KR101718764B1 - 항체 발현용 바이시스트로닉 발현벡터 및 이를 이용한 항체의 생산 방법 - Google Patents

항체 발현용 바이시스트로닉 발현벡터 및 이를 이용한 항체의 생산 방법 Download PDF

Info

Publication number
KR101718764B1
KR101718764B1 KR1020140134777A KR20140134777A KR101718764B1 KR 101718764 B1 KR101718764 B1 KR 101718764B1 KR 1020140134777 A KR1020140134777 A KR 1020140134777A KR 20140134777 A KR20140134777 A KR 20140134777A KR 101718764 B1 KR101718764 B1 KR 101718764B1
Authority
KR
South Korea
Prior art keywords
ser
val
thr
leu
gly
Prior art date
Application number
KR1020140134777A
Other languages
English (en)
Other versions
KR20150041588A (ko
Inventor
김수광
김영민
손용규
안용호
이동헌
이양순
전희정
최유빈
Original Assignee
프레스티지바이오제약 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53035034&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101718764(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 프레스티지바이오제약 주식회사 filed Critical 프레스티지바이오제약 주식회사
Publication of KR20150041588A publication Critical patent/KR20150041588A/ko
Application granted granted Critical
Publication of KR101718764B1 publication Critical patent/KR101718764B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 '프로모터-UTR-인트론-항체 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 및 '프로모터-UTR-인트론-항체 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는 항체 발현용 바이시스트로닉 발현벡터, 상기 발현벡터가 형질전환된 동물세포 및 상기 동물세포를 배양하는 단계를 포함하는 항체의 생산 방법에 관한 것이다. 본 발명에 따른 인트론을 포함하는 항체 발현용 바이시스트로닉 발현벡터를 이용하면, 원하는 항체를 고효율로 발현시킬 수 있는 발현벡터를 제작할 수 있으며, 상기 발현벡터가 형질전환된 동물세포를 배양하여 항체를 안정적이고 고효율로 생산할 수 있다.

