은 테프론(Teflon) 실링을 이용할 수 있으며 양면에 접착성분이 없는 바인더-프리(binder-free) 타입이 바람직하다.
한편, 상기 캐소드 집전체(130)는 사각통형으로 상기 외부 보호층(120)의 내부에 위치한다. 애노드층(160)에서 일어나는 산화 반응에 의하여 전자가 발생될 수 있으며, 이 전자는 애노드 집전체(170)에 모일 수 있고, 이 후, 애노드 집전체(170)에 모인 전자는, 애노드 집전체(170)와 전기적으로 연결된 캐소드 집전체(130)를 통해, 캐소드층(140)으로 이동하여, 환원 반응을 일으킨다.
다음으로, 캐소드층(140)은 사각통형으로, 상기 캐소드 집전체(130)의 내부에 위치하고 있으며, GF-LFP 층, GF-LCO층, GF-LMP층, 즉, GF 층 위에 슬러리 형태로 합성된 LFP(Li Iron Phosphate), LCO(Li Cobalt Oxide), LMP(Li Manganese Phosphate) 등과 같은 Li 이온 전구체를 포함하는 형태일 수 있다. 예를 들어, 캐소드층(140)은, 캐소드 전극 물질로서 LFP/LCO/LMP 등을 소정의 바인더 물질 및 도전재(conductive additives) 물질과 슬러리 형태로 합성하여 GF(Glass Fabric) 층 위에 코팅하고 경화시킴으로써 형성될 수 있다. 이때, 온도 80-120도에서 2-3 시간 건조하여 솔벤트를 휘발시키고 2시간 이상 추가 성형할 수 있으며, 이외에도 다양한 건조 및 성형 방법이 이루어질 수 있다.
또한, 캐소드층(140)은 CF-LFP층, CF-LCO층, CF-LMP층, 즉, CF(Carbon Fabric, 탄소섬유) 층 위에, 슬러리 형태로 합성된 LFP(Li Iron Phosphate), LCO(Li Cobalt Oxide), LMP(Li Manganese Phosphate) 등과 같은 Li 이온 전구체를 포함하는 형태로 대체될 수 있다. 예를 들어, 캐소드층(140)은, 캐소드 전극 물질로서 LFP/LCO/LMP 등을 소정의 바인더 물질 및 도전재(conductive additives) 물질과 슬러리 형태로 합성하여 CF 위에 코팅하고 경화시킴으로써 형성될 수 있다.
다음으로, 분리막층(150)은 사각통형으로 상기 캐소드층(140)의 내부에 위치하고 있으며, 하중 지지 역할과 함께 전극의 단락방지와 전극간 물리적 차폐 기능을 수행한다.
상기 분리막층(150)은 전해질을 포함하며, GF 층 위에 유기 전해질(Organic Electrolyte)로서 Li 이온염 LiPF6(Lithium hexafluorophosphate)과 소정의 가소제(Plasticizer)가 혼합된 층을 형성하고, THF(tetrahydrofuran) 유기용매에 함유된 유기용매 전해질을 충분히 웨팅(wetting)한 형태일 수 있다. 가소제(Plasticizer)로서는 EC(Ethylene carbonate)와 DEC(Diethylene carbonate)를 혼합한 전해액이나, EC(Ethylene carbonate)와 DMC(Dimethyl carbonate)를 혼합한 전해액 등이 사용될 수 있으며, 이외에도 이원계 또는 삼원계의 다른 조성의 유기 전해액을 사용해 성능 개선이 가능하다.
다음으로, 애노드층(160)은 GF-CNT 층, 즉, GF 층 위에 CNT(Carbon Nano Tube, 탄소나노튜브)가 성장(또는 코팅)된 형태일 수 있다. 예를 들어, 애노드층(160)은, GF 층 위에 애노드 전극 물질인 CNT를 수직 성장시키고, 다양한 방법으로 Li 반전지 싸이클링(half cell cycling) 분석에 기초해 SEI(solid electrolyte interface, 고체 전해질 인터페이스) 박막층을 코팅함으로써 형성될 수 있다.
또한, 상기 애노드층(160)은 CF-CNT, 즉, CF 층 위에 CNT(Carbon Nano Tube, 탄소나노튜브)가 성장(또는 코팅)된 형태로 대체될 수 있다. 예를 들어, 애노드층(160)은, CF 위에 애노드 전극 물질인 CNT를 수직 성장시키고, 다양한 SEI(solid electrolyte interface, 고체 전해질 인터페이스) 박막층을 코팅함으로써 형성될 수 있다.
상기 애노드 집전체(170)는 사각통형으로 상기 애노드층(160)의 내부에 위치한다.
다음으로, 내부 보호층(180)은 상기 애노드 집전체(170)의 내부에 위치하고 있으며, 사각통형으로, 하중 지지 역할과 함께 누설 전류 방지(protector), 단위 셀 간에 접촉방지(insulator) 및 구조체에서의 인터페이스(interface) 역할 등을 수행한다.
이와 같은 내부 보호층(180)은 외부쪽으로부터 안쪽(전극쪽)을 향하여 순차 적층되어 있는 내부 봉합층(184)과 내부 절연층(Insulator Layer)(182)을 포함한다.
이를 위하여 내부 절연층(182)는 GF/Ep, 즉, GF(Glass Fabric, 유리 섬유)와 Ep(Epoxy resin, 에폭시 레진)를 적절히 합성하여 겔화하여 사용된 물질층일 수 있다. 또는 내부 절연층(182)은 AF/Ep, 즉, AF(Aramid Fabric, 아라미드 섬유)와 Ep(Epoxy resin, 에폭시 레진)를 적절히 합성하여 겔화하여 사용된 물질층일 수 있다.
그리고, 내부 봉합층(184)은 테프론(Teflon) 실링을 이용할 수 있으며 양면에 접착성분이 없는 바인더-프리(binder-free) 타입이 바람직하다.
상기 내부 표면층(190)은 바 타입 구조 전지(100)의 내부 표면을 이루는 것으로, 내부가 비어 있는 사각통형으로 이루어져 있으며, 탄소섬유강화플라스틱(CFRP : carbon fiber reinforced plastics), 유리섬유강화플라스틱(GFRP : glass fiber reinforced plastics), 아라미드섬유강화플라스틱(AFRP: Aramid Fiber Reinforced Plastic)등이 사용된다.
이와 같은 본 발명의 일 실시예에 따른 직물형 섬유기반의 복합재를 이용한 바 타입 구조전지(100)에 있어서 외부 보호층(120), 캐소드 집전체(130), 캐소드층(140), 분리막층(150), 애노드층(160), 애노드 집전체(170), 내부 보호층(180) 및 내부 표면층(190)은 판재로 먼저 형성된 후에 외부 표면층(110)의 내부에 형성된 판재를 밴딩하여 사각통형으로 형성하여 삽입할 수 있는데, 이때 판재의 양끝단의 접촉 부분은 원안에 부분확대도로 표시된 바와 같이 양 끝을 비스듬히 잘라서 접합하는 스카프 접합(scarf joint) 방식으로 이어진다.
이와 달리, 이와 같은 본 발명의 일 실시예에 따른 직물형 섬유기반의 복합재를 이용한 바 타입 구조전지(100)에 있어서 외부 보호층(120), 캐소드 집전체(130), 캐소드층(140), 분리막층(150), 애노드층(160), 애노드 집전체(170), 내부 보호층(180) 및 내부 표면층(190)은 판재로 먼저 형성된 후에 밴딩하여 사각통형으로 형성하고 이후에 외부 표면층(110)을 형성할 수도 있다. 이때에도 판재의 양끝단의 접촉 부분은 원안에 부분확대도로 표시된 바와 같이 양 끝을 비스듬히 잘라서 접합하는 스카프 접합(scarf joint) 방식으로 이어진다.
도 3은 본 발명의 다른 실시예에 따른 직물형 섬유기반의 복합재를 이용한 빔 타입 구조전지(Beam-Structural Batteries)(200)를 설명하기 위한 도면으로, 도 1과 비교하면 각층이 이루는 형태가 정삼각통 형태를 가지고 있다.
도 3을 참조하면, 본 발명의 다른 실시예에 따른 직물형 섬유기반의 복합재를 이용한 빔 타입 구조전지(200)는, 외부 표면층(210), 외부 절연층(222)와 외부 봉합층(224)를 포함한 외부 보호층(220), 캐소드 집전체(230), 캐소드층(240), 분리막층(250), 애노드층(260), 애노드 집전체(270), 내부 절연층(282)과 내부 봉합층(284)을 포함하는 내부 보호층(280), 내부 표면층(290)을 포함하며, 각 층의 구성요소와 접합 방식은 도 1에서 설명한 바와 같으며, 이에 따라 상세한 설명은 생략한다.
도 4는 본 발명의 또 다른 실시예에 따른 직물형 섬유기반의 복합재를 이용한 빔 타입 구조전지(Beam-Structural Batteries)(200')를 설명하기 위한 도면으로, 도 3과 비교하면 각층이 이루는 형태가 직각 삼각통 형태를 가지고 있다.
도 4를 참조하면, 본 발명의 또 다른 실시예에 따른 직물형 섬유기반의 복합재를 이용한 빔 타입 구조전지(200')는, 외부 표면층(210'), 외부 절연층(222')와 외부 봉합층(224')을 포함한 외부 보호층(220'), 캐소드 집전체(230'), 캐소드층(240'), 분리막층(250'), 애노드층(260'), 애노드 집전체(270'), 내부 절연층(282')과 내부 봉합층(284')을 포함하는 내부 보호층(280'), 내부 표면층(290')을 포함하며, 각 층의 구성요소와 접합 방식은 도 1에서 설명한 바와 같으며, 이에 따라 상세한 설명은 생략한다.
도 5는 본 발명의 또 다른 실시예에 따른 직물형 섬유기반의 복합재를 이용한 로드 타입 구조전지(Rod-Structural Batteries)(300)를 설명하기 위한 도면으로, 도 1과 비교하면 각층이 이루는 형태가 원통 형태를 가지고 있는 점에 있다.
도 5를 참조하면, 본 발명의 또 다른 실시예에 따른 직물형 섬유기반의 복합재를 이용한 로드 타입 구조전지(300)는, 외부 표면층(310), 외부 절연층(322)와 외부 봉합층(324)를 포함한 외부 보호층(320), 캐소드 집전체(330), 캐소드층(340), 분리막층(350), 애노드층(360), 애노드 집전체(370), 내부 절연층(382)와 내부 봉합층(384)를 포함한 내부 보호층(380) 및 내부 표면층(390)을 포함하며, 각 층의 구성요소와 접합 방식은 도 1에서 설명한 바와 같으며, 이에 따라 상세한 설명은 생략한다.
도 6은 본 발명의 또 다른 실시예에 따른 직물형 섬유기반의 복합재를 이용한 쉬프트 타입 구조전지(Shaft-Structural Batteries)(400)를 설명하기 위한 도면으로, 도 5와 비교하면 각층이 이루는 형태가 원통 형태를 가지고 있는 점에서 유사하나, 내부 표면층(490)의 내부가 비어 있는 것이 아니라 충진재(492)로 채워져 있고, 캐소드 전극 단자(494)와 애노드 전극 단자(496)가 충진재(492) 안에 위치하고 있는 점에 차이가 있다.
도 6을 참조하면, 본 발명의 또 다른 실시예에 따른 직물형 섬유기반의 복합재를 이용한 쉬프트 타입 구조전지(400)는, 외부 표면층(410), 외부 절연층(422)과 외부 봉합층(424)을 포함한 외부 보호층(420), 캐소드 집전체(430), 캐소드층(440), 분리막층(450), 애노드층(460), 애노드 집전체(470), 내부 절연층(482)과 내부 봉합층(484)을 포함한 내부 보호층(480), 내부 표면층(490), 충진재(492), 캐소드 전극 단자(494)와 애노드 전극 단자(496)를 포함하며, 충진재(492)와 캐소드 전극 단자(494) 그리고 애노드 전극 단자(496)를 제외의 각 층의 구성요소와 접합 방식은 도 1에서 설명한 바와 같아 상세한 설명은 생략한다.
여기에서, 상기 충진재(492)는 내열성(heat resistant)과 난연성(fire retardant)을 가지고 있는 물질로 이루어져 있고, 캐소드 전극 단자(494)와 애노드 전극 단자(496)는 금속 와이어로 이루어져 있으며, 캐소드 전극 단자(494)는 캐소드 집전체(430)에 연결되어 있고, 애노드 전극 단자(496)는 애노드 집적체(470)에 연결되어 있다.
도 7은 도 1 내지 도 6의 분리막층의 다른 실시예에 따른 단면도이다.
도 7을 참조하면, 도 1 내지 도 6의 분리막층의 다른 실시예는 유리 섬유 분리막층(10)의 양측에 상부 폴리머 필름(20)과 하부 폴리머 필름(30)이 코팅되어 있는 형태를 가지고 있다.
상기 유리 섬유 분리막층(10)은 얇은 얀(yarn)으로 펼쳐진 형태가 아닌 두꺼운 유리 직물 형태의 토우(tow)로 인해 전극 사이의 효과적인 절연체로서 기능할 수 있다.
그리고, 상부 폴리머 필름(20a)과 하부 폴리머 필름(20b)은 단락 방지를 위하여 구비된 것으로, 미세 가공 폴리머가 사용되며, 유리 섬유 분리막층(10)의 모폴로지를 따라서 코팅된다.
도 8은 도 1 내지 도 6의 분리막층의 또 다른 실시예에 따른 단면도이다.
도 8을 참조하면, 도 1 내지 도 6의 분리막층의 또 다른 실시예는 상부 유리 섬유 분리막(50a)와 하부 유리 섬유 분리막(50b)의 사이에 탄소 섬유층(60)을 삽입한 실시예이다.
상부 유리 분리막(50a)과 하부 유리 분리막(50b)는 얇은 얀(yarn)으로 펼쳐진 형태가 아닌 두꺼운 유리 직물 형태의 토우(tow)로 인해 전극 사이의 효과적인 절연체로서 기능할 수 있다.
상기 탄소 섬유층(60)은 상기 상부 유리 분리막(50a)과 하부 유리 분리막(50b) 사이에 형성되어 있으며, 탄소 섬유로 이루어져 있고, 이온 전도도를 향상시키고 유기 용매 전해액의 담지성과 보호성을 높일 수 있다.
이와 같은 탄소 섬유층(60)의 양면에는 통기 특성을 유지하고 열적, 전기적 안정성을 위해 알루미나(Al2O3)가 탄소 섬유층(60)의 모폴로지를 따라 코팅이 이루어진 상부 알루미나층(70a)와 하부 알루미나층(70b)를 포함할 수 있다.
도 9a는 본 발명에 따른 직물형 섬유기반 구조전지 복합재가 적용되는 운항중인 항공기의 날개 표면에서의 공기력에 의한 하중을 설명하기 위한 정면도이고, 도 9b는 본 발명에 따른 직물형 섬유기반 구조전지 복합재가 적용되는 운항중인 항공기의 날개 표면에서의 공기력에 의한 하중을 설명하기 위한 측면도이다.
도 9a와 도 9b에서 보면 알 수 있는 바와 같이, 운항중인 항공기의 날개 구조물은 지속적인 인장 및 압축하중(Tensile/Compression Loads)과 이로 인한 굽힘 모멘트를 받음으로 우수한 비틀림 강성(Torsional Stiffness)이 요구된다.
이와 같은 항공기 날개 구조물에 본 발명에 따른 구조전지 복합재를 적용하려면 이러한 하중에 대한 굽힘 강성을 증대시킬 필요가 있는바, 이를 위해서는 구조전지 복합재의 적층 형상이 층상형이면서 축 하중(Axial Loads)을 지지하는 로드 타입 구조전지 복합재와 바 타입 구조전지 복합재외에, 전단 하중(Transverse Loads)도 지지하는 빔 타입 구조전지 복합재와 비틀림 하중(Torsional Loads)을 지지할 수 있는 쉬프트 타입 구조전지가 바람직하다.
도 10은 본 발명에 따른 직물형 섬유기반 구조전지 복합재가 적용되는 운항중인 항공기의 날개 구조를 나타내는 도면이다.
도 10의 (a) 내지 (d)를 보면, 항공기 날개의 구조에 있어서 날개를 수평으로 관통하며 지지해주는 날개보(Spar)와 수직으로 배치된 리브(rib)가 형성하는 공간이 사각 공간을 형성하는 것으로, 도 11a에 도시된 바와 같이 항공기의 날개 외피(Wing skin)에 구조전지 복합재(1)를 설치하고, T 접합부재(2)로 고정한다.
이와 달리 도 11b의 경우에는 항공기의 날개 외피(Wing skin)에 바타입 구조전지 복합재(1)를 설치하고, T 접합부재 대신에 빔 타입 구조전지 복합재(3a, 3b)를 양측에 사용하여 바타입 구조전지 복합재(1)를 고정한다.
이와 달리 도 11c의 경우에는 항공기의 날개 외피(Wing skin)에 빔 타입 구조전지 복합재(3a' 내지 3e')를 연속적으로 서로 맞물리도록 적층하여 고정한다.
한편, 도 11d의 경우에는 원형 단편을 갖는 고정부재(6)를 사용하여 로드 타입 구조전지 복합재(4)를 고정할 수 있다.
도 11e의 경우에는 원형 단편을 갖는 고정부재(6)를 사용하여 쉬프트 타입 구조전지 복합재(5)를 고정할 수 있다.
도 12는 본 발명에 따른 직물형 섬유기반 구조전지 복합재를 드론에 응용한 실시예를 나타내는 도면이다.
도 12를 참조하면, 본 발명에 따른 직물형 섬유기반 구조전지 복합재를 도 12의 (a)에 도시된 태양광 패널을 사용하는 드론에 응용하게 되면 도 12의 (c)에 도시된 바와 같이 태양광 패널로 되어 있는 날개 아래 부분의 구조를 본 발명에 따른 구조전지 복합재로 응용 가능하다. 이렇게 되면 도 12의 (b)에 도시된 바와 같이, 구조를 단순화할 수 있다.
도 13은 종래 기술에 따른 구조전지 복합재에서의 패스너(fastener)의 적용 예를 보여주는 도면이다.
도 13을 참조하면, 종래 기술에 따른 구조전지 복합재에 패스너가 적용되는 경우에 항공기 운항중의 낙뢰에 의한 고전류의 영향으로 복합재 외피와 패스너 체결부 사이에 아크 발생을 최소화 하는 방안으로 복합재 외피에 패스너 체결 기술을 적용해 온 추세이다.
이때, 아크 발생의 주요 원인은 복합재의 강화재층(reinforcement)이 절연 구조물이기 때문에 통전 경로의 형성이 어렵다. 이에 따라 패스너가 전류와 직접 접촉하지 않고 효과적인 통전경로로써 기능을 할 수 있게 하는 것이 중요하다.
도 14는 본 발명에 따른 구조전지 복합재에서의 패스너(fastener)의 적용 예를 보여주는 도면이다.
도 14를 참조하면, 본 발명에 따른 구조전지 복합재에서의 패스너(fastener)의 적용 예에서 도 14의 (a)는 로드 타입 구조전지 복합재에 적용되는 예를 나타내고, 도 14의 (b)는 쉬프트 타입 구조전지 복합재에 적용되는 예를 나타낸다.
각각의 경우에 사용되는 상부 패스너(F1)과 하부 패스너(F2)는 T 접합 구조 패스너로 항공기 날개의 외피 내부에 상부 패스너(F1)와 하부 패스너(F2)의 상판부(F11,F21)가 위치하고 있으며, 관통부(F12, F22)는 바타입 구조전지복합재와 쉬프트 타입 구조전지 복합재를 관통하여 형성되어 있다.
그리고, 상부 패스너(F1)과 하부 패스터(F2)의 관통부(F12, F22)는 일정갭(Gap)을 가지며 서로 마주보고 있다.
상기 상판부(F11, F21)의 외부 표면은 항공기 날개의 외피 두께 바깥쪽으로 일치하고 안쪽으로 공간이 남아서 단(tap)이 형성된 형상이다.
도 15는 본 발명에 따른 직물형 섬유기반 구조전지 복합재에 패스너 관통홀이 구비된 경우를 보여주는 도면이며, 도 16은 도 15의 절단면도로서 관통홀에 대응되는 패스너를 보여주는 도면이다.
도 15와 도 16을 보면, 직물형 섬유기반 구조전지 복합재의 관통홀(H)는 외부 표면층, 외부 보호층, 캐소드 집전체, 캐소드층, 분리막층, 애노드층, 애노드 집전체, 내부 보호층 및 내부 표면층을 관통하여 형성되어 있으며 규칙적으로 배열되어 있다. 물론, 관통홀을 비규칙적으로 형성될 수 있다
그리고, 패스너(F)는 T 접합 구조 패스너의 형상을 가지고 있으나,이에 한정하는 것은 아니며 다양한 형상으로 형성될 수 있다.
위에서 살펴본 바와 같이 본 발명은 배터리 셀의 부재가 일반적인 이차전지의 에너지 특성을 유지하면서 기계적 성질도 희생되지 않고 오히려 더 확장 강화될 수 있는 구조로써, 전기화학적 특성과 기계적 특성이 TRADE-OFF(상충적)가 아닌 EQUIVALENT(동등, 대등한) 특징을 가진다.
이러한 기술이 가능한 이유는 구조와 재료적 접근방법에 있어서 기계적 성능과 전기화학적 성능을 동시에 충족할 수 있는 가장 효과적인 기하학적 형상과 재료를 채택하고 있기 때문이다.
종래의 구조전지와 같은 층상형 구조로 구현하되, 본 발명은 판형이 아닌 중공 형태의 실린더 구조로 다층 셀이 적층되는 형태이다.
이 구조의 장점은 실린더 형상을 목적에 맞게 원형 또는 각형으로 제작할 수 있으며, 판형 구조에 비해서 비틀림 강성(torsional stiffness)을 크게 증가시킬 수 있다.
따라서 기계적 성질을 극대화할 수 있기 때문에 더 많은 배터리 셀의 적층을 통해서 전기화학적 성능 역시 극대화할 수 있다.
다른 한편으로는 요구되는 기계적 성능을 만족하는 범위에서 보다 적은 배터리 셀의 적층을 통해서 전기화학적 성능을 만족할 수 있기 때문에 구조체의 경량화가 가능하다.
한편, 본 발명의 배터리 셀 적층 개념에서는 전기화학적 성능 유지를 위해서 종래에 사용되는 배터리 셀을 사용하거나 이와 동등한 품질의 셀을 임베딩 구조로 본딩하여 전기화학적 성질과 기계적 성질을 만족시킬 수 있다.
또한, 본 발명은 배터리 셀 내/외부 전체를 직물 기반의 섬유강화 복합재 구조로 만들어 완전한 형태의 일체형 본딩 구조가 되도록 하여 배터리 셀 내부에서는 전기화학적 특성과 기계적 특성을 동시에 만족하도록 하고, 외부에서는 기계적 특성을 만족하면서 일반적인 배터리의 파우치 셀에 요구되는 캐핑층(capping layer)의 역할도 분담하여 심플한 구조로 보다 가벼우면서도 기계적 성질을 향상시킬 수 있다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
1 : 바 타입 구조전지 복합재
2 : T 접합 부재
3a, 3a', 3b, 3b', 3c', 3d', 3e' : 빔 타입 구조전지 복합재
4 : 로드 타입 구조전지 복합재
5 : 쉬프트 타입 구조전지 복합재
6 : 고정 부재
10 : 유리 섬유 분리막층
20 : 상부 폴리머 필름
30 : 하부 폴리머 필름
50a, 50b : 유리 섬유 분리막층
60 : 탄소 섬유층
70a, 70b : 알루미나층
100, 200, 200', 300, 400 : 구조전지 복합재
110, 210, 310, 410 : 외부 표면층
120, 220, 320, 420 : 외부 보호층
122, 222, 322, 422 : 외부 절연층
124, 224, 324, 424 : 외부 봉합층
130, 230, 330, 430 : 캐소드 집전체
140, 240, 340, 440 : 캐소드층
150, 250, 350, 450 : 애노드층
160, 260, 360, 460 : 애노드 집전체
170, 270, 370, 470 : 내부 보호층
172, 272, 373, 472 : 내부 절연층
174, 274, 374, 474 : 내부 봉합층
180, 280, 380, 480 : 내부 표면층
492 : 충진재
494 : 캐소드 전극 단자
496 : 애노드 전극 단자

Claims (20)

  1. 각각 통 형상으로 되어 있으며, 외부로부터 중심을 향하여 순차 적층된 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층을 포함하고,
    상기 외부 표면층과 상기 내부 표면층은 섬유강화플라스틱으로 형성되어 있고, 상기 캐소드층, 상기 분리막층 및 상기 애노드층은 섬유층을 각각 포함하는 고강성 직물형 섬유기반의 구조전지 복합재.
  2. 청구항 1항에 있어서,
    상기 외부 표면층과 상기 내부 표면층은 탄소섬유강화플라스틱(CFRP : carbon fiber reinforced plastics), 유리섬유강화플라스틱(GFRP : glass fiber reinforced plastics) 및 아라미드섬유강화플라스틱(AFRP: Aramid Fiber Reinforced Plastic) 중에 하나로 형성되는 고강성 직물형 섬유기반의 구조전지 복합재.
  3. 청구항 1항에 있어서,
    상기 외부 표면층의 내부에 형성된 통 형상의 외부 보호층;
    상기 외부 보호층의 내부에 형성된 통 형상의 캐소드 집전체;
    상기 애노드층의 내부에 형성된 애노드 집전체; 및
    상기 애노드 집전체와 상기 내부 표면층 사이에 형성된 내부 보호층을 포함하는 고강성 직물형 섬유기반의 구조전지 복합재.
  4. 청구항 3항에 있어서,
    상기 외부 보호층은
    상기 외부 표면층의 내부에 통 형상의 유리 섬유 또는 탄소 섬유에 에폭시 레진을 합성하여 형성된 외부 절연층; 및
    상기 외부 절연층의 내부에 통 형상의 테프론(Teflon) 실링으로 형성된 외부 봉합층을 포함하며,
    상기 내부 보호층은
    상기 애노드 집전체의 내부에 통 형상의 테프론(Teflon) 실링으로 형성된 내부 봉합층; 및
    상기 애노드 집전체의 내부에 통 형상의 유리 섬유 또는 탄소 섬유에 에폭시 레진을 합성하여 형성된 내부 절연층을 포함한 고강성 직물형 섬유기반의 구조전지 복합재.
  5. 제1항에 있어서,
    상기 캐소드층은, LFP(Li Iron Phosphate), LCO(Li Cobalt Oxide), 또는 LMP(Li Manganese Phosphate)를 바인더 물질 및 도전재 물질과 슬러리 형태로 합성하여 유리 섬유층 위에 코팅한 형태인 것을 특징으로 하는 고강성 직물형 섬유기반의 구조전지 복합재.
  6. 제1항에 있어서,
    상기 캐소드층은, LFP(Li Iron Phosphate), LCO(Li Cobalt Oxide), 또는 LMP(Li Manganese Phosphate)를 바인더 물질 및 도전재 물질과 슬러리 형태로 합성하여 탄소 섬유층 위에 코팅한 형태인 것을 특징으로 하는 고강성 직물형 섬유기반의 구조전지 복합재.
  7. 제1항에 있어서,
    상기 분리막층은 GF 층 위에 유기 전해질로서 Li 이온염과 소정의 가소제가 혼합된 층을 포함하는 것을 특징으로 하는 고강성 직물형 섬유기반의 구조전지 복합재.
  8. 제7항에 있어서,
    상기 Li 이온염은 LiPF6이고, 상기 가소제는 EC(Ethylene carbonate)와 DEC(Diethylene carbonate)를 혼합한 전해액이나, EC(Ethylene carbonate)와 DMC(Dimethyl carbonate)를 혼합한 전해액을 포함하는 것을 특징으로 하는 고강성 직물형 섬유기반의 구조전지 복합재.
  9. 제1항에 있어서,
    상기 분리막층은
    유리 직물 형태의 유리 섬유 분리막층;
    상기 유리 섬유 분리막층의 일측에 형성된 상부 폴리머 필름; 및
    상기 유리 섬유 분리막층의 타측에 형성된 하부 폴리머 필름을 포함하고 있는 고강성 직물형 섬유기반의 구조전지 복합재.
  10. 제1항에 있어서,
    상기 분리막층은
    탄소 섬유로 이루어진 탄소 섬유층;
    상기 탄소 섬유층의 일측에 위치하는 유리 섬유로 이루어진 상부 유리 섬유 분리막; 및
    상기 탄소 섬유층의 타측에 위치하는 유리 섬유로 이루어진 하부 유리 섬유 분리막을 포함하는 고강성 직물형 섬유기반의 구조전지 복합재.
  11. 제10항에 있어서,
    상기 분리막층은
    상기 상부 유리 섬유 분리막과 상기 탄소 섬유층 사이에 위치하는 알루미나로 이루어진 상부 알루미나층; 및
    상기 하부 유리 섬유 분리막과 상기 탄소 섬유층 사이에 위치하는 알루미나로 이루어진 하부 알루미나층을 포함하는 고강성 직물형 섬유기반의 구조전지 복합재.
  12. 제1항에 있어서,
    상기 애노드층은 GF-CNT(Glass Fabric - Carbon Nano Tube)층을 포함하는 고강성 직물형 섬유기반의 구조전지 복합재.
  13. 제12항에 있어서,
    상기 애노드층은 GF 층 위에 CNT를 수직 성장시키고, SEI(solid electrolyte interface) 박막층을 코팅한 형태인 것을 특징으로 하는 고강성 직물형 섬유기반의 구조전지 복합재.
  14. 청구항 1항에 있어서, 상기 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층은 사각통 형상인 고강성 직물형 섬유기반의 구조전지 복합재.
  15. 청구항 1항에 있어서, 상기 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층은 삼각통 형상인 고강성 직물형 섬유기반의 구조전지 복합재.
  16. 청구항 1항에 있어서, 상기 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층은 원통 형상인 고강성 직물형 섬유기반의 구조전지 복합재.
  17. 청구항 16항에 있어서, 내부 표면층 내부에 형성된 충진재를 더 포함하는 고강성 직물형 섬유기반의 구조전지 복합재.
  18. 청구항 1항에 있어서,
    상기 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층은 판재로 형성되어 있으며 양끝단의 접촉 부분은 양 끝을 비스듬히 잘라서 접합하는 스카프 접합(scarf joint) 방식으로 연결되어 있는 고강성 직물형 섬유기반의 구조전지 복합재.
  19. 청구항 1항에 있어서,
    외부로부터 중심을 향하여 순차 적층된 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층을 관통하며, 표면이 절연성 물질로 코팅되어 있고, 전도성을 가지고 있는 다수의 패스너를 더 포함하는 고강성 직물형 섬유기반의 구조전지 복합재.
  20. 청구항 19항에 있어서,
    상기 다수의 패스너는 T 접합 구조 패스너이며,
    상기 T 접합 구조 패스너는 상판부와 관통부로 이루어져,
    상기 상판부는 항공기 날개의 외피 내부에 위치하고 있고, 상기 관통부는 외부 표면층, 캐소드층, 분리막층, 애노드층 및 내부 표면층을 관통하여 형성되어 있는 고강성 직물형 섬유기반의 구조전지 복합재.
KR1020170045171A 2017-04-07 2017-04-07 고강성 직물형 섬유기반 구조전지 복합재 KR101772446B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170045171A KR101772446B1 (ko) 2017-04-07 2017-04-07 고강성 직물형 섬유기반 구조전지 복합재

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170045171A KR101772446B1 (ko) 2017-04-07 2017-04-07 고강성 직물형 섬유기반 구조전지 복합재

Publications (1)

Publication Number Publication Date
KR101772446B1 true KR101772446B1 (ko) 2017-08-28

Family

ID=59759914

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170045171A KR101772446B1 (ko) 2017-04-07 2017-04-07 고강성 직물형 섬유기반 구조전지 복합재

Country Status (1)

Country Link
KR (1) KR101772446B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017122564A1 (de) * 2017-09-28 2019-03-28 Airbus Operations Gmbh Ummantelung von strukturbatterien
KR20200019375A (ko) 2018-08-14 2020-02-24 한국과학기술원 마이크로 캡슐에 함유된 고분자를 이용한 구조 지지형 에너지저장구조체
KR20220023085A (ko) * 2020-08-20 2022-03-02 한국과학기술원 고성능 복합재료 구조 전지
KR20230138935A (ko) 2022-03-24 2023-10-05 충남대학교산학협력단 고용량 고가역성 리튬 이차전지용 음극, 이의 제조방법, 이를 포함하는 리튬 이차전지

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017122564A1 (de) * 2017-09-28 2019-03-28 Airbus Operations Gmbh Ummantelung von strukturbatterien
EP3462525A1 (de) * 2017-09-28 2019-04-03 Airbus Operations GmbH Ummantelung von strukturbatterien
US11322810B2 (en) 2017-09-28 2022-05-03 Airbus Operations Gmbh Jacketing of structural batteries
KR20200019375A (ko) 2018-08-14 2020-02-24 한국과학기술원 마이크로 캡슐에 함유된 고분자를 이용한 구조 지지형 에너지저장구조체
KR20220023085A (ko) * 2020-08-20 2022-03-02 한국과학기술원 고성능 복합재료 구조 전지
KR102447927B1 (ko) 2020-08-20 2022-09-28 한국과학기술원 고성능 복합재료 구조 전지
KR20230138935A (ko) 2022-03-24 2023-10-05 충남대학교산학협력단 고용량 고가역성 리튬 이차전지용 음극, 이의 제조방법, 이를 포함하는 리튬 이차전지

Similar Documents

Publication Publication Date Title
KR101984203B1 (ko) 구조적 응용들을 위한 다기능 셀
KR101772446B1 (ko) 고강성 직물형 섬유기반 구조전지 복합재
US8659874B2 (en) Energy storage device
JP4894129B2 (ja) 薄型電池及び組電池
US9818996B2 (en) Solid battery and method for manufacturing solid battery
US20130157111A1 (en) Bipolar electrochemical battery with an improved casing
KR101484433B1 (ko) 쌍극형 전지용 집전체 및 쌍극형 전지
KR101815212B1 (ko) 직물형 섬유기반 구조전지 복합재
US10522874B2 (en) Solid state fiber-based battery system and method of forming same
US20130059173A1 (en) Component including a rechargeable battery
JP5871067B2 (ja) 電池構造体
US20180366770A1 (en) Bipolar lithium-ion battery
JP2009076248A (ja) 蓄電デバイスおよびその製造方法
CN106133982B (zh) 钠离子二次电池
Lim et al. Design of structural batteries: carbon fibers and alternative form factors
KR101896413B1 (ko) 에너지 저장 구조체와, 에너지 저장 구조체용 전지
Mullenax et al. Composite multifunctional lithium-ion batteries
JP2012221580A (ja) 固体電池
JP2019040821A (ja) 電極の製造方法および製造装置
KR101723970B1 (ko) 에너지 저장 복합재료
JP2005166353A (ja) 二次電池、組電池、複合組電池、車輌、及び、二次電池の製造方法
EP2535970A1 (en) Component including a rechargeable battery
KR20180048310A (ko) 이차전지, 및 이차전지의 제조 방법
CN210692371U (zh) 全固态电容电芯、叠层电容电芯和复合电容电芯
Nie et al. Multifunctional composite designs for structural energy storage

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant