KR101623372B1 - 다중 파장의 광을 이용한 혼합 시료의 분석 시스템 - Google Patents

다중 파장의 광을 이용한 혼합 시료의 분석 시스템 Download PDF

Info

Publication number
KR101623372B1
KR101623372B1 KR1020140097447A KR20140097447A KR101623372B1 KR 101623372 B1 KR101623372 B1 KR 101623372B1 KR 1020140097447 A KR1020140097447 A KR 1020140097447A KR 20140097447 A KR20140097447 A KR 20140097447A KR 101623372 B1 KR101623372 B1 KR 101623372B1
Authority
KR
South Korea
Prior art keywords
light
unit
light source
wavelength
sample
Prior art date
Application number
KR1020140097447A
Other languages
English (en)
Other versions
KR20160015495A (ko
Inventor
김이경
김성락
신아람
이민석
채희석
이기창
구수진
백문철
Original Assignee
케이맥㈜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이맥㈜ filed Critical 케이맥㈜
Priority to KR1020140097447A priority Critical patent/KR101623372B1/ko
Publication of KR20160015495A publication Critical patent/KR20160015495A/ko
Application granted granted Critical
Publication of KR101623372B1 publication Critical patent/KR101623372B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Ecology (AREA)
  • Hydrology & Water Resources (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 다중 파장의 광을 이용한 혼합 시료의 분석 시스템으로서, 보다 구체적으로 다중 파장의 광을 이용하여 분석하고자 하는 복수의 대상 물질이 혼합된 시료를 분석함으로써, 각각의 대상 물질의 농도를 정량적으로 분석할 수 있는 시스템에 관한 것이다. 본 발명에 따르면, 바이오 칩에 주입된 복수의 물질이 포함된 혼합 시료에 대하여 선택적으로 조사된 특정 파장 신호의 세기 및 파장의 변화를 분석함으로써 상기 혼합 시료에 포함되어 있는 각각의 물질에 대한 농도를 신속 및 정확하게 정량할 수 있다. 또한, 본 발명에 따르면, 복수의 물질이 포함된 혼합 시료 중 각각의 물질에 대한 정량적인 분석을 실시간 모니터링을 통해 수행할 수 있다는 점에서, 분석 시간차에 따른 물질의 변성을 미연에 방지할 수 있다.

Description

다중 파장의 광을 이용한 혼합 시료의 분석 시스템{Analysis system for composite sample using multi wavelength light}
본 발명은 다중 파장의 광을 이용한 혼합 시료의 분석 시스템으로서, 보다 구체적으로 다중 파장의 광을 이용하여 분석하고자 하는 복수의 대상 물질이 혼합된 시료를 분석함으로써, 각각의 대상 물질의 농도를 정량적으로 분석할 수 있는 시스템에 관한 것이다.
최근 당뇨병의 진단 및 예방하는데 있어서 혈당량을 주기적으로 측정해야 할 필요성이 증대되고 있다. 혈당량의 측정은 휴대용 측정기를 이용하여 손쉽게 측정할 수 있다. 다만, 혈당량은 환자의 식이상태 및 신체의 상태에 따라 변화가 심할 뿐만 아니라 측정에 필요한 혈액을 채취하는 과정에 통증이 수반되므로 환자가 정확하게 규정을 맞추어 측정하기가 어려운 단점이 있다.
단백질이 체액 중 포도당과 장시간에 걸쳐 반응할 경우, 당화단백질과 같은 변형단백질이 생성될 수 있으며, 이러한 당화단백질들은 2 ~ 3 개월 동안의 혈당량의 평균과 밀접한 관계가 있음이 보고된 바 있다. 즉, 당화단백질은 검사 시 공복 및 약물 복용 여부에 따른 오류가 적고 그 특이도가 좋아 당뇨병 및 이에 따른 합병증을 예측하는데 혈당량보다 더 좋은 지표로 여겨지고 있다.
이러한 생체 물질 지표, 즉 당화단백질의 측정을 통한 진단에는 광학(Optical), 전기화학(Electrochemical), 열량학(Thermal), 역학(Mechanical)적인 방식의 시스템이 적용될 수 있으며, 이 중에서 특히 광학적인 측정 시스템과 전기화학적인 측정 시스템이 선호되고 있다.
전기화학적인 방식을 이용한 진단 방법으로는 전기영동 또는 전기친화적 방법이 있으며, 이를 통해 세포 또는 조직 샘플에서 추출된 단백질을 젤 또는 모세관 전기 영동 또는 친화 기술에 의해 개별 단백질로 분리할 수 있다. 특히, 2차원 젤 전기영동(Two-dimensional gel electrophoresis)은 세포 또는 조직 샘플에서 얻은 개별 단백질들을 분리하는데 가장 최근에 채택된 방법이다.
다만, 전기영동에서 나타나는 밴드 또는 스팟들은 세포 또는 조직 내의 단백질들의 발현, 변형, 분해 등에 의한 변화를 모두 포함하기 때문에, 단백질 밴드 또는 스팟에 포함된 단백질들의 개별 특성을 규명하는데 어려움이 따르며, 상기 단백질 밴드 또는 스팟에 포함된 단백질 중에서 어떤 특징적인 의미를 가지는 단백질, 즉 타겟 특이적인 단백질 발굴은 매우 어려우며 중요한 기술적인 문제로 남아있다.
광학적인 방식을 이용한 진단 방법 중 간단하면서도 빠르고 정확한 방법으로 광 스펙트럼(optical spectroscopy)을 이용한 방법이 선호되고 있다. 이는 분석하고자 하는 생물학적 생체 물질과 빛(light) 간의 상호 작용을 기반으로 흡광도(Absorbance) 값 혹은 반사도(% Reflectance) 값의 신호를 얻음으로써 측정 물질의 분석이 가능하다는 장점을 지니고 있다.
상기와 같은 광 스펙트럼을 이용한 방법이 적용된 종래의 일반적인 광학 검출 시스템의 경우, 복수의 바이오 칩을 스캔하기 위해서는 하나의 바이오 칩에 대한 스캔이 완료된 후 이를 제거하고 다시 새로운 바이오 칩을 로딩시켜야 하는 번거로움이 수반되거나, 또는 복수의 바이오 칩을 동시에 스캔할 수 있다 하더라도 각각의 바이오 칩에 대한 스캔 후 결과값을 조합함으로써 검출이 이루어진다는 복잡함이 수반되었다.
이러한 종래의 시스템의 경우, 아무리 신속하고 균일한 속도로 바이오 칩에 대한 스캔이 이루어진다 하더라도 스캔하는 동안 각각의 시료가 이동하거나 스캔 시간에 의한 시료의 변화가 발생하게 되면 이에 대하여 보정할 수 있는 수단이 전무하였는 바, 정확한 검출 및 분석이 어려웠다.
또한, 종래의 시스템은 대부분 형광 신호만을 검출하기 때문에 광 출사원을 레이저로 사용하고 있으며, 사용할 수 있는 광원의 파장이 제한적이었다. 따라서, 광원을 사용하여 시료를 검출하기 위해서는 상기 광원과 반응하기 위한 염료를 시료와 결합시켜야 하는데, 사용할 수 있는 광원의 파장이 제한적이므로 사용할 수 있는 염료 역시 제한적일 수 밖에 없었다. 또한, 복수의 물질이 포함된 혼합 시료 중 어느 하나에 염료를 선택적으로 결합시키는 것 역시 어려웠다.
또한, 대부분 형광체를 여기시키기 위한 광원의 파장과 형광체의 발광 파장의 간격이 넓지 못하기 때문에, 광 검출부에 사용하는 필터의 성능에 분석 결과가 의존하는 기이한 현상도 발생하였다.
상기와 같은 문제를 해결하기 위해, 파장 선택성이 없는 다중 파장이 출사되는 광 출사원을 사용하는 시도도 이루어졌지만 이는 하나의 시료에 대한 분석에는 별 문제가 없으나, 복수의 물질이 포함된 혼합 시료에 적용할 경우, 검출 대상 이외의 물질에 의한 노이즈가 발생하였는 바, 혼합 시료에 포함된 물질 중 어느 하나만을 선택적으로 검출하는 것은 불가능에 가까웠다.
종래 기술로는 한국공개특허공보 제10-2011-0002350호가 있다.
한국공개특허공보 제10-2011-0002350호
본 발명자들은 종래의 광학 검출 시스템의 문제점을 해결하고자, 바이오칩의 검출 지점에 다중의 파장 광원을 조사시켜 시료의 이동 또는 분석까지의 대기 시간에 의한 변화 등 분석 결과에 영향을 줄 수 있는 요인들을 배제함으로써 복수의 물질이 포함된 혼합 시료의 정확한 정량적 분석이 가능한 시스템을 개발하고자 수년간 예의 노력하였다.
그 결과, 본 발명자들은 적어도 하나의 파장을 가지는 다중 파장의 광을 바이오 칩에 조사하여 시료에 의한 광 신호의 세기, 상기 시료를 통과한 광의 파장의 변화 또는 분석하고자 하는 물질에 결합시킨 염료에 의한 광 신호의 세기, 염료가 결합된 시료를 통과한 광의 파장의 변화 등을 검출 및 분석함으로써 종래의 기술에 대한 문제점을 해결할 수 있음을 발견하였다.
즉, 복수의 물질이 포함된 시료에 포함된 각각의 물질의 농도를 정량적으로 분석할 수 있는 시스템을 제공하기 위해, 본 발명은 광범위한 파장을 가지는 광원을 사용해야만 하는 필요성을 제거하고, 특정 파장의 광을 선택적으로 제공하는 광원이 복수개로 구비된 분석 시스템을 제공하는 것을 목적으로 한다.
상기와 같은 기술적 과제를 해결하기 위해,
본 발명의 일 측면에 따르면, 적어도 하나의 광을 출사하기 위한 광원부, 상기 광원부로부터 출사된 적어도 하나의 광을 혼합하는 광 혼합부, 및 상기 광 혼합부에 의해 혼합된 광을 바이오칩에 조사하기 위한 광 포커싱부, 를 포함하는 하부 스테이지; 및 상기 바이오칩을 통과한 적어도 하나의 광을 분리하기 위한 파장 분리부, 및 상기 파장 분리부로부터 분리된 광을 검출하기 위한 검출부, 를 포함하는 상부 스테이지;를 포함하며, 상기 상부 스테이지와 하부 스테이지 사이에는 바이오칩을 삽입하기 위한 칩 삽입부가 형성된 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템이 제공될 수 있다.
본 발명에 따르면, 바이오 칩에 주입된 복수의 물질이 포함된 혼합 시료에 대하여 선택적으로 조사된 특정 파장 신호의 세기 및 파장의 변화를 분석함으로써 상기 혼합 시료에 포함되어 있는 각각의 물질에 대한 농도를 신속 및 정확하게 정량할 수 있다.
또한, 본 발명에 따르면, 복수의 물질이 포함된 혼합 시료 중 각각의 물질에 대한 정량적인 분석을 실시간 모니터링을 통해 수행할 수 있다는 점에서, 분석 시간차에 따른 물질의 변성을 미연에 방지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 분석 시스템(100)의 사시도를 나타낸 것이다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 분석 시스템(100)의 광 혼합부(122)를 나타낸 것이다.
도 4는 본 발명의 다른 실시예에 따른 분석 시스템(100)의 단면도를 나타낸 것이다.
도 5은 본 발명의 다른 실시예에 따른 분석 시스템(100)의 측면도를 나타낸 것이다.
본 발명을 더 쉽게 이해하기 위해 편의상 특정 용어를 본원에 정의한다. 본원에서 달리 정의하지 않는 한, 본 발명에 사용된 과학 용어 및 기술 용어들은 해당 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미를 가질 것이다. 또한, 문맥상 특별히 지정하지 않는 한, 단수 형태의 용어는 그것의 복수 형태도 포함하는 것이며, 복수 형태의 용어는 그것의 단수 형태도 포함하는 것으로 이해되어야 한다.
이하에서는 본 발명의 실시예 및 도면을 참조하여 본 발명을 더욱 상세히 설명하고자 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다.
본 발명의 일 측면에 따르면, 적어도 하나의 광을 출사하기 위한 광원부(121), 상기 광원부(121)로부터 출사된 적어도 하나의 광을 혼합하는 광 혼합부(122), 및 상기 광 혼합부(122)에 의해 혼합된 광을 바이오칩(501)에 조사하기 위한 광 포커싱부(123), 를 포함하는 하부 스테이지(120); 및 상기 바이오칩(501)을 통과한 적어도 하나의 광을 분리하기 위한 파장 분리부(111), 및 상기 파장 분리부(111)로부터 분리된 광을 검출하기 위한 검출부(112), 를 포함하는 상부 스테이지(110);를 포함하며, 상기 상부 스테이지(110)와 하부 스테이지(120) 사이에는 바이오칩(501)을 삽입하기 위한 칩 삽입부(130)가 형성된 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템(100)이 제공될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 분석 시스템(100)의 구성을 보다 상세히 설명하도록 한다.
우선 본 발명의 일 실시예에 따른 분석 시스템(100)의 사시도를 나타낸 도 1을 참조하면, 본 발명에 따른 분석 시스템(100)은 크게 상부 스테이지(110)와 하부 스테이지(120), 그리고 상기 상부 스테이지(110)와 하부 스테이지(120) 사이에 형성된 칩 삽입부(130)를 포함한다.
상기 하부 스테이지(120)는 하우징 내 광원부(121), 광 혼합부(122)와 광 포커싱부(123)를 포함하도록 구성된다.
상기 광원부(121)는 적어도 하나의 광을 출사하기 위한 LD (laser diode) 또는 LED (light emitting diode)로 구성될 수 있다.
일 실시예에 있어서, 상기 광원부(121)는 서로 다른 파장을 가지는 복수의 광원을 출사하기 위한 복수의 광원부(121)로 구성될 수 있다.
상기 광원부(121)의 수는 분석하고자 하는 시료에 포함된 대상 물질의 종류 및 수에 따라 달라질 수 있으며, 바람직하게는 6개 이내, 보다 바람직하게는 4개 이내의 복수의 광원을 포함할 수 있으나, 반드시 이에 제한되는 것은 아니다.
또한, 분석하고자 하는 대상 물질의 종류 및 수에 따라 상기 광원부(121)에 포함된 광원이 제공되는 광의 파장이 결정되는 것이 바람직하다.
이 때, 상기 파장은 서로 최대한 중첩되지 않는 파장대를 가짐에 따라 분리 검출이 용이하도록 결정되는 것이 특히 바람직하다.
다른 실시예에 있어서, 상기 광원부(121)는 서로 다른 파장을 가지는 복수의 광원을 독립적으로 선택하여 출사하도록 구성될 수 있다.
여기서, 용어 "독립적"은 서로 다른 파장을 가지는 복수의 광원이 개별적으로 광을 출사하도록 구성된 것을 의미하며, 용어 "독립적"은 서로 다른 파장을 가지는 복수의 광원이 동시에 광을 출사하는 것이 아니라, 복수의 광원 중 일부만을 선택하여 광을 출사하도록 구성된 것을 의미한다.
상술한 바와 같이, 본 발명의 특정 실시예에 따른 분석 시스템(100)에 포함된 광원부(121)의 구성은 넓은 파장 대역의 광을 동시에 제공함에 따라 파장 선택성을 부여하기 어려운 종래의 광학 검출 스캐너의 한계를 극복하고자 한다.
파장 선택성이란 검출 및 분석하고자 하는 대상 물질을 독립적이고도 선택적으로 검출하기 위해 단 하나의 파장의 광을 제공하는 것을 의미하며, 본 발명의 일 실시예에 따른 분석 시스템(100)은 효율적인 파장 선택성을 제공함으로써 복수의 대상 물질 중 검출하고자 하는 대상 물질에 대하여 독립적이고도 선택적인 광 신호 검출이 가능하며, 검출 대상이 아닌 물질에 의해 발생하는 노이즈를 효과적으로 억제할 수 있다.
일 실시예에 있어서, 만약 상기 광원부(121)가 서로 다른 파장을 가지는 두 개의 광원을 출사하기 위한 두 개의 광원부(121)로 구성될 경우, 상기 광원부(121)는 610 ~ 625 nm의 파장 범위 내에서 선택되는 파장의 제1 광을 출사하는 제1 광원부(121a)와 410 ~ 420 nm의 파장 범위 내에서 선택되는 파장의 제2 광을 출사하는 제2 광원부(121b)로 구성될 수 있다.
상기 제1 광원부(121a)와 제2 광원부(121b)의 파장 범위는 상술한 바와 같이 대상 물질의 종류를 고려하여 결정된 것으로, 상기 제1 광원부(121a)와 제2 광원부(121b)가 상기 파장 범위를 가질 경우, 상기 대상 물질은 바람직하게는 당화단백질과의 타겟 특이적 상호 작용을 유도하기 위해 보론산기를 포함하는 염료가 포함된 당화단백질 및 비당화단백질의 혼합물일 수 있다.
여기서, 상기 단백질은 혈색소일 수 있다. 또한, 상기 대상 물질은 분리된 체액(예를 들어, 혈액)이며, 상기 당화단백질은 헤모글로빈 또는 알부민에 포도당이 결합된 당화헤모글로빈 또는 당화알부민일 수 있다.
이 때, 상기 당화단백질 및 비당화단백질은 수용액 상에서 410 ~ 420nm 파장 범위 내의 흡광도 값을 가질 수 있다. 또한, 보론산기를 포함하는 염료는 수용액 상에서 610 ~ 625 nm의 파장 범위 내의 흡광도 값을 가질 수 있다. 따라서, 상기 보론산기를 포함하는 염료와 시스-다이올 반응을 통해 결합된 당화단백질 역시 수용액 상에서 610 ~ 625 nm의 파장 범위 내의 흡광도 값을 가질 수 있다.
상술한 바와 같이, 상기 당화단백질 및 비당화단백질은 수용액 상에서 410 ~ 420 nm의 파장 범위 내의 흡광도 값을 가질 수도 있다. 여기서, 상기 당화단백질은 상기 보론산기를 포함하는 염료와 시스-다이올 반응을 통해 결합함으로써 610 ~ 625 nm의 파장 범위 내의 흡광도 값을 동시에 가질 수 있으나, 상기 비당화단백질은 상기 보론산기를 포함하는 염료와 타겟 특이적 상호작용을 할 수 없으므로, 610 ~ 625 nm의 파장 범위 내의 흡광도 값을 가지지 않는다.
따라서, 본 발명의 일 실시예에 따르면, 제1 광원부(121a)에서 출사되는 410 ~ 425 nm의 파장 범위 내의 제1 광을 이용한 흡광도 값을 통해 시료 중의 전체 단백질의 농도를 측정할 수 있으며, 상기 전체 단백질 중 포함된 당화단백질의 농도는 제2 광원부(121b)에서 출사되는 610 ~ 625 nm의 파장 범위 내의 제2 광을 이용한 흡광도 값을 통해 측정할 수 있다.
상기 광원부(121)와 광 혼합부(122) 사이에는 상기 광원부(121)에 의해 출사된 광의 크기를 확장시키는 광 확장부(124)가 더 포함될 수 있으며, 상기 광 확장부(124)를 통과하여 출사되는 복수의 광의 진행 방향은 서로 평행하다. 상기 광 확장부(124)를 통과한 광은 광 혼합부(122)로 들어가게 된다.
상기 광 혼합부(122)는 복수의 광원부(121)로부터 공급된 복수의 광을 균일하게 혼합하기 위한 구성이다.
일 실시예에 있어서, 상기 광 혼합부(122)는 제1 광원부(121a)로부터 출사된 광을 수직으로 반사시키기 위한 미러부(201)와 상기 미러부(201)에 의해 입사되는 광과 상기 제2 광원부(121b)로부터 출사된 광을 혼합하기 위한 전반사프리즘(202)을 포함하도록 구성된다(도 2 참조).
또한, 이의 역순으로 상기 광 혼합부(122)는 제2 광원부(121b)로부터 출사된 광을 수직으로 반사시키기 위한 미러부(201)와 상기 미러부(201)에 의해 입사되는 광과 상기 제1 광원부(121a)로부터 출사된 광을 혼합하기 위한 전반사프리즘(202)을 포함할 수 있다.
여기서, 상기 전반사프리즘(202)은 상기 미러부(201)에 입사되는 광(301)과 상기 전반사프리즘(202) 내에서 혼합되어 출사되는 광의 편향각이 90도가 되도록 구성되는 것이 바람직하며, 상기 전반사프리즘(202)은 예를 들어, 펜타프리즘 형태일 수 있다.
상기 전반사프리즘(202)의 내부에는 가상의 반사면(302)이 존재하는데, 상기 반사면(302)은 상기 미러부(201)에 의해 입사되는 광(301)을 굴절시키기 않으며(프리즘 내 프리즘의 굴절률이 동일하기 때문), 상기 입사되는 광의 일부는 반사시킬 수 있으나, 반사면(302)의 각도와 프리즘의 굴절률에 의해 프리즘 내의 다른 각도로 재입사되지 않으며, 외부로 빠져나갈 수 있도록 구성된다(도 3 참조).
상술한 전반사프리즘(202)을 이용한 실시예와는 달리, 또 다른 실시예에 따르면, 상기 광 혼합부(122)는 제1 광원부(121a)로부터 출사된 제1 광을 반사시키기 위한 제1 미러부(401a), 제2 광원부(121b)로부터 출사된 제2 광을 반사시키기 위한 제2 미러부(401b)와 상기 제1 미러부(401a) 및 제2 미러부(401b)로부터 반사된 제1 광 및 제2 광을 호모징나이징부(403)로 반사시키기 위한 제3 미러부(402)를 포함하도록 구성된다(도 4 참조).
상기 호모징나이징부(403)로 반사되어 들어온 제1 광 및 제2 광은 상기 호모징나이징부(403) 내에서 균일하게 혼합되어 광 포커싱부(123)로 출사된다.
상기 광 포커싱부(123)는 상기 광 혼합부(122)에 의해 균일하게 혼합된 광을 바이오칩(501)에 조사하게 되는데, 포커싱의 형태로는 점 포커싱, 선 포커싱 또는 면 포커싱이 적용될 수 있다.
상기 광 포커싱부(123)에 의해 상기 바이오칩(501)으로 조사되는 광의 입사각은 2.5도/10cm 이하, 바람직하게는 수직 방향(0도)인 것이 바람직하다.
바이오칩(501)에 조사되는 광의 입사각은 바이오칩(501)의 매질이 갖는 굴절률에 의해 통과하는 빛의 광 경로는 스넬의 법칙에 의해 굴절이 일어나게 되는데, 이 때 상기 광 포커싱부(123)에 의해 상기 바이오칩(501)으로 조사되는 광의 입사각이 2.5도/10cm를 초과할 경우, 검출부(112)로 들어가는 광이 손실되어 광량의 변화를 감지할 수 없게 된다.
상기 상부 스테이지(110)와 하부 스테이지(120) 사이에는 분석하고자 하는 대상 물질이 포함된 시료가 전개되기 위한 바이오칩(501)을 삽입하기 위한 칩 삽입부(130)가 형성된다.
이 때, 상기 칩 삽입부(130)에 삽입되는 바이오칩(501)은 미세유체 채널로 형성된 시료 전개부, 상기 시료 전개부의 일측으로 시료를 주입하기 위한 시료 주입부 및 상기 시료 전개부의 타측에 형성된 검출 지점(502)을 포함하도록 구성되며, 상기 광 포커싱부(123)는 혼합된 광을 상기 검출 지점(502)에 조사하도록 구성된다.
여기서, 상기 시료 전개부 상에는 단일 또는 복수의 검출 지점(502)이 설정될 수 있다. 상기 검출 지점(502)은 상기 광 혼합부(122)에 의해 혼합된 다중 파장의 광이 상기 광 포커싱부(123)에 의해 조사되는 영역으로서, 상기 시료 주입부를 통해 상기 시료 전개부의 일측으로 주입된 시료는 전기적 또는 기계적인 방법에 의해 시료 전개부 상에서 전개되어 상기 검출 지점(502)으로 이동하며, 상기 검출 지점(502)으로 이동된 시료에 혼합 광이 조사되어 통과하게 된다.
예를 들어, 상기 시료 전개부 상에 하나의 검출 지점(502)이 포함된 경우, 본 발명의 일 실시예에 따른 분석 시스템(100)은 상기 시료 전개부 상에서 최종적으로 전개가 완료된 시료에 대한 분석을 목적으로 할 수 있다. 만약, 상기 시료 전개부 상에 복수의 검출 지점(502)이 포함된 경우, 본 발명의 일 실시예에 따른 분석 시스템(100)은 상기 시료 전개부 상에서 전개되는 혼합 시료의 변화되는 특성에 대한 분석을 목적으로 할 수 있다.
상기 상부 스테이지(110)는 파장 분리부(111)와 검출부(112)를 포함한다.
또한, 상기 상부 스테이지(110)의 하부에는 상기 칩 삽입부(130)에 삽입된 바이오칩(501)과 인접하게 위치하며, 상기 시료 주입부를 통해 주입된 시료를 상기 검출 지점(502)까지 전기적 또는 기계적 방법으로 전개시키기 위한 시료 로딩부(131)가 더 포함된다.
여기서, 상기 전기적 방법은 바람직하게는 전기영동법일 수 있으며, 상기 전기영동법은 이차원 또는 비이차원적 전기영동법일 수 있다. 상기 기계적 방법으로는 펌프 또는 모세관력을 이용한 전개법이 이용될 수 있다.
상기 파장 분리부(111)는 상기 바이오칩(501)의 검출 지점(502)을 통과한 혼합된 다중 파장의 광을 다시 개별적인 광으로 분리하기 위한 구성으로, 특정 파장 범위를 가지는 있는 광은 반사되고 나머지의 광은 투과되도록 구성된다.
상기 광 혼합부(122)에 의해 혼합된 광의 수가 n개(여기서, n ≥ 2)일 때, 이를 분리하기 위한 상기 파장 분리부(111)의 수는 n-1개인 것이 바람직하다.
상기 검출부(112)는 CCD (Charge Coupled Device), CMOS (Complementary Metal Oxide Semiconductor), PD (Photodiode) 및 PMT (Photo Multiplier Tube)로부터 선택되는 적어도 하나의 감광체로 구성된다.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.
110 : 상부 스테이지 111 : 파장 분리부
112 : 검출부 120 : 하부 스테이지
121 : 광원부 122 : 광 혼합부
123 : 광 포커싱부 130 : 칩 삽입부

Claims (17)

  1. 서로 다른 파장을 가지는 복수의 광을 출사하기 위한 광원부,
    상기 광원부로부터 출사된 다중 파장의 광을 혼합하는 광 혼합부, 및
    상기 광 혼합부에 의해 혼합된 광을 바이오칩에 조사하기 위한 광 포커싱부, 를 포함하는 하부 스테이지; 및
    상기 바이오칩을 통과한 다중 파장의 광을 다시 개별적인 광으로 분리하기 위한 파장 분리부, 및
    상기 파장 분리부로부터 분리된 광을 개별적으로 검출하기 위한 검출부, 를 포함하는 상부 스테이지;를 포함하며,
    상기 상부 스테이지와 하부 스테이지 사이에는 바이오칩을 삽입하기 위한 칩 삽입부가 형성된 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  2. 제1항에 있어서,
    상기 바이오칩은,
    미세유체 채널로 형성된 시료 전개부;
    상기 시료 전개부의 일측으로 시료를 주입하기 위한 시료 주입부; 및
    상기 시료 전개부의 타측에 형성된 검출 지점;을 포함하며,
    상기 광 포커싱부는 상기 검출 지점으로 혼합된 광을 조사하는 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  3. 제2항에 있어서,
    상기 상부 스테이지의 하부에는,
    상기 칩 삽입부에 삽입된 바이오칩과 인접하게 위치하며,
    상기 시료 주입부를 통해 주입된 시료를 상기 검출 지점까지 전기적 또는 기계적 방법으로 전개시키기 위한 시료 로딩부를 더 포함하는 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  4. 제1항에 있어서,
    상기 광원부는,
    LD (laser diode) 또는 LED (light emitting diode)로 구성된 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  5. 삭제
  6. 제1항에 있어서,
    상기 광원부는,
    서로 다른 파장을 가지는 복수의 광원을 독립적으로 선택하여 출사하도록 구성된 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  7. 제1항에 있어서,
    상기 광원부는,
    610 ~ 625 nm의 파장 범위 내에서 선택되는 파장의 제1 광을 출사하는 제1 광원부; 및 410 ~ 420 nm의 파장 범위 내에서 선택되는 파장의 제2 광을 출사하는 제2 광원부;를 포함하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  8. 제1항에 있어서,
    상기 광원부와 광 혼합부 사이에는,
    상기 광원부에 의해 출사된 광의 크기를 확장시키는 광 확장부를 더 포함하며,
    상기 광 확장부를 통과하여 출사되는 복수의 광의 진행 방향은 서로 평행한 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  9. 제7항에 있어서,
    상기 광 혼합부는,
    제1 광원부로부터 출사된 광을 수직으로 반사시키기 위한 미러부; 및
    상기 미러부에 의해 입사되는 광과 상기 제2 광원부로부터 출사된 광을 혼합하기 위한 전반사프리즘;을 포함하는 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  10. 제7항에 있어서,
    상기 광 혼합부는,
    제2 광원부로부터 출사된 광의 진행 방향을 수직으로 변화시키기 위한 미러부; 및
    상기 미러부에 의해 입사되는 광과 상기 제1 광원부로부터 출사된 광을 혼합하기 위한 전반사프리즘;을 포함하는 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  11. 제9항 또는 제10항에 있어서,
    상기 전반사프리즘은,
    상기 미러부에 입사되는 광과 상기 전반사프리즘 내에서 혼합되어 출사되는 광의 편향각이 90도가 되도록 구성된 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  12. 제11항에 있어서,
    상기 전반사프리즘은 펜타프리즘인 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  13. 제7항에 있어서,
    상기 광 혼합부는,
    제1 광원부로부터 출사된 제1 광을 반사시키기 위한 제1 미러부;
    제2 광원부로부터 출사된 제2 광을 반사시키기 위한 제2 미러부;
    상기 제1 미러부 및 제2 미러부로부터 반사된 제1 광 및 제2 광을 호모징나이징부로 반사시키기 위한 제3 미러부;를 포함하며,
    상기 호모징나이징부는 제1 광 및 제2 광을 혼합하여 상기 광 포커싱부로 출사하는 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  14. 제1항에 있어서,
    상기 광 포커싱부는,
    상기 광 혼합부에 의해 혼합된 다중 파장의 광을 점 포커싱, 선 포커싱 또는 면 포커싱을 통해 포커싱하여 상기 바이오칩에 조사하는 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  15. 제1항에 있어서,
    상기 광 포커싱부에 의해 상기 바이오칩으로 조사되는 광의 입사각은 2.5도/10cm 이하인 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  16. 제1항에 있어서,
    상기 광 혼합부에 의해 혼합된 광의 수가 n개(여기서, n ≥ 2)일 때,
    이를 분리하기 위한 상기 파장 분리부의 수는 n-1개인 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
  17. 제1항에 있어서,
    상기 검출부는,
    CCD (Charge Coupled Device), CMOS (Complementary Metal Oxide Semiconductor), PD (Photodiode) 및 PMT (Photo Multiplier Tube)로부터 선택되는 적어도 하나의 감광체인 것을 특징으로 하는 다중 파장의 광을 이용한 혼합 시료의 분석 시스템.
KR1020140097447A 2014-07-30 2014-07-30 다중 파장의 광을 이용한 혼합 시료의 분석 시스템 KR101623372B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140097447A KR101623372B1 (ko) 2014-07-30 2014-07-30 다중 파장의 광을 이용한 혼합 시료의 분석 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140097447A KR101623372B1 (ko) 2014-07-30 2014-07-30 다중 파장의 광을 이용한 혼합 시료의 분석 시스템

Publications (2)

Publication Number Publication Date
KR20160015495A KR20160015495A (ko) 2016-02-15
KR101623372B1 true KR101623372B1 (ko) 2016-05-24

Family

ID=55356439

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140097447A KR101623372B1 (ko) 2014-07-30 2014-07-30 다중 파장의 광을 이용한 혼합 시료의 분석 시스템

Country Status (1)

Country Link
KR (1) KR101623372B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056762A1 (ko) * 2016-09-22 2018-03-29 주식회사 딕스젠 당화 알부민 측정용 시약 조성물 및 이를 이용한 당화 알부민의 측정방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027607A (ja) 1999-07-15 2001-01-30 Kaken Kogyo:Kk 観察装置
US20060219939A1 (en) * 2004-12-03 2006-10-05 Nano Science Diagnostic, Inc. Method and apparatus for low quantity detection of bioparticles in small sample volumes
JP2009521684A (ja) 2005-12-22 2009-06-04 ハネウェル・インターナショナル・インコーポレーテッド 携帯用サンプル分析装置のカートリッジ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027607A (ja) 1999-07-15 2001-01-30 Kaken Kogyo:Kk 観察装置
US20060219939A1 (en) * 2004-12-03 2006-10-05 Nano Science Diagnostic, Inc. Method and apparatus for low quantity detection of bioparticles in small sample volumes
JP2009521684A (ja) 2005-12-22 2009-06-04 ハネウェル・インターナショナル・インコーポレーテッド 携帯用サンプル分析装置のカートリッジ

Also Published As

Publication number Publication date
KR20160015495A (ko) 2016-02-15

Similar Documents

Publication Publication Date Title
US11779919B2 (en) Microfluidic detection system and a microfluidic cartridge
US20210072141A1 (en) Radiation Carrier and Use Thereof in an Optical Sensor
JP4640797B2 (ja) 生体分子相互作用測定装置及び測定方法
US9417235B2 (en) Optical measurement apparatus
CN1748139A (zh) 用于血液分析的装置和方法
US20210315496A1 (en) Systems, Devices, Components and Methods for Analyzing Body Fluid Samples
JP6412928B2 (ja) 蛍光標識を用いた分析装置
US8277752B2 (en) Optical measurement apparatus
EP2990779B1 (en) Device for detecting analyzed object in specimen and method therefor
US11988605B2 (en) Filter device for an optical module for a lab-on-a-chip analysis device, optical module for a lab-on-a-chip analysis device and method for operating an optical module for a lab-on-a-chip analysis device
KR101623372B1 (ko) 다중 파장의 광을 이용한 혼합 시료의 분석 시스템
KR101514694B1 (ko) 검체 내 분석물을 검출하기 위한 디바이스 및 방법
JP2000283960A (ja) マイクロチップ電気泳動装置
EP3705875B1 (en) An apparatus and method for detecting photoluminescent light emitted from a sample
Baldini et al. A new optical platform for biosensing based on fluorescence anisotropy
CA2962320A1 (en) Detection of analytes using nanoparticles as light scattering enhancers
JP2020521122A (ja) 流体中の検体を検出するための多孔質光ファイバ
KR20130017423A (ko) 체액분석 방법 및 이를 이용한 체액분석 시스템
CA3170696C (en) Point-of-care testing system, analyzer and method
JP2010117287A (ja) 蛍光偏光検出装置
JP2015225048A (ja) ラマン散乱光測定用チップ及びラマン散乱光測定装置
EP3317643B1 (en) Modulation of luminescent dyes
JP2023539429A (ja) 吸収分光分析器および使用方法
KR20210041558A (ko) 체액 샘플의 분석물 농도를 측정하기 위한 장치 및 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190430

Year of fee payment: 4