Description

항체 발현용 바이시스트로닉 발현벡터 및 이를 이용한 항체의 생산 방법{Bicistronic expression vector for expressing antibody and method for producing antibody using the same}
본 발명은 (i) '프로모터-UTR(untranslation region)-인트론-항체 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 ; 및 (ii) '프로모터-UTR-인트론-항체 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는, 항체 발현용 바이시스트로닉 발현벡터, 상기 발현벡터가 형질전환된 동물세포 및 상기 동물세포를 배양하는 단계를 포함하는 항체의 생산 방법에 관한 것이다.
유전자 재조합 기술을 이용하여 다양한 인간유래 단백질들이 발현되고 있으나, 진핵세포 특유의 당화, 인산화 등과 같은 일련의 과정으로 인하여 포유동물세포를 이용할 경우에만 정상적으로 생물학적 활성을 갖는 단백질이 합성되는 경우가 많다. 치료용 항체로 많이 사용되는 면역글로불린G (IgG) 유전자는 중쇄(heavy chain) 유전자와 경쇄(light chain) 유전자로 구성되어 있다. 각각의 유전자로부터 만들어지는 중쇄와 경쇄 단백질은 세포내에서 접힘(folding) 과정에서 서로 결합하여 세포 밖으로 분비된다. 유전자 재조합 항체 단백질을 생산하기 위하여 주로 포유동물세포의 하나인 CHO 세포(Chinese hamster ovary 세포, 중국 햄스터 난소 세포)를 많이 이용한다(Kaufman 등, Mol. Cell. Biol. (1985) 5, 1750).
포유동물 세포에서 보다 강력하고 안정된 유전자 발현을 유도할 수 있는 재조합 발현벡터를 제조하기 위해 사용되고 있는 여러 가지 전략들 중에서 대표적인 방법은 강력한 프로모터를 선별하여 유전자 발현률을 증대시키는 방법이다. 프로모터는 여러가지 전사 인자(transcription factor)의 결합 위치와 TATA box가 존재하여, RNA 중합효소가 결합하여 mRNA 합성이 시작되는 DNA 상의 요소로서 프로모터의 성능에 따라 유전자 발현량이 크게 좌우된다. 높은 항체 발현을 위해서는 항상 높은 발현을 갖는 것이 적합한데, 대표적인 강력한 프로모터로 SV40(simian virus 40) 프로모터, CMV(Cytomegalovirus) 프로모터와 EF1-α(Elongation factor1-α) 프로모터 등이 있다.
강력한 프로모터의 사용을 통한 벡터 자체의 mRNA 합성능력을 높이는 방법 외에 치료용 단백질의 생산성을 높이기 위해 널리 사용되는 방법으로 유전자 증폭방법이 있다. 그 방법을 간단히 요약하면, 세포에 외부 유전자를 형질전환 시킨 후 화학 약품을 이용하여 외부 유전자가 염색체에 재조합된 세포만 성장이 가능하도록 선택 배양하여 세포를 분리한 후, 더욱 많은 단백질을 발현하도록 하기 위해서 증가된 양의 화학 약품을 배지에 첨가하여 염색체에 재조합된 외부 유전자의 증폭을 유도하는 것이다. 유전자 증폭에 사용되는 대표적인 유전자로는 DHFR (dehydrofolate reductase, 이하 'DHFR'이라 칭한다)과 GS(glutamine synthetase, 이하 'GS'라 칭한다)가 있다. 이들 증폭 유전자들의 증폭에 사용되는 약품으로는 DHFR에 대하여는 메토트렉세이트(methotrexate, 이하 'MTX'라 한다)가 사용되고 GS에 대하여는 메티오닌 설폭시민(Methionine sulfoximine, 이하 'MSX'라 한다)이 사용된다. 이러한 유전자 증폭과정을 거쳐 1000개 이상의 증폭된 외부유전자를 갖는 세포주의 제조가 가능하게 된다.
통상적으로 항체 유전자를 계속적으로 발현하는 세포주를 제조하기 위해서는 발현하고자 하는 중쇄와 경쇄 유전자를 포함하는 플라스미드 벡터 DNA와 증폭 유전자를 갖는 벡터 DNA를 함께 세포에 동시 형질전환시킨 후 두 개의 DNA가 동시에 염색체에 삽입된 세포주를 분리하거나(Kaufman, Methods in Enz.(1990) 185, 487), 하나의 벡터 내에 SV40 프로모터에 의해 증폭 유전자가 발현되도록 하여 그 벡터가 염색체에 삽입된 세포주를 분리하는 방법이 사용된다.
또 다른 증폭 유전자 발현 방법으로 바이시스트로닉 벡터를 제조하는 방법이 있다. 진핵생물은 원핵생물과 달리 원칙적으로 하나의 프로모터에서 하나의 mRNA가 만들어지고 그 유전자만 해독되어 단백질이 합성된다. 그런데 일부 바이러스의 경우 mRNA 중간에 리보좀이 결합할 수 있는 서열이 있어 하나의 mRNA에서 여러 단백질을 합성할 수 있게 해 준다. 항체 유전자와 증폭 유전자가 서로 다른 프로모터에 의하여 발현될 경우, 유전자 증폭시 증폭 유전자 부분만 증폭되고 항체 유전자의 증폭은 이루어 지지 않을 수 있는데, IRES(internal ribosome entry site)를 사용하면 동일한 프로모터로부터 발현되므로 이러한 문제를 피할 수 있다. 그러나, 이와 같은 바이시스트로닉 벡터 전략 역시 여전히 원하는 단백질을 과량으로 제조할 수 없다는 단점이 있어, 보다 강력한 전략이 요구되고 있다.
한편, 베바시주맙(bevacizumab, Avastin®이라고도 함)은 미국 Genentech사에서 개발한 VEGF에 대한 인간화 항체로서, 신생혈관생성 (Angiogenesis) 억제제의 역할을 하며, 결장직장암, 폐암, 신장암, 뇌암등의 치료를 주 적응증으로 하는 항체 치료제로 각광받고 있다. 토실리주맙(tocilizumab, Actemra®이라고도 함)은 스위스계 제약회사인 로슈(Roche) 사에서 개발한 IL-6 수용체에 대한 인간 단일클론 항체로서, 악템라(Actemra)라는 제품명으로 미국, 유럽, 일본에서 류마티스 관절염에 대하여 승인을 받았다. 데노수맙(denosumab, Prolia®이라고도 함)은 미국 암젠(Amgen) 사에서 개발한 Receptor activator of NF-kB ligand (RANKL)에 대한 인간 단일클론 항체로서, 프롤리아(Prolia)라는 제품명으로 미국, 캐나다, 유럽에서 골다공증 적응증에 대하여 승인을 받았으며, 엑스제바(Xgeva)라는 제품명으로 유럽에서 고형암이 뼈로 전이된 환자의 골절 등을 예방하는 약물로 승인받았다.
한편, 벨리무맙(Belimumab, Benlysta®이라고도 함)은 다국적 제약회사인 글락소스미스클라인 (GlaxoSmithKline, GSK)사에서 개발한 가용성 B 림프구 자극인자(B Lymphocyte Stimulator, BLyS)에 대한 인간 단일클론 항체로서, 미국, 캐나다 및 유럽에서 루푸스(전신 홍반 루푸스, systemic lupus erythematosus, SLE)에 대하여 승인을 받았다. 골리무맙(Golimumab, Simponi®이라고도 함)은 글로벌 제약회사인 존슨앤존슨(Johnson & Johnson) 사의 자회사인 얀센바이오테크(Janssen Biotech, Inc., 구 센토고, Centocor)에서 개발한 TNFα에 대한 인간 단일클론 항체로서, 심포니(Simponi)라는 제품명으로 미국, 캐나다 및 한국에서 류마티스 관절염, 건선성 관절염 및 강직성 척추염 적응증에 대하여 승인을 받았다.
또 한편, 우스테키누맙(Ustekinumab, Stelara®이라고도 함)은 다국적 제약회사인 얀센 제약회사(Janssen Pharmaceuticals, Inc.)에서 개발한 인터루킨 12(Interleukin-12, IL-12)과 인터루킨 23(Interleukin-23, IL-23)에 대한 인간 단일클론 항체로서, 미국 식품의약국(U.S. Food and Drug Administration, FDA)에서 건선성 관절염(psoriatic arthritis)에 대하여 승인을 받았으며, 중증 건선(severe psoriasis), 중등증-중증 판상건선(moderate-to-severe plaque psoriasis), 다발성 경화증(multiple sclerosis) 및 유육종증(sarcoidosis) 등에 대한 임상 진행 중에 있다. 이필리무맙(Ipilimumab, Yervoy®이라고도 함)은 미국의 제약회사인 브리스톨-마이어스 스큅(Bristol-Myers Squibb Co., BMS) 사에서 개발한 세포독성 T 림프구 항원-4(Cytotoxic T-Lymphocyte Antigen, CTLA-4)에 대한 인간 단일클론 항체로서, 예보이(Yervoy)라는 제품명으로 미국 식품의약국(U.S. Food and Drug Administration, FDA)에서 흑생종 및 피부암에 대하여 승인을 받았으며, 비소세포암(non-small cell lung carcinoma, NSCLC), 소세포암(small cell lung cancer, SCLC), 방광암(bladder cancer) 및 전이 호르몬 무반응성 전립선암(metastatic hormone-refractory prostate cancer)에 대해서 임상 진행 중에 있다.
이와 같은 블록버스터급 항체 치료제들의 대량 생산 방법의 개발이 요구되고 있다.
이러한 배경 하에서, 본 발명자들은 다양한 포유동물세포에서 강력하고 안정하게 유전자 발현을 유도할 수 있는 방법을 찾기 위해 예의 노력한 결과, 기존의 발현벡터에 UTR(untranslation region) 및 인트론을 포함하는 바이시스트로닉 발현벡터를 제작하여 증폭 유전자와 함께 다양한 항체 치료제들의 경쇄 및 중쇄 유전자를 동시에 고발현 시킬 수 있음을 확인하여, 본 발명을 완성하게 되었다.
본 발명의 하나의 목적은 '프로모터-UTR(untranslation region)-인트론-항체 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 및 '프로모터-UTR-인트론-항체 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는 항체 발현용 바이시스트로닉 발현벡터를 제공하는 것이다.
본 발명의 다른 목적은 상기 발현벡터가 형질전환된 동물세포를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 동물세포를 배양하는 단계를 포함하는 항체의 생산 방법을 제공하는 것이다.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 (i) '프로모터-UTR(untranslation region)-인트론-항체 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 ; 및 (ii) '프로모터-UTR-인트론-항체 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는, 항체 발현용 바이시스트로닉 발현벡터를 제공한다.
본 발명은 다양한 포유동물세포에서 강력하고 안정적으로 유전자 발현을 유도할 수 있도록 UTR 및 인트론을 포함하여 항체의 중쇄 및 경쇄 유전자와 증폭 유전자가 하나의 유전자처럼 발현되도록 설계된 바이시스트로닉 발현벡터를 제공할 수 있는 것에 그 특징이 있다. 특히, 본 발명은 UTR 및 인트론이 포함된 새로운 발현 카세트를 제공한다.
구체적으로 본 발명은 (i) '프로모터-UTR(untranslation region)-인트론-베바시주맙(bevacizumab) 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 ; 및 (ii) '프로모터-UTR-인트론-베바시주맙 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는, 항체 발현용 바이시스트로닉 발현벡터를 제공한다. 본 발명은 (i) '프로모터-UTR(untranslation region)-인트론-토실리주맙(Tocilizumab) 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 ; 및 (ii) '프로모터-UTR-인트론-토실리주맙 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는, 항체 발현용 바이시스트로닉 발현벡터를 제공한다. 본 발명은 (i) '프로모터-UTR(untranslation region)-인트론-데노수맙(Denosumab) 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 ; 및 (ii) '프로모터-UTR-인트론-데노수맙 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는, 항체 발현용 바이시스트로닉 발현벡터를 제공한다. 본 발명은 (i) '프로모터-UTR(untranslation region)-인트론-벨리무맙(Belimumab) 경쇄 유전자-polyA'를 포함하는 제1발현 카세트; 및 (ii) '프로모터-UTR-인트론-벨리무맙 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는, 항체 발현용 바이시스트로닉 발현벡터를 제공한다. 본 발명은 (i) '프로모터-UTR(untranslation region)-인트론-골리무맙(Golimumab) 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 ; 및 (ii) '프로모터-UTR-인트론-골리무맙 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는, 항체 발현용 바이시스트로닉 발현벡터를 제공한다. 본 발명은 (i) '프로모터-UTR(untranslation region)-인트론-우스테키누맙(Ustekinumab) 경쇄 유전자-polyA'를 포함하는 제1발현 카세트; 및 (ii) '프로모터-UTR-인트론-우스테키누맙 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는, 항체 발현용 바이시스트로닉 발현벡터를 제공한다. 본 발명은 (i) '프로모터-UTR(untranslation region)-인트론-이필리무맙(Ipilimumab) 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 ; 및 (ii) '프로모터-UTR-인트론-이필리무맙 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는, 항체 발현용 바이시스트로닉 발현벡터를 제공한다.
본 발명에서 용어, "바이시스트로닉(bicistronic)"이란, 진핵세포 내에서 mRNA의 내부에서도 리보좀이 폴리펩티드를 합성할 수 있게 되어 하나의 mRNA로부터 여러 단백질이 합성 가능하게 된 시스템을 의미하며, 본 발명에서는 항체 유전자와 증폭 유전자가 동시에 발현될 수 있도록 벡터를 디자인하였다.
일반적으로, 대장균과 같은 원핵세포가 하나의 mRNA의 여러 위치에 리보좀이 결합하여 한번에 여러 단백질을 합성할 수 있는 폴리시스트로닉(polycistronic) 시스템을 가진 것과는 달리, 진핵세포에서는 mRNA로부터 단백질을 해독(translation)할 때, 리보좀이 mRNA의 5' 끝에 부착된 후 스캐닝(scanning) 방법을 통해서 개시 코돈인 AUG를 찾게 되고, 이 AUG 코돈으로부터 단백질의 합성이 시작됨에 따라 하나의 mRNA로부터 반드시 하나의 폴리펩티드가 형성되는 모노시스트로닉(monocistronic) 시스템을 갖게 되며, ATG의 인식 및 단백질 합성의 시작에 코작 서열(Kozac sequence)이 중요한 역할을 한다고 알려져 있다. 그러나 EMC 바이러스(Encephalomyocarditis virus, 이하 'EMCV'라 한다)의 경우는, 내부 리보좀 유입점(Internal Ribosome Entry Site, IRES, 이하 'IRES'라 칭한다)이라 불리는 특별한 구조로 되어있는 RNA 서열을 갖고 있어, 진핵세포 내에서 하나의 mRNA로부터 여러 단백질 합성이 가능하다(Jang 등, J. Virol.(1989) 63, 1651). 본 발명에서는 항체 유전자와 증폭 유전자가 동시에 발현될 수 있도록 하기 위하여, 항체의 중쇄 유전자 뒤에 IRES가 오도록 한 후 그 뒤에 증폭 유전자가 오도록 벡터를 디자인하였다.
본 발명에서 용어, "벡터(vector)"는 적당한 숙주세포 내에서 목적 유전자가 발현할 수 있도록 프로모터 등의 필수적인 조절 요소를 포함하는 유전자 작제물로서, 본 발명의 목적상 바람직하게는 항체를 발현하기 위한 벡터를 의미하며, 바이시스트로닉 발현벡터일 수 있다. 예를 들어, 본 발명의 벡터는 (i) '프로모터-UTR(untranslation region)-인트론-베바시주맙 경쇄 유전자-polyA'를 포함하는 제1발현 카세트; 및 (ii) '프로모터-UTR(untranslation region)-인트론-베바시주맙 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는 베바시주맙 발현용 바이시스트로닉 발현벡터일 수 있다.
또 하나의 다른 예로, 본 발명의 벡터는 (i) '프로모터-UTR(untranslation region)-인트론-토실리주맙(Tocilizumab) 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 ; 및 (ii) '프로모터-UTR-인트론-토실리주맙 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는, 토실리주맙 발현용 바이시스트로닉 발현벡터일 수 있다. 또 하나의 다른 예로, 본 발명의 벡터는 (i) '프로모터-UTR(untranslation region)-인트론-데노수맙(Denosumab) 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 ; 및 (ii) '프로모터-UTR-인트론-데노수맙 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는, 데노수맙 발현용 바이시스트로닉 발현벡터일 수 있다. 또 하나의 다른 예로, 본 발명의 벡터는 (i) '프로모터-UTR(untranslation region)-인트론-골리무맙(Golimumab) 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 ; 및 (ii) '프로모터-UTR-인트론-골리무맙 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는, 골리무맙 발현용 바이시스트로닉 발현벡터일 수 있다. 또 하나의 다른 예로, 본 발명의 벡터는 (i) '프로모터-UTR(untranslation region)-인트론-벨리무맙 경쇄 유전자-polyA'를 포함하는 제1발현 카세트; 및 (ii) '프로모터-UTR(untranslation region)-인트론-벨리무맙 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는 벨리무맙 발현용 바이시스트로닉 발현벡터일 수 있다. 또 하나의 다른 예로, 본 발명의 벡터는 (i) '프로모터-UTR(untranslation region)-인트론-우스테키누맙 경쇄 유전자-polyA'를 포함하는 제1발현 카세트; 및 (ii) '프로모터-UTR(untranslation region)-인트론-우스테키누맙 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는 우스테키누맙 발현용 바이시스트로닉 발현벡터일 수 있다. 또 하나의 다른 예로, 본 발명의 벡터는 (i) '프로모터-UTR(untranslation region)-인트론-이필리무맙 경쇄 유전자-polyA'를 포함하는 제1발현 카세트; 및 (ii) '프로모터-UTR(untranslation region)-인트론-이필리무맙 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는 이필리무맙 발현용 바이시스트로닉 발현벡터일 수 있다.
본 발명에서 용어, "프로모터"는 전사조절인자들이 결합하는 DNA 염기서열 부위를 의미하며, 본 발명의 목적상 유전자 발현율을 높이기 위하여 강력하고 안정적인 유전자 발현을 유도할 수 있는 프로모터를 사용할 수 있다.
상기 프로모터는 이에 제한되지는 않으나, 바람직하게는 SV40(simian virus 40) 초기 프로모터, CMV(Cytomegalovirus) 프로모터 및 EF1-α(elongation factor1-α) 프로모터로 이루어진 군으로부터 선택된 것일 수 있으며, 상기 EF1-α는 hEF1-α(human elongation factor1-α)일 수 있다. 보다 바람직하게는 사이토메갈로 바이러스 프로모터일 수 있고, 가장 바람직하게는 strain의 Cytomegalovirus strainAD169의 프로모터일 수 있다. 본 발명의 일실시예에서는 높은 항체 발현을 유도하기 위하여 지금까지 알려진 가장 강력한 동물세포용 프로모터 중의 하나인 Cytomegalovirus strainAD169 genome (genBank : X17403.1) 서열 상의 프로모터를 사용하여, 이를 삽입하여 발현벡터를 제작하였다.
본 발명에서 용어, "UTR(untranslation region, 비해독 부분)"은 mRNA의 비해독 부분을 이르는 단어로 일반적으로 코딩 영역의 양 말단을 의미한다. 특히, 5' 말단 부분을 5' UTR로 3' 말단 부분을 3'UTR로 지칭한다. 특히, 본 발명에서 UTR은 본 발명의 바이시스트로닉 벡터에 포함되어 유전자의 발현량을 증대시키는 효과를 갖는 한 제한되지 않는다. 특히, CMV로부터 유래한 UTR일 수 있다. 본 발명은 이와 같은 UTR 및 인트론을 동시에 포함하는 발현 카세트를 포함하는 바이시스트로닉 발현 벡터가 도입된 유전자의 발현량이 증가되는 것을 최초로 규명하여 새로운 항체 발현 벡터를 제공하는데 특징이 있다.
본 발명의 UTR는 이에 제한되지는 않으나, 바람직하게는 서열번호 2의 Cytomegalovirus strainAD169의 UTR일 수 있다. 본 발명의 일실시예에서는 보다 강력한 유전자 발현을 위해, Cytomegalovirus strainAD169 genome (genBank : X17403.1) 서열 상의 UTR을 사용하여, 이를 프로모터와 항체 경쇄 및 중쇄 유전자 사이에 각각 삽입하여 발현벡터를 제작하였다.
본 발명에서 용어, "인트론(intron)"은 진핵세포에서 발견되는 특징적인 서열로 유전정보를 가지고 있지 않아서 단백질을 만들지 못하는 DNA 영역을 의미하며, 핵에서 RNA 중합효소에 의하여 mRNA가 합성될 때 전사되지만 핵 밖으로 빠져나가는 과정에서 스플라이싱(splicing) 과정을 통해 제거되는 부분이다. 이러한 인트론과 비해독 엑손(untranslated exon)을 포함하는 플라스미드의 유전자 발현량이 인트론을 포함하지 않는 경우에 비하여 더 높다는 연구 결과들이 축적됨에 따라, 재조합 발현벡터에 이종 인트론을 도입함으로써 보다 안정하고 지속적인 유전자 발현이 가능하도록 개선된 벡터들이 개발되어 사용되고 있다. 그러나 기존의 인트론 삽입 벡터의 경우에는 모노시스트로닉 벡터에 사용되어 단지 하나의 유전자만을 발현시키는 단점이 있었다. 이에 본 발명자들은 이러한 단점을 극복하기 위하여 바이시스트로닉 벡터 시스템에서 외부 인트론 유전자를 프로모터 뒤에 삽입할 경우 고효율의 유전자 발현을 시킬 수 있음을 고안하였다. 특히, 본 발명의 인트론은 CMV로부터 유래한 인트론일 수 있다.
본 발명의 인트론은 이에 제한되지는 않으나, 바람직하게는 서열번호 3의 Cytomegalovirus strainAD169의 인트론일 수 있다. 본 발명의 일실시예에서는 보다 강력한 프로모터의 구성을 위해, Cytomegalovirus strainAD169 genome (genBank : X17403.1) 서열 상의 인트론을 사용하여, 이를 프로모터와 항체 경쇄 및 중쇄 유전자 사이에 각각 삽입하여 발현벡터를 제작하였다.
본 발명의 발현벡터는, 프로모터, UTR, 인트론의 유래가 동일하거나 상이할 수 있다. 예를 들어, 상기 프로모터가 SV40 초기 프로모터이며, 상기 UTR 및 상기 인트론은 SV40 유래인 것일 수 있고; 상기 프로모터가 CMV 프로모터이며, 상기 UTR 및 상기 인트론은 CMV 유래인 것일 수 있으며; 상기 프로모터가 hEF1-α 프로모터이며, 상기 UTR 및 상기 인트론이 hEF1-α 유래인 것일 수 있다.
본 발명에서 용어, "증폭 유전자"는 본 발명에서 안정적으로 고발현하고자 하는 항체 유전자와 함께 발현시키도록 유도하기 위하여 증폭되는 유전자를 의미하며, 세포 내 염색체로 상기 증폭 유전자 및 항체 유전자가 재조합된 세포만이 성장이 가능하도록, 증폭 유전자가 삽입되지 않은 세포는 처리된 화학약품의 존재 하에서는 성장하지 않는 원리를 이용하여, 화학 약품을 사용하여 유전자를 증폭시킬 수 있다. 본 발명의 바이시스트로닉 발현벡터를 이용하면 상기 증폭 유전자와 항체 유전자가 하나의 유전자처럼 함께 발현되도록 유도되어 궁극적으로 목적하는 항체 유전자를 고발현시킬 수 있다.
상기 증폭 유전자는 이에 제한되지는 않으나, 바람직하게는 GS(glutamine synthetase) 또는 DHFR(dehydrofolate reductase)일 수 있다. 본 발명의 일실시예에서는 증폭 유전자로 GS를 사용한 pCYB204IG 발현벡터 및 증폭 유전자로 DHFR을 사용한 pCYB204ID 발현벡터를 제작하였고(도 5 및 6), pCYBBSS001(도 8), pCYBBSS002(도 9), pCYBBSS003(도 10), pCYBBSS004(도 11), pCYBBSS005(도 12), pCYBBSS006(도 13) 발현벡터를 제작하였고 상기 발현벡터가 항체 유전자를 고발현시키는데 유용함을 확인하였다.
본 발명에서 용어, "항체"는 면역계 내에서 항원의 자극에 의하여 만들어지는 물질로서, 특정한 항원과 특이적으로 결합하여 림프와 혈액을 떠돌며 항원항체반응을 일으키는 물질을 의미한다. 본 발명의 목적상, 상기 항체는 계속적으로 고발현되기 위한 목적이 되는 것으로서, 본 발명의 발현벡터를 이용하여 상기 항체 유전자를 강력하고 안정적으로 발현하도록 유도할 수 있으며, 상기 발현벡터를 형질전환시킨 동물세포를 이용하여 항체를 효율적으로 생산할 수 있다.
상기 항체는 아미노산과 당사슬로 결합된 단백질로 경쇄 2개와 중쇄 2개가 이황화결합을 통하여 Y자형의 단백질로 형성된다. 본 발명의 일실시예에서는 한 벡터에서 UTR 및 인트론을 포함하는 항체의 경쇄 발현 카세트 및 중쇄 발현 카세트를 포함하는 벡터를 제작함으로써, 경쇄 및 중쇄를 모두 갖는 항체를 생산할 수 있는 발현벡터를 제작하였다.
본 발명의 항체는 이에 제한되지는 않으나, 바람직하게는 당해 분야에서 통상적으로 사용되는 치료용 항체를 모두 포함할 수 있다. 그 예로 VEGF-A(vascular endothelial Growth Factor-A)를 표적으로 하는 항체인 베바시주맙(Bevacizumab), IL-6 수용체를 표적으로 하는 항체인 토실리주맙(Tocilizumab), Receptor activator of NF-kB ligand (RANKL)를 표적으로 하는 항체인 데노수맙(Denosumab), 가용성 B 림프구 자극인자(B Lymphocyte Stimulator, BLyS)에 대한 항체인 벨리무맙(Belimumab), TNFα를 표적으로 하는 항체인 골리무맙(Golimumab), 인터루킨 12(Interleukin-12, IL-12)과 인터루킨 23(Interleukin-23, IL-23)에 대한 항체인 우스테키누맙(Ustekinumab) 및 세포독성 T 림프구 항원-4(Cytotoxic T Lymphocyte Antigen-4)를 표적으로 하는 항체인 이필리무맙(Ipilimumab)으로 이루어진 군으로부터 선택된 것일 수 있다.
상기 베바시주맙은 아바스틴(Avastin)이라고도 하며, 결장직장암, 폐암, 신장암, 뇌암에 대한 항체치료제로 알려져 있는 미국 Genentech사에서 개발한 인간화 항체이다. 본 발명의 실시예에 따르면, 대표적인 치료용 항체인 베바시주맙을 본 발명의 항체 발현용 바이시스트로닉 발현 벡터에 도입할 경우, 효과적으로 상기 항체를 생산하는 것을 확인하였다.
상기 토실리주맙은 스위스계 제약회사인 로슈(Roche)사의 일본 자회사인 쥬가이(Chugai)에서 개발한 인간 단일클론 항체로서, 악템라(Actemra)라는 제품명으로 미국, 유럽, 일본에서 류마티스 관절염 치료제로 승인을 받았다. 본 발명의 실시예에서는, 토실리주맙을 본 발명의 항체 발현용 바이시스트로닉 발현 벡터에 도입할 경우, 효과적으로 상기 항체를 생산하는 것을 확인하는 것을 통해, 본 발명의 바이시스트로닉 발현 벡터가 토실리주맙 항체를 고발현시키는 시스템임을 확인하였다.
상기 데노수맙은 미국 암젠(Amgen)사에서 개발한 인간 단일클론 항체로서, 프롤리아(Prolia)라는 제품명으로 미국, 캐나다, 유럽에서 골다공증 적응증에 대하여 승인을 받았으며, 엑스제바(Xgeva)라는 제품명으로 유럽에서 고형암이 뼈로 전이된 환자의 골절 등을 예방하는 약물로 승인받았다. 본 발명의 실시예에 따르면, 데노수맙을 본 발명의 항체 발현용 바이시스트로닉 발현 벡터에 도입할 경우, 효과적으로 상기 항체를 생산하는 것을 확인하여, 본 발명의 바이시스트로닉 발현 벡터가 데노수맙 항체를 고발현시키는 시스템임을 확인하였다.
상기 벨리무맙은 다국적 제약회사인 글락소스미스클라인 (GlaxoSmithKline, GSK)사에서 개발한 가용성 B 림프구 자극인자(B Lymphocyte Stimulator, BLyS; 또는 B 세포 활성화 인자, B cell Activating Factor, BAFF)에 대한 인간 단일클론 항체로서, 미국, 캐나다 및 유럽에서 루푸스(전신 홍반 루푸스, systemic lupus erythematosus, SLE)에 대하여 승인을 받았다. 본 발명의 실시예에서는 벨리무맙을 본 발명의 항체 발현용 바이시스트로닉 발현 벡터에 도입하여, 효과적으로 상기 항체를 생산하는 것을 확인하는 것을 통해 본 발명의 바이시스트로닉 발현 벡터가 벨리무맙 항체를 고발현시키는 시스템임을 확인하였다.
상기 골리무맙은 글로벌 제약회사인 존슨앤존슨(Johnson & Johnson)사의 자회사인 얀센바이오테크(Janssen Biotech, Inc., 구 센토고, Centocor)에서 개발한 인간 단일클론 항체로서, 심포니(Simponi)라는 제품명으로 미국, 캐나다, 한국에서 류마티스 관절염, 건선성 관절염 및 강직성 척추염 치료제로 승인을 받았다. 본 발명의 실시예에서는, 골리무맙을 본 발명의 항체 발현용 바이시스트로닉 발현 벡터에 도입할 경우, 효과적으로 상기 항체를 생산하는 것을 확인하는 것을 통해 본 발명의 바이시스트로닉 발현 벡터가 골리무맙 항체를 고발현시키는 시스템임을 확인하였다.
상기 우스테키누맙은 다국적 제약회사인 얀센 제약회사(Janssen Pharmaceuticals, Inc.)에서 개발한 인터루킨 12(Interleukin-12, IL-12)과 인터루킨 23(Interleukin-23, IL-23)에 대한 인간 단일클론 항체로서, 미국 식품의약국(U.S. Food and Drug Administration, FDA)에서 건선성 관절염(psoriatic arthritis)에 대하여 승인을 받았으며, 중증 건선(severe psoriasis), 중등증-중증 판상건선(moderate-to-severe plaque psoriasis), 다발성 경화증(multiple sclerosis) 및 유육종증(sarcoidosis) 등에 대한 임상 진행 중에 있다. 본 발명의 실시예에서는 우스테키누맙을 본 발명의 항체 발현용 바이시스트로닉 발현 벡터에 도입하여, 효과적으로 상기 항체를 생산하는 것을 확인하는 것을 통해 본 발명의 바이시스트로닉 발현 벡터가 우스테키누맙 항체를 고발현시키는 시스템임을 확인하였다.
상기 이필리무맙은 미국계 제약회사인 브리스톨-마이어스 스큅(Bristol-Myers Squibb Co., BMS) 사에서 개발한 세포독성 T 림프구 항원-4(Cytotoxic T-Lymphocyte Antigen, CTLA-4)에 대한 인간 단일클론 항체로서, 예보이(Yervoy)라는 제품명으로 미국 식품의약국(U.S. Food and Drug Administration, FDA)에서 흑생종 및 피부암에 대하여 승인을 받았으며, 비소세포암(non-small cell lung carcinoma, NSCLC), 소세포암(small cell lung cancer, SCLC), 방광암(bladder cancer) 및 전이 호르몬 무반응성 전립선암(metastatic hormone-refractory prostate cancer)에 대해서 임상 진행 중에 있다. 특히, 흑색종 치료제로 FDA의 승인된 예보이는 정맥주사제 형식으로 투여되며 인체 면역시스템이 흑색종을 형성하는 종양세포를 표적으로 인식해 공격할 수 있도록 도와줌으로써 약효를 발휘한다. 본 발명의 실시예에서는 이필리무맙을 본 발명의 항체 발현용 바이시스트로닉 발현 벡터에 도입하여, 효과적으로 상기 항체를 생산하는 것을 확인하는 것을 통해 본 발명의 바이시스트로닉 발현 벡터가 이필리무맙 항체를 고발현시키는 시스템임을 확인하였다.
본 발명에서 "항체 경쇄 유전자"는 경쇄 2개와 중쇄 2개가 아미노산과 당사슬로 결합된 Y자형의 단백질인 항체에서 경쇄 부분을 암호화하는 유전자를 의미한다. 본 발명에서 항체 경쇄 유전자는 본 발명의 바이시스트로닉 벡터를 이용하여 발현량이 증가되는 임의의 항체에 대한 경쇄 유전자는 제한없이 포함되며, 예를 들어, 치료용 항체인 베바시주맙, 토실리주맙, 데노수맙, 벨리무맙, 골리무맙, 우스테키누맙 또는 이필리무맙의 경쇄 부분을 암호화하는 염기서열일 수 있다. 구체적으로, 베바시주맙의 경쇄 부분에 대한 서열번호 13, 토실리주맙의 경쇄 부분에 대한 서열번호 17, 데노수맙의 경쇄 부분에 대한 서열번호 21, 벨리무맙의 경쇄 부분에 대한 서열번호 25, 골리무맙의 경쇄 부분에 대한 서열번호 29, 우스테키누맙의 경쇄 부분에 대한 서열번호 33 및 이필리무맙의 경쇄 부분에 대한 서열번호 37로 이루어진 군으로부터 선택된 아미노산 서열을 암호화하는 염기서열로 구성된 것일 수 있으며, 더욱 구체적으로는 베바시주맙의 경쇄 부분을 암호화하는 서열번호 11, 토실리주맙의 경쇄 부분을 암호화하는 서열번호 15, 데노수맙의 경쇄 부분을 암호화하는 서열번호 19, 벨리무맙의 경쇄 부분을 암호화하는 서열번호 23, 골리무맙의 경쇄 부분을 암호화하는 서열번호 27, 우스테키무맵의 경쇄 부분을 암호화하는 서열번호 31 및 이필리무맙의 경쇄 부분을 암호화하는 서열번호 35로 이루어진 군으로부터 선택된 염기서열로 구성된 것일 수 있다.
본 발명에서 "항체 중쇄 유전자"는 경쇄 2개와 중쇄 2개가 아미노산과 당사슬로 결합된 Y자형의 단백질인 항체에서 중쇄 부분을 암호화하는 유전자를 의미한다. 본 발명에서 항체 중쇄 유전자는 본 발명의 바이시스트로닉 벡터를 이용하여 발현량이 증가되는 임의의 항체에 대한 중쇄 유전자는 제한없이 포함되며, 예를 들어, 치료용 항체인 베바시주맙, 토실리주맙, 데노수맙, 벨리무맙, 골리무맙, 우스테키누맙 또는 이필리무맙의 중쇄 부분을 암호화하는 염기서열일 수 있다. 구체적으로, 베바시주맙의 중쇄 부분에 대한 서열번호 14, 토실리주맙의 중쇄 부분에 대한 서열번호 18, 데노수맙의 중쇄 부분에 대한 서열번호 22, 벨리무맙의 중쇄 부분에 대한 서열번호 26, 골리무맙의 중쇄 부분에 대한 서열번호 30, 우스테키누맙의 중쇄 부분에 대한 서열번호 34 및 이필리무맙의 중쇄 부분에 대한 서열번호 38로 이루어진 군으로부터 선택된 아미노산 서열을 암호화하는 염기서열로 구성된 것일 수 있으며, 더욱 구체적으로는 베바시주맙의 중쇄 부분을 암호화하는 서열번호 12, 토실리주맙의 중쇄 부분을 암호화하는 서열번호 16, 데노수맙의 중쇄 부분을 암호화하는 서열번호 20, 벨리무맙의 중쇄 부분을 암호화하는 서열번호 24, 골리무맙의 중쇄 부분을 암호화하는 서열번호 28, 우스테키누맙의 중쇄 부분을 암호화하는 서열번호 32 및 이필리무맙의 중쇄 부분을 암호화하는 서열번호 36으로 이루어진 군으로부터 선택된 염기서열로 구성된 것일 수 있다.
본 발명에서 용어, "IRES(internal ribosome entry site, 내부 리보좀 유입점, 서열번호 4)"는 진핵세포에서 하나의 mRNA로부터 여러 단백질 합성이 가능하도록 리보좀이 직접 결합하는 mRNA 내부에 존재하고 있는 특정 영역을 의미하며, 본 발명의 발현벡터가 바이시스트로닉 발현벡터가 될 수 있도록 하는 역할을 한다.
진핵세포에서 mRNA의 해독은 일반적으로 mRNA의 5'끝에 부착된 캡(cap) 구조 의존적이지만, 이러한 캡 구조 비의존성 번역을 하는 경우 리보좀이 mRNA 내부에 존재하고 있는 특정 영역에 직접 결합하여 번역을 시작하는 경우가 있어 이것을 내부 개시 기구라 한다. 상기 내부 개시 기구에서 리보좀이 직접 결합하는 mRNA 상의 부위를 IRES라 하는데, 폴리오바이러스, EMC 바이러스 등의 바이러스 mRNA 외에 면역글로불린 중쇄 결합단백질(BiP) mRNA, 초파리의 안테나유전자(Antp) mRNA 등의 세포 mRNA에서도 발견된다.
