KR101626929B1 - Manufacturing method for multiple junction solar cell using compound thin film and multiple junction solar cell - Google Patents

Manufacturing method for multiple junction solar cell using compound thin film and multiple junction solar cell Download PDF

Info

Publication number
KR101626929B1
KR101626929B1 KR1020140164921A KR20140164921A KR101626929B1 KR 101626929 B1 KR101626929 B1 KR 101626929B1 KR 1020140164921 A KR1020140164921 A KR 1020140164921A KR 20140164921 A KR20140164921 A KR 20140164921A KR 101626929 B1 KR101626929 B1 KR 101626929B1
Authority
KR
South Korea
Prior art keywords
cell
layer
substrate
light absorbing
forming
Prior art date
Application number
KR1020140164921A
Other languages
Korean (ko)
Inventor
김기환
곽지혜
윤재호
조준식
어영주
조아라
윤경훈
신기식
안세진
유진수
박주형
안승규
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020140164921A priority Critical patent/KR101626929B1/en
Priority to PCT/KR2015/001701 priority patent/WO2016085044A1/en
Application granted granted Critical
Publication of KR101626929B1 publication Critical patent/KR101626929B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a method for manufacturing a multiple-junction solar battery including multiple compound thin-film solar battery cells, comprising the steps of: forming transparent electrode layers on an upper surface and a lower surface of a substrate; simultaneously forming light-absorbing layers on the upper surface and the lower surface of the substrate having the transparent electrode layers formed thereon; forming buffer layers on the upper surface and the lower surface of the substrate having the light-absorbing layers formed thereon; and forming a front surface electrode on the upper surface of the substrate having the buffer layer formed thereon and forming a rear surface electrode on the lower surface. The present invention can solve the problem that the light-absorbing layer of an earlier-manufactured cell is degraded by heat generated in the process of manufacturing a later-manufactured cell in the case of traditionally manufacturing a lower cell and an upper cell sequentially, and can avoid damage to an interface between the light-absorbing layer of an earlier-manufactured cell and the buffer layer as the upper cell and the lower cell are formed on an upper side and a lower side with respect to a substrate instead of continuously stacking the upper cell and the lower cell in one direction. Also, the number of processes is reduced compared with the case of separately manufacturing an upper cell and a lower cell and problems generated in the process of separately manufacturing and bonding an upper cell and a lower cell can be prevented.

Description

화합물 박막을 이용한 다중접합 태양전지 제조 방법 및 다중접합 태양전지{MANUFACTURING METHOD FOR MULTIPLE JUNCTION SOLAR CELL USING COMPOUND THIN FILM AND MULTIPLE JUNCTION SOLAR CELL}TECHNICAL FIELD [0001] The present invention relates to a method for manufacturing a multi-junction solar cell using a compound thin film and a multi-

본 발명은 다중접합 태양전지 및 그 제조 방법에 관한 것으로, 더욱 자세하게는 화합물 박막 태양전지 셀을 복수로 구비하는 다중접합 태양전지 및 그 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-junction solar cell and a method of manufacturing the same. More particularly, the present invention relates to a multi-junction solar cell having a plurality of compound thin film solar cells and a manufacturing method thereof.

최근 심각한 환경오염 문제와 화석 에너지 고갈로 차세대 청정에너지 개발에 대한 중요성이 증대되고 있다. 그 중에서도 태양전지는 태양 에너지를 직접 전기 에너지로 전환하는 장치로서, 공해가 적고, 자원이 무한적이며 반영구적인 수명이 있어 미래 에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다.Recently, serious environmental pollution problem and depletion of fossil energy are increasing importance for next generation clean energy development. Among them, solar cell is a device that converts solar energy directly into electrical energy. It is expected to be an energy source capable of solving future energy problems because it has few pollution, has endless resources, and has a semi-permanent lifetime.

태양전지는 광흡수층으로 사용되는 물질에 따라서 다양한 종류로 구분되며, 현재 가장 많이 사용되는 것은 실리콘을 이용한 실리콘 태양전지이다. 그러나 최근 실리콘의 공급부족으로 가격이 급등하면서 박막형 태양전지에 대한 관심이 증가하고 있다. 박막형 태양전지는 얇은 두께로 제작되므로 재료의 소모량이 적고, 무게가 가볍기 때문에 활용범위가 넓다. 이러한 박막형 태양전지의 재료로는 높은 광흡수 계수를 가지는 CIGS(Copper Indium Galium Selenide)가 각광받고 있다. 이는 CIGS를 박막 태양전지의 제조에 사용함으로써 높은 변환효율을 얻을 수 있기 때문이다. Photovoltaic cells are classified into various types according to the material used as a light absorbing layer, and silicon solar cells using silicon are the most widely used. However, recently, due to a shortage of supply of silicon, the price of solar cells has increased and interest in thin film solar cells is increasing. Thin-film solar cells are manufactured with a thin thickness, so they have a wide range of applications because of low consumption of materials and light weight. CIGS (Copper Indium Galium Selenide), which has a high light absorption coefficient, is attracting attention as a material of such a thin film solar cell. This is because high conversion efficiency can be obtained by using CIGS in the manufacture of thin film solar cells.

한편, CIGS 태양전지의 효율을 더욱더 높이기 위한 방안으로 제시되는 다중접합 구조의 탠덤(tandem) 태양전지에 대한 관심이 높아지고 있다. 탠덤(tandem) 구조의 태양전지는 단일 셀 CIGS 태양전지 두 개를 적층시킨 복층 구조의 태양전지를 말한다. 그러나 이러한 탠덤 구조의 태양전지의 경우 하부셀을 제조한 다음 상부셀을 그 위에 형성하게 되므로 상부셀을 형성하는 과정에서 이미 형성된 하부셀이 손상되는 문제가 발생하여 기대하는 에너지 변환효율을 얻기 어려운 문제가 있다.Meanwhile, there is a growing interest in a tandem solar cell having a multi-junction structure, which is proposed as a method for further increasing the efficiency of a CIGS solar cell. A tandem-structured solar cell is a multi-layer solar cell in which two single-cell CIGS solar cells are stacked. However, in the case of a solar cell having such a tandem structure, since the upper cell is formed thereon after the lower cell is manufactured, there is a problem that the lower cell already formed in the process of forming the upper cell is damaged, .

이런 문제를 해결하기 위하여, 상부셀과 하부셀을 별도로 제조한 뒤에 결합하는 기술이 개발되었으나, 제조 공정이 복잡하고 별도로 제조된 셀을 부착하는 과정에서 문제가 발생하고 있다.
In order to solve such a problem, a technique of separately manufacturing an upper cell and a lower cell and then combining them has been developed. However, the manufacturing process is complicated and a problem arises in the process of attaching the separately manufactured cell.

대한민국 공개특허 10-2010-0028729Korean Patent Publication No. 10-2010-0028729 미국 공개특허 2012-0204939US Open Patent 2012-0204939

본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서 제조공정이 간단하면서 셀의 열화문제가 없는 다중접합 태양전지 및 그 제조방법을 제공하는데 그 목적이 있다.
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems of the prior art, and it is an object of the present invention to provide a multi-junction solar cell which has a simple manufacturing process and does not cause deterioration of cells, and a manufacturing method thereof.

상기한 목적을 달성하기 위한 화합물 박막을 이용한 다중접합 태양전지 제조 방법은, 기판의 상면과 하면에 투명전극층을 형성하는 단계; 상기 투명전극층이 형성된 기판의 상면과 하면에 광흡수층을 형성하는 단계; 상기 광흡수층이 형성된 기판의 상면과 하면에 버퍼층을 형성하는 단계; 및 상기 버퍼층이 형성된 기판의 상면에 전면전극을 형성하고 하면에 후면전극을 형성하는 단계;를 포함한다.According to another aspect of the present invention, there is provided a method of manufacturing a multi-junction solar cell using a compound thin film to form a transparent electrode layer on a top surface and a bottom surface of a substrate, Forming a light absorbing layer on the upper and lower surfaces of the substrate on which the transparent electrode layer is formed; Forming a buffer layer on the upper and lower surfaces of the substrate on which the light absorbing layer is formed; And forming a front electrode on a top surface of the substrate on which the buffer layer is formed and a rear electrode on a bottom surface of the substrate.

다른 형태의 화합물 박막을 이용한 다중접합 태양전지 제조 방법은, 기판의 상면과 하면에 투명전극층을 형성하는 단계; 상기 투명전극층이 형성된 기판의 상면과 하면에 버퍼층을 형성하는 단계; 상기 버퍼층이 형성된 기판의 상면과 하면에 광흡수층을 형성하는 단계; 및 상기 광흡수층이 형성된 기판의 상면에 전면전극을 형성하고 하면에 후면전극을 형성하는 단계;를 포함한다.A method of manufacturing a multi-junction solar cell using a thin film of another type of compound includes the steps of: forming a transparent electrode layer on a top surface and a bottom surface of a substrate; Forming a buffer layer on the upper and lower surfaces of the substrate on which the transparent electrode layer is formed; Forming a light absorption layer on the upper surface and the lower surface of the substrate on which the buffer layer is formed; And forming a front electrode on a top surface of the substrate on which the light absorbing layer is formed and a rear electrode on a bottom surface of the substrate.

이와 같이 제조된 태양전지는, 기판을 기준으로 위쪽의 상부셀과 아래쪽의 하부셀이 대칭으로 구성되고, 하부셀에 포함된 광흡수층의 에너지 밴드갭이 상부셀에 포함된 광흡수층의 에너지 밴드갭보다 좁은 것을 특징으로 한다.In the solar cell thus manufactured, the upper cell and the lower cell below are symmetrical with respect to the substrate, and the energy band gap of the light absorbing layer included in the lower cell is larger than the energy band gap of the light absorbing layer included in the upper cell .

이때, 상부셀과 상기 하부셀을 전기적으로 연결하는 단계를 더 포함할 수 있으며, 이때 상부셀의 투명전극층과 하부셀의 후면전극을 전기적으로 연결하거나 상부셀의 전면전극과 하부셀의 투명전극층을 전기적으로 연결하여야 전류가 흐른다.The transparent electrode layer of the upper cell and the rear electrode of the lower cell may be electrically connected to each other. Alternatively, the transparent electrode layer of the upper cell and the transparent electrode layer of the lower cell may be electrically connected to each other. Electric current must flow when connected electrically.

광흡수층은 CIGS, CdTe, CZTS, III-V족 반도체 및 페로브스카이트 구조물질 중에서 선택된 하나 이상의 재질인 것이 바람직하나, 이를 한정하는 것은 아니다. The light absorption layer is preferably at least one material selected from the group consisting of CIGS, CdTe, CZTS, III-V semiconductor and perovskite structure materials, but is not limited thereto.

나아가, 광흡수층을 형성하는 단계에서 광흡수층을 상부셀과 하부셀에 동시에 형성하는 것이 바람직하다. 또한 버퍼층을 형성하는 단계에서 버퍼층을 상부셀과 하부셀에 동시에 형성할 수 있고, 투명전극층을 형성하는 단계에서도 기판의 양면에 투명전극층을 동시에 형성할 수 있으며, 이를 통하여 공정을 줄일 수 있다.Furthermore, in the step of forming the light absorbing layer, it is preferable to simultaneously form the light absorbing layer in the upper cell and the lower cell. In addition, the buffer layer can be simultaneously formed in the upper and lower cells in the step of forming the buffer layer, and the transparent electrode layer can be simultaneously formed on both sides of the substrate in the step of forming the transparent electrode layer.

또 다른 형태의 화합물 박막을 이용한 다중접합 태양전지 제조 방법은, 기판의 상면과 하면에 투명전극층을 형성하는 단계; 상기 투명전극층이 형성된 기판의 상면과 하면 중 한 곳에만 제1버퍼층을 형성하는 단계; 상기 제1버퍼층만 형성된 기판의 상면과 하면에 광흡수층을 형성하는 단계; 상기 광흡수층이 형성된 기판의 상면과 하면 중에 상기 제1버퍼층이 형성되지 않은 쪽에 제2버퍼층을 형성하는 단계; 및 상기 기판을 기준으로 위쪽의 상부셀 윗면에 전면전극을 형성하고 아래쪽의 하부셀 아랫면에 후면전극을 형성하는 단계;를 포함하며, 하부셀에 포함된 광흡수층의 에너지 밴드갭이 상부셀에 포함된 광흡수층의 에너지 밴드갭보다 좁은 것을 특징으로 한다.A method of fabricating a multi-junction solar cell using another type of compound thin film includes the steps of: forming a transparent electrode layer on top and bottom surfaces of a substrate; Forming a first buffer layer only on one of a top surface and a bottom surface of the substrate on which the transparent electrode layer is formed; Forming a light absorbing layer on the upper and lower surfaces of the substrate formed with only the first buffer layer; Forming a second buffer layer on an upper surface and a lower surface of the substrate on which the light absorbing layer is formed, on a side where the first buffer layer is not formed; And forming a front electrode on the upper side of the upper cell and a rear electrode on the lower side of the lower cell based on the substrate, wherein the energy band gap of the light absorbing layer included in the lower cell is included in the upper cell Is smaller than the energy band gap of the light absorption layer.

종래에 다중접합 태양전지가 아래쪽에서 위쪽 또는 위쪽에서 아래쪽 방향으로 순차 형성하였던 것과 달리, 본 발명은 기판을 중심으로 위쪽은 상부셀을 형성하고 아래쪽은 하부셀을 형성하는 것을 특징으로 한다.Conventionally, unlike the conventional multi-junction solar cell, the multi-junction solar cell is sequentially formed from the lower side to the upper side or from the upper side to the lower side, the present invention is characterized in that an upper side cell is formed around the substrate, and a lower side cell is formed.

상기한 목적을 달성하기 위한 화합물 박막을 이용한 다중접합 태양전지는, 기판; 상기 기판의 상면에 형성된 제1투명전극층과 하면에 형성된 제2투명전극층; 상기 제1투명전극층의 위에 형성된 제1광흡수층과 상기 제2투명전극층의 아래에 형성된 제2광흡수층; 상기 제1광흡수층의 위에 형성된 제1버퍼층과 상기 제2광흡수층의 아래에 형성된 제2버퍼층; 상기 제1버퍼층의 위에 형성된 전면전극; 및 상기 제2버퍼층의 아래에 형성된 후면전극;을 포함하여, 상기 기판을 기준으로 위쪽의 상부셀과 아래쪽의 하부셀이 대칭으로 구성되며, 하부셀에 포함된 광흡수층의 에너지 밴드갭이 상부셀에 포함된 광흡수층의 에너지 밴드갭보다 좁은 것을 특징으로 한다.A multi-junction solar cell using a compound thin film for achieving the above object comprises a substrate; A first transparent electrode layer formed on an upper surface of the substrate, and a second transparent electrode layer formed on a lower surface of the substrate; A first light absorbing layer formed on the first transparent electrode layer and a second light absorbing layer formed below the second transparent electrode layer; A first buffer layer formed on the first light absorbing layer and a second buffer layer formed below the second light absorbing layer; A front electrode formed on the first buffer layer; And a rear electrode formed under the second buffer layer, wherein an upper cell and a lower lower cell are formed symmetrically with respect to the substrate, and an energy band gap of the light absorbing layer included in the lower cell is formed in the upper cell Is narrower than the energy band gap of the light absorbing layer included in the light absorbing layer.

다른 형태의 화합물 박막을 이용한 다중접합 태양전지는, 기판; 상기 기판의 상면에 형성된 제1투명전극층과 하면에 형성된 제2투명전극층; 상기 제1투명전극층의 위에 형성된 제1버퍼층과 상기 제2투명전극층의 아래에 형성된 제2버퍼층; 상기 제1버퍼층의 위에 형성된 제1광흡수층과 상기 제2버퍼층의 아래에 형성된 제2광흡수층; 상기 제1광흡수층의 위에 형성된 전면전극; 및 상기 제2광흡수층의 아래에 형성된 후면전극;을 포함하여, 상기 기판을 기준으로 위쪽의 상부셀과 아래쪽의 하부셀이 대칭으로 구성되며, 하부셀에 포함된 광흡수층의 에너지 밴드갭이 상부셀에 포함된 광흡수층의 에너지 밴드갭보다 좁은 것을 특징으로 한다.A multi-junction solar cell using a thin film of another type of compound comprises a substrate; A first transparent electrode layer formed on an upper surface of the substrate, and a second transparent electrode layer formed on a lower surface of the substrate; A first buffer layer formed on the first transparent electrode layer and a second buffer layer formed under the second transparent electrode layer; A first light absorbing layer formed on the first buffer layer and a second light absorbing layer formed below the second buffer layer; A front electrode formed on the first light absorbing layer; And a rear electrode formed below the second light absorbing layer, wherein an upper cell and a lower lower cell are symmetrically arranged with respect to the substrate, and the energy band gap of the light absorbing layer included in the lower cell is larger than the upper And is narrower than the energy band gap of the light absorbing layer included in the cell.

이러한 태양전지는 상기한 방법에 의해서 제조되어 기판을 기준으로 대칭 형태이며, 제1투명전극층과 후면전극이 전기적으로 연결되거나 제2투명전극층과 전면전극이 전기적으로 연결된 구조일 수 있다.The solar cell may be manufactured by the above-described method and is symmetrical with respect to the substrate, and the first transparent electrode layer and the rear electrode may be electrically connected or the second transparent electrode layer and the front electrode may be electrically connected.

광흡수층은 CIGS 재질인 것이 바람직하며, 후면전극은 금속재질의 반사형 전극인 것이 좋다.
The light absorbing layer is preferably made of CIGS material, and the rear electrode is preferably a metal reflective electrode.

상술한 바와 같이 구성된 본 발명은, 상부셀과 하부셀을 한쪽 방향으로 계속하여 적층하지 않고 기판을 중심으로 위쪽과 아래쪽으로 각각 형성함으로써, 종래에 하부셀과 상부셀을 순차적으로 제조하는 경우에 나중에 제조되는 셀의 제조과정에서 발생하는 열에 의하여 먼저 제조된 셀의 광흡수층이 열화되는 문제 및 먼저 제조된 셀의 광흡수층과 버퍼층의 계면에서 발생하는 손상을 피할 수 있는 효과가 있다.The present invention constructed as described above is characterized in that, when the upper cell and the lower cell are sequentially formed in the upward direction and the downward direction with respect to the substrate without sequentially stacking the upper cell and the lower cell, There is a problem that the light absorbing layer of the cell fabricated by the heat generated in the manufacturing process of the manufactured cell is deteriorated and the damage occurring at the interface between the light absorbing layer and the buffer layer of the fabricated cell is avoided.

또한, 상부셀과 하부셀을 각각 제조하는 경우에 비하여 공정 수가 줄어들며, 상부셀과 하부셀을 별도로 제조하여 접합하는 과정에서 발생하는 문제를 방지할 수 있는 효과가 있다.
In addition, the number of processes is reduced compared to the case of manufacturing the upper cell and the lower cell, and the problem caused in the process of separately manufacturing and joining the upper cell and the lower cell can be prevented.

도 1 내지 도 5는 본 실시예에 따른 다중접합 태양전지의 제조방법을 나타내는 모식도이다.
도 6은 본 실시예에 따른 다중접합 태양전지의 전기적 연결 관계를 나타내는 도면이다.
도 7은 본 발명의 두 번째 실시예에 따른 다중접합 태양전지의 구조를 나타내는 모식도이다.
도 8은 본 발명의 두 번째 실시예에 따른 다중접합 태양전지의 전기적 연결 관계를 나타내는 도면이다.
도 9는 본 발명의 세 번째 실시예에 따른 다중접합 태양전지의 구조를 나타내는 모식도이다.
도 10은 본 발명의 네 번째 실시예에 따른 다중접합 태양전지의 구조를 나타내는 모식도이다.
1 to 5 are schematic views showing a method of manufacturing a multi-junction solar cell according to the present embodiment.
6 is a view showing an electrical connection relationship of the multi-junction solar cell according to the present embodiment.
7 is a schematic view illustrating the structure of a multi-junction solar cell according to a second embodiment of the present invention.
8 is a view showing an electrical connection relationship of a multi-junction solar cell according to a second embodiment of the present invention.
9 is a schematic view showing the structure of a multi-junction solar cell according to a third embodiment of the present invention.
10 is a schematic view showing the structure of a multi-junction solar cell according to a fourth embodiment of the present invention.

첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the accompanying drawings, embodiments of the present invention will be described in detail.

도 1 내지 도 5는 본 실시예에 따른 다중접합 태양전지의 제조방법을 나타내는 모식도이다.1 to 5 are schematic views showing a method of manufacturing a multi-junction solar cell according to the present embodiment.

도 1에 도시된 것과 같이, 기판(100)의 상면과 하면 각각에 제1투명전극층(210)과 제2투명전극층(310)을 형성한다.As shown in FIG. 1, a first transparent electrode layer 210 and a second transparent electrode layer 310 are formed on the upper and lower surfaces of the substrate 100, respectively.

기판(100)은 본 실시예의 다중접합 태양전지에서 가운데에 위치하므로, 상부셀을 투과한 빛이 하부셀로 진행할 수 있도록 투명재질이며, 전기적으로 절연재질이 바람직하나 이를 꼭 한정하는 것은 아니다. Since the substrate 100 is located at the center of the multi-junction solar cell of the present embodiment, the substrate 100 is made of a transparent material so that the light transmitted through the upper cell can proceed to the lower cell, but is not limited thereto.

제1투명전극층(210)과 제2투명전극층(310)은 ITO와 같은 TCO인 것이 일반적이나, 이에 한정되지 않고 빛을 투과시키면서 전기가 흐르는 재질이면 가능하다.The first transparent electrode layer 210 and the second transparent electrode layer 310 are typically TCO such as ITO. However, the present invention is not limited thereto, and it is possible to use a material that allows electricity to flow while transmitting light.

제1투명전극층(210)과 제2투명전극층(310)은 기판(100)의 양면에 순차적으로 형성되거나 동시에 형성된다. 제1투명전극층(210)과 제2투명전극층(310)을 동시에 형성하는 경우에 공정 수가 줄어든다.The first transparent electrode layer 210 and the second transparent electrode layer 310 are sequentially formed on the both sides of the substrate 100 or formed at the same time. When the first transparent electrode layer 210 and the second transparent electrode layer 310 are formed at the same time, the number of processes is reduced.

도 2에 도시된 것과 같이, 제1투명전극층(210)과 제2투명전극층(310)이 형성된 상면과 하면에 제1광흡수층(220)과 제2광흡수층(320)을 형성한다. 이때, 제1광흡수층(220)과 제2광흡수층(320)을 동시에 형성하는 것이 바람직하지만, 필수적인 것은 아니고 제1광흡수층(220)과 제2광흡수층(320)을 순차적으로 형성하는 것도 가능하다.A first light absorbing layer 220 and a second light absorbing layer 320 are formed on the top and bottom surfaces of the first transparent electrode layer 210 and the second transparent electrode layer 310, as shown in FIG. At this time, it is preferable to form the first light absorbing layer 220 and the second light absorbing layer 320 at the same time, but it is not essential and the first light absorbing layer 220 and the second light absorbing layer 320 may be formed sequentially Do.

본 실시예는 제1광흡수층(220)과 제2광흡수층(320)이 CIGS 재질의 광흡수층이며, 기판을 중심으로 양면에 광흡수층을 형성하는 것을 제외하고는 종래의 CIGS 광흡수층을 형성하는 모든 방법을 적용할 수 있다. 구체적으로 원료물질의 나노입자 전구체 또는 용액 전구체를 이용하는 비진공법과 3단계의 동시진공 증발법과 같은 진공법이 모두 가능하다. 다만, 제1광흡수층(220)과 제2광흡수층(320)의 에너지 밴드갭은 서로 다르게 구성하며, 하부셀을 구성하는 제2광흡수층(320)의 에너지 밴드갭이 상부셀을 구성하는 제1광흡수층(220)의 에너지 밴드갭보다 좁도록 구성한다. 한편, 본 실시예에서 광흡수층의 재질로서 CIGS를 사용하였으나, 이에 한정되는 것은 아니다.In this embodiment, the first light absorbing layer 220 and the second light absorbing layer 320 are light absorbing layers made of CIGS material, and a conventional CIGS light absorbing layer is formed except that a light absorbing layer is formed on both surfaces of the substrate All methods can be applied. Specifically, a non-invasive method using a nanoparticle precursor or a solution precursor of a raw material and a vacuum method such as a three-step simultaneous vacuum evaporation method are all possible. The energy band gap of the first light absorbing layer 220 and the second light absorbing layer 320 are different from each other. The energy band gap of the second light absorbing layer 320 constituting the lower cell is different from the energy band gap of the second light absorbing layer 320 1 < / RTI > On the other hand, in this embodiment, CIGS is used as the material of the light absorbing layer, but the present invention is not limited thereto.

도 3에 도시된 것과 같이, 제1광흡수층(220)과 제2광흡수층(320)이 형성된 상면과 하면에 제1버퍼층(230)과 제2버퍼층(330)을 형성한다.The first buffer layer 230 and the second buffer layer 330 are formed on the upper and lower surfaces of the first and second light absorption layers 220 and 320, respectively, as shown in FIG.

제1버퍼층(230)과 제2버퍼층(330)을 형성하는 방법은 특별히 제한되지 않는다. 구체적으로 CBD(chemical bath deposition) 공정으로 CdS막을 형성하는 것이 일반적이며, CBD 공정으로 ZnS막 또는 ZnSe막을 형성하거나, 증발법으로 InxSey막 또는 ZnInxSey막을 형성할 수도 있으며, CVD 기반 공정으로 InxSey막 또는 ZnSe막을 형성할 수도 있다. 제1버퍼층(230)과 제2버퍼층(330)은 동시에 형성될 수도 있고, 순차적으로 형성될 수도 있다. 제1버퍼층(230)과 제2버퍼층(330)을 동시에 형성하는 경우에 공정 수가 줄어든다.The method of forming the first buffer layer 230 and the second buffer layer 330 is not particularly limited. Specifically, it is common to form a CdS film by a CBD (chemical bath deposition) process. A ZnS film or ZnSe film may be formed by a CBD process, or an In x Se y film or ZnIn x Se y film may be formed by an evaporation method. An In x Se y film or a ZnSe film may be formed. The first buffer layer 230 and the second buffer layer 330 may be formed simultaneously or sequentially. The number of steps can be reduced when the first buffer layer 230 and the second buffer layer 330 are simultaneously formed.

이와 같이, 제1광흡수층(220)과 제2광흡수층(320)을 동시에 형성함으로써, 종래에 하부셀과 상부셀을 순차적으로 제조하는 경우에 나중에 제조되는 셀의 제조과정에서 발생하는 열에 의하여 먼저 제조된 셀의 광흡수층이 열화되는 문제 및 먼저 제조된 셀의 광흡수층과 버퍼층의 계면에서 발생하는 손상을 피할 수 있다. 또한, 상부셀과 하부셀을 각각 제조하는 경우에 비하여 공정 수가 줄어든다. 나아가 상부셀과 하부셀을 별도로 제조하여 접합하는 과정에서 발생하는 문제를 방지할 수 있는 효과가 있다.Thus, by forming the first light absorbing layer 220 and the second light absorbing layer 320 at the same time, when the lower cell and the upper cell are sequentially manufactured in the conventional manner, The problem of deterioration of the light absorbing layer of the manufactured cell and damage occurring at the interface between the light absorbing layer and the buffer layer of the cell prepared first can be avoided. Also, the number of processes is reduced as compared with the case of manufacturing the upper cell and the lower cell, respectively. Further, it is possible to prevent the problem caused in the process of separately manufacturing the upper cell and the lower cell and joining them.

다음으로 도 4에 도시된 것과 같이, 전면전극(240)과 후면전극(340)을 형성한다.Next, as shown in FIG. 4, a front electrode 240 and a rear electrode 340 are formed.

이때, 전면전극(240)은 빛이 입사되는 상부셀의 표면에 위치하는 전극으로서 투명전극을 형성하며, 후면전극(340)은 하부셀의 아랫면에 위치하는 전극이므로 빛을 반사할 수 있는 금속 재질의 반사형전극을 형성한다.At this time, the front electrode 240 forms a transparent electrode as an electrode positioned on the surface of the upper cell on which light is incident, and the rear electrode 340 is an electrode positioned on the lower surface of the lower cell. Therefore, Of the reflective electrode.

상부셀과 하부셀을 전기적으로 연결하기 위하여, 도 5에 도시된 것과 같이 후면전극(340)과 제1투명전극층(210)을 전기적으로 연결한다.In order to electrically connect the upper cell and the lower cell, the back electrode 340 and the first transparent electrode layer 210 are electrically connected as shown in FIG.

본 실시예에 따라서 제조된 태양전지는 상부셀과 하부셀이 기판을 중심으로 대칭 형태를 나타내는 구조이며, 태양전지 구성을 위한 회로도 형태로 표시하면 도 6에 도시된 것과 같이 pn접합이 반대방향으로 배열된 형태이다. 따라서 종래의 탠덤 태양전지와 같이 상부셀의 아래쪽 전극과 하부셀의 위쪽 전극을 전기적으로 연결하는 경우에는 전기가 흐르지 못하며, 후면전극(340)과 제1투명전극층(210)을 전기적으로 연결하거나 전면전극(240)과 제2투명전극층(310)을 전기적으로 연결하여야 한다. 한편, 상부셀과 하부셀을 직렬연결하지 않고 개별적으로 연결하는 4단자 구조에서도 태양전지 셀의 구조에 따른 전류의 방향을 고려하여야 한다.
The solar cell manufactured according to the present embodiment has a structure in which the upper cell and the lower cell are symmetrical with respect to the substrate, and as shown in the circuit diagram for the solar cell configuration, when the pn junction is in the opposite direction It is arranged. Accordingly, when the lower electrode of the upper cell and the upper electrode of the lower cell are electrically connected to each other, as in the case of the conventional tandem solar cell, no electricity flows, and the back electrode 340 and the first transparent electrode layer 210 are electrically connected, The electrode 240 and the second transparent electrode layer 310 must be electrically connected. On the other hand, in the four-terminal structure in which the upper cell and the lower cell are connected in series without being connected in series, the direction of the current depending on the structure of the solar cell must be considered.

또한, 본 실시예에 따라서 제조된 태양전지의 하부셀은 제2광흡수층과 제2버퍼층(330)의 접합면이 제2투명전극층(310)에서 상대적으로 먼 위치에 배치되기 때문에, 광전하의 포집 효율을 높이기 위해서는 제2광흡수층(320)이 얇은 것이 바람직하다. 구체적으로 제2광흡수층(320)의 두께는 1 ㎛이하인 것이 바람직하다.In the lower cell of the solar cell manufactured according to this embodiment, since the bonding surface of the second light absorbing layer and the second buffer layer 330 is disposed at a position relatively far from the second transparent electrode layer 310, In order to increase the efficiency, it is preferable that the second light absorbing layer 320 is thin. Specifically, the thickness of the second light absorbing layer 320 is preferably 1 占 퐉 or less.

나아가 본 실시예는 기본적인 구조로 구성되는 탠덤 태양전지를 제조하는 것에 대하여 설명한 것이며, 본 발명의 기술적 특징을 해치지 않는 범위에서 태양전지의 효율을 높이기 위한 다양한 구조 또는 공정이 추가될 수 있다.
Furthermore, the present embodiment has been described for manufacturing a tandem solar cell having a basic structure, and various structures or processes for increasing the efficiency of the solar cell can be added within the scope of not detracting from the technical characteristics of the present invention.

도 7은 본 발명의 두 번째 실시예에 따른 다중접합 태양전지의 구조를 나타내는 모식도이다.7 is a schematic view illustrating the structure of a multi-junction solar cell according to a second embodiment of the present invention.

도 7의 태양전지는 제1버퍼층(230)과 제2버퍼층(330)을 먼저 형성하고 제1광흡수층(220)과 제2광흡수층(320)을 형성하는 점에서 도 5의 첫 번째 태양전지와 차이가 있다. 이를 제외한 다른 부분은 첫 번째 태양전지와 동일하므로 자세한 설명은 생략한다. The solar cell of FIG. 7 differs from the first solar cell of FIG. 5 in that the first buffer layer 230 and the second buffer layer 330 are formed first and the first light absorbing layer 220 and the second light absorbing layer 320 are formed. . Other parts are the same as the first solar cell, so a detailed description is omitted.

한편, 도 7에 도시된 태양전지는 도 8에 도시된 것과 같이 pn접합이 반대방향으로 배열된 형태이므로, 후면전극(340)과 제1투명전극층(210)을 전기적으로 연결하거나 전면전극(240)과 제2투명전극층(310)을 전기적으로 연결하여야 한다.7, since the pn junction is arranged in the opposite direction as shown in FIG. 8, the rear electrode 340 and the first transparent electrode layer 210 are electrically connected or the front electrode 240 And the second transparent electrode layer 310 should be electrically connected to each other.

다만, 도 7의 실시예에 따라서 제조된 태양전지의 상부셀은 제1광흡수층과 제1버퍼층(230)의 접합면이 제1투명전극층(210)에서 상대적으로 먼 위치에 배치되기 때문에, 광전하의 포집 효율을 높이기 위해서는 제1광흡수층(220)이 얇은 것이 바람직하다. 구체적으로 제1광흡수층(220)의 두께가 1 ㎛ 이하인 것이 바람직하다.
However, since the junction between the first light absorbing layer and the first buffer layer 230 is disposed at a position relatively far from the first transparent electrode layer 210 in the upper cell of the solar cell manufactured according to the embodiment of FIG. 7, It is preferable that the first light absorbing layer 220 is thin. Specifically, it is preferable that the thickness of the first light absorbing layer 220 is 1 占 퐉 or less.

도 9와 도 10은 세 번째 및 네 번째 실시예에 따라 제조된 다중접합 태양전지의 구조를 나타내는 모식도이다.9 and 10 are schematic views showing the structure of a multi-junction solar cell manufactured according to the third and fourth embodiments.

도시된 실시예들은 기판(100)의 양면에 제1투명전극층(210)과 제2투명전극층(310)을 형성한 뒤에, 한쪽 면에만 버퍼층을 먼저 형성하는 것을 특징으로 한다.The illustrated embodiments are characterized in that a first transparent electrode layer 210 and a second transparent electrode layer 310 are formed on both sides of a substrate 100, and then a buffer layer is formed on only one side.

구체적으로 도 9의 태양전지는 제1버퍼층(230)만을 먼저 형성한 뒤에, 제1광흡수층(220)과 제2광흡수층(320)을 형성하고, 제2버퍼층(330)을 형성한 것을 특징으로 한다. 도 10의 태양전지는 제2버퍼층(330)만을 먼저 형성한 뒤에, 제1광흡수층(220)과 제2광흡수층(320)을 형성하고, 제1버퍼층(230)을 형성한 것을 특징으로 한다. Specifically, in the solar cell of FIG. 9, the first buffer layer 230 is formed first, then the first buffer layer 330 is formed by forming the first and second light absorbing layers 220 and 320, . 10 is characterized in that the first buffer layer 330 is formed first after the first buffer layer 330 is formed first and then the first buffer layer 230 is formed by forming the first buffer layer 230 and the second buffer layer 320 .

이러한 순서로 제조된 태양전지는 pn-pn 또는 np-np 순서로 배열되어있기 때문에, 제1투명전극층(210)과 제2투명전극층(310)을 전기적으로 연결한다.
Since the solar cells manufactured in this order are arranged in the order of pn-pn or np-np, the first transparent electrode layer 210 and the second transparent electrode layer 310 are electrically connected to each other.

이상 본 발명을 바람직한 실시예를 통하여 설명하였는데, 상술한 실시예는 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과하며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화가 가능함은 이 분야에서 통상의 지식을 가진 자라면 이해할 수 있을 것이다. 따라서 본 발명의 보호범위는 특정 실시예가 아니라 특허청구범위에 기재된 사항에 의해 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been particularly shown and described with reference to preferred embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Those skilled in the art will understand. Therefore, the scope of protection of the present invention should be construed not only in the specific embodiments but also in the scope of claims, and all technical ideas within the scope of the same shall be construed as being included in the scope of the present invention.

100: 기판 210: 제1투명전극층
220: 제1광흡수층 230: 제1버퍼층
240: 전면전극 310: 제2투명전극층
320: 제2광흡수층 330: 제2버퍼층
340: 후면전극
100: substrate 210: first transparent electrode layer
220: first light absorbing layer 230: first buffer layer
240: front electrode 310: second transparent electrode layer
320: second light absorbing layer 330: second buffer layer
340: rear electrode

Claims (18)

기판의 상면과 하면에 투명전극층을 형성하는 단계;
상기 투명전극층이 형성된 기판의 하면에만 제1버퍼층을 형성하는 단계;
상기 제1버퍼층만 형성된 기판의 상면과 하면에 광흡수층을 형성하는 단계;
상기 광흡수층이 형성된 기판의 상면에 제2버퍼층을 형성하는 단계; 및
상기 기판을 기준으로 위쪽의 상부셀 윗면에 전면전극을 형성하고 아래쪽의 하부셀 아랫면에 후면전극을 형성하는 단계;를 포함하며,
상기 광흡수층을 형성하는 단계에서, 2개의 광흡수층을 동시에 형성하고,
하부셀에 포함된 광흡수층의 에너지 밴드갭이 상부셀에 포함된 광흡수층의 에너지 밴드갭보다 좁은 것을 특징으로 하는 다중접합 태양전지 제조 방법.
Forming a transparent electrode layer on the upper surface and the lower surface of the substrate;
Forming a first buffer layer only on a bottom surface of the substrate on which the transparent electrode layer is formed;
Forming a light absorbing layer on the upper and lower surfaces of the substrate formed with only the first buffer layer;
Forming a second buffer layer on an upper surface of the substrate on which the light absorption layer is formed; And
Forming a front electrode on the upper side of the upper cell and a rear electrode on the lower side of the lower cell based on the substrate,
In the step of forming the light absorbing layer, two light absorbing layers are formed at the same time,
Wherein the energy band gap of the light absorbing layer included in the lower cell is narrower than the energy band gap of the light absorbing layer included in the upper cell.
청구항 1에 있어서,
상기 상부셀과 상기 하부셀을 전기적으로 직렬 연결하는 단계를 더 포함하는 것을 특징으로 하는 다중접합 태양전지 제조 방법.
The method according to claim 1,
Further comprising the step of electrically connecting the upper cell and the lower cell electrically in series.
삭제delete 삭제delete 삭제delete 청구항 1 또는 청구항 2에 있어서,
상기 광흡수층이 CIGS, CdTe, CZTS, III-V족 반도체 및 페로브스카이트 구조물질 중에서 선택된 하나 이상의 재질인 것을 특징으로 하는 다중접합 태양전지 제조 방법.
The method according to claim 1 or 2,
Wherein the light absorption layer is at least one material selected from the group consisting of CIGS, CdTe, CZTS, III-V semiconductors, and perovskite structure materials.
삭제delete 삭제delete 청구항 1 또는 청구항 2에 있어서,
상기 투명전극층을 형성하는 단계에서, 2개의 투명전극층을 동시에 형성하는 것을 특징으로 하는 다중접합 태양전지 제조 방법.
The method according to claim 1 or 2,
Wherein two transparent electrode layers are simultaneously formed in the step of forming the transparent electrode layer.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020140164921A 2014-11-25 2014-11-25 Manufacturing method for multiple junction solar cell using compound thin film and multiple junction solar cell KR101626929B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140164921A KR101626929B1 (en) 2014-11-25 2014-11-25 Manufacturing method for multiple junction solar cell using compound thin film and multiple junction solar cell
PCT/KR2015/001701 WO2016085044A1 (en) 2014-11-25 2015-02-23 Method for manufacturing multi-junction solar battery using compound thin film and multi-junction solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140164921A KR101626929B1 (en) 2014-11-25 2014-11-25 Manufacturing method for multiple junction solar cell using compound thin film and multiple junction solar cell

Publications (1)

Publication Number Publication Date
KR101626929B1 true KR101626929B1 (en) 2016-06-02

Family

ID=56074578

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140164921A KR101626929B1 (en) 2014-11-25 2014-11-25 Manufacturing method for multiple junction solar cell using compound thin film and multiple junction solar cell

Country Status (2)

Country Link
KR (1) KR101626929B1 (en)
WO (1) WO2016085044A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101870236B1 (en) * 2016-09-22 2018-06-25 재단법인대구경북과학기술원 Method for manufacturing a double-sided CZTS solar cell using a transparent conductive oxide film substrate and a solar cell prepared from same
US11004617B2 (en) 2016-07-29 2021-05-11 Lg Chem, Ltd. Method for manufacturing organic-inorganic hybrid solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10861992B2 (en) * 2016-11-25 2020-12-08 The Boeing Company Perovskite solar cells for space

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090034078A (en) * 2007-10-02 2009-04-07 엘지전자 주식회사 Tandem thin film solar cell and fabrication method thereof
KR20100028729A (en) 2008-09-05 2010-03-15 삼성전자주식회사 Solar cell having multi layers and manufacturing method thereof
KR20120063324A (en) * 2010-12-07 2012-06-15 한국전자통신연구원 Bifacial solar cell
US20120204939A1 (en) 2010-08-23 2012-08-16 Stion Corporation Structure and Method for High Efficiency CIS/CIGS-based Tandem Photovoltaic Module
US20130319502A1 (en) * 2012-05-31 2013-12-05 Aqt Solar, Inc. Bifacial Stack Structures for Thin-Film Photovoltaic Cells

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144483B1 (en) * 2009-09-30 2012-05-11 엘지이노텍 주식회사 Solar cell apparatus, solar power generating system having the same and method of fabricating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090034078A (en) * 2007-10-02 2009-04-07 엘지전자 주식회사 Tandem thin film solar cell and fabrication method thereof
KR20100028729A (en) 2008-09-05 2010-03-15 삼성전자주식회사 Solar cell having multi layers and manufacturing method thereof
US20120204939A1 (en) 2010-08-23 2012-08-16 Stion Corporation Structure and Method for High Efficiency CIS/CIGS-based Tandem Photovoltaic Module
KR20120063324A (en) * 2010-12-07 2012-06-15 한국전자통신연구원 Bifacial solar cell
US20130319502A1 (en) * 2012-05-31 2013-12-05 Aqt Solar, Inc. Bifacial Stack Structures for Thin-Film Photovoltaic Cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D.L.Young et al., "A New Thin-Film CuGaSe2/Cu(In,Ga)Se2 Bifacial, Tandem Solar Cell with Both Junctions Formed Simultaneously", 29th IEEE PVSC (2002.05.20.)* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11004617B2 (en) 2016-07-29 2021-05-11 Lg Chem, Ltd. Method for manufacturing organic-inorganic hybrid solar cell
KR101870236B1 (en) * 2016-09-22 2018-06-25 재단법인대구경북과학기술원 Method for manufacturing a double-sided CZTS solar cell using a transparent conductive oxide film substrate and a solar cell prepared from same

Also Published As

Publication number Publication date
WO2016085044A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP5881675B2 (en) Photovoltaic power generation apparatus and manufacturing method thereof
KR20140003691A (en) Solar cell module and ribbon assembly
JP6338990B2 (en) Multi-junction solar cell
JP6366914B2 (en) Multi-junction solar cell
US9691927B2 (en) Solar cell apparatus and method of fabricating the same
JP5420109B2 (en) Multiple solar cell having PN junction and Schottky junction and manufacturing method thereof
KR101626929B1 (en) Manufacturing method for multiple junction solar cell using compound thin film and multiple junction solar cell
US10134932B2 (en) Solar cell and method of fabricating the same
KR101428146B1 (en) Solar cell module and method of fabricating the same
JP2013532907A (en) Photovoltaic power generation apparatus and manufacturing method thereof
KR101382898B1 (en) See through type solar cell and fabricating method
US20140083486A1 (en) Solar cell and method for manufacturing same
KR20120119807A (en) Solar cell
KR101327126B1 (en) Solar cell and solar cell module unsing the same
JP2013516784A (en) Photovoltaic power generation apparatus and manufacturing method thereof
US20150255659A1 (en) Solar module
KR101349429B1 (en) Photovoltaic apparatus
KR101866309B1 (en) Metal welding solar cell
KR20140080897A (en) Solar cell module and method of fabircating the same
US9349901B2 (en) Solar cell apparatus and method of fabricating the same
JP5775586B2 (en) Solar cell and solar cell module including the same
KR20200048960A (en) Flexible Thin Film Solar Cell With Extension Capability And Method For The Same
KR101273186B1 (en) Solar cell apparatus
KR101707080B1 (en) Manufacturing method for tandem solar cell and tandem solar cell manufactured by the method
KR101349525B1 (en) Photovoltaic apparatus

Legal Events

Date Code Title Description
AMND Amendment
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190326

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 5