JP5420109B2 - Multiple solar cell having PN junction and Schottky junction and manufacturing method thereof - Google Patents

Multiple solar cell having PN junction and Schottky junction and manufacturing method thereof Download PDF

Info

Publication number
JP5420109B2
JP5420109B2 JP2013502448A JP2013502448A JP5420109B2 JP 5420109 B2 JP5420109 B2 JP 5420109B2 JP 2013502448 A JP2013502448 A JP 2013502448A JP 2013502448 A JP2013502448 A JP 2013502448A JP 5420109 B2 JP5420109 B2 JP 5420109B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
schottky junction
type semiconductor
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013502448A
Other languages
Japanese (ja)
Other versions
JP2013524501A (en
Inventor
キム,ジョン‐ドン
ハン,チャン‐ソウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Machinery and Materials KIMM
Original Assignee
Korea Institute of Machinery and Materials KIMM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Machinery and Materials KIMM filed Critical Korea Institute of Machinery and Materials KIMM
Publication of JP2013524501A publication Critical patent/JP2013524501A/en
Application granted granted Critical
Publication of JP5420109B2 publication Critical patent/JP5420109B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は太陽電池に関し、より詳細には、PN接合およびショットキー接合を有する多重太陽電池に関する。   The present invention relates to a solar cell, and more particularly to a multiple solar cell having a PN junction and a Schottky junction.

太陽光を電気エネルギーに変換する光電変換素子である太陽電池は、他のエネルギー源とは異なって無限かつ環境親和的であるため、時間が経つにつれてその重要性が増加している。   Unlike other energy sources, solar cells, which are photoelectric conversion elements that convert sunlight into electrical energy, are infinite and environmentally friendly. Therefore, their importance increases over time.

特に、原油高と化石燃料賦存の制限性は、再生エネルギーに対する利用を増大化させるものと思われるが、この中でも移動が簡単で携帯することができる太陽電池の依存性はさらに大きくなるものと予測される。   In particular, the high crude oil price and the limited nature of fossil fuels seem to increase the use of renewable energy, but among them, the dependence of solar cells that can be easily moved and carried is even greater. is expected.

太陽電池の構造および原理に対して簡単に説明すれば、太陽電池は、P(positive)型半導体とN(negative)型半導体を接合させたPN接合構造をなしている。このような構造の太陽電池に太陽光が入射すれば、入射した太陽光が持つエネルギーによって前記半導体内で正孔(hole)と電子(electron)とが発生する。このとき、PN接合で発生した電場によって前記正孔(+)はP型半導体側に移動し、前記電子(−)はN型半導体側に移動し、電位が発生することにより、電力を生産できるようになるという原理である。   Briefly describing the structure and principle of the solar cell, the solar cell has a PN junction structure in which a P (positive) type semiconductor and an N (negative) type semiconductor are joined. When sunlight enters the solar cell having such a structure, holes and electrons are generated in the semiconductor by the energy of the incident sunlight. At this time, the hole (+) moves to the P-type semiconductor side by the electric field generated at the PN junction, and the electron (−) moves to the N-type semiconductor side to generate electric potential, thereby generating electric power. It is the principle of becoming.

このような太陽電池は、基板型太陽電池と薄膜型太陽電池とに区分される。基板型太陽電池は、シリコンのような半導体物質自体を基板として利用して太陽電池を製造したものであり、薄膜型太陽電池は、ガラスなどのような基板上に薄膜形態で半導体を形成して太陽電池を製造したものである。   Such solar cells are classified into substrate type solar cells and thin film type solar cells. A substrate type solar cell is a solar cell manufactured using a semiconductor material itself such as silicon as a substrate. A thin film type solar cell is formed by forming a semiconductor in a thin film form on a substrate such as glass. A solar cell is manufactured.

基板型太陽電池は薄膜型太陽電池に比べて効率は多少優れているが、工程上で厚さを最小化するのに限界があり、高価な半導体基板を利用するために製造費用が上昇するという短所がある。薄膜型太陽電池は基板型太陽電池に比べて効率は多少落ちるが、薄い厚さでの製造が可能であり、低価な材料を利用することができるために製造費用が減少するという長所があり、大量生産に適している。   Substrate type solar cells are slightly more efficient than thin film type solar cells, but there is a limit to minimizing the thickness in the process, and manufacturing costs increase due to the use of expensive semiconductor substrates. There are disadvantages. Thin-film solar cells are slightly less efficient than substrate solar cells, but they can be manufactured in thin thicknesses and have the advantage of lower manufacturing costs because low-cost materials can be used. Suitable for mass production.

しかし、基板型太陽電池と薄膜型太陽電池との場合でも、1つのPN半導体が1つの太陽電池を形成するため、工程が複雑であり、電圧を高めるためには並んで配列している太陽電池を直列に連結しなければならないという問題がある。   However, even in the case of a substrate type solar cell and a thin film type solar cell, since one PN semiconductor forms one solar cell, the process is complicated, and in order to increase the voltage, the solar cells arranged side by side Have to be connected in series.

本発明は、効率性が向上したPN接合およびショットキー接合を有する多重太陽電池を提供することを目的とする。   An object of the present invention is to provide a multiple solar cell having a PN junction and a Schottky junction with improved efficiency.

本発明の一実施形態に係る太陽電池は、P型半導体層とN型半導体層とが積層配置されたPN半導体層と、前記PN半導体層の第1面にオーミック接合した第1電極と、前記PN半導体層の前記第1面と反対方向を向く第2面にショットキー接合したショットキー接合層と、前記ショットキー接合層と接するように形成された第2電極と、前記ショットキー接合層と前記PN半導体層との間には絶縁性を有する物質として再結合防止層と、を含む。   A solar cell according to an embodiment of the present invention includes a PN semiconductor layer in which a P-type semiconductor layer and an N-type semiconductor layer are stacked, a first electrode that is in ohmic contact with a first surface of the PN semiconductor layer, A Schottky junction layer that is Schottky-bonded to a second surface facing away from the first surface of the PN semiconductor layer; a second electrode that is formed so as to be in contact with the Schottky junction layer; and the Schottky junction layer; A recombination prevention layer is included as an insulating material between the PN semiconductor layer.

前記再結合防止層は、0.1nm〜10nmの厚さを有するように形成されてもよい。また、前記N型半導体層が前記再結合防止層と接するように配置されてもよく、前記ショットキー接合層は前記N型半導体層よりもさらに大きい仕事関数を有するように形成されてもよい。   The recombination prevention layer may be formed to have a thickness of 0.1 nm to 10 nm. The N-type semiconductor layer may be disposed so as to be in contact with the recombination preventing layer, and the Schottky junction layer may be formed to have a larger work function than the N-type semiconductor layer.

前記P型半導体層が前記再結合防止層と接するように配置されてもよく、前記ショットキー接合層は前記P型半導体層よりもさらに小さい仕事関数を有するように形成されてもよい。前記PN半導体層はウエハ形態で形成されてもよく、ウエハはシリコンまたはGaAsで形成されてもよい。また、前記PN半導体層は有機物質で形成されてもよい。   The P-type semiconductor layer may be disposed in contact with the recombination prevention layer, and the Schottky junction layer may be formed to have a work function smaller than that of the P-type semiconductor layer. The PN semiconductor layer may be formed in a wafer form, and the wafer may be formed of silicon or GaAs. The PN semiconductor layer may be formed of an organic material.

前記ショットキー接合層上には反射防止膜が付着してもよく、前記反射防止膜はSiOxまたはSiNで形成されてもよい。また、前記反射防止膜は、0.1nm〜100nmの厚さを有するように形成されてもよい。   An antireflection film may be deposited on the Schottky bonding layer, and the antireflection film may be formed of SiOx or SiN. The antireflection film may be formed to have a thickness of 0.1 nm to 100 nm.

前記第1電極には光透過性基板が接するように配置され、前記PN半導体層は、P型半導体層とN型半導体層および前記P型半導体層と前記N型半導体層の間に配置されたI(Intrinsic)型半導体層を有する薄膜形態で形成されてもよい。   The first electrode is disposed so that a light transmissive substrate is in contact therewith, and the PN semiconductor layer is disposed between a P-type semiconductor layer and an N-type semiconductor layer, and between the P-type semiconductor layer and the N-type semiconductor layer. It may be formed in the form of a thin film having an I (Intrinsic) type semiconductor layer.

本発明の他の側面に係る太陽電池は、P型半導体層とN型半導体層とを有するPN半導体層と、前記PN半導体層の第1面にオーミック接合した第1電極と、前記PN半導体層の前記第1面と反対方向を向く第2面にショットキー接合したショットキー接合層と、前記PN半導体層の前記第2面にオーミック接合し、前記ショットキー接合層と並んで配置されたオーミック金属層と、前記ショットキー接合層上に形成された第1前面電極と、前記オーミック金属層上に形成された第2前面電極と、前記第2前面電極と前記第1電極とを電気的に連結する第1配線と、前記第1前面電極と前記第1電極とを電気的に連結する第2配線と、を含む。   A solar cell according to another aspect of the present invention includes a PN semiconductor layer having a P-type semiconductor layer and an N-type semiconductor layer, a first electrode that is in ohmic contact with the first surface of the PN semiconductor layer, and the PN semiconductor layer. A Schottky junction layer that is Schottky-bonded to a second surface facing in the direction opposite to the first surface, and an ohmic junction that is ohmic-bonded to the second surface of the PN semiconductor layer and arranged in parallel with the Schottky junction layer Electrically connecting a metal layer, a first front electrode formed on the Schottky junction layer, a second front electrode formed on the ohmic metal layer, the second front electrode and the first electrode; First wiring to be connected, and second wiring to electrically connect the first front electrode and the first electrode.

本発明の他の側面に係る太陽電池は、P型半導体層とN型半導体層とを有するPN半導体層と、前記PN半導体層の第1面にオーミック接合した第1オーミック金属層と、前記PN半導体層の前記第1面にショットキー接合した第1ショットキー接合層と、前記PN半導体層の第1面と反対方向を向く第2面にオーミック接合した第2オーミック金属層と、前記PN半導体層の前記第2面にショットキー接合した第2ショットキー接合層と、前記第1ショットキー接合層上に形成された第1前面電極と、前記第1オーミック金属層上に形成された第2前面電極と、前記第1前面電極と前記第2前面電極とを電気的に連結する第1配線と、前記第1前面電極と前記第2オーミック金属層とを電気的に連結する第2配線と、を含む。   A solar cell according to another aspect of the present invention includes a PN semiconductor layer having a P-type semiconductor layer and an N-type semiconductor layer, a first ohmic metal layer in ohmic contact with the first surface of the PN semiconductor layer, and the PN A first Schottky junction layer that is Schottky-bonded to the first surface of the semiconductor layer; a second ohmic metal layer that is ohmic-bonded to a second surface facing away from the first surface of the PN semiconductor layer; and the PN semiconductor A second Schottky junction layer formed by Schottky junction with the second surface of the layer, a first front electrode formed on the first Schottky junction layer, and a second layer formed on the first ohmic metal layer. A first wiring electrically connecting the first front electrode and the second front electrode; a second wiring electrically connecting the first front electrode and the second ohmic metal layer; ,including.

ここで、前記第1ショットキー接合層は前記第2オーミック金属層と上下方向に対応する位置に配置され、前記第1オーミック金属層は前記第2ショットキー接合層と上下方向に対応する位置に配置され、第2ショットキー接合層と第2オーミック金属層が当接するように配置されてもよい。   Here, the first Schottky junction layer is disposed at a position corresponding to the second ohmic metal layer in the vertical direction, and the first ohmic metal layer is positioned at a position corresponding to the second Schottky junction layer in the vertical direction. The second Schottky junction layer and the second ohmic metal layer may be disposed so as to contact each other.

本発明の他の側面に係る太陽電池は、P型半導体層とN型半導体層とを有するPN半導体層と、前記PN半導体層の第1面にオーミック接合した第1オーミック金属層と、前記PN半導体の前記第1面にショットキー接合した第1ショットキー接合層と、前記PN半導体層の第1面と反対方向を向く第2面にオーミック接合した第2オーミック金属層と、前記PN半導体層の前記第2面にショットキー接合した第2ショットキー接合層と、前記第1ショットキー接合層上に形成された第1前面電極と、前記第1オーミック金属層上に形成された第2前面電極と、前記第1前面電極と前記第2ショットキー接合層とを電気的に連結する第1配線と、前記第2前面電極と前記第2オーミック金属層とを電気的に連結する第2配線と、を含む。   A solar cell according to another aspect of the present invention includes a PN semiconductor layer having a P-type semiconductor layer and an N-type semiconductor layer, a first ohmic metal layer in ohmic contact with the first surface of the PN semiconductor layer, and the PN A first Schottky junction layer that is Schottky bonded to the first surface of the semiconductor, a second ohmic metal layer that is ohmic-bonded to a second surface facing away from the first surface of the PN semiconductor layer, and the PN semiconductor layer A second Schottky junction layer formed by Schottky junction with the second surface, a first front electrode formed on the first Schottky junction layer, and a second front surface formed on the first ohmic metal layer. An electrode, a first wiring that electrically connects the first front electrode and the second Schottky junction layer, and a second wiring that electrically connects the second front electrode and the second ohmic metal layer And including.

ここで、前記第1ショットキー接合層は前記第2オーミック金属層と上下方向に対応する位置に配置され、前記第1オーミック金属層は前記第2ショットキー接合層と上下方向に対応する位置に配置され、第2ショットキー接合層と第2オーミック金属層が離隔配置されてもよい。   Here, the first Schottky junction layer is disposed at a position corresponding to the second ohmic metal layer in the vertical direction, and the first ohmic metal layer is positioned at a position corresponding to the second Schottky junction layer in the vertical direction. The second Schottky junction layer and the second ohmic metal layer may be spaced apart.

本発明の他の側面に係る太陽電池は、光透過性基板と、前記光透過性基板上に形成され、P型半導体層とN型半導体層および前記P型半導体層と前記N型半導体層との間に配置されたI(Intrinsic)型半導体層を有するPN半導体層と、前記PN半導体層の第1面にショットキー接合した第1ショットキー接合層と、前記PN半導体層の前記第1面と反対方向を向く第2面にショットキー接合し、前記光透過性基板と前記PN半導体層との間に配置された第2ショットキー接合層と、前記第1ショットキー接合層上に形成された電極と、前記第1ショットキー接合層と前記PN半導体層との間に配置されて絶縁性を有する物質で形成される第1再結合防止層と、前記第2ショットキー接合層と前記PN半導体層との間に配置され、絶縁性を有する物質で形成される第2再結合防止層と、を含む。   A solar cell according to another aspect of the present invention includes a light-transmitting substrate, a P-type semiconductor layer, an N-type semiconductor layer, and the P-type semiconductor layer and the N-type semiconductor layer formed on the light-transmitting substrate. A PN semiconductor layer having an I (Intrinsic) type semiconductor layer disposed between the first PN semiconductor layer, a first Schottky junction layer bonded to the first surface of the PN semiconductor layer, and the first surface of the PN semiconductor layer And a second Schottky junction layer disposed between the light transmissive substrate and the PN semiconductor layer, and formed on the first Schottky junction layer. A first recombination preventing layer formed of an insulating material disposed between the first Schottky junction layer and the PN semiconductor layer, the second Schottky junction layer, and the PN Between the semiconductor layer and Comprising a second recombination preventing layer is formed of a material having an edge property, the.

前記第1ショットキー接合層は前記N型半導体層よりも仕事関数がさらに大きい物質で形成され、前記N型半導体層にショットキー接合し、前記第2ショットキー接合層は前記P型半導体層よりも仕事関数がさらに小さい物質で形成され、前記P型半導体層にショットキー接合し、前記第1ショットキー接合層は前記P型半導体層よりも仕事関数がさらに小さい物質で形成され、前記P型半導体層にショットキー接合し、前記第2ショットキー接合層は前記N型半導体層よりも仕事関数がさらに大きい物質で形成され、前記N型半導体層にショットキー接合してもよい。   The first Schottky junction layer is formed of a material having a work function larger than that of the N-type semiconductor layer, and is in Schottky junction with the N-type semiconductor layer, and the second Schottky junction layer is more than the P-type semiconductor layer. Is formed of a material having a smaller work function and is Schottky-bonded to the P-type semiconductor layer, and the first Schottky junction layer is formed of a material having a work function smaller than that of the P-type semiconductor layer. A Schottky junction may be formed on the semiconductor layer, and the second Schottky junction layer may be formed of a material having a larger work function than the N-type semiconductor layer, and may be Schottky-bonded to the N-type semiconductor layer.

前記太陽電池は、前記第1ショットキー接合層と前記PN半導体層との間に配置され、絶縁性を有する物質で形成される第1再結合防止層と、前記第2ショットキー接合層と前記PN半導体層との間に配置され、絶縁性を有する物質で形成される第2再結合防止層をさらに含んでもよい。   The solar cell is disposed between the first Schottky junction layer and the PN semiconductor layer, and includes a first recombination prevention layer formed of an insulating material, the second Schottky junction layer, It may further include a second recombination preventing layer disposed between the PN semiconductor layer and formed of an insulating material.

本発明の一実施形態に係る太陽電池の製造方法は、P型半導体層とN型半導体層とを有するPN半導体層を準備するPN半導体層準備段階と、前記PN半導体層上に絶縁性を有する再結合防止層を形成する再結合防止層形成段階と、前記PN半導体層にショットキー接合した金属層を形成するショットキー接合層形成段階と、前記ショットキー接合層上に導電性を有する前面電極を形成する前面電極形成段階と、を含む。   A method for manufacturing a solar cell according to an embodiment of the present invention includes a PN semiconductor layer preparation step of preparing a PN semiconductor layer having a P-type semiconductor layer and an N-type semiconductor layer, and insulation on the PN semiconductor layer. A recombination prevention layer forming step of forming a recombination prevention layer; a Schottky junction layer formation step of forming a metal layer bonded to the PN semiconductor layer; and a conductive front electrode on the Schottky junction layer Forming a front electrode.

前記PN半導体層形成段階は、ウエハをドーピングしてN型半導体層を形成するウエハドーピング段階と、PN半導体層の背面に第1電極を形成する第1電極形成段階を含んでもよく、PN半導体層準備段階は、N型半導体層のフェルミ準位を増加させるフェルミ準位調節段階をさらに含んでもよい。   The PN semiconductor layer forming step may include a wafer doping step of doping the wafer to form an N-type semiconductor layer, and a first electrode forming step of forming a first electrode on the back surface of the PN semiconductor layer. The preparation step may further include a Fermi level adjustment step of increasing the Fermi level of the N-type semiconductor layer.

本発明に係る太陽電池は、PN接合半導体層とショットキー接合層が直列に連結した2つの太陽電池を形成するため、光を電気に変換するため光電効率が向上する。また、2つの空乏領域が形成されるため、開放回路電圧(OCV)が向上する。   Since the solar cell according to the present invention forms two solar cells in which a PN junction semiconductor layer and a Schottky junction layer are connected in series, photoelectric efficiency is improved because light is converted into electricity. Also, since two depletion regions are formed, the open circuit voltage (OCV) is improved.

さらに、PN接合半導体層の両面にショットキー接合層を形成することにより、3つの太陽電池が直列に連結した効果を有する。これにより、直列に連結した太陽電池を容易に製作できるだけでなく、太陽電池の光効率および開放回路電圧が向上する。   Furthermore, by forming Schottky junction layers on both sides of the PN junction semiconductor layer, there is an effect that three solar cells are connected in series. This not only facilitates the production of solar cells connected in series, but also improves the light efficiency and open circuit voltage of the solar cells.

本発明の第1実施形態に係る太陽電池を示す断面図である。It is sectional drawing which shows the solar cell which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る太陽電池を示す平面図である。It is a top view which shows the solar cell which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る太陽電池の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the solar cell which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る太陽電池のPN半導体層の作動原理を説明するための概略的な構成図である。It is a schematic block diagram for demonstrating the working principle of the PN semiconductor layer of the solar cell which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る太陽電池のショットキー接合層とN型半導体層の作動原理を説明するための概略的な構成図である。It is a schematic block diagram for demonstrating the principle of operation of the Schottky junction layer and N type semiconductor layer of the solar cell which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る太陽電池を示す断面図である。It is sectional drawing which shows the solar cell which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る太陽電池を示す断面図である。It is sectional drawing which shows the solar cell which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る太陽電池を示す平面図である。It is a top view which shows the solar cell which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る太陽電池を示す断面図である。It is sectional drawing which shows the solar cell which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る太陽電池を示す断面図である。It is sectional drawing which shows the solar cell which concerns on 5th Embodiment of this invention. 本発明の第5実施形態の変形例に係る太陽電池を示す断面図である。It is sectional drawing which shows the solar cell which concerns on the modification of 5th Embodiment of this invention. 本発明の第6実施形態に係る太陽電池を示す断面図である。It is sectional drawing which shows the solar cell which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る太陽電池を示す断面図である。It is sectional drawing which shows the solar cell which concerns on 7th Embodiment of this invention.

本発明において「〜上に」とは、対象部材の上または下に位置することを意味するものであり、必ずしも重力方向を基準として上部に位置することを意味するものではない。また、本記載において「PN接合」とは、P型半導体とN型半導体とが接合した構造を意味するものであり、P型半導体とN型半導体との間にI型半導体が介在したPIN接合を含む広い意味のPN接合として定義する。   In the present invention, “to up” means to be located above or below the target member, and does not necessarily mean to be located at the top with respect to the direction of gravity. In this description, “PN junction” means a structure in which a P-type semiconductor and an N-type semiconductor are joined, and a PIN junction in which an I-type semiconductor is interposed between the P-type semiconductor and the N-type semiconductor. It is defined as a PN junction in a broad sense including

以下、添付の図面を参照しながら、本発明が属する技術分野において通常の知識を有する者が容易に実施できるように、本発明の実施形態を詳しく説明する。しかし、本発明は多様に相違した形態で実現されることができ、以下で説明する実施形態に限定されることはない。なお、図面において、本発明を明確に説明するために説明上で不必要な部分は省略し、明細書全体にわたって同一または類似する構成要素については同一する参照符号を付与する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art to which the present invention pertains can easily carry out. However, the present invention can be realized in various different forms, and is not limited to the embodiments described below. In the drawings, parts unnecessary for the description are omitted in order to clearly describe the present invention, and the same reference numerals are given to the same or similar components throughout the specification.