본 발명에서 용어, "polyA"는 폴리아데닐산 또는 폴리아데닐산 절편이라고 불리며, 진핵생물의 mRNA 3' 말단에 보편적으로 존재하는 아데닐산의 연속한 배열을 의미한다. 그 길이는 10 내지 200 뉴클레오티드 정도이며, 발현벡터 백본(backbone)의 허용 크기에 따라 다양하게 조절될 수 있다. polyA는 mRNA의 안정화, 해독, 핵에서 세포질로의 수송 등에 관여하는 것으로 알려져 있다.
본 발명의 항체 생산용 바이시스트로닉 발현벡터는 이에 제한되지는 않으나, 바람직하게는 도 5에 도시된 pCYB204IG, 도 6에 도시된 pCYB204ID,도 8에 도시된 pCYBBSS001, 도 9에 도시된 pCYBBSS002, 도 10에 도시된 pCYBBSS003, 도 11에 도시된 pCYBBSS004, 도 12에 도시된 pCYBBSS005 또는 도 13에 도시된 pCYBBSS006일 수 있다.
상기 pCYB204IG 발현벡터는 'CMV 프로모터-UTR-인트론-베바시주맙 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 및 'CMV 프로모터-UTR-인트론-베바시주맙 중쇄 유전자-IRES-GS-polyA'를 포함하는 제2발현 카세트를 포함하는 발현벡터이며, pCYB204ID 발현벡터는 'CMV 프로모터-UTR-인트론-베바시주맙 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 및 'CMV 프로모터-UTR-인트론-베바시주맙 중쇄 유전자-IRES-DHFR-polyA'를 포함하는 제2발현 카세트를 포함하는 발현벡터이다. 상기 pCYBBSS001 발현벡터는 'CMV 프로모터-UTR-인트론-토실리주맙 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 및 'CMV 프로모터-UTR-인트론-토실리주맙 중쇄 유전자-IRES-DHFR-polyA'를 포함하는 제2발현 카세트를 포함하는 발현벡터이다. 상기 pCYBBSS002 발현벡터는 'CMV 프로모터-UTR-인트론-데노수맙 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 및 'CMV 프로모터-UTR-인트론-데노수맙 중쇄 유전자-IRES-DHFR-polyA'를 포함하는 제2발현 카세트를 포함하는 발현벡터이다. 상기 pCYBBSS003 발현벡터는 'CMV 프로모터-UTR-인트론-벨리무맙 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 및 'CMV 프로모터-UTR-인트론-벨리무맙 중쇄 유전자-IRES-DHFR-polyA'를 포함하는 제2발현 카세트를 포함하는 발현벡터이다. 상기 pCYBBSS004 발현벡터는 'CMV 프로모터-UTR-인트론-골리무맙 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 및 'CMV 프로모터-UTR-인트론-골리무맙 중쇄 유전자-IRES-DHFR-polyA'를 포함하는 제2발현 카세트를 포함하는 발현벡터이다. 상기 pCYBBSS005 발현벡터는 'CMV 프로모터-UTR-인트론-우스테키누맙 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 및 'CMV 프로모터-UTR-인트론-우스테키누맙 중쇄 유전자-IRES-DHFR-polyA''를 포함하는 제2발현 카세트를 포함하는 발현벡터이다. 아울러, 상기 pCYBBSS006 발현벡터는 'CMV 프로모터-UTR-인트론-이필리무맙 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 및 'CMV 프로모터-UTR-인트론-이필리무맙 중쇄 유전자-IRES-DHFR-polyA''를 포함하는 제2발현 카세트를 포함하는 발현벡터이다.
본 발명의 일 실시예에서는 증폭 유전자로써 GS를 사용하고, 경쇄 발현 카세트 및 중쇄 발현 카세트를 이용하여 pCYBIG를 제작하였으며, 상기 pCYBIG 발현벡터에서 증폭 유전자로서 GS 대신 DHFR을 포함하는 pCYBID 발현벡터를 제작하였다.
본 발명의 바이시스트로닉 발현벡터는 상기에서 설명한 바와 같이 항체의 중쇄 및 경쇄 유전자와 증폭 유전자가 하나의 유전자처럼 발현되도록 설계되어, 상기 항체를 안정적이고 고효율로 발현시킬 수 있는 용도를 가질 수 있다.
다른 하나의 양태로서, 본 발명은 상기 발현벡터가 형질전환된 동물세포를 제공한다.
본 발명에서 동물세포에 형질전환된 발현벡터는 항체 발현용 바이시스트로닉 발현벡터이며, 상기에서 설명한 바와 같다.
본 발명에서 용어, "형질전환(transfection)"은 배양동물세포에 DNA를 직접 도입하여 세포의 유전형질을 변이시키는 방법으로서, 일반적으로 목적으로 하는 유전자를 플라스미드 등의 매개체에 넣어 도입하는 방법을 사용한다. 상기 형질전환은 당 분야의 통상적인 방법에 따라 실시될 수 있으며, 바람직하게는 그 예로 인산칼슘공침법, DEAE-덱스트란 처리법, 전기천공법, 리포펙타민 처리법, 재분포법 (리보좀이라는 인공막과 DNA 복합체를 만들게 하는 세포와 융합시키게 하는 방법) 등이 있다. 본 발명의 일실시예에서는 리포펙타민을 이용하여 경쇄/중쇄 발현벡터를 세포 내로 형질전환시켰다.
상기 동물세포는 항체를 생산할 수 있는 한 당 분야에서 사용하는 동물세포를 제한 없이 사용할 수 있으며, 바람직하게는 중국 햄스터 난소 세포(CHO)를 사용할 수 있다.
본 발명의 구체적인 일실시예에서는 증폭 유전자를 GS와 DHFR로 달리한 벡터에 베바시주맙의 경쇄 및 중쇄 유전자를 삽입하여, 베바시주맙 항체 발현용 pCYB204IG 및 pCYB204GS 바이시스트로닉 벡터를 제조하였다. 상기 두 벡터로 각각 형질전환된 세포주에서 베바시주맙 항체의 발현량을 비교한 결과, pCYB204ID 벡터를 형질전환시킨 세포주의 경우 pCYB204IG 벡터를 형질전환시킨 세포주보다 베바시주맙이 2배 이상 고발현되는 것을 확인하였다.
또한, 본 발명의 구체적인 일실시예에서는 증폭 유전자로 DHFR를 포함하는 벡터에 토실리주맙의 경쇄 및 중쇄 유전자를 삽입하여, 토실리주맙 항체 발현용 pCYBBSS001 바이시스트로닉 벡터를 제조하였다. 상기 벡터로 형질전환된 세포주에서 토실리주맙 항체의 발현량을 확인한 결과, 800 nM의 MTX 농도의 유전자 증폭 조건에서 50.8 ㎍/㎖과 51.7 ㎍/㎖로 고발현되는 것을 확인하였다.
본 발명의 구체적인 일실시예에서는 증폭 유전자로 DHFR를 포함하는 벡터에 데노수맙의 경쇄 및 중쇄 유전자를 삽입하여, 데노수맙 항체 발현용 pCYBBSS002 바이시스트로닉 벡터를 제조하였다. 상기 벡터로 형질전환된 세포주에서 데노수맙 항체의 발현량을 확인한 결과, 800 nM의 MTX 농도의 유전자 증폭 조건에서 81.4 ㎍/㎖로 고발현되는 것을 확인하였다.
본 발명의 구체적인 일실시예에서는 증폭 유전자로 DHFR를 포함하는 벡터에 벨리무맙의 경쇄 및 중쇄 유전자를 삽입하여, 벨리무맙 항체 발현용 pCYBBSS003 바이시스트로닉 벡터를 제조하였다. 상기 벡터로 형질전환시킨 세포주에서 벨리무맙 항체의 발현량을 확인한 결과, 4 ㎍/㎖로 고발현되는 것을 확인하였다.
본 발명의 구체적인 일실시예에서는 증폭 유전자로 DHFR를 포함하는 벡터에 골리무맙의 경쇄 및 중쇄 유전자를 삽입하여, 골리무맙 항체 발현용 pCYBBSS004 바이시스트로닉 벡터를 제조하였다. 상기 벡터로 형질전환된 세포주에서 골리무맙 항체의 발현량을 확인한 결과, 500 nM의 MTX 농도의 유전자 증폭 조건에서 120.3 ㎍/㎖로 고발현되는 것을 확인하였다.
본 발명의 구체적인 일실시예에서는 증폭 유전자로 DHFR를 포함하는 벡터에 우스테키누맙의 경쇄 및 중쇄 유전자를 삽입하여, 우스테키누맙 항체 발현용 pCYBBSS005 바이시스트로닉 벡터를 제조하였다. 상기 벡터로 형질전환시킨 세포주에서 우스테키누맙 항체의 발현량을 확인한 결과, 2.5 ㎍/㎖로 고발현되는 것을 확인하였다.
아울러, 본 발명의 구체적인 일실시예에서는 증폭 유전자로 DHFR를 포함하는 벡터에 이필리무맙의 경쇄 및 중쇄 유전자를 삽입하여, 이필리무맙 항체 발현용 pCYBBSS006 바이시스트로닉 벡터를 제조하였다. 상기 벡터로 형질전환된 세포주에서 이필리무맙 항체의 발현량을 확인한 결과, 500 nM의 메토트렉세이트(methotrexate, MTX) 농도의 유전자 증폭 조건에서 8 ㎍/㎖로 고발현되는 것을 확인하였다.
정리하면, 상기 설명한 바와 같이 본 발명에서는 실제 본 발명의 항체 발현용 바이시스트로닉 발현벡터를 다양한 치료용 항체에 적용하여 발현량을 측정하였으며 그 결과 본 발명의 발현벡터를 이용한 결과 다양한 항체의 발현능이 우수해지는 것을 확인하였다.
또 다른 하나의 양태로서, 본 발명은 상기 동물세포를 배양하는 단계를 포함하는 항체의 생산 방법을 제공한다.
본 발명에서 상기 동물세포는 본 발명에 따른 인트론을 포함하는 바이시스트로닉 발현벡터가 형질전환된 동물세포로서, 이는 상기에서 설명한 바와 같다.
본 발명의 항체 생산 방법은 상기 동물세포를 배양함으로써, 항체를 안정적이고 고효율로 생산할 수 있다. 상기 방법은 바람직하게는 상기 동물세포를 배양한 배양물에서 항체를 정제하는 단계를 추가로 포함할 수 있다.
본 발명에 따라 생산될 수 있는 상기 항체에 대해서는 상기에서 설명한 바와 같으며, 이에 제한되지는 않으나, 베바시주맙, 토실리주맙, 데노수맙, 벨리무맙, 골리무맙, 우스테키누맙 또는 이필리무맙일 수 있다.
본 발명에 따른 UTR 및 인트론을 포함하는 항체 발현용 바이시스트로닉 발현벡터를 이용하면, 원하는 항체를 고효율로 발현시킬 수 있는 발현벡터를 제작할 수 있으며, 상기 발현벡터가 형질전환된 동물세포를 배양하여 항체를 안정적이고 고효율로 생산할 수 있다.
도 1은 본 발명에 따른 유전자 단편 Gln-LC 및 Gln-HC의 제작된 구성을 나타낸 그림이다.
도 2는 본 발명의 GS-Gln-LC의 제작과정을 나타낸 그림이다.
도 3은 본 발명의 GS-Gln-LC에 Gln-HC를 삽입하여 본 발명에 따른 GS 유전자를 포함한 pCYBIG 벡터의 제작과정을 나타낸 그림이다.
도 4는 본 발명의 pCYBIG 벡터로부터 본 발명에 따른 DHFR 유전자를 포함한 pCYBID 벡터의 제작과정을 나타낸 그림이다.
도 5는 본 발명에 따른 GS 유전자를 포함한 베바시주맙의 경쇄/중쇄 발현벡터 pCYB204IG의 제작과정을 나타낸 그림이다.
도 6은 본 발명에 따른 DHFR 유전자를 포함한 베바시주맙의 경쇄/중쇄 발현벡터 pCYB204ID의 제작과정을 나타낸 그림이다.
도 7a는 MSX 농도 500uM에서 pCYB204IG를 형질전환시킨 세포주의 항체 발현량을 확인한 결과이다.
도 7b는 MTX 800nM에서 pCYB204ID를 형질전환시킨 세포주의 항체 발현량을 확인한 결과이다.
도 8은 본 발명에서 사용한 발현 벡터 pCYBBSS001의 제한효소 지도를 모식적으로 나타낸 것이다.
도 9는 본 발명에서 사용한 발현 벡터 pCYBBSS002의 제한효소 지도를 모식적으로 나타낸 것이다.
도 10은 본 발명에서 사용한 발현 벡터 pCYBBSS003의 제한효소 지도를 모식적으로 나타낸 것이다.
도 11은 본 발명에서 사용한 발현 벡터 pCYBBSS004의 제한효소 지도를 모식적으로 나타낸 것이다.
도 12는 본 발명에서 사용한 발현 벡터 pCYBBSS005의 제한효소 지도를 모식적으로 나타낸 것이다.
도 13은 본 발명에서 사용한 발현 벡터 pCYBBSS006의 제한효소 지도를 모식적으로 나타낸 것이다.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1 : 경쇄 발현용 유전자 세트 Gln - LC 의 제작
인간 사이토메갈로바이러스 (human cytomegalovirus) strain AD169의 complete genome (GenBank:X17403.1)의 염기 서열을 통해 UTR 부분과 인트론(intron) 부분을 포함한 CMV 프로모터(promoter)의 DNA 서열을 확보하였다. 목적 단백질의 발현을 위해서는 최소한 프로모터, cloning site, poly A element가 필요하므로, 상기 사이토메갈로 바이러스의 genome에서 확인된 염기서열을 이용해, CMV 프로모터 부분과 UTR 부분, 인트론, cloning site, SV40 poly A의 DNA를 Genotech(한국)에 의뢰하여 합성하였다.
아울러, 인트론과 poly A 사이에는 항체 단백질의 경쇄 부분을 클로닝하기 위해 제한효소 XbaI과 NotI 인식부위를 각각 첨가하였으며, CMV 프로모터 5' 말단에는 제한효소 AscI의 인식부위를, poly A 3' 말단에는 제한효소 BamHI과 XhoI의 인식부위를 첨가하여 이후의 클로닝 과정에 사용되도록 하였다.
상기와 같은 과정을 통하여, [AscI]-CMV 프로모터-UTR-인트론-[XbaI/NotI]-polyA-[BamHI/XhoI]의 구성을 가지는 경쇄 발현용 유전자 세트(Gln-LC)를 제작하였다(도 1).
실시예 2 : 중쇄 발현용 유전자 세트 Gln - HC 제작
상기 실시예 1에서 제작한 Gln-LC 유전자 세트를 주형으로 하여, 하기 표 1에 정리한 BamHI Gln-F 프라이머(서열번호 7)와 NheI Gln-R 프라이머(서열번호 8)를 사용하여 PCR 반응을 진행하였다.
프라이머 염기서열 서열번호
BamHI Gln-F GGC CGG ATC CGG CGC GCC TGC AGT GAA T 7
NheI Gln-R GGC CCT CGA GAA AGA TCT GGG CTA GCC GTG TCA AGG ACG GTG ACT GCA G 8
중쇄 발현용 유전자 세트 Gln-HC에는 CMV 프로모터의 3' 말단에 제한효소 BamHI 인식부위를 첨가하였으며, CMV 프로모터 이후에 UTR, intron 그리고 항체 단백질의 중쇄 부분을 클로닝하기 위해 제한효소 NheI과 XhoI 인식부위를 첨가하여 이후의 클로닝 과정에 사용하도록 하였다.
상기 PCR 반응은 94℃에서 5분간 초기 변성시킨 후, 94℃ 50초, 50℃ 30초 및 72℃에서 2분 30초로 이루어진 순환을 30회 반복하고, 마지막으로 72℃에서 7분간 증폭시켰다. PCR 반응용액은 Premix Taq (Ex Taq version) (TAKARA사) 25 ㎕, 서열번호 7 과 8의 프라이머(10 pmole/㎕) 각 2 ㎕를 포함하고, 총 부피가 50 ㎕가 되도록 증류수를 첨가하였다.
상기와 같은 과정을 통하여, [BamHI]-CMV 프로모터-UTR-인트론-[NheI/XhoI]-[NheI]의 구성을 가지는 중쇄 발현용 유전자 세트(Gln-HC)를 제작하였다(도 1).
PCR로 증폭된 Gln-HC 유전자는 제조사의 지침에 따라 pGEM T-easy 벡터(Promega사)에 삽입하였다.
실시예 3 : 경쇄 발현용 유전자 세트의 GS 벡터 클로닝을 통한 GS - Gln - LC 플라스미드 제작
증폭용 유전자로서 GS(Glutamin synthetase) 유전자를 포함하는 발현 벡터를 제작하기 위해, 당사에서 개발한 IRES-GS 벡터를 사용하였다. IRES와 GS 유전자, poly A를 포함하는 IRES-GS 벡터를, 제한효소 MluI과 XhoI으로 37℃, 4시간 동안 처리하여 IRES - GS 유전자 - f1 origin - Kanamycin/neomycin 저항 유전자 - Poly A - pUC orogin이 포함된 DNA 벡터 절편을 회수하였다.
한편, 실시예 1에서 합성한 경쇄 발현용 유전자 세트 Gln-LC는 AscI과 XhoI을 처리하여 절단하였다.
상기 절단한 IRES-GS 벡터 절편 및 Gln-LC 유전자 세트 절편을 각각 1% agarose gel 전기영동을 한 후 gel extraction 하여 회수하였다. 각각의 회수한 DNA를 연결하여 GS-Gln-LC 플라스미드를 제작하였다(도 2).
실시예 4 : 경쇄 중쇄 발현용 플라스미드 pCYBIG 의 제작
상기 실시예 2에서 제작한 T-easy 벡터에 삽입되어 있는 경쇄 발현용 유전자 세트인 Gln-HC DNA를 수득하기 위하여, 제조된 벡터에 제한효소 BamHI과 XhoI을 37℃에서 4시간 동안 처리하여 절단하였다. 제한효소를 처리한 DNA는 1% agaroge gel 전기영동을 통해 Gln-HC 의 크기에 해당하는 DNA를 회수하였다.
한편, 실시예 3에서 제작한 GS-Gln-LC 플라스미드는 제한효소 BamHI과 XhoI을 37℃에서 4시간 동안 처리하여 절단하였다. 제한효소를 처리한 DNA는 1% agaroge gel 전기영동을 통해 GS-Gln-LC 플라스미드의 크기에 해당하는 DNA를 회수하였다.
상기 과정을 통해 회수한 Gln-HC 유전자 세트 절편과 GS-Gln-LC 플라스미드 절편을 연결하여 pCYBIG 벡터를 제작하였다(도 3).
실시예 5 : 경쇄 중쇄 발현용 플라스미드 pCYBID 의 제작
상기 실시예 4에서 제작한 pCYBIG 벡터의 GS 증폭 유전자를 DHFR(dehydrofolate reductase) 유전자로 대체한 pCYBID 벡터를 제작하고자 하였다.
구체적으로, DHFR 유전자를 주형으로 하여, 하기 표 2에 정리한 salI DHFR-F 프라이머(서열번호 9)와 NheI DHFR-R 프라이머(서열번호 10)를 사용하여 PCR 반응을 진행하였다.
프라이머 염기서열 서열번호
SalI DHFR-F GGC CGT CGA CAT GGT TCG ACC GCT G 9
NheI DHFR-R GGC CGC TAG CTT AGC CTT TCT TCT CAT AGA C 10
상기 PCR 반응은 94℃에서 5분간 초기 변성시킨 후, 94℃ 50초, 50℃ 30초 및 72℃에서 2분 30초로 이루어진 순환을 30회 반복하고, 마지막으로 72℃에서 7분간 증폭시켰다. PCR 반응용액은 Premix Taq (Ex Taq version) (TAKARA사) 25 ㎕, 서열번호 9과 10의 프라이머(10 pmole/㎕) 각 2 ㎕를 포함하고, 총 부피가 50 ㎕가 되도록 증류수를 첨가하였다. 상기와 같이 PCR로 증폭된 DHFR 유전자는 제조사의 지침에 따라 pGEM T-easy 벡터(Promega사)에 삽입하였다.
한편, 실시예 4에서 제작한 pCYBIG 벡터는 제한 효소 salI과 XbaI을 처리하여 절단하였고, T-easy 벡터에 클로닝된 DHFR 유전자는 salI과 NheI을 처리하여 DNA를 절단하였다.
각각의 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여 GS 대신 DHFR 유전자로 치환된 pCYBID 벡터를 제작하였다(도 4).
실시예 6 : 베바시주맙 발현 플라스미드를 제작
6-1. 베바시주맙 경쇄 유전자의 삽입
상기 실시예 4 및 5에서 제작한 pCYBIG 벡터 및 pCYBID 벡터에 베바시주맙 경쇄 유전자를 삽입하여, 베바시주맙 경쇄 발현 플라스미드를 제작하였다.
구체적으로는, pCYBIG 벡터 및 pCYBID 벡터에 대해서는 XbaI과 NotI으로 절단하였다.
베바시주맙의 경쇄유전자는 베바시주맙의 아미노산 서열(서열번호 13)을, DNA 염기 서열로 치환하였다(서열번호 11). DNA 서열 치환시에는 항체 발현 세포주인 CHO 세포에 최적화된 DNA 염기 서열로 치환하였으며, 5'-, 3'-양 말단에 제한효소 NheI과 NotI 인식 부위를 삽입하였다. Start codon 인 ATG 앞에 Kozak sequence (GCCACC)를 넣어 발현량이 높아지도록 유도하였으며, signal sequence로 MGWSCIILFLVATATGVHS를 첨가하여 유전자를 합성하였다. 합성된 유전자는 NheI과 NotI을 처리하여 절단하였다.
각각의 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여, 각각의 pCYBIG 및 pCYBID 벡터에 베바시주맙 경쇄 유전자가 삽입된 벡터를 제조하였다.
6-2. 베바시주맙 중쇄 유전자의 삽입
상기 실시예 6-1에서 제작된 경쇄 발현용 벡터 pCYBIG-베바시주맙 경쇄 유전자 벡터와, pCYBID-베바시주맙 경쇄 유전자 벡터를 NheI과 XhoI으로 절단하였다. 베바시주맙의 중쇄 아미노산 서열(서열번호 14)로부터 DNA 염기 서열로 치환하였다(서열번호 12). 이후, 실시예 6과 같이 start codon 인 ATG 앞에 Kozak sequence (GCCACC)를 넣어 design 하였으며, 양 말단에 제한효소 NheI과 XhoI 인식부위를 넣어 유전자를 합성한 후, NheI과 XhoI을 처리하여 절단하였다. 각각의 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여, 각각의 pCYB 벡터에 베바시주맙 경쇄 및 중쇄 유전자가 삽입된 벡터를 제조하였다(도 5, 도 6).
도 5 및 도 6은 본 발명의 pCYB204IG 벡터 및 pCYB204ID 벡터를 베바시주맙 경쇄 및 중쇄를 클로닝하는 방법을 도식화하여 나타낸 개략도이다.
실시예 7 : pCYB204IG 벡터의 항체 발현율 측정
7-1. 형질전환
항체 단백질을 안정적으로 발현하는 세포주를 개발하기 위해, 우선 GS 결핍 CHO-K1 세포를 형질전환 실험 전날 6-웰 플레이트에 웰당 4×105 세포의 농도로 분양한 후 37℃, 이산화탄소 배양기에서 배양하였다. 세포의 viability가 98% 이상인 것을 확인한 후 일반적이나 리포펙타민(Lipofectamine, Invitrogen사)을 이용해 pCYB204IG벡터를 세포 내로 형질전환시켰다. 이때 형질전환은 Opti-MEM-1(Invitrgen 사)에 상기 발현벡터 DNA 20 ㎍과 리포펙타민 10 ㎕를 첨가한 배지를 사용하여 수행되었다. 이로부터 pCYB204IG가 형질전환된 CHO-K1 세포를 선발하였다.
7-2. 항체 유전자 증폭
상기 실시예 7-1에서 pCYB204IG가 형질전환된 CHO-K1 세포주에 MSX(Methionine sulfoximine)의 초기 농도로 25μM을 처리한 후 세포 생장이 정상적으로 회복될 때까지 생장의 추이를 관찰하였다. MSX 25μM을 처리한 후, 7일 이후의 계대에서는 MSX의 농도를 250μM로 증가시켰으며, 마찬가지 방법으로 MSX에 의한 외부압력에 대해 생장이 회복되는 계대 시점에서 MSX의 농도를 증가시켜 최종적으로 500μM까지 증가시켰다. 500μM의 MSX의 농도에서 제조된 세포주 풀(pool1 및 pool2)의 발현량을 측정하였다. 발현량의 측정은 Anti-Fc를 사용한 ELISA 방법을 사용하여 확인하였다(도 7a).
실시예 8 : pCYB204ID 벡터의 항체 발현율 측정
8-1: 형질전환
상기 pCUB204IG 벡터의 증폭 유전자 GS 대신에 증폭 유전자 DHFR를 포함하는 pCYB204ID 발현벡터가 형질전환된 세포주의 발현량을 비교하기 위하여, 상기 실시예 7-1과 동일한 방법으로 CHO-DG44 세포(Gibco, 12609-012)에 pCYB204ID를 세포 내로 형질전환시킨 뒤, 형질전환된 CHO-DG44 세포를 선발하였다.
8-2: 항체 유전자 증폭
실시예 8-1에서 pCYB204ID가 형질전환된 CHO-DG44 세포주에 MTX (methotrexate)를 처리하여 유전자 증폭을 수행하였다. 실시예 7-2와 동일하게 세포 생장이 정상적으로 회복될 때 MTX의 농도를 증가시키는 방법에 의하여 발현량을 측정하였다. MTX 처리 농도는 50nM/200nM/800nM의 농도로 진행하였다. 발현량의 측정은 Anti-Fc를 사용한 ELISA 방법을 사용하여 확인하였다(도 7b).
상기 7-2와 8-2에서 측정한 벡터별 항체의 발현량을 비교한 결과, pCYB204ID 벡터를 형질전환시킨 세포주의 경우 pCYB204IG 벡터를 형질전환시킨 세포주보다 베바시주맙이 2배 이상 고발현되는 것을 확인하였다.
실시예 9 : 토실리주맙 발현 플라스미드 제작
9-1. 토실리주맙 경쇄 유전자의 삽입
상기 실시예 5에서 제작한 pCYBID 벡터에 토실리주맙 경쇄 유전자를 삽입하여, 토실리주맙 경쇄 발현 플라스미드를 제작하였다.
구체적으로는, pCYBID 벡터에 대해서 XbaI과 NotI으로 절단하였다.
토실리주맙의 경쇄 유전자는 토실리주맙의 경쇄 아미노산 서열(서열번호 17)을 암호화하는 DNA 염기 서열로 치환하였다(서열번호 15). DNA 서열 치환시에는 항체 발현 세포주인 CHO 세포에 최적화된 DNA 염기 서열로 치환하였으며, 5'-, 3'-양 말단에 제한효소 NheI과 NotI 인식 부위를 삽입하였다. Start codon 인 ATG 앞에 Kozak sequence (GCCACC)를 넣어 발현량이 높아지도록 유도하였으며, signal sequence로 MGWSCIILFLVATATGVHS를 첨가하여 유전자를 합성하였다. 합성된 유전자는 NheI과 NotI을 처리하여 절단하였다.
각각 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여, pCYBID 벡터에 토실리주맙 경쇄 유전자가 삽입된 벡터를 제조하였다.
9-2. 토실리주맙 중쇄 유전자의 삽입
상기 실시예 9-1에서 제작된 경쇄 발현용 벡터 pCYBID-토실리주맙 경쇄 유전자 벡터를 NheI과 XhoI으로 절단하였다. 토실리주맙의 중쇄 아미노산 서열(서열번호 18)로부터 DNA 염기 서열로 치환하였다(서열번호 16). 이후, 실시예 9-1과 같이 start codon 인 ATG 앞에 Kozak sequence (GCCACC)를 넣어 design 하였으며, 양 말단에 제한효소 NheI과 XhoI 인식부위를 넣어 유전자를 합성한 후, NheI과 XhoI을 처리하여 절단하였다. 각각의 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여, pCYB 벡터에 토실리주맙 경쇄 및 중쇄 유전자가 삽입된 벡터를 제조하였다(도 8).
도 8은 본 발명의 발현벡터 pCYBBSS001의 제한효소 지도를 모식적으로 나타낸 것이다.
실시예 10 : pCYBBSS001 벡터의 항체 발현율 측정
10-1. 형질전환
항체 단백질을 안정적으로 발현하는 세포주를 개발하기 위해, 우선 DHFR 결핍 CHO-DG44 세포(Dr.Chasin, Univ. Columbia. USA)를 형질전환 실험 전날 6-웰 플레이트에 웰당 8×105 세포의 농도로 분양한 후 37℃, 이산화탄소 배양기에서 배양하였다. 세포가 플레이트에 70 내지 80% 정도 성장한 것을 확인한 후 리포펙타민 LTX and PLUS(Lipofectamine LTX and PLUS reagent, Invitrogen사)를 이용해 경쇄/중쇄 발현벡터 pCYBBSS001을 세포 내로 형질전환하였다. 이때 형질전환에는 Opti-MEM-1 (Invitrogen 사)에 상기 발현벡터 DNA 각 2.5 ㎍과 리포펙타민 LTX 10 ㎕를 첨가한 배지를 사용하였다. 이로부터 경쇄/중쇄 발현벡터 pCYBBSS001이 형질전환된 CHO-DG44 세포를 선별하였다.
10-2. 항체 유전자 증폭
상기 실시예 10-1에서 pCYBBSS001이 형질전환된 CHO-DG44 세포주에 MTX(methotrexate)를 처리하여 유전자 증폭을 수행하였다. 세포 생장이 정상적으로 회복될 때 MTX의 농도를 증가시키는 방법에 의하여 발현량을 측정하였다. MTX 처리 농도는 50 nM/ 200 nM/ 800 nM의 농도로 진행하였다. 그 결과, pCYBBSS001 벡터를 형질전환시킨 세포주의 경우 800 nM의 MTX 농도에서 최고 발현량을 보였다. 발현량 측정은 Octet titer assay를 이용하였으며, Protein A Dip and Read biosensors (forteBIO, cat. no. 18-5010, lot no. 120716)를 1 X PBS로 10분 이상 평형화한 뒤 배양액에 반응시켰다. Biosensor의 regeneration/neutralization은 각 시료를 분석한 후 3 cycles로 수행하였고, 배양액은 standard 범위 내에서 분석되도록 1 X PBS를 사용하여 희석하여 분석하였다. 800 nM의 MTX 농도에서 발현량은 2가지 pool에서 각각 50.8 ㎍/㎖과 51.7 ㎍/㎖으로 확인되었으며, 이러한 결과는 본 발명의 인트론이 삽입된 발현벡터를 형질전환한 경우 유전자를 계속적으로 고발현할 수 있음을 의미한다.
실시예 11 : 데노수맙 발현 플라스미드 제작
11-1. 데노수맙 경쇄 유전자의 삽입
상기 실시예 5에서 제작한 pCYBID 벡터에 데노수맙 경쇄 유전자를 삽입하여, 데노수맙 경쇄 발현 플라스미드를 제작하였다.
구체적으로는, pCYBID 벡터에 대해서 XbaI과 NotI으로 절단하였다.
데노수맙의 경쇄유전자는 데노수맙의 아미노산 서열(서열번호 21)을, DNA 염기 서열로 치환하였다(서열번호 19). DNA 서열 치환시에는 항체 발현 세포주인 CHO 세포에 최적화된 DNA 염기 서열로 치환하였으며, 5'-, 3'-양 말단에 제한효소 NheI과 NotI 인식 부위를 삽입하였다. Start codon 인 ATG 앞에 Kozak sequence (GCCACC)를 넣어 발현량이 높아지도록 유도하였으며, signal sequence로 MGWSCIILFLVATATGVHS를 첨가하여 유전자를 합성하였다. 합성된 유전자는 NheI과 NotI을 처리하여 절단하였다.
각각 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여, pCYBID 벡터에 데노수맙 경쇄 유전자가 삽입된 벡터를 제조하였다.
11-2. 데노수맙 중쇄 유전자의 삽입
상기 실시예 11-1에서 제작된 경쇄 발현용 벡터 pCYBID-데노수맙 경쇄 유전자 벡터를 NheI과 XhoI으로 절단하였다. 데노수맙의 중쇄 아미노산 서열(서열번호 22)로부터 DNA 염기 서열로 치환하였다(서열번호 20). 이후, 실시예 11-1과 같이 start codon 인 ATG 앞에 Kozak sequence (GCCACC)를 넣어 design 하였으며, 양 말단에 제한효소 NheI과 XhoI 인식부위를 넣어 유전자를 합성한 후, NheI과 XhoI을 처리하여 절단하였다. 각각의 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여, pCYB 벡터에 데노수맙 경쇄 및 중쇄 유전자가 삽입된 벡터를 제조하였다(도 9).
도 9는 본 발명의 발현벡터 pCYBBSS002의 제한효소 지도를 모식적으로 나타낸 것이다.
실시예 12 : pCYBBSS002 벡터의 항체 발현율 측정
12-1. 형질전환
항체 단백질을 안정적으로 발현하는 세포주를 개발하기 위해, 우선 DHFR 결핍 CHO-DG44 세포(Dr.Chasin, Univ. Columbia. USA)를 형질전환 실험 전날 6-웰 플레이트에 웰당 8×105 세포의 농도로 분양한 후 37℃, 이산화탄소 배양기에서 배양하였다. 세포가 플레이트에 70 내지 80% 정도 성장한 것을 확인한 후 리포펙타민 LTX and PLUS(Lipofectamine LTX and PLUS reagent, Invitrogen사)를 이용해 경쇄/중쇄 발현벡터 pCYBBSS002를 세포 내로 형질전환하였다. 이때 형질전환에는 Opti-MEM-1 (Invitrogen 사)에 상기 발현벡터 DNA 각 2.5 ㎍과 리포펙타민 LTX 10 ㎕를 첨가한 배지를 사용하였다. 이로부터 경쇄/중쇄 발현벡터 pCYBBSS002가 형질전환된 CHO-DG44 세포를 선별하였다.
12-2. 항체 유전자 증폭
상기 실시예 12-1에서 pCYBBSS002가 형질전환된 CHO-DG44 세포주에 MTX(methotrexate)를 처리하여 유전자 증폭을 수행하였다. 세포 생장이 정상적으로 회복될 때 MTX의 농도를 증가시키는 방법에 의하여 발현량을 측정하였다. MTX 처리 농도는 50 nM/ 200 nM/ 800 nM의 농도로 진행하였다. 그 결과, pCYBBSS002 벡터를 형질전환시킨 세포주의 경우 800 nM의 MTX 농도에서 최고 발현량을 보였다. 발현량 측정은 Octet titer assay를 이용하였으며, Protein A Dip and Read biosensors (forteBIO, cat. no. 18-5010, lot no. 120716)를 1 X PBS로 10분 이상 평형화한 뒤 배양액에 반응시켰다. Biosensor의 regeneration/neutralization은 각 시료를 분석한 후 3 cycles로 수행하였고, 배양액은 standard 범위 내에서 분석되도록 1 X PBS를 사용하여 희석하여 분석하였다. 800 nM의 MTX 농도에서 발현량은 81.4 ㎍/㎖으로 확인되었으며, 이러한 결과는 본 발명의 인트론이 삽입된 발현벡터를 형질전환한 경우 유전자를 계속적으로 고발현할 수 있음을 의미한다.
실시예 13 : 벨리무맙 발현 플라스미드 제작
13-1. 벨리무맙 경쇄 유전자의 삽입
상기 실시예 5에서 제작한 pCYBID 벡터에 벨리무맙 경쇄 유전자를 삽입하여, 벨리무맙 경쇄 발현 플라스미드를 제작하였다.
구체적으로는, pCYBID 벡터에 대해서 XbaI과 NotI으로 절단하였다.
벨리무맙의 경쇄 유전자는 벨리무맙의 경쇄 아미노산 서열(서열번호 25)을 암호화하는 DNA 염기 서열로 치환하였다(서열번호 23). DNA 서열 치환시에는 항체 발현 세포주인 CHO 세포에 최적화된 DNA 염기 서열로 치환하였으며, 5'-, 3'-양 말단에 제한효소 NheI과 NotI 인식 부위를 삽입하였다. Start codon 인 ATG 앞에 Kozak sequence (GCCACC)를 넣어 발현량이 높아지도록 유도하였으며, signal sequence로 MGWSCIILFLVATATGVHS를 첨가하여 유전자를 합성하였다. 합성된 유전자는 NheI과 NotI을 처리하여 절단하였다.
각각 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여, pCYBID 벡터에 벨리무맙 경쇄 유전자가 삽입된 벡터를 제조하였다.
13-2. 벨리무맙 중쇄 유전자의 삽입
상기 실시예 13-1에서 제작된 경쇄 발현용 벡터 pCYBID-벨리무맙 경쇄 유전자 벡터를 NheI과 XhoI으로 절단하였다. 벨리무맙의 중쇄 아미노산 서열(서열번호 26)로부터 DNA 염기 서열로 치환하였다(서열번호 24). 이후, 실시예 13-1과 같이 start codon 인 ATG 앞에 Kozak sequence (GCCACC)를 넣어 design 하였으며, 양 말단에 제한효소 NheI과 XhoI 인식부위를 넣어 유전자를 합성한 후, NheI과 XhoI을 처리하여 절단하였다. 각각의 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여, 각각의 pCYB 벡터에 벨리무맙 경쇄 및 중쇄 유전자가 삽입된 벡터를 제조하였다(도 10).
도 10는 본 발명의 발현벡터 pCYBBSS003의 제한효소 지도를 모식적으로 나타낸 것이다.
실시예 14 : pCYBBSS003 벡터의 항체 발현율 측정
14-1. 형질전환
항체 단백질을 안정적으로 발현하는 세포주를 개발하기 위해, 우선 DHFR 결핍 CHO-DG44 세포(Dr.Chasin, Univ. Columbia. USA)를 형질전환 실험 전날 6-웰 플레이트에 웰당 8×105 세포의 농도로 분양한 후 37℃, 이산화탄소 배양기에서 배양하였다. 세포가 플레이트에 70 내지 80% 정도 성장한 것을 확인한 후 리포펙타민 LTX and PLUS(Lipofectamine LTX and PLUS reagent, Invitrogen사)를 이용해 경쇄/중쇄 발현벡터 pCYBBSS003을 세포 내로 형질전환하였다. 이때 형질전환에는 Opti-MEM-1 (Invitrogen 사)에 상기 발현벡터 DNA 각 2.5 ㎍과 리포펙타민 LTX 10 ㎕를 첨가한 배지를 사용하였다. 이로부터 경쇄/중쇄 발현벡터 pCYBBSS003이 형질전환된 CHO-DG44 세포를 선별하였다.
14-2. 항체 유전자 발현량 측정
상기 실시예 14-1에서 pCYBBSS003 벡터가 형질전환된 CHO-DG44 세포주의 벨리무맙의 발현량을 측정하였다. 발현량의 측정은 Anti-Fc를 사용한 ELISA 방법을 사용하였으며, PCD(Picograms/cell/day)로 계산하여 세포당 발현량을 구하였다. 그 결과, pCYBBSS003 벡터를 형질전환시킨 세포주의 경우 4 ㎍/㎖의 발현량을 보임을 확인하였으며, 이러한 결과는 본 발명의 인트론이 삽입된 발현벡터를 형질전환한 경우 유전자를 계속적으로 고발현할 수 있음을 의미한다.
실시예 15 : 골리무맙 발현 플라스미드 제작
15-1. 골리무맙 경쇄 유전자의 삽입
상기 실시예 5에서 제작한 pCYBID 벡터에 골리무맙 경쇄 유전자를 삽입하여, 골리무맙 경쇄 발현 플라스미드를 제작하였다.
구체적으로는, pCYBID 벡터에 대해서 XbaI과 NotI으로 절단하였다.
골리무맙의 경쇄 유전자는 골리무맙의 경쇄 아미노산 서열(서열번호 29)을 암호화하는 DNA 염기 서열로 치환하였다(서열번호 27). DNA 서열 치환시에는 항체 발현 세포주인 CHO 세포에 최적화된 DNA 염기 서열로 치환하였으며, 5'-, 3'-양 말단에 제한효소 NheI과 NotI 인식 부위를 삽입하였다. Start codon 인 ATG 앞에 Kozak sequence (GCCACC)를 넣어 발현량이 높아지도록 유도하였으며, signal sequence로 MGWSCIILFLVATATGVHS를 첨가하여 유전자를 합성하였다. 합성된 유전자는 NheI과 NotI을 처리하여 절단하였다.
각각 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여, pCYBID 벡터에 골리무맙 경쇄 유전자가 삽입된 벡터를 제조하였다.
15-2. 골리무맙 중쇄 유전자의 삽입
상기 실시예 15-1에서 제작된 경쇄 발현용 벡터 pCYBID-골리무맙 경쇄 유전자 벡터를 NheI과 XhoI으로 절단하였다. 골리무맙의 중쇄 아미노산 서열(서열번호 30)로부터 DNA 염기 서열로 치환하였다(서열번호 28). 이후, 실시예 15-1과 같이 start codon 인 ATG 앞에 Kozak sequence (GCCACC)를 넣어 design 하였으며, 양 말단에 제한효소 NheI과 XhoI 인식부위를 넣어 유전자를 합성한 후, NheI과 XhoI을 처리하여 절단하였다. 각각의 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여, pCYB 벡터에 골리무맙 경쇄 및 중쇄 유전자가 삽입된 벡터를 제조하였다(도 11).
도 11는 본 발명의 발현벡터 pCYBBSS004의 제한효소 지도를 모식적으로 나타낸 것이다.
실시예 16 : pCYBBSS004 벡터의 항체 발현율 측정
16-1. 형질전환
항체 단백질을 안정적으로 발현하는 세포주를 개발하기 위해, 우선 DHFR 결핍 CHO-DG44 세포(Dr.Chasin, Univ. Columbia. USA)를 형질전환 실험 전날 6-웰 플레이트에 웰당 8×105 세포의 농도로 분양한 후 37℃, 이산화탄소 배양기에서 배양하였다. 세포가 플레이트에 70 내지 80% 정도 성장한 것을 확인한 후 리포펙타민 LTX and PLUS(Lipofectamine LTX and PLUS reagent, Invitrogen사)를 이용해 경쇄/중쇄 발현벡터 pCYBBSS004을 세포 내로 형질전환하였다. 이때 형질전환에는 Opti-MEM-1 (Invitrogen 사)에 상기 발현벡터 DNA 각 2.5 ㎍과 리포펙타민 LTX 10 ㎕를 첨가한 배지를 사용하였다. 이로부터 경쇄/중쇄 발현벡터 pCYBBSS004이 형질전환된 CHO-DG44 세포를 선별하였다.
16-2. 항체 유전자 증폭
상기 실시예 16-1에서 pCYBBSS004이 형질전환된 CHO-DG44 세포주에 MTX(methotrexate)를 처리하여 유전자 증폭을 수행하였다. 세포 생장이 정상적으로 회복될 때 MTX의 농도를 증가시키는 방법에 의하여 발현량을 측정하였다. MTX 처리 농도는 50 nM/ 200 nM/ 500 nM/ 800 nM의 농도로 진행하였다. 그 결과, pCYBBSS004 벡터를 형질전환시킨 세포주의 경우 800 nM의 MTX 농도에서 최고 발현량을 보였다. 발현량 측정은 Octet titer assay를 이용하였으며, Protein A Dip and Read biosensors (forteBIO, cat. no. 18-5010, lot no. 120716)를 1 X PBS로 10분 이상 평형화한 뒤 배양액에 반응시켰다. Biosensor의 regeneration/neutralization은 각 시료를 분석한 후 3 cycles로 수행하였고, 배양액은 standard 범위 내에서 분석되도록 1 X PBS를 사용하여 희석하여 분석하였다. 500 nM의 MTX 농도에서 발현량은 120.3 ㎍/㎖으로 확인되었으며, 이러한 결과는 본 발명의 골리무맙 발현벡터를 형질전환한 경우 유전자를 계속적으로 고발현할 수 있음을 의미한다.
실시예 17 : 우스테키누맙 발현 플라스미드 제작
17-1. 우스테키누맙 경쇄 유전자의 삽입
상기 실시예 5에서 제작한 pCYBID 벡터에 우스테키누맙 경쇄 유전자를 삽입하여, 우스테키누맙 경쇄 발현 플라스미드를 제작하였다.
구체적으로는, pCYBID 벡터에 대해서 XbaI과 NotI으로 절단하였다.
우스테키누맙의 경쇄 유전자는 우스테키누맙의 경쇄 아미노산 서열(서열번호 33)을 암호화하는 DNA 염기 서열로 치환하였다(서열번호 31). DNA 서열 치환시에는 항체 발현 세포주인 CHO 세포에 최적화된 DNA 염기 서열로 치환하였으며, 5'-, 3'-양 말단에 제한효소 NheI과 NotI 인식 부위를 삽입하였다. Start codon 인 ATG 앞에 Kozak sequence (GCCACC)를 넣어 발현량이 높아지도록 유도하였으며, signal sequence로 MGWSCIILFLVATATGVHS를 첨가하여 유전자를 합성하였다. 합성된 유전자는 NheI과 NotI을 처리하여 절단하였다.
각각 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여, pCYBID 벡터에 우스테키누맙 경쇄 유전자가 삽입된 벡터를 제조하였다.
17-2. 우스테키누맙 중쇄 유전자의 삽입
상기 실시예 17-1에서 제작된 경쇄 발현용 벡터 pCYBID-우스테키누맙 경쇄 유전자 벡터를 NheI과 XhoI으로 절단하였다. 우스테키누맙의 중쇄 아미노산 서열(서열번호 34)로부터 DNA 염기 서열로 치환하였다(서열번호 32). 이후, 실시예 17-1과 같이 start codon 인 ATG 앞에 Kozak sequence (GCCACC)를 넣어 design 하였으며, 양 말단에 제한효소 NheI과 XhoI 인식부위를 넣어 유전자를 합성한 후, NheI과 XhoI을 처리하여 절단하였다. 각각의 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여, 각각의 pCYB 벡터에 우스테키누맙 경쇄 및 중쇄 유전자가 삽입된 벡터를 제조하였다(도 12).
도 12는 본 발명의 발현벡터 pCYBBSS005의 제한효소 지도를 모식적으로 나타낸 것이다.
실시예 18 : pCYBBSS005 벡터의 항체 발현율 측정
18-1. 형질전환
항체 단백질을 안정적으로 발현하는 세포주를 개발하기 위해, 우선 DHFR 결핍 CHO-DG44 세포(Dr.Chasin, Univ. Columbia. USA)를 형질전환 실험 전날 6-웰 플레이트에 웰당 8×105 세포의 농도로 분양한 후 37℃, 이산화탄소 배양기에서 배양하였다. 세포가 플레이트에 70 내지 80% 정도 성장한 것을 확인한 후 리포펙타민 LTX and PLUS(Lipofectamine LTX and PLUS reagent, Invitrogen사)를 이용해 경쇄/중쇄 발현벡터 pCYBBSS005을 세포 내로 형질전환하였다. 이때 형질전환에는 Opti-MEM-1 (Invitrogen 사)에 상기 발현벡터 DNA 각 2.5 ㎍과 리포펙타민 LTX 10 ㎕를 첨가한 배지를 사용하였다. 이로부터 경쇄/중쇄 발현벡터 pCYBBSS005이 형질전환된 CHO-DG44 세포를 선별하였다.
18-2. 항체 유전자 발현량 측정
상기 실시예 18-1에서 pCYBBSS005 벡터가 형질전환된 CHO-DG44 세포주의 우스테키누맙의 발현량을 측정하였다. 발현량의 측정은 Anti-Fc를 사용한 ELISA 방법을 사용하였으며, PCD(Picograms/cell/day)로 계산하여 세포당 발현량을 구하였다. 그 결과, pCYBBSS005 벡터를 형질전환시킨 세포주의 경우 2.5μg/ml의 발현량을 보임을 확인하였으며, 이러한 결과는 본 발명의 인트론이 삽입된 발현벡터를 형질전환한 경우 유전자를 계속적으로 고발현할 수 있음을 의미한다.
실시예 19 : 이필리무맙 발현 플라스미드 제작
19-1. 이필리무맙 경쇄 유전자의 삽입
상기 실시예 5에서 제작한 pCYBID 벡터에 이필리무맙 경쇄 유전자를 삽입하여, 이필리무맙 경쇄 발현 플라스미드를 제작하였다.
구체적으로는, pCYBID 벡터에 대해서 XbaI과 NotI으로 절단하였다.
이필리무맙의 경쇄 유전자는 이필리무맙의 경쇄 아미노산 서열(서열번호 37)을 암호화하는 DNA 염기 서열로 치환하였다(서열번호 35). DNA 서열 치환시에는 항체 발현 세포주인 CHO 세포에 최적화된 DNA 염기 서열로 치환하였으며, 5'-, 3'-양 말단에 제한효소 NheI과 NotI 인식 부위를 삽입하였다. Start codon 인 ATG 앞에 Kozak sequence (GCCACC)를 넣어 발현량이 높아지도록 유도하였으며, signal sequence로 MGWSCIILFLVATATGVHS를 첨가하여 유전자를 합성하였다. 합성된 유전자는 NheI과 NotI을 처리하여 절단하였다.
각각 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여, pCYBID 벡터에 이필리무맙 경쇄 유전자가 삽입된 벡터를 제조하였다.
19-2. 이필리무맙 중쇄 유전자의 삽입
상기 실시예 19-1에서 제작된 경쇄 발현용 벡터 pCYBID-이필리무맙 경쇄 유전자 벡터를 NheI과 XhoI으로 절단하였다. 이필리무맙의 중쇄 아미노산 서열(서열번호 38)로부터 DNA 염기 서열로 치환하였다(서열번호 36). 이후, 실시예 19-1과 같이 start codon 인 ATG 앞에 Kozak sequence (GCCACC)를 넣어 design 하였으며, 양 말단에 제한효소 NheI과 XhoI 인식부위를 넣어 유전자를 합성한 후, NheI과 XhoI을 처리하여 절단하였다. 각각의 절단한 DNA는 1% agarose gel 전기영동을 통해 DNA를 회수한 후 두 개의 DNA를 연결하여, 각각의 pCYB 벡터에 이필리무맙 경쇄 및 중쇄 유전자가 삽입된 벡터를 제조하였다(도 13).
도 13는 본 발명의 발현벡터 pCYBBSS006의 제한효소 지도를 모식적으로 나타낸 것이다.
실시예 20 : pCYBBSS006 벡터의 항체 발현율 측정
20-1. 형질전환
항체 단백질을 안정적으로 발현하는 세포주를 개발하기 위해, 우선 DHFR 결핍 CHO-DG44 세포(Dr.Chasin, Univ. Columbia. USA)를 형질전환 실험 전날 6-웰 플레이트에 웰당 8×105 세포의 농도로 분양한 후 37℃, 이산화탄소 배양기에서 배양하였다. 세포가 플레이트에 70 내지 80% 정도 성장한 것을 확인한 후 리포펙타민 LTX and PLUS(Lipofectamine LTX and PLUS reagent, Invitrogen사)를 이용해 경쇄/중쇄 발현벡터 pCYBBSS006을 세포 내로 형질전환하였다. 이때 형질전환에는 Opti-MEM-1 (Invitrogen 사)에 상기 발현벡터 DNA 각 2.5 ㎍과 리포펙타민 LTX 10 ㎕를 첨가한 배지를 사용하였다. 이로부터 경쇄/중쇄 발현벡터 pCYBBSS006이 형질전환된 CHO-DG44 세포를 선별하였다.
20-2. 항체 유전자 증폭
상기 실시예 20-1에서 pCYBBSS006이 형질전환된 CHO-DG44 세포주에 MTX(Methotrexate)를 처리하여 유전자 증폭을 수행하였다. 세포 생장이 정상적으로 회복될 때 MTX의 농도를 증가시키는 방법에 의하여 발현량을 측정하였다. MTX 처리 농도는 50 nM/ 200 nM/ 500 nM/ 800 nM의 농도로 진행하였다. 그 결과, pCYBBSS006 벡터를 형질전환시킨 세포주의 경우 500 nM의 MTX 농도에서 최고 발현량을 보였다. 발현량 측정은 Octet titer assay를 이용하였으며, Protein A Dip and Read biosensors (forteBIO, cat. no. 18-5010, lot no. 120716)를 1 X PBS로 10분 이상 평형화한 뒤 배양액에 반응시켰다. Biosensor의 regeneration/neutralization은 각 시료를 분석한 후 3 cycles로 수행하였고, 배양액은 standard 범위 내에서 분석되도록 1 X PBS를 사용하여 희석하여 분석하였다. 500 nM의 MTX 농도에서 발현량은 8 ㎍/㎖으로 확인되었으며, 이러한 결과는 본 발명의 인트론이 삽입된 발현벡터를 형질전환한 경우 유전자를 계속적으로 고발현할 수 있음을 의미한다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
<110> HANWHA CHEMICAL CORPORATION <120> Bicistronic expression vector for expressing antibody and method for producing antibody using the same <130> PA130872KR-P7 <150> KR10-2013-0119511 <151> 2013-10-07 <160> 38 <170> KopatentIn 2.0 <210> 1 <211> 1143 <212> DNA <213> Cytomegalovirus stain AD169 promoter <400> 1 ctgcagtgaa taataaaatg tgtgtttgtc cgaaatacgc gttttgagat ttctgtcgcc 60 gactaaattc atgtcgcgcg atagtggtgt ttatcgccga tagagatggc gatattggaa 120 aaatcgatat ttgaaaatat ggcatattga aaatgtcgcc gatgtgagtt tctgtgtaac 180 tgatatcgcc atttttccaa aagtgatttt tgggcatacg cgatatctgg cgatagcgct 240 tatatcgttt acgggggatg gcgatagacg actttggtga cttgggcgat tctgtgtgtc 300 gcaaatatcg cagtttcgat ataggtgaca gacgatatga ggctatatcg ccgatagagg 360 cgacatcaag ctggcacatg gccaatgcat atcgatctat acattgaatc aatattggcc 420 attagccata ttattcattg gttatatagc ataaatcaat attggctatt ggccattgca 480 tacgttgtat ccatatcata atatgtacat ttatattggc tcatgtccaa cattaccgcc 540 atgttgacat tgattattga ctagttatta atagtaatca attacggggt cattagttca 600 tagcccatat atggagttcc gcgttacata acttacggta aatggcccgc ctggctgacc 660 gcccaacgac ccccgcccat tgacgtcaat aatgacgtat gttcccatag taacgccaat 720 agggactttc cattgacgtc aatgggtgga gtatttacgg taaactgccc acttggcagt 780 acatcaagtg tatcatatgc caagtacgcc ccctattgac gtcaatgacg gtaaatggcc 840 cgcctggcat tatgcccagt acatgacctt atgggacttt cctacttggc agtacatcta 900 cgtattagtc atcgctatta ccatggtgat gcggttttgg cagtacatca atgggcgtgg 960 atagcggttt gactcacggg gatttccaag tctccacccc attgacgtca atgggagttt 1020 gttttggcac caaaatcaac gggactttcc aaaatgtcgt aacaactccg ccccattgac 1080 gcaaatgggc ggtaggcgtg tacggtggga ggtctatata agcagagctc gtttagtgaa 1140 ccg 1143 <210> 2 <211> 121 <212> DNA <213> Cytomegalovirus stain AD169 UTR(5'UTR) <400> 2 tcagatcgcc tggagacgcc atccacgctg ttttgacctc catagaagac accgggaccg 60 atccagcctc cgcggccggg aacggtgcat tggaacgcgg attccccgtg ccaagagtga 120 c 121 <210> 3 <211> 827 <212> DNA <213> Cytomegalovirus stain AD169 intron <400> 3 gtaagtaccg cctatagagt ctataggccc acccccttgg cttcttatgc atgctatact 60 gtttttggct tggggtctat acacccccgc ttcctcatgt tataggtgat ggtatagctt 120 agcctatagg tgtgggttat tgaccattat tgaccactcc cctattggtg acgatacttt 180 ccattactaa tccataacat ggctctttgc cacaactctc tttattggct atatgccaat 240 acactgtcct tcagagactg acacggactc tgtattttta caggatgggg tctcatttat 300 tatttacaaa ttcacatata caacaccacc gtccccagtg cccgcagttt ttattaaaca 360 taacgtggga tctccacgcg aatctcgggt acgtgttccg gacatgggct cttctccggt 420 agcggcggag cttctacatc cgagccctgc tcccatgcct ccagcgactc atggtcgctc 480 ggcagctcct tgctcctaac agtggaggcc agacttaggc acagcacgat gcccaccacc 540 accagtgtgc cgcacaaggc cgtggcggta gggtatgtgt ctgaaaatga gctcggggag 600 cgggcttgca ccgctgacgc atttggaaga cttaaggcag cggcagaaga agatgcaggc 660 agctgagttg ttgtgttctg ataagagtca gaggtaactc ccgttgcggt gctgttaacg 720 gtggagggca gtgtagtctg agcagtactc gttgctgccg cgcgcgccac cagacataat 780 agctgacaga ctaacagact gttcctttcc atgggtcttt tctgcag 827 <210> 4 <211> 576 <212> DNA <213> IRES (internal ribosome entry site) <400> 4 cgcccctctc cctccccccc ccctaacgtt actggccgaa gccgcttgga ataaggccgg 60 tgtgcgtttg tctatatgtt attttccacc atattgccgt cttttggcaa tgtgagggcc 120 cggaaacctg gccctgtctt cttgacgagc attcctaggg gtctttcccc tctcgccaaa 180 ggaatgcaag gtctgttgaa tgtcgtgaag gaagcagttc ctctggaagc ttcttgaaga 240 caaacaacgt ctgtagcgac cctttgcagg cagcggaacc ccccacctgg cgacaggtgc 300 ctctgcggcc aaaagccacg tgtataagat acacctgcaa aggcggcaca accccagtgc 360 cacgttgtga gttggatagt tgtggaaaga gtcaaatggc tctcctcaag cgtattcaac 420 aaggggctga aggatgccca gaaggtaccc cattgtatgg gatctgatct ggggcctcgg 480 tgcacatgct ttacatgtgt ttagtcgagg ttaaaaaaac gtctaggccc cccgaaccac 540 ggggacgtgg ttttcctttg aaaaacacga tgataa 576 <210> 5 <211> 2399 <212> DNA <213> Artificial Sequence <220> <223> Gln-LC <400> 5 cctaggcgcg cctgcagtga ataataaaat gtgtgtttgt ccgaaatacg cgttttgaga 60 tttctgtcgc cgactaaatt catgtcgcgc gatagtggtg tttatcgccg atagagatgg 120 cgatattgga aaaatcgata tttgaaaata tggcatattg aaaatgtcgc cgatgtgagt 180 ttctgtgtaa ctgatatcgc catttttcca aaagtgattt ttgggcatac gcgatatctg 240 gcgatagcgc ttatatcgtt tacgggggat ggcgatagac gactttggtg acttgggcga 300 ttctgtgtgt cgcaaatatc gcagtttcga tataggtgac agacgatatg aggctatatc 360 gccgatagag gcgacatcaa gctggcacat ggccaatgca tatcgatcta tacattgaat 420 caatattggc cattagccat attattcatt ggttatatag cataaatcaa tattggctat 480 tggccattgc atacgttgta tccatatcat aatatgtaca tttatattgg ctcatgtcca 540 acattaccgc catgttgaca ttgattattg actagttatt aatagtaatc aattacgggg 600 tcattagttc atagcccata tatggagttc cgcgttacat aacttacggt aaatggcccg 660 cctggctgac cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata 720 gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgcc 780 cacttggcag tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac 840 ggtaaatggc ccgcctggca ttatgcccag tacatgacct tatgggactt tcctacttgg 900 cagtacatct acgtattagt catcgctatt accatggtga tgcggttttg gcagtacatc 960 aatgggcgtg gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc 1020 aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg taacaactcc 1080 gccccattga cgcaaatggg cggtaggcgt gtacggtggg aggtctatat aagcagagct 1140 cgtttagtga accgtcagat cgcctggaga cgccatccac gctgttttga cctccataga 1200 agacaccggg accgatccag cctccgcggc cgggaacggt gcattggaac gcggattccc 1260 cgtgccaaga gtgacgtaag taccgcctat agagtctata ggcccacccc cttggcttct 1320 tatgcatgct atactgtttt tggcttgggg tctatacacc cccgcttcct catgttatag 1380 gtgatggtat agcttagcct ataggtgtgg gttattgacc attattgacc actcccctat 1440 tggtgacgat actttccatt actaatccat aacatggctc tttgccacaa ctctctttat 1500 tggctatatg ccaatacact gtccttcaga gactgacacg gactctgtat ttttacagga 1560 tggggtctca tttattattt acaaattcac atatacaaca ccaccgtccc cagtgcccgc 1620 agtttttatt aaacataacg tgggatctcc acgcgaatct cgggtacgtg ttccggacat 1680 gggctcttct ccggtagcgg cggagcttct acatccgagc cctgctccca tgcctccagc 1740 gactcatggt cgctcggcag ctccttgctc ctaacagtgg aggccagact taggcacagc 1800 acgatgccca ccaccaccag tgtgccgcac aaggccgtgg cggtagggta tgtgtctgaa 1860 aatgagctcg gggagcgggc ttgcaccgct gacgcatttg gaagacttaa ggcagcggca 1920 gaagaagatg caggcagctg agttgttgtg ttctgataag agtcagaggt aactcccgtt 1980 gcggtgctgt taacggtgga gggcagtgta gtctgagcag tactcgttgc tgccgcgcgc 2040 gccaccagac ataatagctg acagactaac agactgttcc tttccatggg tcttttctgc 2100 agtcaccgtc cttgacacgt ctagaccaga tctttgcggc cgcattgatc ataatcagcc 2160 ataccacatt tgtagaggtt ttacttgctt taaaaaacct cccacacctc cccctgaacc 2220 tgaaacataa aatgaatgca attgttgttg ttaacttgtt tattgcagct tataatggtt 2280 acaaataaag caatagcatc acaaatttca caaataaagc atttttttca ctgcattcta 2340 gttgtggttt gtccaaactc atcaatgtat cttatcatgt ctggatccgc tagctcgag 2399 <210> 6 <211> 2125 <212> DNA <213> Artificial Sequence <220> <223> Gln-HC <400> 6 cctaggcgcg cctgcagtga ataataaaat gtgtgtttgt ccgaaatacg cgttttgaga 60 tttctgtcgc cgactaaatt catgtcgcgc gatagtggtg tttatcgccg atagagatgg 120 cgatattgga aaaatcgata tttgaaaata tggcatattg aaaatgtcgc cgatgtgagt 180 ttctgtgtaa ctgatatcgc catttttcca aaagtgattt ttgggcatac gcgatatctg 240 gcgatagcgc ttatatcgtt tacgggggat ggcgatagac gactttggtg acttgggcga 300 ttctgtgtgt cgcaaatatc gcagtttcga tataggtgac agacgatatg aggctatatc 360 gccgatagag gcgacatcaa gctggcacat ggccaatgca tatcgatcta tacattgaat 420 caatattggc cattagccat attattcatt ggttatatag cataaatcaa tattggctat 480 tggccattgc atacgttgta tccatatcat aatatgtaca tttatattgg ctcatgtcca 540 acattaccgc catgttgaca ttgattattg actagttatt aatagtaatc aattacgggg 600 tcattagttc atagcccata tatggagttc cgcgttacat aacttacggt aaatggcccg 660 cctggctgac cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata 720 gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgcc 780 cacttggcag tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac 840 ggtaaatggc ccgcctggca ttatgcccag tacatgacct tatgggactt tcctacttgg 900 cagtacatct acgtattagt catcgctatt accatggtga tgcggttttg gcagtacatc 960 aatgggcgtg gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc 1020 aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg taacaactcc 1080 gccccattga cgcaaatggg cggtaggcgt gtacggtggg aggtctatat aagcagagct 1140 cgtttagtga accgtcagat cgcctggaga cgccatccac gctgttttga cctccataga 1200 agacaccggg accgatccag cctccgcggc cgggaacggt gcattggaac gcggattccc 1260 cgtgccaaga gtgacgtaag taccgcctat agagtctata ggcccacccc cttggcttct 1320 tatgcatgct atactgtttt tggcttgggg tctatacacc cccgcttcct catgttatag 1380 gtgatggtat agcttagcct ataggtgtgg gttattgacc attattgacc actcccctat 1440 tggtgacgat actttccatt actaatccat aacatggctc tttgccacaa ctctctttat 1500 tggctatatg ccaatacact gtccttcaga gactgacacg gactctgtat ttttacagga 1560 tggggtctca tttattattt acaaattcac atatacaaca ccaccgtccc cagtgcccgc 1620 agtttttatt aaacataacg tgggatctcc acgcgaatct cgggtacgtg ttccggacat 1680 gggctcttct ccggtagcgg cggagcttct acatccgagc cctgctccca tgcctccagc 1740 gactcatggt cgctcggcag ctccttgctc ctaacagtgg aggccagact taggcacagc 1800 acgatgccca ccaccaccag tgtgccgcac aaggccgtgg cggtagggta tgtgtctgaa 1860 aatgagctcg gggagcgggc ttgcaccgct gacgcatttg gaagacttaa ggcagcggca 1920 gaagaagatg caggcagctg agttgttgtg ttctgataag agtcagaggt aactcccgtt 1980 gcggtgctgt taacggtgga gggcagtgta gtctgagcag tactcgttgc tgccgcgcgc 2040 gccaccagac ataatagctg acagactaac agactgttcc tttccatggg tcttttctgc 2100 agtcaccgtc cttgacacgt ctaga 2125 <210> 7 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> BamH1 Gln-F primer <400> 7 ggccggatcc ggcgcgcctg cagtgaat 28 <210> 8 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Nhe1 Gln-R primer <400> 8 ggccctcgag aaagatctgg cctagccgtg tcaaggacgg tgactgcag 49 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> SalI DHFR-F primer <400> 9 ggccgtcgac atggttcgac cgctg 25 <210> 10 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> NheI DHFR-R primer <400> 10 ggccgctagc ttagcctttc ttctcataga c 31 <210> 11 <211> 728 <212> DNA <213> bevacizumab light chain <400> 11 gctagcgcca ccatgggctg gtcctgcatc atcctgttcc tggtggccac cgccaccggc 60 gtgcactccg acatccagat gacccagtcc ccctcctccc tgtccgcctc cgtgggcgac 120 cgggtgacca tcacctgctc cgcctcccag gacatctcca actacctgaa ctggtaccag 180 cagaagcccg gcaaggcccc caaggtgctg atctacttca cctcctccct gcactccggc 240 gtgccctccc ggttctccgg ctccggctcc ggcaccgact tcaccctgac catctcctcc 300 ctgcagcccg aggacttcgc cacctactac tgccagcagt actccaccgt gccctggacc 360 ttcggccagg gcaccaaggt ggagatcaag cggaccgtgg ccgccccctc cgtgttcatc 420 ttccccccct ccgacgagca gctgaagtcc ggcaccgcct ccgtggtgtg cctgctgaac 480 aacttctacc cccgggaggc caaggtgcag tggaaggtgg acaacgccct gcagtccggc 540 aactcccagg agtccgtgac cgagcaggac tccaaggact ccacctactc cctgtcctcc 600 accctgaccc tgtccaaggc cgactacgag aagcacaagg tgtacgcctg cgaggtgacc 660 caccagggcc tgtcctcccc cgtgaccaag tccttcaacc ggggcgagtg ctgagcggcc 720 gcctcgag 728 <210> 12 <211> 1445 <212> DNA <213> bevacizumab heavy chain <400> 12 gctagcgcca ccatgggctg gtcctgcatc atcctgttcc tggtggccac cgccaccggc 60 gtgcactccg aggtgcagct ggtggagtcc ggcggcggcc tggtgcagcc cggcggctcc 120 ctgcggctgt cctgcgccgc ctccggctac accttcacca actacggcat gaactgggtg 180 cggcaggccc ccggcaaggg cctggagtgg gtgggctgga tcaacaccta caccggcgag 240 cccacctacg ccgccgactt caagcggcgg ttcaccttct ccctggacac ctccaagtcc 300 accgcctacc tgcagatgaa ctccctgcgg gccgaggaca ccgccgtgta ctactgcgcc 360 aagtaccccc actactacgg ctcctcccac tggtacttcg acgtgtgggg ccagggcacc 420 ctggtgaccg tgtcctccgc ctccaccaag ggcccctccg tgttccccct ggccccctcc 480 tccaagtcca cctccggcgg caccgccgcc ctgggctgcc tggtgaagga ctacttcccc 540 gagcccgtga ccgtgtcctg gaactccggc gccctgacct ccggcgtgca caccttcccc 600 gccgtgctgc agtcctccgg cctgtactcc ctgtcctccg tggtgaccgt gccctcctcc 660 tccctgggca cccagaccta catctgcaac gtgaaccaca agccctccaa caccaaggtg 720 gacaagaagg tggagcccaa gtcctgcgac aagacccaca cctgcccccc ctgccccgcc 780 cccgagctgc tgggcggccc ctccgtgttc ctgttccccc ccaagcccaa ggacaccctg 840 atgatctccc ggacccccga ggtgacctgc gtggtggtgg acgtgtccca cgaggacccc 900 gaggtgaagt tcaactggta cgtggacggc gtggaggtgc acaacgccaa gaccaagccc 960 cgggaggagc agtacaactc cacctaccgg gtggtgtccg tgctgaccgt gctgcaccag 1020 gactggctga acggcaagga gtacaagtgc aaggtgtcca acaaggccct gcccgccccc 1080 atcgagaaga ccatctccaa ggccaagggc cagccccggg agccccaggt gtacaccctg 1140 cccccctccc gggaggagat gaccaagaac caggtgtccc tgacctgcct ggtgaagggc 1200 ttctacccct ccgacatcgc cgtggagtgg gagtccaacg gccagcccga gaacaactac 1260 aagaccaccc cccccgtgct ggactccgac ggctccttct tcctgtactc caagctgacc 1320 gtggacaagt cccggtggca gcagggcaac gtgttctcct gctccgtgat gcacgaggcc 1380 ctgcacaacc actacaccca gaagtccctg tccctgtccc ccggcaagtg agcggccgcc 1440 tcgag 1445 <210> 13 <211> 214 <212> PRT <213> bevacizumab light chain <400> 13 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15 Asp Arg Val Thr Ile Thr Cys Ser Ala Ser Gln Asp Ile Ser Asn Tyr 20 25 30 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Val