KR101674913B1 - 6단계 모드로 전기 기계를 제어하는 방법 및 장치 - Google Patents

6단계 모드로 전기 기계를 제어하는 방법 및 장치 Download PDF

Info

Publication number
KR101674913B1
KR101674913B1 KR1020150143648A KR20150143648A KR101674913B1 KR 101674913 B1 KR101674913 B1 KR 101674913B1 KR 1020150143648 A KR1020150143648 A KR 1020150143648A KR 20150143648 A KR20150143648 A KR 20150143648A KR 101674913 B1 KR101674913 B1 KR 101674913B1
Authority
KR
South Korea
Prior art keywords
inverter
switches
carrier signal
voltage
command
Prior art date
Application number
KR1020150143648A
Other languages
English (en)
Other versions
KR20160058675A (ko
Inventor
정식 임
본호 배
Original Assignee
지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 filed Critical 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨
Publication of KR20160058675A publication Critical patent/KR20160058675A/ko
Application granted granted Critical
Publication of KR101674913B1 publication Critical patent/KR101674913B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inverter Devices (AREA)

Abstract

인버터는 다상(multi-phase) 전기 기계에 전기적으로 동작 가능하게 연결되고, 인버터 제어 방법은, 인버터를 제어하기 위하여 6단계 모드(six-step mode)를 실행하는 단계와, 사전 설정된 샘플링 주파수로 전기 기계의 전기 전압 각도를 모니터링하는 단계를 포함한다. 전기 전압 각도가 인버터의 복수의 스위치 중 하나를 6단계 모드로 제어하는 것과 관련된 단계 전이에 접근할 때, 스위치 중 하나에 대한 중간 듀티 명령이 결정되고, 캐리어 신호가 스위치 중 하나의 현재 제어 상태에 기초하여 정렬된다. 스위치 중 하나는 중간 듀티 명령과 정렬된 캐리어를 채용하여 제어된다.

Description

6단계 모드로 전기 기계를 제어하는 방법 및 장치{METHOD AND APPARATUS FOR CONTROLLING AN ELECTRIC MACHINE IN A SIX-STEP MODE}
본 개시 내용은 일반적으로 교류(AC) 모터/제너레이터를 제어하는 것에 관한 것으로, 더욱 상세하게는, AC 모터/제너레이터를 제어하는 장치, 시스템 및 방법에 관한 것이다.
3상 영구 자석 동기 전기 모터(전기 기계)와 같은 AC 모터/제너레이터의 제어는 3상 펄스폭 변조(PMW) 인버터를 이용하여 이루어진다. PWM 인버터는 예를 들어 공간 벡터 PWM(SVPWM(space vector PWM)) 모드와 6단계(six-step) 모드를 포함하는 여러 상이한 동작 모드로 제어될 수 있다. 인버터로부터의 그 기본 주파수에서의 출력 전압의 크기는 인버터가 6단계 모드로 동작할 때에만 최대에 도달한다. 이러한 전압 크기 특성 때문에, 6단계 모드에서의 동작은 전압 크기가 토크 성능의 주요 제한 인자인 약계자 영역(field weakening region)에서의 알려진 SVPWM 동작 또는 불연속 공간 벡터 PWM(DPWM(discontinuous space vector PWM)) 동작에 비하여 전기 기계의 토크 능력을 증가시킬 수 있다. 그러나, 전압 크기는 6단계 모드로 제어 가능하지 않다. 또한, 6단계 모드에서 동작하는 인버터의 주파수 동기화 제어를 위한 알려진 방법은 서브 고조파(sub-harmonics)를 최소화하기 위하여 컨트롤러 각각의 샘플링 기간의 샘플링 주파수를 업데이트하고 잠재적으로 변경하는 것을 필요로 하며, 이는 컨트롤러에서 계산적으로 부담이 클 수 있다.
인버터는 다상(multi-phase) 전기 기계에 전기적으로 동작 가능하게 연결되고, 인버터 제어 방법은, 인버터를 제어하기 위하여 6단계 모드(six-step mode)를 실행하는 단계와, 사전 설정된 샘플링 주파수로 전기 기계의 전기 전압 각도를 모니터링하는 단계를 포함한다. 전기 전압 각도가 인버터의 복수의 스위치 중 하나를 6단계 모드로 제어하는 것과 관련된 단계 전이에 접근할 때, 스위치 중 하나에 대한 중간 듀티 명령이 결정되고, 캐리어 신호가 스위치 중 하나의 현재 제어 상태에 기초하여 정렬된다. 스위치 중 하나는 중간 듀티 명령과 정렬된 캐리어를 채용하여 제어된다.
본 교시 내용의 전술한 특징 및 이점과 다른 특징 및 이점은, 첨부된 도면과 함께 취해질 때, 첨부된 특허청구범위에서 정의된 바와 같은, 본 교시 내용을 수행하기 위한 최선의 형태 및 다른 실시예의 일부에 대한 이어지는 상세한 설명으로부터 명백하다.
이제 하나 이상의 실시예가, 예로서, 다음과 같은 첨부된 도면을 참조하여 설명될 것이다:
도 1은 본 개시 내용에 따라 다상 AC 전기 모터/제너레이터(전기 기계)에 전기적으로 연결된 인버터를 6단계 모드로 제어하기 위하여 전류 레귤레이터와 6단계 플럭스 컨트롤러를 포함하는 컨트롤러를 개략적으로 도시한다;
도 2는 본 개시 내용에 따라 6단계으로 동작할 때 전압 각도(도)에 관하여 인버터의 일 실시예의 제1, 제2 및 제3 아암(arm)의 스위치 상태를 그래프로 도시한다;
도 3은 본 개시 내용에 따라 전기 기계의 전기적 회전의 단일 사이클의 일부 동안 인버터의 한 상(phase)의 동작과 관련되고 제2 캐리어 신호의 형태로 중간 제어 스킴의 실행에 관련된 동작을 포함하는 복수의 명령 및 데이터 신호를 그래프로 도시한다;
도 4는 본 개시 내용에 따라 중간 듀티 명령을 결정하기 위하여 동작 섹터를 포함하는 3상 인버터의 동작을 분석하기 위한 정지 직접-직교(stationary direct-quadrature)(정지 dq 또는 αβ) 기준 프레임을 그래프로 도시한다; 및
도 5는 본 개시 내용에 따라 6단계 모드의 실행을 전압 명령의 기본 주파수와 동기화하도록 6단계 모드로의 주파수 동기화 인버터의 제어를 위한 인버터 제어 루틴을 개략적으로 도시하다.
표현이 소정의 예시적인 실시예를 단지 예시하기 위한 것이고 이를 제한하는 것이 아닌 도면을 참조하면, 도 1은 본 개시 내용에 따라 다상 AC 전기 모터/제너레이터(전기 기계)(140)에 전기적으로 동작 가능하게 연결된 다상 PWM 인버터 회로(인버터)(100)를 제어하기 위한 전압원 인버터(VSI(Voltage Source Inverter)) 컨트롤러(105)를 개략적으로 도시한다. 전기 기계(140)는 바람직하게는 성상(star) 구조로 배열된 고정자 및 회전자를 포함하는 영구 자석 동기 장치이지만, 여기에서 설명된 개념은 그렇게 제한적이지 않다. 전기 기계(140)의 회전자의 회전 위치 및 속력은 임의의 적합한 장치, 예를 들어 리졸버(resolver) 또는 홀 효과(Hall-effect) 센서일 수 있는 회전 위치 센서(141)에 의해 모니터링된다.
인버터(100)는 양의 고전압 DC 전력 버스(HV+)(102)와 음의 고전압 DC 전력 버스(HV-)(104)를 통해 고전압 DC 전력원에 전기적으로 연결된다. 고전압 DC 전력원은 고전압 전기 에너지 저장 장치, 예를 들어, 고전압 배터리 또는 커패시터와, 고전압 전력 제너레이터 또는 다른 관련된 장치 또는 시스템을 포함할 수 있다. 인버터(100)는 HV+(102)와 HV-(104) 사이에 전기적으로 직렬로 연결된 복수의 스위치 쌍(112 및 114, 122 및 124, 132 및 134)을 포함한다. 스위치 쌍의 각각은 전기 기계(140)의 상(phase)에 대응하며, 제1 스위치의 각각은 노드에서 대응하는 제2 스위치와 직렬로 연결된다. 구체적으로는, 스위치 쌍(112, 114)은 노드(116)에서 직렬로 연결되어 인버터(100)의 제1 아암(arm)을 형성하고, 스위치 쌍(122, 124)은 노드(126)에서 직렬로 연결되어 인버터(100)의 제2 아암을 형성하고, 스위치 쌍(132, 134)은 노드(136)에서 직렬로 연결되어 인버터(100)의 제3 아암을 형성한다. 노드(116, 126, 136)는 전기 기계(140)의 공칭의 제1, 제2 및 제3 상에 전기적으로 연결되어, 전력을 그에 전달한다. 제1 게이트 구동 회로(106)는 제1의 하이측(high-side) 스위치(112, 122 및 132)의 활성 및 비활성을 제어하고, 제2 게이트 구동 회로(108)는 제2의 로우측(low-side) 스위치(114, 124 및 134)의 활성 및 비활성을 제어한다. 제1 및 제2 게이트 구동 회로(106, 108)는 컨트롤러(105)에서 유래하는 제어 신호에 응답하여 HV+(102)와 HV-(104) 중 하나와 전기 기계(140)의 하나의 상 사이의 전력 전달을 제공하도록 스위치(112 및 114, 122 및 124, 132 및 134)를 활성화 및 비활성화할 수 있는 임의의 적합한 전자 장치를 포함한다. 컨트롤러(105)는 공간 벡터 PWM(SVPWM) 모드와 6단계 모드 또는 다른 적합한 제어 모드를 포함할 수 있는 인버터 스위치 제어 모드에 응답하여 스위치(112 및 114, 122 및 124, 132 및 134)를 활성화 및 비활성화하기 위하여 제1 및 제2 게이트 구동 회로(106, 108)에 통신되는 제어 신호를 생성한다. 인버터(100)는 전기 노이즈 억제, 부하 균형 등에 관련된 기능을 성취하기 위하여 예를 들어 DC 버스 커패시터(142)인 커패시터, 예를 들어 버스 저항기(144)인 저항기 및 다른 전기 회로 컴포넌트를 포함한다.
제1 스위치(112, 122, 132)와 제2 스위치(114, 124, 134)의 각각은 ON 상태 또는 OFF 상태로 제어될 수 있다. 스위치 쌍(112 및 114, 122 및 124, 132 및 134)에 의해 형성된 아암의 각각은 1 또는 0의 제어 상태로 제어될 수 있다. 아암 중 하나에 대한 1의 제어 상태는 제1 스위치(112, 122, 132) 중 하나의 활성에 대응하며, 대응하는 제2 스위치(114, 124, 134)는 각각 비활성화된다. 아암 중 하나에 대한 0의 제어 상태는 제2 스위치(114, 124, 134) 중 하나의 활성에 대응하고, 대응하는 제1 스위치(112, 122, 132)는 각각 비활성화된다.
제1 스위치(112, 122, 132)의 각각은 바람직하게는 정상 OFF(normally-OFF) 스위치로서 구성되며, 이는 제1 게이트 구동(106)에 의해서 활성화될 때에만 스위치가 전류를 전도한다는 것을 의미한다. 일 실시예에서, 제1 스위치(112, 122, 132)는 각각 병렬로 배열된 다이오드를 갖는 IGBT(Insulated Gate Bipolar Transistors)이다. 제1 게이트 구동(106)은 제1 스위치(112, 122, 132)의 각각을 활성화하여 선택된 인버터 스위치 제어 모드에 응답하여 그에 걸친 전류를 제공한다. 제2 스위치(114, 124, 134)의 각각은 바람직하게는 정상 OFF 스위치로서 구성되며, 이는 제2 게이트 구동(108)에 의해서 활성화될 때에만 스위치가 전류를 전도한다는 것을 의미한다. 제2 스위치(114, 124, 134)는 예를 들어, 각각 병렬로 배열된 다이오드를 갖는 IGBT를 포함하는 임의의 종류의 정상 OFF 반도체 스위치일 수 있다. 회로 불량 없이 동작하는 동안, 제1 및 제2 게이트 구동 회로(106, 108)는 토크를 생성하기 위하여 전기 기계(140)를 동작시키도록 제1 스위치(112, 122, 132)와 제2 스위치(114, 124, 134)를 활성화 및 비활성화하기 위한 활성 신호를 생성한다. 이 대신에, 제2 스위치(114, 124, 134)는 임의의 종류의 정상 ON 반도체 스위치일 수 있다. 인버터(100)는, 컨트롤러(105)에서 유래하는 제어 신호에 응답하여 HV+(102)와 HV-(1004) 중 하나와 다상 전기 기계(140)의 하나의 상 사이의 전력 전달을 제공하기 위하여 스위치(112 및 114, 122 및 124, 132 및 134)를 선택적으로 활성화 및 비활성화하는 동작이 회전자의 요소에 작용하는 전기 기계(140)의 고정자의 요소에서 전기장을 유도하여 고정자를 향하여 또는 고정자로부터 멀리 회전자의 움직임을 강제하며 이에 따라 회전자에 기계적으로 결합된 샤프트 부재에서 토크를 유도한다는 점에서, 전기 기계(140)에 전기적으로 동작 가능하게 연결된다.
컨트롤러(105)는 센서, 예를 들어, 회전 위치 센서(141)로부터의 신호 입력을 모니터링하고, 토크 또는 속력 명령에 응답하여 PMW 모드 및 6단계 모드 중 하나로 인버터(100)의 동작을 선택적으로 제어한다. 컨트롤러(105)는 HV+(102)와 HV-(104)를 통해 고전압 DC 전원에 전기적으로 연결된 인버터(100)를 통해 전기 기계(140)로부터의 토크 출력을 제어한다. 전기 기계(140)의 토크 출력을 조절하기 위하여 인버터 상태 사이에서 스위칭하는 제어 방법은 PWM 모드 또는 6단계 모드로 동작하는 것을 포함한다. PWM 모드에서, 인버터(100)는 2개의 0이 아닌 상태와 1개 또는 2개의 0인 상태 사이에서 빠르게 스위칭한다. 컨트롤러(105)는 PWM 듀티 사이클을 특정함으로써 어느 비율의 시간이 3개의 상태 중 하나에 소비되는지 특정한다. 컨트롤러(105)는 업데이트 주파수가 회전자 회전의 주파수보다 상당히 더 높도록 규칙적인 간격으로 PWM 듀티 사이클을 업데이트한다. 6단계 모드에서, 인버터(100)는 고정자의 각각의 권선(winding)에서 AC 전압 및 전류를 생성하도록 전기 기계(140)의 회전자의 사이클마다 한 번씩 6개의 0이 아닌 상태를 통해 사이클을 이룬다. 회전자 사이클은 모터 극(pole)에 상대적으로 정의되며, 회전자의 완전한 회전(revolution)에 반드시 대응할 필요는 없다. 컨트롤러(105)는 PWM 모드 또는 6단계 모드로 전기 기계(140)의 동작을 제어하기 위하여 인버터(100)의 동작을 제어하기 위한 전류 레귤레이터 및 플럭스 제어기를 포함한다. AC 전압의 진폭은 고전압 전력원을 인버터(100)에 전기적으로 연결하는 고전압 DC 버스에서의 DC 전압의 크기에 의해 좌우된다. 토크는 DC 전압, 회전자 속력 및 이러한 의사 정현파 AC 전압 신호와 회전자 위치 사이의 위상 차이에 의해 좌우되고, 6단계 모드에서 제어 시스템을 동작시키는 것에 의해 더 제어된다. 컨트롤러(105)는 시컨스에서 다음 상태로 언제 스위칭할지를 나타내는 명령을 인버터(100)에 발행한다. 6단계 모드는 고정자의 각각의 권선에서 AC 전압 및 전류를 생성하기 위하여 전기 기계(140)의 회전자의 사이클마다 한 번씩 6개의 0이 아닌 상태를 통해 인버터(100)가 사이클을 이루게하는 것을 포함하는 인버터(100)의 동작 모드이다. 다극 전기 기계가 채용될 때, 회전자 사이클은 모터 극에 상대적으로 정의되며, 회전자의 완전한 회전에 대응하지 않는다. 예로서, 영구 자석 전기 기계에서, 기본 주파수는 다음과 같이 결정될 수 있다:
ωr = ωrm * PP
여기에서,
ωr은 기본 주파수이고;
ωrm은 기계 모터 속력 또는 주파수이고; 그리고,
PP는 전기 기계의 극쌍(pole pair)의 수이다.
유사하게, 유도 모터 전기 기계가 채용될 때, 기본 주파수는 다음과 같이 결정될 수 있다:
ωe = ωrm * PP + ωsl
여기에서,
ωe는 기본 주파수이고;
ωrm은 기계 모터 속력 또는 주파수이고;
PP는 전기 기계의 극쌍(pole pair)의 수이고; 그리고,
ωsl은 슬립(slip) 주파수이다.
기본 주파수 ωe는 회전자 플럭스의 회전 주파수에 물리적으로 균등하고, 동기 주파수(synchronous frequency)라고도 한다.
컨트롤러, 제어 모듈, 모듈, 컨트롤, 제어부, 프로세서와 같은 용어 및 유사한 용어는 ASIC(Application Specific Integrated Circuit)(들), 전자 회로(들), 예를 들어 마이크로프로세서(들)인 중앙 처리 유닛(들)과, 메모리 및 저장 장치(리드 온리, 프로그래머블 리드 온리, 랜덤 액세스, 하드 드라이브 등) 형태의 관련된 비일시적인 메모리 컴포넌트(들) 중 임의의 하나 또는 다양한 조합을 지칭한다. 비일시적 메모리 컴포넌트는 하나 이상의 소프트웨어 또는 펌웨어 프로그램, 또는 루틴, 조합 논리 회로(들), 입/출력 회로(들) 및 장치, 신호 조절 및 버퍼 회로, 및 원하는 기능을 제공하기 위하여 하나 이상의 프로세서에 의해 액세스될 수 있는 다른 컴포넌트의 형태로 기계 판독 가능한 명령어를 저장할 수 있다. 입/출력 회로(들) 및 장치는 아날로그/디지털 컨버터와 센서로부터의 입력을 모니터링하는 관련 장치를 포함하고, 이러한 입력은 사전 설정된 샘플링 주파수로 또는 트리거링 이벤트에 응답하여 모니터링된다. 소프트웨어, 펌웨어, 프로그램, 명령어, 제어 루틴, 코드, 알고리즘 및 유사한 용어는 캘리브레이션 및 룩업 테이블을 포함하는 임의의 컨트롤러가 실행 가능한 명령어 세트를 의미한다. 각각의 컨트롤러는, 감지 장치 및 다른 네트워크 연결된 컨트롤러로부터의 입력을 모니터링하고 액추에이터의 동작을 제어하기 위하여 제어 및 진단 루틴을 실행하는 것을 포함하는, 원하는 기능을 제공하기 위하여 제어 루틴(들)을 실행한다. 루틴은 예를 들어 계속 진행 중인 동작 동안 100 마이크로초마다인 규칙적인 간격으로 실행될 수 있다. 이 대신에, 루틴은 모니터링되는 센서로부터의 입력과 같은 이벤트의 발생에 응답하여 실행될 수 있다. 컨트롤러 사이, 그리고 컨트롤러, 액추에이터 및/또는 센서 사이의 통신은 직접 유선 링크, 네트워크 연결된 통신 버스 링크, 무선 링크 또는 임의의 다른 적합한 통신 링크를 이용하여 성취될 수 있다. 통신은, 예를 들어, 도전성 매체를 통한 전기 신호, 공기를 통한 전자기 신호, 광 도파관을 통한 광 신호 등을 포함하는 임의의 적합한 형태로 데이터 신호를 교환하는 것을 포함한다.