図1は、本発明の第1実施形態に係る太陽電池を示す断面図である。図1を参照しながら説明すれば、本実施形態に係る太陽電池は、PN半導体層13と、PN半導体層13の第1面に接するように配置された第1電極11と、PN半導体層13の第1面と反対方向を向く第2面に接するように配置されたショットキー接合層15と、ショットキー接合層15とPN半導体層13との間に形成された再結合防止層14と、ショットキー接合層15と接するように形成された第2電極12を含む。   FIG. 1 is a cross-sectional view showing a solar cell according to the first embodiment of the present invention. Referring to FIG. 1, the solar cell according to this embodiment includes a PN semiconductor layer 13, a first electrode 11 disposed so as to be in contact with the first surface of the PN semiconductor layer 13, and the PN semiconductor layer 13. A Schottky junction layer 15 disposed so as to be in contact with the second surface facing in the opposite direction to the first surface, and a recombination prevention layer 14 formed between the Schottky junction layer 15 and the PN semiconductor layer 13, The second electrode 12 is formed so as to be in contact with the Schottky junction layer 15.

PN半導体層13はウエハ形態で形成され、P型半導体層131とN型半導体層132と、を含む。PN半導体層13は結晶形シリコンで形成され、P型の性質を有する結晶質シリコンにN型物質をドーピングしてPN半導体層13を得てもよい。また、ウエハは、シリコンの他にGaAsで形成されてもよい。   The PN semiconductor layer 13 is formed in a wafer form, and includes a P-type semiconductor layer 131 and an N-type semiconductor layer 132. The PN semiconductor layer 13 may be formed of crystalline silicon, and the PN semiconductor layer 13 may be obtained by doping an N-type material into crystalline silicon having P-type properties. The wafer may be formed of GaAs in addition to silicon.

本発明がこれに制限されることはなく、PN半導体層は有機物質で形成されてもよいが、このとき、PN半導体層は、PPV,P3HT,P3OTなどのN型物質(Electron donor)と、C60,PCBCR,PCBCaなどのP型物質(Electron acceptor)とが適用されてもよい。   The present invention is not limited to this, and the PN semiconductor layer may be formed of an organic material. At this time, the PN semiconductor layer may be an N-type material (Electron donor) such as PPV, P3HT, or P3OT. P-type substances (Electron acceptors) such as C60, PCBCR, and PCBCa may be applied.

PN半導体層13の背面には、オーミック接合によって結合した第1電極11が形成される。第1電極11はPN半導体層13の背面に全体的に形成され、アルミニウムなどの金属素材で形成されてもよい。   On the back surface of the PN semiconductor layer 13, the first electrode 11 coupled by an ohmic junction is formed. The first electrode 11 may be formed entirely on the back surface of the PN semiconductor layer 13 and may be formed of a metal material such as aluminum.

PN半導体層13において、背面側にはP型半導体層131が配置され、前面側にはN型半導体層132が配置される。一方、PN半導体層13の前面には再結合防止層14が形成される。再結合防止層14は、絶縁性を有するOxide、SiOx、SiNxなどを含む物質で形成されてもよい。再結合防止層14は0.1nm〜10nmの厚さで形成され、光によって発生したキャリアが再結合することを防ぐことによって電圧特性を向上させる。再結合防止層14の厚さが0.1nmよりもさらに小さく形成されれば、励起した電子が正孔と再結合するという問題が発生し、再結合防止層14の厚さが10nmよりもさらに大きく形成されれば、抵抗が過度に増加するという問題が発生する。   In the PN semiconductor layer 13, a P-type semiconductor layer 131 is disposed on the back side, and an N-type semiconductor layer 132 is disposed on the front side. On the other hand, a recombination prevention layer 14 is formed on the front surface of the PN semiconductor layer 13. The recombination prevention layer 14 may be formed of a material including an insulating oxide, SiOx, SiNx, or the like. The recombination prevention layer 14 is formed with a thickness of 0.1 nm to 10 nm, and improves voltage characteristics by preventing recombination of carriers generated by light. If the thickness of the recombination prevention layer 14 is formed to be smaller than 0.1 nm, a problem that excited electrons recombine with holes occurs, and the thickness of the recombination prevention layer 14 further exceeds 10 nm. If it is formed large, there arises a problem that the resistance increases excessively.

本実施例では、光効率の向上のためにPN半導体層13とショットキー接合層15との間に再結合防止層14が形成されたものを例示しているが、本発明がこれに制限されることはなく、ショットキー接合層15がPN半導体層13と直接接触するように形成されてもよい。   In the present embodiment, an example in which the recombination preventing layer 14 is formed between the PN semiconductor layer 13 and the Schottky junction layer 15 for the purpose of improving the light efficiency is illustrated, but the present invention is limited to this. The Schottky junction layer 15 may be formed so as to be in direct contact with the PN semiconductor layer 13.

再結合防止層14上には、PN半導体層13とショットキー接合したショットキー接合層15が形成される。ショットキー接合層15はN型半導体層132と対向するように配置され、N型半導体層132よりもさらに大きい仕事関数を有する物質で形成される。ショットキー接合層15の素材は特定の金属に制限されることはなく、N型半導体層132よりもさらに大きい仕事関数を有すれば、多様な種類の金属が適用されてもよい。また、ショットキー接合層15は、金属、ITO、ATO、IZO、AZOなどを含む物質で形成されてもよい。ショットキー接合層15にITO、ATO、IZO、AZOなどを混合すれば、電気伝導性を低下させずにショットキー接合層15の光透過性が向上する。   On the recombination preventing layer 14, a Schottky junction layer 15 that is in Schottky junction with the PN semiconductor layer 13 is formed. The Schottky junction layer 15 is disposed so as to face the N-type semiconductor layer 132 and is made of a material having a work function larger than that of the N-type semiconductor layer 132. The material of the Schottky junction layer 15 is not limited to a specific metal, and various types of metals may be applied as long as they have a work function larger than that of the N-type semiconductor layer 132. Further, the Schottky bonding layer 15 may be formed of a material containing metal, ITO, ATO, IZO, AZO, or the like. If ITO, ATO, IZO, AZO or the like is mixed in the Schottky junction layer 15, the light transmittance of the Schottky junction layer 15 is improved without lowering the electrical conductivity.

ショットキー接合層15の厚さは1nm〜20nmで形成されてもよい。ショットキー接合層15の厚さが1nmよりもさらに小さければ、空乏層が適切に形成されないという問題が発生することがあり、ショットキー接合層15の厚さが20nmよりもさらに大きければ、光の透過効率が著しく低下するという問題が発生する。ショットキー接合層15上には反射防止膜16が形成されるが、反射防止膜16はショットキー接合層15と第2電極12との間に配置される。反射防止膜16はSiOx、SiNで形成されてもよく、厚さは0.1nm〜100nmで形成されてもよい。   The thickness of the Schottky junction layer 15 may be 1 nm to 20 nm. If the thickness of the Schottky junction layer 15 is smaller than 1 nm, a problem that a depletion layer is not properly formed may occur. If the thickness of the Schottky junction layer 15 is further larger than 20 nm, There arises a problem that the transmission efficiency is remarkably lowered. An antireflection film 16 is formed on the Schottky bonding layer 15, and the antireflection film 16 is disposed between the Schottky bonding layer 15 and the second electrode 12. The antireflection film 16 may be formed of SiOx or SiN, and may be formed with a thickness of 0.1 nm to 100 nm.

再結合防止層14とショットキー接合層15とは、光透過性を有するように十分に小さい厚さで形成される。再結合防止層14とショットキー接合層15との光透過性は大きいほど有利であるが、少なくとも50%以上の光を透過させることができるように形成される。   The recombination preventing layer 14 and the Schottky junction layer 15 are formed with a sufficiently small thickness so as to have light transmittance. The larger the light transmittance between the recombination preventing layer 14 and the Schottky bonding layer 15 is, the more advantageous, but it is formed so that at least 50% or more of light can be transmitted.

図1および図2に示すように、ショットキー接合層15上には第2電極12が形成されるが、第2電極12は一方向に長く繋がった帯形状で形成される。第2電極は、銀(Ag)や白金(Pt)などの電気伝導性に優れた金属で形成される。第2電極12は第1電極11と反対方向を向く面に配置され、第1電極11を背面電極、第2電極12を前面電極として定義してもよい。   As shown in FIGS. 1 and 2, the second electrode 12 is formed on the Schottky junction layer 15, and the second electrode 12 is formed in a band shape that is long in one direction. The second electrode is formed of a metal having excellent electrical conductivity such as silver (Ag) or platinum (Pt). The second electrode 12 may be disposed on a surface facing the opposite direction to the first electrode 11, and the first electrode 11 may be defined as a back electrode and the second electrode 12 may be defined as a front electrode.

第2電極12は複数が離隔配置され、それぞれの第2電極12には第2電極12を電気的に連結するバスバー17が形成される。第2電極12およびバスバー17は、抵抗が低くて電気伝導度が優れたCuやAgなどで形成されてもよい。   A plurality of the second electrodes 12 are spaced apart, and a bus bar 17 that electrically connects the second electrodes 12 is formed on each second electrode 12. The second electrode 12 and the bus bar 17 may be formed of Cu, Ag, or the like having low resistance and excellent electrical conductivity.

図3を参照しながら、第1実施形態に係る太陽電池の製造方法について説明する。本実施形態に係る太陽電池101の製造方法は、PN半導体層13準備段階(S101)と、再結合防止層14形成段階(S102)と、ショットキー接合層15形成段階(S103)と、第2電極12形成段階(S104)と、を含む。   The manufacturing method of the solar cell according to the first embodiment will be described with reference to FIG. The solar cell 101 manufacturing method according to the present embodiment includes a PN semiconductor layer 13 preparation step (S101), a recombination prevention layer 14 formation step (S102), a Schottky junction layer 15 formation step (S103), and a second step. Forming an electrode 12 (S104).

PN半導体層13準備段階(S101)は、ウエハをドーピングしてP型半導体層131上にN型半導体層132を形成するウエハドーピング段階と、ウエハの背面に第1電極11を形成する第1電極11形成段階と、をさらに含んでもよい。   The PN semiconductor layer 13 preparation step (S101) includes a wafer doping step of doping the wafer to form the N-type semiconductor layer 132 on the P-type semiconductor layer 131, and a first electrode for forming the first electrode 11 on the back surface of the wafer. 11 forming step.

ウエハは太陽電池に常用される結晶質シリコンで形成されてもよく、ウエハの製作方法は広く知られているため、これについての詳しい説明は省略する。   The wafer may be formed of crystalline silicon commonly used for solar cells, and since the method for manufacturing the wafer is widely known, a detailed description thereof will be omitted.

ウエハドーピング段階は、リン(P)やアセナイド(As)などの5族物質をドーピングして形成してもよい。第1電極11形成段階は、アルミニウムなどの金属を蒸着やコーティングなどの方法によってウエハの背面に第1電極11を形成する。   The wafer doping step may be formed by doping a Group 5 material such as phosphorus (P) or asenide (As). In the first electrode 11 formation step, the first electrode 11 is formed on the back surface of the wafer by a method such as vapor deposition or coating of a metal such as aluminum.