Leu Ile 35 40 45 Tyr Phe Thr Ser Ser Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Thr Val Pro Trp 85 90 95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys 210 <210> 14 <211> 453 <212> PRT <213> bevacizumab heavy chain <400> 14 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Tyr Thr Phe Thr Asn Tyr 20 25 30 Gly Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 Gly Trp Ile Asn Thr Tyr Thr Gly Glu Pro Thr Tyr Ala Ala Asp Phe 50 55 60 Lys Arg Arg Phe Thr Phe Ser Leu Asp Thr Ser Lys Ser Thr Ala Tyr 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Lys Tyr Pro His Tyr Tyr Gly Ser Ser His Trp Tyr Phe Asp Val 100 105 110 Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly 115 120 125 Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly 130 135 140 Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val 145 150 155 160 Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe 165 170 175 Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val 180 185 190 Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val 195 200 205 Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys 210 215 220 Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 225 230 235 240 Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 245 250 255 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 260 265 270 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 275 280 285 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 290 295 300 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 305 310 315 320 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 325 330 335 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 340 345 350 Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln 355 360 365 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 370 375 380 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 385 390 395 400 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 405 410 415 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 420 425 430 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 435 440 445 Leu Ser Pro Gly Lys 450 <210> 15 <211> 739 <212> DNA <213> tocilizumab light chain <400> 15 gctagcaagc ttgccaccat gggctggtcc tgcatcatcc tgttcctggt ggccaccgcc 60 accggcgtgc actccgacat ccagatgacc cagtccccct cctccctgtc cgcctccgtg 120 ggcgaccggg tgaccatcac ctgccgggcc tcccaggaca tctcctccta cctgaactgg 180 taccagcaga agcccggcaa ggcccccaag ctgctgatct actacacctc ccggctgcac 240 tccggcgtgc cctcccggtt ctccggctcc ggctccggca ccgacttcac cttcaccatc 300 tcctccctgc agcccgagga catcgccacc tactactgcc agcagggcaa caccctgccc 360 tacaccttcg gccagggcac caaggtggag atcaagcgga ccgtggccgc cccctccgtg 420 ttcatcttcc ccccctccga cgagcagctg aagtccggca ccgcctccgt ggtgtgcctg 480 ctgaacaact tctacccccg ggaggccaag gtgcagtgga aggtggacaa cgccctgcag 540 tccggcaact cccaggagtc cgtgaccgag caggactcca aggactccac ctactccctg 600 tcctccaccc tgaccctgtc caaggccgac tacgagaagc acaaggtgta cgcctgcgag 660 gtgacccacc agggcctgtc ctcccccgtg accaagtcct tcaaccgggg cgagtgctga 720 gaattcgcgg ccgctcgag 739 <210> 16 <211> 1444 <212> DNA <213> tocilizumab heavy chain <400> 16 gctagcaagc ttgccaccat gggctggtcc tgcatcatcc tgttcctggt ggccaccgcc 60 accggcgtgc actcccaggt gcagctgcag gagtccggcc ccggcctggt gcggccctcc 120 cagaccctgt ccctgacctg caccgtgtcc ggctactcca tcacctccga ccacgcctgg 180 tcctgggtgc ggcagccccc cggccggggc ctggagtgga tcggctacat ctcctactcc 240 ggcatcacca cctacaaccc ctccctgaag tcccgggtga ctatgctgcg ggacacctcc 300 aagaaccagt tctccctgcg gctgtcctcc gtgaccgccg ccgacaccgc cgtgtactac 360 tgcgcccggt ccctggcccg gaccaccgct atggactact ggggccaggg ctccctggtg 420 accgtgtcct ccgcctccac caagggcccc tccgtgttcc ccctggcccc ctcctccaag 480 tccacctccg gcggcaccgc cgccctgggc tgcctggtga aggactactt ccccgagccc 540 gtgaccgtgt cctggaactc cggcgccctg acctccggcg tgcacacctt ccccgccgtg 600 ctgcagtcct ccggcctgta ctccctgtcc tccgtggtga ctgtgccctc ctcctccctg 660 ggcacccaga cctacatctg caacgtgaac cacaagccct ccaacaccaa ggtggacaag 720 aaggtggagc ccaagtcctg cgacaagacc cacacctgcc ccccctgccc cgcccccgag 780 ctgctgggcg gcccctccgt gttcctgttc ccccccaagc ccaaggacac cctgatgatc 840 tcccggaccc ccgaggtgac ttgcgtggtg gtggacgtgt cccacgagga ccccgaggtg 900 aagttcaact ggtacgtgga cggcgtggag gtgcacaacg ccaagaccaa gccccgggag 960 gagcagtaca actccaccta ccgggtggtg tccgtgctga ccgtgctgca ccaggactgg 1020 ctgaacggca aggagtacaa gtgcaaggtg tccaacaagg ccctgcccgc ccccatcgag 1080 aagaccatct ccaaggccaa gggccagccc cgggagcccc aggtgtacac cctgcccccc 1140 tcccgggacg agctgaccaa gaaccaggtg tccctgacct gcctggtgaa gggcttctac 1200 ccctccgaca tcgccgtgga gtgggagtcc aacggccagc ccgagaacaa ctacaagacc 1260 accccccccg tgctggactc cgacggctcc ttcttcctgt actccaagct gaccgtggac 1320 aagtcccggt ggcagcaggg caacgtgttc tcctgctccg tgatgcacga ggccctgcac 1380 aaccactaca cccagaagtc cctgtccctg tcccccggca agtgagaatt cgcggccgct 1440 cgag 1444 <210> 17 <211> 233 <212> PRT <213> tocilizumab light chain <400> 17 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala 20 25 30 Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile 35 40 45 Ser Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys 50 55 60 Leu Leu Ile Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg 65 70 75 80 Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Phe Thr Ile Ser Ser 85 90 95 Leu Gln Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Gly Asn Thr 100 105 110 Leu Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr 115 120 125 Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu 130 135 140 Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro 145 150 155 160 Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly 165 170 175 Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr 180 185 190 Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His 195 200 205 Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val 210 215 220 Thr Lys Ser Phe Asn Arg Gly Glu Cys 225 230 <210> 18 <211> 468 <212> PRT <213> tocilizumab heavy chain <400> 18 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Arg 20 25 30 Pro Ser Gln Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Tyr Ser Ile 35 40 45 Thr Ser Asp His Ala Trp Ser Trp Val Arg Gln Pro Pro Gly Arg Gly 50 55 60 Leu Glu Trp Ile Gly Tyr Ile Ser Tyr Ser Gly Ile Thr Thr Tyr Asn 65 70 75 80 Pro Ser Leu Lys Ser Arg Val Thr Met Leu Arg Asp Thr Ser Lys Asn 85 90 95 Gln Phe Ser Leu Arg Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val 100 105 110 Tyr Tyr Cys Ala Arg Ser Leu Ala Arg Thr Thr Ala Met Asp Tyr Trp 115 120 125 Gly Gln Gly Ser Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro 130 135 140 Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr 145 150 155 160 Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr 165 170 175 Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro 180 185 190 Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr 195 200 205 Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn 210 215 220 His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser 225 230 235 240 Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu 245 250 255 Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 260 265 270 Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 275 280 285 His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 290 295 300 Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr 305 310 315 320 Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 325 330 335 Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 340 345 350 Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 355 360 365 Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val 370 375 380 Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 385 390 395 400 Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 405 410 415 Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 420 425 430 Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 435 440 445 Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 450 455 460 Ser Pro Gly Lys 465 <210> 19 <211> 742 <212> DNA <213> denosumab light chain <400> 19 gctagcaagc ttgccaccat gggctggtcc tgcatcatcc tgttcctggt ggccaccgcc 60 accggcgtgc actccgagat cgtgctgacc cagtcccccg gcaccctgtc cctgtccccc 120 ggcgagcggg ccaccctgtc ctgccgggcc tcccagtccg tgcggggccg gtacctggcc 180 tggtaccagc agaagcccgg ccaggccccc cggctgctga tctacggcgc ctcctcccgg 240 gccaccggca tccccgaccg gttctccggc tccggctccg gcaccgactt caccctgacc 300 atctcccggc tggagcccga ggacttcgcc gtgttctact gccagcagta cggctcctcc 360 ccccggacct tcggccaggg caccaaggtg gagatcaagc ggaccgtggc cgccccctcc 420 gtgttcatct tccccccctc cgacgagcag ctgaagtccg gcaccgcctc cgtggtgtgc 480 ctgctgaaca acttctaccc ccgggaggcc aaggtgcagt ggaaggtgga caacgccctg 540 cagtccggca actcccagga gtccgtgacc gagcaggact ccaaggactc cacctactcc 600 ctgtcctcca ccctgaccct gtccaaggcc gactacgaga agcacaaggt gtacgcctgc 660 gaggtgaccc accagggcct gtcctccccc gtgaccaagt ccttcaaccg gggcgagtgc 720 tgagaattcg cggccgctcg ag 742 <210> 20 <211> 1441 <212> DNA <213> denosumab heavy chain <400> 20 gctagcaagc ttgccaccat gggctggtcc tgcatcatcc tgttcctggt ggccaccgcc 60 accggcgtgc actccgaggt gcagctgctg gagtccggcg gcggcctggt gcagcccggc 120 ggctccctgc ggctgtcctg cgccgcctcc ggcttcacct tctcctccta cgccatgtcc 180 tgggtgcggc aggcccccgg caagggcctg gagtgggtgt ccggcatcac cggctccggc 240 ggctccacct actacgccga ctccgtgaag ggccggttca ccatctcccg ggacaactcc 300 aagaacaccc tgtacctgca gatgaactcc ctgcgggccg aggacaccgc cgtgtactac 360 tgcgccaagg accccggcac caccgtgatt atgtcctggt tcgacccctg gggccagggc 420 accctggtga ccgtgtcctc cgcctccacc aagggcccct ccgtgttccc cctggccccc 480 tgctcccggt ccacctccga gtccaccgcc gccctgggct gcctggtgaa ggactacttc 540 cccgagcccg tgaccgtgtc ctggaactcc ggcgccctga cctccggcgt gcacaccttc 600 cccgccgtgc tgcagtcctc cggcctgtac tccctgtcct ccgtggtgac tgtgccctcc 660 tccaacttcg gcacccagac ctacacctgc aacgtggacc acaagccctc caacaccaag 720 gtggacaaga ccgtggagcg gaagtgctgc gtggagtgcc ccccctgccc cgcccccccc 780 gtggccggcc cctccgtgtt cctgttcccc cccaagccca aggacaccct gatgatctcc 840 cggacccccg aggtgacttg cgtggtggtg gacgtgtccc acgaggaccc cgaggtgcag 900 ttcaactggt acgtggacgg cgtggaggtg cacaacgcca agaccaagcc ccgggaggag 960 cagttcaact ccaccttccg ggtggtgtcc gtgctgaccg tggtgcacca ggactggctg 1020 aacggcaagg agtacaagtg caaggtgtcc aacaagggcc tgcccgcccc catcgagaag 1080 accatctcca agaccaaggg ccagccccgg gagccccagg tgtacaccct gcccccctcc 1140 cgggaggaga tgaccaagaa ccaggtgtcc ctgacctgcc tggtgaaggg cttctacccc 1200 tccgacatcg ccgtggagtg ggagtccaac ggccagcccg agaacaacta caagaccacc 1260 ccccccatgc tggactccga cggctccttc ttcctgtact ccaagctgac cgtggacaag 1320 tcccggtggc agcagggcaa cgtgttctcc tgctccgtga tgcacgaggc cctgcacaac 1380 cactacaccc agaagtccct gtccctgtcc cccggcaagt gagaattcgc ggccgctcga 1440 g 1441 <210> 21 <211> 234 <212> PRT <213> denosumab light chain <400> 21 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu 20 25 30 Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val 35 40 45 Arg Gly Arg Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro 50 55 60 Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp 65 70 75 80 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser 85 90 95 Arg Leu Glu Pro Glu Asp Phe Ala Val Phe Tyr Cys Gln Gln Tyr Gly 100 105 110 Ser Ser Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 115 120 125 Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln 130 135 140 Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr 145 150 155 160 Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 165 170 175 Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr 180 185 190 Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys 195 200 205 His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 210 215 220 Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 225 230 <210> 22 <211> 467 <212> PRT <213> denosumab heavy chain <400> 22 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln 20 25 30 Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe 35 40 45 Ser Ser Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60 Glu Trp Val Ser Gly Ile Thr Gly Ser Gly Gly Ser Thr Tyr Tyr Ala 65 70 75 80 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn 85 90 95 Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 100 105 110 Tyr Tyr Cys Ala Lys Asp Pro Gly Thr Thr Val Ile Met Ser Trp Phe 115 120 125 Asp Pro Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr 130 135 140 Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser 145 150 155 160 Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu 165 170 175 Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His 180 185 190 Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser 195 200 205 Val Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys 210 215 220 Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu 225 230 235 240 Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala 245 250 255 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 260 265 270 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 275 280 285 Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val 290 295 300 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe 305 310 315 320 Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly 325 330 335 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile 340 345 350 Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val 355 360 365 Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser 370 375 380 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 385 390 395 400 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 405 410 415 Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 420 425 430 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 435 440 445 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 450 455 460 Pro Gly Lys 465 <210> 23 <211> 739 <212> DNA <213> Belimumab light chain <400> 23 gctagcaagc ttgccaccat gggctggtcc tgcatcatcc tgttcctggt ggccaccgcc 60 accggcgtgc actcctcctc cgagctgacc caggaccccg ccgtgtccgt ggccctgggc 120 cagaccgtgc gggtgacctg ccagggcgac tccctgcggt cctactacgc ctcctggtac 180 cagcagaagc ccggccaggc ccccgtgctg gtgatctacg gcaagaacaa ccggccctcc 240 ggcatccccg accggttctc cggctcctcc tccggcaaca ccgcctccct gaccatcact 300 ggcgcccagg ccgaggacga ggccgactac tactgctcct cccgggactc ctccggcaac 360 cactgggtgt tcggcggcgg caccgagctg accgtgctgg gccagcccaa ggccgccccc 420 tccgtgaccc tgttcccccc ctcctccgag gagctgcagg ccaacaaggc caccctggtg 480 tgcctgatct ccgacttcta ccccggcgcc gtgaccgtgg cctggaaggc cgactcctcc 540 cccgtgaagg ccggcgtgga gaccaccacc ccctccaagc agtccaacaa caagtacgcc 600 gcctcctcct acctgtccct gacccccgag cagtggaagt cccaccggtc ctactcctgc 660 caggtgaccc acgagggctc caccgtggag aagaccgtgg cccccaccga gtgctcctga 720 gaattcgcgg ccgctcgag 739 <210> 24 <211> 1456 <212> DNA <213> Belimumab heavy chain <400> 24 gctagcaagc ttgccaccat gggctggtcc tgcatcatcc tgttcctggt ggccaccgcc 60 accggcgtgc actcccaggt gcagctgcag cagtccggcg ccgaggtgaa gaagcccggc 120 tcctccgtgc gggtgtcctg caaggcctcc ggcggcacct tcaacaacaa cgccatcaac 180 tgggtgcggc aggcccccgg ccagggcctg gagtggatgg gcggcatcat ccccatgttc 240 ggcaccgcca agtactccca gaacttccag ggccgggtgg ccatcaccgc cgacgagtcc 300 accggcaccg cctccatgga gctgtcctcc ctgcggtccg aggacaccgc cgtgtactac 360 tgcgcccggt cccgggacct gctgctgttc ccccaccacg ccctgtcccc ctggggccgg 420 ggcaccatgg tgaccgtgtc ctccgcctcc accaagggcc cctccgtgtt ccccctggcc 480 ccctcctcca agtccacctc cggcggcacc gccgccctgg gctgcctggt gaaggactac 540 ttccccgagc ccgtgaccgt gtcctggaac tccggcgccc tgacctccgg cgtgcacacc 600 ttccccgccg tgctgcagtc ctccggcctg tactccctgt cctccgtggt gactgtgccc 660 tcctcctccc tgggcaccca gacctacatc tgcaacgtga accacaagcc ctccaacacc 720 aaggtggaca agaaggtgga gcccaagtcc tgcgacaaga cccacacctg ccccccctgc 780 cccgcccccg agctgctggg cggcccctcc gtgttcctgt tcccccccaa gcccaaggac 840 accctgatga tctcccggac ccccgaggtg acttgcgtgg tggtggacgt gtcccacgag 900 gaccccgagg tgaagttcaa ctggtacgtg gacggcgtgg aggtgcacaa cgccaagacc 960 aagccccggg aggagcagta caactccacc taccgggtgg tgtccgtgct gaccgtgctg 1020 caccaggact ggctgaacgg caaggagtac aagtgcaagg tgtccaacaa ggccctgccc 1080 gcccccatcg agaagaccat ctccaaggcc aagggccagc cccgggagcc ccaggtgtac 1140 accctgcccc cctcccggga cgagctgacc aagaaccagg tgtccctgac ctgcctggtg 1200 aagggcttct acccctccga catcgccgtg gagtgggagt ccaacggcca gcccgagaac 1260 aactacaaga ccaccccccc cgtgctggac tccgacggct ccttcttcct gtactccaag 1320 ctgaccgtgg acaagtcccg gtggcagcag ggcaacgtgt tctcctgctc cgtgatgcac 1380 gaggccctgc acaaccacta cacccagaag tccctgtccc tgtcccccgg caagtgagaa 1440 ttcgcggccg ctcgag 1456 <210> 25 <211> 233 <212> PRT <213> Belimumab light chain <400> 25 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Ser Ser Glu Leu Thr Gln Asp Pro Ala Val Ser Val Ala 20 25 30 Leu Gly Gln Thr Val Arg Val Thr Cys Gln Gly Asp Ser Leu Arg Ser 35 40 45 Tyr Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu 50 55 60 Val Ile Tyr Gly Lys Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe 65 70 75 80 Ser Gly Ser Ser Ser Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala 85 90 95 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Ser Ser Arg Asp Ser Ser 100 105 110 Gly Asn His Trp Val Phe Gly Gly Gly Thr Glu Leu Thr Val Leu Gly 115 120 125 Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu 130 135 140 Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe 145 150 155 160 Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val 165 170 175 Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys 180 185 190 Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser 195 200 205 His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu 210 215 220 Lys Thr Val Ala Pro Thr Glu Cys Ser 225 230 <210> 26 <211> 472 <212> PRT <213> Belimumab heavy chain <400> 26 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Val Lys Lys 20 25 30 Pro Gly Ser Ser Val Arg Val Ser Cys Lys Ala Ser Gly Gly Thr Phe 35 40 45 Asn Asn Asn Ala Ile Asn Trp Val Arg Gln Ala Pro Gly Gln Gly Leu 50 55 60 Glu Trp Met Gly Gly Ile Ile Pro Met Phe Gly Thr Ala Lys Tyr Ser 65 70 75 80 Gln Asn Phe Gln Gly Arg Val Ala Ile Thr Ala Asp Glu Ser Thr Gly 85 90 95 Thr Ala Ser Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val 100 105 110 Tyr Tyr Cys Ala Arg Ser Arg Asp Leu Leu Leu Phe Pro His His Ala 115 120 125 Leu Ser Pro Trp Gly Arg Gly Thr Met Val Thr Val Ser Ser Ala Ser 130 135 140 Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr 145 150 155 160 Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro 165 170 175 Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val 180 185 190 His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser 195 200 205 Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile 210 215 220 Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val 225 230 235 240 Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala 245 250 255 Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 260 265 270 Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 275 280 285 Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val 290 295 300 Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 305 310 315 320 Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 325 330 335 Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 340 345 350 Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 355 360 365 Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr 370 375 380 Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 385 390 395 400 Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 405 410 415 Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 420 425 430 Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 435 440 445 Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 450 455 460 Ser Leu Ser Leu Ser Pro Gly Lys 465 470 <210> 27 <211> 742 <212> DNA <213> golimumab light chain <400> 27 gctagcaagc ttgccaccat gggctggtcc tgcatcatcc tgttcctggt ggccaccgcc 60 accggcgtgc actccgagat cgtgctgacc cagtcccccg ccaccctgtc cctgtccccc 120 ggcgagcggg ccaccctgtc ctgccgggcc tcccagtccg tgtactccta cctggcctgg 180 taccagcaga agcccggcca ggccccccgg ctgctgatct acgacgcctc caaccgggcc 240 accggcatcc ccgcccggtt ctccggctcc ggctccggca ccgacttcac cctgaccatc 300 tcctccctgg agcccgagga cttcgccgtg tactactgcc agcagcggtc caactggccc 360 cccttcacct tcggccccgg caccaaggtg gacatcaagc ggaccgtggc cgccccctcc 420 gtgttcatct tccccccctc cgacgagcag ctgaagtccg gcaccgcctc cgtggtgtgc 480 ctgctgaaca acttctaccc ccgggaggcc aaggtgcagt ggaaggtgga caacgccctg 540 cagtccggca actcccagga gtccgtgacc gagcaggact ccaaggactc cacctactcc 600 ctgtcctcca ccctgaccct gtccaaggcc gactacgaga agcacaaggt gtacgcctgc 660 gaggtgaccc accagggcct gtcctccccc gtgaccaagt ccttcaaccg gggcgagtgc 720 tgagaattcg cggccgctcg ag 742 <210> 28 <211> 1465 <212> DNA <213> golimumab heavy chain <400> 28 gctagcaagc ttgccaccat gggctggtcc tgcatcatcc tgttcctggt ggccaccgcc 60 accggcgtgc actcccaggt gcagctggtg gagtccggcg gcggcgtggt gcagcccggc 120 cggtccctgc ggctgtcctg cgccgcctcc ggcttcatct tctcctccta cgccatgcac 180 tgggtgcggc aggcccccgg caacggcctg gagtgggtgg ccttcatgtc ctacgacggc 240 tccaacaaga agtacgccga ctccgtgaag ggccggttca ccatctcccg ggacaactcc 300 aagaacaccc tgtacctgca gatgaactcc ctgcgggccg aggacaccgc cgtgtactac 360 tgcgcccggg accggggcat cgccgctggc ggcaactact actactacgg catggacgtg 420 tggggccagg gcaccaccgt gaccgtgtcc tccgcctcca ccaagggccc ctccgtgttc 480 cccctggccc cctcctccaa gtccacctcc ggcggcaccg ccgccctggg ctgcctggtg 540 aaggactact tccccgagcc cgtgaccgtg tcctggaact ccggcgccct gacctccggc 600 gtgcacacct tccccgccgt gctgcagtcc tccggcctgt actccctgtc ctccgtggtg 660 actgtgccct cctcctccct gggcacccag acctacatct gcaacgtgaa ccacaagccc 720 tccaacacca aggtggacaa gaaggtggag cccaagtcct gcgacaagac ccacacctgc 780 cccccctgcc ccgcccccga gctgctgggc ggcccctccg tgttcctgtt cccccccaag 840 cccaaggaca ccctgatgat ctcccggacc cccgaggtga cttgcgtggt ggtggacgtg 900 tcccacgagg accccgaggt gaagttcaac tggtacgtgg acggcgtgga ggtgcacaac 960 gccaagacca agccccggga ggagcagtac aactccacct accgggtggt gtccgtgctg 1020 accgtgctgc accaggactg gctgaacggc aaggagtaca agtgcaaggt gtccaacaag 1080 gccctgcccg cccccatcga gaagaccatc tccaaggcca agggccagcc ccgggagccc 1140 caggtgtaca ccctgccccc ctcccgggac gagctgacca agaaccaggt gtccctgacc 1200 tgcctggtga agggcttcta cccctccgac atcgccgtgg agtgggagtc caacggccag 1260 cccgagaaca actacaagac cacccccccc gtgctggact ccgacggctc cttcttcctg 1320 tactccaagc tgaccgtgga caagtcccgg tggcagcagg gcaacgtgtt ctcctgctcc 1380 gtgatgcacg aggccctgca caaccactac acccagaagt ccctgtccct gtcccccggc 1440 aagtgagaat tcgcggccgc tcgag 1465 <210> 29 <211> 234 <212> PRT <213> golimumab light chain <400> 29 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu 20 25 30 Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val 35 40 45 Tyr Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg 50 55 60 Leu Leu Ile Tyr Asp Ala Ser Asn Arg Ala Thr Gly Ile Pro Ala Arg 65 70 75 80 Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser 85 90 95 Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Ser Asn 100 105 110 Trp Pro Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg 115 120 125 Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln 130 135 140 Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr 145 150 155 160 Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 165 170 175 Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr 180 185 190 Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys 195 200 205 His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 210 215 220 Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 225 230 <210> 30 <211> 475 <212> PRT <213> golimumab heavy chain <400> 30 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln 20 25 30 Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ile Phe 35 40 45 Ser Ser Tyr Ala Met His Trp Val Arg Gln Ala Pro Gly Asn Gly Leu 50 55 60 Glu Trp Val Ala Phe Met Ser Tyr Asp Gly Ser Asn Lys Lys Tyr Ala 65 70 75 80 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn 85 90 95 Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 100 105 110 Tyr Tyr Cys Ala Arg Asp Arg Gly Ile Ala Ala Gly Gly Asn Tyr Tyr 115 120 125 Tyr Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser 130 135 140 Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser 145 150 155 160 Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp 165 170 175 Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr 180 185 190 Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr 195 200 205 Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln 210 215 220 Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp 225 230 235 240 Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro 245 250 255 Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro 260 265 270 Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr 275 280 285 Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn 290 295 300 Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg 305 310 315 320 Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val 325 330 335 Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser 340 345 350 Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys 355 360 365 Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp 370 375 380 Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe 385 390 395 400 Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu 405 410 415 Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe 420 425 430 Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly 435 440 445 Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr 450 455 460 Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 465 470 475 <210> 31 <211> 739 <212> DNA <213> Ustekinumab light chain <400> 31 gctagcaagc ttgccaccat gggctggtcc tgcatcatcc tgttcctggt ggccaccgcc 60 accggcgtgc actccgacat ccagatgacc cagtccccct cctccctgtc cgcctccgtg 120 ggcgaccggg tgaccatcac ctgccgggcc tcccagggca tctcctcctg gctggcctgg 180 taccagcaga agcccgagaa ggcccccaag tccctgatct acgccgcctc ctccctgcag 240 tccggcgtgc cctcccggtt ctccggctcc ggctccggca ccgacttcac cctgaccatc 300 tcctccctgc agcccgagga cttcgccacc tactactgcc agcagtacaa catctacccc 360 tacaccttcg gccagggcac caagctggag atcaagcgga ccgtggccgc cccctccgtg 420 ttcatcttcc ccccctccga cgagcagctg aagtccggca ccgcctccgt ggtgtgcctg 480 ctgaacaact tctacccccg ggaggccaag gtgcagtgga aggtggacaa cgccctgcag 540 tccggcaact cccaggagtc cgtgaccgag caggactcca aggactccac ctactccctg 600 tcctccaccc tgaccctgtc caaggccgac tacgagaagc acaaggtgta cgcctgcgag 660 gtgacccacc agggcctgtc ctcccccgtg accaagtcct tcaaccgggg cgagtgctga 720 gaattcgcgg ccgctcgag 739 <210> 32 <211> 1426 <212> DNA <213> Ustekinumab heavy chain <400> 32 atgggctggt cctgcatcat cctgttcctg gtggccaccg ccaccggcgt gcactccgag 60 gtgcagctgg tgcagtccgg cgccgaggtg aagaagcccg gcgagtccct gaagatctcc 120 tgcaagggct ccggctactc cttcaccacc tactggctgg gctgggtgcg gcagatgccc 180 ggcaagggcc tggactggat cggcatcatg tcccccgtgg actccgacat ccggtactcc 240 ccctccttcc agggccaggt gactatgtcc gtggacaagt ccatcaccac cgcctacctg 300 cagtggaact ccctgaaggc ctccgacacc gccatgtact actgcgcccg gcggcggccc 360 ggccagggct acttcgactt ctggggccag ggcaccctgg tgaccgtgtc ctcctcctcc 420 accaagggcc cctccgtgtt ccccctggcc ccctcctcca agtccacctc cggcggcacc 480 gccgccctgg gctgcctggt gaaggactac ttccccgagc ccgtgaccgt gtcctggaac 540 tccggcgccc tgacctccgg cgtgcacacc ttccccgccg tgctgcagtc ctccggcctg 600 tactccctgt cctccgtggt gactgtgccc tcctcctccc tgggcaccca gacctacatc 660 tgcaacgtga accacaagcc ctccaacacc aaggtggaca agcgggtgga gcccaagtcc 720 tgcgacaaga cccacacctg ccccccctgc cccgcccccg agctgctggg cggcccctcc 780 gtgttcctgt tcccccccaa gcccaaggac accctgatga tctcccggac ccccgaggtg 840 acttgcgtgg tggtggacgt gtcccacgag gaccccgagg tgaagttcaa ctggtacgtg 900 gacggcgtgg aggtgcacaa cgccaagacc aagccccggg aggagcagta caactccacc 960 taccgggtgg tgtccgtgct gaccgtgctg caccaggact ggctgaacgg caaggagtac 1020 aagtgcaagg tgtccaacaa ggccctgccc gcccccatcg agaagaccat ctccaaggcc 1080 aagggccagc cccgggagcc ccaggtgtac accctgcccc cctcccggga cgagctgacc 1140 aagaaccagg tgtccctgac ctgcctggtg aagggcttct acccctccga catcgccgtg 1200 gagtgggagt ccaacggcca gcccgagaac aactacaaga ccaccccccc cgtgctggac 1260 tccgacggct ccttcttcct gtactccaag ctgaccgtgg acaagtcccg gtggcagcag 1320 ggcaacgtgt tctcctgctc cgtgatgcac gaggccctgc acaaccacta cacccagaag 1380 tccctgtccc tgtcccccgg caagtgagaa ttcgcggccg ctcgag 1426 <210> 33 <211> 233 <212> PRT <213> Ustekinumab light chain <400> 33 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala 20 25 30 Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile 35 40 45 Ser Ser Trp Leu Ala Trp Tyr Gln Gln Lys Pro Glu Lys Ala Pro Lys 50 55 60 Ser Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg 65 70 75 80 Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser 85 90 95 Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ile 100 105 110 Tyr Pro Tyr Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Thr 115 120 125 Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu 130 135 140 Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro 145 150 155 160 Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly 165 170 175 Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr 180 185 190 Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His 195 200 205 Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val 210 215 220 Thr Lys Ser Phe Asn Arg Gly Glu Cys 225 230 <210> 34 <211> 468 <212> PRT <213> Ustekinumab heavy chain <400> 34 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys 20 25 30 Pro Gly Glu Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe 35 40 45 Thr Thr Tyr Trp Leu Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu 50 55 60 Asp Trp Ile Gly Ile Met Ser Pro Val Asp Ser Asp Ile Arg Tyr Ser 65 70 75 80 Pro Ser Phe Gln Gly Gln Val Thr Met Ser Val Asp Lys Ser Ile Thr 85 90 95 Thr Ala Tyr Leu Gln Trp Asn Ser Leu Lys Ala Ser Asp Thr Ala Met 100 105 110 Tyr Tyr Cys Ala Arg Arg Arg Pro Gly Gln Gly Tyr Phe Asp Phe Trp 115 120 125 Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ser Ser Thr Lys Gly Pro 130 135 140 Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr 145 150 155 160 Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr 165 170 175 Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro 180 185 190 Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr 195 200 205 Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn 210 215 220 His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser 225 230 235 240 Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu 245 250 255 Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 260 265 270 Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 275 280 285 His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 290 295 300 Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr 305 310 315 320 Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 325 330 335 Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 340 345 350 Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 355 360 365 Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val 370 375 380 Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 385 390 395 400 Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 405 410 415 Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 420 425 430 Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 435 440 445 Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 450 455 460 Ser Pro Gly Lys 465 <210> 35 <211> 742 <212> DNA <213> ipilimumab light chain <400> 35 gctagcaagc ttgccaccat gggctggtcc tgcatcatcc tgttcctggt ggccaccgcc 60 accggcgtgc actccgagat cgtgctgacc cagtcccccg gcaccctgtc cctgtccccc 120 ggcgagcggg ccaccctgtc ctgccgggcc tcccagtccg tgggctcctc ctacctggcc 180 tggtaccagc agaagcccgg ccaggccccc cggctgctga tctacggcgc cttctcccgg 240 gccaccggca tccccgaccg gttctccggc tccggctccg gcaccgactt caccctgacc 300 atctcccggc tggagcccga ggacttcgcc gtgtactact gccagcagta cggctcctcc 360 ccctggacct tcggccaggg caccaaggtg gagatcaagc ggaccgtggc cgccccctcc 420 gtgttcatct tccccccctc cgacgagcag ctgaagtccg gcaccgcctc cgtggtgtgc 480 ctgctgaaca acttctaccc ccgggaggcc aaggtgcagt ggaaggtgga caacgccctg 540 cagtccggca actcccagga gtccgtgacc gagcaggact ccaaggactc cacctactcc 600 ctgtcctcca ccctgaccct gtccaaggcc gactacgaga agcacaaggt gtacgcctgc 660 gaggtgaccc accagggcct gtcctccccc gtgaccaagt ccttcaaccg gggcgagtgc 720 tgagaattcg cggccgctcg ag 742 <210> 36 <211> 1423 <212> DNA <213> ipilimumab heavy chain <400> 36 atgggctggt cctgcatcat cctgttcctg gtggccaccg ccaccggcgt gcactcccag 60 gtgcagctgg tggagtccgg cggcggcgtg gtgcagcccg gccggtccct gcggctgtcc 120 tgcgccgcct ccggcttcac cttctcctcc tacaccatgc actgggtgcg gcaggccccc 180 ggcaagggcc tggagtgggt gactttcatc tcctacgacg gcaacaacaa gtactacgcc 240 gactccgtga agggccggtt caccatctcc cgggacaact ccaagaacac cctgtacctg 300 cagatgaact ccctgcgggc cgaggacacc gccatctact actgcgcccg gaccggctgg 360 ctgggcccct tcgactactg gggccagggc accctggtga ccgtgtcctc cgcctccacc 420 aagggcccct ccgtgttccc cctggccccc tcctccaagt ccacctccgg cggcaccgcc 480 gccctgggct gcctggtgaa ggactacttc cccgagcccg tgaccgtgtc ctggaactcc 540 ggcgccctga cctccggcgt gcacaccttc cccgccgtgc tgcagtcctc cggcctgtac 600 tccctgtcct ccgtggtgac tgtgccctcc tcctccctgg gcacccagac ctacatctgc 660 aacgtgaacc acaagccctc caacaccaag gtggacaagc gggtggagcc caagtcctgc 720 gacaagaccc acacctgccc cccctgcccc gcccccgagc tgctgggcgg cccctccgtg 780 ttcctgttcc cccccaagcc caaggacacc ctgatgatct cccggacccc cgaggtgact 840 tgcgtggtgg tggacgtgtc ccacgaggac cccgaggtga agttcaactg gtacgtggac 900 ggcgtggagg tgcacaacgc caagaccaag ccccgggagg agcagtacaa ctccacctac 960 cgggtggtgt ccgtgctgac cgtgctgcac caggactggc tgaacggcaa ggagtacaag 1020 tgcaaggtgt ccaacaaggc cctgcccgcc cccatcgaga agaccatctc caaggccaag 1080 ggccagcccc gggagcccca ggtgtacacc ctgcccccct cccgggacga gctgaccaag 1140 aaccaggtgt ccctgacctg cctggtgaag ggcttctacc cctccgacat cgccgtggag 1200 tgggagtcca acggccagcc cgagaacaac tacaagacca ccccccccgt gctggactcc 1260 gacggctcct tcttcctgta ctccaagctg accgtggaca agtcccggtg gcagcagggc 1320 aacgtgttct cctgctccgt gatgcacgag gccctgcaca accactacac ccagaagtcc 1380 ctgtccctgt cccccggcaa gtgagaattc gcggccgctc gag 1423 <210> 37 <211> 234 <212> PRT <213> ipilimumab light chain <400> 37 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu 20 25 30 Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val 35 40 45 Gly Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro 50 55 60 Arg Leu Leu Ile Tyr Gly Ala Phe Ser Arg Ala Thr Gly Ile Pro Asp 65 70 75 80 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser 85 90 95 Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly 100 105 110 Ser Ser Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 115 120 125 Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln 130 135 140 Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr 145 150 155 160 Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 165 170 175 Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr 180 185 190 Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys 195 200 205 His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 210 215 220 Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 225 230 <210> 38 <211> 467 <212> PRT <213> ipilimumab heavy chain <400> 38 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln 20 25 30 Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe 35 40 45 Ser Ser Tyr Thr Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60 Glu Trp Val Thr Phe Ile Ser Tyr Asp Gly Asn Asn Lys Tyr Tyr Ala 65 70 75 80 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn 85 90 95 Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Ile 100 105 110 Tyr Tyr Cys Ala Arg Thr Gly Trp Leu Gly Pro Phe Asp Tyr Trp Gly 115 120 125 Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 130 135 140 Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala 145 150 155 160 Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 165 170 175 Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 180 185 190 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 195 200 205 Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His 210 215 220 Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys 225 230 235 240 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 245 250 255 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 260 265 270 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His 275 280 285 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 290 295 300 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 305 310 315 320 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 325 330 335 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 340 345 350 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 355 360 365 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 370 375 380 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 385 390 395 400 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 405 410 415 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 420 425 430 Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 435 440 445 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 450 455 460 Pro Gly Lys 465

Claims (20)

  1. (i) '프로모터-UTR(untranslation region)-인트론-항체 경쇄 유전자-polyA'를 포함하는 제1발현 카세트 ; 및
    (ii) '프로모터-UTR-인트론-항체 중쇄 유전자-IRES(internal ribosome entry site)-증폭 유전자-polyA'를 포함하는 제2발현 카세트를 포함하는,
    항체 발현용 바이시스트로닉 발현벡터.
  2. 제1항에 있어서, 상기 프로모터는 SV40(simian virus 40) 초기 프로모터, CMV(Cytomegalovirus) 프로모터 및 hEF1-α(human elongation factor1-α) 프로모터로 이루어진 군으로부터 선택된 것인 발현벡터.
  3. 제1항에 있어서, 상기 UTR은 CMV 유래인 것인 발현벡터.
  4. 제1항에 있어서, 상기 인트론은 CMV 유래인 것인 발현벡터.
  5. 제1항에 있어서, 상기 프로모터가 SV40 초기 프로모터이며, 상기 UTR 및 상기 인트론은 SV40 유래인 것인, 발현벡터.
  6. 제1항에 있어서, 상기 프로모터가 CMV 프로모터이며, 상기 UTR 및 상기 인트론은 CMV 유래인 것인, 발현벡터.
  7. 제1항에 있어서, 상기 프로모터가 hEF1-α 프로모터이며, 상기 UTR 및 상기 인트론이 hEF1-α 유래인 것인, 발현벡터.
  8. 제2항에 있어서, 상기 프로모터는 서열번호 1의 염기서열로 구성된 CMV 프로모터인 것인 발현벡터.
  9. 제3항에 있어서, 상기 UTR은 서열번호 2의 염기서열로 구성된 CMV 유래 UTR인 것인 발현벡터.
  10. 제5항에 있어서, 상기 인트론은 서열번호 3의 염기서열로 구성된 발현벡터.
  11. 제1항에 있어서, 상기 증폭 유전자는 GS(glutamine synthetase) 또는 DHFR(dehydrofolate reductase)인 것인 발현벡터.
  12. 제1항에 있어서, 상기 항체는 베바시주맙(bevacizumab)인 것인 발현벡터.
  13. 제1항에 있어서, 상기 발현벡터는 하기에 기재된 ⅰ) pCYB204IG의 개열지도 또는 ⅱ) pCYB204ID의 개열지도를 갖는 발현벡터.
    ⅰ)
    Figure 112016115233725-pat00015

    ⅱ)
    Figure 112016115233725-pat00016

  14. 제1항에 있어서, 상기 항체 경쇄 유전자는 서열번호 11의 염기서열로 구성되는 것인 발현벡터.
  15. 제1항에 있어서, 상기 항체 중쇄 유전자는 서열번호 12의 염기서열로 구성되는 것인 발현벡터.
  16. 제1항 내지 제15항 중 어느 한 항의 발현벡터가 형질전환된 동물세포.
  17. 제16항에 있어서, 상기 동물세포는 중국 햄스터 난소 세포(CHO)인 것인 동물세포.
  18. 제16항의 동물세포를 배양하는 단계를 포함하는 항체의 생산 방법.
  19. 제18항에 있어서,
    상기 동물세포를 배양한 배양물에서 항체를 정제하는 단계를 추가로 포함하는 항체의 생산 방법.
  20. 제18항에 있어서, 상기 항체는 베바시주맙인 것인 방법.
KR1020140134777A 2013-10-07 2014-10-07 항체 발현용 바이시스트로닉 발현벡터 및 이를 이용한 항체의 생산 방법 KR101718764B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130119511 2013-10-07
KR20130119511 2013-10-07

Publications (2)

Publication Number Publication Date
KR20150041588A KR20150041588A (ko) 2015-04-16
KR101718764B1 true KR101718764B1 (ko) 2017-03-24

Family

ID=53035034

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140134777A KR101718764B1 (ko) 2013-10-07 2014-10-07 항체 발현용 바이시스트로닉 발현벡터 및 이를 이용한 항체의 생산 방법

Country Status (1)

Country Link
KR (1) KR101718764B1 (ko)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101952440B (zh) * 2008-02-14 2012-11-14 财团法人牧岩生命工学研究所 适于表达用于基因治疗的编码序列的表达载体

Also Published As

Publication number Publication date
KR20150041588A (ko) 2015-04-16

Similar Documents

Publication Publication Date Title
AU2019250224B2 (en) Enhanced transgene expression and processing
US11046975B2 (en) Bicistronic expression vector for antibody expression and method for producing antibody using same
US10781249B2 (en) Anti-GPC3 antibody
KR102272932B1 (ko) 이종 유전자로 무장된 종양살상 아데노바이러스
KR102587838B1 (ko) 비-펩티드 결합을 함유하는 하이브리드 면역글로불린
BRPI0613784A2 (pt) expressão de gene múltipla incluindo constructos sorf e métodos com poliproteìnas, pro-proteìnas e proteólise
CN1961002A (zh) 能中和狂犬病病毒的结合分子及其应用
KR20120099376A (ko) 강화된 전이 유전자 발현과 공정 방법 및 그 산물
EP3588089B1 (en) Cell-based methods for coupling protein interactions and binding molecule selection and diversification
KR20220038362A (ko) 재조합 ad35 벡터 및 관련 유전자 요법 개선
KR20160135738A (ko) 폴리펩티드를 발현하는 숙주 세포의 선택을 위한 발현 구조물 및 방법
CN107207603A (zh) 趋化因子‑免疫球蛋白融合多肽,其组合物、制备方法以及用途
US20140018521A1 (en) Methods for the identification and repair of amino acid residues destabilizing single-chain variable fragments (scFv)
TW202216777A (zh) 四面體抗體
TW202233841A (zh) 用於眼適應症之載體化抗TNF-α抗體
KR101718764B1 (ko) 항체 발현용 바이시스트로닉 발현벡터 및 이를 이용한 항체의 생산 방법
AU2013352067A1 (en) Preparation of gene-specific templates for the use in single primer amplification
US11591383B2 (en) Method for selecting polypeptide producing cells
JP2024026208A (ja) 所定の構成の複数の発現カセットの標的化組込みによって三価の抗体を発現する細胞を生成するための方法
JP2024059798A (ja) 所定の構成の複数の発現カセットの標的指向性組込みによって二価二重特異性抗体発現細胞を作製するための方法
US20110229903A1 (en) Determination of immunoglobulin encoding nucleic acid

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
J204 Invalidation trial for patent
J121 Written withdrawal of request for trial
FPAY Annual fee payment

Payment date: 20200129

Year of fee payment: 4