도 2는 6단계 모드로 동작할 때 전압 각도(210)(도)에 관한 인버터(100)의 일 실시예의 제1, 제2 및 제3 아암의 스위치 상태 Sa 202, Sbb 204 및 Sc 206을 그래프로 도시하며, 1의 상태 값은 아암에 대한 ON 상태에 대응하고, 0의 상태 값은 아암에 대한 OFF 상태에 대응한다. 결과에 따른 상 전압 레벨은 제1 노드(116)와 관련된 Va 212와, 제2 노드(126)와 관련된 Vb 214와, 제3 노드(136)와 관련된 Vc 216를 포함하며, 모두는 전압 각도(210)(도)와 관련하여 도시된다. 따라서, 6단계 모드에서의 동작은 명령된 전압 각도로 스위칭 상태를 변경하고, 각각의 아암의 스위칭 상태는 하나의 기본 기간, 즉 하나의 회전자 또는 전기 사이클에 한 번씩만 변경된다. 결과에 따른 상 전압은 하나의 기본 기간에 6단계 변화를 가진다. 스위치가 전압 강하가 없는 이상적인 것으로 가정될 때, 기본 주파수에서의 피크 전압은
Figure 112015099421139-pat00001
가 된다. 인버터(100)의 출력 전력은 V·I·역률로서 정의될 수 있고, 인버터(100)는 6단계 모드에서 동작할 때 전기 기계에 이론적인 최대 출력 전력을 전달할 수 있다.
디지털 컨트롤러의 샘플링 주파수와 전기 기계의 회전 속력 사이의 차이 때문에, 서브 고조파(sub-harmonics)가 모터 제어 시스템에 발생될 수 있다. 알려진 모터 제어 시스템은 전압 명령의 기본 주파수의 6의 거듭 제곱으로 샘플링 주파수를 조정하며, 이는 매 회전 동안 다음 샘플링 주파수가 계산되는 것을 필요로 하여 대응하는 계산 부담이 컨트롤러에 부과된다. 전압 명령의 기본 주파수가 모터 속력에 따라 변동하기 때문에, 폐쇄 루프 전류 컨트롤러의 정상 상태 및 과도 성능 모두 회전 속력 및 위치 센서의 성능에 민감할 수 있어, 이에 따라 추가 변동을 유발한다.
도 3과 4는 서브 고조파를 최소화하거나 제거하면서, 컨트롤러의 샘플링 주파수를 변동하지 않고 토크 또는 속력 명령에 응답하여 전력 기계에 전력을 공급하기 위하여 6단계 모드에서 동작하는 인버터의 주파수 동기화 제어 방법과 관련된다. 6단계 모드에서의 주파수 동기화된 인버터 제어 방법의 일 실시예가 도 5를 참조하여 설명된다. 주파수 동기화 제어 방법은, 예를 들어, 도 1 및 2를 참조하여 설명된 인버터(100), 전기 기계(140) 및 컨트롤러(105)의 실시예에 구현될 수 있다. 이것은 디지털 컨트롤러의 사전 설정된 샘플링 주파수로 전기 기계의 전기 전압 각도를 모니터링하는 동안 인버터를 제어하기 위하여 6단계 모드를 실행하는 것을 포함한다. αβ 전압 명령의 각도가 6단계 모드에서 인버터의 아암 중 하나와 관련된 단계 전이에 가까울 때, 중간 듀티 명령이 계산되고, 6단계 모드의 실행을 전압 명령의 기본 주파수와 동기화하기 위하여 캐리어 정렬 변동이 중간 듀티 명령의 실행으로 구현된다: 이것은 PM에서의 회전자의 회전 속력/주파수 또는 IM에서의 회전자 플럭스에 균등하다. 이러한 동작은 모터 속력과 동기화하기 위하여 디지털 컨트롤러의 샘플링 주파수를 조정하지 않고서 전압 명령의 기본 주파수와 동기화되는 6단계 모드에서 인버터를 제어하기 위한 캐리어 기반의 PWM 구현을 용이하게 한다. 그 결과, 전류 제어 루프의 성능은 위치 및 속력 센서의 성능에 기초하여 제어되지 않는다.
도 3은 수평 축에서 전압 각도(310)(θ, 도)로서 도시된 전기 기계의 전기적 회전의 단일 사이클의 일부 동안 인버터의 한 상의 동작과 관련된 복수의 명령 및 데이터 신호를 그래프로 도시한다. 전기 기계의 회전 위치는 90°(311), 150°(313), 210°(315) 및 270°(317)의 전압 각도의 형태로 도시된다. 선(302)은 전기 기계의 회전 위치를 나타내고, 라인(304)은 6단계 모드에서 동작할 때 전압 각도(310)에 관하여 인버터의 아암 중 하나의 스위치 중 하나에 대한 바람직한 명령을 나타낸다. 바람직한 명령(304)은 토크 또는 속력 명령에 응답한다. 90°(311)의 전압 각도는 1의 값을 갖는 ON 상태로부터 0의 값을 갖는 OFF 상태로의 관련된 스위치에 대한 바람직한 명령(304)에서의 단계 변동에 대응한다. 270°(317)의 전압 각도는 0의 값을 갖는 OFF 상태로부터 1의 값을 갖는 ON 상태로의 바람직한 명령(304)에서의 단계 변동에 대응한다.
제1 캐리어 신호(322), 듀티 명령(324) 및 PWM 파형(326)은 인버터(100)의 동작과의 전기 기계(140)의 회전 위치의 샘플링 기간의 동기화 없이, 6단계 모드에서 인버터(100)의 일 실시예의 동작을 그래프로 묘사한다. 제1 캐리어 신호(322)는 1의 공칭 값과 0의 공칭 값 사이에서 변동하고 전압 명령의 기본 주파수와 관련된 주기보다 실질적으로 더 작은 주기를 갖는 중심 정렬 삼각파를 반복적으로 실행하는 것의 형태를 갖는다. 도시된 바와 같이, 중심 정렬 삼각파는 하나의 주기 동안 0 상태에서 시작하고, 1 상태로 증가하며, 그 다음, 0 상태로 감소한다. 6단계 모드에서 인버터의 동작을 명령하기 위한 듀티 명령(324)은 상 A의 상부 스위치를 턴온하기 위한 1의 공칭 값과, 상 A의 하부 스위치를 턴온하기 위한 0의 공칭 값을 포함한다. 도시된 바와 같이, 제1 캐리어 신호(322)는 전압 명령(302)과는 비동기이며, 90°(311) 또는 270°(317)에서 스위칭 상태의 이상적인 전이 각도와 정렬되지 않는다. 제1 캐리어 신호(322)와 듀티 명령(324)은 결과적인 PWM 파형을 보여주는 선(326)의 형태로 신호 출력을 생성하는 신호 비교기에 대한 입력으로서 제공된다. 결과적인 PWM 파형(326)은 듀티 명령(324)의 크기가 제1 캐리어 신호(322)의 크기보다 더 클 때 1의 공칭 값을 가지며, 듀티 명령(324)의 크기가 제1 캐리어 신호(322)의 크기보다 더 작을 때 0의 공칭 값을 가진다. 여기에서 설명된 PWM 파형(326, 336, 346)을 포함하는 PWM 파형은 컨트롤러(105)에 의해 생성되고 스위치(112, 114) 중 하나를 활성화하고 비활성화하기 위하여 제1 및 제2 게이트 구동 회로(106, 108) 중 하나에 통신되는 도 1을 참조하여 설명된 제어 신호에 대응한다. 도시된 바와 같이, 전압 명령 각도는 스위칭 기간을 전기 기계의 회전자의 전기적 회전과 동기화하는 이점 없이 인버터가 동작하고 있을 때 인버터의 단일 상에 대하여 도시된다. 이해되는 바와 같이, 중심 정렬 삼각파의 형태의 제1 캐리어 신호(322)의 사용은 예시적이며 한정적이지 않다. 다른 형태의 캐리어 신호가 유사한 효과를 가지면서 채용될 수 있다.
전압 명령의 기본 주파수와의 스위칭 기간의 전압의 동기화의 부족은 비동기 기간 Tcomp(323)으로서 도시되며, 이는 90°(311)의 전압 각도에서의 1의 값을 갖는 ON 상태로부터 0의 값을 갖는 OFF 상태로의 바람직한 명령(304)에서의 변화와, 이어지는 전압 각도(312)에서의 1의 값을 갖는 ON 상태로부터 0의 값을 갖는 OFF 상태로의 실제 듀티 명령(324)에서의 변화의 시간 지연이다.
비동기 기간 Tcomp(323)는 직전 스위치 사이클 동안 결정될 수 있다. 6단계 모드에서, 위상 전압의 크기는 기본 주파수에서 최대가 된다. 스위치가 이상적인 것으로 가정되어 전압 강하가 없다면, 기본 주파수에서의 피크 전압은
Figure 112015099421139-pat00002
가 된다. 3상 PWM 인버터의 출력 전압이 V·I·역률로 정의될 수 있기 때문에, 3상 PWM 인버터는 6단계 모드에서 이론적인 최대 출력 전력을 모터에 전달할 수 있다. 완전한 6단계 모드에서, 스위칭 상태는 전압 명령의 매 60°마다 변경될 필요가 있다. 그러나, 컨트롤러(105)는 샘플링 기간에서 단지 한 번만 그 출력을 업데이트한다. 샘플링 비(sampling ratio)
Figure 112015099421139-pat00003
가 20이라고 가정하면, 하나의 샘플링 기간에서 전압 명령의 각도는
Figure 112015099421139-pat00004
