KR101641394B1 - 액화 천연 가스 변환 방법 및 장치 - Google Patents

액화 천연 가스 변환 방법 및 장치 Download PDF

Info

Publication number
KR101641394B1
KR101641394B1 KR1020117003409A KR20117003409A KR101641394B1 KR 101641394 B1 KR101641394 B1 KR 101641394B1 KR 1020117003409 A KR1020117003409 A KR 1020117003409A KR 20117003409 A KR20117003409 A KR 20117003409A KR 101641394 B1 KR101641394 B1 KR 101641394B1
Authority
KR
South Korea
Prior art keywords
heat exchange
exchange fluid
heat exchanger
natural gas
liquefied natural
Prior art date
Application number
KR1020117003409A
Other languages
English (en)
Other versions
KR20130025789A (ko
Inventor
요세프 포지빌
마티아스 라고트
Original Assignee
크라이오스타 에스아에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP08352015A external-priority patent/EP2146132A1/en
Priority claimed from EP08352024A external-priority patent/EP2180231A1/en
Application filed by 크라이오스타 에스아에스 filed Critical 크라이오스타 에스아에스
Publication of KR20130025789A publication Critical patent/KR20130025789A/ko
Application granted granted Critical
Publication of KR101641394B1 publication Critical patent/KR101641394B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0115Single phase dense or supercritical, i.e. at high pressure and high density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0323Heat exchange with the fluid by heating using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/011Barges
    • F17C2270/0113Barges floating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)

Abstract

액화 천연 가스(LNG)를 LNG의 기화 및 과열을 통해 과열된 유체로 변화시키는 방법 및 장치는 제 2 메인 열교환기(12)와 직렬로 제 1 메인 열교환기(10)를 포함한다. 제 1 메인 열교환기는 제 1 열교환 유체를 재기화하는 제 1 보조 열교환기(14)를 포함하는 제 1 열교환 유체 회로(20)에서 흐르는 제 1 열교환 유체(프로판)를 응축시키는 것에 의해 가열되고, 제 2 메인 열교환기는 제 2 열교환 유체를 기화하는 제 2 보조 열교환기(16)를 포함하는 제 2 열교환 유체 회로(22)에서 흐르는 제 2 열교환 유체를 응축시키는 것에 의해 가열된다. 회로(20, 22)는 응축물을 수집하는 공통 용기를 공유할 수 있다. 제 1 회로(20) 내의 열교환 유체의 응축 압력은 제 2 회로(22) 내의 열교환 유체의 응축 압력보다 낮다. 제 1 및 제 2 메인 열교환기(10, 12)를 통한 열교환 유체의 흐름은 밸브(32, 36)에 의해 제어된다.