PN半導体層13準備段階(S101)は、N型半導体層132のフェルミ準位を増加させるフェルミ準位調節段階をさらに含んでもよい。フェルミ準位調節段階は、N型半導体層132を形成した後、アンモニア(NH)や酸素などのガスを利用してN型半導体層132のフェルミ準位を増加させてもよい。また、フェルミ準位の調節方法は、カリウム(K)やブロム(Br)などの機能分子と反応および熱処理する方式、ポリマー(PEI)物質との連結チェーンを利用する方式、およびアルミニウムなどのような金属をドーピングする方法などが適用されてもよい。 The preparation step (S101) of the PN semiconductor layer 13 may further include a Fermi level adjustment step of increasing the Fermi level of the N-type semiconductor layer 132. In the Fermi level adjusting step, after the N-type semiconductor layer 132 is formed, the Fermi level of the N-type semiconductor layer 132 may be increased using a gas such as ammonia (NH 3 ) or oxygen. Fermi level adjustment methods include a method of reacting and heat-treating with functional molecules such as potassium (K) and bromine (Br), a method of using a connecting chain with a polymer (PEI) material, and aluminum. A method of doping a metal or the like may be applied.

一方、再結合防止層14形成段階(S102)では、N型半導体層132にOxide、SiOx、SiNxなどの物質を蒸着などの方法によって形成する。ショットキー接合層15形成段階(S103)では、再結合防止層14上にショットキー接合層15を蒸着、スパッタリング、コーティングなどの方法によって形成する。ショットキー接合層15は、金属、ITO、ATO、IZO、AZOなどを含む物質で形成されてもよい。   On the other hand, in the recombination prevention layer 14 formation step (S102), a substance such as Oxide, SiOx, SiNx is formed on the N-type semiconductor layer 132 by a method such as vapor deposition. In the Schottky bonding layer 15 formation step (S103), the Schottky bonding layer 15 is formed on the recombination prevention layer 14 by a method such as vapor deposition, sputtering, or coating. The Schottky bonding layer 15 may be formed of a material containing metal, ITO, ATO, IZO, AZO, or the like.

第2電極12形成段階(S104)は、蒸着やコーティングなどの方法によってショットキー接合層15上に第2電極12を形成する。第2電極は、銀(Ag)や白金(Pt)などの電気伝導性に優れた金属で形成されてもよい。   In the second electrode 12 formation step (S104), the second electrode 12 is formed on the Schottky junction layer 15 by a method such as vapor deposition or coating. The second electrode may be formed of a metal having excellent electrical conductivity such as silver (Ag) or platinum (Pt).

図4aおよび図4bを参照しながら、第1実施形態に係る太陽電池101の作用について説明する。光が入射すれば、P型半導体層131とN型半導体層132とが接する第1空乏領域(A1)で光によって電子が励起し、励起した電子はN型半導体層132に移動して電圧差が発生する。また、N型半導体層132とショットキー接合層15とが接する部分には第2空乏領域(A2)が形成され、光が入射すれば第2空乏領域(A2)で自由電子が発生し、これによって電圧差が発生する。N型半導体層132に電子が蓄積されれば、トンネル効果(tunnel effect)によって電子が障壁を越えてショットキー接合層15に移動し、外部に引き出されるようになる。   The operation of the solar cell 101 according to the first embodiment will be described with reference to FIGS. 4a and 4b. When light is incident, electrons are excited by light in the first depletion region (A1) where the P-type semiconductor layer 131 and the N-type semiconductor layer 132 are in contact, and the excited electrons move to the N-type semiconductor layer 132 to cause a voltage difference. Occurs. In addition, a second depletion region (A2) is formed at a portion where the N-type semiconductor layer 132 and the Schottky junction layer 15 are in contact with each other. When light is incident, free electrons are generated in the second depletion region (A2). Causes a voltage difference. If electrons are accumulated in the N-type semiconductor layer 132, the electrons move over the barrier to the Schottky junction layer 15 due to the tunnel effect, and are extracted to the outside.

本実施形態によれば、PN半導体層13が1つの太陽電池となり、N型半導体層132とショットキー接合層15とが他の1つの太陽電池となるため、2つの太陽電池が直列に連結したものと同じ効果を有する。また、従来のウエハ形態の太陽電池上にショットキー接合層15を形成することにより、簡単に多重太陽電池を形成することができるため製作が容易であり、原価が節減される効果を得ることができる。本記載の太陽電池は、1つのショットキー接合層15を形成することによって直列に連結した太陽電池を得ることができるため、薄膜太陽電池のように複数のPIN半導体層を形成することよりも、製作において遥かに有利である。   According to the present embodiment, the PN semiconductor layer 13 becomes one solar cell, and the N-type semiconductor layer 132 and the Schottky junction layer 15 become another solar cell, so that the two solar cells are connected in series. Has the same effect as the one. Further, by forming the Schottky junction layer 15 on a conventional solar cell in the form of a wafer, it is possible to easily form a multiple solar cell, so that the manufacturing is easy and the cost can be reduced. it can. Since the solar cell of this description can obtain the solar cell connected in series by forming one Schottky junction layer 15, rather than forming a plurality of PIN semiconductor layers like a thin film solar cell, It is much more advantageous in production.

図5は、本発明の第2実施形態に係る太陽電池を示す断面図である。図5を参照しながら説明すれば、本実施形態に係る太陽電池102は、PN半導体層23と、PN半導体層23の一面に接するように配置された第1電極21と、PN半導体層23の一面と反対方向を向く他面と対向するように配置されたショットキー接合層25と、ショットキー接合層25とPN半導体層23との間に形成された再結合防止層24と、ショットキー接合層25と接するように形成された第2電極22と、を含む。   FIG. 5 is a cross-sectional view showing a solar cell according to the second embodiment of the present invention. Referring to FIG. 5, the solar cell 102 according to this embodiment includes a PN semiconductor layer 23, a first electrode 21 disposed so as to be in contact with one surface of the PN semiconductor layer 23, and the PN semiconductor layer 23. A Schottky junction layer 25 disposed so as to face the other surface facing in the opposite direction to the one surface, a recombination prevention layer 24 formed between the Schottky junction layer 25 and the PN semiconductor layer 23, and a Schottky junction. A second electrode 22 formed so as to be in contact with the layer 25.

本実施形態に係る太陽電池102は、PN半導体層23およびショットキー接合層25の構造を除いては前記第1実施形態に係る太陽電池と同じ構造であるため、同じ構造についての重複説明は省略する。   The solar cell 102 according to the present embodiment has the same structure as that of the solar cell according to the first embodiment except for the structure of the PN semiconductor layer 23 and the Schottky junction layer 25, and therefore, redundant description of the same structure is omitted. To do.

PN半導体層23は半導体ウエハで形成され、N型半導体層231とP型半導体層232と、を含む。PN半導体層23は結晶形シリコンで形成され、N型の性質を有する結晶質シリコンにP型物質をドーピングしてPN半導体層23を得てもよい。   The PN semiconductor layer 23 is formed of a semiconductor wafer and includes an N-type semiconductor layer 231 and a P-type semiconductor layer 232. The PN semiconductor layer 23 may be formed of crystalline silicon, and the PN semiconductor layer 23 may be obtained by doping a crystalline silicon having N-type properties with a P-type material.

ショットキー接合層25はP型半導体層232とショットキー接合し、ショットキー接合層25はP型半導体層232よりも仕事関数がさらに小さい物質で形成される。これにより、ショットキー接合層25とP型半導体層232とが接する領域にも空乏領域が形成される。   The Schottky junction layer 25 is in Schottky junction with the P-type semiconductor layer 232, and the Schottky junction layer 25 is formed of a material having a work function smaller than that of the P-type semiconductor layer 232. Thereby, a depletion region is also formed in a region where Schottky junction layer 25 and P-type semiconductor layer 232 are in contact with each other.

このように、本実施形態によれば、PN接合太陽電池とショットキー接合太陽電池とが直列に連結した構造の太陽電池を得ることができる。   Thus, according to this embodiment, a solar cell having a structure in which a PN junction solar cell and a Schottky junction solar cell are connected in series can be obtained.

図6は、本発明の第3実施形態に係る太陽電池を示す断面図である。図7は、本発明の第3実施形態に係る太陽電池を示す平面図である。   FIG. 6 is a cross-sectional view showing a solar cell according to the third embodiment of the present invention. FIG. 7 is a plan view showing a solar cell according to the third embodiment of the present invention.

図6および図7を参照説明すれば、本実施形態に係る太陽電池103は、PN半導体層33と、PN半導体層33の一面に接するように配置された第1電極31と、PN半導体層33の一面と反対方向を向く他面に接するように配置された再結合防止層34と、再結合防止層34上に形成されたショットキー接合層35と、オーミック金属層36と、を含む。   Referring to FIGS. 6 and 7, the solar cell 103 according to this embodiment includes a PN semiconductor layer 33, a first electrode 31 disposed so as to be in contact with one surface of the PN semiconductor layer 33, and a PN semiconductor layer 33. A recombination prevention layer 34 disposed so as to be in contact with the other surface facing in the opposite direction to the one surface, a Schottky junction layer 35 formed on the recombination prevention layer 34, and an ohmic metal layer 36.

PN半導体層33は、P型半導体層331と、P型半導体層331上に形成されたN型半導体層332と、を含み、前記第1実施形態に係るPN半導体層と同じ構造である。再結合防止層34は、Oxide、SiOx、SiNxなどの物質で形成される。   The PN semiconductor layer 33 includes a P-type semiconductor layer 331 and an N-type semiconductor layer 332 formed on the P-type semiconductor layer 331, and has the same structure as the PN semiconductor layer according to the first embodiment. The recombination preventing layer 34 is formed of a material such as Oxide, SiOx, SiNx.

再結合防止層34上にはショットキー接合層35とオーミック金属層36とが離隔配置され、ショットキー接合層35はN型半導体層332よりも仕事関数がさらに大きい物質で形成され、N型半導体層332にショットキー接合する。オーミック金属層36はN型半導体層332よりも仕事関数がさらに小さい物質で形成され、N型半導体層332にオーミック接合する。ショットキー接合層35とオーミック金属層36とは、同じ平面上で並んで配置される。   A Schottky junction layer 35 and an ohmic metal layer 36 are spaced apart from each other on the recombination prevention layer 34, and the Schottky junction layer 35 is formed of a material having a work function larger than that of the N-type semiconductor layer 332. A Schottky junction is made to layer 332. The ohmic metal layer 36 is formed of a material having a work function smaller than that of the N-type semiconductor layer 332 and is in ohmic contact with the N-type semiconductor layer 332. The Schottky junction layer 35 and the ohmic metal layer 36 are arranged side by side on the same plane.

ショットキー接合層35上には第1前面電極321が配置され、オーミック金属層36上には第2前面電極322が配置される。ショットキー接合層35,オーミック金属層36,第1前面電極321,第2前面電極322、および再結合防止層34は、光がPN半導体層33に入射するように十分に小さい厚さを有する。   A first front electrode 321 is disposed on the Schottky junction layer 35, and a second front electrode 322 is disposed on the ohmic metal layer 36. The Schottky junction layer 35, the ohmic metal layer 36, the first front electrode 321, the second front electrode 322, and the recombination prevention layer 34 have sufficiently small thicknesses so that light enters the PN semiconductor layer 33.

一方、P型半導体層331と接するように第1電極31が形成され、 第1電極31はアルミニウムなどの金属で形成されてもよい。   On the other hand, the first electrode 31 may be formed so as to be in contact with the P-type semiconductor layer 331, and the first electrode 31 may be formed of a metal such as aluminum.

本実施形態によれば、光が入射するとき、P型半導体層331とN型半導体層332とが接する空乏領域で電子が生成され、N型半導体層332とショットキー接合層35とが接する空乏領域で電子が生成される。   According to the present embodiment, when light is incident, electrons are generated in the depletion region where the P-type semiconductor layer 331 and the N-type semiconductor layer 332 are in contact with each other, and the depletion where the N-type semiconductor layer 332 and the Schottky junction layer 35 are in contact with each other. Electrons are generated in the region.

ショットキー接合層35とN型半導体層332との間で形成された電子は、P型半導体層331を経て第1電極31に移動したり、第2前面電極322に移動する。一方、P型半導体層331とN型半導体層332との間で形成された電子は、第1電極31に移動する。   Electrons formed between the Schottky junction layer 35 and the N-type semiconductor layer 332 move to the first electrode 31 through the P-type semiconductor layer 331 or to the second front electrode 322. On the other hand, electrons formed between the P-type semiconductor layer 331 and the N-type semiconductor layer 332 move to the first electrode 31.

本実施形態によれば、第1前面電極321から第1電極31に移動する電子の流れにおいて、ショットキー接合層35とN型半導体層332とが第1単位電池となり、P型半導体層331とN型半導体層332とが第2単位電池となる。また、第1前面電極321から第2前面電極322に移動する電子の流れにおいて、ショットキー接合層35とN型半導体層332とが第3単位電池となる。このように、本実施形態によれば、3つの太陽電池が形成される。   According to this embodiment, in the flow of electrons moving from the first front electrode 321 to the first electrode 31, the Schottky junction layer 35 and the N-type semiconductor layer 332 become the first unit cell, and the P-type semiconductor layer 331 The N-type semiconductor layer 332 becomes the second unit battery. In addition, in the flow of electrons moving from the first front electrode 321 to the second front electrode 322, the Schottky junction layer 35 and the N-type semiconductor layer 332 become the third unit cell. Thus, according to this embodiment, three solar cells are formed.

第2前面電極322と第1電極31とが第1配線371を通じて電気的に連結し、第1前面電極321と第1電極31とが第2配線372を通じて蓄電池373に連結すれば、第1単位電池と第2単位電池は直列に連結し、第3単位電池はこれらに並列に連結する。   If the second front electrode 322 and the first electrode 31 are electrically connected through the first wiring 371, and the first front electrode 321 and the first electrode 31 are connected to the storage battery 373 through the second wiring 372, the first unit is obtained. The battery and the second unit battery are connected in series, and the third unit battery is connected to them in parallel.

図8は、本発明の第4実施形態に係る太陽電池を示す断面図である。図8を参照しながら説明すれば、本実施形態に係る太陽電池104は、PN半導体層43と、PN半導体層43の一面に接するように配置された第1電極48と、PN半導体層43の一面と反対方向を向く他面と対向するように配置されたショットキー接合層46と、ショットキー接合層46とPN半導体層43の間に形成された再結合防止層45と、ショットキー接合層46と接するように形成された第2電極47と、を含む。   FIG. 8 is a cross-sectional view showing a solar cell according to the fourth embodiment of the present invention. Referring to FIG. 8, the solar cell 104 according to this embodiment includes a PN semiconductor layer 43, a first electrode 48 disposed so as to be in contact with one surface of the PN semiconductor layer 43, and the PN semiconductor layer 43. A Schottky junction layer 46 disposed so as to face the other surface facing the opposite direction, a recombination preventing layer 45 formed between the Schottky junction layer 46 and the PN semiconductor layer 43, and a Schottky junction layer. And a second electrode 47 formed so as to be in contact with 46.

本実施形態に係る太陽電池104は、光透過性基板41上に形成された薄膜形態の太陽電池として形成される。光透過性基板41は、ガラスまたはポリマー材質の基板で形成されてもよい。光透過性基板41上には、ナノサイズの微細突起が形成された反射防止膜が付着してもよい。反射防止膜はSiOxやSiNで形成されてもよく、厚さは0.1nm〜100nmで形成されてもよい。   The solar cell 104 according to this embodiment is formed as a thin-film solar cell formed on the light transmissive substrate 41. The light transmissive substrate 41 may be formed of a glass or polymer substrate. An antireflection film on which nano-sized fine protrusions are formed may adhere to the light-transmitting substrate 41. The antireflection film may be formed of SiOx or SiN, and may be formed with a thickness of 0.1 nm to 100 nm.

光透過性基板41は第1電極48と接するように配置され、光透過性基板41上に第1電極48が形成される。第1電極48は、ITO、IZO、FTOなどの透明素材で形成される。一方、PN半導体層43は薄膜形態で形成され、P型半導体層431とN型半導体層432およびP型半導体層431とN型半導体層432の間に形成されたI(intrinsic)型半導体層433を含む。このような薄膜太陽電池のPIN接合構造は広く知られているため、詳しい説明は省略する。ここで、I(intrinsic)型半導体層433は真性半導体物質で形成される。   The light transmissive substrate 41 is disposed in contact with the first electrode 48, and the first electrode 48 is formed on the light transmissive substrate 41. The first electrode 48 is formed of a transparent material such as ITO, IZO, or FTO. On the other hand, the PN semiconductor layer 43 is formed in a thin film form, and an I (intrinsic) type semiconductor layer 433 formed between the P type semiconductor layer 431 and the N type semiconductor layer 432 and between the P type semiconductor layer 431 and the N type semiconductor layer 432. including. Since the PIN junction structure of such a thin film solar cell is widely known, detailed description thereof is omitted. Here, the I (intrinsic) type semiconductor layer 433 is formed of an intrinsic semiconductor material.

このようなPN半導体層は、InP、InGaP、CdSe、CdS、ZnSe、ZnS、ZnTeなどを含む物質で形成されてもよい。   Such a PN semiconductor layer may be formed of a material containing InP, InGaP, CdSe, CdS, ZnSe, ZnS, ZnTe, or the like.

このようなPN半導体層43上に、再結合防止層45,ショットキー接合層46、および第2電極47が順に積層される。再結合防止層45,ショットキー接合層46、および第2電極47は、前記第1実施形態に係る太陽電池と同じ構造であるため、重複する説明は省略する。   On such a PN semiconductor layer 43, a recombination preventing layer 45, a Schottky junction layer 46, and a second electrode 47 are sequentially laminated. Since the recombination prevention layer 45, the Schottky junction layer 46, and the second electrode 47 have the same structure as that of the solar cell according to the first embodiment, overlapping description is omitted.

このように、本実施形態によれば、薄膜太陽電池上にショットキー接合層46を形成することにより、多重太陽電池を容易に製作することができる。   Thus, according to this embodiment, a multiple solar cell can be easily manufactured by forming the Schottky junction layer 46 on a thin film solar cell.

図9は、本発明の第5実施形態に係る太陽電池を示す断面図である。本実施形態に係る太陽電池105は、PN半導体層53と、PN半導体層53の一面に対向するように配置された第1ショットキー接合層551と、第1オーミック金属層552と、PN半導体層53の一面と反対方向を向く他面と対向するように配置された第2ショットキー接合層541と、第2オーミック金属層542と、を含む。   FIG. 9 is a sectional view showing a solar cell according to the fifth embodiment of the present invention. The solar cell 105 according to the present embodiment includes a PN semiconductor layer 53, a first Schottky junction layer 551 arranged to face one surface of the PN semiconductor layer 53, a first ohmic metal layer 552, and a PN semiconductor layer. 53, a second Schottky junction layer 541 arranged to face the other surface facing the opposite direction to one surface, and a second ohmic metal layer 542.

第1ショットキー接合層551はPN半導体層53の第1面にショットキー接合し、第1オーミック金属層552はPN半導体層53の第1面にオーミック接合する。第2ショットキー接合層541はPN半導体層53の第1面と反対方向を向く第2面にショットキー接合し、第2オーミック金属層542はPN半導体層53の第2面にオーミック接合する。   The first Schottky junction layer 551 is Schottky bonded to the first surface of the PN semiconductor layer 53, and the first ohmic metal layer 552 is ohmic bonded to the first surface of the PN semiconductor layer 53. The second Schottky junction layer 541 has a Schottky junction with a second surface facing away from the first surface of the PN semiconductor layer 53, and the second ohmic metal layer 542 has an ohmic junction with the second surface of the PN semiconductor layer 53.

また、PN半導体層53と第1ショットキー接合層551および第1オーミック金属層552との間には第1再結合防止層57が形成され、PN半導体層53と第2ショットキー接合層541および第2オーミック金属層542との間には第2再結合防止層56が形成される。また、第1ショットキー接合層551上には第1前面電極521が形成され、第1オーミック金属層552上には第2前面電極522が形成される。   A first recombination prevention layer 57 is formed between the PN semiconductor layer 53 and the first Schottky junction layer 551 and the first ohmic metal layer 552, and the PN semiconductor layer 53 and the second Schottky junction layer 541 A second recombination prevention layer 56 is formed between the second ohmic metal layer 542 and the second ohmic metal layer 542. A first front electrode 521 is formed on the first Schottky junction layer 551, and a second front electrode 522 is formed on the first ohmic metal layer 552.

本実施形態に係る太陽電池105は、光透過性基板51上に形成された薄膜形態の太陽電池として形成される。光透過性基板51は、ガラスまたはポリマー材質の基板で形成されてもよい。   The solar cell 105 according to the present embodiment is formed as a thin-film solar cell formed on the light transmissive substrate 51. The light transmissive substrate 51 may be formed of a glass or polymer substrate.

光透過性基板51上には、第2ショットキー接合層541および第2オーミック金属層542が形成される。第2ショットキー接合層541および第2オーミック金属層542は、光透過性基板51上で並んで配置される。   A second Schottky junction layer 541 and a second ohmic metal layer 542 are formed on the light transmissive substrate 51. The second Schottky junction layer 541 and the second ohmic metal layer 542 are arranged side by side on the light transmissive substrate 51.

一方、PN半導体層53は薄膜形態で形成され、P型半導体層531とN型半導体層532およびP型半導体層531とN型半導体層532の間に形成されたI(intrinsic)型半導体層533を含む。   On the other hand, the PN semiconductor layer 53 is formed in a thin film form, and an I (intrinsic) type semiconductor layer 533 formed between the P type semiconductor layer 531 and the N type semiconductor layer 532 and between the P type semiconductor layer 531 and the N type semiconductor layer 532. including.

このようなPN半導体層上には再結合防止層57が形成され、再結合防止層57上には第1ショットキー接合層551と第1オーミック金属層552とが並んで形成される。   A recombination prevention layer 57 is formed on such a PN semiconductor layer, and a first Schottky junction layer 551 and a first ohmic metal layer 552 are formed side by side on the recombination prevention layer 57.

第1ショットキー接合層551と対応する下部の位置に第2オーミック金属層542が形成され、第1オーミック金属層552と対応する下部の位置に第2ショットキー接合層541が形成される。   A second ohmic metal layer 542 is formed at a lower position corresponding to the first Schottky junction layer 551, and a second Schottky junction layer 541 is formed at a lower position corresponding to the first ohmic metal layer 552.

第1ショットキー接合層551はN型半導体層532よりも仕事関数がさらに大きい物質で形成され、第2ショットキー接合層541はP型半導体層531よりも仕事関数がさらに小さい物質で形成される。また、第1オーミック金属層552はN型半導体層532よりも仕事関数がさらに小さい物質で形成され、第2オーミック金属層542はP型半導体層531よりも仕事関数がさらに大きい物質で形成される。   The first Schottky junction layer 551 is formed of a material having a work function larger than that of the N-type semiconductor layer 532, and the second Schottky junction layer 541 is formed of a material having a work function smaller than that of the P-type semiconductor layer 531. . The first ohmic metal layer 552 is formed of a material having a work function smaller than that of the N-type semiconductor layer 532, and the second ohmic metal layer 542 is formed of a material having a work function higher than that of the P-type semiconductor layer 531. .

本実施形態によれば、第1ショットキー接合層551とN型半導体層532との間、PN半導体層53,第2ショットキー接合層541とP型半導体層531との間で電子が生成される。   According to the present embodiment, electrons are generated between the first Schottky junction layer 551 and the N-type semiconductor layer 532, and between the PN semiconductor layer 53, the second Schottky junction layer 541 and the P-type semiconductor layer 531. The

電子の流れを詳察すれば、第1ショットキー接合層551とN型半導体層532との間および第1ショットキー接合層551の下に位置するPN半導体層53で生成された電子は第2オーミック金属層542に移動し、第2ショットキー接合層541とP型半導体層531との間および第2ショットキー接合層541の上に位置するPN半導体層53で生成された電子は第2ショットキー接合層541に移動する。   In detail, the electrons generated in the PN semiconductor layer 53 located between the first Schottky junction layer 551 and the N-type semiconductor layer 532 and below the first Schottky junction layer 551 are second electrons. The electrons moved to the ohmic metal layer 542 and electrons generated in the PN semiconductor layer 53 located between the second Schottky junction layer 541 and the P-type semiconductor layer 531 and on the second Schottky junction layer 541 are generated in the second shot. It moves to the key bonding layer 541.

これにより、本実施形態によれば、第1ショットキー接合層551とN型半導体層532とが第1単位電池となり、第1ショットキー接合層551の下に位置するPN半導体層53が第2単位電池となり、第2ショットキー接合層541とP型半導体層531とが第3単位電池となり、第2ショットキー接合層541の上に位置するPN半導体層53が第4単位電池となる。   Thus, according to the present embodiment, the first Schottky junction layer 551 and the N-type semiconductor layer 532 serve as the first unit cell, and the PN semiconductor layer 53 located under the first Schottky junction layer 551 is the second unit cell. The second Schottky junction layer 541 and the P-type semiconductor layer 531 become the third unit cell, and the PN semiconductor layer 53 located on the second Schottky junction layer 541 becomes the fourth unit cell.

第1前面電極521と第2前面電極522が第1配線581によって電気的に連結し、第2ショットキー接合層541と第2オーミック金属層542とが互いに当接して電気的に連結し、第1前面電極521と第2オーミック金属層542とが第2配線582によって蓄電池583と電気的に連結すれば、第1単位電池と第2単位電池とが直列に連結して第3単位電池と第4単位電池とが直列に連結し、直列に連結した電池集合が並列に連結する。   The first front electrode 521 and the second front electrode 522 are electrically connected by the first wiring 581, the second Schottky junction layer 541 and the second ohmic metal layer 542 are in contact with each other and electrically connected, If the front electrode 521 and the second ohmic metal layer 542 are electrically connected to the storage battery 583 through the second wiring 582, the first unit battery and the second unit battery are connected in series to connect the third unit battery and the second unit battery. Four unit batteries are connected in series, and battery sets connected in series are connected in parallel.

図10は、本発明の第5実施形態の変形例に係る太陽電池を示す断面図である。図10を参照しながら説明すれば、本実施形態に係る第2ショットキー接合層541と第2オーミック金属層542とは互いに離隔配置される。前記構成および配線を除いては、第5実施形態に係る太陽電池と同じ構造である。   FIG. 10 is a cross-sectional view showing a solar cell according to a modification of the fifth embodiment of the present invention. Referring to FIG. 10, the second Schottky junction layer 541 and the second ohmic metal layer 542 according to the present embodiment are spaced apart from each other. Except for the configuration and wiring, the structure is the same as that of the solar cell according to the fifth embodiment.

第1前面電極521は第2ショットキー接合層541と第1配線591とを通じて電気的に連結し、第2前面電極522と第2オーミック金属層542とには蓄電池593が第2配線592を通じて電気的に連結する。   The first front electrode 521 is electrically connected through the second Schottky junction layer 541 and the first wiring 591, and the storage battery 593 is electrically connected to the second front electrode 522 and the second ohmic metal layer 542 through the second wiring 592. Are connected.

これにより、本実施形態によれば、第1単位電池、第2単位電池、第3単位電池、および第4単位電池が直列に連結する。   Thereby, according to this embodiment, the 1st unit cell, the 2nd unit cell, the 3rd unit cell, and the 4th unit cell connect in series.

図11は、本発明の第6実施形態に係る太陽電池を示す断面図である。図11を参照しながら説明すれば、本実施形態に係る太陽電池106は、光透過性基板61と、光透過性基板61上に形成されたPN半導体層63と、PN半導体層63の第1面にショットキー接合した第1ショットキー接合層66と、PN半導体層63の第2面にショットキー接合した第2ショットキー接合層68と、第1ショットキー接合層66上に形成された電極67と、を含む。ここで、PN半導体層63の第2面は、第1面と反対方向を向く面となる。   FIG. 11 is a cross-sectional view showing a solar cell according to the sixth embodiment of the present invention. Referring to FIG. 11, the solar cell 106 according to the present embodiment includes a light transmissive substrate 61, a PN semiconductor layer 63 formed on the light transmissive substrate 61, and a first PN semiconductor layer 63. A first Schottky junction layer 66 having a Schottky junction with the surface, a second Schottky junction layer 68 having a Schottky junction with the second surface of the PN semiconductor layer 63, and an electrode formed on the first Schottky junction layer 66 67. Here, the second surface of the PN semiconductor layer 63 is a surface facing in the opposite direction to the first surface.

本実施形態に係る太陽電池106は、光透過性基板61上に形成された薄膜形態の太陽電池として形成される。光透過性基板61は、ガラスまたはポリマー材質の基板で形成されてもよい。   The solar cell 106 according to the present embodiment is formed as a thin-film solar cell formed on the light transmissive substrate 61. The light transmissive substrate 61 may be formed of a glass or polymer substrate.

PN半導体層63は薄膜形態で形成され、P型半導体層631とN型半導体層632およびP型半導体層631とN型半導体層632の間に形成されたI型半導体層633を含む。このような薄膜太陽電池のPIN接合構造は広く知られているため、詳しい説明は省略する。   The PN semiconductor layer 63 is formed in a thin film form, and includes a P-type semiconductor layer 631 and an N-type semiconductor layer 632, and an I-type semiconductor layer 633 formed between the P-type semiconductor layer 631 and the N-type semiconductor layer 632. Since the PIN junction structure of such a thin film solar cell is widely known, detailed description thereof is omitted.

第1ショットキー接合層66は、PN半導体層63上に配置され、N型半導体層632にショットキー接合する。第1ショットキー接合層66は、N型半導体層632よりも仕事関数がさらに大きい物質で形成される。第1ショットキー接合層66とN型半導体層の間には、絶縁物質からなる第1再結合防止層65が形成される。   The first Schottky junction layer 66 is disposed on the PN semiconductor layer 63 and forms a Schottky junction with the N-type semiconductor layer 632. The first Schottky junction layer 66 is formed of a material having a work function larger than that of the N-type semiconductor layer 632. A first recombination prevention layer 65 made of an insulating material is formed between the first Schottky junction layer 66 and the N-type semiconductor layer.

第2ショットキー接合層68は、光透過性基板61とPN半導体層63との間に配置され、P型半導体層631にショットキー接合する。第2ショットキー接合層68は、P型半導体層631よりも仕事関数がさらに小さい物質で形成される。   The second Schottky junction layer 68 is disposed between the light transmissive substrate 61 and the PN semiconductor layer 63 and is Schottky joined to the P-type semiconductor layer 631. The second Schottky junction layer 68 is formed of a material having a work function smaller than that of the P-type semiconductor layer 631.

このとき、第2ショットキー接合層68は、光透過性基板と接するように配置され、第2ショットキー接合層68とP型半導体層631との間には絶縁物質からなる第2再結合防止層64が形成される。   At this time, the second Schottky junction layer 68 is disposed in contact with the light-transmitting substrate, and a second recombination prevention layer made of an insulating material is provided between the second Schottky junction layer 68 and the P-type semiconductor layer 631. Layer 64 is formed.

第1ショットキー接合層66と第2ショットキー接合層68とは、光透過性を有するように1nm〜20nmの厚さで形成される。これによれば、両面に入射する光によって電力を生産することができる。   The first Schottky junction layer 66 and the second Schottky junction layer 68 are formed with a thickness of 1 nm to 20 nm so as to have optical transparency. According to this, electric power can be produced by light incident on both sides.

電極67と第2ショットキー接合層68とに蓄電池を連結すれば、第1ショットキー接合層66とN型半導体層632とが1つの太陽電池をなし、PN半導体層63が1つの太陽電池をなし、P型半導体層631と第2ショットキー接合層68とが1つの太陽電池をなすことにより、3つの太陽電池が直列に連結した構造となる。   If a storage battery is connected to the electrode 67 and the second Schottky junction layer 68, the first Schottky junction layer 66 and the N-type semiconductor layer 632 constitute one solar cell, and the PN semiconductor layer 63 constitutes one solar cell. None, when the P-type semiconductor layer 631 and the second Schottky junction layer 68 form one solar cell, a structure in which three solar cells are connected in series is obtained.

本実施形態によれば、PN半導体層63の両面にショットキー接合層66,68を形成することにより、3つの太陽電池が直列に連結した構造を容易に製作することができる。   According to this embodiment, by forming the Schottky junction layers 66 and 68 on both surfaces of the PN semiconductor layer 63, a structure in which three solar cells are connected in series can be easily manufactured.

図12は、本発明の第7実施形態に係る太陽電池を示す断面図である。図12を参照しながら説明すれば、本実施形態に係る太陽電池107は、光透過性基板71と、光透過性基板71上に形成されたPN半導体層73と、PN半導体層73の第1面にショットキー接合した第1ショットキー接合層76と、PN半導体層73の第2面にショットキー接合した第2ショットキー接合層78と、第1ショットキー接合層76上に形成された電極77と、を含む。ここで、PN半導体層73の第2面は、第1面と反対方向を向く面となる。   FIG. 12 is a cross-sectional view showing a solar cell according to the seventh embodiment of the present invention. Referring to FIG. 12, the solar cell 107 according to this embodiment includes a light transmissive substrate 71, a PN semiconductor layer 73 formed on the light transmissive substrate 71, and a first PN semiconductor layer 73. A first Schottky junction layer 76 having a Schottky junction with the surface, a second Schottky junction layer 78 having a Schottky junction with the second surface of the PN semiconductor layer 73, and an electrode formed on the first Schottky junction layer 76 77. Here, the second surface of the PN semiconductor layer 73 is a surface facing in the opposite direction to the first surface.

本実施形態に係る太陽電池107は、光透過性基板71上に形成された薄膜形態の太陽電池として形成される。光透過性基板71は、ガラスまたはポリマー材質の基板で形成されてもよい。   The solar cell 107 according to this embodiment is formed as a thin-film solar cell formed on the light transmissive substrate 71. The light transmissive substrate 71 may be formed of a glass or polymer substrate.

PN半導体層73は薄膜形態で形成され、N型半導体層731とP型半導体層732およびN型半導体層731とP型半導体層732の間に形成されたI型半導体層733を含む。このような薄膜太陽電池のPIN接合構造は広く知られているため、詳しい説明は省略する。   The PN semiconductor layer 73 is formed in a thin film form, and includes an N-type semiconductor layer 731 and a P-type semiconductor layer 732, and an I-type semiconductor layer 733 formed between the N-type semiconductor layer 731 and the P-type semiconductor layer 732. Since the PIN junction structure of such a thin film solar cell is widely known, detailed description thereof is omitted.

第1ショットキー接合層76は、PN半導体層73上に配置され、P型半導体層732にショットキー接合する。第1ショットキー接合層76は、P型半導体層732よりも仕事関数がさらに小さい物質で形成される。第1ショットキー接合層76とP型半導体層の間には、絶縁物質からなる第1再結合防止層75が形成される。   The first Schottky junction layer 76 is disposed on the PN semiconductor layer 73 and forms a Schottky junction with the P-type semiconductor layer 732. The first Schottky junction layer 76 is formed of a material having a work function smaller than that of the P-type semiconductor layer 732. A first recombination prevention layer 75 made of an insulating material is formed between the first Schottky junction layer 76 and the P-type semiconductor layer.

第2ショットキー接合層78は、光透過性基板71とPN半導体層73との間に配置され、N型半導体層731にショットキー接合する。第2ショットキー接合層78は、N型半導体層731よりも仕事関数がさらに大きい物質で形成される。   The second Schottky junction layer 78 is disposed between the light transmissive substrate 71 and the PN semiconductor layer 73, and is in Schottky junction with the N-type semiconductor layer 731. The second Schottky junction layer 78 is formed of a material having a work function larger than that of the N-type semiconductor layer 731.

このとき、第2ショットキー接合層78は、光透過性基板71と接するように配置され、第2ショットキー接合層78とN型半導体層731との間には絶縁物質からなる第2再結合防止層74が形成される。   At this time, the second Schottky junction layer 78 is disposed so as to be in contact with the light transmissive substrate 71, and a second recombination made of an insulating material is provided between the second Schottky junction layer 78 and the N-type semiconductor layer 731. A prevention layer 74 is formed.

第1ショットキー接合層76と第2ショットキー接合層78とは、光透過性を有するように1nm〜20nmの厚さで形成される。これによれば、両面に入射する光によって電力を生産することができる。   The first Schottky junction layer 76 and the second Schottky junction layer 78 are formed with a thickness of 1 nm to 20 nm so as to have optical transparency. According to this, electric power can be produced by light incident on both sides.

電極77と第2ショットキー接合層78に蓄電池を連結すれば、第1ショットキー接合層76とN型半導体層731とが1つの太陽電池をなし、PN半導体層73が1つの太陽電池をなし、P型半導体層732と第2ショットキー接合層78とが1つの太陽電池をなすことにより、3つの太陽電池が直列に連結した構造となる。   If a storage battery is connected to the electrode 77 and the second Schottky junction layer 78, the first Schottky junction layer 76 and the N-type semiconductor layer 731 constitute one solar cell, and the PN semiconductor layer 73 constitutes one solar cell. Since the P-type semiconductor layer 732 and the second Schottky junction layer 78 form one solar cell, a structure in which three solar cells are connected in series is obtained.

本実施形態によれば、PN半導体層73の両面にショットキー接合層76,78を形成することにより、3つの太陽電池が直列に連結した構造を容易に製作することができる。   According to this embodiment, by forming the Schottky junction layers 76 and 78 on both surfaces of the PN semiconductor layer 73, a structure in which three solar cells are connected in series can be easily manufactured.

上述では本発明の好ましい実施形態について説明したが、本発明はこれに限定されるものではなく、特許請求の範囲と発明の詳細な説明および添付した図面の範囲内で多様に変形して実施することが可能であり、これも本発明の範囲に属することは当然である。   Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications are made within the scope of the claims, the detailed description of the invention and the attached drawings. Of course, this is also within the scope of the present invention.

Claims (25)

P型半導体層とN型半導体層とを有するPN半導体層と、
前記PN半導体層の第1面にオーミック接合した第1電極と、
前記PN半導体層の前記第1面と反対方向を向く第2面にショットキー接合したショットキー接合層と、
前記ショットキー接合層と接するように形成された第2電極と、
前記ショットキー接合層と前記PN半導体層との間に配置され、絶縁性を有する物質で形成される再結合防止層と、を含む太陽電池。
A PN semiconductor layer having a P-type semiconductor layer and an N-type semiconductor layer;
A first electrode in ohmic contact with the first surface of the PN semiconductor layer;
A Schottky junction layer that is Schottky bonded to a second surface of the PN semiconductor layer facing away from the first surface;
A second electrode formed in contact with the Schottky junction layer;
A solar cell including a recombination prevention layer disposed between the Schottky junction layer and the PN semiconductor layer and formed of an insulating material.
前記再結合防止層は0.1nm〜10nmの厚さを有する請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the recombination preventing layer has a thickness of 0.1 nm to 10 nm. 前記N型半導体層は、前記再結合防止層と接するように配置される請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the N-type semiconductor layer is disposed in contact with the recombination prevention layer. 前記ショットキー接合層は、前記N型半導体層よりもさらに大きい仕事関数を有する請求項3に記載の太陽電池。   The solar cell according to claim 3, wherein the Schottky junction layer has a larger work function than the N-type semiconductor layer. 前記P型半導体層は、前記再結合防止層と接するように配置される請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the P-type semiconductor layer is disposed in contact with the recombination prevention layer. 前記ショットキー接合層は、前記P型半導体層よりもさらに小さい仕事関数を有する請求項5に記載の太陽電池。   The solar cell according to claim 5, wherein the Schottky junction layer has a smaller work function than the P-type semiconductor layer. 前記ショットキー接合層は金属で形成される請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the Schottky junction layer is formed of a metal. 前記ショットキー接合層は、金属、ITO、ATO、IZO、AZOからなる群より選択されたいずれか1つ以上の物質で形成される請求項1に記載の太陽電池。   2. The solar cell according to claim 1, wherein the Schottky junction layer is formed of any one or more materials selected from the group consisting of metal, ITO, ATO, IZO, and AZO. 前記PN半導体層はウエハで形成される請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the PN semiconductor layer is formed of a wafer. 前記PN半導体層は有機物質で形成される請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the PN semiconductor layer is formed of an organic material. 前記ショットキー接合層上には反射防止膜が付着する請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein an antireflection film is attached on the Schottky junction layer. 前記反射防止膜はSiOxまたはSiNで形成される請求項11に記載の太陽電池。   The solar cell according to claim 11, wherein the antireflection film is formed of SiOx or SiN. 前記反射防止膜は0.1nm〜100nmの厚さを有する請求項11に記載の太陽電池。   The solar cell according to claim 11, wherein the antireflection film has a thickness of 0.1 nm to 100 nm. 前記第1電極には光透過性基板が接するように配置され、
前記PN半導体層は、P型半導体層とN型半導体層および前記P型半導体層と前記N型半導体層の間に配置されたI(Intrinsic)型半導体層を有する薄膜形態で形成される請求項1に記載の太陽電池。
The first electrode is disposed so that a light-transmitting substrate is in contact therewith,
The PN semiconductor layer is formed in a thin film form having a P-type semiconductor layer, an N-type semiconductor layer, and an I (Intrinsic) -type semiconductor layer disposed between the P-type semiconductor layer and the N-type semiconductor layer. 1. The solar cell according to 1.
P型半導体層とN型半導体層とを有するPN半導体層と、
前記PN半導体層の第1面にオーミック接合した第1電極と、
前記PN半導体層の前記第1面と反対方向を向く第2面にショットキー接合したショットキー接合層と、
前記PN半導体層の前記第2面にオーミック接合し、前記ショットキー接合層と並んで配置されたオーミック金属層と、
前記ショットキー接合層上に形成された第1前面電極と、
前記オーミック金属層上に形成された第2前面電極と、
前記第2前面電極と前記第1電極とを電気的に連結する第1配線と、
前記第1前面電極と前記第1電極とを電気的に連結する第2配線と、を含む、太陽電池。
A PN semiconductor layer having a P-type semiconductor layer and an N-type semiconductor layer;
A first electrode in ohmic contact with the first surface of the PN semiconductor layer;
A Schottky junction layer that is Schottky bonded to a second surface of the PN semiconductor layer facing away from the first surface;
An ohmic metal layer that is in ohmic contact with the second surface of the PN semiconductor layer and is arranged alongside the Schottky junction layer;
A first front electrode formed on the Schottky junction layer;
A second front electrode formed on the ohmic metal layer;
A first wiring electrically connecting the second front electrode and the first electrode;
A solar cell comprising: a first wiring that electrically connects the first front electrode and the first electrode.
P型半導体層とN型半導体層とを有するPN半導体層と、
前記PN半導体層の第1面にオーミック接合した第1オーミック金属層と、
前記PN半導体の前記第1面にショットキー接合した第1ショットキー接合層と、
前記PN半導体層の第1面と反対方向を向く第2面にオーミック接合した第2オーミック金属層と、
前記PN半導体層の前記第2面にショットキー接合した第2ショットキー接合層と、
前記第1ショットキー接合層上に形成された第1前面電極と、
前記第1オーミック金属層上に形成された第2前面電極と、
前記第1前面電極と前記第2前面電極とを電気的に連結する第1配線と、
前記第1前面電極と前記第2オーミック金属層とを電気的に連結する第2配線と、を含む太陽電池。
A PN semiconductor layer having a P-type semiconductor layer and an N-type semiconductor layer;
A first ohmic metal layer in ohmic contact with the first surface of the PN semiconductor layer;
A first Schottky junction layer that is Schottky joined to the first surface of the PN semiconductor;
A second ohmic metal layer in ohmic contact with a second surface facing away from the first surface of the PN semiconductor layer;
A second Schottky junction layer that is Schottky joined to the second surface of the PN semiconductor layer;
A first front electrode formed on the first Schottky junction layer;
A second front electrode formed on the first ohmic metal layer;
A first wiring that electrically connects the first front electrode and the second front electrode;
A solar cell comprising: a second wiring that electrically connects the first front electrode and the second ohmic metal layer.
前記第1ショットキー接合層は前記第2オーミック金属層と上下方向に対応する位置に配置され、
前記第1オーミック金属層は前記第2ショットキー接合層と上下方向に対応する位置に配置され、
第2ショットキー接合層と第2オーミック金属層とが当接するように配置される請求項16に記載の太陽電池。
The first Schottky junction layer is disposed at a position corresponding to the second ohmic metal layer in the vertical direction,
The first ohmic metal layer is disposed at a position corresponding to the second Schottky junction layer in a vertical direction;
The solar cell of Claim 16 arrange | positioned so that a 2nd Schottky junction layer and a 2nd ohmic metal layer may contact | abut.
P型半導体層とN型半導体層とを有するPN半導体層と、
前記PN半導体層の第1面にオーミック接合した第1オーミック金属層と、
前記PN半導体の前記第1面にショットキー接合した第1ショットキー接合層と、
前記PN半導体層の第1面と反対方向を向く第2面にオーミック接合した第2オーミック金属層と、
前記PN半導体層の前記第2面にショットキー接合した第2ショットキー接合層と、
前記第1ショットキー接合層上に形成された第1前面電極と、
前記第1オーミック金属層上に形成された第2前面電極と、
前記第1前面電極と前記第2ショットキー接合層とを電気的に連結する第1配線と、
前記第2前面電極と前記第2オーミック金属層とを電気的に連結する第2配線と、を含む太陽電池。
A PN semiconductor layer having a P-type semiconductor layer and an N-type semiconductor layer;
A first ohmic metal layer in ohmic contact with the first surface of the PN semiconductor layer;
A first Schottky junction layer that is Schottky joined to the first surface of the PN semiconductor;
A second ohmic metal layer in ohmic contact with a second surface facing away from the first surface of the PN semiconductor layer;
A second Schottky junction layer that is Schottky joined to the second surface of the PN semiconductor layer;
A first front electrode formed on the first Schottky junction layer;
A second front electrode formed on the first ohmic metal layer;
A first wiring that electrically connects the first front electrode and the second Schottky junction layer;
A solar cell comprising: a second wiring that electrically connects the second front electrode and the second ohmic metal layer.
前記第1ショットキー接合層は前記第2オーミック金属層と上下方向に対応する位置に配置され、
前記第1オーミック金属層は前記第2ショットキー接合層と上下方向に対応する位置に配置され、
第2ショットキー接合層と第2オーミック金属層とが離隔配置される請求項18に記載の太陽電池。
The first Schottky junction layer is disposed at a position corresponding to the second ohmic metal layer in the vertical direction,
The first ohmic metal layer is disposed at a position corresponding to the second Schottky junction layer in a vertical direction;
The solar cell of claim 18, wherein the second Schottky junction layer and the second ohmic metal layer are spaced apart.
光透過性基板と、
前記光透過性基板上に形成され、P型半導体層とN型半導体層とを含むPN半導体層と、
前記PN半導体層の第1面にショットキー接合した第1ショットキー接合層と、
前記PN半導体層の前記第1面と反対方向を向く第2面にショットキー接合し、前記光透過性基板と前記PN半導体層の間に配置された第2ショットキー接合層と、
前記第1ショットキー接合層上に形成された電極と、
前記第1ショットキー接合層と前記PN半導体層との間に配置され、絶縁性を有する物質で形成される第1再結合防止層と、
前記第2ショットキー接合層と前記PN半導体層との間に配置され、絶縁性を有する物質で形成される第2再結合防止層と、を含む太陽電池。
A light transmissive substrate;
A PN semiconductor layer formed on the light transmissive substrate and including a P-type semiconductor layer and an N-type semiconductor layer;
A first Schottky junction layer bonded to the first surface of the PN semiconductor layer;
A Schottky junction to a second surface of the PN semiconductor layer facing away from the first surface, and a second Schottky junction layer disposed between the light transmissive substrate and the PN semiconductor layer;
An electrode formed on the first Schottky junction layer;
A first recombination prevention layer disposed between the first Schottky junction layer and the PN semiconductor layer and formed of an insulating material;
A solar cell including a second recombination prevention layer disposed between the second Schottky junction layer and the PN semiconductor layer and formed of an insulating material.
前記第1ショットキー接合層は、前記N型半導体層よりも仕事関数がさらに大きい物質で形成され、前記N型半導体層にショットキー接合し、
前記第2ショットキー接合層は、前記P型半導体層よりも仕事関数がさらに小さい物質で形成され、前記P型半導体層にショットキー接合する請求項20に記載の太陽電池。
The first Schottky junction layer is formed of a material having a larger work function than that of the N-type semiconductor layer, and forms a Schottky junction with the N-type semiconductor layer.
The solar cell according to claim 20, wherein the second Schottky junction layer is formed of a material having a work function smaller than that of the P-type semiconductor layer, and forms a Schottky junction with the P-type semiconductor layer.
前記第1ショットキー接合層は、前記P型半導体層よりも仕事関数がさらに小さい物質で形成され、前記P型半導体層にショットキー接合し、
前記第2ショットキー接合層は、前記N型半導体層よりも仕事関数がさらに大きい物質で形成され、前記N型半導体層にショットキー接合する請求項20に記載の太陽電池。
The first Schottky junction layer is formed of a material having a work function smaller than that of the P-type semiconductor layer, and forms a Schottky junction with the P-type semiconductor layer.
21. The solar cell according to claim 20, wherein the second Schottky junction layer is formed of a material having a work function larger than that of the N-type semiconductor layer, and forms a Schottky junction with the N-type semiconductor layer.
P型半導体層とN型半導体層とを有するPN半導体層を準備するPN半導体層準備段階と、
前記PN半導体層上に絶縁性を有する再結合防止層を形成する再結合防止層形成段階と、
前記PN半導体層にショットキー接合した金属層を形成するショットキー接合層形成段階と、
前記ショットキー接合層上に導電性を有する前面電極を形成する前面電極形成段階と、を含む、太陽電池の製造方法。
A PN semiconductor layer preparation step of preparing a PN semiconductor layer having a P-type semiconductor layer and an N-type semiconductor layer;
A recombination prevention layer forming step of forming an insulating recombination prevention layer on the PN semiconductor layer;
A Schottky junction layer forming step of forming a Schottky junction metal layer to the PN semiconductor layer;
A front electrode forming step of forming a conductive front electrode on the Schottky junction layer.
前記PN半導体層形成段階は、ウエハをドーピングしてN型半導体層を形成するウエハドーピング段階と、PN半導体層の背面に第1電極を形成する第1電極形成段階と、を含む請求項23に記載の太陽電池の製造方法。   The PN semiconductor layer forming step includes a wafer doping step of doping the wafer to form an N-type semiconductor layer, and a first electrode forming step of forming a first electrode on the back surface of the PN semiconductor layer. The manufacturing method of the solar cell of description. PN半導体層準備段階は、N型半導体層のフェルミ準位を増加させるフェルミ準位調節段階をさらに含む請求項23に記載の太陽電池の製造方法。   24. The method of manufacturing a solar cell according to claim 23, wherein the PN semiconductor layer preparation step further includes a Fermi level adjustment step of increasing the Fermi level of the N-type semiconductor layer.
JP2013502448A 2010-04-06 2011-02-15 Multiple solar cell having PN junction and Schottky junction and manufacturing method thereof Expired - Fee Related JP5420109B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2010-0031547 2010-04-06
KR1020100031547A KR101003808B1 (en) 2010-04-06 2010-04-06 Multiple solar cell having p-n juction and schottky juction, and fabricating method thereof
PCT/KR2011/000988 WO2011126209A2 (en) 2010-04-06 2011-02-15 Multi-solar cell having pn junction and schottky junction and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013524501A JP2013524501A (en) 2013-06-17
JP5420109B2 true JP5420109B2 (en) 2014-02-19

Family

ID=43513346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013502448A Expired - Fee Related JP5420109B2 (en) 2010-04-06 2011-02-15 Multiple solar cell having PN junction and Schottky junction and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP5420109B2 (en)
KR (1) KR101003808B1 (en)
CN (1) CN102844881B (en)
DE (1) DE112011101267T5 (en)
WO (1) WO2011126209A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101264368B1 (en) * 2011-12-07 2013-05-14 한국기계연구원 Solar cell having multilayered schottky juction layer
KR101520804B1 (en) * 2013-01-30 2015-05-15 한국표준과학연구원 High-efficient Solar Cell using wide-band absorption and energy transfer
CN103137770B (en) * 2013-02-21 2015-10-28 苏州科技学院 A kind of Graphene/Si p-n double-junction solar battery and preparation method thereof
US10355157B2 (en) * 2013-11-04 2019-07-16 Columbus Photovoltaics LLC Photovoltaic cells
US10100415B2 (en) * 2014-03-21 2018-10-16 Hypersolar, Inc. Multi-junction artificial photosynthetic cell with enhanced photovoltages
KR20170053556A (en) 2015-11-06 2017-05-16 (주)에이피텍 Solar cell module

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200473A (en) * 1979-03-12 1980-04-29 Rca Corporation Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer
JPS57211279A (en) * 1981-06-22 1982-12-25 Kobe Steel Ltd Amorphous si solar cell
JPS6057945A (en) 1983-09-09 1985-04-03 Fujitsu Ltd Semiconductor device
JP2002252358A (en) * 2001-02-21 2002-09-06 Kazuhiko Watanabe Solar battery using semiconductor device
JP2004039751A (en) 2002-07-01 2004-02-05 Toyota Motor Corp Photovoltaic element
KR101170193B1 (en) * 2004-06-30 2012-07-31 크리 인코포레이티드 Light emitting devices having current blocking structures and methods of fabricating light emitting devices having current blocking structures
US20070272918A1 (en) * 2006-05-25 2007-11-29 Barry Rand Organic photosensitive devices using subphthalocyanine compounds
JP2011518942A (en) * 2007-10-17 2011-06-30 ルション、ヤン Improved solution deposition assembly
KR100895977B1 (en) * 2008-04-10 2009-05-07 키스코홀딩스주식회사 Amorphous silicon thin-film soar cells and fabrication method for thereof
KR101003807B1 (en) * 2008-06-23 2010-12-23 한국기계연구원 Transparent solar cell and fabricating method thereof
US20100071751A1 (en) * 2008-09-22 2010-03-25 Electronics And Telecommunications Research Institute Photo-induced metal-insulator-transition material complex for solar cell, solar cell and solar cell module comprising the same

Also Published As

Publication number Publication date
CN102844881B (en) 2016-04-13
DE112011101267T5 (en) 2013-05-08
KR101003808B1 (en) 2010-12-23
WO2011126209A2 (en) 2011-10-13
WO2011126209A3 (en) 2011-12-15
JP2013524501A (en) 2013-06-17
CN102844881A (en) 2012-12-26

Similar Documents

Publication Publication Date Title
KR101895025B1 (en) Solar cell module and manufacturing method thereof
JP5261110B2 (en) Solar cell manufacturing method and solar cell
JP5420109B2 (en) Multiple solar cell having PN junction and Schottky junction and manufacturing method thereof
Hyun et al. Perovskite/Silicon Tandem Solar Cells with a V oc of 1784 mV Based on an Industrially Feasible 25 cm2 TOPCon Silicon Cell
US9691927B2 (en) Solar cell apparatus and method of fabricating the same
JP2010283406A (en) Solar cell
KR101428146B1 (en) Solar cell module and method of fabricating the same
CN202268357U (en) Thin film solar cell
KR101264368B1 (en) Solar cell having multilayered schottky juction layer
KR101626929B1 (en) Manufacturing method for multiple junction solar cell using compound thin film and multiple junction solar cell
US9224886B2 (en) Silicon thin film solar cell
US20120266933A1 (en) Solar cell
CN102270691A (en) Thin-film solar cell
KR101210110B1 (en) Solar cell and method of fabricating the same
KR20190143744A (en) Multi-junction solar cell and method of manufacturing the same
US9287421B2 (en) Solar cell module and method of fabricating the same
TW201236182A (en) Photovoltaic devices and methods of forming the same
KR101186242B1 (en) Optoelectronic component having three-dimentional pattern and fablication method thereof
KR101338549B1 (en) Solar cell and method of fabricating the same
KR101127054B1 (en) Thin film solar cell
CN115020519B (en) Solar laminated battery, battery assembly and photovoltaic system
KR101419805B1 (en) Back contact of thin film solar cell and Thin film solar cell comprising the same
US9349901B2 (en) Solar cell apparatus and method of fabricating the same
CN108198871A (en) Heterojunction solar cell and its manufacturing method
KR20170056236A (en) Metal welding solar cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees