KR101714736B1 - 서브마이크론과 마이크론 크기의 구형 rdx 입자 제조방법 - Google Patents

서브마이크론과 마이크론 크기의 구형 rdx 입자 제조방법 Download PDF

Info

Publication number
KR101714736B1
KR101714736B1 KR1020150056602A KR20150056602A KR101714736B1 KR 101714736 B1 KR101714736 B1 KR 101714736B1 KR 1020150056602 A KR1020150056602 A KR 1020150056602A KR 20150056602 A KR20150056602 A KR 20150056602A KR 101714736 B1 KR101714736 B1 KR 101714736B1
Authority
KR
South Korea
Prior art keywords
rdx
particles
solution
solvent
spherical
Prior art date
Application number
KR1020150056602A
Other languages
English (en)
Other versions
KR20160125746A (ko
Inventor
이근득
채주승
한상근
구기갑
김재경
심홍민
이세은
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020150056602A priority Critical patent/KR101714736B1/ko
Publication of KR20160125746A publication Critical patent/KR20160125746A/ko
Application granted granted Critical
Publication of KR101714736B1 publication Critical patent/KR101714736B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/34Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0066Shaping the mixture by granulation, e.g. flaking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 서브마이크론과 마이크론 크기의 구형 RDX(Cyclotrimethylene trinitramine) 입자 제조방법에 관한 것으로서, 더욱 상세하게는, 유기 용매(solvent)에 RDX를 용해시켜 RDX 용액을 제조하는 단계; 상기 RDX 용액과 반용매를 혼합하여 RDX 입자를 석출하는 단계; 및 석출된 RDX 입자를 수득하는 단계;를 포함하며, 상기 RDX 용액과 반용매를 혼합하기 전에 상기 RDX 용액 또는 상기 반용매에 계면활성제를 추가하여 혼합하는 것을 특징으로 한다. 본 발명에 의하면, 기존 방법에 비해 높은 생산성으로 서브마이크론 및 마이크론 크기의 구형 RDX 입자를 제조할 수 있으며, 이러한 구형 형상의 RDX 입자는 충진 밀도 상승에 따른 기폭 압력 극대화, 매끈한 표면으로 인하여 비교적 둔감한 RDX 입자의 제조가 가능하며, 또한 미세 입자 크기로 인해 빠른 에너지 방출 속도를 보이므로 고폭 화약 및 고체 복합 추진제(solid composite propellant) 등 민수용 및 군용 조성물로서 널리 이용될 수 있다.

Description

서브마이크론과 마이크론 크기의 구형 RDX 입자 제조방법{PREPARATION METHOD FOR SUBMICRON AND MICRON SIZE- SPHERICAL RDX PARTICLES}
본 발명은 서브마이크론과 마이크론 크기 구형 RDX(Cyclotrimethylene trinitramine) 입자를 제조하는 방법에 관한 것으로서, RDX가 녹아있는 용매에 반용매(anti-solvent)를 첨가하여 재결정(recrystallization)하는 기술로 구형 RDX(Cyclotrimethylene trinitramine) 입자 제조방법에 관한 것이다.
Henning에 의해 hexamethylenetetramine(HMT)의 니트로화에 의해 처음 합성된 RDX는 탄약, 고체 복합 추진제로 널리 이용되고 있는 니트라민계열 고폭 화약이다. 흰색 결정 상태의 RDX는 가소제, 둔감화제, 점조제, 다른 폭약과 혼합된 조성물로서 이용되고 있으며 실온에서 매우 안정하고 강력하므로 Comp. A, Comp. B., Comp. C, Comp. D, HBX, C-4, H-6, C-4 등 군용 및 발파용 폭약으로 이용된다.
미국은 1960년대 베트남 전쟁 당시 USS Oriskany, USS Forrestal을 필두로 MK24, 레이저 유도 미사일 등 많은 탄두/탄약을 적재한 항공모함과 병기창에서 폭발사고에 의한 인명과 막대한 자산 손실을 경험한 이후 이를 최소화하기 위한 전략으로 비의도 외부 자극원인 열, 충격(shock), 총격, 동조 기폭(sympathetic detonation) 등에 의한 폭풍파, 탄자 또는 파편 피격, 화재에 대해 전혀 반응하지 않거나 급격한 기폭 현상을 회피하여 연소 수준을 보이는 둔감화약 및 조성물에 대한 개발 연구되고 있다.
둔감화약을 주로 구성하는 조성물(formulation)의 둔감도(insensitivity)는 고폭 화약의 자체 물리화학적 특성(양론비, oxygen balance, 평균 입경, 입도 분포, 형상, 결함)과 조성물 특성(고분자 결합제, 가소제, 다른 첨가제)에 주로 좌우되며, 고폭 화약의 둔감도는 개별 입자의 외부 특성(입도 분포와 평균 입경)과 내부 특성(내포물, 불순물, heterophase 존재, 결함 농도, 공극 등)이 제어되고 있다.
예를 들어, 고폭 화약의 평균 입경이 작아질 경우 결정 내부에 포함되어 있는 결정 결함 농도와 공극 감소로 인해 비교적 과열점(hot spot) 생성이 촉진될 수 있는 반응점(reaction site)이 감소되며, 또한 고폭 화약의 형상이 다각형 또는 구형에 가까워질 경우에는 기계적 강도 향상과 아울러 외부 충격이 입자 표면에서 균일하게 분산되거나 입자간 공극률이 감소되어 기폭 압력이 상승되는 유리한 점이 있다. 이 때, 고폭 화약에 대한 비의도적인 자극을 열, 충격, 표면 접촉으로 분류한다면 이들은 완속 또는 급속 가열, 충격 민감도(impact sensitivity), 마찰 민감도(friction sensitivity), 쇼크 민감도(shock sensitivity)에 의해 정량화될 수 있다.
쇼크 민감도(shock sensitivity)는 고폭 화약(high explosive)의 충격파(shock wave)에 대한 응답특성이며, 이는 고폭 화약의 화학적 에너지 방출에 의한 충격파 증폭(shock wave amplification) 현상으로 이로 인해 기폭이 발생한다.
여러 물리화학적 특성에서 쇼크 민감도(shock sensitivity)와 관련 깊은 것은 고폭 화약의 입자 크기(particle size)와 표면 거칠기(surface roughness)이며, 유액(Emulsion), 액체폭발물(liquid explosive), 다공성 고체 폭발물(porous solid explosive), 플라스틱 접착폭약(plastic bonded explosive, PBX)와 같은 복합 화약의 쇼크 민감도(shock sensitivity)에서 개별 구성된 고폭 화약의 입자 크기에 따라 달라지는 현상이 관측되고 있다.
고폭 화약의 입자 크기에서 복합화약의 쇼크 민감도(shock sensitivity)가 상반되는 현상에 대해 Khasainov는 충격압(shock pressure)이 고폭 화약의 임계 점화 압력(critical ignition pressure)보다 매우 크게 되면 고폭 화약의 평균 입경이 작아질수록 쇼크 민감도는 민감해지지만, 임계 과열점(hot spot) 크기가 복합 화약을 구성하는 고폭 화약의 평균 입경과 거의 비슷하게 되면 고폭화약의 입자 크기가 작아질수록 복합화약의 쇼크 민감도는 둔감해진다.
또한, 과열점(hot spot) 생성 속도가 쇼크 민감도(shock sensitivity)를 좌우하게 되고 고폭 화약 입자의 연소 면적은 임계 과열점 크기(size)로 인해 제한되게 된다. 대부분 공극이 없는 플라스틱 접착폭약(PBX)은 충격압(shock pressure)이 임계 점화 압력(critical ignition pressure)보다 매우 작으므로 입자 크기가 작아질수록 쇼크 민감도(shock sensitivity)는 둔감해진다.
Armstrong은 고폭 화약의 충격 민감도(impact sensitivity)와 입자 크기의 상관관계로 pile-up dislocation mechanism을 제시하였으며, 이는 RDX 입자가 커질수록 과열점(hot spot) 크기는 커지고 방출되는 열량은 많아지며 민감한 것이다.
RDX가 복합화약 형태의 플라스틱 접착폭약(PBX) 조성물로 주로 이용되므로 충격 민감도와 쇼크 민감도를 낮추기 위해서는 입자 크기 감소가 요구된다. 평균 입경이 0.01 내지 10 ㎛ 정도인 RDX에 대한 연구로부터 RDX의 추산된 과열점(hot spot) 크기는 약 1 ㎛로 알려져 있으며, 과열점(hot spot)의 붕괴에 의해 485 K까지 온도 상승이 일어난다. 대부분 고폭 화약의 임계 온도가 400 내지 600 범위에 있고 임계 응력(critical stress)이 1×104 내지 2.5×104 atm 사이에 있으므로 임계 과열점(hot spot) 크기는 0.1 내지 10 ㎛ 정도로 추산된다. 그러므로 민감도를 낮추기 위한 적정한 RDX 입자의 평균 입경은 알려져 있지 않지만 대략적으로 과열점(hot spot) 크기를 고려하게 될 경우 RDX 입자 크기는 약 1 ㎛정도 또는 그 부근이 적합하다.
Bellitto 등은 RDX 표면에 대한 AFM(Atom Force Microscopy) 분석과 조성분석으로부터 RDX의 쇼크 민감도는 HMX 함량과 무관하며 RDX 표면 거칠기(surface roughness)와 통계적으로 유의한 상관관계가 있음을 밝혔으며, Czerki 등에 의하면 평균 입경 10 내지 30 ㎛인 RDX와 평균 입경 100 내지 300 ㎛인 RDX를 대상으로 RDX 입자의 쇼크 민감도는 내부의 공극(internal void)과 상관관계가 없으며 입자 표면의 딤플(dimple)과 같은 다른 입자간의 마찰이 쉽게 일어날 수 있는 모서리가 많은 형태와 판상 형태와 같은 충진 밀도 감소가 밀접한 관계가 있음을 밝혔다.
입자-입자 또는 결정-결정 사이의 표면 마찰에 의한 에너지는 소산되지 않고 모서리 또는 각이 진 표면에 집중되지만 표면이 매끈하고 둥근 입자는 입자간 마찰에 의해 축적된 마찰 에너지가 빠르게 소산되어 쇼크 민감도가 감소된다. 그리고 입자 형상이 각진 형태가 아닐 경우 입자간 공극이 줄어들어 고폭 화약의 충진 밀도가 높아지는 장점이 있다. 그러므로 쇼크 민감도를 낮추기 위해 고폭 화약의 특성은 충진 밀도 및 기계적 강도를 높이기 위해 구형에 가까운 입자 형상, 매끈한 입자 표면상태, 작은 입자 크기 등이 요구되고 있다.
한편, 고폭 입자의 형상을 표현하는 종횡비(aspect ratio)가 커질 경우 즉, 입자의 이방성이 심하게 되며 조성물 제조 과정에서 외부 응력과 입자간 충돌에 의해 고폭 화약이 파쇄되어 파편 발생과 개재물이 생성된다. 이럴 경우 고폭 화약은 높은 충진 밀도를 얻기 어려우며 입자간 마찰에 의해 마찰 민감도가 높아질 수 있다.
낮은 종횡비에 따른 구형이 고폭 화약의 이상적인 형상으로 인식되는 이유는 기폭 압력(detonation pressure)과 밀접한 관련이 있다. 분자화약의 위력은 기폭 압력(detonation pressure, P)으로 표현되는 데, 이는 기폭 속도(D, detonation velocity)와 분자 화약의 충진 밀도(
Figure 112015039190248-pat00001
)로 계산되며, 이를 식으로 표현하면,
Figure 112015039190248-pat00002
이다.
기폭 이론에 의해 고폭 화약의 기폭 압력은 충진 밀도와 고유 물성인 기폭 속도에 의해 결정되며, 고폭 화약이 에너지 조성물 제조 과정에서 사압 현상(dead pressure)이 발생되지 않도록 공극이 충분히 적은 높은 충진 밀도를 유지하게 될 때 분자 화약의 최고 기폭 압력이 나타나며 위력이 극대화될 수 있다.
그리고 고폭 화약의 형상이 점점 구형에서 벗어나게 되면 충진 부피의 역수로 계산된 충진 밀도는 낮아지게 되며, 고폭 에너지 조성물의 충진 과정에서 다른 평균 입경의 분자 화약이 혼합될 경우에는 큰 입자사이의 공간에 작은 입자들이 채워지게 되어 충진 밀도가 높아지게 되고, 이때 고폭 화약의 형상이 구형이면 매우 유리하므로 고폭 화약은 이상적인 구형, 매끈한 표면, 작은 입자 크기가 요구되고 있다.
따라서, 추진제 조성물을 비롯한 여러 에너지 조성물 제조에 적합한 기계적 강도, 유동성(free flowing), 충진 밀도, 기폭 성능을 갖는 고폭 화약 입자의 제조를 위해 많은 기술들이 개발되고 있다.
일본 특허공개공보 제01-313382호
Khasainov, B. A., Ermolaev, B. S., Presles, Vidal, P., On the Effect of Grain Size on Shock Sensitivity of Heterogeneous High Explosives, Shock Waves, 7, 89-105, 1997 Armstrong, R. W., Coffey, C. S., DeVost, V. F., Elban, W. L., Crystal Size Dependence for Impact Initiation of Cyclotrimethylenetrinitramine Explosive, J. Appl. Phys., 68(3), 979-984, 1990 Bellitto, V., Melnik, M. I., Atomic Force Microscopy - Imaging, Measuring and Manipulating Surfaces at the Atomic Scale, Intech, 2012 Czerki, H., Proud, W. G., Relationship between the Morphology of Granular Cycltrimethylene-trinitramine and Its Shock Sensitivity, Journal of Applied Physics, 102, 113515, 2007
RDX 입자 제조는 습식분쇄(wet milling), 진공석출(vacuum deposition), 초임계유체를 이용한 RESS(rapid expansion of supercritical solutions)이나 SAS(supercritical anti-solvent), 분무건조(spray drying), 저온 플라즈마 방법 등이 알려져 있는데 이런 방법의 경우 일부 구형 RDX 입자 제조가 가능하지만 고온, 고압, 고에너지 조건이 동반되어 공정상으로 대량의 RDX 입자 제조 조건이 불리하며, RDX 입자는 구형과 타원형을 제외하고 침상, 판상, 주상정일 경우 단립체로 얻어지지만, 구형 또는 타원형 RDX 입자의 경우 대부분 응집된 상태로 제조되어 RDX 입자를 효율적으로 제조하기 힘들고, 불가피하게 초음파와 같은 2차적인 분산 장치가 소요되는 점이 있다. 또한, 서브마이크론 크기 RDX 입자의 제조를 위해서 RDX 농도가 매우 낮아지는 점이 있다. 따라서 기존 방법에 비해서 초음파와 같은 혼합 조건 회피와 단립 상태의 RDX 입자와 과열점(hot spot) 크기인 1 ㎛보다 평균입경이 작은 RDX 입자가 요구되고 있다.
이에 따라 상기와 같은 점을 감안한 본 발명은 적절한 유기 용매(solvent)에 RDX를 용해시키고, 이 용액과 RDX에 대해 용해도가 극히 낮은 반용매(anti-solvent)를 혼합하여 RDX를 석출시키고 수득하는 과정으로 서브마이크론 및 마이크론 크기의 구형 RDX 입자 제조방법 및 이에 의해 제조된 구형 RDX 입자의 제공에 목적이 있다.
상기와 같은 목적을 달성하기 위해 본 발명의 구형 RDX 입자 제조방법은 유기 용매에 RDX를 용해시켜 RDX 용액을 제조하는 단계; 상기 RDX 용액과 반용매를 혼합하여 RDX 입자를 석출하는 단계; 및 석출된 RDX 입자를 수득하는 단계;를 포함하며, 상기 RDX 용액과 반용매를 혼합하기 전에 상기 RDX 용액 또는 상기 반용매에 계면활성제를 첨가하는 것을 특징으로 한다.
상기 유기 용매는 DMSO(dimethyl slufoxide), DMF(N,N-dimethylformamide), DMA(N,N-dimethylacetamide), NMP(n-methyl-2-pyrrolidone), acetone, γ-butyrolactone, cyclohexanone 중에서 선택되는 어느 1종 이상일 수 있다.
상기 계면활성제는 PVP-co-PVA(polyvinyl pyrrolidone-co-polyvinylacetate), PVP-co-DMA(n(polyvinylpyrrolidone-co-dimethyl maleic anhydride)), PVP-co-DMAEM(poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate)), PVP-co-VA(poly(1-vinylpyrrolidone-co-vinylacetate)), PVP-co-Styrene(poly(1-vinylpyrrolidone-co-styrene)), Poly[(2-ethyldimethylammonioethyl meth acrylate ethyl sulfate)-co-(1-vinylpyrrolidone)] 중에서 선택되는 어느 1종 일 수 있다.
상기 반용매는 RDX에 대해 용해도가 극히 낮은 용매로 유기 용매와 섞이는 어떠한 용매도 상관없으며, 바람직하게는 물을 사용할 수 있다.
상기 RDX 용액을 제조하는 단계는 15 내지 100 ℃정도의 온도에서 상기 RDX와 상기 유기 용매를 2:100 내지 5:100의 질량비율로 혼합하여 용해시킬 수 있다.
상기 RDX 입자를 석출하는 단계는 상기 RDX 용액과 상기 반용매를 1:15 내지 1:120의 질량비율로 혼합하여 용해시키며, 여기서 상기 반용매의 온도는 0 내지 25 ℃ 범위이다.
또한, 상기 계면활성제는 상기 RDX 용액과 상기 반용매가 혼합된 혼합물에 1 내지 10 질량% 로 첨가될 수 있다.
또한, 본 발명의 구형 RDX 입자 제조방법은 수득된 RDX 입자를 세척 및 건조하는 단계를 더 포함할 수 있다.
앞서 설명한 제조방법에 따라 제조된 구형 RDX 입자는 평균 입경이 0.2 내지 3 범위인 구형 입자이며, 또한, RDX 입자의 가로 길이(La)와 세로 길이(Lb)의 비(La/Lb)가 1.0 내지 1.4의 범위인 것을 특징으로 한다.
이러한 본 발명의 구형 RDX 입자 제조방법은 단순히 RDX를 용매에 용해시킨 용액과 반용액을 혼합하여 서브마이크론 및 마이크론 크기 구형 RDX 입자를 제조함으로써, 별도의 고온, 고압, 고전압, 고 에너지 등을 요구하지 않으므로 공정 운용상의 비용이 대폭 감소되는 효과가 있다.
또한, 기존 방법과는 달리 응집 상태를 회피하여 단순하게 RDX를 용해시킨 용매와 RDX 침전을 일으키는 반용매를 일시에 혼합하여 구형 RDX 입자를 제조할 수 있으며, 생산량 향상이 가능하다.
또한, RDX 입자를 1 ㎛ 이하 정도의 서브마이크론 크기로 제조하면, 민감도를 결정하는 과열점(hot spot)의 크기가 작아져, 민감도가 낮아질 수 있는 점이 있고 또 크기의 축소로 인해 넓은 비표면적으로 기폭 에너지 발생 속도를 비약적으로 높일 수 있다.
또한, 구형으로 인해 표면 거칠기가 감소되어 쇼크 민감도(shock sensitivity)가 낮아지며 에너지 조성물 제조 과정에서 점도가 낮아질 수 있으며, 평균 입경의 감소에 따라 충진 밀도 상승에 따른 기폭 압력 극대화, 응집 상태 회피로 인하여 비교적 둔감한 RDX 입자의 제조가 가능하며 미세 입자 크기로 인해 빠른 에너지 방출 속도를 보이므로 고폭 화약 및 고체 복합 추진제(solid composite propellant) 등 민수용 및 군용 조성물로서 널리 이용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 구형 RDX 입자 제조방법의 공정 흐름도이다.
도 2는 본 발명의 실시예1에서 제조된 구형 RDX 입자의 SEM 사진이다.
도 3은 본 발명의 실시예2에서 제조된 구형 RDX 입자의 SEM 사진이다.
도 4는 본 발명의 실시예3에서 제조된 구형 RDX 입자의 SEM 사진이다.
도 5는 본 발명의 실시예4에서 제조된 구형 RDX 입자의 SEM 사진이다.
도 6은 본 발명의 실시예5에서 제조된 구형 RDX 입자의 SEM 사진이다.
도 7은 본 발명의 실시예6에서 제조된 구형 RDX 입자의 SEM 사진이다.
도 8은 본 발명의 실시예7에서 제조된 구형 RDX 입자의 SEM 사진이다.
도 9는 본 발명의 실시예8에서 제조된 구형 RDX 입자의 SEM 사진이다.
도 10은 본 발명의 실시예9에서 제조된 구형 RDX 입자의 SEM 사진이다.
도 11은 본 발명의 실시예10에서 제조된 구형 RDX 입자의 SEM 사진이다.
도 12는 본 발명의 비교예1에서 제조된 구형 RDX 입자의 SEM 사진이다.
이하에서 앞서 설명한 본 발명을 더욱 상세하게 설명하기로 한다.
도 1에 나타난 바와 같이, 본 발명에 따른 구형 RDX 입자 제조방법은 유기 용매에 RDX를 용해시켜 RDX 용액을 제조하는 단계(S110), 상기 RDX 용액 또는 반용액에 계면활성제를 첨가하는 단계(S120), 상기 RDX 용액과 상기 반용매를 혼합하여 RDX 입자를 석출시키는 단계(S130), 석출된 RDX 입자를 수득하는 단계(S140) 및 수득된 RDX 입자를 세척 및 건조하는 단계(S150)를 포함한다.
상기 RDX 용액을 제조하는 단계(S110)에서 상기 유기 용매는 DMSO(dimethyl slufoxide), DMF(N,N-dimethylformamide), DMA(N,N-dimethylacetamide), NMP(n-methyl-2-pyrrolidone), acetone, γ-butyrolactone, cyclohexanone 중에서 선택되는 어느 1종 이상의 혼합물도 가능하다. 특히 DMA(N,N-dimethylacetamide)는 실온에서 점도가 낮으며 RDX에 대한 용해도가 높으므로 바람직하게 사용할 수 있다.
또한, 유기 용매에 RDX가 용해되는 온도 범위는 용해도로부터 15 내지 100 ℃가 적합하고, 특히 25 내지 90 ℃의 온도 범위가 바람직하며, 일정한 온도로 유지되는 어떤 형태의 용기에서도 충분히 진행될 수 있다.
그리고 유기 용매에서 RDX 농도는 온도 범위 15 내지 100 ℃에서의 RDX 용해도로부터 결정되며, 일반적으로 RDX 용해도는 유기 용매 100g에 대해서 온도 범위 15 내지 90 ℃에서 2.5 내지 100g 정도이다. 여기서, 상기 온도 범위인 15 내지 100 ℃를 벗어날 경우 나중에 혼합되는 반용매 온도를 상승시켜 응집된 형태의 RDX 입자가 석출되거나 처리되는 RDX 농도가 매우 낮아질 수 있다.
또한, RDX와 유기 용매를 2:100 내지 5:100의 질량 비율로 혼합하여 용해시키는 것이 적합하다. 그러나 여기서 상기 질량 비율 범위를 벗어날 경우, 제조되는 RDX 입자의 평균 입경이 1 ㎛ 이상으로 매우 커지거나 제조되는 RDX 입자의 양이 적을 수 있으므로 상기 질량비율의 범위를 만족하는 것이 바람직하다.
RDX가 유기용매에 완전히 용해된 RDX 용액 또는 반용액에 계면활성제가 첨가되며(S120), 상기 계면활성제는 RDX 용액의 점도와 계면 장력에 영향을 미치며, 입자간 응집 상태를 크게 변화시킬 수 있다.
본 발명에서 계면활성제는 PVP(polyvinylpyrrolidone) 계열 공중합체에서 선택되는 1종을 사용할 수 있다.
예를 들어 PVP 계열 공중합체(PVP copolymer)로는 Sigma-Aldrich사의 시약으로 PVP-co-PVA(polyvinyl pyrrolidone-co-polyvinylacetate), PVP-co-DMA(n(polyvinylpyrrolidone-co-dimethyl maleic anhydride)), PVP-co-DMAEM(poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate)), PVP-co-VA(poly(1-vinylpyrrolidone-co-vinylacetate)), PVP-co-Styrene(poly(1-vinylpyrrolidone-co-styrene)), Poly[(2-ethyldimethylammonioethyl meth acrylate ethyl sulfate)-co-(1-vinylpyrrolidone)] 중에서 선택되는 어느 1종을 사용할 수 있으며, 특히 PVP-co-PVA(polyvinyl pyrrolidone-co-polyvinylacetate)가 적합하다.
여기서 PVP(polyvinylpyrrolidone) 계열 공중합체는 RDX 표면에서 vinylpyrrolidone 기의 질소원자(N)가 RDX와 복합체(complex)를 형성할 경우 RDX 표면의 음전하를 상쇄시켜 전기적으로 중성상태를 만들게 되고 이로 인해 정전기에 의한 기폭 가능성이 낮아지기 때문에 계면활성제로 바람직하게 사용할 수 있다.
이렇게 RDX 용액 또는 반용매에 첨가되는 계면활성제의 양은 RDX 용액과 반용매가 혼합된 혼합물의 1 내지 10 질량%로 첨가되는 것이 적합하다. 이때 상기 계면활성제의 질량백분율 범위를 벗어날 경우, 나중에 수득된 RDX 입자를 세척한 후에도 RDX 입자 표면에 잔류된 계면활성제가 RDX의 기폭 특성, 저장 성능, 제품 순도에 영향을 미칠 수 있다.
RDX 입자를 석출시키는 단계(S130)는 계면활성제의 첨가 이후, RDX 용액이 반용매(anti-solvent)와 혼합되어 RDX를 석출하게 된다.
상기 반용매는 RDX 입자를 RDX 용액의 유기 용매와 섞이는 어떠한 용매도 상관없으나 바람직하게 물이 사용될 수 있으며, 이는 나노 크기 및 마이크로 크기의 RDX 입자 생성을 위해 요구되는 최대 과포화도(supersaturation ratio, S)가 약 100 %를 이상으로 할 수 있고, 비교적 저렴한 가격으로 극대화할 수 있으며 휘발에 따른 화재와 공정상의 위험이 덜하기 때문이다.
RDX 용액과 반용매는 1:15 내지 1:120의 질량비율로 혼합되는 것이 적합하며, 보다 바람직하게는 1:15 내지 1:60의 질량비율이 적합하다. 이때, 상기 질량비율 범위를 벗어날 경우 석출된 RDX 입자의 재용해 또는 입자 크기가 매우 작아서 회수가 불가능할 수 있으며 수득되는 RDX 입자의 양이 적을 수 있다.
상기 반용매의 온도는 RDX 용액과 반용매의 혼합에 의해 발생되는 과포화도를 고려해서 40 ℃이하이면 충분하며, 특히 0 내지 25 ℃ 범위가 적합하다.
RDX 용액과 반용매의 혼합에 의해 RDX 입자가 석출되면, 석출된 RDX 입자를 수득하는 단계(S140)는 현탁된 용액을 hydrophilic PTFE(polytetrafluoroethylene) 재질로 공극 크기(pore size)가 0.1 ㎛이고, 직경이 47 mm인 멤브레인 필터(membrane filter)에서 여과하여 RDX 입자를 수득한다.
또한, 본 발명의 구형 RDX 제조방법은 세척 및 건조 단계(S150)를 더 포함하며, 수득된 RDX 입자를 세척하여, 진공 오븐에서 65 ℃ 온도로 12 시간 동안 건조한다.
본 발명에 따른 구형 RDX 제조방법에 의해 제조된 RDX 입자는 구형(bead) 입자로 입경이 0.2 내지 3 범위이며, 이와 같은 RDX 입자의 형상에서 RDX 입자의 가로 길이(La)와 세로 길이(Lb)의 비율을 종횡비(aspect ratio)=La/Lb로 정의하면, 이에 따라 상기 제조된 RDX 입자의 종횡비는 1.0 내지 1.4 범위이다.
이렇게 제조된 RDX 입자는 소량 채취된 후, 사이클로헥산(cyclohexane)에 초음파로 분산하고 금 코팅되어 주사전자현미경(scanning electron microscope, SEM)에 의해 RDX 입자의 형상, 입도 분포, 평균 입경을 관측한다.
이상에서 설명한 본 발명을 다음의 실시예에 의거하여 더욱 상세히 설명하겠으나, 본 발명의 권리범위가 다음의 실시예에 의해 한정되는 것은 아니다.
실시예 1은 90 ℃에서 0.5g RDX를 10g DMA(N,N-dimethylacetamide)에 완전히 용해시켜 RDX 용액을 제조한다. RDX가 완전히 용해된 용액에 계면활성제인 PVP-co-PVA(poly(vinylpyrrolidone-co-vinylacetate) 0.5g를 첨가한다. 0 ℃로 유지한 반용매인 물 300g과 상기 RDX 용액을 일시에 혼합시켜 RDX 입자가 석출되어 나온 수용액을 여과하여 RDX 입자를 수득한다.
도 2에 도시된 바와 같이, 실시예 1에 따라 제조된 구형 RDX 입자의 평균 입경은 1.66 ㎛ 이다.
또 다른 실시예 2는 90 ℃에서 0.5g RDX를 20g DMA(N,N-dimethylacetamide)에 완전히 용해시켜 RDX 용액을 제조한다. RDX가 완전히 용해된 RDX 용액에 계면활성제인 PVP-co-PVA (poly(vinylpyrrolidone-co-vinylacetate) 0.25g를 첨가한다. 0 ℃로 유지한 반용매인 물 300g과 상기 RDX 용액을 일시에 혼합시켜 RDX 입자가 석출되어 나온 수용액을 여과하여 RDX 입자를 수득한다.
도 3에 도시된 바와 같이, 실시예 2를 통해 제조된 구형 RDX 입자의 평균 입경은 1.93 ㎛ 이다.
또 다른 실시예 3은 90 ℃에서 0.5g RDX를 10g DMA(N,N-dimethylacetamide)에 완전히 용해시켜 RDX 용액을 제조한다. RDX가 완전히 용해된 RDX 용액에 계면활성제인 PVP-co-PVA(poly(vinylpyrrolidone-co-vinylacetate) 1g를 첨가한다. 0 ℃로 유지한 반용매인 물 300g과 상기 RDX 용액을 일시에 혼합시켜 RDX 입자가 석출되어 나온 수용액을 여과하여 RDX 입자를 수득한다.
도 4에서처럼, 실시예 3에 따라 제조된 구형 RDX 입자의 평균 입경은 1.27 ㎛ 이다.
또 다른 실시예 4는 90 ℃에서 0.5g RDX를 10g DMA(N,N-dimethylacetamide)에 완전히 용해시켜 RDX 용액을 제조한다. RDX가 완전히 용해된 RDX 용액에 계면활성제인 PVP-co-PVA(poly(vinylpyrrolidone-co-vinylacetate) 2g를 첨가한다. 0 ℃로 유지한 반용매인 물 300g과 상기 RDX 용액을 일시에 혼합시켜 RDX 입자가 석출되어 나온 수용액을 여과하여 RDX 입자를 수득한다.
도 5에서처럼, 실시예 4를 통해 제조된 구형 RDX 입자의 평균 입경은 2.52 ㎛ 이다.
또 다른 실시예 5는 90 ℃에서 0.2g RDX를 10g DMA(N,N-dimethylacetamide)에 완전히 용해시켜 RDX 용액을 제조한다. RDX가 완전히 용해된 RDX 용액에 계면활성제인 PVP-co-PVA(poly(vinylpyrrolidone-co-vinylacetate) 1g를 첨가한다. 0 ℃로 유지한 반용매인 물 300g과 상기 RDX 용액을 일시에 혼합시켜 RDX 입자가 석출되어 나온 수용액을 여과하여 RDX 입자를 수득한다.
도 6에서와 같이, 실시예 5에 따라 제조된 구형 RDX 입자의 평균 입경은 1.87 ㎛ 이다.
또 다른 실시예 6은 90 ℃에서 0.2g RDX를 10g DMA(N,N-dimethylacetamide)에 완전히 용해시켜 RDX 용액을 제조한다. RDX가 완전히 용해된 RDX 용액에 계면활성제인 PVP-co-PVA(poly(vinylpyrrolidone-co-vinylacetate) 0.2g를 첨가한다. 0 ℃로 유지한 반용매인 물 300g과 상기 RDX 용액을 일시에 혼합시켜 RDX 입자가 석출되어 나온 수용액을 여과하여 RDX 입자를 수득한다.
도 7에서와 같이, 실시예 6을 통해 제조된 구형 RDX 입자의 평균 입경은 1.05 ㎛ 이다.
또 다른 실시예 7은 90 ℃에서 0.2g RDX를 10g DMA(N,N-dimethylacetamide)에 완전히 용해시켜 RDX 용액을 제조한다. RDX가 완전히 용해된 RDX 용액에 계면활성제인 PVP-co-PVA(poly(vinylpyrrolidone-co-vinylacetate) 0.2g를 첨가한다. 0 ℃로 유지한 반용매인 물 300g과 상기 RDX 용액을 일시에 혼합시켜 RDX 입자가 석출되어 나온 수용액을 여과하여 RDX 입자를 수득한다.
도 8에 나타난 바와 같이, 실시예 7에 따라 제조된 구형 RDX 입자의 평균 입경은 1.52 ㎛ 이다.
또 다른 실시예 8은 80 ℃에서 0.2g RDX를 5g DMA(N,N-dimethylacetamide)에 완전히 용해시켜 RDX 용액을 제조한다. RDX가 완전히 용해된 RDX 용액에 계면활성제인 PVP-co-PVA(poly(vinylpyrrolidone-co-vinylacetate) 0.2g를 첨가한다. 0℃로 유지한 반용매인 물 300g과 상기 RDX 용액을 일시에 혼합시켜 RDX 입자가 석출되어 나온 수용액을 여과하여 RDX 입자를 수득한다.
도 9에 나타난 바와 같이, 실시예 8에 따라 제조된 구형 RDX 입자의 평균 입경은 0.85 ㎛ 이다.
또 다른 실시예 9는 80 ℃에서 0.2g RDX를 5g DMA(N,N-dimethylacetamide)에 완전히 용해시켜 RDX 용액을 제조한다. RDX가 완전히 용해된 RDX 용액에 계면활성제인 PVP-co-PVA(poly(vinylpyrrolidone-co-vinylacetate) 0.2g를 첨가한다. 0 ℃로 유지한 반용매인 물 300g과 상기 RDX 용액을 일시에 혼합시켜 RDX 입자가 석출되어 나온 수용액을 여과하여 RDX 입자를 수득한다.
도 10에 도시된 바와 같이, 실시예 9를 통해 제조된 구형 RDX 입자의 평균 입경은 0.98 ㎛ 이다.
또 다른 실시예 10은 80 ℃에서 0.1g RDX를 2.5g DMA(N,N-dimethylacetamide)에 완전히 용해시켜 RDX 용액을 제조한다. RDX가 완전히 용해된 RDX 용액에 계면활성제인 PVP-co-PVA(poly(vinylpyrrolidone-co-vinylacetate) 0.2g를 첨가한다. 0 ℃로 유지한 반용매인 물 300g과 상기 RDX 용액을 일시에 혼합시켜 RDX 입자가 현탁된 수용액을 얻었으며 여과에 의해 RDX 입자를 수득한다.
도 11에 나타난 것처럼, 실시예 10에서 제조된 구형 RDX 입자의 평균 입경은 0.27 ㎛ 이다.
그리고, 비교예 1은 80 ℃에서 0.2g RDX를 5g DMA(N,N-dimethylacetamide)에 완전히 용해시켜 RDX 용액을 제조한다. 0 ℃로 유지한 반용매인 물 300g과 상기 RDX 용액을 일시에 혼합시켜 RDX 입자가 석출되어 나온 수용액을 여과하여 RDX 입자를 수득한다.
도 12에 도시된 바와 같이, 비교예 1을 통해 제조된 RDX 입자는 응집된 상태이며, 응집체를 구성하는 1차 입자의 평균 입경은 1.65 ㎛ 이다.
앞서 살펴본 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진자(이하 '당업자'라고 한다)가 본 발명을 용이하게 실시할 수 있도록 하는 바람직한 실시예일 뿐, 전술한 실시예 및 첨부한 도면에 한정되는 것이 아니므로 이로 인해 본 발명의 권리범위가 한정되는 것은 아니다. 따라서, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 당업자에게 있어 명백할 것이며, 당업자에 의해 용이하게 변경 가능한 부분도 본 발명의 권리범위에 포함됨은 자명하다.

Claims (12)

15 내지 100℃의 온도에서 RDX와 유기 용매를 2:100 내지 5:100의 질량 비율로 혼합하여 RDX를 용해시켜 RDX 용액을 제조하는 단계;
상기 RDX 용액과 0 내지 25℃ 온도로 유지한 반용매를 1:15 내지 1:120의 질량 비율로 일시에 혼합하여 RDX 입자가 석출되는 단계;
상기 RDX 입자가 석출되는 단계의 반응물을 여과하여 석출된 RDX 입자를 수득하는 단계; 및
수득된 RDX 입자를 세척 및 건조하는 단계;를 포함하며,
상기 RDX 용액과 반용매를 혼합하기 전에 상기 RDX 용액 또는 상기 반용매에 PVP-co-PVA(polyvinyl pyrrolidone-co-polyvinylacetate), PVP-co-DMA(n(polyvinylpyrrolidone-co-dimethyl maleic anhydride)), PVP-co-DMAEM(poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate), PVP-co-VA(poly(1-vinylpyrrolidone-co-vinylacetate)), PVP-co-Styrene(poly(1-vinylpyrrolidone-co-styrene), Poly[(2-ethyldimethylammonioethyl meth acrylate ethyl sulfate)-co-(1-vinylpyrrolidone)] 중에서 선택되는 어느 1종을 포함하는 계면활성제 1 내지 10 중량%를 첨가하는 것을 특징으로 하는 구형 RDX 입자 제조방법.
제 1 항에 있어서, 유기 용매는 DMSO(dimethyl slufoxide), DMF(N,N-dimethylformamide), DMA(N,N-dimethylacetamide), NMP (n-methyl-2-pyrrolidone), acetone, γ-butyrolactone, cyclohexanone 중에서 선택되는 어느 1종 이상인 것을 특징으로 하는 구형 RDX 입자 제조방법.
삭제
제 1 항에 있어서, 상기 반용매는 물인 것을 특징으로 하는 구형 RDX 입자 제조방법.
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
KR1020150056602A 2015-04-22 2015-04-22 서브마이크론과 마이크론 크기의 구형 rdx 입자 제조방법 KR101714736B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150056602A KR101714736B1 (ko) 2015-04-22 2015-04-22 서브마이크론과 마이크론 크기의 구형 rdx 입자 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150056602A KR101714736B1 (ko) 2015-04-22 2015-04-22 서브마이크론과 마이크론 크기의 구형 rdx 입자 제조방법

Publications (2)

Publication Number Publication Date
KR20160125746A KR20160125746A (ko) 2016-11-01
KR101714736B1 true KR101714736B1 (ko) 2017-03-09

Family

ID=57484787

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150056602A KR101714736B1 (ko) 2015-04-22 2015-04-22 서브마이크론과 마이크론 크기의 구형 rdx 입자 제조방법

Country Status (1)

Country Link
KR (1) KR101714736B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106748584B (zh) * 2016-11-29 2019-03-19 西南科技大学 乳液法制备球形化有机小分子复合物的方法
KR101887811B1 (ko) * 2017-05-12 2018-08-10 주식회사 한화 둔감 rdx 제조 방법
KR101999744B1 (ko) * 2017-12-29 2019-07-12 주식회사 한화 사이클로 트리메틸렌 트리나이트라민의 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE462428B (sv) 1988-04-29 1990-06-25 Nobel Kemi Ab Saett foer framstaellning av finkorniga explosiva substanser
GB0815936D0 (en) * 2008-08-29 2009-01-14 Bae Systems Plc Cast Explosive Composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
이세은 외 6인, 용매/반용매 결정화에 의한 구형 분자화약 나노입자의 제조, 화학공의 이론과 응용 제20권 제2호, 2014. 10. 22., p.1468*

Also Published As

Publication number Publication date
KR20160125746A (ko) 2016-11-01

Similar Documents

Publication Publication Date Title
Ma et al. Core–shell structured nanoenergetic materials: preparation and fundamental properties
He et al. Highly reactive metastable intermixed composites (MICs): preparation and characterization
Qiu et al. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity
Zhang et al. Preparation and Properties of Submicrometer‐Sized LLM‐105 via Spray‐Crystallization Method
Yang et al. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine–formaldehyde resins with reduced sensitivity
KR101714736B1 (ko) 서브마이크론과 마이크론 크기의 구형 rdx 입자 제조방법
Cheng et al. Kinetic study of thermal-and impact-initiated reactions in Al–Fe2O3 nanothermite
Huang et al. Construction and properties of structure-and size-controlled micro/nano-energetic materials
US9120710B1 (en) Particulate-based reactive nanocomposites and methods of making and using the same
US20150158003A1 (en) Microcapsules having acrylic polymeric shells and methods of making same
Li et al. Nanostructured energetic composites of CL‐20 and binders synthesized by sol gel methods
Jia et al. Synthesis, thermolysis, and solid spherical of RDX/PMMA energetic composite materials
Wang et al. Preparation and Properties of a nRDX‐based Propellant
Li et al. Study on preparation of insensitive and spherical high bulk density nitroguanidine with controllable particle size
CN110590565A (zh) 高度球形化的1,1-二氨基-2,2-二硝基乙烯晶体的制备方法
CN103360189B (zh) 键合剂辅助含能热塑性弹性体包覆硝胺炸药制备方法
Zeng et al. Study on Mechanical Improvement of CL‐20 Energetic Co‐Crystals Based PBX by Surface Modification
US9573858B1 (en) Energetic materials using amorphous metals and metal alloys
US5358587A (en) Simplified emulsion coating of crystalline explosives in a TNT melt
US9212102B1 (en) Spray drying of metallized explosive
JP2001527575A (ja) 新規な化学化合物、当該化合物を含有する爆薬および、ガス発生器における当該化合物の使用
CN108976176A (zh) 3,3’-二氨基-4, 4’-氧化偶氮呋咱炸药晶体的细化方法
US20110240186A1 (en) Lead-Free Nanoscale Metal/Oxidizer Composite for Electric Primers
KR101182328B1 (ko) Hniw를 이용한 고밀도 고성능 복합화약 및 그 제조방법
CN105367362B (zh) 新高反应焓含能材料及其制备方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200303

Year of fee payment: 4