Description

액화 천연 가스 변환 방법 및 장치{CONVERSION OF LIQUEFIED NATURAL GAS}
본 발명은 액화 천연 가스를 과열 유체로 변화시키는 방법 및 장치에 관한 것이다. 이 방법 및 장치는 선박 또는 부유식 저장 및 재기화 설비(Floating Storage and Regasification Unit: FSRU)와 같은 기타 외항선에 특히 사용되기 적합하다.
천연 가스는 편리하게 액체 상태로 저장 및 수송된다. 그러나, 천연 가스는 일반적으로 가스 상태로 사용된다. 그러므로, 대용적의 액화 천연 가스를 통상 천연 가스의 임계 압력보다 낮은 가스이지만, 임계 압력보다 큰 압력의 가스일 수도 있는 과열 유체로 변환시키는 것이 필요하다.
미국 특허 제 6,945,049 호는 액화 천연 가스의 기화 방법 및 장치를 개시하고 있다. 액화 천연 가스는 제 1 열교환기를 통해 펌핑되어 기화가 이루어지고 제 2 열교환기를 통해 증기 온도가 대략 대기 온도나 대기 온도보다 약간 낮은 온도로 승온된다. 제 1 열교환기는 폐 사이클로 흐르는 프로판과 같은 열교환 유체에 의해 가열된다. 프로판은 제 1 열교환기에서 기체 상태에서 액체 상태로 변화되고, 통상 해수의 흐름에 의해 가열되는 복수의 열교환기 내에서 다시 가스로 변환된다. 제 2 열교환기에서 기화된 천연 가스는 스팀류에 의해 더 가열된다.
본 발명에 따른 방법 및 장치는 열역학적 효율의 과도한 손실 없이 대응하는 열교환기의 표면적을 감소시키는 것을 목적으로 한다.
본 발명에 따르면, 액화 천연 가스를 과열 유체로 변환시키는 방법이 제공되며, 해당 방법은:
a. 서로 직렬로 배열된 제 1 메인 열교환기와 제 2 메인 열교환기를 통해 압력하의 천연 가스 흐름을 통과시키는 단계와;
b. 제 1 무한 회로에서 제 1 압력으로 흐르고 상기 제 1 메인 열교환기 내에서 기체에서 액체로 상태의 변화를 겪는 제 1 열교환 유체와의 열교환에 의해, 제 1 메인 열교환기 내의 천연 가스 흐름을 가열시키는 단계와;
c. 제 2 무한 회로에서 제 2 압력으로 흐르고 상기 제 1 열교환 유체와 동일한 조성을 가지며 상기 제 2 메인 열교환기 내에서 기체에서 액체로 상태의 변화를 겪는 제 2 열교환 유체와의 열교환에 의해, 제 2 메인 열교환기 내의 천연 가스 흐름을 더 가열시키는 단계와;
d. 상기 제 1 메인 열교환기로부터 액화된 제 1 열교환 유체와 상기 제 2 메인 열교환기로부터 액화된 제 2 열교환 유체를 수집하는 단계와;
e. 제 1 무한 열교환 유체 회로에 있어서, 제 1 보조 열교환기에서 액화된 제 1 열교환 유체의 흐름을 재기화시키고, 얻어지는 기체를 제 1 열교환 유체로서 제 1 메인 열교환기로 공급하는 단계와;
f. 제 2 무한 열교환 회로에 있어서, 제 2 보조 열교환기에서 액화된 제 2 열교환 유체의 흐름을 재기화시키고, 얻어지는 기체를 제 2 열교환 유체로서 제 2 메인 열교환기로 공급하는 단계를 포함하고;
g. 상기 제 1 메인 열교환기 내의 상기 제 1 열교환 유체의 응축 압력은 상기 제 2 메인 열교환기 내의 상기 제 2 열교환 유체의 응축 압력보다 낮은 것을 특징으로 한다.
소정의 바람직한 예에서, 상기 단계 e에서 상기 생성 기체는 상기 제 1 보조 열교환기와 상기 제 1 메인 열교환기 사이에서 터보-팽창될 수 있다. 상기 터보-팽창은 기체로부터의 파워 회수를 가능케 한다.
또한, 본 발명은 액화 천연 가스를 과열 유체로 변환시키는 장치를 제공하며, 해당 장치는:
a. 제 1 열교환 응축 유체와 제 2 열교환 응축 유체 각각과 열교환하여 액화 천연 가스를 가열하도록 구성된, 서로 직렬로 배열된 제 1 메인 열교환기 및 제 2 메인 열교환기와;
b. 상기 제 1 메인 열교환기를 통해 연장되는 제 1 무한 저응축압 열교환 유체 회로와;
c. 상기 제 2 메인 열교환기를 통해 연장되는 제 2 무한 고응축압 열교환 유체 회로를 포함하고;
d. 상기 제 1 및 제 2 무한 열교환 유체 회로 모두는 응축된 열교환 유체를 수집하기 위한 액체 수집 용기를 포함하며;
e. 상기 제 1 무한 열교환 유체 회로는 응축된 제 1 열교환 유체의 재기화를 위한 제 1 보조 열교환기를 통해 연장되며;
f. 상기 제 2 무한 열교환 유체 회로는 응축된 제 2 열교환 유체의 재기화를 위한 제 2 보조 열교환기를 통해 연장되며;
g. 상기 변환 장치는 상기 제 1 메인 열교환기를 통한 제 1 열교환 유체의 유량과 상기 제 2 메인 열교환기를 통한 제 2 열교환 유체의 유량을 제어하는 수단
을 더 포함하는 것을 특징으로 한다.
본 발명에 따른 장치는 상기 제 1 무한 열교환 유체 회로 내에서 상기 제 1 보조 열교환기와 상기 제 1 메인 열교환기 사이에 터보-팽창기를 더 포함할 수 있다. 상기 터보-팽창기는 파워 발생 수단과 작동적으로 결합되어 파워의 회수를 가능케 한다.
제 1 및 제 2 열교환 유체 회로에 다른 응축 압력을 적용한 것은 열역학적 효율의 과도한 손실 없이 제 1 및 제 2 메인 열교환기의 표면적을 작게 유지하는 것을 가능케 한다. 바람직하게, 제 1 메인 열교환기로의 유입부에서의 제 1 열교환 유체의 온도와 제 1 메인 열교환기로부터의 유출부에서의 천연 가스의 온도 사이의 온도 차이는 제 2 메인 열교환기로의 유입부에서의 제 2 열교환 유체의 온도와 제 2 메인 열교환기로부터의 유출부에서의 천연 가스의 온도 사이의 온도 차이보다 크다.
본 발명에 따른 방법 및 장치에서, 메인 열교환기 및 보조 열교환기 각각은 단일체나 코어 또는 다중체나 코어를 포함할 수 있다. 다중체인 경우, 열교환체 또는 코어는 직렬 또는 병렬로 배열될 수 있다.
본 발명에 따른 장치는 바람직하게 수집 용기로부터 액화 열교환 유체를 입수하고 제 1 및 제 2 무한 열교환 회로를 통해 순환시키기 위한 적어도 하나의 액체 펌프를 추가로 포함할 수 있다.
제 1 및 제 2 열교환 회로 내의 액화 열교환 유체는 바람직하게 제 1 및 제 2 열교환 유체 회로에 의해 공유되는 공통 수집 용기에 수집된다. 따라서, 제 1 열교환 유체는 바람직하게 제 2 열교환 유체와 동일하다.
이와 달리, 각각의 회로는 자체의 수집 용기와 자체의 액체 펌프를 가질 수 있다. 이 경우, 제 1 열교환 유체는 제 2 열교환 유체와 다를 수 있다.
제 1 및 제 2 메인 열교환기 각각을 통한 제 1 및 제 2 열교환 유체의 유량은 열교환기에 가해지는 열부하의 임의의 변화에 따라 변화된다. 따라서, 제어 수단은 바람직하게 열교환기에 가해지는 열부하의 임의의 변화에 따라 제 1 메인 열교환기를 통한 제 1 열교환 유체의 유량을 변화시키도록 작동되도록 구성된 제 1 밸브 수단을 포함하는 것이 바람직하다. 유사하게, 제어 수단은 바람직하게 열교환기에 가해지는 열부하의 임의의 변화에 따라 제 2 메인 열교환기를 통한 제 2 열교환 유체의 유량을 변화시키도록 작동되도록 구성된 제 2 밸브 수단을 포함하는 것이 바람직하다. 제 1 무한 열교환 회로가 터보-팽창기를 포함하고 있으면, 상기 유량은 터보-팽창기의 유입 가이드 날개판에 의해 제어될 수 있다.
제 1 무한 열교환 회로가 터보-팽창기를 포함하는 본 발명에 따른 방법 및 장치의 예에서, 상기 회로는 터보-팽창기를 가로지르는 압력비를 변화시키도록 작동 가능한 가변 주파수 드라이브를 갖는 액체 펌프를 부가적으로 포함하는 것이 바람직하다. 이것은 회로가 상이한 재기화 및 응축 온도를 만족시킬 수 있도록 한다.
제 1 밸브 수단은 제 1 무한 열교환 유체 회로 내에서 액체 펌프와 제 1 보조 열교환기로의 제 1 열교환 유체의 유입부 사이에 위치되는 것이 바람직하다. 제 2 밸브 수단은 제 2 무한 열교환 유체 회로 내에서 제 2 메인 열교환기로부터의 제 2 열교환 유체의 유출부와 공통 수집 용기 사이에 위치되는 것이 바람직하다.
또한, 본 발명에 따른 장치는 응축된 열교환 유체를 상기 공통 수집 용기로 재순환시키는 도관과, 해당 장치에 가해지는 열부하가 선택된 최소치 미만으로 떨어진 경우 상기 도관을 개방(또는 상기 도관을 통한 유량을 증가)시키기 위한 상기 도관 내의 제 3 밸브 수단을 포함하는 것이 바람직하다.
공통 수집 용기의 잔여 공간(ullage space)의 압력은 필연적으로 제 1 무한 회로 열교환 유체의 응축 압력인 것이 바람직하다.
제 1 및 제 2 액화 열교환 유체는 임의의 적절한 매체에 의해 제 1 및 제 2 보조 열교환기에서 가열될 수 있으나, 해당 매체의 온도는 열교환 유체의 선택에 영향을 미친다. 적절한 매체로서 해수를 외항선의 선내에 사용할 수 있지만, 그 대신 깨끗한 물, 엔진 냉각수 또는 물과 에틸렌 글리콜의 혼합물과 같은 다른 매체를 사용할 수 있다. 일반적으로, 상기 매체가 적절한 대기 온도에서 공급되면, 제 1 및 제 2 열교환 유체 모두의 경우에 대해 프로판이 바람직한 선택이 된다. 프로판은 상업적으로 용이하게 입수 가능하며, 제 1 및 제 2 메인 열교환기에서의 응축 온도가 -40℃를 초과하지만 15℃ 미만으로 선택될 수 있게 하는 열역학적 성질을 가진다. 프로판 대신에 또는 프로판과의 혼합물로 다른 열교환 유체가 사용될 수 있다. 이러한 대안적이거나 부가적인 열교환 유체는 에탄, 부탄, 특히 R134(a)와 같은 기타의 탄화수소 및 플루오르카본 냉각제를 포함한다. 선택된 열교환 유체는 -30℃ 또는 -40℃까지 양의 평형 압력을 가지는 것이 바람직하다. 해수(또는 대안적인 매체)의 온도가 특히 낮으면, 제 1 및 제 2 열교환 유체는 프로판과 에탄의 동일한 혼합물로 구성될 수 있다. 다른 한편으로 이러한 온도가 특히 높으면, 제 1 및 제 2 열교환 유체는 프로판과 부탄의 동일한 혼합물로 구성될 수 있다.
제 1 및 제 2 열교환 유체는 완전히 기화될 수 있고, 원하는 경우, 제 1 및 제 2 보조 열교환기에서 과열될 수 있다. 아울러, 제 1 및 제 2 열교환 유체는 제 1 및 제 2 보조 열교환기의 하류에서 과열될 수도 있다. 원하는 경우, 기화 섹션과 별도로 과열 섹션이 존재할 수 있다. 이러한 양자의 섹션은 다른 몸체로 제공될 수 있다. 대안적으로, 이들 열교환 유체는 제 1 및 제 2 보조 열교환기에서 부분 기화될 수 있으며, 이 경우, 제 1 및 제 2 열교환 회로 모두는 증기로부터 기화되지 않은 열교환 유체를 분리하는 상 분리기를 포함할 수 있다. 얻어지는 액체는 열교환 회로와 결합된 수집 용기로 복귀될 수 있다.
본 발명에 따른 바람직한 예의 방법에서, 압력하의 천연 가스 흐름이 저장 탱크로부터 취득되고 제 1 메인 열교환기를 통한 통로의 상류에 도입되어 저장 탱크로부터 증발되는 증기를 응축시킨다. 상기 바람직한 예의 실시 장치는 액화 천연 가스를 위한 저장 탱크와, 액화 천연 가스를 회수하기 위해 저장 탱크 내에 침수된 침수 펌프와, 액화 천연 가스의 압력을 추가로 승압시키고 압축된 액화 천연 가스를 제 1 메인 열교환기로 공급하는 부스터 펌프를 포함할 수 있고, 상기 침수 펌프는 부스터 펌프에 대해 적절한 유효 흡입 헤드(NPSH)를 유지하도록 흡입 용기를 통해 부스터 펌프와 연통되며, 상기 흡입 용기는 저장 탱크로부터 증발된 천연 가스를 회수하기 위해 콤프레서와 연통되며, 상기 흡입 용기는 증발된 천연 가스의 응축이 이루어지도록 증발된 천연 가스를 액화 천연 가스와 밀착 접촉되게 하는 액체-기체 접촉면을 포함한다.
도 1 내지 도 4는 다른 형태의 액화 천연 가스(LNG) 기화 장치의 전체적인 개략적 흐름도이고, 도 5는 해당 장치의 상류측 부분을 보여준다.
이하 첨부 도면을 참조로 본 발명에 따른 방법 및 장치를 예시로서 설명한다.
도 1 내지 도 4는 다른 형태의 액화 천연 가스(LNG) 기화 장치의 전체적인 개략적 흐름도이고 도 5는 해당 장치의 상류측 부분을 보여준다.
도 1을 참조하면, 액화 천연 가스(LNG) 설비(2)는 통상적으로 침수 LNG 펌프(6)를 가지는 적어도 하나의 단열 저장 탱크(4)를 포함한다. 펌프(6)의 유출구는 도관(8)과 연통되며, 해당 도관을 따라서 설비(2) 외부에 제 2 LNG 펌프(9)가 배치된다. 펌프(9)의 유출구는 LNG의 흐름을 가열하기 위한 본 발명에 따른 장치와 연통된다. 상기 설비는 예컨대 소위 FSRU(부유식 저장 및 재기화 설비)일 수 있는 외항선의 선상에 통상 위치될 수 있다. 상기 설비(2)로부터 천연 가스를 상승된 압력과 극저온이 아닌 온도, 통상 대기 온도에 가까운 온도에서 운송할 필요성이 상존한다. 도 1에 도시된 바와 같은 장치는 천연 가스를 선택된 압력과 속도 및 온도에서 전달될 수 있도록 한다. 이 장치는 제 1 메인 열교환기(10), 제 2 메인 열교환기(12), 제 1 보조 열교환기(14), 제 2 보조 열교환기(16)를 포함한다. 제 1 및 제 2 메인 열교환기(10, 12)는 모두 천연 가스와 반대 방향으로 흐르는 공통 열교환 유체에 의해 가열되도록 되어 있다.
열교환 유체가 제 1 메인 열교환기(10)와 제 1 보조 열교환기(14)를 통해 흐르도록 하는 제 1 무한 열교환 유체 회로(20)와 열교환 유체가 제 2 메인 열교환기(12)와 제 2 보조 열교환기(16)를 통해 흐르도록 하는 제 2 무한 열교환 유체 회로(22)가 존재한다. 상기 회로(20, 22)는 공통으로 액체 열교환 유체 수집 용기(24)와 액체 열교환 유체에 가해지는 압력을 높이기 위한 펌프(26)를 구비한다. 그러나, 각각의 회로가 자체의 전용 수집 용기를 가지는 것도 가능하다. 제 1 무한 열교환 유체 회로(20)는 제 1 메인 열교환기(10)로부터의 액체 유출구로부터 액체 수집 용기(24)로 연장되며, 펌프(26)를 포함한다. 펌프(26)의 하류측으로 제 1 열교환 유체 회로(20)가 제 1 보조 열교환기(14)를 통해 연장되며, 해당 제 1 보조 열교환기 내에서 액체 열교환 유체가 기체로 재변환된다. 열교환 유체 회로(20)는 기화된 열교환 유체를 위한 제 1 보조 열교환기(14)로부터의 유출구를 기화된 열교환 유체를 위한 메인 열교환기(10)로의 유입구와 연통되게 배치하고 있는 도관에 의해 완성된다. 원하는 경우, 열교환 회로 모두는 회로로부터의 임의의 열교환 유체의 손실을 보상할 수 있도록 백업 열교환 유체의 소스와 연통되거나 해당 소스와 연통되도록 배치될 수 있다.
제 1 메인 열교환기를 통해 흐르는 모든 액화 천연 가스가 기화되도록 하고 해당 액화 천연 가스를 선택된 온도로까지 과열시키도록 제 1 메인 열교환기를 통해 충분한 열교환 유체의 흐름이 제공된다. 그러나, 펌프(9)는 통상 액화 천연 가스의 압력을 그 임계 압력 위로까지, 말하자면 천연 가스가 약 100 bar까지 승압시킬 수 있으며, 그 경우 제 1 메인 열교환기로 들어가는 천연 가스는 초임계 유체이므로 엄밀히 말하면 기화되지 않음을 알아야 한다. 액화 천연 가스가 초임계 유체로서 제 1 메인 열교환기(10)에 제공되든 아니든, 도 1에 도시된 장치는 액화 천연 가스가 제 1 메인 열교환기(10)를 벗어나는 온도가 0℃보다 다소 낮은 선택된 온도 범위에 있도록 보장하도록 작동된다.
제 2 열교환 유체 회로(22)는 천연 가스의 온도를 선택된 전달치까지 더욱 승온시키도록 작동된다. 제 2 열교환 유체 회로(22)에서, 일부 액체 열교환 유체는 제 1 열교환 유체 회로(20)로부터 펌프(26)의 하류의 영역으로 전환된 후 기화가 진행되는 제 2 보조 열교환기를 통해 흐른다. 얻어지는 증기는 제 2 메인 열교환기(12)로의 열교환 유체용 유입구로 흐른다. 이 열교환 유체는 천연 가스와의 열교환에 의해 제 2 메인 열교환기(12)에서 응축되고, 그에 따라 천연 가스는 원하는 온도로 가열된다. 이렇게 응축된 열교환 유체는 제 2 메인 열교환기로부터 파이프 또는 도관(34)을 통해 공통 수집 용기(24)로 통과된다.
제 1 및 제 2 보조 열교환기(14, 16)에 필요한 열은 임의의 적절한 보조 열교환 매체에 의해 제공될 수 있다.
액체 수집 용기(24)는 재순환 도관(28)을 구비한다. 도관(28)의 일단부는 펌프(26)의 유출구 하류이지만 제 2 열교환 유체 회로(22)가 제 1 열교환 유체 회로(20)로부터 분기되는 곳의 상류에 있는 열교환 유체 회로(20, 22)의 공통 영역에서 종료된다. 도관(28)의 타단부는 액체 수집 용기(24) 내에서 종료된다. 도관(28) 내에는 밸브(30)가 배치된다. 밸브(30)는 개방시 응축된 열교환 유체가 열교환 회로(20, 22)로부터 회수될 수 있게 한다. 이러한 회수는 메인 열교환기(10, 12) 상의 열부하가 선택된 레벨 아래로 떨어지는 경우에 수행될 수 있다.
메인 열교환기(10, 12)를 통한 열교환 유체의 유량은 제 1 밸브(32)와 제 2 밸브(36) 각각에 의해 제어된다. 제 1 밸브(32)는 펌프(26)의 유출구와 제 1 보조 열교환기(14)에 대한 열교환 유체의 유입구 사이에 위치된다. 제 2 밸브(36)는 도관(34) 내에 위치된다. 밸브(32, 36)는 열부하의 변화에 따라 제 1 및 제 2 메인 열교환기(10, 12) 각각을 통한 열교환 유체의 유량을 변화시키도록 작동된다.
작동시, 열교환 유체는 보조 열교환 매체와 액화 천연 가스 사이의 간접적 열교환을 실시한다. 선박 또는 FSRU의 선내에서 해수는 특히 적절한 보조 열교환 매체이다. 예를 들면, 해수는 선박 또는 FSRU의 주변으로부터 입수될 수 있다. 신선한 물, 엔진 냉각수 또는 물과 에틸렌 글리콜의 혼합물과 같은 다른 매체를 대신 사용할 수 있다. 보조 열교환 매체는 개방 회로 또는 폐쇄 회로에서 흐를 수 있다. 폐쇄 회로에서 흐르는 경우, 보조 열교환 매체의 온도는 예컨대 보일러와 같은 추가의 열원에 의해 용이하게 제어될 수 있으며, 열교환 유체는 이 온도에 따라 선택된다. 바람직한 열교환 유체는 프로판이다. 프로판은 상업적으로 용이하게 입수 가능하며, 제 1 및 제 2 메인 열교환기(10, 12)에서의 응축 온도가 -40℃를 초과하지만 15℃ 미만으로 될 수 있게 하는 열역학적 성질을 가진다. 그러나, 보조 열교환 매체, 예컨대 해수가 개방 회로에서 흐르는 경우, 그 온도는 연중 내내 그리고 선박 또는 FSRU의 지리학적 위치에 따라 변화될 수 있다. 따라서 해수의 유입시 온도는 말하자면 10~27℃에서 변화될 수 있다. 원하는 경우, 프로판은 낮은 보조 열교환 매체 온도의 경우 에탄과 높은 보조 열교환 매체 온도의 경우 부탄과 혼합될 수 있다. 일반적으로, 열교환 유체의 선택은 열교환 유체가 -30℃, 바람직하게는 -40℃까지 양의 평형 압력을 가지는 것이 바람직하다는 것을 염두에 두고 이들 인자를 고려하여 행해지는 것이 필요하다.
통상의 작동시, LNG의 온도를 -150℃ 미만의 저장 온도로부터 선택된 공급 온도(예컨대, +5℃)로 승온시키기 위해 필요한 열교환기(10, 12)에 가해지는 열인 열부하는 변화하기 쉽다. 도 1에 도시된 장치는 이들 변화를 충족시킬 수 있다. 제 1 보조 열교환기(14)를 통한 열교환 유체의 흐름은 통상 해수 또는 다른 매체를 5-7℃ 만큼 냉각하도록 되어 있다. 열교환 유체는 제 1 보조 열교환기(14)에서 상태가 액체에서 증기로 변화되며, 약간 과열될 수 있다. 제 1 메인 열교환기(10)에서 LNG를 가열하는 것은 바로 이 증기이다. 열교환 유체는 제 1 메인 열교환기(10)에서 다시 응축된다. 제 2 메인 열교환기(12)의 작동은 제 1 메인 열교환기(10)와 유사하다. 천연 가스는 응축 열교환 유체와의 간접적 열교환에 의해 제 2 메인 열교환기에서 가열된다. 밸브(32, 36)의 작동은 제 2 메인 열교환기(12)에서의 응축 압력을 제 1 메인 열교환기(10)에서보다 높게 하는 효과를 나타낸다. 응축 압력의 차이는 펌프(26) 사이의 차압에서 관련 배관 및 열교환기의 압력 강하를 뺀 것과 같다. 또한, 제 1 메인 열교환기에서의 응축 압력은 공통의 수집 용기의 잔여 공간의 응축 압력과 같다. 이 압력은 고정되지 않지만 열교환 회로가 열부하의 변화로 조정됨에 따라 변동되는 경향이 있다. 부하가 큰 경우, 제 1 메인 열교환기에서의 응축 압력은 낮고, 이들 압력 변화는 열교환기(10)에 대한 열부하의 변화에 응답한 밸브(32)의 조정에 의해 생긴다. 원하는 경우, 밸브(32)의 조정은 열부하의 변화의 함수인 파라미터에 응답하여 자동으로 실시될 수 있다. 밸브(36)는 유사하게 조정될 수 있으며, 제 1 메인 열교환기(10)에서의 응축 압력이 변하기 때문에 제 2 메인 열교환기(12)에서의 응축 압력도 변한다.
제 2 메인 열교환기(12)에서의 응축 압력은 제 1 메인 열교환기(10)에서의 응축 압력보다 크기 때문에, 2개의 열교환기의 크기는 낮은 해수(또는 다른 보조 열교환 매체) 온도에서도 열역학적 효율의 과도한 손실없이 용이하게 작게 유지될 수 있다. 일반적으로, 제 1 메인 열교환기(10)는 제 2 메인 열교환기보다 큰 열부하를 만족하여야 한다. 제 1 메인 열교환기로 들어가는 열교환 유체와 제 1 메인 열교환기를 나가는 천연 가스 사이의 온도 차이는 제 2 메인 열교환기(12)로 들어가는 열교환 유체와 제 2 메인 열교환기로부터 나가는 천연 가스 사이의 온도 차이보다 큰 것이 바람직하다.
펌프(26) 사이의 압력차는 2개의 메인 열교환기(10, 12) 사이의 응축 압력과 그에 따른 응축 온도의 차이를 결정함에 있어 중요한 인자인 것을 이해할 수 있다. 통상, 펌프(26)는 일정한 주파수 드라이브를 가지므로 차압은 변경될 수 없다. 이것은 도 1에 도시된 장치가 받게 되는 열부하의 정상적 변화에 대체로 대응할 수 있으므로 단점이 아니다. 열부하가 너무 떨어져서 제어 밸브(32, 36)가 흐름을 너무 억제하게 되면, 밸브(30)의 세팅은 필요한 펌프(26)를 통한 최소 흐름이 이루어지도록 자동으로 유지시킬 수 있다. 열부하가 너무 상승되면, LNG 배관의 밸브(도시 생략)는 LNG 흐름이 감소되도록 조정될 수 있다. 그러나, 낮은 해수 유입 온도(말하자면 10℃ 정도)에서, 가변 주파수 펌프(26)를 사용하고 그것을 다소 증가된 압력 차이에서 작동시킴으로써 높은 열부하에서 제 1 메인 열교환기(10)의 응축 온도를 감소시키는 것이 유리할 수 있다.
전형적인 예에서, 제 1 메인 열교환기(10)는 LNG의 온도를 (초임계 압력이 아닌 경우) 기화를 행하도록 -40℃ 내지 -20℃로 승온시키고, 제 2 메인 열교환기(12)는 그 온도를 0-5℃까지 더 승온시킨다. 제 1 메인 열교환기(10)는 통상 열부하의 80%를 만족시키고 제 2 메인 열교환기(12)는 나머지 20%를 만족시킬 수 있다. 이 예에서, 열교환 유체는 프로판이고, 보조 열교환 매체는 해수이다.
도 1에 도시된 장치는 자체에 부가되는 LNG 기화 부하의 변화로 본질적으로 자기 조정된다. LNG 흐름이 감소되면, 열교환기(10, 12)에서 프로판의 응축률은 낮을 것이고, 프로판 압력은 보조 열교환기(14, 16)와 공통 수집 용기에서 증가할 것이다. 이러한 압력 증가는 열교환기(14, 16)에서의 보조 열교환 매체와 기화 프로판 사이의 온도 차이를 감소시키는 것에 의해 프로판 기화율에 대한 보상적 효과를 나타낸다. 열교환 회로(20, 22)는 기화 프로판의 온도를 그것의 비등점보다 섭씨 몇도 정도 이하로 높게 유지하도록 조정할 수 있다. 유사하게, LNG 흐름이 증가하면, 열교환기(10, 12)에서의 프로판의 응축률은 높아질 것이고 프로판 압력은 보조 열교환기(14, 16)와 공통 수집 용기(24)에서 떨어질 것이다. 이러한 압력 감소는 열교환기(14, 16)에서의 보조 열교환 매체와 기화 프로판 사이의 온도 차이를 증가시키는 것에 의해 프로판 기화율에 대한 보상적 효과를 나타낸다. 열교환 회로(20, 22)는 기화 프로판의 온도를 그것의 비등점보다 섭씨 몇도 정도 이하로 높이 유지하도록 조정할 수 있다.
도 2에 도시된 장치는 보조 열교환기(14, 16)에서 프로판(또는 다른 열교환 매체)의 과열이 방지될 수 있게 한다. 열교환기 회로(20, 22) 모두는 상 분리기를 포함하고, 보조 열교환기(14, 16)는 프로판 또는 다른 열교환 유체를 오직 부분적으로만 기화시킨다.
제 1 상 분리기(40)는 제 1 열교환 유체 회로(20)에서 제 1 보조 열교환기(14)의 프로판 유출 단부와 제 1 메인 열교환기(10)의 프로판 유입 단부 사이에 제공된다. 원하는 경우, 도 2에 도시된 바와 같이, 제 1 보조 열교환기(14)는 분할되어 2개의 나란한 열교환 유닛[14(a), 14(b)]을 포함할 수 있다.
제 1 상 분리기(40)는 액체 상이 수집되는 용기(44)로의 액체-기체 프로판 혼합물용 유입구(42)를 구비한다.
상 분리기 용기(44)는 제 1 메인 열교환기(10)로의 프로판 유입구와 연통하는 증기용 제 1 유출구(46)를 상부에 구비하고, 공통 수집 용기(24)와 연통하는 액체 프로판용 제 2 유출구(48)를 바닥에 구비한다. 도관(50)에는 유량 제어 밸브(52)가 위치되고 일정한 액체 프로판 레벨이 유지될 수 있도록 용기(44) 내에서 레벨 검출기(54)와 작동적으로 결합된다. 제 1 메인 열교환기(10)로 흐르는 증기로부터 액적을 분리하기 위해 용기(44) 내에 데미스터(demister)(56)가 위치된다.
제 2 상 분리기(60)는 제 2 열교환 유체 회로(22)에서 제 2 보조 열교환기(16)의 프로판 유출 단부와 제 2 메인 열교환기(12)의 프로판 유출 단부 사이에 제공된다. 제 2 상 분리기(60)는 용기(64)에 대한 액체-기체 혼합물용 유입구(62)와, 상부에 제 2 메인 열교환기(12)로의 프로판 유입구와 연통하는 증기용 제 1 유출구(66)와, 바닥에 도관(70)을 통해 공통 액체 프로판 수집 용기(24)와 연통하는 액체 프로판용 제 2 유출구(68)를 포함한다. 도관(70)에는 유량 제어 밸브(72)가 위치되고 일정한 액체 레벨이 유지될 수 있도록 용기(64) 내에서 레벨 검출기(75)와 작동적으로 결합된다. 제 2 메인 열교환기(12)로 흐르는 증기로부터 액적을 분리하기 위해 용기(64) 내에 데미스터(76)가 위치된다.
열교환기(14, 16)는 2개 이상의 평행한 부분으로 분할될 수 있다.
상 분리기(40, 60)의 제공을 통해, 재순환 도관(28)과 밸브(30)가 도 2에 도시된 장치로부터 생략된다. 도 2에 도시된 장치의 작동은 도 1에 도시된 장치와 유사하지만, 열교환기(14, 16)에서 프로판의 과열은 없다.
도 1에 도시된 장치와 비교시, 도 2의 장치는 액체 프로판의 순환을 지원하는 추가의 액체 펌프(80)를 구비한다. 펌프(26, 80)는 원하는 경우 열교환 회로(20, 22)에서 프로판 사이의 압력차를 변화시키도록 작동 가능하다. 작동시, 열교환 회로(20, 22)는 도 1에 도시된 장치의 대응하는 회로와 유사한 방식으로 자체 조정된다. 상기 장치는 내부에 제동 밸브(79)를 구비하고 수집 용기(24)에서 종결되는 도관(78)을 통해 프로판을 충전할 수 있다.
도면의 도 3을 참조하면, 도 2에 도시된 장치의 변형예가 도시되며, 해당 변형예에서는 공통 수집 용기(24)가 존재하는 대신에 열교환 회로(20, 22) 모두가 전용 액체 프로판 수집 용기(82, 84)를 각각 구비하고 있다. 따라서, 회로(20, 22)는 서로 분리되어 있고, 각각의 회로는 제동 밸브(88)를 내부에 구비하고 용기(82) 내에서 종결되는 자체의 액체 프로판 공급 배관(86)을 포함하고, 회로(22)는 정지 밸브(92)가 내부에 배치되고 용기(84) 내에서 종결되는 액체 프로판 공급 배관(90)을 포함한다.
도 3에 도시된 장치의 동작시, 펌프(26, 80)는 단순히 액체 프로판의 필요한 순환을 형성하고 장치 내의 압력 강하를 보상한다. 다른 측면에서 도 3의 장치의 동작은 도 2의 장치의 동작과 유사하다.
도면의 도 4를 참조하면, 도 1에 도시된 장치의 변형예가 도시되며, 해당 변형예에서는 공통 수집 용기(24)가 존재하는 대신에 열교환 회로(20, 22) 모두가 전용 액체 수집 용기(82, 84)를 각각 구비하고 있다. 따라서, 회로(20, 22)는 전용 액체 수집 용기(82, 84)를 각각 구비한다. 따라서, 회로(20, 22)는 서로 분리되어 있다. 회로(20)는 제동 밸브(88)를 내부에 구비하고 용기(82) 내에서 종결되는 자체의 액체 열교환 유체 공급 배관(86)을 포함하고, 회로(22)는 정지 밸브(92)가 내부에 배치되고 용기(84) 내에서 종결되는 액체 열교환 유체 공급 배관(90)을 포함한다. 회로(20) 내의 열교환 유체는 회로(22) 내의 열교환 유체와 동일하거나 상이한 조성을 가질 수 있다.
회로(20)는 보조 열교환기(14)로부터의 열교환 증기 유출구와 메인 열교환기(10)로의 열교환 증기 유입구 사이에 터보-팽창기(100)를 포함한다. 터보-팽창기(100)는 전기적 그리드(106)에 연결된 발전기(104)와 적절한 방식으로 작동적으로 결합됨으로써 열교환 유체로부터 파워의 회수가 가능해진다. 사이클 펌프(26)는 터빈 설계 압력비에 적합하도록 높은 차압에 대해 대응하도록 설계되며, 상이한 재기화 및 응축 온도에 대해 압력비를 적합화하는 가변 주파수 드라이브(110)를 구비한다.
도 4에 도시된 장치의 작동시, 펌프(26)는 회로(20) 내에서 열교환 유체를 순환시키는 것 외에 전력 발생을 위해 터보-팽창기(100)의 동작에 필요한 압력차를 만들어낸다. 펌프(80)는 회로(22) 내에서 열교환 유체를 순환시킨다. 또한, 펌프(26, 80) 모두는 장치 내의 압력 강하를 보상한다. 다른 측면에서, 도 4에 도시된 장치의 작동은 도 1 및 도 3에 도시된 장치의 작동과 유사하다.
도 5를 참조하면, 재기화 공정 중 증발된 잉여의 천연 가스가 재응축되는, 선박에 설치된 변형된 LNG 과열 장치의 상류측 부분이 도시되어 있다. 재응축은 저장 탱크 또는 탱크로부터 얻어지는 과냉(subcooled) LNG와의 접촉에 의해 행해진다. 응축기는 흡입 드럼 또는 흡입 탱크와 결합되며, 흡입 드럼 또는 흡입 탱크는 LNG의 압력을 본 발명에 따른 장치의 제 1 및 제 2 메인 열교환기를 통과할 수 있는 적절한 레벨로 승압시키는 부스터 펌프(들)에 충분한 유효 흡입 헤드(net positive suction head: NPSH)를 제공한다.
도 5를 참조하면, LNG 설비(502)는 통상 침수식 LNG 펌프(506)를 각각 구비하는 보통은 복수 개인 적어도 하나의 단열 저장 탱크(504)를 포함한다(도 5에는 침수식 LNG 펌프(506)를 갖는 하나의 단열 저장 탱크(504)만이 도시됨). 펌프(506)의 유출구는 도관(508)과 연통된다. 도관(508)은 아래에 설명되는 바와 같이 하류측 부스터 펌프에 대해 유효 흡입 헤드를 제공하고 저장 탱크(504)로부터 증발되는 천연 가스에 대한 응축기로서 기능하고 용기(510)에서 종결된다. 주변 환경으로부터 열을 흡수한 결과로서 탱크(504) 내에 저장된 LNG로부터 증발되는 자연 증발 속도가 존재한다. 자연 증발 속도는 LNG 펌프(506)에 의한 파워 소비의 결과로서 탱크(504)로부터 천연 가스를 공급하는 공정 중에 증가될 수 있다. 작동시, 증발된 천연 가스는 콤프레서(520)에 의해 탱크(504)로부터 회수된다. 압축된 증발 가스의 일부는 통상 도관(522)을 거쳐, 저장 설비(502)가 위치된 재기화 선박 또는 FSRU의 선내의 엔진으로 공급된다. 나머지 증발된 천연 가스는 용기(510)에 대한 유입구(524)로 통과된다. 도관(508)으로부터 용기(510) 내로의 LNG의 흐름은 용기(510)로 들어가는 모든 증발 천연 가스가 그 안에서 패킹(512)의 표면 상의 LNG와의 접촉 또는 용기(510) 내에 위치된 다른 액체-기체 접촉 매체에 의해 응축되는 것을 보장하도록 미리 결정된다. LNG는 압력을 높이는 펌프(506)의 동작에 의해 과냉 상태로 용기(510)에 들어감을 이해하여야 한다. 따라서, 증발된 천연 가스에 대한 필요한 응축을 실행할 수 있다. 얻어지는 LNG는 용기(510)로부터 유출구(514)를 거쳐 분배 라인(516)으로 전달된다. 용기(510) 내에서의 응축의 목적에 필요하지 않은 LNG는 해당 용기를 바이패스하고 분배 라인(516)에서 용기(510)로부터 나오는 LNG와 재결합될 수 있다. 과냉된 LNG의 용기(510)로의 흐름을 제어하도록 도관(508)에 제어 밸브(526)가 위치된다. 용기(510)를 바이패스하는 LNG의 흐름은 추가의 유량 제어 밸브(528)에 의해 추가로 제어될 수 있다. 임의의 여분의 증발된 천연 가스는 도관(533)을 통해 가스 연소 장치(531)로 배출될 수 있다.
분배 라인(516)은 복수의 부스터 펌프(530)와 연통된다. 용이한 예시를 위해, 이러한 펌프는 오직 하나만 도 5에 도시되지만, 통상의 설비에서는 단일 펌프 또는 본 발명에 따라 LNG를 기화 및 과냉시키는 제 1 및 제 2 메인 열교환기의 별도의 어레이를 공급하는 복수 쌍의 펌프 등 여러 개의 이러한 펌프가 제공될 수 있다. 용이한 예시를 위해, 열교환기가 도 5에 도시되어 있지 않지만, 도 1 내지 도 4에 도시된 구성 중 임의의 하나의 구성을 채용할 수 있다.
각각의 펌프(530)는 기화 및 과열 장치(도시 생략)와 연통되는 유출구(519)를 갖고 있다. 각각의 펌프(530)는 장치에 LNG의 변동류를 공급하도록 배열될 수 있다. 과잉의 LNG는 배관(532)을 통해 용기(510)로 복귀될 수 있다. 감지된 펌프 유량이 필요한 최소치의 유량보다 작게 되면 유량 제어 밸브(534)가 자동 개방될 수 있다.
각각의 펌프(530) 내에서 기화되는 천연 가스도 배관(536)을 통해 용기(510)로 복귀될 수 있다. 이를 위해 배관(536) 내에 배기 밸브(538)가 배치된다.
도 5에 도시된 장치는 용기(510)의 상부로부터 저장 탱크(504)까지 이르는 리턴 배관(540)을 또한 포함한다. 배관(540)은 내부에 제어 밸브(542)를 포함한다. 밸브(542)는 정상적으로 폐쇄 상태로 유지된다. 밸브(542)는 용기(510)에서 저레벨이 검출시 자동으로 개방된다. 용기(510)에서 고레벨이 검출되면, 고압 가스 소스에 연결된 배관(560) 내의 제어 밸브(562)가 자동 개방된다.
따라서 도 5에 도시된 장치는 본 발명에 따른 방법에 의해 하류측의 기화 및 과열을 위해 압력하의 액화 천연 가스에 대한 필요한 흐름을 제공할 수 있다.

Claims (34)

  1. 액화 천연 가스를 과열 유체로 변환시키는 방법에 있어서,
    a. 서로 직렬로 배열된 제 1 메인 열교환기와 제 2 메인 열교환기를 통해 압력하의 천연 가스 흐름을 통과시키는 단계와,
    b. 제 1 열교환 유체 회로에서 제 1 압력으로 흐르고 상기 제 1 메인 열교환기 내에서 기체에서 액체로 상태의 변화를 겪는 제 1 열교환 유체와의 열교환에 의해, 제 1 메인 열교환기 내의 천연 가스 흐름을 가열시키는 단계와,
    c. 제 2 열교환 유체 회로에서 제 2 압력으로 흐르고 상기 제 1 열교환 유체와 동일한 조성을 가지며 상기 제 2 메인 열교환기 내에서 기체에서 액체로 상태의 변화를 겪는 제 2 열교환 유체와의 열교환에 의해, 제 2 메인 열교환기 내의 천연 가스 흐름을 더 가열시키는 단계와,
    d. 상기 제 1 메인 열교환기로부터 액화된 제 1 열교환 유체와 상기 제 2 메인 열교환기로부터 액화된 제 2 열교환 유체를 수집하는 단계와,
    e. 제 1 열교환 유체 회로에 있어서, 제 1 보조 열교환기에서 액화된 제 1 열교환 유체의 흐름을 재기화시키고, 얻어지는 기체를 제 1 열교환 유체로서 제 1 메인 열교환기로 공급하는 단계와,
    f. 제 2 열교환 유체 회로에 있어서, 제 2 보조 열교환기에서 액화된 제 2 열교환 유체의 흐름을 재기화시키고, 얻어지는 기체를 제 2 열교환 유체로서 제 2 메인 열교환기로 공급하는 단계를 포함하고,
    g. 상기 제 1 메인 열교환기 내의 상기 제 1 열교환 유체의 응축 압력은 상기 제 2 메인 열교환기 내의 상기 제 2 열교환 유체의 응축 압력보다 낮은 것을 특징으로 하는
    액화 천연 가스 변환 방법.
  2. 제 1 항에 있어서,
    상기 제 1 및 제 2 메인 열교환기로부터의 액체 열교환 유체는 공통 수집 용기 내에 수집되는
    액화 천연 가스 변환 방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 제 1 및 제 2 열교환 유체는 상기 제 1 및 제 2 보조 열교환기에서 각각 완전 기화되는
    액화 천연 가스 변환 방법.
  4. 제 3 항에 있어서,
    상기 제 1 및 제 2 열교환 유체는 상기 제 1 및 제 2 보조 열교환기에서 각각 과열되는
    액화 천연 가스 변환 방법.
  5. 제 4 항에 있어서,
    상기 제 1 및 제 2 열교환 유체는 상기 제 1 및 제 2 보조 열교환기의 하류에서 과열되는
    액화 천연 가스 변환 방법.
  6. 제 1 항 또는 제 2 항에 있어서,
    상기 제 1 및 제 2 열교환 유체는 상기 제 1 및 제 2 보조 열교환기에서 각각 부분 기화되고, 기화된 열교환 유체로부터 기화되지 않은 열교환 유체를 분리하는 단계를 더 포함하는
    액화 천연 가스 변환 방법.
  7. 제 1 항에 있어서,
    상기 단계 e에서 얻어진 기체는 상기 제 1 보조 열교환기와 상기 메인 열교환기의 중간에서 터보-팽창되는
    액화 천연 가스 변환 방법.
  8. 액화 천연 가스를 과열 유체로 변환시키는 장치에 있어서,
    a. 응축용 제 1 열교환 유체와 응축용 제 2 열교환 유체 각각과 열교환하여 액화 천연 가스를 가열하도록 구성된, 서로 직렬로 배열된 제 1 메인 열교환기 및 제 2 메인 열교환기와,
    b. 상기 제 1 메인 열교환기를 통해 연장되는 저응축압의 제 1 열교환 유체 회로와,
    c. 상기 제 2 메인 열교환기를 통해 연장되는 고응축압의 제 2 열교환 유체 회로를 포함하고,
    d. 상기 제 1 및 제 2 열교환 유체 회로 모두는 응축된 열교환 유체를 수집하기 위한 액체 수집 용기를 포함하며,
    e. 상기 제 1 열교환 유체 회로는 응축된 제 1 열교환 유체의 재기화를 위한 제 1 보조 열교환기를 통해 연장되며,
    f. 상기 제 2 열교환 유체 회로는 응축된 제 2 열교환 유체의 재기화를 위한 제 2 보조 열교환기를 통해 연장되며,
    g. 상기 변환 장치는 상기 제 1 메인 열교환기를 통한 제 1 열교환 유체의 유량과 상기 제 2 메인 열교환기를 통한 제 2 열교환 유체의 유량을 제어하는 수단을 더 포함하는 것을 특징으로 하는
    액화 천연 가스 변환 장치.
  9. 제 8 항에 있어서,
    상기 제 1 및 제 2 열교환 유체 회로는 공통 액체 수집 용기를 포함하는
    액화 천연 가스 변환 장치.
  10. 제 8 항 또는 제 9 항에 있어서,
    상기 제어 수단은 상기 제 1 메인 열교환기에 가해지는 열부하의 변화에 따라 상기 제 1 메인 열교환기를 통한 제 1 열교환 유체의 유량을 변화시키도록 작동되도록 구성된 제 1 밸브 수단을 포함하는
    액화 천연 가스 변환 장치.
  11. 제 8 항 또는 제 9 항에 있어서,
    상기 제어 수단은 상기 제 2 메인 열교환기를 통한 유량을 제어하는 제 2 밸브 수단을 포함하는
    액화 천연 가스 변환 장치.
  12. 제 9 항에 있어서,
    응축된 열교환 유체를 상기 공통 수집 용기로 재순환시키는 도관과, 상기 변환 장치에 가해지는 열부하가 선택된 최소치 미만으로 떨어진 경우 상기 도관을 개방 또는 상기 도관을 통한 유량을 증가시키기 위한 상기 도관 내의 제 3 밸브 수단을 포함하는
    액화 천연 가스 변환 장치.
  13. 제 8 항 또는 제 9 항에 있어서,
    상기 제 1 및 제 2 열교환 유체 회로 모두는 기화된 열교환 유체로부터 기화되지 않은 열교환 유체를 분리하는 상 분리기를 포함하는
    액화 천연 가스 변환 장치.
  14. 제 8 항에 있어서,
    상기 제 1 열교환 유체 회로는 상기 제 2 열교환 유체 회로와 별개로 되어 있고, 상기 제 1 보조 열교환기와 상기 제 1 메인 열교환기의 중간에 터보-팽창기를 포함하는
    액화 천연 가스 변환 장치.
  15. 제 14 항에 있어서,
    상기 제 1 열교환 유체 회로는 상기 터보-팽창기를 가로지르는 압력비를 변화시키도록 작동 가능한 가변 주파수 드라이브를 갖는 펌프를 포함하는
    액화 천연 가스 변환 장치.
  16. 제 8 항에 있어서,
    직렬로 배열된 제 1 및 제 2 펌프를 포함하고, 상기 제 1 펌프는 상기 제 1 및 제 2 열교환 유체 회로 모두에 공통이고, 상기 제 2 펌프는 상기 제 2 열교환 유체 회로 내에 배치되는
    액화 천연 가스 변환 장치.
  17. 제 8 항에 있어서,
    상기 제 1 열교환 유체 회로는 제 1 액체 열교환 유체 수집 용기와 제 1 액체 열교환 유체 순환 펌프를 구비하고, 상기 제 2 열교환 유체 회로는 제 2 액체 열교환 유체 수집 용기와 제 2 액체 열교환 유체 순환 펌프를 구비하며,
    상기 제 1 및 제 2 열교환 유체 회로 내의 상기 열교환 유체는 동일한 조성으로 되어 있는
    액화 천연 가스 변환 장치.
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
KR1020117003409A 2008-07-15 2009-07-15 액화 천연 가스 변환 방법 및 장치 KR101641394B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP08352015A EP2146132A1 (en) 2008-07-15 2008-07-15 Conversion of liquefied natural gas
EPEP08352015 2008-07-15
EPEP08352024 2008-10-24
EP08352024A EP2180231A1 (en) 2008-10-24 2008-10-24 Convenrsion of liquefied natural gas
PCT/IB2009/006682 WO2010007535A1 (en) 2008-07-15 2009-07-15 Conversion of liquefied natural gas

Publications (2)

Publication Number Publication Date
KR20130025789A KR20130025789A (ko) 2013-03-12
KR101641394B1 true KR101641394B1 (ko) 2016-07-20

Family

ID=41550051

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117003409A KR101641394B1 (ko) 2008-07-15 2009-07-15 액화 천연 가스 변환 방법 및 장치

Country Status (8)

Country Link
US (1) US20110132003A1 (ko)
EP (1) EP2313680B1 (ko)
JP (1) JP5662313B2 (ko)
KR (1) KR101641394B1 (ko)
CN (1) CN102216668B (ko)
BR (1) BRPI0916221A2 (ko)
ES (1) ES2396178T3 (ko)
WO (1) WO2010007535A1 (ko)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495697B2 (ja) * 2009-10-02 2014-05-21 三菱重工業株式会社 液化ガス燃料供給装置、この運転方法、これを備えた液化ガス運搬船およびこれを備えた液化ガス貯蔵設備
NO331474B1 (no) * 2009-11-13 2012-01-09 Hamworthy Gas Systems As Installasjon for gjengassing av LNG
NO332122B1 (no) * 2010-05-10 2012-07-02 Hamworthy Gas Systems As Fremgangsmate for regulering av en mellommediumskrets ved varmeveksling av et primaermedium
JP5653666B2 (ja) * 2010-07-08 2015-01-14 三菱重工業株式会社 浮体構造物の再ガス化プラント
DE102010056581B4 (de) * 2010-12-30 2013-04-04 Gea Batignolles Technologies Thermiques Anordnung zur Verdampfung von flüssigem Erdgas
US9494281B2 (en) * 2011-11-17 2016-11-15 Air Products And Chemicals, Inc. Compressor assemblies and methods to minimize venting of a process gas during startup operations
US9927068B2 (en) * 2011-12-02 2018-03-27 Fluor Technologies Corporation LNG boiloff gas recondensation configurations and methods
PL2638942T3 (pl) * 2012-03-15 2017-08-31 Cryostar Sas Urządzenie do oddzielania mgły
KR101342794B1 (ko) * 2012-05-14 2013-12-19 현대중공업 주식회사 액화가스 처리 시스템 및 방법
KR101277965B1 (ko) * 2013-02-19 2013-06-27 현대중공업 주식회사 Lng 연료 공급 시스템
KR101267110B1 (ko) * 2013-03-06 2013-05-27 현대중공업 주식회사 Lng 연료 공급 시스템
KR101277833B1 (ko) * 2013-03-06 2013-06-21 현대중공업 주식회사 Lng 연료 공급 시스템
FR3009858B1 (fr) * 2013-08-21 2015-09-25 Cryostar Sas Station de remplissage de gaz liquefie associee a un dispositif de production de gaz liquefie
US10168001B2 (en) * 2013-11-11 2019-01-01 Wartsila Finland Oy Method and arrangement for waste cold recovery in a gas-fueled sea-going vessel
CN104406052A (zh) * 2014-10-29 2015-03-11 沪东重机有限公司 一种lg气化系统和方法
KR101842324B1 (ko) * 2015-04-07 2018-03-26 현대중공업 주식회사 가스 처리 시스템
KR101788756B1 (ko) * 2015-12-09 2017-10-20 대우조선해양 주식회사 엔진을 포함하는 선박
CN107166820A (zh) * 2016-03-07 2017-09-15 鸿富锦精密电子(天津)有限公司 散热循环系统
JP6710286B2 (ja) * 2016-03-18 2020-06-17 コリア シップビルディング アンド オフショア エンジニアリング カンパニー リミテッド ガス再気化システムを備える船舶
EP3279544A1 (en) * 2016-08-03 2018-02-07 Cryostar SAS Regasification unit
EP3284998A1 (de) * 2016-08-16 2018-02-21 Linde Aktiengesellschaft Wärmeübertragereinrichtung zum erwärmen und/oder verdampfen einer kryogenen flüssigkeit mit kälterückgewinnung
KR102213008B1 (ko) * 2016-12-26 2021-02-05 현대중공업 주식회사 가스 재기화 시스템 및 이를 포함하는 선박
WO2018163768A1 (ja) * 2017-03-06 2018-09-13 株式会社神戸製鋼所 洋上浮体式施設
KR102017946B1 (ko) * 2017-04-14 2019-10-21 한국조선해양 주식회사 재기화 시스템 및 이를 포함하는 선박
KR102285467B1 (ko) * 2017-05-11 2021-08-05 삼성중공업 주식회사 액화가스 재기화 시스템
CN109104842B (zh) * 2017-06-21 2020-04-03 鸿富锦精密电子(天津)有限公司 散热循环系统
EP3434959A1 (en) 2017-07-28 2019-01-30 Cryostar SAS Method and apparatus for storing liquefied gas in and withdrawing evaporated gas from a container
CN109357159B (zh) * 2018-11-14 2020-11-10 江苏科技大学 一种深冷超临界流体再气化实验系统及工作方法
CN109630877A (zh) * 2018-11-14 2019-04-16 江苏科技大学 一种lng再气化系统及工作方法
FR3093785B1 (fr) * 2019-03-15 2021-06-04 Gaztransport Et Technigaz Système de contrôle de pression dans une cuve de gaz naturel liquéfié.
US11582991B2 (en) * 2019-06-03 2023-02-21 John Bean Technologies Corporation Retort system
JP7288842B2 (ja) * 2019-11-26 2023-06-08 三菱重工マリンマシナリ株式会社 冷熱回収システム、冷熱回収システムを備える船舶、および冷熱回収方法
PL3945239T3 (pl) * 2020-07-27 2022-12-19 Efficiency for LNG Applications, S.L. Układ i proces do odzyskiwania chłodu skroplonego gazu ziemnego w zakładach regazyfikacji
JP7492464B2 (ja) * 2021-01-08 2024-05-29 三菱重工業株式会社 冷熱回収システム、および冷熱回収システムを備える船舶又は浮体
CN114508693A (zh) * 2022-04-20 2022-05-17 山东科瑞油气装备有限公司 一种换热型超临界二氧化碳输送设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070214807A1 (en) * 2006-03-15 2007-09-20 Solomon Aladja Faka Combined direct and indirect regasification of lng using ambient air

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006A (en) * 1845-04-22 Improvement in self-adjusting platens for cotton and other presses
US3018634A (en) * 1958-04-11 1962-01-30 Phillips Petroleum Co Method and apparatus for vaporizing liquefied gases and obtaining power
US3068659A (en) * 1960-08-25 1962-12-18 Conch Int Methane Ltd Heating cold fluids with production of energy
US3479832A (en) * 1967-11-17 1969-11-25 Exxon Research Engineering Co Process for vaporizing liquefied natural gas
DE2633713C2 (de) * 1976-07-27 1983-10-20 Linde Ag, 6200 Wiesbaden Verfahren zur Erwärmung von verflüssigtem Erdgas
DE2751642C3 (de) * 1977-11-17 1981-10-29 Borsig Gmbh, 1000 Berlin Verfahren zur Umwandlung einer tiefsiedenden Flüssigkeit, insbesondere unter Atmosphärendruck stehendem Erdgas oder Methan, in den gasförmigen Zustand mit anschließender Erwärmung
US4444015A (en) * 1981-01-27 1984-04-24 Chiyoda Chemical Engineering & Construction Co., Ltd. Method for recovering power according to a cascaded Rankine cycle by gasifying liquefied natural gas and utilizing the cold potential
US5107906A (en) * 1989-10-02 1992-04-28 Swenson Paul F System for fast-filling compressed natural gas powered vehicles
JPH0711320B2 (ja) * 1992-03-03 1995-02-08 大阪瓦斯株式会社 液化天然ガス貯蔵システム
US6945049B2 (en) * 2002-10-04 2005-09-20 Hamworthy Kse A.S. Regasification system and method
US7155917B2 (en) * 2004-06-15 2007-01-02 Mustang Engineering L.P. (A Wood Group Company) Apparatus and methods for converting a cryogenic fluid into gas
US7516619B2 (en) * 2004-07-19 2009-04-14 Recurrent Engineering, Llc Efficient conversion of heat to useful energy
US20070028632A1 (en) * 2005-08-03 2007-02-08 Mingsheng Liu Chiller control system and method
WO2007039480A1 (en) * 2005-09-21 2007-04-12 Exmar Liquefied natural gas regasification plant and method with heat recovery
US20100223951A1 (en) * 2006-08-14 2010-09-09 Marco Dick Jager Method and apparatus for cooling a hydrocarbon stream

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070214807A1 (en) * 2006-03-15 2007-09-20 Solomon Aladja Faka Combined direct and indirect regasification of lng using ambient air

Also Published As

Publication number Publication date
BRPI0916221A2 (pt) 2015-11-03
JP5662313B2 (ja) 2015-01-28
US20110132003A1 (en) 2011-06-09
CN102216668A (zh) 2011-10-12
CN102216668B (zh) 2014-03-26
EP2313680B1 (en) 2012-10-17
EP2313680A1 (en) 2011-04-27
KR20130025789A (ko) 2013-03-12
JP2011528094A (ja) 2011-11-10
ES2396178T3 (es) 2013-02-19
WO2010007535A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
KR101641394B1 (ko) 액화 천연 가스 변환 방법 및 장치
EP2486321B1 (en) Conversion of liquefied natural gas
US2975607A (en) Revaporization of liquefied gases
KR102151575B1 (ko) 극저온 저장 선박에 있는 보일 오프 가스 속의 잠열의 수집, 이용, 배출을 위한 장치, 시스템, 방법
US20100083670A1 (en) Method for vaporizing and heating crycogenic fluid
US20130291567A1 (en) Regasification Plant
JP2011528094A5 (ko)
KR20060121187A (ko) 증발가스의 온도를 제어하기 위한 장치 및 방법
US20140245779A1 (en) Regasification Plant
JPH08505926A (ja) 燃料ガスの利用及び供給方法及びシステム
KR101945596B1 (ko) 가스 재기화 시스템 및 이를 포함하는 선박
KR20190012027A (ko) 가스 재기화 시스템 및 이를 포함하는 선박
KR102113919B1 (ko) 액화가스 재기화 시스템 및 이를 구비하는 선박
KR20190081313A (ko) 유기 랭킨 사이클을 이용한 액화가스 재기화 시스템 및 방법
KR102436050B1 (ko) 가스 처리 시스템 및 이를 포함하는 선박
KR102198046B1 (ko) 가스 처리 시스템 및 이를 포함하는 해양 구조물
EP2180231A1 (en) Convenrsion of liquefied natural gas
KR102065859B1 (ko) 가스 처리 시스템 및 이를 포함하는 해양 구조물
KR102433265B1 (ko) 가스 처리 시스템 및 이를 포함하는 해양 부유물
KR102387175B1 (ko) 유기 랭킨 사이클을 이용한 액화가스 재기화 시스템 및 방법
KR20200122158A (ko) 가스 처리 시스템 및 이를 포함하는 해양 구조물
KR20200116346A (ko) 가스 처리 시스템 및 이를 포함하는 해양 구조물
KR20200121439A (ko) 가스 처리 시스템 및 이를 포함하는 해양 구조물
KR20200045683A (ko) 가스 처리 시스템 및 이를 포함하는 해양 구조물
EP2146132A1 (en) Conversion of liquefied natural gas

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20190704

Year of fee payment: 4