앞선다. 따라서, 컨트롤러의 샘플링 기간이 전압 명령의 기본 기간과 동기화되지 않을 때, 완전한 6단계 모드에서의 스위칭 상태의 전이는 전압 명령에 비하여 최대 ±13° 에러를 가질 수 있다. PWM 인버터의 출력 전압은 이 에러 때문에 서브 고조파를 가질 수 있다. 상 전압에서의 이 서브 고조파는 상 전류 및 이에 따른 전기 기계의 출력 토크에서의 서브 고조파를 생성할 수 있다. 도시된 바와 같이, 하나의 기본 기간에서의 스위칭 신호의 평균은 0.5가 아니다. 평균이 0.5보다 클 때, 6단계 전압은 그 기간에서 더 긴 피크를 가진다. 평균이 0.5보다 작을 때, 6단계 전압은 더 짧은 피크를 가진다. 도시된 바와 같이, 스위칭 신호의 평균은 0.429이고, 따라서 6단계 전압은 더 짧은 피크를 갖는다.
도 3은 제2 캐리어 신호(332), 중간 듀티 명령(334) 및 중간 PWM 파형(336)의 형태의 중간 제어 스킴의 실행에 관련된 동작을 그래프로 더 도시한다. 중간 듀티 명령(334)은 전기 기계의 제어 및 동작에 있어서의 서브 고조파 주파수를 방지하는 방식으로 스위칭 신호의 평균의 크기를 조정하기 위하여 도입된다. 중간 듀티 명령(334)은 전압 각도(310)가 관심 대상인 전기 기계 회전 각도, 예를 들어, 30, 90, 150, 210, 270 및 330도의 회전 각도 중 하나에 접근하고 있을 때 0이나 1이 아닌 듀티 명령을 제공한다. 전압 각도(310)는 캐리어 신호, 예를 들어, 제2 캐리어 신호의 다가오는 사이클의 기간이 관심 대상인 회전 각도 중 하나와 중첩할 때 관심 대상인 회전 각도 중 하나로 고려된다. 도시된 바와 같이, 캐리어 신호(322)는 시점 311에서 90°의 회전 각도에서의 전압 명령 각도와 중첩하고, 캐리어 신호(322)는 시점 317에서서 270°의 회전 각도에서의 전기 기계의 회전 위치와 중첩한다.
중간 듀티 명령(334)의 크기는 스위칭 신호의 평균 전압을 6단계 파형에서의 바람직한 전압(304)의 평균 전압과 동일하게 유지하도록 선택된다. 예를 들어, 선(324, 326)에 의해 도시된 제1 스위칭 기간에서, 동기화되지 않은 6단계 듀티 명령(324)의 피크 지속 시간은 바람직한 명령(304)에 의해 도시된 동기화된 6단계 듀티 명령의 피크 지속 시간보다 Tcomp(323)의 기간만큼 더 크다. 이 경우에, 그 스위칭 기간, 즉, 시점 309와 시점 312의 사이에서의 중간 듀티 명령(334)의 크기는, 예상되는 Tcomp(323)에 균등한 Tcomp(333)의 골짜기 기간 동안 PWM 파형(336)을 0으로의 감소하게 하는 크기로 감소될 수 있다. 이것은 중간 듀티 명령(334) 및 결과적인 PWM 파형(336)으로서 도시된다. 캐리어 명령(332)은 제1 캐리어 명령(322)에 대응하며, 삼각파의 형태를 가진다. 중간 듀티 명령(334)은 하나의 기본 주기에서 스위칭 신호의 평균을 전압 명령에 대한 스위칭 기간의 동기화와 관계없이 0이 되게 한다. 이 경우에 도시된 바와 같이, 서브 고조파는 제거될 수 있다.
중간 듀티 명령(334)의 사용은 PWM 파형(336)으로 원하지 않은 결함을 도입할 수 있다. 결함은 캐리어 신호의 정렬을 변경함으로써, 즉 캐리어 명령(332)의 주파수 또는 주기를 변경하지 않고 캐리어 명령(332)의 정렬을 변경함으로써 방지된다. 일 실시예에서, 캐리어 명령(332)은 삼각파의 형태를 가지며, 삼각파 구성은 오른쪽 정렬(right-aligned) 캐리어 파형, 중심 정렬(center-aligned) 캐리어 파형 또는 왼쪽 정렬(left-aligned) 캐리어 파형 중 하나일 수 있다. 오른쪽 정렬 캐리어 파형(347), 중심 정렬 캐리어 파형(349) 또는 왼쪽 정렬 캐리어 파형(345)의 예가 도시된다. 중간 제어 스킴은, 결함을 방지하기 위하여, 중간 듀티 명령(344)에 기초하여 캐리어 신호(322)를 정렬함으로써 구현된다. 중간 듀티 명령(334)은 결함이 없게 하는 PWM 파형(346)을 획득하기 위하여 캐리어 신호(322)와 상호 작용한다.
따라서, 캐리어 명령(342)은 인버터의 관련된 스위치를 OFF 또는 0 상태로 명령하기 위하여 PWM 파형을 시프트하기 전에 중간 듀티 명령(344)에 응답하여 발생할 수 있는 결함을 방지하도록 선택된 왼쪽 정렬 파형(345)이다. 유사하게, 시점 316에서 시작하는 것으로 도시된 바와 같이, 오른쪽 정렬 캐리어 파형(347)은 인버터의 관련된 스위치를 ON 또는 1 상태로 명령하기 위하여 PWM 파형을 시프트하기 전에 중간 듀티 명령(344)에 응답하여 발생할 수 있는 시점 318 및 시점 319 사이의 결함을 방지하도록 선택된다
또한, 디지털 컨트롤러의 동작에서의 대기 시간(latency)과 관련된 지연은 순응(accommodation)을 필요로 한다. 하나의 스위칭 기간, 예를 들어, [n] 기간에서 계산된 전압 명령 또는 듀티 명령은, 다음 스위칭 기간 [n+1]에서 실제로 업데이트된다. 이 이유로, 하나의 스위칭 기간 동안의 각도 선행(advance) ω·Tsw이 중간 듀티 명령 계산에 고려된다. 또한, 회전자 또는 회전자 플럭스가 시계(음) 방향 및 반시계(양) 방향 모두로 회전할 수 있기 때문에, 이 회전 방향은 중간 듀티 계산 및 캐리어 신호 정렬 판단에 모두 고려될 필요가 있다.
도 1을 다시 참조하면, 제1 및 제2 게이트 구동 회로(106, 108)는 컨트롤러(105)에서 유래하는 제어 신호에 응답하여 HV+(102)와 HV-(104) 중 하나와 전기 기계(140)의 하나의 상 사이에 전력 전달을 제공하기 위하여 각각의 스위치 쌍(112 및 114, 122 및 124, 132 및 134)의 스위치 중 하나만을 활성화한다. 하나의 스위치 쌍에서 양 스위치를 ON 상태로 스위칭하는 것은 HV+(102)와 HV-(104) 사이의 바람직하지 않은 단락 회로를 야기하고, 따라서 회피된다. 하나의 스위치 쌍에서 양 스위치를 OFF 상태로 스위칭하는 것은 전원으로부터의 상 단자의 바람직하지 않은 단선을 야기하여, 부동 전압 상태를 초래한다. 일반적으로, 하나의 아암, 즉 각각의 스위치 쌍(112 및 114, 122 및 124, 132 및 134)의 스위칭 상태를 표현하기 위하여 한 자리 숫자가 채용된다. 1의 스위치 상태는 상부 스위치가 활성화되고 단자 전압이 HV+(102)에 연결된다는 것을 나타낸다. 0의 스위치 상태는 하부 스위치가 활성화되고 단자 전압이 HV-(104)에 연결된다는 것을 나타낸다. 예로서, 스위치 쌍(112 및 114)의 스위치(112)가 활성화되고 스위치(114)가 비활성화될 때, 스위칭 상태는 다음과 같이 표현된다:
Figure 112015099421139-pat00005
유사하게, 스위치 쌍(112 및 114)의 스위치(112)가 비활성화되고 스위치(114)가 활성화될 때, 스위칭 상태는 다음과 같이 표현된다:
Figure 112015099421139-pat00006
이것은 SA, SB 및 SC의 모든 3개의 상으로 확장될 수 있다. 예를 들어, 스위칭 상태가 (1, 0, 0)으로서 표현되면, 실제 스위칭 상태는 스위치(112) ON, 스위치(114) OFF, 스위치(122) OFF, 스위치(124) ON, 스위치(132) OFF, 및 스위치(134) ON을 포함한다.
이와 같이, 각각의 위상 전압은 다음과 같이 스위칭 상태로 계산될 수 있고, Vas는 제1 노드(116)에서의 전압 크기를 나타내고, Vbs는 제2 노드(126)에서의 전압 크기를 나타내고, Vcs는 제3 노드(136)에서의 전압 크기를 나타낸다.
Figure 112015099421139-pat00007
Figure 112015099421139-pat00008
Figure 112015099421139-pat00009
도 4는 3상 인버터, 예를 들어, 도 1을 참조하여 설명된 인버터(100)의 동작을 분석하기 위한 정지 직접 직교(stationary direct-quadrature)(정지 dq 또는 αβ) 기준 프레임을 그래프로 도시하며, 수평축에서의 직접 전압 vα(420) 및 수직축에서의 직교 전압 vβ(430)와 연계하여 분석이 도시된다. 동작에서의 한 포인트에서의 전압은 vαβ(425)로서 도시된다. 3상 회로, 예를 들어, 도 1을 참조하여 도시된 인버터(100)는, 시변 인덕턴스의 효과를 제거하도록 3상 고정자와 회전자 수를 단일의 회전하는 기준 프레임으로 변환함으로써 그의 분석 및 제어를 간단히 하기 위하여, 3상 시스템의 기준 프레임(abc)을 정지 dq(αβ) 프레임으로 회전시키도록 수학적으로 변환될 수 있다. 3상 인버터, 예를 들어, 인버터(100)는 각각의 아암이 2개의 가능 스위칭 상태를 갖는 3개의 아암을 포함하여, 8개의 스위치 상태 조합을 제공한다. 스위치 상태는 전압 벡터에 의해 표 1에서 다음과 같이 표시되고, 각각의 스위칭 상태에서의 3상 전압은 도 4에서 전압 벡터 V0(410), 전압 벡터 V1(401), 전압 벡터 V2(402), 전압 벡터 V3(403), 전압 벡터 V4(404), 전압 벡터 V5(405), 전압 벡터 V6(406), 및 전압 벡터 V7(407)로서 도시된 합성된 αβ 전압을 갖는 3상으로부터 변환된다. 또한, 벡터 V1(401)와 벡터 V2(402) 사이의 섹터 I(411), 벡터 V2(402)와 벡터 V3(403) 사이의 섹터 II(412), 벡터 V3(403)와 벡터 V4(404) 사이의 섹터 III(413), 벡터 V4(404)와 벡터 V5(405) 사이의 섹터 IV(414), 벡터 V5(405)와 벡터 V6(406) 사이의 섹터 V(415), 벡터 V6(406)와 벡터 V1(401) 사이의 섹터 VI(416)를 포함하는 동작 섹터가 도시된다
벡터 SA SB SC
V0 0 0 0
V1 1 0 0
V2 1 1 0
V3 0 1 0
V4 0 1 1
V5 0 0 1
V6 1 0 1
V7 1 1 1
양의 속력 상태에서 동작할 때, 각각의 섹터에 대한 중간 듀티 사이클 명령(Duty_A, Duty_B, Duty_C) 및 캐리어 정렬(정렬)은 표 2에서 다음과 같이 결정될 수 있다:
섹터 Duty_A Duty_B Duty_C 정렬
I 1.0 INT6 0.0 왼쪽
II INT1 1.0 0.0 오른쪽
III 0.0 1.0 INT2 왼쪽
IV 0.0 INT3 1.0 오른쪽
V INT4 0.0 1.0 왼쪽
VI 1.0 0.0 INT5 오른쪽
INT1, INT2, INT3, INT4, INT5 및 INT6이라는 용어는, 다음과 같이, 중간 듀티 명령을 계산하기 위한 식을 나타내고, θvαβ라는 용어는 벡터 vαβ(425)에 대한 전기 각도를 나타내고, ω·Tsw는 한 스위칭 주기 동안 각도 선행을 나타낸다.
Figure 112015099421139-pat00010
Figure 112015099421139-pat00011
Figure 112015099421139-pat00012
Figure 112015099421139-pat00013
Figure 112015099421139-pat00014
Figure 112015099421139-pat00015
음의 속력 상태에서 동작할 때, 각각의 섹터에 대한 중간 듀티 사이클 명령(Duty_A, Duty_B, Duty_C) 및 캐리어 정렬(정렬)은 표 3에서 다음과 같이 결정될 수 있다:
섹터 Duty_A Duty_B Duty_C 정렬
I 1.0 0.0 INT12 왼쪽
II 1.0 INT7 0.0 오른쪽
III INT8 1.0 0.0 왼쪽
IV 0.0 1.0 INT9 오른쪽
V 0.0 INT10 1.0 왼쪽
VI INT11 0.0 1.0 오른쪽
INT7, INT8, INT9, INT10, INT11 및 INT12이라는 용어는, 다음과 같이, 중간 명령을 계산하기 위한 식을 나타내고, θvαβ라는 용어는 벡터 vαβ(425)에 대한 전기 각도를 나타내고, ω·Tsw는 한 스위칭 주기 동안 각도 선행을 나타낸다.
Figure 112015099421139-pat00016
Figure 112015099421139-pat00017
Figure 112015099421139-pat00018
Figure 112015099421139-pat00019
Figure 112015099421139-pat00020
Figure 112015099421139-pat00021
도 5는 6단계 모드에서 주파수 동기 인버터 제어를 위한 인버터 제어 루틴(500)을 개략적으로 도시한다. 인버터 제어 루틴(500)은 6단계 모드의 실행을 전기 기계의 회전에 동기화하기 위하여 6단계 모드로 인버터를 제어한다. 인버터 제어 루틴(500)은 도 1을 참조하여 설명된 인버터의 실시예를 제어하기 위하여 채용될 수 있다. 표 4는 인버터 제어 루틴(500)에 대응하여 요지로서 제공되며, 숫자가 붙여진 블록과 대응하는 기능은 다음과 같이 설명된다.
블록 블록 내용
502 인버터를 제어하기 위하여 6단계 모드를 실행
504 전기 기계의 전기 전압 각도를 모니터링
506 토크 명령에 응답하여 인버터 스위치에 명령
508 사전 설정된 주파수와 사전 결정된 정렬로 PWM 캐리어를 명령
510 스위치 단계 전이가 다가오고 있는가?
512 전이하고 있는 스위치에 대한 중간 듀티 명령을 결정
514 캐리어 정렬을 결정
516 중간 듀티 명령과 캐리어 정렬에 응답하여 전이하고 있는 스위치를 제어
518 종료
인버터 제어 루틴(500)은 인버터를 제어하기 위하여 6단계 모드를 실행하는 것(502)과 관련되며, 전기 기계의 전기 전압 각도를 모니터링하는 것(504)을 포함한다. 전기 기계의 전기 전압 각도를 모니터링하는 것은 컨트롤러에 전기적으로 연결된 아날로그/디지털 컨버터의 사전 설정된 샘플링 주파수에 의해 구동되는 사전 설정된 샘플링 레이트로 모니터링하는 것 또는 다른 회전 위치 센서에 응답하여 홀 효과 센서에 의해 생성된 상승 에지 신호 또는 강하 에지 신호와 같은 트리거링 이벤트에 응답하여 모니터링하는 것을 포함할 수 있다. 인버터는, 동작을 실행하기 위하여, 고정자의 각 권선에서 AC 전압 및 전류를 생성하기 위하여 회전자 주기마다 한 번씩 6개의 0이 아닌 상태를 통해 인버터 스위치를 사이클링함으로써 토크 명령에 응답하여 스위치에 명령하는 것(506)과, 사전 설정된 주파수와 사전 결정된 정렬로 PWM 캐리어를 명령하는 것(508)을 포함하는 6단계 모드로 동작한다. 루틴은 스위치 중 하나에서의 단계 전이가 다가오고 있는지 판단한다(510). PWM 캐리어의 다가오는 사이클의 기간이 관심 대상인 회전 각도, 예를 들어, 30, 90, 150, 210, 270 및 330도 중 하나와 중첩할 때 표시된 바와 같이, 전기 회전 각도가 관심 대상의 회전 각도에 접근할 때, 스위치 중 하나에서의 단계 전이가 다가오고 있다.
스위치 중 하나에서의 단계 전이가 다가올 때(510)(1), 중간 듀티 명령이 전이하고 있는 스위치에 대하여 결정되고, 중간 듀티 명령은 수학식 6 내지 17 중 하나에 기초하여 결정되며, 특정 수학식은 접근하는 각도 및 전이하고 있는 특정 스위치에 기초하여 선택된다(512). 동시에, 전이하고 있는 특정 스위치의 현재 제어 상태에 기초하여 캐리어 정렬이 선택된다(514). 일 실시예에서, 특정 수학식과 캐리어 정렬의 선택은 관심 대상의 회전 각도에 기초하여 결정되며, 도 4와 표 2 및 3을 이용한 특정 섹터가 주목된다. 결과적인 중간 듀티 명령과 캐리어 정렬은 PWM 캐리어의 다가오는 사이클의 기간 동안 인버터를 제어하도록 실행되고(516), 이러한 루틴의 반복은 종료한다(518).
이러한 방식으로, PWM 인버터는 플럭스 약화 영역에서 전기 기계의 토크 능력을 증가시키기 위하여 6단계 모드로 동작할 수 있어, SVPWM 모드에서의 동작에 비교하여 증가된 토크 출력을 제공하며, 샘플링 주파수를 변경하지 않고 상 전류에서의 서브 고조파 리플을 방지하도록 6단계 PWM 파형을 모터 속력과 동기화하는 것을 포함한다.
발명을 실시하기 위한 구체적인 내용 및 도면은 본 발명을 뒷받침하고 설명하지만, 본 발명의 범위는 특허청구범위에 의해서만 정의된다. 특허청구범위의 발명을 실시하기 위한 최선의 형태 및 다른 실시예가 상세하게 설명되었지만, 다양한 대체적인 설계 및 실시예가 첨부된 특허청구범위에서 정의된 본 발명을 실시하는데 존재한다.

Claims (10)

  1. 다상(multi-phase) AC 전기 기계에 전기적으로 동작 가능하게 연결된 인버터를 제어하는 방법에 있어서,
    상기 인버터를 제어하기 위하여 6단계 모드(six-step mode)를 실행하는 단계;
    사전 설정된 샘플링 주파수로 상기 전기 기계의 전기 전압 각도를 모니터링하는 단계; 및
    상기 전기 전압 각도가 상기 인버터의 복수의 스위치 중 하나를 상기 6단계 모드로 제어하는 것과 관련된 단계 전이에 접근할 때:
    상기 스위치 중 하나에 대한 중간 듀티 명령을 생성하는 단계;
    상기 스위치 중 하나의 현재 제어 상태에 기초하여 캐리어 신호를 정렬하는 단계; 및
    상기 중간 듀티 명령과 정렬된 상기 캐리어 신호를 채용하여 상기 스위치 중 하나를 제어하는 단계
    를 포함하는,
    인버터 제어 방법.
  2. 제1항에 있어서,
    상기 스위치 중 하나에 대한 중간 듀티 명령을 생성하는 단계는,
    단일 스위칭 기간 동안 벡터 각도 선행(advance)을 결정하는 단계;
    상기 전기 기계의 전기 전압 각도와 관련된 벡터 각도를 결정하는 단계; 및
    단일 스위칭 기간 동안의 상기 벡터 각도 선행과 상기 벡터 각도에 기초하여 상기 스위치 중 하나에 대한 상기 중간 듀티 명령을 결정하는 단계
    를 포함하는,
    인버터 제어 방법.
  3. 제1항에 있어서,
    상기 스위치 중 하나의 현재 제어 상태에 기초하여 캐리어 신호를 정렬하는 단계는, 상기 인버터의 관련된 스위치를 OFF 상태로 명령하기 위하여 PWM 파형을 시프트하기 전에 상기 중간 듀티 명령에 응답하여 왼쪽 정렬(left-aligned) 캐리어 파형을 선택하는 단계를 포함하는,
    인버터 제어 방법.
  4. 제1항에 있어서,
    상기 스위치 중 하나의 현재 제어 상태에 기초하여 캐리어 신호를 정렬하는 단계는, 상기 인버터의 관련된 스위치를 ON 상태로 명령하기 위하여 PWM 파형을 시프트하기 전에 상기 중간 듀티 명령에 응답하여 오른쪽 정렬(right-aligned) 캐리어 파형을 선택하는 단계를 포함하는,
    인버터 제어 방법.
  5. 제1항에 있어서,
    상기 전기 전압 각도가 상기 인버터의 복수의 스위치 중 하나를 상기 6단계 모드로 제어하는 것과 관련된 단계 전이에 접근하고 있지 않을 때, 중심 정렬(center-aligned) 캐리어 파형을 선택하는 단계를 더 포함하는,
    인버터 제어 방법.
  6. 제1항에 있어서,
    상기 중간 듀티 명령과 정렬된 상기 캐리어 신호를 채용하여 상기 스위치 중 하나를 제어하는 단계는, 상기 6단계 모드의 실행을 상기 전기 기계의 회전과 동기화하기 위하여 상기 중간 듀티 명령과 정렬된 상기 캐리어 신호를 채용하여 상기 스위치 중 하나를 제어하는 단계를 포함하는,
    인버터 제어 방법.
  7. 영구 자석 동기 다상(multi-phase) AC 전기 기계의 상(phase)들에 전기적으로 동작 가능하게 연결된 복수의 아암(arm)을 포함하는 전압원 인버터를 제어하는 방법에 있어서,
    토크 명령에 응답하여 상기 인버터를 제어하기 위하여 6단계 모드(six-step mode)를 실행하는 단계;
    사전 설정된 샘플링 주파수로 상기 전기 기계의 회전 각도를 모니터링하는 단계; 및
    전기 전압 각도가 상기 인버터의 아암 중 하나를 상기 6단계 모드로 제어하는 것과 관련된 단계 전이에 접근할 때:
    상기 아암 중 하나에 대한 중간 듀티 명령을 생성하는 단계;
    상기 아암 중 하나의 현재 제어 상태에 기초하여 캐리어 신호를 정렬하는 단계; 및
    상기 중간 듀티 명령과 정렬된 상기 캐리어 신호를 채용하여 상기 아암 중 하나를 제어하는 단계
    를 포함하는,
    전압원 인버터 제어 방법.
  8. 제7항에 있어서,
    상기 아암 중 하나에 대한 중간 듀티 명령을 생성하는 단계는,
    단일 스위칭 기간 동안 벡터 각도 선행(advance)을 결정하는 단계;
    상기 전기 기계의 전기 전압 각도와 관련된 벡터 각도를 결정하는 단계; 및
    단일 스위칭 기간 동안의 상기 벡터 각도 선행과 상기 벡터 각도에 기초하여 상기 중간 듀티 명령을 결정하는 단계
    를 포함하는,
    전압원 인버터 제어 방법.
  9. 제7항에 있어서,
    상기 아암 중 하나의 현재 제어 상태에 기초하여 캐리어 신호를 정렬하는 단계는, 상기 인버터의 관련된 아암을 0의 상태로 명령하기 위하여 PWM 파형을 시프트하기 전에 상기 중간 듀티 명령에 응답하여 왼쪽 정렬(left-aligned) 캐리어 파형을 선택하는 단계를 포함하는,
    전압원 인버터 제어 방법.
  10. 제7항에 있어서,
    상기 아암 중 하나의 현재 제어 상태에 기초하여 캐리어 신호를 정렬하는 단계는, 상기 인버터의 관련된 아암을 1의 상태로 명령하기 위하여 PWM 파형을 시프트하기 전에 상기 중간 듀티 명령에 응답하여 오른쪽 정렬(right-aligned) 캐리어 파형을 선택하는 단계를 포함하는,
    전압원 인버터 제어 방법.
KR1020150143648A 2014-11-14 2015-10-14 6단계 모드로 전기 기계를 제어하는 방법 및 장치 KR101674913B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/541,176 US9419549B2 (en) 2014-11-14 2014-11-14 Method and apparatus for controlling an electric machine in a six-step mode
US14/541,176 2014-11-14

Publications (2)

Publication Number Publication Date
KR20160058675A KR20160058675A (ko) 2016-05-25
KR101674913B1 true KR101674913B1 (ko) 2016-11-10

Family

ID=55855152

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150143648A KR101674913B1 (ko) 2014-11-14 2015-10-14 6단계 모드로 전기 기계를 제어하는 방법 및 장치

Country Status (4)

Country Link
US (1) US9419549B2 (ko)
KR (1) KR101674913B1 (ko)
CN (1) CN105610363B (ko)
DE (1) DE102015118983A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859831B2 (en) * 2014-12-18 2018-01-02 Caterpillar Inc. Control system using flux feedback
US10167155B2 (en) * 2015-08-10 2019-01-01 Raytheon Company Fixture to support reel-to-reel inspection of semiconductor devices or other components
US10734935B2 (en) * 2017-09-22 2020-08-04 GM Global Technology Operations LLC Quasi six-step PWM control
US10882527B2 (en) 2017-11-14 2021-01-05 Neapco Intellectual Property Holdings, Llc Torque modulation to linearize tire slip characteristics
CN110504891B (zh) 2018-05-16 2021-09-03 台达电子工业股份有限公司 马达驱动电路及其控制方法
US10826424B2 (en) 2018-07-10 2020-11-03 GM Global Technology Operations LLC Method and apparatus for controlling a cascaded inverter circuit and an electric machine
US11881804B2 (en) * 2018-11-29 2024-01-23 Mitsubishi Electric Corporation Rotating electric machine drive device
KR102619730B1 (ko) * 2019-01-08 2024-01-02 현대모비스 주식회사 인버터의 식스스텝 전압 합성 시스템 및 그 방법
EP3726719A1 (en) * 2019-04-15 2020-10-21 Infineon Technologies Austria AG Power converter and power conversion method
US10951146B1 (en) * 2019-09-09 2021-03-16 Karma Automotive Llc Method to improve output current harmonic distribution in a segmented drive system
US11296642B2 (en) 2019-12-09 2022-04-05 Ford Global Technologies, Llc Electric machine torque control system
US11539283B1 (en) * 2021-06-04 2022-12-27 Rockwell Automation Technologies, Inc. System and method for reducing delay in the modulation of a multi-phase output voltage from an inverter
US11777435B1 (en) 2022-05-17 2023-10-03 Borgwarner Inc. Smooth transition control between overmodulation and six step pulse width modulation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183590A (ja) 2012-03-05 2013-09-12 Fuji Electric Co Ltd 直流ブラシレスモータの駆動装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4045105B2 (ja) 2002-01-30 2008-02-13 株式会社日立産機システム パルス幅変調方法、電力変換装置、およびインバータ装置
JP3841282B2 (ja) 2002-03-20 2006-11-01 株式会社安川電機 Pwmインバータ装置
US6819077B1 (en) * 2003-05-21 2004-11-16 Rockwell Automation Technologies, Inc. Method and apparatus for reducing sampling related errors in a modulating waveform generator used with a PWM controller
US6842354B1 (en) 2003-08-08 2005-01-11 Rockwell Automation Technologies, Inc. Capacitor charge balancing technique for a three-level PWM power converter
US20060034364A1 (en) * 2004-08-13 2006-02-16 Breitzmann Robert J Carrier synchronization to reduce common mode voltage in an AC drive
US7282886B1 (en) * 2006-08-04 2007-10-16 Gm Global Technology Operations, Inc. Method and system for controlling permanent magnet motor drive systems
US7843162B2 (en) 2008-03-13 2010-11-30 Gm Global Technology Operations, Inc. Current regulator and current control method and system for AC motors
US8575882B2 (en) * 2010-07-16 2013-11-05 Rockwell Automation Technologies, Inc. Power layer generation of inverter gate drive signals
US8963453B2 (en) * 2010-12-16 2015-02-24 Rockwell Automation Technologies, Inc. Method and apparatus for synchronization of pulse width modulation
US9893657B2 (en) 2012-09-07 2018-02-13 Ford Global Technologies, Llc Electric motor mode control
CN103607127B (zh) * 2013-11-20 2017-01-04 天津电气传动设计研究所有限公司 一种在闭环控制系统中实现同步对称pwm调制的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183590A (ja) 2012-03-05 2013-09-12 Fuji Electric Co Ltd 直流ブラシレスモータの駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hyunjae Yoo, Seung-Ki Sul; "Novel Current Control Strategy for Maximum Tracking Operation under Saturated Voltage Condition"; IAS 2005 IEEE.

Also Published As

Publication number Publication date
KR20160058675A (ko) 2016-05-25
CN105610363A (zh) 2016-05-25
CN105610363B (zh) 2018-07-20
DE102015118983A1 (de) 2016-05-19
US20160141982A1 (en) 2016-05-19
US9419549B2 (en) 2016-08-16

Similar Documents

Publication Publication Date Title
KR101674913B1 (ko) 6단계 모드로 전기 기계를 제어하는 방법 및 장치
Hoang et al. Influence and compensation of inverter voltage drop in direct torque-controlled four-switch three-phase PM brushless AC drives
EP3343758B1 (en) Semiconductor device and power conversion device
JP6428491B2 (ja) 回転電機の制御装置
EP3352369B1 (en) Inverter control device
KR20160058676A (ko) 6단계 모드로 전기 기계를 제어하는 방법 및 장치
JP2016208664A (ja) インバータの制御装置
KR101422427B1 (ko) 전력 변환 장치
CN106575932B (zh) 电动机控制装置、电动机控制方法以及电动机控制系统
JP2013034334A (ja) 回転機の制御装置
JP6591465B2 (ja) モータ駆動制御装置及びモータの駆動制御方法
JP2013141345A (ja) モータ制御装置及び空気調和機
US20130307451A1 (en) System and method for sensor-less hysteresis current control of permanent magnet synchronous generators without rotor position information
JP2017205017A (ja) 空気調和機のモータ制御装置及び空気調和機
JP7062084B2 (ja) 交流回転電機の制御装置
JP6951945B2 (ja) モータ制御装置及びモータ制御方法
JP7042568B2 (ja) モータ制御装置及びモータ制御方法
JP2011109848A (ja) モータ駆動制御装置
JPH0260493A (ja) 直流ブラシレスモータ
JP7354962B2 (ja) インバータの制御装置、プログラム
JP2020031469A (ja) モータ駆動制御装置
JP2002176792A (ja) ベクトル制御装置
Kumar et al. Design and evaluation of PI controller for four switch BLDC motor drive
JP7367628B2 (ja) インバータの制御装置
JP2019004660A (ja) モータ制御装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant