KR101760550B1 - Vacuum pump - Google Patents

Vacuum pump Download PDF

Info

Publication number
KR101760550B1
KR101760550B1 KR1020137028886A KR20137028886A KR101760550B1 KR 101760550 B1 KR101760550 B1 KR 101760550B1 KR 1020137028886 A KR1020137028886 A KR 1020137028886A KR 20137028886 A KR20137028886 A KR 20137028886A KR 101760550 B1 KR101760550 B1 KR 101760550B1
Authority
KR
South Korea
Prior art keywords
pump
chamber
pump chamber
pressure
wall
Prior art date
Application number
KR1020137028886A
Other languages
Korean (ko)
Other versions
KR20140023958A (en
Inventor
소이치 구다라
야스히로 니이무라
마사미 나가야마
Original Assignee
가부시키가이샤 에바라 세이사꾸쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 에바라 세이사꾸쇼 filed Critical 가부시키가이샤 에바라 세이사꾸쇼
Publication of KR20140023958A publication Critical patent/KR20140023958A/en
Application granted granted Critical
Publication of KR101760550B1 publication Critical patent/KR101760550B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/007Venting; Gas and vapour separation during pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/18Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/30Use in a chemical vapor deposition [CVD] process or in a similar process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/40Pumps with means for venting areas other than the working chamber, e.g. bearings, gear chambers, shaft seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2280/00Arrangements for preventing or removing deposits or corrosion
    • F04C2280/02Preventing solid deposits in pumps, e.g. in vacuum pumps with chemical vapour deposition [CVD] processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

본 발명의 진공 펌프(10)는, 흡기구(54a), 배기구(54b) 및 내부에 형성된 펌프실(50a∼50f)을 구비한 펌프 케이싱(56)과, 베어링(84a, 84b)에 의해 양단부가 회전 가능하게 지지되고 펌프 케이싱(56)의 길이 방향으로 연장되는 회전축(60)과, 펌프실(50a∼50f) 내에 수용되며 회전축(60)과 일체로 회전하도록 회전축(60)에 연결된 로터(62a∼62f)를 포함한다. 상기 펌프 케이싱(56)에는, 펌프 케이싱(56)의 배기구(54b)에 유체 연통되고 대기에 개방된 대기 개방실(52)이 형성되어 있다.The vacuum pump 10 of the present invention is provided with a pump casing 56 having an intake port 54a and an exhaust port 54b and pump chambers 50a to 50f formed therein and a pump casing 56 having bearings 84a and 84b, And rotors 60a to 60f connected to the rotary shaft 60 so as to rotate integrally with the rotary shaft 60. The rotary shaft 60 is supported in the pump chamber 50a to 50f and extends in the longitudinal direction of the pump casing 56, ). The pump casing 56 is provided with an atmospheric opening chamber 52 which is in fluid communication with the exhaust port 54b of the pump casing 56 and is open to the atmosphere.

Figure R1020137028886
Figure R1020137028886

Description

진공 펌프{VACUUM PUMP}Vacuum pump {VACUUM PUMP}

본 발명은, 반도체, 액정, 태양 전지, LED 등의 생산을 위한 제조 방법의 하나인 CVD 공정 또는 에칭 공정과 같은 프로세스에 사용되는 진공 펌프로서, 특히 진공 펌프 내로 승화성 가스 또는 부식성 가스가 유입될 수 있는 프로세스에서 사용되는 진공 펌프에 관한 것이다.The present invention relates to a vacuum pump used in a process such as a CVD process or an etching process, which is one of manufacturing methods for the production of semiconductors, liquid crystals, solar cells, LEDs and the like, and more particularly to a vacuum pump in which a sublimable gas or a corrosive gas And more particularly to a vacuum pump used in a process which can be used for a vacuum pump.

진공 챔버에 접속되어 진공 챔버 내로 도입된 프로세스 가스를 배기하는 진공 펌프는, 일반적으로, 흡기구, 배기구 및 내부에 형성된 펌프실을 구비한 펌프 케이싱과, 펌프 케이싱 내에 회전 가능하게 수용된 로터를 포함한다. 로터가 펌프실 내에서 그 축을 중심으로 회전하면, 흡기구를 통해 펌프실 내로 유입된 프로세스 가스는, 로터에 의해 압축된 후, 배기구를 통해 펌프실 밖으로 배기된다. 로터는 펌프 케이싱을 통하여 연장되는 각각의 회전축에 고정 장착된다. 각 회전축은, 펌프 케이싱의 각 측방의 각 베어링실 내에 배치된 각 베어링에 의해 회전 가능하게 지지되는 양단부를 구비한다.The vacuum pump connected to the vacuum chamber for exhausting the process gas introduced into the vacuum chamber generally includes a pump casing having an inlet port, an exhaust port and a pump chamber formed therein, and a rotor rotatably received in the pump casing. When the rotor rotates about its axis in the pump chamber, the process gas introduced into the pump chamber through the intake port is compressed by the rotor, and then exhausted out of the pump chamber through the exhaust port. The rotor is fixedly mounted on each of the rotating shafts extending through the pump casing. Each of the rotary shafts has both ends rotatably supported by the respective bearings disposed in the respective bearing chambers on the respective sides of the pump casing.

그러므로, 진공 챔버에 접속된 진공 펌프의 펌프 케이싱의 흡기구 부근은, 진공 챔버 내의 진공과 같은 동일 수준의 진공 상태에 있고, 펌프 케이싱의 배기구 부근은, 대기에 개방되어 거의 대기압 상태로 유지되어 있다. 회전축의 양단부는, 각 베어링에 의해 회전 가능하게 지지되고, 베어링에 유입된 프로세스 가스로 인해 생성된 생성물에 의한 베어링의 손상을 방지하기 위해, 접촉 시일 또는 비접촉 시일에 의해 시일된다. 회전축의 시일에는 회전축의 접촉에 기인한 손상을 방지하기 위해 비접촉 시일이 널리 사용된다.Therefore, the vicinity of the intake port of the pump casing of the vacuum pump connected to the vacuum chamber is in a vacuum state at the same level as the vacuum in the vacuum chamber, and the vicinity of the exhaust port of the pump casing is kept open atmospheric pressure. Both ends of the rotary shaft are rotatably supported by respective bearings and sealed by a contact seal or a noncontact seal in order to prevent damage to the bearing caused by the product gas caused by the process gas introduced into the bearing. A contactless seal is widely used to prevent damage due to the contact of the rotating shaft with the seal of the rotating shaft.

예컨대, 진공 챔버 등이, 다단의 복수의 펌프실을 갖는 다단식 진공 펌프를 사용하여 배기하는 경우, 진공 펌프 내의 연속되는 펌프실, 예컨대 제1 펌프실, 제2 펌프실, 제3 펌프실 등을 거쳐 흐름에 따라서, 진공 펌프 내의 프로세스 가스의 압력은 단계적으로 증가한다. 각각의 펌프실에 있어서, 프로세스 가스는 입구측보다 출구측에서 압력이 보다 높아진다. 그러므로, 최종단(最終段) 펌프실 내의 프로세스 가스의 압력은, 출구측(배기구)의 대기압과 거의 동등하고, 입구측의 대기압보다는 낮다. 회전축의 과도한 마모를 방지하기 위해 회전축의 시일에 비접촉 시일이 사용되는 경우, 최종단 펌프실에 인접하고 내부에 베어링을 수용하는 베어링실 내의 프로세스 가스의 압력은, 최종단 펌프실 내의 압력(평균 압력)과 상응한다. 예컨대, 최종단 펌프실의 출구측(배기구)의 압력이 거의 대기압 760 Torr이고, 최종단 펌프실의 입구측의 압력이 대기압보다 낮은 200 Torr인 경우, 최종단 펌프실에 인접한 베어링실의 압력은, 약 480 Torr[=(760+200)/2]가 된다.For example, when a vacuum chamber or the like is exhausted by using a multi-stage vacuum pump having a plurality of multi-stage pump chambers, in accordance with the flow through the continuous pump chamber in the vacuum pump, for example, the first pump chamber, the second pump chamber, The pressure of the process gas in the vacuum pump increases stepwise. In each pump chamber, the process gas has a higher pressure at the outlet side than at the inlet side. Therefore, the pressure of the process gas in the final stage pump chamber is substantially equal to the atmospheric pressure at the outlet side (exhaust port), and is lower than the atmospheric pressure at the inlet side. When a non-contact seal is used on the seal of the rotary shaft to prevent excessive wear of the rotary shaft, the pressure of the process gas in the bearing chamber adjacent to the final stage pump chamber and receiving the bearing therein, Corresponding. For example, when the pressure on the outlet side (exhaust port) of the final stage pump chamber is approximately 760 Torr at the atmospheric pressure, and the pressure at the inlet side of the final stage pump chamber is 200 Torr lower than the atmospheric pressure, the pressure of the bearing chamber adjacent to the final stage pump chamber is approximately 480 Torr [= (760 + 200) / 2].

최종단 펌프실의 입구측의 압력은, 진공 챔버로부터의 프로세스 가스의 유입 등에 의해 변화된다. 예컨대, 진공 챔버로부터 최종단 펌프실 내로 프로세스 가스가 유입되면, 최종단 펌프실의 입구측의 압력은 200 Torr로부터 300 Torr로 상승한다. 한편, 최종단 펌프실의 출구측의 압력은, 펌프 배기관을 통해 대기에 출구측이 연통되어 있기 때문에, 대기압으로부터 거의 변화되지 않는다. 최종단 펌프실의 입구측의 압력이 200 Torr로부터 300 Torr로 상승하면, 최종단 펌프실 내의 압력(평균 압력)은, 최종단 펌프실에 인접한 베어링실 내의 압력인 480 Torr보다 높은 530[=(760+300)/2)] Torr로 증가한다.The pressure at the inlet side of the final stage pump chamber is changed by influx of process gas from the vacuum chamber or the like. For example, when process gas is introduced from the vacuum chamber into the final stage pump chamber, the pressure at the inlet side of the final stage pump chamber rises from 200 Torr to 300 Torr. On the other hand, the pressure on the outlet side of the final stage pump chamber is hardly changed from the atmospheric pressure because the outlet side communicates with the atmosphere through the pump exhaust pipe. When the pressure at the inlet side of the final stage pump chamber rises from 200 Torr to 300 Torr, the pressure (average pressure) in the final stage pump chamber is 530 [= (760 + 300) higher than 480 Torr, which is the pressure in the bearing chamber adjacent to the final stage pump chamber ) / 2)] Torr.

이와 같이, 최종단 펌프실 내의 평균 압력이 최종단 펌프실에 인접한 베어링실 내의 압력보다 높아지면, 최종단 펌프실 내로 도입된 프로세스 가스는 베어링실 내로 누출되는 경향이 있다. 프로세스 가스가 승화성 가스 등을 함유하는 경우, 베어링실은 일반적으로 저온으로 유지되어 있기 때문에, 프로세스 가스에 의해 생성된 생성물이 베어링실 내에 배치되어 있는 베어링 및 베어링을 윤활하는 데 사용되는 윤활유에 석출되어, 베어링을 손상시키는 원인이 된다.Thus, the average pressure in the final stage pump chamber When the pressure in the bearing chamber adjacent to the pump chamber becomes higher than the pressure in the bearing chamber adjacent to the pump chamber, the process gas introduced into the final pump chamber tends to leak into the bearing chamber. In the case where the process gas contains a sublimable gas or the like, since the bearing chamber is generally kept at a low temperature, the product produced by the process gas is deposited on the bearing disposed in the bearing chamber and the lubricant used for lubricating the bearing , Causing damage to the bearings.

응축성 가스 또는 승화성 가스와 같은 기체의 배기에 적합하도록 펌프실의 온도를 높게 유지하면서, 윤활유실 내의 윤활유의 온도를 낮게 효과적으로 유지하여 윤활유의 증기화를 최소화하기 위해, 상대적으로 온도가 높은 펌프실과 상대적으로 온도가 낮은 윤활유실 사이에, 중공형의 단열용 중간 챔버와, 냉매를 통과시키는 냉각 유로를 포함하는 드라이 펌프가 제안되어 있다(일본 특허 공개 제2005-105829호 공보 참조).In order to effectively keep the temperature of the lubricating oil in the lubricating oil chamber at a low level and to minimize the vaporization of the lubricating oil while maintaining the temperature of the pump chamber at a high level so as to be suitable for exhausting gases such as condensable gas or sublimable gas, There has been proposed a dry pump including a hollow heat insulating intermediate chamber and a cooling channel for passing a coolant between lubricating oil chambers having relatively low temperatures (see Japanese Patent Application Laid-Open No. 2005-105829).

특허문헌 1 : 일본 특허 공개 제2005-105829호 공보Patent Document 1: JP-A-2005-105829

일본 특허 공개 제2005-105829호 공보에 개시되어 있는 드라이 펌프는, 응축성 가스 또는 승화성 가스와 같은 기체의 배기에 적합하도록 펌프실의 온도를 높게 유지하면서, 윤활유실 내의 윤활유의 온도를 낮게 효과적으로 유지하여 윤활유의 증기화를 최소화한다. 그러나, 개시된 진공 펌프는, 펌프 케이싱의 측방에 위치된 베어링실 내에 배치된 베어링을 프로세스 가스로부터 보호하는 것은 아니다. 회전축의 비접촉 시일에 N2 가스 등의 퍼지 가스를 도입하여, 프로세스 가스가 베어링으로 누출되는 것을 방지하는 것도 널리 사용되고 있다. 그러나, 회전축의 비접촉 시일에 도입되는 퍼지 가스의 양을 증가시키면 펌프실 내의 압력이 나빠지기 때문에, 회전축의 비접촉 시일에 도입되는 퍼지 가스의 양에는 일정의 한계가 있다.The dry pump disclosed in Japanese Patent Application Laid-Open No. 2005-105829 maintains the temperature of the lubricating oil in the lubricating oil chamber at a low level effectively while maintaining the temperature of the pump chamber at a high level so as to be suitable for exhausting a gas such as a condensable gas or a sublimable gas Thereby minimizing the vaporization of the lubricating oil. However, the disclosed vacuum pump does not protect the bearing disposed in the bearing chamber located on the side of the pump casing from the process gas. It is widely used to introduce a purge gas such as N 2 gas to prevent the process gas from leaking into the bearing in the noncontact state of the rotating shaft. However, if the amount of the purge gas introduced into the noncontact seal of the rotary shaft is increased, the pressure in the pump chamber deteriorates. Therefore, the amount of the purge gas introduced into the noncontact seal of the rotary shaft has a certain limit.

본 발명은 상기 사정을 감안하여 이루어진 것이다. 본 발명의 목적은, 펌프실 내로 도입된 프로세스 가스가 베어링으로 누출되는 것을 효과적으로 방지함으로써, 프로세스 가스로부터 베어링을 보호할 수 있는 진공 펌프를 제공하는 것이다.The present invention has been made in view of the above circumstances. It is an object of the present invention to provide a vacuum pump capable of effectively protecting a bearing from a process gas by effectively preventing a process gas introduced into a pump chamber from leaking to a bearing.

전술한 목적을 달성하기 위해, 본 발명의 진공 펌프는, 흡기구와 배기구를 갖고, 서로 연통하며 칸막이벽으로 분할된 복수 단(段)의 펌프실을 내부에 구비한 펌프 케이싱과, 양단부가 베어링에 의해 회전 가능하게 지지되고 상기 펌프 케이싱의 길이 방향을 따라 배치되는 회전축, 그리고 상기 펌프실 내에 각각 수용되고, 상기 회전축에 연결되어 상기 회전축의 회전에 따라 회전하는 복수의 로터를 포함하고, 최종 단의 펌프실은, 흡기측의 칸막이벽과 배기측의 단부벽에 의해 형성되며, 상기 배기측의 단부벽의 측방에는 사이드 패널이 마련되어 있고, 상기 단부벽과 상기 사이드 패널의 사이에는, 상기 배기구에 연통되고 대기에 개방된 대기 개방실이 마련되어 있으며, 상기 펌프 케이싱은, 내벽과 상기 내벽과 소정 간격을 두고 배치되는 외벽을 구비하는 이중벽 구조를 갖고 있는 것을 특징으로 하는 진공 펌프이다.In order to achieve the above object, a vacuum pump according to the present invention comprises: a pump casing having therein a plurality of stages of pump chambers each having an intake port and an exhaust port and communicating with each other and divided by partition walls; And a plurality of rotors supported rotatably and arranged along the longitudinal direction of the pump casing, and a plurality of rotors respectively accommodated in the pump chamber and connected to the rotatable shaft and rotating in accordance with rotation of the rotatable shaft, Side partition wall and an exhaust-side end wall, and a side panel is provided on a side of the end wall on the exhaust side, and between the end wall and the side panel, Wherein the pump casing is provided with an inner wall and an outer wall disposed at a predetermined distance from the inner wall Is a vacuum pump, characterized in that a characteristic of the double-wall structure.

펌프 케이싱의 배기구에 유체 연통되고 대기에 개방된 대기 개방실이 배기구 근처에 마련되기 때문에, 펌프실 내의 압력이 변화하고 회전축의 시일에 비접촉 시일이 사용되는 경우에도, 대기 개방실의 외측에 위치되고 내부에 베어링을 수용하는 챔버는 항상 거의 대기압으로 유지되어 있다. 그러므로, 진공 펌프로부터 펌프실 내로 도입된 프로세스 가스가, 대기 개방실의 외측에 위치되고 내부에 베어링을 수용하는 챔버 내로 누출되는 것을 확실하게 방지한다. 따라서, 베어링은 프로세스 가스로부터 보호된다.Even when a pressure in the pump chamber changes and a noncontact seal is used to seal the rotary shaft, an atmospheric opening chamber that is in fluid communication with the exhaust port of the pump casing and is open to the atmosphere is provided near the exhaust port. The chamber housing the bearing is always kept at atmospheric pressure. Therefore, the process gas introduced from the vacuum pump into the pump chamber is surely prevented from leaking into the chamber located outside the atmospheric release chamber and receiving the bearing therein. Thus, the bearing is protected from the process gas.

삭제delete

진공 펌프가 다단식 진공 펌프인 경우, 최종단 펌프실의 출구측(배기구)이 거의 대기압이어도, 최종단 펌프실의 입구측의 압력은 대기압보다 낮다. 진공 펌프로부터 최종단 펌프실 내로 프로세스 가스가 유입되면, 최종단 펌프실 내의 압력(평균 압력)은 변화, 즉 상승한다. 그러나, 대기 개방실이 최종단 펌프실의 외측에 배치되어 있기 때문에, 최종단 펌프실 내의 압력(평균 압력)의 이러한 변화는, 대기 개방실의 외측에 위치되고 내부에 베어링을 수용하는 챔버 내의 압력에 영향을 끼치는 것을 방지한다.When the vacuum pump is a multi-stage vacuum pump, the pressure at the inlet side of the final stage pump chamber is lower than the atmospheric pressure even if the outlet side (exhaust port) of the final stage pump chamber is almost atmospheric pressure. When the process gas flows from the vacuum pump into the final stage pump chamber, the pressure (average pressure) in the final stage pump chamber changes, that is, increases. However, since the atmospheric opening chamber is disposed outside the final-stage pump chamber, such a change in the pressure (average pressure) in the final-stage pump chamber is located outside the atmospheric opening chamber and affects the pressure in the chamber, .

청구항 2에 기재된 발명은, 상기 사이드 패널의 내부에는 상기 회전축이 삽입 관통되어 있고, 상기 회전축의 삽입 관통부에 퍼지 가스를 공급하는 퍼지 가스 통로가 마련되어 있는 것을 특징으로 하는 청구항 1 기재의 진공 펌프이다.
청구항 3에 기재된 발명은, 상기 대기 개방실은 일정의 폭을 갖고 있는 것을 특징으로 하는 청구항 1 또는 2 기재의 진공 펌프이다.
According to a second aspect of the invention, there is provided the vacuum pump according to the first aspect, wherein the side panel has the rotation shaft inserted therein, and the purge gas passage for supplying the purge gas to the insertion penetration portion of the rotation shaft is provided .
The invention according to claim 3 is the vacuum pump according to claim 1 or 2, wherein the atmospheric opening chamber has a constant width.

사이드 패널 내에 배치된 회전축의 일부에 퍼지 가스를 공급하는 퍼지 가스 유로가, 회전축이 관통 연장되는 사이드 패널 내에 형성되기 때문에, 사이드 패널과 회전축 사이에는, 접촉에 의한 마모로부터 회전축을 보호하기 위한 비접촉 시일이 마련된다.Since the purge gas flow path for supplying the purge gas to a part of the rotary shaft disposed in the side panel is formed in the side panel in which the rotary shaft extends through the side panel, a noncontact seal for protecting the rotary shaft from abrasion due to contact, .

본 발명에 따르면, 펌프실 내의 압력이 변화하더라도, 대기 개방실의 외측에 위치되고 내부에 베어링을 수용하는 챔버는 항상 대기압으로 유지되기 때문에, 펌프실 내로 유입되는 프로세스 가스가 대기 개방실의 외측에 위치되고 내부에 베어링을 수용하는 챔버 내로 누출되는 것을 방지한다. 따라서, 베어링은 프로세스 가스로부터 확실하게 보호된다.According to the present invention, even if the pressure in the pump chamber changes, since the chamber located outside the atmospheric release chamber and receiving the bearing therein is always kept at atmospheric pressure, the process gas introduced into the pump chamber is located outside the atmospheric release chamber To prevent leakage into the chamber housing the bearing therein. Therefore, the bearing is reliably protected from the process gas.

도 1은 본 발명의 실시형태에 따른 진공 펌프를 도시하는 종단 정면도이다.
도 2는 도 1에 도시된 진공 펌프에 마련되는 메인 펌프의 제1단 펌프실의 종단 측면도이다.
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a longitudinal elevation view showing a vacuum pump according to an embodiment of the present invention; FIG.
Fig. 2 is a longitudinal side view of the pump chamber of the first stage of the main pump provided in the vacuum pump shown in Fig. 1. Fig.

이하에, 본 발명의 바람직한 실시형태를 도면을 참조하여 설명한다. 도 1은 본 발명의 실시형태에 따른 진공 펌프(10)를 도시하는 종단 정면도이다. 도 1에 도시하는 바와 같이, 진공 펌프(10)는, 진공 측에 배치된 부스터 펌프(12)와, 대기 측에 배치된 메인 펌프(14)를 포함하며, 이들은 연결 배관(16)에 의해 서로 접속되어 있다. 본 실시형태에 있어서, 메인 펌프(14)는 6단 루츠식 진공 펌프로 구성되고, 부스터 펌프(12)는 단일 루츠식 진공 펌프로 구성된다.Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. 1 is a longitudinal elevation view showing a vacuum pump 10 according to an embodiment of the present invention. 1, the vacuum pump 10 includes a booster pump 12 disposed on the vacuum side and a main pump 14 disposed on the atmosphere side, which are connected to each other by a connection pipe 16 Respectively. In this embodiment, the main pump 14 is a six-stage roots vacuum pump, and the booster pump 12 is a single roots vacuum pump.

부스터 펌프(12)는 내부에 펌프실(18)이 형성된 대략 원통형의 외통(20)을 갖는 펌프 케이싱(22)과, 펌프 케이싱(22)을 관통하여 배치되고 전동 모터(24)의 구동에 의해 그 축을 중심으로 서로 역방향으로 동기하여 회전 가능한 한쌍의 회전축(26)을 포함한다. 2엽식 로터와 같은 한쌍의 로터(28)는, 그들 사이에 정해진 간극을 갖고 펌프실(18) 내에 회전 가능하게 수용된다. 로터(28)는 회전축(26)에 각각 고정 장착된다. 외통(20)은, 벽 내에 형성되고, 진공 펌프(10)에 의해 배기되는 진공 챔버 등으로부터 연장되는 토출관(도시 생략)에 접속되는 흡기구(20a)와, 벽 내에 형성되고 연결 배관(16)에 접속되는 배기구(20b)를 구비한다. 로터(28)가 전동 모터(24)의 구동에 의해 그 축을 중심으로 서로 역방향으로 동기하여 회전하면, 진공 챔버 등에서의 프로세스 가스는 흡기구(20a)를 통해 펌프실(18) 내로 유입되고, 펌프실(18) 내의 로터(28)에 의해 압축된 후, 배기구(20b)를 통해 연결 배관(16)으로 토출된다. 도 1에는, 회전축(26), 로터(28), 전동 모터(24)로부터의 구동력에 기초하여 회전축(26)을 구동하기 위한 기구가 한쪽만 도시되어 있다. 회전축, 로터, 기구의 다른 쪽은 도 1의 도시 반대측에 위치되어 있다.The booster pump 12 includes a pump casing 22 having a substantially cylindrical outer cylinder 20 having a pump chamber 18 formed therein and a pump casing 22 disposed through the pump casing 22 and driven by the electric motor 24 And a pair of rotation shafts 26 that are rotatable in synchronism with each other in the reverse direction about an axis. A pair of rotors 28 such as a bipolar rotor are rotatably received in the pump chamber 18 with a predetermined clearance therebetween. The rotors 28 are fixedly mounted on the rotary shaft 26, respectively. The outer cylinder 20 includes an inlet port 20a formed in the wall and connected to a discharge pipe (not shown) extending from a vacuum chamber or the like exhausted by the vacuum pump 10, And an exhaust port 20b connected to the exhaust port 20b. When the rotor 28 is rotated synchronously in the reverse direction about its axis by the driving of the electric motor 24, the process gas in the vacuum chamber or the like flows into the pump chamber 18 through the intake port 20a, And is discharged to the connection pipe 16 through the exhaust port 20b. 1 shows only one mechanism for driving the rotary shaft 26 on the basis of the driving force from the rotary shaft 26, the rotor 28 and the electric motor 24. The other side of the rotating shaft, the rotor and the mechanism is located on the opposite side of the view of Fig.

본 실시형태에 있어서, 흡기구(20a)와 배기구(20b)를 제외하고, 펌프 케이싱(22)의 외통(22)의 외주면은, 대략 중공 원통형의 히터 재킷(30)에 의해 둘러싸여진다. 전원이 공급되면, 히터 재킷(30)은 펌프실(18)의 내부를 가열한다.In the present embodiment, the outer circumferential surface of the outer casing 22 of the pump casing 22 is surrounded by a substantially hollow cylindrical heater jacket 30, except for the intake port 20a and the exhaust port 20b. When power is supplied, the heater jacket 30 heats the inside of the pump chamber 18.

부스터 펌프(12)는 일반적으로 내부의 진공 레벨이 높게(압력 레벨이 낮게) 유지되고, 압축열이 많이 생성되지 않기 때문에 저온이다. 그러므로, 펌프실(18) 내의 압력이 낮더라고, 펌프실(18) 내로 유입되는 프로세스 가스 내에 함유된 승화성 물질 등이, 펌프실(18)의 내주면에서 석출될 우려가 있다. 그러나, 전술한 바와 같이, 히터 재킷(30)에 의해 펌프실(18) 내의 온도를 상승시킴으로써, 펌프실(18) 내로 유입되는 프로세스 가스 내에 함유된 승화성 물질 등이, 펌프실(18)의 내주면에서 석출되는 것을 방지한다.The booster pump 12 is generally kept at a low vacuum because the internal vacuum level is kept high (the pressure level is low) and a lot of compression heat is not generated. Therefore, even if the pressure in the pump chamber 18 is low, sublimable substances contained in the process gas flowing into the pump chamber 18 may be deposited on the inner peripheral surface of the pump chamber 18. However, as described above, by raising the temperature in the pump chamber 18 by the heater jacket 30, the sublimable substances contained in the process gas flowing into the pump chamber 18 are precipitated from the inner peripheral surface of the pump chamber 18 .

펌프 케이싱(22)의 축 단부에는, 2개의 사이드 패널(32a, 32b)이 각각 배치된다. 사이드 패널(32a, 32b)에 각각 장착되어 있는 베어링 하우징(34a, 34b) 내에 수용되어 있는 베어링(36a, 36b)에 의해, 그 외단부에서 회전축(26)이 회전 가능하게 지지된다. 사이드 패널(32a, 32b)의 각각의 외측면에는, 내부에 윤활유를 유지하기 위한 2개의 윤활유 하우징(40a, 40b)이 배치된다. 한쪽의 윤활유 하우징(40b)에는 전동 모터(24)의 모터 하우징이 연결된다.At the shaft end of the pump casing 22, two side panels 32a and 32b are respectively disposed. The rotary shaft 26 is rotatably supported at its outer end by the bearings 36a and 36b housed in the bearing housings 34a and 34b respectively mounted to the side panels 32a and 32b. Two lubricating oil housings 40a and 40b for holding lubricating oil are disposed on the outer side surfaces of the side panels 32a and 32b, respectively. The motor housing of the electric motor 24 is connected to one of the lubricating oil housings 40b.

펌프실(18) 내에 유입된 프로세스 가스가 베어링(36a, 36b)으로 유출되는 것을 방지하도록, 사이드 패널(32a, 32b)은, N2 가스 등과 같은 퍼지 가스를 사이드 패널(32a, 32b) 내의 회전축(26)의 일부에 공급하기 위한 각각의 퍼지 가스 유로(42a, 42b)를 구비한다. 퍼지 가스 유로(42a, 42b)로부터 공급된 퍼지 가스는, 접촉에 의한 마모로부터 회전축(26)을 보호하기 위해, 사이드 패널(32a, 32b)과 회전축(26) 사이에서 비접촉 시일을 제공한다.Rotating shaft within the process gas flows into the pump chamber 18, the bearing (36a, 36b), side panels (32a, 32b) to prevent the outflow of silver, N 2 purge gas to the side panels (32a, 32b) such as a gas ( And purge gas flow paths 42a and 42b for supplying the purge gas flow paths 42a and 42b. The purge gas supplied from the purge gas flow paths 42a and 42b provides a noncontact seal between the side panels 32a and 32b and the rotary shaft 26 to protect the rotary shaft 26 from abrasion due to contact.

본 실시형태의 메인 펌프(14)는 6단 루츠식 진공 펌프로 구성된 것으로서, 6개의 펌프실(50a∼50f), 즉 제1단 펌프실(50a)∼제6단 펌프실(50f)이 내부에 형성된 대략 원통형의 외통(54)을 구비한 펌프 케이싱(56)과, 제6단 펌프실(50f)에 인접하여 형성된 대기 개방실(52)과, 펌프 케이싱(56)을 통하여 배치되고, 전동 모터(58)의 구동에 따라 그 축을 중심으로 서로 역방향으로 동기하여 회전 가능한 한쌍의 회전축(60)을 포함한다. 도 2에 도시하는 바와 같이, 3엽 로터와 같은 한쌍의 로터(62a)가 메인 펌프(14)의 흡입측에 배치된 제1단 펌프실(50a)의 내부에 회전 가능하게 수용된다. 마찬가지로, 3엽 로터와 같은 한쌍의 로터(62b)가 제2단 펌프실(50b)의 내부에 회전 가능하게 수용되고, 3엽 로터와 같은 한쌍의 로터(62c)가 제3단 펌프실(50c)의 내부에 회전 가능하게 수용된다. 3엽 로터와 같은 한쌍의 로터(62d)가 제4단 펌프실(50d)의 내부에 회전 가능하게 수용되고, 3엽 로터와 같은 한쌍의 로터(62e)가 제5단 펌프실(50e)의 내부에 회전 가능하게 수용되며, 3엽 로터와 같은 한쌍의 로터(62f)가 메인 펌프(14)의 토출측에 배치된 제6단 펌프실(50f)의 내부에 회전 가능하게 수용된다. 한쪽의 직선형으로 배열된 로터(62a∼62f)는 회전축(60) 중 하나에 고정 장착되고, 다른쪽의 직선형으로 배열된 로터(62a∼62f)는 회전축(60) 중 다른 하나에 고정 장착된다.The main pump 14 of this embodiment is constituted by a six-stage roots vacuum pump and includes six pump chambers 50a to 50f, that is, a first pump chamber 50a to a sixth pump chamber 50f, An atmospheric opening chamber 52 formed adjacent to the sixth stage pump chamber 50f and a pump casing 56 disposed through the pump casing 56 and connected to the electric motor 58. The pump casing 56 includes a cylindrical outer cylinder 54, And a pair of rotation shafts 60 that are rotatable in synchronism with each other in the reverse direction about the axis in accordance with the driving of the shafts. As shown in Fig. 2, a pair of rotors 62a such as a three-leaf rotor is rotatably received in the first-stage pump chamber 50a disposed on the suction side of the main pump 14. Likewise, a pair of rotors 62b such as a three-leaf rotor are rotatably housed in the second-stage pump chamber 50b, and a pair of rotors 62c such as a three-leaf rotor are accommodated in the third-stage pump chamber 50c And is rotatably received inside. A pair of rotors 62d such as a three-leaf rotor is rotatably received in the fourth-stage pump chamber 50d and a pair of rotors 62e such as a three-rotor rotor are accommodated in the fifth-stage pump chamber 50e And a pair of rotors 62f such as a three-leaf rotor are rotatably housed in a sixth-stage pump chamber 50f disposed on the discharge side of the main pump 14. [ One of the rectilinearly arranged rotors 62a to 62f is fixedly mounted on one of the rotating shafts 60 and the other rectilinearly arranged rotors 62a to 62f are fixedly mounted on the other one of the rotating shafts 60. [

펌프 케이싱(56)은, 외통(54)의 각각 양단부를 폐쇄하는 단부벽(64a, 64b)과, 외통(54)의 내부를 분할하는 5개의, 즉 제1 분할벽(66a)∼제5 분할벽(66e)을 구비한다. 외통(54) 내에서 단부벽(64a)과 제1 분할벽(66a) 사이에는, 제1단 펌프실(50a)이 형성된다. 외통(54) 내에서 제1 단부벽(66a)과 제2 분할벽(66b) 사이에는, 제2단 펌프실(50b)이 형성된다. 외통(54) 내에서 제2 단부벽(66b)과 제3 분할벽(66c) 사이에는, 제3단 펌프실(50c)이 형성된다. 외통(54) 내에서 제3 단부벽(66c)과 제4 분할벽(66d) 사이에는, 제4단 펌프실(50d)이 형성된다. 외통(54) 내에서 제4 단부벽(66d)과 제5 분할벽(66e) 사이에는, 제5단 펌프실(50e)이 형성된다. 외통(54) 내에서 제5 분할벽(66e)과 단부벽(64b) 사이에는, 제6단 펌프실(50f)이 형성된다. 단부벽(64b)과, 이 단부벽(64b)에 인접하여 배치되고 축방향으로 이격된 사이드 패널(80b) 사이에는, 대기 개방실(52)이 형성된다.The pump casing 56 includes end walls 64a and 64b for closing both end portions of the outer cylinder 54 and five divided portions that divide the inside of the outer cylinder 54 from the first divided wall 66a to the fifth divided portion And a wall 66e. A first stage pump chamber 50a is formed in the outer cylinder 54 between the end wall 64a and the first partition wall 66a. A second stage pump chamber 50b is formed in the outer cylinder 54 between the first end wall 66a and the second partition wall 66b. A third stage pump chamber 50c is formed in the outer cylinder 54 between the second end wall 66b and the third partition wall 66c. A fourth-stage pump chamber 50d is formed in the outer cylinder 54 between the third end wall 66c and the fourth partition wall 66d. A fifth-stage pump chamber 50e is formed in the outer cylinder 54 between the fourth end wall 66d and the fifth partition wall 66e. A sixth-stage pump chamber 50f is formed in the outer cylinder 54 between the fifth partition wall 66e and the end wall 64b. An atmospheric opening chamber 52 is formed between the end wall 64b and the axially spaced side panel 80b disposed adjacent to the end wall 64b.

도 2에 도시하는 바와 같이, 제1단 펌프실(50a)의 로터(62a)가 전동 모터(56)에 의해 그 축을 중심으로 서로 역방향으로 동기하여 회전하면, 프로세스 가스는 연결 배관(16)에 접속된 상부 입구측으로부터 제1단 펌프실(50a)로 유입되어, 제1단 펌프실(50a) 내의 로터(62a)에 의해 압축된 후, 제1단 펌프실(50a)로부터 하부 출구측 밖으로 토출된다. 이후에, 프로세스 가스는 제2단 펌프실(50b)∼제6단 펌프실(50f) 내에서 동일하게 압축된다.2, when the rotor 62a of the first-stage pump chamber 50a is rotated synchronously in the reverse direction about its axis by the electric motor 56, the process gas is connected to the connection pipe 16 Stage pump chamber 50a from the upper inlet side and is compressed by the rotor 62a in the first stage pump chamber 50a and then discharged from the first stage pump chamber 50a to the lower outlet side. Thereafter, the process gas is equally compressed in the second-stage pump chamber 50b to the sixth-stage pump chamber 50f.

외통(54)은, 측벽에 형성되어 연결 배관(16)에 접속되고 제1단 펌프실(50a)의 상부 입구측에 유체 연통되는 흡기구(54a)와, 측벽에 형성되어 제6단(최종단) 펌프실(50f)의 하부 출구측에 유체 연통되는 배기구(54b)를 구비한다. 또한, 배기구(54b)는, 단부벽(64b)을 통하여 대기 개방실(52)에 유체 연통된다. 이러한 구조에 의해, 대기 개방실(52)은 배기구(54b)를 통해 대기에 개방된다. 펌프 케이싱(56)의 외통(54)은, 내벽(68)과, 이 내벽(68)으로부터 정해진 거리를 두고 외측에 배치된 외벽(70)을 포함하는 2중벽 구조로 되어 있으며, 내벽(66)과 외벽(68) 사이에는 제1 가스 유로(72a)∼제5 가스 유로(72e)가 형성된다. 구체적으로, 제1 가스 유로(72a)는 제1단 펌프실(50a) 주위에 형성되고, 제2 가스 유로(72b)는 제2단 펌프실(50b) 주위에 형성된다. 제3 가스 유로(72c)는 제3단 펌프실(50c) 주위에 형성되고, 제4 가스 유로(72d)는 제4단 펌프실(50d) 주위에 형성되며, 제5 가스 유로(72e)는 제5단 펌프실(50e) 주위에 형성된다. 또한, 제5 가스 유로(70e)는 제6단 펌프실(50f) 주위에 형성된다.The outer cylinder 54 is provided with an intake port 54a formed on the side wall and connected to the connection pipe 16 and in fluid communication with the upper inlet side of the first stage pump chamber 50a, And an exhaust port 54b in fluid communication with the lower outlet side of the pump chamber 50f. The exhaust port 54b is in fluid communication with the atmospheric release chamber 52 through the end wall 64b. With this structure, the atmospheric opening chamber 52 is opened to the atmosphere through the exhaust port 54b. The outer casing 54 of the pump casing 56 has a double wall structure including an inner wall 68 and an outer wall 70 disposed outside at a predetermined distance from the inner wall 68, A first gas passage 72a to a fifth gas passage 72e are formed between the outer wall 68 and the outer wall 68. [ Specifically, the first gas passage 72a is formed around the first-stage pump chamber 50a, and the second gas passage 72b is formed around the second-stage pump chamber 50b. The third gas passage 72c is formed around the third pump chamber 50c and the fourth gas passage 72d is formed around the fourth pump chamber 50d and the fifth gas passage 72e is formed around the fifth But is formed around the pump chamber 50e. In addition, the fifth gas passage 70e is formed around the sixth-stage pump chamber 50f.

가스 유로(72a∼72e)는, 각 하부 출구측을 통해 각 펌프실(50a∼50e)에 유체 연통되는 각각의 부분을 갖고, 또한 각 상부 입구측을 통해 각 펌프실(50b∼50f)에 유체 연통되는 각각의 부분을 갖는다. 그러므로, 도 2에 도시하는 바와 같이, 상부 입구측을 통해 흡입구(54a)로부터 제1단 펌프실(50a) 내로 유입된 프로세스 가스는, 제1단 펌프실(50a) 내에서 압축된 후, 제1단 펌프실(50a)로부터 하부 출구측을 통해 제1 가스 유로(72a) 내로 유입된다. 그리고, 프로세스 가스는 제1 가스 유로(72a) 내에서 상방향으로 흘러서, 제2단 펌프실(50b)의 상부 입구측에 도달한다. 상부 입구측을 통해 제2단 펌프실(50b) 내로 프로세스 가스가 유입되어, 제2단 펌프실(50b) 내에서 압축된 후, 제2단 펌프실(50b)로부터 하부 출구측을 통해 제2 가스 유로(72b) 내로 유입된다. 그리고, 프로세스 가스는 제2 가스 유로(72b) 내에서 상방향으로 흘러서, 제3단 펌프실(50c)의 상부 입구측에 도달한다. 이후에, 프로세스 가스는 압축되어서, 제3단 펌프실(50c)∼제6단 펌프실(50f)을 통과한다. 이후에, 프로세스 가스는 제6단 펌프실(50f)의 하부 출구측으로부터 배기구(54b)를 거쳐 메인 펌프(14) 밖으로 토출된다.The gas passages 72a to 72e have respective portions that are in fluid communication with the respective pump chambers 50a to 50e via respective lower outlet sides and are in fluid communication with the respective pump chambers 50b to 50f through the respective upper inlet sides And have respective portions. 2, the process gas introduced into the first pump chamber 50a from the suction port 54a through the upper inlet side is compressed in the first pump chamber 50a, And then flows into the first gas passage 72a from the pump chamber 50a through the lower outlet side. Then, the process gas flows upward in the first gas passage 72a and reaches the upper inlet side of the second-stage pump chamber 50b. The process gas flows into the second stage pump chamber 50b through the upper inlet side and is compressed in the second stage pump chamber 50b and then flows from the second stage pump chamber 50b to the second gas flow path 72b. Then, the process gas flows upward in the second gas flow path 72b and reaches the upper inlet side of the third stage pump chamber 50c. Thereafter, the process gas is compressed and passes through the third-stage pump chamber 50c to the sixth-stage pump chamber 50f. Thereafter, the process gas is discharged from the lower outlet side of the sixth pump chamber 50f through the exhaust port 54b and out of the main pump 14. [

본 실시형태에 따르면, 펌프 케이싱(56)의 외통(54)은 내부에 가스 유로(72a∼72e)를 구비한 이중벽 구조를 갖기 때문에, 가스 유로(72a∼72e)를 통하여 흐르는 고온의 프로세스 가스에 의해, 펌프실(50a∼50f)의 내부는 외부로부터 확실하게 열차단됨으로써, 메인 펌프(14)의 내부는 고온으로 유지되어, 프로세스 가스 내에 함유된 승화성 가스 등이 고체로 변환되어, 메인 펌프(14) 내, 즉 펌프 케이싱(56)의 내주면에서 석출되는 것을 방지할 수 있다. 특히, 펌프실(50a∼50e)의 하부 출구측으로부터 가스 유로(72a∼72e)를 통하여 다음 단의 펌프실(50b∼50f)의 상부 입구측으로 흐르는 고온의 프로세스 가스는, 펌프실(50a∼50f)을 가열하는 데에 효과적이다.According to the present embodiment, since the outer cylinder 54 of the pump casing 56 has the double wall structure including the gas flow channels 72a to 72e therein, the high-temperature process gas flowing through the gas flow channels 72a to 72e The interior of the pump chambers 50a to 50f is reliably thermally isolated from the outside so that the interior of the main pump 14 is kept at a high temperature so that the sublimable gas or the like contained in the process gas is converted into solid, 14, that is, from the inner circumferential surface of the pump casing 56, can be prevented. Particularly, the high-temperature process gas flowing from the lower outlet side of the pump chambers 50a to 50e to the upper inlet side of the next pump chambers 50b to 50f through the gas channels 72a to 72e causes the pump chambers 50a to 50f to be heated It is effective in doing.

본 실시형태에 있어서, 흡기구(54a)와 배기구(54b)를 제외하고, 펌프 케이싱(56)의 외통(54)의 외주면은, 대략 중공 원통형의 히터 재킷(74)에 의해 둘러싸여진다. 히터 재킷(74)은 펌프실(50a∼50f) 내부를 외부와 열차단함으로써, 펌프실(50a∼50f) 내부를 일정 온도로 유지시킨다.The outer peripheral surface of the outer cylinder 54 of the pump casing 56 is surrounded by a heater jacket 74 of a substantially hollow cylindrical shape except for the intake port 54a and the exhaust port 54b. The heater jacket 74 keeps the inside of the pump chambers 50a to 50f at a constant temperature by interrupting the inside of the pump chambers 50a to 50f with the outside.

펌프 케이싱(56)의 단부벽(64a, 64b)에는, 2개의 사이드 패널(80a, 80b)이 각각 배치된다. 사이드 패널(80a, 80b)에 각각 장착되어 있는 베어링 하우징(82a, 82b) 내에 수용되어 있는 베어링(84a, 84b)에 의해 그 외단부에서 회전축(60)이 회전 가능하게 지지된다. 사이드 패널(80a, 80b)의 각각의 외측면에는, 내부에 윤활유를 유지하기 위한 2개의 윤활유 하우징(88a, 88b)이 배치된다. 한쪽의 윤활유 하우징(88b)에는 전동 모터(58)의 모터 하우징이 연결된다. 펌프실(50a∼50f) 내에 유입된 프로세스 가스가 베어링(84a, 84b)으로 유출되는 것을 방지하도록, 사이드 패널(80a, 80b)은, N2 가스 등과 같은 퍼지 가스를 사이드 패널(80a, 80b) 내의 회전축(60)의 일부에 공급하기 위한 각각의 퍼지 가스 유로(90a, 90b)를 구비한다. 퍼지 가스 유로(90a, 90b)로부터 공급된 퍼지 가스는, 접촉에 의한 마모로부터 회전축(60)을 보호하기 위해, 사이드 패널(80a, 80b)과 회전축(60) 사이에서 비접촉 시일을 제공한다. 또한, 퍼지 가스 유로(90b)를 통해 흐르는 퍼지 가스는, 대기 개방실(52) 내에 유입된다.Two side panels 80a and 80b are disposed on the end walls 64a and 64b of the pump casing 56, respectively. The rotary shaft 60 is rotatably supported at its outer end by the bearings 84a and 84b housed in the bearing housings 82a and 82b respectively mounted to the side panels 80a and 80b. Two lubricating oil housings 88a and 88b for holding lubricating oil are disposed on the outer side surfaces of the side panels 80a and 80b, respectively. The motor housing of the electric motor 58 is connected to one of the lubricating oil housings 88b. Pump chamber (50a~50f) the process gas is introduced into the bearing (84a, 84b), side panels (80a, 80b) to prevent the outflow of silver, N 2 gas purge gas side panel (80a, 80b), such as in the And purge gas passages 90a and 90b for supplying the purge gas to a part of the rotary shaft 60, respectively. The purge gas supplied from the purge gas passages 90a and 90b provides a noncontact seal between the side panels 80a and 80b and the rotary shaft 60 to protect the rotary shaft 60 from abrasion due to contact. Further, the purge gas flowing through the purge gas flow path 90b flows into the atmospheric opening chamber 52.

본 실시형태에 따르면, 프로세스 가스가 가장 고압이 되는 제6단(최종단) 펌프실(50f) 근처의 단부벽(64b)과, 이 단부벽(64b)에 인접하여 배치된 사이드 패널(80b) 사이에는, 배기구(54b)에 유체 연통되고 대기에 개방되는 대기 개방실(52)이 마련된다. 베어링(84b)이 내부에 배치된 베어링 하우징(82b)을 내부에 수용한 윤활유 하우징(88b)은, 사이드 패널(80b)에 장착된다. 그러므로, 제6단(최종단) 펌프실(50f) 내의 압력이 변화되어도, 대기 개방실(52)의 외측에 위치되고 베어링(84b)을 수용하는 챔버(R), 즉 사이드 패널(80b)과 윤활유 하우징(88b)에 의해 둘러싸여지는 챔버(R)는, 항상 거의 대기압으로 유지된다. 따라서, 펌프실(50a∼50f) 내로 유입되는 프로세스 가스가, 대기 개방실(52)의 외측에 위치되고 내부에 베어링(84b)을 수용하는 챔버(R) 내로 누출되는 것을 확실하게 방지한다. 따라서, 베어링(84b)은 프로세스 가스로부터 보호된다.According to the present embodiment, between the end wall 64b near the sixth (final stage) pump chamber 50f where the process gas becomes the highest pressure and the side panel 80b located adjacent to the end wall 64b An atmospheric opening chamber 52 is provided which is in fluid communication with the exhaust port 54b and is open to the atmosphere. The lubricating oil housing 88b housing the bearing housing 82b in which the bearing 84b is disposed is mounted on the side panel 80b. Therefore, even when the pressure in the sixth stage (final stage) pump chamber 50f is changed, the pressure in the chamber R, i.e., the side panel 80b, which is located outside the atmospheric release chamber 52 and accommodates the bearing 84b, The chamber R surrounded by the housing 88b is always kept at almost atmospheric pressure. Therefore, the process gas introduced into the pump chambers 50a to 50f is surely prevented from leaking into the chamber R, which is positioned outside the atmospheric opening chamber 52 and accommodates therein the bearing 84b. Therefore, the bearing 84b is protected from the process gas.

프로세스 가스로부터 베어링(84b)이 보호되는 이유를 이하에 설명한다. 회전축(60)과 사이드 패널(80b) 사이에는 비접촉 시일이 있고, 제6단(최종단) 펌프실(50f)이 사이드 패널(80b)에 바로 인접하여 위치되는 경우, 다시 말해서, 대기 개방실(52)이 없는 경우, 개방실(52)의 외측에 위치되고 베어링(84b)을 수용하는 챔버(R) 내의 압력, 즉 사이드 패널(80b)과 윤활유 하우징(88b)에 의해 둘러싸여지는 챔버(R) 내의 압력은, 제6단(최종단) 펌프실(50f) 내의 평균 압력과 거의 동등하다. 예컨대, 제6단 펌프실(50f)의 출구측의 압력이 대기압 760 Torr이고, 그 입구측의 압력이 대기압보다 낮은 압력, 예컨대 200 Torr인 경우, 사이드 패널(80b)과 윤활유 하우징(88b)에 의해 둘러싸여지는 챔버(R) 내의 압력은, 약 480 Torr[=(760+200)/2]이다. 진공 챔버로부터의 프로세스 가스의 유입에 의해, 제6단 펌프실(50f)의 입구측의 압력이 200 Torr에서 300 Torr로 변화, 즉 상승하면, 제6단 펌프실(50f) 내의 평균 압력은 530 Torr[=(760+300)/2]로 상승한다. 그러므로, 챔버(R) 내의 압력이 530 Torr로 상승할 때까지, 제6단 펌프실(50f)로부터 사이드 패널(80b)과 회전축(60) 사이의 간극을 통해 챔버(R) 내로 프로세스 가스가 유입된다.The reason why the bearing 84b is protected from the process gas will be explained below. When the sixth stage (final stage) pump chamber 50f is positioned immediately adjacent to the side panel 80b, in other words, when the air in the atmospheric opening chamber 52 The pressure in the chamber R that is located outside the open chamber 52 and accommodates the bearing 84b, that is, the pressure in the chamber R surrounded by the side panel 80b and the lubricant housing 88b, The pressure is almost equal to the average pressure in the sixth (final stage) pump chamber 50f. For example, when the pressure on the outlet side of the sixth pump chamber 50f is atmospheric pressure 760 Torr and the pressure on the inlet side is lower than the atmospheric pressure, for example, 200 Torr, the side panel 80b and the lubricant housing 88b The pressure in the enclosed chamber R is about 480 Torr [= (760 + 200) / 2]. When the pressure at the inlet side of the sixth-stage pump chamber 50f changes from 200 Torr to 300 Torr, that is, by the inflow of the process gas from the vacuum chamber, the average pressure in the sixth-stage pump chamber 50f becomes 530 Torr [ = (760 + 300) / 2]. The process gas is introduced into the chamber R through the gap between the side panel 80b and the rotary shaft 60 from the sixth stage pump chamber 50f until the pressure in the chamber R rises to 530 Torr .

본 실시형태에 따르면, 제6단(최종단) 펌프실(50f) 근처의 단부벽(64b)과, 이 단부벽(64b)에 인접하여 배치된 사이드 패널(80b) 사이에는, 배기구(54b)에 유체 연통되고 대기에 개방되는 대기 개방실(52)이 마련된다. 그러므로, 전술한 바와 같이, 제6단 펌프실(50f) 내의 압력(평균 압력)이 변화, 즉 상승하여도, 대기 개방실(52) 내의 압력은 대기압으로부터 변화되지 않으며, 대기 개방실(52)의 외측에 위치되고 외부에 베어링(84b)을 수용하는 챔버(R), 즉 사이드 패널(80b)과 윤활유 하우징(88b)에 의해 둘러싸여지는 챔버(R) 내의 압력은, 제6단 펌프실(50f) 내의 압력의 변화에 영향을 받지 않고, 거의 대기압으로 유지된다.According to the present embodiment, between the end wall 64b near the sixth (final stage) pump chamber 50f and the side panel 80b disposed adjacent to the end wall 64b is provided an exhaust port 54b There is provided an atmospheric opening chamber 52 which is in fluid communication and is open to the atmosphere. Therefore, even if the pressure (average pressure) in the sixth-stage pump chamber 50f changes or rises, the pressure in the atmospheric release chamber 52 does not change from the atmospheric pressure, The pressure in the chamber R surrounded by the chamber R and the side panel 80b and the lubricating oil housing 88b which are positioned on the outer side and accommodate the bearing 84b on the outside, It is kept at atmospheric pressure without being affected by a change in pressure.

이와 같이 구성된 진공 펌프(10)는, 부스터 펌프(12)의 전동 모터(24) 및 메인 펌프(14)의 전동 모터(58)의 구동에 의해, 부스터 펌프(12) 및 메인 펌프(14)를 작동시켜, 예컨대 진공 챔버 내에 도입된 프로세스 가스를, 진공 챔버로부터 배기시키도록 동작된다. 대기 개방실(52)의 외측에 위치되고 외부에 베어링(84b)을 수용하는 챔버(R), 즉 사이드 패널(80b)과 윤활유 하우징(88b)에 의해 둘러싸여지는 챔버(R) 내의 압력이 항상 거의 대기압으로 유지됨으로써, 메인 펌프(14) 내로 도입된 프로세스 가스가 베어링(84b)으로 누출되는 것을 확실하게 방지한다. 따라서, 베어링(84b)은 프로세스 가스로부터 보호된다.The vacuum pump 10 constructed as described above is driven by the electric motor 24 of the booster pump 12 and the electric motor 58 of the main pump 14 to drive the booster pump 12 and the main pump 14 For example, to evacuate the process gas introduced into the vacuum chamber from the vacuum chamber. The pressure in the chamber R surrounded by the chamber R and the side panel 80b and the lubricating oil housing 88b located outside the atmospheric opening chamber 52 and receiving the bearing 84b outside is always almost By maintaining the atmospheric pressure, the process gas introduced into the main pump 14 is surely prevented from leaking to the bearing 84b. Therefore, the bearing 84b is protected from the process gas.

본 발명의 바람직한 실시형태에 대해 설명하였지만, 본 발명은 전술한 실시형태에 한정되는 것은 아니며, 여기에 포함되는 기술적 개념의 범위 내에서 이해되어야 한다. 예컨대, 본 실시형태에 있어서, 본 발명은 다단 루츠식 진공 펌프에 적용된다. 그러나, 본 발명의 기술 범위는 여러가지 종류, 예컨대 단일 루츠식 진공 펌프, 클로식 진공 펌프, 스크류식 진공 펌프, 또는 루츠식, 클로식, 스크류식 중 적어도 2개의 방식을 포함하는 진공 펌프를 공용의 회전축 상에 조합한 진공 펌프에 적용될 수도 있다.Although a preferred embodiment of the present invention has been described, the present invention is not limited to the above-described embodiments, but should be understood within the scope of the technical concept included herein. For example, in the present embodiment, the present invention is applied to a multi-stage Roots vacuum pump. However, the technical scope of the present invention is not limited to a vacuum pump including at least two types of vacuum pump, single vacuum vacuum pump, screw vacuum pump, Roots type vacuum cleaner, It may be applied to a vacuum pump combined on a rotary shaft.

산업상 이용 가능성Industrial availability

본 발명은 진공 펌프 내부로 승화성 가스 또는 부식성 가스가 유입될 수 있는 프로세스에서 사용되는 진공 펌프에 적용할 수 있다.The present invention can be applied to a vacuum pump used in a process in which a sublimable gas or a corrosive gas can be introduced into a vacuum pump.

Claims (4)

흡기구와 배기구를 갖고, 서로 연통하며 칸막이벽으로 분할된 복수 단(段)의 펌프실을 내부에 구비한 펌프 케이싱과,
양단부가 베어링에 의해 회전 가능하게 지지되고 상기 펌프 케이싱의 길이 방향을 따라 배치되는 회전축, 그리고
상기 펌프실 내에 각각 수용되고, 상기 회전축에 연결되어 상기 회전축의 회전에 따라 회전하는 복수의 로터
를 포함하고,
최종 단의 펌프실은, 흡기측의 칸막이벽과 배기측의 단부벽에 의해 형성되며,
상기 배기측의 단부벽의 측방에는 사이드 패널이 마련되어 있고,
상기 단부벽과 상기 사이드 패널의 사이에는, 상기 배기구에 연통되고 대기에 개방된 대기 개방실이 마련되어 있으며,
상기 펌프 케이싱은, 내벽과 상기 내벽과 정해진 간격을 두고 배치되는 외벽을 구비하는 이중벽 구조를 갖고 있는 것을 특징으로 하는 진공 펌프.
A pump casing having an intake port and an exhaust port and communicating with each other and having a plurality of stages of pump chambers divided into partition walls,
A rotating shaft rotatably supported at both ends by a bearing and disposed along the longitudinal direction of the pump casing,
A plurality of rotors that are respectively received in the pump chambers and connected to the rotors to rotate in accordance with rotation of the rotors;
Lt; / RTI >
The pump chamber in the final stage is formed by a partition wall on the intake side and an end wall on the exhaust side,
A side panel is provided on the side of the end wall on the exhaust side,
An atmospheric opening chamber communicating with the exhaust port and being open to the atmosphere is provided between the end wall and the side panel,
Wherein the pump casing has a double wall structure including an inner wall and an outer wall disposed at a predetermined distance from the inner wall.
제1항에 있어서, 상기 사이드 패널의 내부에는 상기 회전축이 삽입 관통되어 있고, 상기 회전축의 삽입 관통부에 퍼지 가스를 공급하는 퍼지 가스 통로가 마련되어 있는 것을 특징으로 하는 진공 펌프.The vacuum pump according to claim 1, wherein the side panel has a rotation shaft inserted therein, and a purge gas passage for supplying a purge gas to the insertion hole of the rotation shaft is provided. 제1항 또는 제2항에 있어서, 상기 대기 개방실은 일정의 폭을 갖고 있는 것을 특징으로 하는 진공 펌프.The vacuum pump according to claim 1 or 2, wherein the atmospheric opening chamber has a constant width. 삭제delete
KR1020137028886A 2011-06-02 2012-05-29 Vacuum pump KR101760550B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2011-123980 2011-06-02
JP2011123980A JP5677202B2 (en) 2011-06-02 2011-06-02 Vacuum pump
PCT/JP2012/064346 WO2012165645A1 (en) 2011-06-02 2012-05-29 Vacuum pump

Publications (2)

Publication Number Publication Date
KR20140023958A KR20140023958A (en) 2014-02-27
KR101760550B1 true KR101760550B1 (en) 2017-07-21

Family

ID=47259490

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137028886A KR101760550B1 (en) 2011-06-02 2012-05-29 Vacuum pump

Country Status (7)

Country Link
US (1) US20140112815A1 (en)
EP (1) EP2715139B1 (en)
JP (1) JP5677202B2 (en)
KR (1) KR101760550B1 (en)
CN (1) CN103477080A (en)
TW (1) TWI554684B (en)
WO (1) WO2012165645A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752571B2 (en) * 2012-07-03 2017-09-05 Brian J. O'Connor Multiple segment lobe pump
US10760573B2 (en) * 2014-06-27 2020-09-01 Ateliers Busch Sa Method of pumping in a system of vacuum pumps and system of vacuum pumps
WO2017031807A1 (en) * 2015-08-27 2017-03-02 上海伊莱茨真空技术有限公司 Non-coaxial vacuum pump with multiple driving chambers
FR3065040B1 (en) * 2017-04-07 2019-06-21 Pfeiffer Vacuum PUMPING GROUP AND USE
DE202017003212U1 (en) * 2017-06-17 2018-09-18 Leybold Gmbh Multi-stage Roots pump
CN107084135A (en) * 2017-06-29 2017-08-22 德耐尔节能科技(上海)股份有限公司 A kind of dry-type spiral vacuum pump
CN114096753B (en) * 2019-06-19 2023-06-09 樫山工业株式会社 Vacuum pump
FR3119209B1 (en) * 2021-01-25 2023-03-31 Pfeiffer Vacuum Dry type vacuum pump and pump unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100593A (en) 2002-09-10 2004-04-02 Toyota Industries Corp Vacuum pump
WO2011019048A1 (en) 2009-08-14 2011-02-17 株式会社アルバック Dry pump

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733834B2 (en) * 1986-12-18 1995-04-12 株式会社宇野澤組鐵工所 Inner partial-flow reverse-flow cooling multistage three-leaf vacuum pump in which the outer peripheral temperature of the housing with built-in rotor is stabilized
JPH05296171A (en) * 1992-04-13 1993-11-09 Ulvac Japan Ltd Shaft seal mechanism for positive displacement vacuum pump without using sealing fluid
GB9708397D0 (en) * 1997-04-25 1997-06-18 Boc Group Plc Improvements in vacuum pumps
JP4232505B2 (en) * 2003-03-27 2009-03-04 アイシン精機株式会社 Vacuum pump
JP3991918B2 (en) * 2003-05-19 2007-10-17 株式会社豊田自動織機 Roots pump
JP2005105829A (en) 2003-09-26 2005-04-21 Aisin Seiki Co Ltd Dry pump
JP4767625B2 (en) * 2005-08-24 2011-09-07 樫山工業株式会社 Multi-stage Roots type pump
JP5313260B2 (en) * 2008-10-10 2013-10-09 株式会社アルバック Dry pump
CN201396281Y (en) * 2009-03-19 2010-02-03 孙成忠 Multistage three-blade Roots vacuum pump
JP5473400B2 (en) * 2009-05-20 2014-04-16 三菱重工業株式会社 Dry vacuum pump and sealing method thereof
US20110256003A1 (en) * 2009-05-20 2011-10-20 Ulvac, Inc. Dry vacuum pump
JP5330896B2 (en) * 2009-05-20 2013-10-30 三菱重工業株式会社 Dry vacuum pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100593A (en) 2002-09-10 2004-04-02 Toyota Industries Corp Vacuum pump
WO2011019048A1 (en) 2009-08-14 2011-02-17 株式会社アルバック Dry pump

Also Published As

Publication number Publication date
JP2012251471A (en) 2012-12-20
JP5677202B2 (en) 2015-02-25
TW201307685A (en) 2013-02-16
WO2012165645A1 (en) 2012-12-06
CN103477080A (en) 2013-12-25
TWI554684B (en) 2016-10-21
EP2715139A1 (en) 2014-04-09
US20140112815A1 (en) 2014-04-24
KR20140023958A (en) 2014-02-27
EP2715139B1 (en) 2018-01-10
EP2715139A4 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
KR101760550B1 (en) Vacuum pump
EP2715138B1 (en) Vacuum pump
KR100730073B1 (en) Evacuating apparatus
JPH02157490A (en) Multi-stage roots type vacuum
KR101613161B1 (en) Two stages type's dry vacuum pump
ITTO950911A1 (en) TURBOMOLECULAR PUMP.
CN103807176A (en) Multistage dry vacuum pump
US7214041B2 (en) Seal assemblies
EP2499374B1 (en) Corrosion resistant shaft sealing for a vacuum pump
EP3808982A1 (en) Vacuum pump with thermal insulation
JP3941484B2 (en) Multistage vacuum pump
WO2004083643A1 (en) Positive-displacement vacuum pump
US6874989B2 (en) Vacuum pump
GB2440542A (en) Vacuum pump gearbox purge gas arrangement
TW202344749A (en) Vacuum pump with reduced seal requirements
CN115176068A (en) Dry vacuum pump
JP2007263122A (en) Evacuating apparatus
JP2007298043A (en) Vacuum exhaust device
JP2004293434A (en) Dry pump
WO1999042729A1 (en) Vacuum pump
JP2000186685A (en) Rotary multistage vacuum pump device dealing with high temperature gas
JP2000186686A (en) Rotary multistage vacuum pump device dealing with high temperature gas
JP2002174175A (en) Evacuator
JP2009092040A (en) Two stage vacuum pump

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant