JP2000186685A - Rotary multistage vacuum pump device dealing with high temperature gas - Google Patents

Rotary multistage vacuum pump device dealing with high temperature gas

Info

Publication number
JP2000186685A
JP2000186685A JP10364932A JP36493298A JP2000186685A JP 2000186685 A JP2000186685 A JP 2000186685A JP 10364932 A JP10364932 A JP 10364932A JP 36493298 A JP36493298 A JP 36493298A JP 2000186685 A JP2000186685 A JP 2000186685A
Authority
JP
Japan
Prior art keywords
oil
pump
vacuum pump
oil tank
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10364932A
Other languages
Japanese (ja)
Inventor
Shigeharu Kanbe
重治 神辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNOZAWA GUMI IRON WORKS
Unozawa gumi Iron Works Ltd
Original Assignee
UNOZAWA GUMI IRON WORKS
Unozawa gumi Iron Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNOZAWA GUMI IRON WORKS, Unozawa gumi Iron Works Ltd filed Critical UNOZAWA GUMI IRON WORKS
Priority to JP10364932A priority Critical patent/JP2000186685A/en
Priority to US09/392,464 priority patent/US6318959B1/en
Priority to EP99118106A priority patent/EP1013934A1/en
Publication of JP2000186685A publication Critical patent/JP2000186685A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To appropriately operate a vacuum pump device by dealing with high temperature gas without cooling it. SOLUTION: Mechanical seals 51, 52 are arranged on housing sides of bearings 351, 352 supporting shafts of a vacuum pump. An oil tank 40 is arranged outside the vacuum pump for storing lubricating oil. An oil pump is attached to the oil tank for circulating the lubricating oil. A suction port of the oil pump communicates with the oil tank, while a discharge port communicates with oil feed pipes 311, 312 communicating with mechanical seal support bodies of gear and driving sides. An oil return passage 43 is led to the oil tank.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高温ガスを取扱うロ
ータリ形多段真空ポンプ装置に関する。本発明は、吸込
ガス温度が非常に高く、例えば150℃〜250℃のガ
スを取扱う真空ポンプ装置に適用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary type multi-stage vacuum pump for handling high-temperature gas. INDUSTRIAL APPLICABILITY The present invention can be applied to a vacuum pump device that handles a gas having a very high suction gas temperature, for example, 150C to 250C.

【0002】[0002]

【従来の技術】一般に真空ポンプの吸込ガスが高温の場
合は、ポンプのハウジング外周やロータ内から冷却水に
よってガスを冷却する方法や、吸込直前にガス冷却器を
設置し吸込ガスを冷却する方法、などの対策が講じられ
てきた。ハウジングの外周からの冷却では、ハウジング
内の高い温度がロータを支承する軸により伝熱され、軸
受を使用可能温度以上に高温に加熱するので、使用上最
大の問題となっていた。またロータ内から冷却水によっ
てガスを冷却する方法では、回転体であるロータに給水
しなければならず、構造が複雑となり機構上の安定を得
るのが困難であった。そして吸込口直前にガス冷却器を
設置し吸込みガスを冷却する方法では、ガスの圧力と温
度によって定まる析出温度よりも低い温度になると、ガ
スが固体として析出し、真空ポンプの運転が困難であっ
た。
2. Description of the Related Art In general, when the suction gas of a vacuum pump is at a high temperature, a method of cooling the gas by cooling water from the outer periphery of the pump housing or the inside of the rotor, or a method of installing a gas cooler immediately before suction to cool the suction gas. , And other measures have been taken. In the cooling from the outer periphery of the housing, a high temperature in the housing is transferred by a shaft supporting the rotor, and the bearing is heated to a temperature higher than the usable temperature. Further, in the method of cooling the gas with cooling water from inside the rotor, water must be supplied to the rotor, which is a rotating body, and the structure is complicated, and it is difficult to obtain mechanical stability. In the method of cooling the suction gas by installing a gas cooler just before the suction port, when the temperature becomes lower than the deposition temperature determined by the pressure and temperature of the gas, the gas precipitates as a solid, and it is difficult to operate the vacuum pump. Was.

【0003】従来利用されている、ハウジングを外周か
ら冷却する多段真空ポンプの例として第1ポンプ区分、
第2ポンプ区分、第3ポンプ区分、を持った3段ロータ
リ形真空ポンプが、図7に示されている。図8は図7に
示されるポンプのVIII−VIII断面であり、図9は図7の
IX−IX断面図である。本ポンプの構造は以下の通りであ
る。図7において、隔壁1で第1ポンプ区分と第2ポン
プ区分に区切られ、隔壁2で第2ポンプ区分と第3ポン
プ区分に区切られており、図8において、第1軸3と第
2軸4は各ポンプ区分を貫通してそれぞれ2個所の軸受
機構5で支承され、タイミングギヤセット6で互いに反
対方向に回転するように組み込まれている。そしてハウ
ジング外周部には冷却水7の流路が設けられている。第
1軸は、外部へ貫通し電動機により駆動することができ
る。
[0003] As an example of a conventionally used multi-stage vacuum pump for cooling a housing from the outer periphery, a first pump section,
A three-stage rotary vacuum pump having a second pump section and a third pump section is shown in FIG. 8 is a sectional view taken along line VIII-VIII of the pump shown in FIG. 7, and FIG. 9 is a sectional view of FIG.
It is IX-IX sectional drawing. The structure of this pump is as follows. In FIG. 7, the partition 1 is divided into a first pump section and a second pump section, and the partition 2 is divided into a second pump section and a third pump section. Numeral 4 penetrates each pump section and is supported by two bearing mechanisms 5 respectively, and is incorporated by a timing gear set 6 so as to rotate in opposite directions. A flow path for the cooling water 7 is provided on the outer periphery of the housing. The first shaft can penetrate to the outside and can be driven by an electric motor.

【0004】このポンプ装置の動作は図7〜図9に示さ
れるように第1ポンプ区分において、ポンプの吸込気体
G51は、ポンプの吸込口8を通り第1ポンプ区分の吸
込口9から吸込気体G51として吸込まれ、ロータ10
A,10Bの作動にもとづき移送され、ハウジング外周
部の冷却水により冷却された吐出気体G52は、連結路
11を通り次段へと導かれる。各段において上記作用が
繰り返されポンプ吐出口12より排気される。
As shown in FIGS. 7 to 9, the operation of this pump device is as follows. In the first pump section, the suction gas G51 of the pump passes through the suction port 8 of the pump and passes through the suction port 9 of the first pump section. G51 is sucked into the rotor 10
The discharged gas G52 transferred based on the operations of A and 10B and cooled by the cooling water on the outer peripheral portion of the housing is guided to the next stage through the connection path 11. The above operation is repeated in each stage, and the air is exhausted from the pump outlet 12.

【0005】[0005]

【発明が解決しようとする課題】以上のような構造と作
用であるが、ハウジング内でロータにより移送され圧縮
された気体は圧縮熱により加熱される。そしてハウジン
グ外周の冷却水7により一部は冷却されるが、ロータは
冷却されていないので、ハウジング内の高い温度がロー
タを支承する軸3,4により伝熱され、軸受けが使用可
能温度以上に加熱される問題があった。
With the above structure and operation, the gas transferred and compressed by the rotor in the housing is heated by the heat of compression. Although a part of the housing is cooled by the cooling water 7 on the outer periphery of the housing, the rotor is not cooled, so that a high temperature in the housing is transmitted by the shafts 3 and 4 supporting the rotor, and the temperature of the bearing exceeds the usable temperature. There was a problem of heating.

【0006】また図10に示される様にジャーナル継ぎ
手13等の機構と、貫通する軸を通ってロータ10A,
10B内に注水した冷却水14により、ガスを冷却し反
対側の軸端17,18より排水する方法では、ロータを
支承する中空軸15,16により伝熱されることはない
が、回転体であるロータに給水しなければならず、構造
が複雑となり、水漏れの発生がある等、機構上の安定を
得るのが困難であった。
Further, as shown in FIG. 10, a mechanism such as a journal joint 13 and a rotor 10A,
In the method of cooling the gas by the cooling water 14 injected into the 10B and discharging the gas from the shaft ends 17 and 18 on the opposite side, the heat is not transferred by the hollow shafts 15 and 16 supporting the rotor, but is a rotating body. Water must be supplied to the rotor, the structure becomes complicated, and water leakage occurs, and it is difficult to obtain mechanical stability.

【0007】吸込口直前にガス冷却器を設置し、ガスを
冷却し吸込口に導入する方法では、ガスの圧力と温度に
よって定まる析出温度よりも低い温度になると、ガスは
固体として析出し、真空ポンプの運転は困難であった。
In a method in which a gas cooler is installed just before the suction port to cool the gas and introduce the gas into the suction port, when the temperature becomes lower than the deposition temperature determined by the pressure and temperature of the gas, the gas precipitates as a solid and the vacuum Operation of the pump was difficult.

【0008】本発明の主な目的は、前述の従来形におけ
る問題点に鑑み、高温のガスを冷却することなく、高温
のまま安全に取扱うことができる、ロータリ形多段真空
ポンプ装置を提供することにある。
A main object of the present invention is to provide a rotary type multi-stage vacuum pump device capable of safely handling a high-temperature gas without cooling it in view of the above-mentioned problems in the conventional type. It is in.

【0009】[0009]

【課題を解決するための手段】本発明においては、ロー
タリ形真空ポンプが複数のポンプ区分により形成され、
軸受けに支承される各ポンプ区分の軸、これらの軸に固
定されるロータ、該ロータを同期回転させるための軸端
の一対のギヤ、および潤滑油を貯溜する油槽が設けら
れ、各ポンプ区分を内蔵するハウジングには、吸込口、
吐出口が設けられ、各ポンプ区分の吐出口と次段のポン
プ区分の吸込口との連結路が設けられ、圧縮される気体
は、この連結路を通り次段に吸込まれ、順次各段におい
て圧縮されるロータリ形多段真空ポンプにおいて、軸を
支承する4個の軸受のハウジング側にはメカニカルシー
ルを設け、潤滑油を貯溜するための油槽は真空ポンプの
外部に設けられ、該油槽には潤滑油を循環するための油
ポンプが取付けられ、該油ポンプの吸込口は該油槽に連
通させられ、吐出口はギヤ側及び駆動側のそれぞれ2個
のメカニカルシール支持体に連通する送油管に連通させ
られ、油槽へ導びかれる返還油配管が設けられている、
ことを特徴とするロータリ形多段真空ポンプ装置、が提
供される。
According to the present invention, a rotary vacuum pump is formed by a plurality of pump sections.
A shaft of each pump section supported by a bearing, a rotor fixed to these shafts, a pair of gears at a shaft end for synchronously rotating the rotor, and an oil tank for storing lubricating oil are provided. The built-in housing has a suction port,
A discharge port is provided, and a connection path between the discharge port of each pump section and the suction port of the next-stage pump section is provided, and compressed gas is sucked into the next step through this connection path, and sequentially in each step. In a rotary type multistage vacuum pump to be compressed, a mechanical seal is provided on a housing side of four bearings supporting a shaft, and an oil tank for storing lubricating oil is provided outside the vacuum pump. An oil pump for circulating oil is mounted, the suction port of the oil pump is connected to the oil tank, and the discharge port is connected to an oil feed pipe communicating with two mechanical seal supports on the gear side and the drive side. Return oil pipe is provided to be led to the oil tank,
A rotary type multi-stage vacuum pump device is provided.

【0010】一般に、ハウジング内の圧力は1段目が高
真空であり、3段目は大気圧力近傍になっている。この
ことは、ギヤ側油槽内と駆動側油槽内の圧力が異なり、
両油槽を連通させても、油は圧力の低い方に流れるの
で、駆動側油槽の潤滑油をギヤ側油槽内に流入させるこ
とは出来なかった。本発明による装置においては、軸受
のハウジング側でメカニカルシールを設け、圧力を封止
し、両油槽を大気圧力と連通させ、内部圧力を均しく
し、両油槽を連通する返還油配管を設けることが可能と
なった。両油槽内の圧力を均しくすることにより、軸に
スラスト荷重を発生させることがなく、軸の固定が容易
になり、軸受寿命を延ばすことができる。
In general, the pressure in the housing is high vacuum in the first stage, and near the atmospheric pressure in the third stage. This means that the pressure in the gear-side oil tank and the pressure in the drive-side oil tank are different,
Even when the two oil tanks are communicated with each other, the oil flows in the lower pressure direction, so that the lubricating oil in the drive-side oil tank cannot flow into the gear-side oil tank. In the apparatus according to the present invention, a mechanical seal is provided on the housing side of the bearing, pressure is sealed, both oil tanks are communicated with the atmospheric pressure, the internal pressure is equalized, and a return oil pipe is provided to communicate the two oil tanks. Became possible. By equalizing the pressure in both oil tanks, a thrust load is not generated on the shaft, the shaft can be easily fixed, and the life of the bearing can be extended.

【0011】[0011]

【発明の実施の形態】本発明の一実施例として、3段の
ロータリ形真空ポンプの作用を、図1から図6によって
説明する。図2は図1に示されるポンプのII−II断面図
であり、図3は図1の真空ポンプ装置における油槽、油
ポンプ、油冷却器、送油管、返還油配管を示す図であ
る。図4は図1における左側のメカニカルシール、図5
は図1における右側のメカニカルシールをそれぞれ示す
図である。図6は図1のVI−VI断面を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As one embodiment of the present invention, the operation of a three-stage rotary vacuum pump will be described with reference to FIGS. 2 is a sectional view taken along the line II-II of the pump shown in FIG. 1, and FIG. 3 is a view showing an oil tank, an oil pump, an oil cooler, an oil feed pipe, and a return oil pipe in the vacuum pump device of FIG. FIG. 4 shows the mechanical seal on the left side in FIG.
FIG. 2 is a view showing a mechanical seal on the right side in FIG. 1. FIG. 6 is a view showing a section taken along line VI-VI of FIG.

【0012】図1、図2および図3に示される真空ポン
プ装置においては、ロータリ形真空ポンプが複数のポン
プ区分により形成され、軸受に支承される各ポンプ区分
の軸が設けられ、これらの軸に固定されるロータが設け
られ、該軸端にはロータを同期回転させるための一対の
ギヤが設けられ、そして各ポンプ区分を内蔵するハウジ
ングには、吸込口、吐出口が設けられ、各ポンプ区分の
吐出口と次段のポンプ区分の吸込口との連結路があり、
圧縮される気体は、この連結路を通り次段に吸込まれ、
順次各段において圧縮される。第1ポンプ区分におい
て、ポンプの吸込気体G21は、ポンプの吸込口21を
通り第1ポンプ区分の吸込口23から吸込気体として吸
込まれ、ロータ22A,22Bの作動にもとづき移送さ
れ、吐出気体G22は吐出口24より連結路を通り次段
へと導かれる。そして各段において上記作用が繰り返さ
れる。
In the vacuum pump device shown in FIGS. 1, 2 and 3, a rotary vacuum pump is formed by a plurality of pump sections, and shafts of the respective pump sections supported by bearings are provided. Is provided at the shaft end, a pair of gears are provided at the shaft end for synchronously rotating the rotor, and a housing containing each pump section is provided with a suction port and a discharge port. There is a connection between the discharge port of the section and the suction port of the next pump section,
The gas to be compressed is sucked into the next stage through this connection path,
Each stage is sequentially compressed. In the first pump section, the suction gas G21 of the pump passes through the suction port 21 of the pump, is sucked as suction gas from the suction port 23 of the first pump section, is transferred based on the operation of the rotors 22A, 22B, and is discharged. It is guided from the discharge port 24 to the next stage through the connection path. The above operation is repeated at each stage.

【0013】この真空ポンプ装置においては、軸を支承
する4個の軸受のハウジング側にはメカニカルシール5
1,52を設け、真空ポンプの外部に潤滑油41を溜め
るための油槽40を設け、該油槽には潤滑油を循環する
ための油ポンプ42を取り付け、該油ポンプの吸込口4
5は該油槽に連通されるとともに、吐出口は冷却器46
を経てギヤ側及び駆動側のそれぞれ2個所のメカニカル
シール支持体341,342に連通する送油管311,
312を設けることによりメカニカルシール支持体に潤
滑油を送油し、ギヤ側油槽及び駆動側油槽内から外部油
槽に導く返還油配管43を設ける。
In this vacuum pump device, a mechanical seal 5 is provided on the housing side of the four bearings supporting the shaft.
1 and 52, an oil tank 40 for storing a lubricating oil 41 is provided outside the vacuum pump, and an oil pump 42 for circulating the lubricating oil is attached to the oil tank.
5 is connected to the oil tank and the discharge port is connected to a cooler 46.
, An oil feed pipe 311 communicating with two mechanical seal supports 341 and 342 on the gear side and the drive side, respectively.
By providing the 312, a return oil pipe 43 is provided for sending lubricating oil to the mechanical seal support and leading from the inside of the gear-side oil tank and the drive-side oil tank to the external oil tank.

【0014】第1ポンプ区分において、ポンプの吸込気
体G21は、ポンプの吸込口21を通り第1ポンプ区分
の吸込口23から吸込気体として吸込まれ、ロータ22
A,22Bの作動にもとづき移送され、吐出気体G22
は吐出口24より連結路を通り次段へと導かれる。そし
て各段において上記作用が繰り返される。
In the first pump section, the suction gas G21 of the pump passes through the suction port 21 of the pump, is sucked as suction gas from the suction port 23 of the first pump section, and is supplied to the rotor 22.
A, 22B are transferred based on the operation of the discharge gas G22.
Is guided from the discharge port 24 to the next stage through the connection path. The above operation is repeated at each stage.

【0015】図4、図5にはメカニカルシール51,5
2の詳細が示されている。真空ポンプ下部より導入され
た潤滑油は、4個のメカニカルシールの固定環511,
521部に達し、軸を包むように流れ、軸を冷却すると
ともに、メカニカルシールの固定環511,521部と
回転環512,522のシール面と軸受を潤滑並びに冷
却をし、軸受側より油槽に落下する。一方余分な潤滑油
はメカニカルシール上部から油槽に連通する孔部を通っ
て溢流する。そしてギヤ側油槽271及び駆動側油槽2
72内に落下した潤滑油を外部油槽40に導く返還油配
管43を設け、循環する流路を形成することによって、
潤滑油を循環させることができる。
FIGS. 4 and 5 show mechanical seals 51 and 5 respectively.
2 are shown. The lubricating oil introduced from the lower part of the vacuum pump is used for fixing rings 511, 4 of the four mechanical seals.
After reaching the 521 part, it flows so as to wrap the shaft, cools the shaft, lubricates and cools the fixed rings 511, 521 of the mechanical seal, the sealing surfaces of the rotating rings 512, 522 and the bearing, and drops from the bearing side to the oil tank. I do. On the other hand, excess lubricating oil overflows from the upper portion of the mechanical seal through the hole communicating with the oil tank. The gear-side oil tank 271 and the drive-side oil tank 2
By providing a return oil pipe 43 that guides the lubricating oil that has fallen into 72 to the external oil tank 40 and forms a circulating flow path,
Lubricating oil can be circulated.

【0016】本発明の実施例による真空ポンプ装置にお
いては、潤滑油の循環により、メカニカルシールおよび
軸受を潤滑および冷却をし、軸を十分に冷却され、軸受
が使用可能温度以上に加熱されることはない。ハウジン
グ内のガスを高温に維持しても、軸受やギヤ等は高温の
ハウジングから守られるので、吸込ガスを冷却する必要
はなく、冷却によって析出するようなガスを取り扱うこ
とができる。それにより真空ポンプは適切に運転され
る。
In the vacuum pump device according to the embodiment of the present invention, the circulation of the lubricating oil lubricates and cools the mechanical seal and the bearing, sufficiently cools the shaft, and heats the bearing to a usable temperature or higher. There is no. Even if the gas in the housing is maintained at a high temperature, since the bearings and gears are protected from the high-temperature housing, it is not necessary to cool the suction gas, and it is possible to handle a gas that precipitates by cooling. Thereby, the vacuum pump operates properly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による真空ポンプ装置を示す
図。
FIG. 1 is a diagram showing a vacuum pump device according to one embodiment of the present invention.

【図2】図1におけるII−II断面図。FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】図1の真空ポンプ装置における油槽、油ポン
プ、油冷却器、送油管、返還油配管を示す図。
FIG. 3 is a diagram showing an oil tank, an oil pump, an oil cooler, an oil feed pipe, and a return oil pipe in the vacuum pump device of FIG.

【図4】図1における左側のメカニカルシールを示す
図。
FIG. 4 is a view showing a mechanical seal on the left side in FIG. 1;

【図5】図1における右側のメカニカルシールを示す
図。
FIG. 5 is a view showing a mechanical seal on the right side in FIG. 1;

【図6】図1におけるVI−VI断面を示す図。FIG. 6 is a view showing a VI-VI section in FIG. 1;

【図7】従来の真空ポンプ装置の一例を示す図。FIG. 7 is a diagram showing an example of a conventional vacuum pump device.

【図8】図7におけるVIII−VIII断面図。FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 7;

【図9】図7におけるIX−IX断面図。FIG. 9 is a sectional view taken along line IX-IX in FIG. 7;

【図10】従来の真空ポンプ装置の一例を示す図。FIG. 10 is a diagram showing an example of a conventional vacuum pump device.

【符号の説明】[Explanation of symbols]

20A,B…軸 21…吸込口 22A,B…ロータ 23…1段目吸込口 24…1段目吐出口 271…ギヤ側油槽 281…ギヤ側潤滑油 51,52…メカニカルシール 311,312…送油管 272…駆動側油槽 282…駆動側潤滑油 341,342…メカニカルシール支持体 351,352…軸受 G21…吸込気体 G22…吐出気体 40…油槽 41…潤滑油 42…油ポンプ 43…返還油配管 44…油ポンプの吐出口 45…油ポンプの吸込口 46…油冷却器 511,521…固定環 512,522…回転環 20A, B ... Shaft 21 ... Suction port 22A, B ... Rotor 23 ... First stage suction port 24 ... First stage discharge port 271 ... Gear side oil tank 281 ... Gear side lubricating oil 51, 52 ... Mechanical seal 311 and 312 ... Sending Oil pipe 272 ... Drive side oil tank 282 ... Drive side lubricating oil 341,342 ... Mechanical seal support 351,352 ... Bearing G21 ... Suction gas G22 ... Discharge gas 40 ... Oil tank 41 ... Lubricant oil 42 ... Oil pump 43 ... Return oil pipe 44 ... Discharge port of oil pump 45 ... Suction port of oil pump 46 ... Oil cooler 511,521 ... Fixed ring 512,522 ... Rotary ring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ロータリ形真空ポンプが複数のポンプ区
分により形成され、軸受けに支承される各ポンプ区分の
軸、これらの軸に固定されるロータ、該ロータを同期回
転させるための軸端の一対のギヤ、および潤滑油を溜め
る油槽が設けられ、各ポンプ区分を内蔵するハウジング
には、吸込口、吐出口が設けられ、各ポンプ区分の吐出
口と次段のポンプ区分の吸込口との連結路が設けられ、
圧縮される気体は、この連結路を通り次段に吸込まれ、
順次各段において圧縮されるロータリ形多段真空ポンプ
において、 軸を支承する4個の軸受のハウジング側にはメカニカル
シールを設け、潤滑油を貯溜するための油槽は真空ポン
プの外部に設けられ、該油槽には潤滑油を循環するため
の油ポンプが取付けられ、該油ポンプの吸込口は該油槽
に連通させられ、吐出口はギヤ側及び駆動側のそれぞれ
2個のメカニカルシール支持体に連通する送油管に連通
させられ、油槽へ導びかれる返還油配管が設けられてい
る、ことを特徴とするロータリ形多段真空ポンプ装置。
A rotary type vacuum pump is formed by a plurality of pump sections, and a pair of shafts of each pump section supported by bearings, rotors fixed to these shafts, and shaft ends for synchronously rotating the rotors. Gears and an oil tank for storing lubricating oil are provided, and a housing containing each pump section is provided with a suction port and a discharge port. The connection between the discharge port of each pump section and the suction port of the next pump section is provided. A road is established,
The gas to be compressed is sucked into the next stage through this connection path,
In a rotary type multi-stage vacuum pump that is sequentially compressed at each stage, a mechanical seal is provided on the housing side of four bearings that support the shaft, and an oil tank for storing lubricating oil is provided outside the vacuum pump. An oil pump for circulating lubricating oil is attached to the oil tank, and the suction port of the oil pump is connected to the oil tank, and the discharge port is connected to two mechanical seal supports on the gear side and the drive side, respectively. A rotary type multi-stage vacuum pump device, wherein a return oil pipe communicated with an oil feed pipe and led to an oil tank is provided.
JP10364932A 1998-12-22 1998-12-22 Rotary multistage vacuum pump device dealing with high temperature gas Pending JP2000186685A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10364932A JP2000186685A (en) 1998-12-22 1998-12-22 Rotary multistage vacuum pump device dealing with high temperature gas
US09/392,464 US6318959B1 (en) 1998-12-22 1999-09-09 Multi-stage rotary vacuum pump used for high temperature gas
EP99118106A EP1013934A1 (en) 1998-12-22 1999-09-10 Multi-stage rotary vacuum pump used for high temperature gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10364932A JP2000186685A (en) 1998-12-22 1998-12-22 Rotary multistage vacuum pump device dealing with high temperature gas

Publications (1)

Publication Number Publication Date
JP2000186685A true JP2000186685A (en) 2000-07-04

Family

ID=18483020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10364932A Pending JP2000186685A (en) 1998-12-22 1998-12-22 Rotary multistage vacuum pump device dealing with high temperature gas

Country Status (1)

Country Link
JP (1) JP2000186685A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795921B2 (en) 2005-05-25 2010-09-14 Nec Electronics Corporation Semiconductor integrated circuit and method of reducing noise
GB2563595A (en) * 2017-06-19 2018-12-26 Edwards Ltd Twin-shaft pumps
CN115163486A (en) * 2022-07-08 2022-10-11 浙江开放大学 Cooling system flow supercharging equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795921B2 (en) 2005-05-25 2010-09-14 Nec Electronics Corporation Semiconductor integrated circuit and method of reducing noise
GB2563595A (en) * 2017-06-19 2018-12-26 Edwards Ltd Twin-shaft pumps
GB2563595B (en) * 2017-06-19 2020-04-15 Edwards Ltd Twin-shaft pumps
US11542946B2 (en) 2017-06-19 2023-01-03 Edwards Limited Twin-shaft pumps with thermal breaks
CN115163486A (en) * 2022-07-08 2022-10-11 浙江开放大学 Cooling system flow supercharging equipment
CN115163486B (en) * 2022-07-08 2023-07-28 浙江开放大学 Cooling system flow pressurizing equipment

Similar Documents

Publication Publication Date Title
CN102465879B (en) Multistage dry vacuum pump
EP1981078B1 (en) Drive apparatus for substrate transfer robot having coolant circulating passage
KR101286187B1 (en) Multistage dry vaccum pump
TWI467898B (en) A motor, a vacuum pump and a method of removing heat from a motor rotor located within a subatmospheric pressure environment during use of a motor
JPS6217390A (en) Sealed rotary compressor
CN109424375B (en) Turbine system and method with magnetic bearing cooling
JPH02157490A (en) Multi-stage roots type vacuum
US20140112815A1 (en) Vacuum pump
JPH1144297A (en) Double lap dry scroll vacuum pump
KR20180110044A (en) Screw compressor
JP2009092042A (en) Bearing protection mechanism for rotor type pump
US20060222553A1 (en) Rotary piston pump
JP2000186685A (en) Rotary multistage vacuum pump device dealing with high temperature gas
US4957417A (en) Vertical oilless screw vacuum pump
JP2000186686A (en) Rotary multistage vacuum pump device dealing with high temperature gas
EP1013934A1 (en) Multi-stage rotary vacuum pump used for high temperature gas
JP2004211568A (en) Compressed-air supplying system of fuel cell vehicle
JPH04311696A (en) Mechanical vacuum pump
JPH10281089A (en) Vacuum pump
KR100298424B1 (en) A water-cooled cooling device of screw type of a vacuum pump
KR200203008Y1 (en) Air-circulating cooling unit of screw rotor for screw-type vacuum pump
JP2001020884A (en) Rotary type multistage vacuum pump having gas passage having outer wall formed by coolers
JPH11236891A (en) Vacuum pump
CN218853494U (en) Dry-type vacuum pumping system based on waste oil distillation
JP2006177299A (en) Electric pump