KR101679176B1 - 디바이스 보호용 기생 회로 - Google Patents

디바이스 보호용 기생 회로 Download PDF

Info

Publication number
KR101679176B1
KR101679176B1 KR1020137006858A KR20137006858A KR101679176B1 KR 101679176 B1 KR101679176 B1 KR 101679176B1 KR 1020137006858 A KR1020137006858 A KR 1020137006858A KR 20137006858 A KR20137006858 A KR 20137006858A KR 101679176 B1 KR101679176 B1 KR 101679176B1
Authority
KR
South Korea
Prior art keywords
circuit
transmitter
magnetic field
impedance
frequency
Prior art date
Application number
KR1020137006858A
Other languages
English (en)
Other versions
KR20130143016A (ko
Inventor
젠 닝 로우
찰스 이 3세 휘틀리
세르지오 피 에스트라다
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20130143016A publication Critical patent/KR20130143016A/ko
Application granted granted Critical
Publication of KR101679176B1 publication Critical patent/KR101679176B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/75Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for isolation purposes
    • H02J5/005
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0715Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including means to regulate power transfer to the integrated circuit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10158Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves methods and means used by the interrogation device for reliably powering the wireless record carriers using an electromagnetic interrogation field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • H04B5/263Multiple coils at either side
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0071Active shielding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Toxicology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

예시적인 구체예들은 디바이스의 보호를 위한 기생 코일을 포함하는 디바이스에 관한 것이다. 디바이스는 동작 주파수에서 제 1의 전송된 신호를 수신하도록 구성된 제 1의 회로를 포함할 수도 있다. 디바이스는 또한 제 2의 회로를 포함할 수도 있는데, 제 2의 회로는 제 1의 전송된 신호의 무선 전력 필드의 바람직하지 않은 부분 및 상기 제 1의 회로에 근접한 다른 무선 전력 필드의 부분 중 적어도 하나의 부분에 반대인 필드를 생성하도록 구성되고, 상기 다른 무선 전력 필드는 상기 제 1의 회로의 비동작 주파수에서 제 2의 전송된 신호에 의해 생성된다.

Description

디바이스 보호용 기생 회로{PARASITIC CIRCUIT FOR DEVICE PROTECTION}
본 출원은, 본 양수인에게 각각 양도된, 2011년 3월 2일자로 출원된 발명의 명칭이 "PARASITIC CIRCUIT FOR DEVICE PROTECTION"인 미국 특허출원 제13/039,142호와, 2010년 8월 25일자로 출원된 발명의 명칭이 "PROTECTING NFC/RFIDS CARD"인 미국 가출원 제61/376,991호를 우선권으로 주장한다. 종래 출원의 개시들은 본 개시의 일부로서 고려되며, 참조에 의해 그들 전체가 원용된다.
본 발명은 일반적으로 카드 (예를 들면, NFC 또는 RFID) 보호에 관한 것이다. 보다 구체적으로는, 본 발명은 유해한 자기장으로부터 NFC 또는 RFID와 같은 카드들을 보호하는 방법들 및 디바이스들에 관한 것이다.
송신기와 충전될 디바이스 사이에서의 OTA (over the air) 전력 전송을 사용하는 접근법들이 개발되고 있다. 이들은 일반적으로 두 개의 카테고리로 분류된다. 하나는 충전될 디바이스 상의 수신 안테나와 송신 안테나 사이에서의 평면파 방사 (파-필드 방사로도 칭해짐) 의 커플링에 기초한 것으로, 상기 수신 안테나는 방사된 전력을 수집하고 배터리를 충전하기 위해 그것을 정류한다. 안테나들은 일반적으로 커플링 효율을 향상시키기 위해 공진 길이로 구성된다. 이 접근법에는, 전력 커플링이 안테나들 사이의 거리에 따라 급격히 떨어진다는 문제점이 있다. 따라서 적당한 거리들 (예를 들면, 1~2m 보다 긴 거리) 에 걸친 충전은 어렵게 된다. 또한, 시스템이 평면파들을 방사하기 때문에, 필터링을 통해 적절히 제어되지 않으면 의도하지 않은 방사가 다른 시스템들과 간섭할 수 있다.
다른 접근법은 예를 들면 "충전" 매트 또는 표면에 삽입된 송신 안테나와 충전될 호스트 디바이스에 삽입된 정류 회로를 갖는 수신 안테나 사이의 유도 결합에 기초한다. 이 접근법은 송신 및 수신 안테나들 사이의 간격이 아주 가까워야 한다는 단점 (예를 들면, 수 mm) 이 있다. 이 접근법은 동일한 영역 내에서 복수의 디바이스들을 동시에 충전하는 기능을 갖지만, 이 영역은 통상 작고, 따라서 유저는 디바이스들을 특정 영역에 위치시켜야만 한다.
NFC (Near Field Communication) 또는 RFID 카드와 같은 디바이스는, 무선 전력 송신기에 의해 사용되는 주파수와는 상이한 주파수에서 카드가 동작하더라도, 무선 전력 송신기의 충전 영역 내에 위치되면, 무선 전력 송신기로부터 과도한 전력을 수신할 수도 있다. 과도한 전력을 수신하는 것에 의해, 의도된 디바이스들로의 전력이 손실될 수도 있고 어쩌면 과열로 인해 카드에 손상을 줄 수도 있다. 무선 전력 송신기에 의해 생성된 과도한 전력으로부터 디바이스를 보호하기 위한 방법들, 시스템들 및 디바이스들에 대한 요구가 있다.
도 1은 무선 전력 전송 시스템의 블록도를 도시한다.
도 2는 무선 전력 전송 시스템의 다른 블록도를 도시한다.
도 3은 본 발명의 예시적인 구체예에서 사용하기 위한 루프 안테나의 개략적인 도면을 도시한다.
도 4는 본 발명의 예시적인 구체예에 따른, 송신기의 블록도를 도시한다.
도 5는 본 발명의 예시적인 구체예에 따른, 수신기의 블록도를 도시한다.
도 6은 무선 전력 송신기 및 이 무선 전력 송신기의 충전 패드에 위치된 복수의 디바이스들을 포함하는 무선 전력 시스템이다.
도 7은, 본 발명의 예시적인 구체예에 따른, 코일 및 회로를 포함하는 회로부를 도시한다.
도 8은, 본 발명의 예시적인 구체예에 따른, 회로를 도시한다.
도 9는, 본 발명의 예시적인 구체예에 따른, 회로를 포함하는 디바이스를 묘사한다.
도 10은, 본 발명의 예시적인 구체예에 따른, 회로의 여러 응답들을 도시하는 스미스 차트 (Smith Chart) 이다.
도 11은, 본 발명의 예시적인 구체예에 따른, 수신 코일 및 기생 코일을 포함하는 디바이스를 도시한다.
도 12는, 본 발명의 예시적인 구체예에 따른, 한 방법을 도시하는 플로우차트이다.
첨부된 도면과 연계하여 하기에 설명되는 상세한 설명은 본 발명의 예시적인 구체예의 설명으로서 의도된 것으로, 본 발명이 실시될 수 있는 구체예만을 나타내려고 의도된 것은 아니다. 본원 설명에 통해 나오는 용어 "예시적인"은 "실시형태, 사례, 또는 실례로서 기능하는"을 의미하며, 다른 예시적인 구체예들보다 더 선호되거나 유익한 것으로 이해되어져서는 안된다. 상세한 설명은 본 발명의 예시적인 구체예의 완전한 이해를 제공하기 위한 목적으로 특정 상세들을 포함한다. 본 발명의 예시적인 구체예가 이들 특정 상세들 없이 실시될 수도 있음이 당업자에게 자명할 것이다. 몇몇 경우들에 있어서, 공지의 구조들 및 디바이스들은, 본원에서 제시되는 예시적인 구체예들의 신규성을 모호하게 하는 것을 피하기 위해 블록도의 형태로 도시된다.
본원에서, 용어 "무선 전력"은, 일렉트릭 필드 (전기장), 마그네틱 필드 (자기장), 일렉트로마그네틱 필드 (전자기장) 또는 물리적인 전자기 도체들 없이 수신기에 전력을 제공하기 위해 송신기와 수신기 사이에서 전송되는 다른 것과 관련된 임의의 형태의 에너지를 의미하는 것으로 사용된다. 이하, 상기 세 필드들 (fields) 은, 순수한 자기장 또는 순수한 전기장은 전력을 방사하지 않는다는 사실에 입각하여, 일반적으로 방사된 필드들로서 칭해질 것이다. 전력 전송을 달성하기 위해서 이들은 "수신 안테나"에 커플링되어야만 한다.
도 1은, 본 발명의 여러 예시적인 구체예들에 따른, 무선 전송 시스템 (100) 을 도시한다. 시스템 (100) 은 무선 전력 전송, NFC (near-field communication; 근거리 무선 통신), 또는 둘 다를 위해 구성될 수도 있다. 에너지 전송을 제공하기 위한 필드 (106) 를 생성하기 위해 송신기 (104) 에 입력 전력 (102) 이 제공된다. 수신기 (108) 는 필드 (106) 에 커플링되어 출력 전력 (110) 을 생성하고, 이 출력 전력 (110) 은 출력 전력 (110) 에 커플링된 디바이스 (도시되지 않음) 에 의해 저장되거나 소비된다. 송신기 (104) 및 수신기 (108) 둘 다는 거리 (112) 만큼 분리된다. 한 예시적인 구체예에서, 송신기 (104) 와 수신기 (108) 는 상호 공진 관계에 따라 구성되고 수신기 (108) 의 공진 주파수와 송신기 (104) 의 공진 주파수가 아주 비슷하면, 수신기 (108) 가 필드 (106) 의 "니어 필드 (near-field) "에 위치될 때 송신기 (104) 와 수신기 (108) 사이의 전송 손실은 최소가 된다.
송신기 (104) 는 근거리 무선 통신 (NFC), 에너지 전송, 또는 둘 다를 위한 수단을 제공하는 송신 안테나 (114) 를 더 포함하고, 수신기 (108) 는 에너지 수신, 근거리 무선 통신, 또는 둘 다를 위한 수단을 제공하는 수신 안테나 (118) 를 포함한다. 송신 및 수신 안테나는 어플리케이션들 및 이들 어플리케이션들과 관련될 디바이스들에 따라 사이즈가 정해진다. 언급한 바와 같이, 전자기파에서의 대부분의 에너지를 원거리 (far field) 로 전송하는 것보다, 송신 안테나의 근거리에서 에너지의 대부분을 수신 안테나에 커플링함으로써 효율적인 에너지 전송이 달성된다. 이 니어 필드에 있으면, 송신 안테나 (114) 와 수신 안테나 (118) 사이에서 커플링 모드가 향상될 수도 있다. 이 니어 필드 커플링이 발생할 수도 있는 안테나 (114 및 118) 주위의 영역을 본원에선 커플링-모드 지역으로 칭한다. 하기에 더욱 상세히 설명될 것이지만, 수신기 (108) 는 디바이스 (예를 들면, 회로) 를 또한 포함할 수도 있는데, 이 디바이스는 수신기를 포함하는 디바이스의 적어도 일부를, 송신기 (104) 로부터 무선으로 전송된 과도한 전력으로부터 보호하도록 (즉, 디바이스의 일부를 보호하도록, 디바이스에 내장된 회로부를 보호하도록, 또는 둘 다를 보호하도록) 구성된다.
도 2는, 무선 전력 시스템, 근거리 무선 통신 시스템 또는 둘 다를 포함할 수도 있는 한 시스템의 단순화된 개략적인 다이어그램을 도시한다. 송신기 (104) 는 발진기 (122), 전력 증폭기 (124) 및 필터 및 정합 회로 (126) 를 포함한다. 발진기는, 조정 신호 (123) 에 응답하여 조정될 수도 있는 468.75 KHz, 6.78 MHz or 13.56 MHz와 같은 소정의 주파수에서 생성하도록 구성된다. 발진기 신호는 제어 신호 (125) 에 응답하는 증폭량으로 전력 증폭기 (124) 에 의해 증폭될 수도 있다. 필터 및 정합 회로 (126) 는 고조파 (harmonics) 또는 다른 원치않는 주파수들을 걸러내고 송신기 (104) 의 임피던스를 송신 안테나 (114) 에 정합시키기 위해 포함될 수도 있다.
수신기 (108) 는, 도 2에 도시된 바와 같이 배터리 (136) 를 충전하는 DC 전력 출력을 생성하거나 수신기 (도시되지 않음) 에 커플링된 디바이스에 전력을 공급하기 위해 정합 회로 (132) 와 정류기 및 스위칭 회로 (134) 를 포함할 수도 있다. 정합 회로 (132) 는 수신기 (108) 의 임피던스를 수신 안테나 (118) 에 정합시키기 위해 포함될 수도 있다. 수신기 (108) 및 송신기 (104) 는 개별적인 통신 채널 (119)(예를 들면, 블루투스, 지그비, 셀룰러 등) 상에서 통신할 수도 있다. 하기에 더욱 상세히 설명될 것이지만, 수신기 (108) 는 송신기 (404) 에 의해 생성된 필드와 반대인 필드를 생성하여, 수신기 (108) 를 포함하는 디바이스의 적어도 일부를 과도한 무선 전력으로부터 적어도 부분적으로 보호하기 위해 구성된 회로를 또한 포함할 수도 있다.
도 3에 도시된 바와 같이, 예시적인 구체예에서 사용되는 안테나는 "루프" 안테나 (150) 로서 구성될 수도 있으며, 본원에선 "마그네틱" 안테나로서 칭해질 수도 있다. 루프 안테나들은 에어 코어 (air core) 또는 페라이트 코어 (ferrite core) 와 같은 물리적 코어를 포함하도록 구성될 수도 있다. 에어 코어 루프 안테나들은 코어의 근처에 놓인 무관한 물리적 디바이스들에 더 관대할 수도 있다. 또한, 에어 코어 루프 안테나는 코어 영역 내에서의 다른 컴포넌트들의 배치를 허용한다. 또한, 에어 코어 루프는 송신 안테나 (114)(도 2) 의 평면 내에 수신 안테나 (118)(도 2) 의 배치를 더 즉각적으로 인에이블할 수도 있는데, 상기 평면에서 송신 안테나 (114)(도 2) 의 커플링된 모드 영역이 더 파워풀할 수도 있다.
언급한 바와 같이, 송신기 (104) 와 수신기 (108) 사이의 에너지의 효율적인 전송은, 송신기 (104) 와 수신기 (108) 사이의 정합된 또는 거의 정합된 공진동안 발생할 수도 있다. 그러나, 송신기 (104) 와 수신기 (108) 사이의 공진이 정합되지 않더라도, 에너지는 전송될 수도 있지만, 효율은 영향을 받을 수도 있다. 송신 안테나로부터 자유 공간으로 에너지를 전파하는 대신 이 니어 필드가 확립된 인근에 존재하는 수신 안테나로 송신 안테나의 니어 필드로부터의 에너지를 커플링함으로써 에너지 전송이 발생한다.
루프 또는 자기 안테나들의 공진 주파수는 인덕턴스 및 커패시턴스에 기초한다. 루프 안테나의 인덕턴스는 일반적으로 단순히 루프에 의해 생성된 인턱턴스인 반면, 커패시턴스는 루프 안테나의 인덕턴스에 일반적으로 더해져서 소정의 공진 주파수에서 공진 구조를 생성하게 된다. 비제한적인 실시형태로서, 커패시터 (152) 및 커패시터 (154) 가 안테나에 더해져서 공진 신호 (156) 를 생성하는 공진 회로를 생성하게 된다. 따라서, 큰 직경의 루프 안테나들에 대해, 공진을 유도하는데 필요한 커패시턴스의 사이즈는 루프의 직경 또는 인덕턴스가 증가함에 따라 감소한다. 또한, 루프 또는 자기 안테나의 직경이 증가할수록, 니어 필드의 효율적인 에너지 전송 영역은 증가한다. 물론, 다른 공진 회로들도 가능하다. 또 다른 비제한적인 실시형태로서, 커패시터는 루프 안테나의 두 단자들 사이에 병렬로 배치될 수도 있다. 또한, 당업자라면 송신 안테나들에 대해 공진 신호 (156) 는 루프 안테나 (150) 에 대한 입력일 수도 있음을 알 수 있을 것이다.
도 4는 본 발명의 예시적인 구체예에 따른, 송신기의 단순화된 블록도를 도시한다. 송신기 (200) 는 송신 회로부 (202) 와 송신 안테나 (204) 를 포함한다. 일반적으로, 송신 회로부 (202) 는, 발진 신호를 생성하여 송신 안테나 (204) 에 관한 니어 필드 에너지를 생성하는 것에 의해 송신 안테나 (204) 로 RF 파워를 제공할 수도 있다. 송신기 (200) 는 임의의 적절한 주파수에서 동작할 수도 있다. 예로서, 송신기 (200) 는 소정의 주파수, 예컨데 468.75KHz, 6.78MHz 또는 13.56MHz에서 동작할 수도 있다.
예시적인 송신 회로부 (202) 는 송신 회로부 (202) 의 임피던스 (예를 들면, 50옴) 를 송신 안테나 (204) 에 정합시키기 위한 고정 임피던스 정합 회로 (206) 및 고조파 방사들을 수신기들 (108)(도 1) 에 커플링된 디바이스들의 셀프 재밍을 방지하기 위한 레벨들로 감소시키도록 구성된 로우 패스 필터 (LPF)(208) 를 포함한다. 다른 예시적인 구체예들은, 다른 주파수들은 통과시키면서 소정의 주파수들을 약화시키는 노치 필터들을 포함하는 상이한 필터 토폴로지 (topologies) 를 포함할 수도 있지만, 이에 제한되진 않으며, 측정 가능한 송신 메트릭들, 예컨데 안테나로의 출력 전력 또는 전력 증폭기에 의해 초래되는 DC 전류에 기초하여 변경될 수 있는 적응형 임피던스 정합을 포함할 수도 있다. 송신 회로부 (202) 는 발진기 (212) 에 의해 결정된 RF 신호를 구동하도록 구성된 전력 증폭기 (210) 을 더 포함한다. 송신 회로부는 별개의 디바이스들 또는 회로들로 구성될 수도 있고, 또는 일체화된 어셈블리로 구성될 수도 있다. 송신 안테나 (204) 로부터 출력된 예시적인 RF 전력은 2.5와트 정도일 수도 있다.
송신 회로부 (202) 는, 특정 수신기들에 대한 송신 페이즈 (또는 듀티 싸이클들) 동안 발진기 (212) 를 인에이블하고, 발진기의 주파수 또는 페이즈를 조정하며, 이웃하는 디바이스들과 그들의 부착된 수신기들을 통해 상호작용하기 위해 통신 프로토콜을 구현하기 위한 출력 전력 레벨을 조정하기 위해 컨트롤러 (214) 를 더 포함한다. 컨트롤러 (214) 는 본원에서 프로세서 (214) 로 칭해질 수도 있음에 주의한다. 널리 공지된 바와 같이, 특히 한 주파수에서 다른 주파수로 천이할 때, 송신 경로에서의 관련 회로부와 발진기 페이즈의 조정은 대역 방사들의 출력의 감소를 가능하게 한다.
송신 회로부 (202) 는 송신 안테나 (204) 에 의해 생성된 니어 필드 근처에 액티브 수신기들의 존재 유무를 검출하기 위한 부하 감지 회로 (216) 를 더 포함할 수도 있다. 예로서, 부하 감지 회로 (216) 는 전력 증폭기 (210) 로 흐르는 전류를 감시하는데, 이것은 송신 안테나 (204) 에 의해 생성된 니어 필드 근처에서의 액티브 수신기들의 존재 유무에 의해 영향을 받는다. 전력 증폭기 (210) 에 대한 부하에서의 변화의 검출은, 에너지를 전송하기 위해 발진기 (212) 를 인에이블할지와 액티브 수신기와 통신할지의 여부를 결정하는데 사용하기 위해 컨트롤러 (214) 에 의해 감시된다.
송신 안테나 (204) 는 리츠 (Litz) 와이어로 구현되거나 또는 저항성 손실들을 낮게 유지하도록 선택된 두께, 폭 및 금속 타입을 갖는 안테나 스트립으로서 구현될 수도 있다. 종래의 구현예에서, 송신 안테나 (204) 는 테이블, 매트, 램프와 같은 더 큰 구조 또는 다른 더 적은 휴대형 구성과 관련시키기 위해 일반적으로 구성될 수 있다. 따라서, 송신 안테나 (204) 는 실용적인 치수가 되도록 "턴들 (turns) "을 필요로 하지 않을 것이다. 송신 안테나 (204) 의 예시적인 구현예는 "전기적으로 작을" 수도 있고 (즉 파장의 단편) 공진 주파수를 한정하기 위한 커패시터를 사용함으로써 더 낮은 가용 주파수들에서 공지하도록 튜닝될 수도 있다.
송신기 (200) 는 송신기 (200) 와 관련될 수도 있는 수신기 디바이스들의 상태와 소재들에 관한 정보를 모으고 추적할 수도 있다. 따라서, 송신기 회로부 (202) 는, 컨트롤러 (214)(본원에선 프로세서로도 칭해짐) 에 연결된, 존재 검출기 (presence detector; 280), 인클로징된 검출기 (enclosed detector; 260), 또는 이들의 조합을 포함할 수도 있다. 컨트롤러 (214) 는, 인클로징된 검출기 (260) 및 존재 검출기 (280) 로부터의 존재 신호들에 응답하여 증폭기 (210) 에 의해 전송되는 전력의 양을 조정할 수도 있다. 송신기는, 예를 들면, 빌딩 등에 존재하는 종래의 AC 전력을 변환하기 위한 AC-DC 변환기 (도시되지 않음), 종래의 DC 전원을 송신기 (200) 에 적합한 전압으로 변환하기 위한 DC-DC 변환기 (도시되지 않음) 와 같은 다수의 전원을 통해, 또는 종래의 DC 전원 (도시되지 않음) 으로부터 직접적으로 전력을 수신할 수도 있다.
비제한적인 예로서, 존재 검출기 (280) 는 송신기의 커버리지 영역에 삽입된 충전될 디바이스의 최초 존재를 감지하기 위해 활용된 모션 검출기일 수도 있다. 검출 이후, 송신기는 턴온되고 디바이스에 의해 수신된 RF 전력은 Rx 디바이스 상의 스위치를 소정의 방식으로 토글하기 위해 사용될 수도 있는데, 이것은 차례로 송신기의 구동 지점 임피던스에 변화를 유발하게 된다.
다른 비제한적인 예로서, 존재 검출기 (280) 는, 예를 들면, 적외선 검출, 모션 검출 또는 다른 적절한 수단에 의해 사람을 검출할 수 있는 검출기일 수도 있다. 몇몇 예시적인 구체예들에서, 송신 안테나가 특정 주파수에서 송신할 수도 있는 전력의 양을 제한하는 규정들이 있을 수도 있다. 몇몇 경우들에서, 이들 규정들은 전자기 방사로부터 사람을 보호하기 위해 의도된다. 그러나, 사람들에 의해 차지되지 않는 영역, 또는, 예를 들면, 차고지들, 팩토리 플로어들, 가게들 등과 같이, 사람들에 의해 자주 차지되지 않는 영역에 송신 안테나들이 위치되는 환경이 있을 수도 있다. 이들 환경들에 사람들이 없다면, 통상의 전력 제한 규정을 넘어서도록 송신 안테나들의 전력 출력을 증가시키는 것이 허용될 수도 있다. 다시 말하면, 컨트롤러 (214) 는, 사람의 존재에 응답하여 송신 안테나 (204) 의 전력 출력을 규정 레벨 또는 그 이하로 조정할 수도 있고, 송신 안테나 (204) 의 전자기장으로부터 규정 거리 밖에 사람이 있을 때 규정 레벨을 넘어서는 레벨로 송신 안테나 (204) 의 전력 출력을 조정할 수도 있다.
비제한적인 예로서, 인클로징된 검출기 (260)(본원에선 인클로징된 컴파트먼트 검출기 (enclosed compartment detector) 또는 인클로징된 공간 검출기 (enclosed space detector) 로 칭해질 수도 있다) 는 엔클로저가 닫힌 상태 또는 열린 상태에 있는지를 결정하기 위한 감지 스위치와 같은 디바이스일 수도 있다. 송신기가 닫힌 상태에 있는 인클로저 내에 있으면, 송신기의 전력 레벨은 증가될 수도 있다.
예시적인 구체예들에 있어서, 송신기 (200) 가 무기한 온 상태로 있지 않은 방법이 사용될 수도 있다. 이 경우, 송신기 (200) 는 유저가 결정한 시간양 이후에 셧오프되도록 프로그램될 수도 있다. 이 피쳐는 송신기 (200), 특히 전력 증폭기 (210) 가 그 둘레의 무선 디바이스들이 완전히 충전된 한참 이후에도 계속 동작하는 것을 방지한다. 이 이벤트는 리피터 또는 수신기 코일로부터 전송되는 디바이스가 완전히 충전되었다는 신호를 검출하는 회로의 고장에 기인할 수도 있다. 송신기 (200) 가 그 둘레에 다른 디바이스가 위치되는 경우 자동적으로 셧다운되는 것을 방지하기 위해, 송신기 (200) 의 자동 셧오프 피쳐는 그 둘레에서 검출되는 모션이 없는 설정 기간 이후에만 작동될 수도 있다. 유저는 비활성 시간 기간을 결정할 수도 있고, 필요에 따라 변경할 수도 있다. 비제한적인 예로서, 시간 간격은 특정한 형태의 무선 디바이스가 처음으로 완전히 충전된다는 가정하에 상기 디바이스를 완전히 충전하는데 필요한 기간 보다 더 길게 될 수도 있다.
도 5는 본 발명의 예시적인 구체예에 따른, 수신기 (300) 의 단순화된 블록도를 도시한다. 수신기 (300) 는 수신 회로부 (302) 와 수신 안테나 (304) 를 포함한다. 수신기 (300) 는 수신된 전력을 제공하기 위한 디바이스 (350) 에 더 커플링된다. 수신기 (300) 는 디바이스 (350) 외부에 있는 것으로 도시되었지만 디바이스 (350) 에 내장될 수도 있음을 주지해야 한다. 일반적으로, 에너지는 수신 안테나 (304) 에 무선으로 전파되고 그 다음 수신 회로부 (302) 를 통해 디바이스 (350) 로 커플링된다.
일 예시적인 구체예에 따르면, 하기에 더욱 상세히 설명되는 바와 같이, 수신기 (300) 는 보호 회로를 포함할 수도 있고, 이것은 외부에서 생성된 필드 (예를 들면, 원격 무선 전력 송신기에 의해 생성된 필드) 에 반대가 되도록 그 내부에서 전류를 생성할 수도 있다. 따라서, 상기 회로는 그 회로에 근접한 (proxmiate) 영역 내에서 필드가 존재하지 않도록 할 수도 있다. 보다 구체적으로는, 수신기 (300) 가 니어 필드 통신 디바이스 내에 내장된 예시적인 구체예에서, 보호 회로는 무선 전력 필드로부터 수신기를 적어도 부분적으로 보호하기 위해 구성될 수도 있고, 상기 수신기는 니어 필드 통신 신호를 수신하도록 구성된다. 다른 예시적인 구체예에 따르면, 수신기 (300) 는 무선 전력을 수신하도록 구성되며, 보호 회로는 디바이스의 일부 (예를 들면, 이동 전화의 디스플레이 스크린) 를 무선 전력으로부터 적어도 부분적으로 보호하기 위해 활용될 수도 있다.
수신 안테나 (304) 는 송신 안테나 (204)(도 4) 와 동일한 주파수에서, 또는 소정 범위의 주파수들 내에서 공진하도록 튜닝된다. 수신 안테나 (304) 는 송신 안테나 (204) 와 유사하게 치수가 정해지거나 또는 관련 디바이스 (350) 의 치수에 기초하여 상이하게 사이즈가 결정될 수도 있다. 예로서, 디바이스 (350) 는 송신 안테나 (204) 의 직경 또는 길이보다 더 작은 직경 또는 길이 치수를 갖는 휴대형 전자 디바이스일 수도 있다. 이러한 예에서, 수신 안테나 (304) 는, 튜닝 커패시터 (도시되지 않음) 의 커패시턴스 값을 줄이기 위해 그리고 수신 안테나의 임피던스를 증가시키기 위해 다중 턴 (multi-turn) 안테나로서 구현될 수도 있다. 예로서, 수신 안테나 (304) 는 안테나 직경을 최대화하고 인터 와인딩 커패시턴스와 수신 안테나의 루프 턴들 (즉, 와인딩들) 의 수를 줄이기 위해 디바이스 (350) 의 실제 둘레 근처에 위치될 수도 있다.
수신 회로부 (302) 는 수신 안테나 (304) 에 임피던스 정합을 제공한다. 수신 회로부 (302) 는 수신된 RF 에너지 소스를 디바이스 (350) 에 의해 사용하기 위한 충전 전력으로 변환하기 위한 전력 변환 회로부 (306) 를 포함한다. 전력 변환 회로부 (306) 는 RF-DC 변환기 (308) 을 포함하고 또한 DC-DC 변환기 (310) 를 포함할 수도 있다. RF-DC 변환기 (308) 는 수신 안테나 (304) 에서 수신된 RF 에너지 신호를 비교류 전력으로 정류하고 DC-DC 변환기 (310) 는 정류된 RF 에너지 신호를 디바이스 (350) 와 호환되는 에너지 전위 (즉, 전압) 으로 변환한다. 선형 및 스위칭 컨버터뿐만 아니라 부분 및 전 정류기들, 레귤레이터들, 브리지들, 더블러들을 포함하는 여러 RF-DC 변환기가 고안된다.
수신 회로부 (302) 는 수신 안테나 (304) 를 전력 변환 회로부 (306) 에 연결하기 위한 또는 전력 변환 회로부 (306) 를 분리하기 위한 스위칭 회로부 (312) 를 더 포함할 수도 있다. 전력 변환 회로부 (306) 로부터 수신 안테나 (304) 를 분리하는 것은 디바이스 (350) 의 충전을 중지할 뿐만 아니라 송신기 (200)(도 2) 가 봤을 때 "부하 (load) "를 변경한다.
상기 개시한 바와 같이, 송신기 (200) 는, 송신기 전력 증폭기 (210) 로 제공된 바이어스 전류에서의 변동을 검출하는 부하 감지 회로 (216) 를 포함한다. 따라서, 송신기 (200) 는 수신기들이 송신기의 니어 필드에 존재할 때를 검출하기 위한 메커니즘을 구비한다.
복수의 수신기들 (300) 이 송신기의 니어 필드에 존재하면, 다른 수신기들이 송신기에 보다 효율적으로 커플링되도록 하나 이상의 수신기들의 로딩 (loading) 및 언로딩 (unloading) 을 시간 다중하는 (time-multiplex) 것이 바람직할 수도 있다. 수신기는, 다른 근처의 수신기들로의 커플링을 방지하거나 또는 근처 송신기들에 대한 부하를 줄이기 위해 숨겨질 (cloacked) 수도 있다. 수신기의 이러한 "언로딩"은 본원에선 "클로킹"으로서도 알려진다. 또한, 수신기 (300) 에 의해 제어되고 송신기 (200) 에 의해 검출되는 언로딩과 로딩 사이의 이러한 스위칭은 하기에 더 상세히 설명되는 바와 같이 수신기 (300) 로부터 송신기 (200) 로의 통신 메커니즘을 제공한다. 또한, 수신기 (300) 로부터 송신기 (200) 로의 메시지의 전송을 가능하게 하는 프로토콜이 이 스위칭과 관련될 수 있다. 예로서, 스위칭 속도는 100마이크로초 정도일 수도 있다.
예시적인 구체예에서, 송신기와 수신기 사이의 통신은, 종래의 양방향 통신 대신, 디바이스 감지 및 충전 제어 메커니즘을 참조한다. 다시 말하면, 송신기는 에너지가 니어 필드에서 이용 가능한지의 여부를 조정하기 위해 송신된 신호의 온/오프 키잉 (keying) 을 사용할 수도 있다. 수신기들은 에너지에서의 이들 변화들을 송신기로부터의 메시지로서 해석한다. 수신기측으로부터, 수신기는, 얼마나 큰 전력이 니어 필드로부터 받아들여지고 있는지를 조정하기 위해 수신 안테나의 튜닝 및 디튜닝을 사용할 수도 있다. 송신기는 니어 필드에서 사용되는 전력에서의 이 차이를 검출할 수 있고 이들 변화들을 수신기로부터의 메시지로서 해석할 수 있다. 부하 작용 (load behavior) 및 송신 전력의 다른 형태들의 변조가 활용될 수도 있음에 주의한다.
수신 회로부 (302) 는 수신된 에너지 변동들을 식별하기 위해 사용되는 비컨 회로부 (314) 와 시그널링 검출기를 더 포함할 수도 있는데, 이것은 송신기에서 수신기로의 정보 시그널링에 대응할 수도 있다. 또한, 시그널링 및 비컨 회로부 (314) 는 감소된 RF 신호 에너지 (즉, 비컨 신호) 의 전송을 검출하고, 감소된 RF 신호 에너지를, 무선 충전을 위한 수신 회로부 (302) 를 구성하기 위해 수신 회로부 (302) 내에서 전력이 공급되지 않는 또는 전력이 결핍된 회로들을 깨우기 위한 공칭 전력으로 정류하기 위해 사용될 수도 있다.
수신 회로부 (302) 는 본원에서 설명된 스위치 회로부 (312) 의 제어를 포함하는 본원에서 설명된 수신기 (300) 의 프로세스들을 조정시키기 위한 프로세서 (316) 를 더 포함한다. 수신기 (300) 의 클로킹은 또한, 디바이스 (350) 에 충전 전력을 제공하는 외부 유선 충전 소스 (예를 들면, 벽/USB 파워) 의 검출을 포함하는 다른 이벤트들의 발생에 따라 발생할 수도 있다. 프로세서 (316) 는, 수신기의 클로킹을 제어하는 것에 부가하여, 비컨 상태를 결정하고 송신기로부터 전송된 메시지들을 추출하기 위해 비컨 회로부 (314) 를 또한 감시할 수도 있다. 프로세서 (316) 는 향상된 성능을 위해 DC-DC 변환기 (310) 를 또한 조정할 수도 있다.
도 6은 충전 패드 (604) 를 구비하는 무선 전력 디바이스 (602) 를 포함하는 무선 전력 시스템 (600) 을 도시한다. 도 6에 도시된 바와 같이, 복수의 무선 충전 가능 디바이스들 (606) 이 충전 패드 (604) 상에 놓여진다. 또한, NFC 카드 또는 RFID 카드를 포함할 수도 있는 디바이스 (608) 가 충전 패드 (604) 상에 놓여진다. 당업자라면 알 수 있는 바와 같이, 디바이스 (608) 가 무선 전력 디바이스 (602) 로부터 과도한 전력을 수신하는 경우, 디바이스 (608) 의 바람직하지 않은 가열이 초래될 수도 있고, 이것은 디바이스에 손상을 줄 수도 있다.
예시적인 구체예들은, 본원에서 상술된 바와 같이, 디바이스의 의도된 주파수가 아닌 주파수에서 전송된 또는 무선 전력을 수신하도록 의도되지 않은 디바이스의 영역으로 전송된 무선 전력에 의해 디바이스에 야기되는 손상을 줄이는 것에, 그리고 어쩌면 이들 손상을 방지하는 것에 관련된다. 보다 구체적으로, 예시적인 구체예들은 디바이스에 커플링되거나 또는 디바이스 내에 내장된 회로를 구비하는 NFC 카드 또는 RFID 카드와 같은 디바이스를 포함할 수도 있는데, 상기 회로는 디바이스의 코일을 외부 송신기 (예를 들면, 외부 무선 전력 송신기) 로부터 디커플링할 수도 있다. 또한 보다 구체적으로, 본 실시형태에서 NFC 카드를 포함하는 디바이스는 원격 송신기로부터 신호 (예를 들면, 무선 전력 또는 NFC) 를 수신하기 위한 회로 (예를 들면, 코일) 을 포함할 수도 있다. 또한, NFC 카드는, NFC 카드에 커플링되거나 또는 NFC 카드에 내장되며, 어떤 주파수들 (예를 들면, 비동작 주파수들) 에서 낮은 임피던스를 나타내도록 구성되어, 원격 송신기에 의해 생성된 자기장에 반대인 자기장을 생성하는 제 2의 코일을 또한 포함할 수도 있다. 또한, 제 2의 코일은 NFC 카드가 동작하도록 디자인된 동작 주파수에서 하이 임피던스를 나타내어 NFC가 정상적으로 기능하게 하도록 구성될 수도 있다.
도 7은 회로 (706) 및 코일 (704) 을 포함하는 회로 (702) 를 도시한다. 예를 들면, 션트 시리즈 회로 (shunt-series circuit) 만을 포함할 수도 있는 회로 (706) 는 도 8에서 더 상세히 도시된다. 도 8에 도시된 바와 같이, 회로 (706) 는 커패시터들 (C1 및 C2) 및 인덕터 (L1) 를 포함할 수도 있다. 또한, 회로 (706) 는 코일 (704) 의 일단에 커플링될 수도 있는 제 1의 포트 (P1), 및 코일 (704) 의 다른 일단에 커플링될 수도 있는 제 2의 포트 (P2) 를 포함할 수도 있다. 단지 예로서, 인덕터 (L1) 는 거의 150nH의 인덕턴스를 가질 수도 있다. 또한, 비제한적인 실시형태들로서, 커패시터 (C1) 는 거의 3300pF의 커패시턴스를 가질 수도 있고 커패시터 (C2) 는 거의 1272pF의 커패시턴스를 가질 수도 있다.
도 9는 회로 (706) 와 코일 (704) 을 포함하는 회로 (702) 를 포함하는 디바이스 (700) 를 도시한다. 디바이스 (700) 는, 단지 예를 들면, NFC 카드 또는 RFID 카드를 포함할 수도 있다. 디바이스 (700) 는 하나 이상의 원격 디바이스들과 니어 필드 통신을 위해 구성된 회로부 (708)(예를 들면, 코일) 를 더 포함할 수도 있다. 일 예시적인 구체예에 따르면, 회로 (702) 는 임의의 적절한 수단에 의해 디바이스 (700) 의 표면에 부착될 수도 있음에 주의한다. 단지 예로서, 회로 (702) 는 디바이스 (700) 에 부착될 수도 있는 스티커 내에 내장될 수도 있다. 다른 예시적인 구체예에 따르면, 회로 (702) 는 디바이스 (702) 내에 내장될 수도 있다. 코일 (704) 은 임의의 수의 턴들을 포함할 수도 있고 코일 (708) 과 거의 유사하게 크기가 정해질 수도 있음에 주의한다. 다르게 표현하면, 코일 (704) 은 코일 (704) 과 코일 (708) 사이에 강한 커플링이 가능하게 되도록 코일 (708) 을 거의 둘러쌀 수도 있다. 예로서, 코일 (704) 은 1턴을 포함할 수도 있다.
당업자가 알 수 있는 바와 같이, 렌츠 (Lenz) 의 법칙에 의하면, 외부 자기장에 의해 여기되는 수신 코일의 근처 내에 위치된 임의의 튜닝되지 않은 단락된 기생 코일은, 외부에서 여기된 자기장에 반대인 자기장 전류를 생성할 것이다. 결과적으로, 단락된 기생 코일은 근접한 자기장 내에서 널 (null) 을 생성할 수도 있다. 따라서, 수신 코일은 자기장으로부터 디커플링될 수도 있다. 다르게 표현하면, "단락된" 동안, 기생 코일은 노치 필터로서 작용하고 "개방"된 동안, 기생 코일은 수신 코일에 실질적은 영향을 주지 않을 수도 있다. 이것이 광대역 효과임을 주목하면, 단락된 기생 코일은 모든 관심 주파수에서 자기장을 캔슬할 수도 있다. 다른게 표현하면, 실질적으로 등가의 단락 회로 임피던스를 나타내는 동안, 기생 코일은 노치 필터로서 작용하고 실질적으로 등가의 개방 회로 임피던스를 나타내는 동안, 기생 코일은 수신 코일에 실질적인 영향을 주지 않을 수도 있다. 이것이 광대역 효과임을 주목하면, 로우 임피던스 (예를 들면, 단락된) 기생 코일은 모든 관심 주파수에서 자기장을 캔슬할 수도 있다.
도 6 및 도 9를 참조하면, 디바이스의 기대 동작이 설명될 것이다. 본 실시형태에서, 디바이스 (608) 는 디바이스 (700) 를 포함하고, 회로 (702) 는 13.56MHz에서 하이 임피던스 (예를 들면, 개방-회로) 를 나타내고 다른 모든 주파수 (예를 들면, 6.78MHz) 에서 로우 임피던스 (예를 들면, 단락-회로) 를 나타내도록 구성된다. 또한, 본 실시형태에서, 무선 전력 디바이스 (602) 는 6.78MHz에서 무선으로 전력을 송신하도록 구성된다. 따라서, 무선 전력 디바이스 (602) 가 무선 전력을 전송하는 동안, 회로 (702) 는 로우 임피던스 (예를 들면, 단락 회로 임피던스) 를 나타내고, 이것에 의해 회로 (702) 가 무선 전력 디바이스 (602) 에 의해 생성된 자기장에 반대인 자기장을 생성하게 된다. 따라서, 회로 (702) 에 근접한 자기장에서 널이 존재할 수도 있고, 따라서, 코일 (708) 은 무선 전력 디바이스 (602) 에 의해 생성된 신호를 수신하지 못할 수도 있다. 또한, 13.56MHz의 주파수에서, 회로 (702) 는 하이 임피던스 (예를 들면, 개방-회로 임피던스) 를 나타내도록 구성되고, 따라서, 회로 (702) 는 외부 소스로부터 생성된 필드에 대한 영향을 갖지 않을 수도 있다. 결과적으로, 코일 (708) 은 13.56MHz에서 신호를 수신할 수도 있다. 본 실시형태에서 6.78MHz 및 13.56MHz의 주파수가 사용되지만, 회로 (702) 는 임의의 하나 이상의 희망하는 주파수에서 제 1의 임피던스를 나타내고, 임의의 하나 이상의 희망하는 주파수에서 더 낮은 임피던스를 나타내도록 구성될 수도 있음에 주의한다.
도 10은 개방-회로 구성 및 단락 회로 구성에서의 회로 (702) 에 대한 데이터 포인트들을 설명하는 스미스 차트 (800) 를 도시한다. 데이터 포인트 (802) 는 6.78MHz에서 회로 (702) 가 단락되어, 원격 송신 안테나로부터 디바이스 (702) 를 디커플링하는 응답을 나타낸다. 데이터 포인트 (804) 는 13.56MHz에서 회로 (702) 가 개방-회로로 되어, 디바이스 (702) 가 원격 송신 안테나에 커플링되게 하는 응답을 나타낸다. 보다 구체적으로는, 단지 예를 들면, 데이터 포인트 (804) 는 회로 (702) 가 13.56MHz에서 개방-회로로 되어, 디바이스 (700) 의 노멀 동작을 가능하게 하는 응답을 나타내는데, 상기 회로 (702) 는 본 실시형태에서 NFC 카드 또는 RFID 카드를 포함한다.
도 11은 수신 코일 (864) 및 기생 코일 (856) 을 구비하는 디바이스 (840) 의 도시이다. 수신 코일 (864) 은 도 5의 수신기 (300) 의 안테나 (304) 와 같은 수신 안테나를 포함할 수도 있음에 주의한다. 따라서, 수신 코일 (864) 은 하나 이상의 주파수들 (예를 들면, 13.56MHz) 에서 무선 전력을 수신하기 위해 구성될 수도 있다. 또한, 기생 코일 (856) 은, 자기장으로부터의 차폐가 요구되는 영역 (860)(예를 들면, LCD 스크린 또는 터치스크린) 에 가장 가까울 수도 있다. 따라서, 디바이스 (840) 가 외부적으로 생성된 자기장 (도면 부호 850으로 도시됨) 내에 위치되지만, 수신 코일 (864) 은 자기장으로부터 신호 (예를 들면, 무선 전력) 을 수신할 수도 있고 기생 코일 (856) 은 자기장 (850) 에 반대인 자기장 (도면 부호 852로 도시됨) 을 생성할 수도 있다. 기생 코일 (856) 은, 수신 코일 (864) 이 전력을 무선으로 수신하는 주파수와 동일한 주파수에서 로우 임피던스 (예를 들면, 단락 임피던스) 를 나타내도록 구성될 수도 있음을 주목한다. 따라서, 영역 (860) 은 자기장이 없을 수도 있고, 따라서 수신 코일이 인에이블되어 무선으로 전력을 수신하는 동안 과도한 전력에 의해 보호될 수도 있다. 또한, 차폐가 요구되는 영역에 가장 가깝게 위치된 기생 코일 (예를 들면, 기생 코일 (856) ) 이, 고체 금속 차폐가 실용적이지 않은 상황 (예를 들면, 투명 스크린을 포함하는 영역) 에서 고체 금속 차폐보다 더 우수할 수도 있음에 또한 주의한다.
도 12는, 하나 이상의 예시적인 구체예들에 따른, 방법 (900) 을 설명하는 플로우차트이다. 방법 (900) 은 제 1의 회로에서 동작 주파수에서 제 1의 전송된 신호를 수신하는 단계를 포함할 수도 있다 (도면 부호 902로 도시됨). 또한, 방법 (900) 은 상기 제 1의 전송된 신호의 무선 전력 필드의 바람직하지 않은 부분 및 상기 제 1의 회로에 근접한 다른 무선 전력 필드의 부분의 적어도 하나에 반대인 필드를 제 2의 회로로 생성하는 단계를 포함할 수도 있는데, 상기 다른 무선 전력 필드는 상기 제 1의 회로의 비동작 주파수에서 제 2의 전송된 신호에 의해 생성된다 (도면 부호 904로 도시됨).
본 발명의 예시적인 구체예들은, 본원에서 설명된 바와 같이, 무선 전력 시스템의 동작 주파수와 NFC 카드 동작 주파수가 상이하면, NFC 카드들이 무선 전력 시스템에 의해 손상을 받는 것을 방지할 수도 있다. 디바이스의 의도된 주파수에서가 아닌 주파수에서의 임의의 EM 방사로부터의 손상 가능성을 크게 줄일 수 있기 때문에, 회로 (702) 는 무선 충전기와 함께 포함될 수도 있고 유저에 의해 디바이스 (NFC 카드) 에 부착될 수도 있고, 또는, 제조자에 의해 디바이스에 부착될 수도 있음을 주목한다. 또한, 예시적인 실시형태는, 본원에서 설명된 바와 같이, 무선 전력 시스템에 의해 디바이스의 영역 (예를 들면, 스크린) 이 손상되는 것을 방지할 수도 있다.
당업자라면, 정보 및 신호들이 임의의 다양한 상이한 기술들 및 기법들을 사용하여 표현될 수도 있음을 이해할 것이다. 예를 들면, 상기 설명을 통해 참조될 수도 있는 데이터, 명령들, 커맨드들, 정보, 신호들, 비트들, 심볼들, 및 칩들은 전압들, 전류들, 전자기파들, 자기장들 또는 입자들, 광학 필드들 또는 입자들, 이들의 임의의 조합에 의해 표현될 수도 있다.
당업자라면, 본원에서 개시된 예시적인 구체예들과 연계하여 설명된 여러 예증적인 논리 블록들, 모듈들, 회로들, 및 알고리즘 단계들이 전자 하드웨어, 컴퓨터 소프트웨어 또는 이들 양자의 조합으로서 구현될 수도 있음을 알 수 있을 것이다. 하드웨어와 소프트웨어의 이러한 상호 교환성을 명확하게 설명하기 위해서, 여러가지 예증적은 컴포넌트들, 블록들, 모듈들, 회로들, 및 스텝들이 그들 기능성의 관점에서 상기에 일반적으로 설명되었다. 이러한 기능성이 하드웨어로서 또는 소프트웨어로서 구현될지는 특정 어플리케이션과 전체 시스템에 부과되는 디자인 제약들에 따른다. 당업자라면, 상기 상술한 기능성을 각각의 특정 어플리케이션에 대해 다양한 방식으로 구현할 수도 있지만, 이러한 구현 결정은 본 발명의 예시적인 구체예들의 범위를 벗어나게 하는 것으로 이해되어서는 안된다.
본원에서 개시된 예시적인 구체예들과 연계하여 설명된 여러가지 예증적인 논리 블록들, 모듈들, 및 회로들은 본원에서 개시된 기능들을 수행하도록 디자인된 범용 프로세서, 디지털 신호 프로세서 (DSP), 주문형 반도체 (ASIC), 필드 프로그래머블 게이트 어레이 (FPGA) 또는 다른 프로그래머블 로직 디바이스, 이산 게이트 또는 트랜지스터 로직, 이산 하드웨어 컴포넌트들, 또는 이들의 임의의 조합에 의해 구현되거나 수행될 수도 있다. 범용 프로세서는 마이크로프로세서일 수도 있지만, 다르게는, 상기 프로세서는 임의의 종래의 프로세서, 컨트롤러, 마이크로컨트롤러, 또는 상태 머신일 수도 있다. 프로세서는 컴퓨팅 디바이스들의 조합, 예를 들면, DSP와 마이크로프로세서의 조합, 복수의 마이크로프로세서들, DSP 코어와 연계한 하나 이상의 마이크로프로세서들, 또는 임의의 다른 이러한 구성들로서 구현될 수도 있다.
본원에서 개시된 예시적인 구체예들과 연계하여 설명된 일 방법 또는 알고리즘의 스텝들은 하드웨어에서, 프로세서에 의해 실행되는 소프트웨어 모듈에서, 또는 이들 양자의 조합에서 직접적으로 구현될 수도 있다. 소프트웨어 모듈은 RAM (Random Access Memory), 플래시 메모리, ROM (Read Only Memory), EPROM (Electrically Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), 레지스터, 하드디스크, 리무버블 디스크, CD-ROM, 또는 종래 기술에서 공지된 임의의 다른 형태의 저장 매체 내에 있을 수도 있다. 예시적인 저장 매체는, 프로세서가 저장 매체로부터 정보를 판독하고, 저장 매체로 정보를 저장할 수 있도록 프로세서에 커플링된다. 다르게는, 저장 매체는 프로세서에 일체화될 수도 있다. 프로세서와 저장 매체는 ASIC 내에 있을 수도 있다. ASIC는 유저 단말 내에 있을 수도 있다. 다르게는, 프로세서와 저장 매체는 별개의 컴포넌트로서 유저 단말 내에 있을 수도 있다.
하나 이상의 예시적인 구체예들에서, 상술된 기능들은 하드웨어, 소프트웨어, 펌웨어 또는 이들의 임의의 조합으로 구현될 수도 있다. 소프트웨어로 구현되면, 상기 기능들은 하나 이상의 명령들 또는 코드로서 컴퓨터 판독 가능한 매체 상에 저장되거나 또는 컴퓨터 판독 가능한 매체를 통해 전송될 수도 있다. 컴퓨터 판독 가능한 매체는 한 장소에서 다른 장소로의 컴퓨터 프로그램의 전송을 용이하게 하는 임의의 매체를 포함하는 컴퓨터 저장 매체 및 통신 매체 양자를 포함한다. 저장 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 이용 가능한 매체일 수도 있다. 비제한적인 예로서, 이러한 컴퓨터 판독 가능한 매체는 RAM, ROM, EEPROM, CD-ROM 또는 다른 광학 디스크 스토리지, 자기 디스크 스토리지 또는 다른 자기 스토리지 디바이스들, 또는 요구되는 프로그램 코드를 명령들 또는 데이터 구조들의 형태로 이송 또는 저장하기 위해 사용될 수 있으며 컴퓨터에 의해 액세스될 수 있는 임의의 다른 매체를 포함할 수 있다. 또한, 임의의 접속이 컴퓨터 판독 가능한 매체를 적절히 칭한다. 예를 들면, 소프트웨어가 동축 케이블, 광섬유 케이블, 연선, 디지털 가입자 회선, 또는 적외선, 무선, 및 마이크로파와 같은 무선 기술들을 사용하여 웹사이트, 서버, 또는 다른 원격 소스로부터 전송되면, 동축 케이블, 광섬유 케이블, 연선, 디지털 가입자 회선, 또는 적외선, 무선, 및 마이크로파와 같은 무선 기술들은 매체의 정의 내에 포함된다. 본원에서 사용된 디스크 (disk) 와 디스크 (disc) 는, 컴팩트 디스크 (CD), 레이저 디스크, 광학 디스크, 디지털 다기능 디스크 (DVD), 플로피디스크 및 블루레이 디스크를 포함하며, 여기서 디스크 (disk) 는 통상 자기적으로 데이터를 재생하고, 디스크 (disc) 는 레이저를 이용하여 광학적으로 데이터를 재생한다. 상기의 조합들도 컴퓨터 판독 가능한 매체의 범위 내에 또한 포함되어야만 한다.
개시된 예시적인 구체예들의 상기 설명들은 임의의 당업자가 본 발명을 실시하거나 사용하도록 하기 위해 제공된다. 이들 예시적인 구체예들의 여러 수정예들이 당업자에게는 자명할 것이며, 본원에서 정의된 일반적인 원칙들은 본 발명의 취지와 범위를 벗어나지 않으면서 다른 구체예들에 적용될 수도 있다. 따라서, 본 발명은 본원에서 보여진 예시적인 구체예들로 제한되도록 의도된 것은 아니며 본원의 개시된 원칙들과 신규의 특징들과 일치하는 광의의 범위가 부여될 것이다.

Claims (34)

  1. 회로부를 보호하기 위한 디바이스로서,
    동작 주파수에서 제 1의 송신기로부터 제 1의 송신된 신호를 수신하도록 구성된 제 1의 회로;
    자기장을 생성하도록 구성된 제 2의 회로로서, 상기 자기장은 상기 제 1의 회로의 상기 동작 주파수와는 상이한 주파수에서 제 2의 송신기에 의해 생성된 다른 자기장의 적어도 일부에 반대인, 상기 제 2의 회로를 포함하고,
    상기 제 2의 회로는 상기 동작 주파수에 응답하여 제 1의 임피던스를 나타내고 상기 동작 주파수와는 상이한 상기 주파수에 응답하여 제 2의 임피던스를 나타내도록 더 구성되는, 회로부를 보호하기 위한 디바이스.
  2. 제 1항에 있어서,
    상기 제 2의 임피던스는 상기 제 1의 임피던스보다 더 낮은, 회로부를 보호하기 위한 디바이스.
  3. 제 2항에 있어서,
    상기 제 2의 회로는 단락 회로 임피던스를 나타냄으로써 상기 제 2의 임피던스를 나타내도록 구성되는, 회로부를 보호하기 위한 디바이스.
  4. 제 1항에 있어서,
    상기 제 1의 회로는 수신 코일을 포함하고, 상기 제 2의 회로는 기생 코일을 포함하는, 회로부를 보호하기 위한 디바이스.
  5. 제 1항에 있어서,
    상기 제 2의 회로는 코일에 커플링된 션트-시리즈 (shunt-series) 회로를 포함하는, 회로부를 보호하기 위한 디바이스.
  6. 제 1항에 있어서,
    상기 제 1의 회로 및/또는 상기 제 2의 회로는 NFC 카드 또는 RFID 카드 중 하나의 카드 내에 내장되는, 회로부를 보호하기 위한 디바이스.
  7. 제 1항에 있어서,
    상기 제 2의 회로는 NFC 카드 또는 RFID 카드 중 하나의 카드의 표면에 커플링되는, 회로부를 보호하기 위한 디바이스.
  8. 제 1항에 있어서,
    상기 동작 주파수는 13.56MHz 와 실질적으로 동일한 주파수를 포함하고, 상기 동작 주파수와는 상이한 주파수는 468.75KHz 와 실질적으로 동일한 주파수 또는 6.78MHz 와 실질적으로 동일한 주파수 중 하나의 주파수를 포함하는, 회로부를 보호하기 위한 디바이스.
  9. 제 1항에 있어서,
    상기 제 2의 회로는 상기 제 1의 회로를 둘러싸는, 회로부를 보호하기 위한 디바이스.
  10. 제 1항에 있어서,
    상기 제 1의 회로는 무선 전력 신호 및 니어 필드 통신 신호 중 하나의 신호를 수신하도록 더 구성되는, 회로부를 보호하기 위한 디바이스.
  11. 제 1항에 있어서,
    상기 제 2의 회로는 노치 필터로의 역할을 하도록 구성되는, 회로부를 보호하기 위한 디바이스.
  12. 제 1항에 있어서,
    생성된 상기 자기장은 상기 제 1의 송신기에 의해 생성된 필드의 일부 또는 상기 제 1의 회로에 근접한 다른 필드의 일부 중 적어도 하나의 필드의 일부에 반대인, 회로부를 보호하기 위한 디바이스.
  13. 회로부를 보호하는 방법으로서,
    제 1의 회로에 의해 동작 주파수에서 제 1의 송신기로부터 제 1의 송신된 신호를 수신하는 단계; 및
    제 2의 회로에 의해 자기장을 생성하는 단계로서, 상기 자기장은 상기 제 1의 회로의 상기 동작 주파수와는 상이한 주파수에서 제 2의 송신기에 의해 생성된 다른 자기장의 적어도 일부에 반대인, 상기 제 2의 회로에 의해 자기장을 생성하는 단계를 포함하고,
    상기 제 2의 회로는 상기 동작 주파수에 응답하여 제 1의 임피던스를 나타내고 상기 동작 주파수와는 상이한 상기 주파수에 응답하여 제 2의 임피던스를 나타내도록 더 구성되는, 회로부를 보호하는 방법.
  14. 제 13항에 있어서,
    상기 제 1의 송신된 신호는 13.56MHz 와 실질적으로 동일한 주파수에 있고, 상기 제 2의 송신기로부터의 제 2의 송신된 신호의 수신에 응답하여 생성되는, 생성된 상기 자기장은 468.75KHz 와 실질적으로 동일한 주파수 또는 6.78MHz 와 실질적으로 동일한 주파수 중 하나의 주파수를 포함하는, 회로부를 보호하는 방법.
  15. 제 13항에 있어서,
    상기 제 2의 회로는 단락 회로 임피던스를 나타내도록 구성되는, 회로부를 보호하는 방법.
  16. 제 13항에 있어서,
    상기 제 2의 회로는 상기 제 1의 회로를 둘러싸는, 회로부를 보호하는 방법.
  17. 제 13항에 있어서,
    상기 제 2의 회로는 코일에 커플링된 션트-시리즈 (shunt-series) 회로를 포함하는, 회로부를 보호하는 방법.
  18. 제 13항에 있어서,
    상기 제 2의 회로는 NFC 카드 또는 RFID 카드 중 하나의 카드 내에 내장되는, 회로부를 보호하는 방법.
  19. 제 13항에 있어서,
    상기 제 2의 회로에 의해 자기장을 생성하는 단계는 상기 제 2의 송신기에 의해 생성된 다른 자기장의 적어도 일부에 반대인 전류를 생성하는 단계를 포함하는, 회로부를 보호하는 방법.
  20. 제 13항에 있어서,
    생성된 상기 자기장은 상기 제 1의 송신기에 의해 생성된 필드의 일부 또는 상기 제 1의 회로에 근접한 다른 필드의 일부 중 적어도 하나의 필드의 일부에 반대인, 회로부를 보호하는 방법.
  21. 제 13항에 있어서,
    상기 제 2의 임피던스는 상기 제 1의 임피던스보다 더 낮은, 회로부를 보호하는 방법.
  22. 제 21항에 있어서,
    상기 동작 주파수와는 상이한 주파수에 응답하여 단락 회로 임피던스를 나타내는 단계를 더 포함하는, 회로부를 보호하는 방법.
  23. 회로부를 보호하는 디바이스로서,
    동작 주파수에서 제 1의 송신기로부터 제 1의 송신된 신호를 수신하는 수단; 및
    자기장을 생성하는 수단으로서, 상기 자기장은 상기 수신하는 수단의 상기 동작 주파수와는 상이한 주파수에서 제 2의 송신기에 의해 생성된 다른 자기장의 적어도 일부에 반대인, 상기 자기장을 생성하는 수단을 포함하고,
    상기 생성하는 수단은 상기 동작 주파수에 응답하여 제 1의 임피던스를 나타내고 상기 동작 주파수와는 상이한 상기 주파수에 응답하여 제 2의 임피던스를 나타내도록 더 구성되는, 회로부를 보호하는 디바이스.
  24. 제 23항에 있어서,
    상기 생성하는 수단은 상기 제 2의 송신기에 의해 생성된 다른 자기장의 적어도 일부에 반대인 전류를 생성하는 수단을 포함하는, 회로부를 보호하는 디바이스.
  25. 제 23항에 있어서,
    상기 수신하는 수단은 수신 코일을 포함하고, 상기 생성하는 수단은 기생 코일을 포함하는, 회로부를 보호하는 디바이스.
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
KR1020137006858A 2010-08-25 2011-08-23 디바이스 보호용 기생 회로 KR101679176B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US37699110P 2010-08-25 2010-08-25
US61/376,991 2010-08-25
US13/039,142 US9094057B2 (en) 2010-08-25 2011-03-02 Parasitic circuit for device protection
US13/039,142 2011-03-02
PCT/US2011/048849 WO2012027397A1 (en) 2010-08-25 2011-08-23 Parasitic circuit for device protection

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020167032173A Division KR20160135847A (ko) 2010-08-25 2011-08-23 디바이스 보호용 기생 회로

Publications (2)

Publication Number Publication Date
KR20130143016A KR20130143016A (ko) 2013-12-30
KR101679176B1 true KR101679176B1 (ko) 2016-11-24

Family

ID=44533229

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020137006858A KR101679176B1 (ko) 2010-08-25 2011-08-23 디바이스 보호용 기생 회로
KR1020167032173A KR20160135847A (ko) 2010-08-25 2011-08-23 디바이스 보호용 기생 회로

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020167032173A KR20160135847A (ko) 2010-08-25 2011-08-23 디바이스 보호용 기생 회로

Country Status (6)

Country Link
US (2) US9094057B2 (ko)
EP (1) EP2609687B1 (ko)
JP (1) JP5509389B2 (ko)
KR (2) KR101679176B1 (ko)
CN (2) CN103119854B (ko)
WO (1) WO2012027397A1 (ko)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9094057B2 (en) 2010-08-25 2015-07-28 Qualcomm Incorporated Parasitic circuit for device protection
KR101958755B1 (ko) * 2011-11-16 2019-03-18 삼성전자주식회사 무선 전력 수신기 및 그 제어 방법
US9740342B2 (en) * 2011-12-23 2017-08-22 Cirque Corporation Method for preventing interference of contactless card reader and touch functions when they are physically and logically bound together for improved authentication security
US9054747B2 (en) 2012-03-26 2015-06-09 Lg Innotek Co., Ltd. Mobile terminal and power control method thereof
US9166439B2 (en) 2012-11-05 2015-10-20 Qualcomm Incorporated Systems and methods for forward link communication in wireless power systems
US9262651B2 (en) 2013-01-08 2016-02-16 Cirque Corporation Method for preventing unintended contactless interaction when performing contact interaction
JP6513895B2 (ja) * 2013-02-20 2019-05-15 日東電工株式会社 携帯機器及びその充電機器、携帯機器充電システム
KR101833735B1 (ko) * 2013-10-02 2018-03-02 엘지이노텍 주식회사 이동 단말기, 무선전력 수신장치 및 무선전력 수신장치의 전력 조절 방법
DE102013225241A1 (de) 2013-12-09 2015-06-11 Bayerische Motoren Werke Aktiengesellschaft Feldabschirmung bei induktivem Laden
US9584191B2 (en) * 2013-12-20 2017-02-28 Southern Avionics Co. Antenna tuning unit
CN105099521A (zh) * 2014-05-04 2015-11-25 宏达国际电子股份有限公司 手持式电子系统与其近距离无线通讯装置
US9941706B2 (en) 2014-09-24 2018-04-10 Intel Corporation Wireless power safety component
CN104732890B (zh) * 2015-03-31 2017-03-01 京东方科技集团股份有限公司 一种卷轴显示装置
US10033226B2 (en) 2015-05-04 2018-07-24 Qualcomm Incorporated Methods and apparatus for out of phase field mitigation
US10096898B2 (en) * 2015-12-31 2018-10-09 Intermec, Inc. Self-reconfigurable antenna
US20170236638A1 (en) * 2016-02-15 2017-08-17 Qualcomm Incorporated Wireless power transfer antenna having auxiliary winding
US10068704B2 (en) * 2016-06-23 2018-09-04 Qualcomm Incorporated Shielded antenna to reduce electromagnetic interference (EMI) and radio frequency (RF) interference in a wireless power transfer system
US10489337B2 (en) * 2016-06-30 2019-11-26 Intel Corporation Method, apparatus and system for dynamic optimization of signal integrity on a bus
US10693320B2 (en) 2016-07-29 2020-06-23 Hewlett-Packard Development Company, L.P. Wireless charging
US11128172B2 (en) * 2016-11-07 2021-09-21 Koninklijke Philips N.V. Power transmitter and method for wirelessly transferring power
CN107300956B (zh) * 2017-07-03 2020-05-19 英业达科技有限公司 噪声抑制组件及具有此噪声抑制组件的主机板
JP6809420B2 (ja) * 2017-09-13 2021-01-06 トヨタ自動車株式会社 送電装置、受電装置および非接触電力伝送システム
DE102017222983A1 (de) * 2017-12-18 2019-06-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Faserverbundbauteils
US11144740B2 (en) 2019-01-09 2021-10-12 Shenzhen Dansha Technology Co., Ltd. Reader for medical implants
GB2580397A (en) * 2019-01-10 2020-07-22 Shileitech Ltd Reader for medical implants
US11736767B2 (en) 2020-05-13 2023-08-22 Roku, Inc. Providing energy-efficient features using human presence detection
US11395232B2 (en) * 2020-05-13 2022-07-19 Roku, Inc. Providing safety and environmental features using human presence detection
CN114530694B (zh) 2022-04-24 2022-07-05 云谷(固安)科技有限公司 无线通信结构、显示面板和无线通信装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090041241A1 (en) * 2007-08-08 2009-02-12 Radeum, Inc. Near field communications system having enhanced security

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2732543C3 (de) 1977-07-19 1980-08-07 Precitec Gesellschaft Fuer Praezisionstechnik Und Elektronik Mbh & Co Entwicklungs- Und Vertriebs-Kg, 7570 Baden-Baden Vorrichtung zur Erfassung von sich im Gebiet einer Grenzfläche befindenden Objekten
US4328497A (en) * 1980-08-11 1982-05-04 Westinghouse Electric Corp. Method and system for jamming analysis and transmission selection
DE3936547A1 (de) 1989-11-02 1991-05-08 Siemens Ag Anordnung zur telemetrischen kommunikation zwischen zwei geraeten mittels eines magnetischen nahfeldes
US5061941A (en) * 1990-02-01 1991-10-29 Checkpoint Systems, Inc. Composite antenna for electronic article surveillance systems
US5278505A (en) 1991-12-17 1994-01-11 The Regents Of The University Of California Self-cancelling RF receive coil used to decouple MRI transmit/receive RF coils
JPH0844833A (ja) * 1994-08-03 1996-02-16 Mitsubishi Denki Semiconductor Software Kk 非接触icカード用リーダライタ及び非接触icカード用リーダライタシステム
US5602556A (en) * 1995-06-07 1997-02-11 Check Point Systems, Inc. Transmit and receive loop antenna
US5644225A (en) * 1996-04-16 1997-07-01 Honeywell Inc. Method for calibrating an angular position sensor
AUPO055296A0 (en) 1996-06-19 1996-07-11 Integrated Silicon Design Pty Ltd Enhanced range transponder system
US5966641A (en) * 1996-11-01 1999-10-12 Plantronics, Inc. Aerial arrays for inductive communications systems
US6208235B1 (en) * 1997-03-24 2001-03-27 Checkpoint Systems, Inc. Apparatus for magnetically decoupling an RFID tag
US6072383A (en) 1998-11-04 2000-06-06 Checkpoint Systems, Inc. RFID tag having parallel resonant circuit for magnetically decoupling tag from its environment
JP2000286630A (ja) 1999-03-31 2000-10-13 Toshiba Corp 送受信アンテナ
US6960984B1 (en) * 1999-12-08 2005-11-01 University Of North Carolina Methods and systems for reactively compensating magnetic current loops
US7221900B2 (en) * 2002-11-21 2007-05-22 Kimberly-Clark Worldwide, Inc. Jamming device against RFID smart tag systems
AU2003268957A1 (en) * 2002-12-19 2004-07-14 Jose Luis De La Torre Barreiro Passive reflector for a mobile communication device
US7053841B2 (en) * 2003-07-31 2006-05-30 Motorola, Inc. Parasitic element and PIFA antenna structure
EP1692639A2 (en) * 2003-11-27 2006-08-23 Koninklijke Philips Electronics N.V. Jammer for jamming the readout of contactless data carriers
EP1782330B1 (de) * 2004-08-16 2016-12-07 Giesecke & Devrient GmbH Gesteuertes kontaktloses aufladen eines akkumulators in einer chipkarte
US7283044B2 (en) * 2005-03-29 2007-10-16 Symbol Technologies, Inc. Method and apparatus for a privacy enabling radio frequency identification (RFID) reader
CN1877909B (zh) * 2005-06-10 2011-06-08 鸿富锦精密工业(深圳)有限公司 双频天线
EP1907991B1 (en) 2005-06-25 2012-03-14 Omni-ID Limited Electromagnetic radiation decoupler
US20080224656A1 (en) * 2005-09-12 2008-09-18 Koninklijke Philips Electronics, N.V. Device For Recharging Batteries
US7706755B2 (en) * 2005-11-09 2010-04-27 Texas Instruments Incorporated Digital, down-converted RF residual leakage signal mitigating RF residual leakage
JP2007234896A (ja) 2006-03-01 2007-09-13 Toyota Motor Corp 信号伝達装置
US7616158B2 (en) * 2006-05-26 2009-11-10 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Multi mode antenna system
US7501621B2 (en) * 2006-07-12 2009-03-10 Leco Corporation Data acquisition system for a spectrometer using an adaptive threshold
US8000674B2 (en) * 2007-07-31 2011-08-16 Intel Corporation Canceling self-jammer and interfering signals in an RFID system
JP2009076513A (ja) * 2007-09-19 2009-04-09 Yoshi Takaishi 平面コイル用のシールド構造
WO2009042977A1 (en) * 2007-09-26 2009-04-02 Radeum, Inc. Dba Freelinc System and method for near field communications having local security
CN101569105B (zh) * 2007-10-02 2012-12-26 松下电器产业株式会社 便携式无线通信装置
US8526903B2 (en) * 2008-03-11 2013-09-03 Qualcomm, Incorporated High-linearity receiver with transmit leakage cancellation
TWI363494B (en) * 2008-04-09 2012-05-01 Mstar Semiconductor Inc Radio frequency identification tag and operating method thereof
CN101303744A (zh) * 2008-04-18 2008-11-12 上海坤锐电子科技有限公司 用于射频识别系统的信号增强器芯片及其信号增强器
KR101094253B1 (ko) * 2008-04-28 2011-12-19 정춘길 무선 전력 수신 장치, 이와 관련된 무선 전력 송신 장치, 그리고, 무선 전력 송수신 시스템
US8473429B2 (en) * 2008-07-10 2013-06-25 Samsung Electronics Co., Ltd. Managing personal digital assets over multiple devices
GB0817047D0 (en) * 2008-09-18 2008-10-22 Amway Europ Ltd Electromagnetic Interference Suppression
US8866692B2 (en) * 2008-12-19 2014-10-21 Apple Inc. Electronic device with isolated antennas
US8660487B2 (en) 2009-06-03 2014-02-25 Infineon Technologies Ag Contactless data transmission
US9094057B2 (en) 2010-08-25 2015-07-28 Qualcomm Incorporated Parasitic circuit for device protection
US9509166B2 (en) * 2011-05-16 2016-11-29 Samsung Electronics Co., Ltd. Apparatus and method for wireless power transmission
FR2980055B1 (fr) * 2011-09-12 2013-12-27 Valeo Systemes Thermiques Dispositif de transmission de puissance inductif
TWM484153U (zh) * 2013-11-19 2014-08-11 Taiwan Name Plate Co Ltd 無線傳輸模組與使用其之可攜式電子裝置
JP6299320B2 (ja) * 2014-03-25 2018-03-28 Tdk株式会社 コイルユニットおよびワイヤレス電力伝送装置
JP6228499B2 (ja) * 2014-03-28 2017-11-08 株式会社Soken 直動ロボットの無線給電装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090041241A1 (en) * 2007-08-08 2009-02-12 Radeum, Inc. Near field communications system having enhanced security

Also Published As

Publication number Publication date
JP5509389B2 (ja) 2014-06-04
CN105914800B (zh) 2019-05-21
JP2013543161A (ja) 2013-11-28
EP2609687A1 (en) 2013-07-03
CN105914800A (zh) 2016-08-31
US20150334884A1 (en) 2015-11-19
CN103119854A (zh) 2013-05-22
CN103119854B (zh) 2016-04-27
EP2609687B1 (en) 2018-11-21
KR20130143016A (ko) 2013-12-30
US10270494B2 (en) 2019-04-23
KR20160135847A (ko) 2016-11-28
US20120050015A1 (en) 2012-03-01
US9094057B2 (en) 2015-07-28
WO2012027397A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
KR101679176B1 (ko) 디바이스 보호용 기생 회로
US9935502B2 (en) Detection and protection of devices within a wireless power system
EP2652878B1 (en) Receiver for near field communication and wireless power functionalities
US9337666B2 (en) Controlling field distribution of a wireless power transmitter
KR101880781B1 (ko) 디바이스들의 무선 충전
US8860364B2 (en) Wireless power distribution among a plurality of receivers
JP5922658B2 (ja) 多重ループ無線電力受信コイル
US9240633B2 (en) Tunable wireless power device
US8823219B2 (en) Headset for receiving wireless power

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190924

Year of fee payment: 4