KR101603772B1 - Solid electrolyte polymer, Polymer actuator using cross-linking PVDF polymer and Manufacturing Method of the Same - Google Patents

Solid electrolyte polymer, Polymer actuator using cross-linking PVDF polymer and Manufacturing Method of the Same Download PDF

Info

Publication number
KR101603772B1
KR101603772B1 KR1020090063072A KR20090063072A KR101603772B1 KR 101603772 B1 KR101603772 B1 KR 101603772B1 KR 1020090063072 A KR1020090063072 A KR 1020090063072A KR 20090063072 A KR20090063072 A KR 20090063072A KR 101603772 B1 KR101603772 B1 KR 101603772B1
Authority
KR
South Korea
Prior art keywords
polymer
pvdf
butyl
crosslinking agent
methyl imidazolium
Prior art date
Application number
KR1020090063072A
Other languages
Korean (ko)
Other versions
KR20100068167A (en
Inventor
권종오
최승태
이영관
구자춘
박수진
Original Assignee
삼성전자주식회사
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 성균관대학교산학협력단 filed Critical 삼성전자주식회사
Priority to US12/633,220 priority Critical patent/US8480917B2/en
Priority to JP2009281792A priority patent/JP5714814B2/en
Priority to CN2009110000401A priority patent/CN101798429B/en
Priority to EP09178917.2A priority patent/EP2202265B1/en
Publication of KR20100068167A publication Critical patent/KR20100068167A/en
Application granted granted Critical
Publication of KR101603772B1 publication Critical patent/KR101603772B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PVDF계 폴리머 및 전해 물질을 포함하는 폴리머 액츄에이터가 개시된다. 개시된 PVDF계 폴리머는 가교제에 의해 가교된 상태로 액츄에이터 등에 적용될 수 있다. A polymer actuator comprising a PVDF based polymer and an electrolytic material is disclosed. The disclosed PVDF-based polymer can be applied to an actuator or the like in a state of being crosslinked by a crosslinking agent.

Description

고체 전해질 폴리머, 가교된 PVDF계 폴리머를 이용한 폴리머 액츄에이터 및 이의 제조 방법{Solid electrolyte polymer, Polymer actuator using cross-linking PVDF polymer and Manufacturing Method of the Same}TECHNICAL FIELD [0001] The present invention relates to a solid polymer electrolyte, a solid electrolyte polymer, a polymer actuator using cross-linked PVDF polymer,

본 발명의 실시예는 고체 전해질 폴리머 및 이를 이용한 액츄에이터에 관한 것으로, 모바일 기기 등에 널리 사용될 수 있으며, 폴리머 MEMS, 바이오, 태양전지 등 다양한 분야에 응용될 수 있다. Embodiments of the present invention relate to a solid electrolyte polymer and an actuator using the same, and can be widely used in mobile devices and the like, and can be applied to various fields such as polymer MEMS, bio, and solar cell.

최근 폴리머 센서 및 폴리머를 이용한 전해질 폴리머 액츄에이터는 다양한 분야에서의 응용 가능성이 부각되면서, 그 활용 범위를 넓혀가고 있다. 예를 들어, 모바일 기기용 고성능 카메라 모듈과 관련하여, 오토 포커스 및 줌 기능을 구현하기 위하여 액츄에이터를 활용할 수 있을 것으로 예상된다. In recent years, polymer polymer actuators using polymer sensors and polymers have been expanding their applications because of their potential applications in various fields. For example, with respect to high performance camera modules for mobile devices, it is expected that actuators can be utilized to implement autofocus and zoom functions.

종래의 전해질 폴리머 액츄에이터는 액체 전해질을 이용함으로써, 전해질 물질을 담을 수 있는 챔버를 채용해야 하므로, 부피 증가의 문제가 발생할 수 있으며, 실링(sealing)의 신뢰성 문제 등이 존재한다. 이러한 전해질 폴리머 액츄에이터의 대안으로 NBR(아크릴로 니트릴 부타디엔 고무 : acrylonitrile butadiene rubber)/폴리피롤(polypyrrole)등을 이용한 고체 전해질 폴리머 액츄에이터가 알려 져 있다. Conventional electrolyte polymer actuators require the use of a liquid electrolyte to accommodate a chamber capable of holding an electrolyte material, so that a problem of volume increase may arise, and there is a reliability problem of sealing. As an alternative to such an electrolyte polymer actuator, a solid electrolyte polymer actuator using NBR (acrylonitrile butadiene rubber) / polypyrrole is known.

고체 전해질 폴리머 및 이를 포함하여 상대적으로 열안정성 및 내화학성이 뛰어나고 저전압 구동이 가능한 폴리머 액츄에이터를 제공한다. A solid electrolyte polymer and a polymer actuator having excellent thermal stability and chemical resistance and capable of driving at a low voltage, including the polymer electrolyte, are provided.

본 발명의 실시예에서는 PVDF계 폴리머 및 전해 물질로 형성된 고체 전해질층;을 포함하는 폴리머 액츄에이터를 제공한다. In an embodiment of the present invention, there is provided a polymer actuator comprising a PVDF polymer and a solid electrolyte layer formed of an electrolytic material.

상기 고체 전해질층 양면에 형성된 제 1전극; 및 제 2전극;을 포함할 수 있다. A first electrode formed on both surfaces of the solid electrolyte layer; And a second electrode.

상기 PVDF계 폴리머는 가교제에 의해 가교된 것일 수 있다. The PVDF polymer may be crosslinked by a crosslinking agent.

상기 PVDF계 폴리머는 P(VDF(vinylidene fluoride)-TrFE(trifluoroethylene)-CTFE(chloro trifluoro ethylene)) 또는 P(VDF(vinylidene fluoride)-TrFE(trifluoroethylene)-CFE(chloro fluoro ethylene))일 수 있다. The PVDF-based polymer may be P (vinylidene fluoride) - (trifluoroethylene) - chloro trifluoroethylene (PTFE) or P (vinylidene fluoride) - Trifluoroethylene (PTFE) - CFC (chloro fluoro ethylene).

상기 제 1전극은 PPy(polypyrrole), PEDOT(3,4-Ethylen DiOxy Thiopene)또는 PANI(Polyaniline)를 포함하며, 상기 제 2전극은 PPy(polypyrrole), PEDOT(3,4-Ethylen DiOxy Thiopene) 또는 PANI(Polyaniline)를 포함하여 형성된 것일 수 있다. Wherein the first electrode comprises at least one of PPy (polypyrrole), PEDOT (3,4-Ethylen DiOxy Thiophene), or PPy (polypyrrole), PEDOT Or PANI (Polyaniline).

상기 가교제는, dicumyl peroxide(DCP), benzoyl peroxide, bisphenol A, methylenediamine, Ethylenediamine(EDA), isopropylethylenediamine(IEDA), 1,3 Phenylenediamine(PDA), 1,5-Naphthalenediamine(NDA), 2,4,4-trimethyl-1 또는 6-hexanediamine(THDA)일 수 있다. The crosslinking agent may be selected from the group consisting of dicumyl peroxide (DCP), benzoyl peroxide, bisphenol A, methylenediamine, ethylenediamine (EDA), isopropylethylenediamine (IEDA), 1,3 phenylenediamine (PDA), 1,5-naphthalenediamine -trimethyl-1 or 6-hexanediamine (THDA).

상기 전해 물질은 BMIBF(n-butyl-3-metyl imidazolium tetrafluoroborate), BMIPF6(n-butyl-3-metyl imidazolium hexafluorophosphate) 및 BMITFSI(n-butyl-3-metyl imidazolium bis(trifluoromethanesulfonyl)imide)로 이루어진 군에서 선택된 일종 이상의 물질일 수 있다. The electrolytic material was prepared from a group consisting of n-butyl-3-methyl imidazolium tetrafluoroborate (BMIBF), n-butyl-3-methyl imidazolium hexafluorophosphate (BMIPF6), and n-butyl-3-methyl imidazolium bis (trifluoromethanesulfonyl) imide It may be one or more selected materials.

그리고, 본 발명의 실시예에서는 폴리머 액츄에이터의 제조 방법에 있어서, In the method of manufacturing a polymer actuator according to the embodiment of the present invention,

PVDF계 폴리머의 분말로 PVDF계 용액을 형성한 뒤, 상기 PVDF계 용액에 가교제를 투입하는 단계; Forming a PVDF-based solution as a PVDF-based polymer powder, and then introducing a crosslinking agent into the PVDF-based solution;

상기 가교제를 포함하는 상기 PVDF용액을 막 형태로 형성한 뒤 열처리를 하여 가교된 PVDF 폴리머막을 형성하는 단계; Forming the PVDF solution including the crosslinking agent in a film form and then performing heat treatment to form a crosslinked PVDF polymer film;

상기 가교된 PVDF 폴리머막에 전도성 폴리머 용액을 코팅하는 단계; 및 Coating the crosslinked PVDF polymer film with a conductive polymer solution; And

상기 PVDF 폴리머막 내에 전해액을 주입하는 단계; 를 포함하는 폴리머 액츄에이터의 제조 방법을 제공한다. Injecting an electrolyte into the PVDF polymer film; The present invention also provides a method of manufacturing a polymer actuator.

상기 전도성 폴리머는 PPy(polypyrrole), PEDOT(3,4-Ethylen DiOxy Thiopene) 또는 PANI(Polyaniline)일 수 있다. The conductive polymer may be PPy (polypyrrole), PEDOT (3,4-Ethylen DiOxy Thiophene) or PANI (Polyaniline).

또한, 본 발명의 실시예에서는 가교된 PVDF계 폴리머 및 전해 물질로 형성된 고체 전해질 폴리머를 제공한다. In addition, embodiments of the present invention provide a solid electrolyte polymer formed of a crosslinked PVDF polymer and an electrolytic material.

본 발명의 실시예에 따르면, 가교된 PVDF계 폴리머를 액츄에이터용 고분자 물질로 사용함으로써, 저전압 구동이 가능하며, 열안정성 및 내화학성이 뛰어난 고체 전해질 폴리머 및 폴리머 액츄에이터를 제공할 수 있다. According to the embodiment of the present invention, by using a crosslinked PVDF polymer as a polymer material for an actuator, it is possible to provide a solid electrolyte polymer and a polymer actuator which can be driven at a low voltage and have excellent thermal stability and chemical resistance.

이하, 첨부된 도면을 참조하여 가교된 PVDF계 폴리머를 이용한 고체 전해질 폴리머와 폴리머 액츄에이터에 대해 상세히 설명하고자 한다. 참고로, 도면에 도시된 각각 층 또는 영역들의 두께 및 폭은 설명을 위하여 과장되게 도시한 것임을 명심하여야 한다.Hereinafter, the solid electrolyte polymer and the polymer actuator using the crosslinked PVDF polymer will be described in detail with reference to the accompanying drawings. For reference, it should be noted that the thickness and width of each layer or regions shown in the figures are exaggerated for clarity.

도 1a 및 도 1b는 본 발명의 실시예에 의한 PVDF계 폴리머를 이용한 고체 전해질 폴리머(solid electrolyte polymer) 및 이를 포함하는 폴리머 액츄에이터(polymer actuator)의 구조를 나타낸 도면이다. FIGS. 1A and 1B are views showing the structure of a solid electrolyte polymer and a polymer actuator including the solid electrolyte polymer using the PVDF polymer according to an embodiment of the present invention.

도 1a 및 도 1b를 참조하면, 고체 전해질 폴리머층(12)이 형성되어 있으며, 고체 전해질 폴리머층(12)의 적어도 일면에 전극이 형성되어 있다. 예를 들어 고체 전해질 폴리머층(12)의 상면 및/또는 하면에 제 1전극(10), 제 2전극(14)이 형성되어 있다. 고체 전해질 폴리머층(12)은 PVDF계 터폴리머(terpolymer)를 포함하여 형성된 것일 수 있으며, 가교제(cross-linking agent)에 의해 가교되어 열 안전성 및 화학적 안정성이 향상된 것일 수 있다. 고체 전해질 폴리머층(12)은 가교된 PVDF계 폴리머 내부에 전해 물질이 포함된 것일 수 있다. 1A and 1B, a solid electrolyte polymer layer 12 is formed, and an electrode is formed on at least one surface of the solid electrolyte polymer layer 12. For example, the first electrode 10 and the second electrode 14 are formed on the upper surface and / or the lower surface of the solid electrolyte polymer layer 12. The solid electrolyte polymer layer 12 may be formed of a PVDF terpolymer and crosslinked by a cross-linking agent to improve thermal stability and chemical stability. The solid electrolyte polymer layer 12 may contain an electrolytic material inside the crosslinked PVDF-based polymer.

구체적으로 PVDF계 터폴리머로 사용될 수 있는 물질을 예를 들면, P(VDF(vinylidene fluoride)-TrFE(trifluoroethylene)-CTFE(chloro trifluoro ethylene)) 또는 P(VDF(vinylidene fluoride)-TrFE(trifluoroethylene)-CFE(chloro fluoro ethylene)) 등이 있다. PVDF계 폴리머는 고체 전해질 폴리머층(12)이 높은 열적안정성과 각종 솔벤트(solvent)에 쉽게 용해되지 않는 높은 내화학성을 요구하는 경우 그 자체만으로 부족할 수 있다. 이 경우, 열적 안정성 및 내화학성을 향상시키기 위하여 가교제를 이용하여 PVDF계 폴리머를 가교시킨 상태로 고체 전해질 폴리머층(12)으로 사용할 수 있다. Specifically, a material that can be used as a PVDF terpolymer is, for example, P (vinylidene fluoride) -TrFE (trifluoroethylene) -CTFE (chlorofluoroethylene) or P (VDF (vinylidene fluoride) CFE (chloro fluoro ethylene)). The PVDF polymer may be insufficient by itself if the solid electrolyte polymer layer 12 requires high thermal stability and high chemical resistance that is not readily soluble in various solvents. In this case, in order to improve thermal stability and chemical resistance, the PVDF polymer may be used as a solid electrolyte polymer layer 12 in a state of being crosslinked with a crosslinking agent.

가교제로 사용될 수 있는 물질은 예를 들면, dicumyl peroxide(DCP), benzoyl peroxide, bisphenol A, methylenediamine, Ethylenediamine(EDA), isopropylethylenediamine(IEDA), 1,3 Phenylenediamine(PDA), 1,5-Naphthalenediamine(NDA), 2,4,4-trimethyl-1 또는 6-hexanediamine(THDA) 등이 있다. Examples of substances that can be used as crosslinking agents include dicumyl peroxide (DCP), benzoyl peroxide, bisphenol A, methylenediamine, ethylenediamine (EDA), isopropylethylenediamine (IEDA) ), 2,4,4-trimethyl-1 or 6-hexanediamine (THDA).

가교된 PVDF계 폴리머 내부에 포함될 수 있는 전해 물질은 예를 들면, BMIBF(n-butyl-3-metyl imidazolium tetrafluoroborate), BMIPF6(n-butyl-3-metyl imidazolium hexafluorophosphate) 및 BMITFSI(n-butyl-3-metyl imidazolium bis(trifluoromethanesulfonyl)imide)로 이루어진 군에서 선택된 일종 이상의 물질일 수 있다. Electrolytic materials that can be included in the crosslinked PVDF polymer include, for example, BMIBF (n-butyl-3-methyl imidazolium tetrafluoroborate), BMIPF6 (n-butyl-3-methyl imidazolium hexafluorophosphate) and BMITFSI -methyl imidazolium bis (trifluoromethanesulfonyl) imide).

제 1전극(10)과 제 2전극(14)은 PPy(polypyrrole), PEDOT(3,4-Ethylen DiOxy Thiopene) 또는 PANI(Polyaniline)등의 전도성 폴리머로 형성된 것일 수 있다. The first electrode 10 and the second electrode 14 may be formed of a conductive polymer such as PPy (Polypyrrole), PEDOT (3,4-Ethylene Di-Oxythiophene), or PANI (Polyaniline).

폴리머 액츄에이터의 구동 원리를 설명하면 다음과 같다. 제 1전극(10) 및/또는 제 2전극(14)을 통하여 전압이 인가되면, 고체 전해질 폴리머층(12)이 산화 상태가 되어 (+) 전하를 띄게 된다. 그리고, 고체 전해질 폴리머층(12) 내의 (-) 전하가 제 1전극(10) 또는 제 2전극(14) 방향으로 이동하면서 고체 전해질 폴리머층(12)의 팽윤 현상에 의해 구부러지면서 구동하게 된다. 이와 같은 액츄에이터의 구동 방향은 인가 전압 방향에 따라 선택적으로 조절될 수 있다. The driving principle of the polymer actuator will be described as follows. When a voltage is applied through the first electrode 10 and / or the second electrode 14, the solid electrolyte polymer layer 12 becomes an oxidized state and becomes positively charged. The negative charge in the solid electrolyte polymer layer 12 is driven to move in the direction of the first electrode 10 or the second electrode 14 while being bent by the swelling phenomenon of the solid electrolyte polymer layer 12. The driving direction of such an actuator can be selectively adjusted according to the applied voltage direction.

도 2는 THDA 가교제로 가교시킨 PVDF계 폴리머를 이용한 고체 전해질 폴리머 액츄에이터의 단면 이미지를 나타낸 도면이다. 여기서, 제 1전극(10) 및 제 2전극(14)는 전도성 폴리머인 PPy를 20 내지 25㎛ 두께로 형성시킨 것이고, 고체 전해질 폴리머층(12)은 P(VDF-TrFE-CTFE) 터폴리머를 30-35㎛ 두께로 형성시킨 것으로 전해 물질(BMITFSI)이 포함된 것이다. 2 is a cross-sectional image of a solid electrolyte polymer actuator using a PVDF polymer crosslinked with a THDA crosslinking agent. Here, the first electrode 10 and the second electrode 14 are formed of PPy, which is a conductive polymer, in a thickness of 20 to 25 탆, and the solid electrolyte polymer layer 12 is a P (VDF-TrFE-CTFE) It is made of 30-35μm thick and contains electrolytic material (BMITFSI).

이하, 도 3a 내지 도 3k를 참조하여, 본 발명의 실시예에 의한 가교된 PVDF계 폴리머를 이용한 액츄에이터의 제조 방법에 대해 설명하고자 한다. Hereinafter, a method for manufacturing an actuator using a crosslinked PVDF polymer according to an embodiment of the present invention will be described with reference to FIGS. 3A to 3K.

도 3a를 참조하면, 용해제(31)(solvent)를 포함하는 용기(41) 내에 PVDF계 폴리머 분말(P)을 투입한다. PVDF계 폴리머로는 P(VDF-TrFE-CTFE) 또는 P(VDF-TrFE-CFE) 터폴리머를 사용할 수 있다. 예를 들어 5wt.%의 PVDF계 폴리머 용액 상태로 상온 또는 열을 가하면서 믹싱(mixing)을 한다. Referring to FIG. 3A, a PVDF polymer powder P is introduced into a container 41 containing a solvent 31 (solvent). P (VDF-TrFE-CTFE) or P (VDF-TrFE-CFE) terpolymer may be used as the PVDF polymer. For example, the PVDF polymer solution is mixed with 5 wt.% PVDF polymer solution at room temperature or heat.

도 3b 및 도 3c를 참조하면, PVDF계 폴리머 용액(32)에 가교제(CL)를 투입한다. 가교제(CL)로는 dicumyl peroxide(DCP), benzoyl peroxide, bisphenol A, methylenediamine, Ethylenediamine(EDA), isopropylethylenediamine(IEDA), 1,3 Phenylenediamine(PDA), 1,5-Naphthalenediamine(NDA), 2,4,4-trimethyl-1 또는 6-hexanediamine(THDA) 등을 사용할 수 있다. 예를 들어, 약 2wt.%의 가교제(CL)를 PVDF계 용액(32)이 포함된 용기(41)에 투입한 뒤, 상온 또는 열을 가하면서 혼합하 여, 가교제(CL)와 PVDF 폴리머 용액(32)의 혼합 용액(33)을 형성한다. Referring to FIGS. 3B and 3C, a crosslinking agent (CL) is added to the PVDF polymer solution (32). As a cross-linking agent (CL), dicumyl peroxide (DCP), benzoyl peroxide, bisphenol A, methylenediamine, ethylenediamine (EDA), isopropylethylenediamine (IEDA), 1,3phenylenediamine (PDA), 1,5-naphthalenediamine 4-trimethyl-1 or 6-hexanediamine (THDA) may be used. For example, a crosslinking agent (CL) of about 2 wt.% Is put into a container (41) containing a PVDF system solution (32) and then mixed at room temperature or heat while applying a crosslinking agent (CL) (33) of the mixed solution (32).

도 3d를 참조하면, 가교제와 PVDF 폴리머 용액의 혼합 용액(33)을 예를 들어, 솔루션 캐스팅 방법으로 바-코터(43)(bar-coater)를 이용하여 플레이트(42) 상에서 막 형태로 형성한다. 그리고, 용해제(31)를 증발시킨다. Referring to FIG. 3D, a mixed solution 33 of a crosslinking agent and a PVDF polymer solution is formed in a film form on a plate 42 using a bar-coater 43, for example, by a solution casting method . Then, the solvent 31 is evaporated.

도 3e를 참조하면, 가교제가 포함된 PVDF 폴리머막(F1)을 가열 용기(44) 내에서 예를 들어, 섭씨 약 160도 내지 170도의 온도에서 열을 가하여 가교를 시킨다. Referring to FIG. 3E, a PVDF polymer film F1 containing a crosslinking agent is crosslinked by heating in a heating vessel 44, for example, at a temperature of about 160 to 170 degrees centigrade.

가교제에 의한 PVDF 폴리머의 가교 여부를 확인하기 위하여 DMA(dynamic mechanical analysis), DSC(differential scanning calorimeter)(DSC) 분석 및 용해도 시험(solubility test)을 실시할 수 있다. 상기 과정을 거친 PVDF 폴리머막(F1)에 대한 DMA 분석 결과, 초기 상태의 PVDF 폴리머와 가교된 상태의 PVDF 폴리머의 유리 전이 온도(glass transition temperature : Tg)를 비교해보면, 가교된 상태의 경우 Tg가 상승한다. 그리고, 손실 탄성률(loss modulus) 및 저장 탄성률(storage modulus)을 비교하면, 가교된 상태의 PVDF 폴리머의 경우, 초기 상태의 PVDF에 비해 높은 값을 갖는 것을 확인할 수 있다. DSC 분석의 경우, 초기 상태의 PVDF 폴리머와 가교된 PVDF 폴리머의 DSC peak의 결정양(△H)을 비교하면, 가교된 상태에서의 결정양의 값이 상대적으로 작아지게 된다. 이는 가교제에 의해 PVDF 폴리머가 가교 상태가 되면, 사슬간에 서로 얽히기 때문이다. Dynamic mechanical analysis (DMA), differential scanning calorimeter (DSC) analysis and solubility test can be performed to confirm the crosslinking of the PVDF polymer by the crosslinking agent. As a result of the DMA analysis of the PVDF polymer film (F1) subjected to the above process, when comparing the glass transition temperature (Tg) of the PVDF polymer in the initial state and the PVDF polymer in the crosslinked state, Tg Rise. Comparing the loss modulus and the storage modulus, the crosslinked PVDF polymer has a higher value than the PVDF in the initial state. In the case of DSC analysis, when the crystallization amount (? H) of the DSC peak of the PVDF polymer in the initial state and the crosslinked PVDF polymer are compared, the value of the crystal amount in the crosslinked state becomes relatively small. This is because when the PVDF polymer is crosslinked by the crosslinking agent, the chains are entangled with each other.

가교제에 의한 가교가 확인된 PVDF 폴리머를 이용하여 폴리머 액츄에이터 형성 방법을 설명한다. A method of forming a polymer actuator using a PVDF polymer in which crosslinking by a crosslinking agent is confirmed will be described.

도 3f를 참조하면, 가교된 PVDF 폴리머막에 전극으로 사용될 전도성 폴리머층을 코팅하기 위하여, 전도성 폴리머 용액(34)을 포함하는 용기(45)에 PVDF 폴리머막을 담근다. 전도성 폴리머로는 PPy(polypyrrole), PEDOT(3,4-Ethylen DiOxy Thiopene) 또는 PANI(Polyaniline) 등을 이용할 수 있다. 예를 들어, 전도성 폴리머 용액(34)으로 피롤(pyrrole)을 이용하여, 가교된 PVDF 폴리머막을 피롤 원액에 수분 내지 수십분 동안 담근다. 그리고, PVDF 폴리머막(F2)에 피롤이 스며들게 한 다음 피롤이 스며든 PVDF 폴리머막(F2)을 꺼낸 뒤, 그 표면에 묻어 있는 피롤을 필터 페이퍼(filter paper) 등으로 잘 닦는다. 그리고, 단량체인 피롤을 중합하여 PPy를 형성하기 위하여, 도 3g에 나타낸 바와 같이, 산화제(35)를 포함한 용기(45) 내에 피롤이 스며든 PVDF 폴리머막을 담근다. 산화제(35)로는 금속화합물, FTS(Iron toluene sulfonate), FeCl3 또는 AuCl3 등을 사용할 수 있다. 예를 들어, 2M의 FeCl3 용액에 PVDF 폴리머막을 함침할 수 있다. 결과적으로 전도성 폴리머가 코팅된 PVDF 폴리머막(F3)을 형성할 수 있다. Referring to FIG. 3F, a PVDF polymer membrane is immersed in a container 45 containing a conductive polymer solution 34 to coat a crosslinked PVDF polymer membrane with a conductive polymer layer to be used as an electrode. As the conductive polymer, PPy (polypyrrole), PEDOT (3,4-Ethylen DiOxy Thiophene), PANI (Polyaniline) and the like can be used. For example, the crosslinked PVDF polymer membrane is immersed in the pyrrole stock solution for several minutes to several tens of minutes by using pyrrole as the conductive polymer solution 34. [ Then, the PVDF polymer film F2 is impregnated with pyrrole, and then the PVDF polymer film F2 impregnated with the pyrrole is taken out. Then, the pyrrole buried on the surface of the PVDF polymer film F2 is wiped with a filter paper or the like. In order to polymerize pyrrole, which is a monomer, to form PPy, a PVDF polymer film impregnated with pyrrole is immersed in a container 45 containing an oxidizing agent 35, as shown in Fig. 3G. As the oxidizing agent (35), a metal compound, iron toluene sulfonate (FTS), FeCl 3 or AuCl 3 can be used. For example, a 2M FeCl 3 solution can be impregnated with a PVDF polymer membrane. As a result, a conductive polymer-coated PVDF polymer film (F3) can be formed.

도 3h를 참조하면, 용기(45)에서 꺼낸 전도성 폴리머로 코팅된 PVDF 폴리머막(F4)의 사면을 c 라인을 따라 자른 뒤, 예를 들어 메탄올로 세척하여 PVDF 폴리머막(F4) 내부의 피롤 단량체를 제거한다. 그리고, 도 3i에 나타낸 바와 같이 진공 오븐(46)에서 상온 건조시킴으로써 전도성 폴리머/PVDF 폴리머막/전도성 폴리머 구조의 폴리머 막(F5), 예를 들어, PPy/PVDF 폴리머 막/PPy 막을 형성할 수 있다. 3H, the slope of the PVDF polymer film F4 coated with the conductive polymer taken out from the container 45 is cut along the line c, and then washed with methanol, for example, to remove the pyrrole monomer . Then, a polymer film (F5) of a conductive polymer / PVDF polymer film / conductive polymer structure, for example, a PPy / PVDF polymer film / PPy film can be formed by drying at room temperature in a vacuum oven 46 as shown in Fig. 3i .

도 3j를 참조하면, PVDF 폴리머막에 전해 물질을 주입하기 위하여, 전해 물 질이 용매에 용해된 액체 전해액(36)이 담긴 용기(45) 내에 상기에서 제조된 일정 크기의 전도성 폴리머/PVDF 폴리머막/전도성 폴리머 구조의 막을 담근다. 전해 물질로는 BMIBF(n-butyl-3-metyl imidazolium tetrafluoroborate), BMIPF6(n-butyl-3-metyl imidazolium hexafluorophosphate) 또는 BMITFSI(n-butyl-3-metyl imidazolium bis(trifluoromethanesulfonyl)imide) 등을 사용할 수 있다. 용매로는 PC(propylene carbonate), acetonitile, methyl benzoate 또는 EC(methyl benzoateethylene carbonate) 등을 사용할 수 있다. 액체 전해액(36)이 PVDF 폴리머막 내에 충분히 스며들게 하도록 하기 위해서 함침 과정 중 열이나 압력을 가할 수 있다. 결과적으로 액체 전해액(36)이 함침된 PVDF 폴리머막(F6)을 얻을 수 있다. 그리고, 도 3k를 참조하면, 액체 전해액 함침 시 사용된 용매를 증발시킴으로써 전해 물질 만이 PVDF 폴리머 내부에 남도록하여 전해 물질이 포함된 PVDF계 폴리머 액츄에이터(F7)를 형성할 수 있다.3J, in order to inject an electrolytic substance into the PVDF polymer film, a conductive polymer / PVDF polymer film having a certain size prepared in the above-described manner in the container 45 containing the liquid electrolyte 36 in which the electrolytic substance is dissolved in the solvent / Immerses the membrane of the conductive polymer structure. As the electrolytic material, n-butyl-3-metyl imidazolium tetrafluoroborate (BMIBF), n-butyl-3-metyl imidazolium hexafluorophosphate (BMIPF6) or n-butyl-3-methyl imidazolium bis (trifluoromethanesulfonyl) imide have. As the solvent, PC (propylene carbonate), acetonitile, methyl benzoate or EC (methyl benzoate ethylene carbonate) may be used. Heat or pressure may be applied during the impregnation process to ensure that the liquid electrolyte 36 is sufficiently impregnated within the PVDF polymer membrane. As a result, the PVDF polymer film F6 impregnated with the liquid electrolyte 36 can be obtained. Referring to FIG. 3K, the solvent used in impregnating the liquid electrolyte may be evaporated to leave only the electrolytic material inside the PVDF polymer, thereby forming the PVDF polymer actuator F7 containing the electrolytic material.

상술한 바와 같이 제조된 액츄에이터의 움직임을 확인하기 위하여, 5 × 30mm2 크기의 액츄에이터를 제조하였다. 여기서, 액츄에이터는 가교제로 DCP를 사용하여 P(VDF(vinylidene fluoride)-TrFE(trifluoroethylene)-CTFE(chloro trifluoro ethylene))로 형성된 PVDF계 폴리머막 내에 BMITFSI 전해 물질이 포함되며, PPy로 전극을 형성한 것이다. 액츄에이터에 대해, -5V ~ 5V사이의 범위에서 500mV/sec의 속도로 Potentiostat 장비(PARSTAT 2263)를 이용하여 순환 전압 전류법을 실시하였다. 이때 나타나는 액츄에이터의 구동 변위(mm)를 측정하기 위하여 레이저 빔(KEYENCE LK-081 (KEYENCE Co., Japan))장비를 설치하고 구동 변위를 측정하였다. 측정한 결과, 5mm 이상의 구동 변위를 확인하였으며, 약 10mm 및 15mm 정도의 구동 변위까지도 확인할 수 있었다.In order to confirm the movement of the actuator manufactured as described above, a 5 x 30 mm 2 actuator was manufactured. Here, the actuator includes a BMITFSI electrolytic material in a PVDF polymer film formed of P (VDF (vinylidene fluoride) -TrFE (trifluoroethylene) -CTFE (chloro trifluoro ethylene)) using DCP as a crosslinking agent, will be. The actuator was subjected to cyclic voltammetry using a Potentiostat instrument (PARSTAT 2263) at a rate of 500 mV / sec in the range of -5 V to 5 V. To measure the actuator displacement (mm) at this time, a laser beam (KEYENCE LK-081, KEYENCE Co., Japan) was installed and the drive displacement was measured. As a result of the measurement, the driving displacement of 5 mm or more was confirmed, and the driving displacement of about 10 mm and 15 mm was also confirmed.

상기한 설명에서 많은 사항이 구체적으로 기재되어 있으나, 그들은 발명의 범위를 한정하는 것이라기보다, 실시예의 예시로서 해석되어야 한다. 따라서, 본 발명의 범위는 설명된 실시예에 의하여 정하여 질 것이 아니고 특허 청구범위에 기재된 기술적 사상에 의해 정하여져야 한다.While a great many have been described in the foregoing description, they should not be construed as limiting the scope of the invention, but rather as examples of embodiments. Accordingly, the scope of the present invention should not be limited by the illustrated embodiments but should be determined by the technical idea described in the claims.

도 1a 및 도 1b는 본 발명의 실시예에 의한 가교된 PVDF계 폴리머를 이용한 고체 전해질 폴리머(solid electrolyte polymer) 및 이를 포함하는 폴리머 액츄에이터(polymer actuator)의 구조를 나타낸 도면이다. FIGS. 1A and 1B are diagrams illustrating the structure of a solid electrolyte polymer and a polymer actuator including the same according to an embodiment of the present invention using a crosslinked PVDF polymer.

도 2는 가교된 PVDF계 폴리머를 이용한 고체 전해질 폴리머 액츄에이터의 단면 이미지를 나타낸 도면이다.2 is a cross-sectional image of a solid electrolyte polymer actuator using a crosslinked PVDF polymer.

도 3a 내지 도 3k는 본 발명의 실시예에 의한 가교된 PVDF계 폴리머를 이용한 액츄에이터의 제조 방법을 나타낸 도면이다. 3A to 3K are views showing a method of manufacturing an actuator using a crosslinked PVDF polymer according to an embodiment of the present invention.

< 도면의 주요 부분에 대한 부호의 설명 >Description of the Related Art

10... 제 1전극 12... 고체 전해질 폴리머층10 ... first electrode 12 ... solid electrolyte polymer layer

14... 제 2전극 31... 용해제14 ... second electrode 31 ... solvent

32... PVDF계 용액 33... 혼합 용액32 ... PVDF system solution 33 ... mixed solution

34... 전도성 폴리머 용액 35... 산화제34 ... conductive polymer solution 35 ... oxidizing agent

36... 액체 전해액 41, 45... 용기 36 ... liquid electrolyte 41, 45 ... container

42... 플레이트 43... 바-코터42 ... plate 43 ... bar-coater

44... 가열 용기 46... 오븐44 ... heating vessel 46 ... oven

Claims (18)

PVDF계 폴리머 및 전해 물질로 형성된 고체 전해질층;을 포함하고, 상기 PVDF계 폴리머는 가교제에 의해 가교되며, 상기 가교제는, dicumyl peroxide(DCP), benzoyl peroxide, bisphenol A, methylenediamine, Ethylenediamine(EDA), isopropylethylenediamine(IEDA), 1,3 Phenylenediamine(PDA), 1,5-Naphthalenediamine(NDA), 2,4,4-trimethyl-1 또는 6-hexanediamine(THDA)인 폴리머 액츄에이터.Wherein the PVDF polymer is crosslinked by a crosslinking agent and the crosslinking agent is selected from the group consisting of dicumyl peroxide (DCP), benzoyl peroxide, bisphenol A, methylenediamine, ethylenediamine (EDA) polymer actuators such as isopropylethylenediamine (IEDA), 1,3-phenylenediamine (PDA), 1,5-naphthalenediamine (NDA), 2,4,4-trimethyl-1 or 6-hexanediamine (THDA). 제 1항에 있어서,The method according to claim 1, 상기 고체 전해질층 양면에 형성된 제 1전극; 및 제 2전극;을 포함하는 폴리머 액츄에이터.A first electrode formed on both surfaces of the solid electrolyte layer; And a second electrode. 삭제delete 제 1항에 있어서, The method according to claim 1, 상기 PVDF계 폴리머는 P(VDF(vinylidene fluoride)-TrFE(trifluoroethylene)-CTFE(chloro trifluoro ethylene)) 또는 P(VDF(vinylidene fluoride)-TrFE(trifluoroethylene)-CFE(chloro fluoro ethylene))인 폴리머 액츄에이터. The PVDF-based polymer is a polymer actuator wherein P (vinylidene fluoride) -TrFE (trifluoroethylene) -CTFE (chloro trifluoroethylene) or P (VDF (vinylidene fluoride) -TrFE (trifluoroethylene) -CFluoroethylene). 제 2항에 있어서,3. The method of claim 2, 상기 제 1전극은 PPy(polypyrrole), PEDOT(3,4-Ethylen DiOxy Thiopene)또는 PANI(Polyaniline)를 포함하여 형성된 폴리머 액츄에이터.Wherein the first electrode comprises polypyrolene (PPy), 3,4-ethylenedioxythiophene (PEDOT), or PANI (Polyaniline). 제 2항에 있어서,3. The method of claim 2, 상기 제 2전극은 PPy(polypyrrole), PEDOT(3,4-Ethylen DiOxy Thiopene) 또는 PANI(Polyaniline)를 포함하여 형성된 폴리머 액츄에이터.Wherein the second electrode comprises polypyrolene (PPy), 3,4-ethylenedioxythiophene (PEDOT), or PANI (Polyaniline). 삭제delete 제 1항에 있어서, The method according to claim 1, 상기 전해 물질은 BMIBF(n-butyl-3-metyl imidazolium tetrafluoroborate), BMIPF6(n-butyl-3-metyl imidazolium hexafluorophosphate) 및 BMITFSI(n-butyl-3-metyl imidazolium bis(trifluoromethanesulfonyl)imide)로 이루어진 군에서 선택된 일종 이상의 물질인 폴리머 액츄에이터.The electrolytic material was prepared from a group consisting of n-butyl-3-methyl imidazolium tetrafluoroborate (BMIBF), n-butyl-3-methyl imidazolium hexafluorophosphate (BMIPF6), and n-butyl-3-methyl imidazolium bis (trifluoromethanesulfonyl) imide Polymer actuators that are one or more selected materials. 폴리머 액츄에이터의 제조 방법에 있어서, A method of manufacturing a polymer actuator, PVDF계 폴리머의 분말로 PVDF계 용액을 형성한 뒤, 상기 PVDF계 용액에 가교제를 투입하는 단계; Forming a PVDF-based solution as a PVDF-based polymer powder, and then introducing a crosslinking agent into the PVDF-based solution; 상기 가교제를 포함하는 상기 PVDF계 용액을 막 형태로 형성한 뒤 열처리를 하여 가교된 PVDF 폴리머막을 형성하는 단계; Forming the PVDF-based solution containing the crosslinking agent in a film form and then performing heat treatment to form a crosslinked PVDF polymer film; 상기 가교된 PVDF 폴리머막에 전도성 폴리머 용액을 코팅하는 단계; 및 Coating the crosslinked PVDF polymer film with a conductive polymer solution; And 상기 PVDF 폴리머막 내에 전해액을 주입하는 단계; 를 포함하며, Injecting an electrolyte into the PVDF polymer film; / RTI &gt; 상기 가교제는, dicumyl peroxide(DCP), benzoyl peroxide, bisphenol A, methylenediamine, Ethylenediamine(EDA), isopropylethylenediamine(IEDA), 1,3 Phenylenediamine(PDA), 1,5-Naphthalenediamine(NDA), 2,4,4-trimethyl-1 또는 6-hexanediamine(THDA)인 폴리머 액츄에이터의 제조 방법.The crosslinking agent may be selected from the group consisting of dicumyl peroxide (DCP), benzoyl peroxide, bisphenol A, methylenediamine, ethylenediamine (EDA), isopropylethylenediamine (IEDA), 1,3 phenylenediamine (PDA), 1,5-naphthalenediamine -trimethyl-1 or 6-hexanediamine (THDA). 제 9항에 있어서, 10. The method of claim 9, 상기 PVDF계 폴리머는 P(VDF(vinylidene fluoride)-TrFE(trifluoroethylene)-CTFE(chloro trifluoro ethylene)) 또는 P(VDF(vinylidene fluoride)-TrFE(trifluoroethylene)-CFE(chloro fluoro ethylene))인 폴리머 액츄에이터의 제조 방법. The PVDF polymer may be a polymer actuator such as P (VDF (vinylidene fluoride) -TrFE (trifluoroethylene) -CTFE (chloro trifluoroethylene)) or P (VDF (vinylidene fluoride) -TrFE Gt; 제 9항에 있어서,10. The method of claim 9, 상기 전도성 폴리머는 PPy(polypyrrole), PEDOT(3,4-Ethylen DiOxy Thiopene) 또는 PANI(Polyaniline)인 폴리머 액츄에이터의 제조 방법.Wherein the conductive polymer is PPy (polypyrrole), PEDOT (3,4-Ethylen DiOxythiopene), or PANI (Polyaniline). 삭제delete 제 9항에 있어서, 10. The method of claim 9, 상기 전해액은 용매에 용해된 전해물질을 포함하는 폴리머 액츄에이터의 제조 방법.Wherein the electrolytic solution comprises an electrolytic material dissolved in a solvent. 제 13항에 있어서, 14. The method of claim 13, 상기 전해 물질은 BMIBF(n-butyl-3-metyl imidazolium tetrafluoroborate), BMIPF6(n-butyl-3-metyl imidazolium hexafluorophosphate) 및 BMITFSI(n-butyl-3-metyl imidazolium bis(trifluoromethanesulfonyl)imide)로 이루어진 군에서 선택된 일종 이상의 물질인 폴리머 액츄에이터의 제조 방법.The electrolytic material was prepared from a group consisting of n-butyl-3-methyl imidazolium tetrafluoroborate (BMIBF), n-butyl-3-methyl imidazolium hexafluorophosphate (BMIPF6), and n-butyl-3-methyl imidazolium bis (trifluoromethanesulfonyl) imide &Lt; / RTI &gt; wherein the polymeric material is at least one selected material. 가교된 PVDF계 폴리머 및 전해 물질로 형성된 고체 전해질 폴리머로서, 상기 PVDF 폴리머는 가교제에 의해 가교되며, 상기 가교제는 dicumyl peroxide(DCP), benzoyl peroxide, bisphenol A, methylenediamine, Ethylenediamine(EDA), isopropylethylenediamine(IEDA), 1,3 Phenylenediamine(PDA), 1,5-Naphthalenediamine(NDA), 2,4,4-trimethyl-1 또는 6-hexanediamine(THDA)인 고체 전해질 폴리머.. Wherein the PVDF polymer is crosslinked by a crosslinking agent and the crosslinking agent is selected from the group consisting of dicumyl peroxide (DCP), benzoyl peroxide, bisphenol A, methylenediamine, ethylenediamine (EDA), isopropylethylenediamine ), 1,3-Phenylenediamine (PDA), 1,5-Naphthalenediamine (NDA), 2,4,4-trimethyl-1 or 6-hexanediamine (THDA) 제 15항에 있어서, 16. The method of claim 15, 상기 PVDF계 폴리머는 P(VDF(vinylidene fluoride)-TrFE(trifluoroethylene)-CTFE(chloro trifluoro ethylene)) 또는 P(VDF(vinylidene fluoride)-TrFE(trifluoroethylene)-CFE(chloro fluoro ethylene))인 고체 전해질 폴리머. The PVDF polymer is a solid electrolyte polymer that is P (vinylidene fluoride) -TrFE (trifluoroethylene) -CTFE (chloro trifluoroethylene) or P (VDF (vinylidene fluoride) -TrFE . 삭제delete 제 15항에 있어서, 16. The method of claim 15, 상기 전해 물질은 BMIBF(n-butyl-3-metyl imidazolium tetrafluoroborate), BMIPF6(n-butyl-3-metyl imidazolium hexafluorophosphate) 및 BMITFSI(n-butyl-3-metyl imidazolium bis(trifluoromethanesulfonyl)imide)로 이루어진 군에서 선택된 일종 이상의 물질인 고체 전해질 폴리머.The electrolytic material was prepared from a group consisting of n-butyl-3-methyl imidazolium tetrafluoroborate (BMIBF), n-butyl-3-methyl imidazolium hexafluorophosphate (BMIPF6), and n-butyl-3-methyl imidazolium bis (trifluoromethanesulfonyl) imide A solid electrolyte polymer that is one or more selected materials.
KR1020090063072A 2008-12-12 2009-07-10 Solid electrolyte polymer, Polymer actuator using cross-linking PVDF polymer and Manufacturing Method of the Same KR101603772B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/633,220 US8480917B2 (en) 2008-12-12 2009-12-08 Solid electrolyte polymer, polymer actuator using cross-linked polyvinylidene fluoride-based polymer, and method of manufacturing the polymer actuator
JP2009281792A JP5714814B2 (en) 2008-12-12 2009-12-11 Polymer actuator using solid electrolyte polymer, cross-linked PVDF (polyvinylidene fluoride) polymer, and method for producing the same
CN2009110000401A CN101798429B (en) 2008-12-12 2009-12-11 Solid electrolyte polymer, actuator using polymer and manufacturing method of the same
EP09178917.2A EP2202265B1 (en) 2008-12-12 2009-12-11 Electrolyte polymer film, polymer actuator using cross-linked PVDF-based polymer, and method of manufacturing the polymer actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080126573 2008-12-12
KR1020080126573 2008-12-12

Publications (2)

Publication Number Publication Date
KR20100068167A KR20100068167A (en) 2010-06-22
KR101603772B1 true KR101603772B1 (en) 2016-03-18

Family

ID=42366660

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090063072A KR101603772B1 (en) 2008-12-12 2009-07-10 Solid electrolyte polymer, Polymer actuator using cross-linking PVDF polymer and Manufacturing Method of the Same

Country Status (2)

Country Link
KR (1) KR101603772B1 (en)
CN (1) CN101798429B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220068708A (en) 2020-11-19 2022-05-26 한국과학기술연구원 Porous polymer actuator and method for fabricating the same
KR20220097745A (en) 2020-12-31 2022-07-08 중앙대학교 산학협력단 Actuator and supercapacitor fiber using solid polymer electrolyte and thermal drawing

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8760040B2 (en) * 2011-04-01 2014-06-24 Korea Institute Of Science And Technology Polymer blend composition and tunable actuators using the same
CN104247067A (en) * 2012-02-14 2014-12-24 丹佛斯聚能公司 A capacitive transducer and a method for manufacturing a transducer
CN107850941A (en) 2015-06-26 2018-03-27 沙特基础工业全球技术公司 Electromechanical actuator for the touch feedback in electronic equipment
KR101796259B1 (en) * 2017-03-28 2017-11-10 주식회사 세븐킹에너지 Hybrid Solid Electrolyte of Multi Layer and Battery Using the Same
FR3070041B1 (en) * 2017-08-09 2019-08-30 Arkema France FORMULATIONS BASED ON ELECTROACTIVE FLUOROPOLYMERS AND THEIR APPLICATIONS
WO2021025535A1 (en) * 2019-08-08 2021-02-11 주식회사 엘지화학 Copolymer for polymer electrolyte, gel polymer electrolyte comprising same, and lithium secondary battery
WO2021221112A1 (en) * 2020-05-01 2021-11-04 ダイキン工業株式会社 Composite, polymer electrolyte, electrochemical device, polymer-based solid-state battery and actuator
CN115461413B (en) * 2020-05-01 2023-08-11 大金工业株式会社 Composite, polymer electrolyte, electrochemical device, polymer-based solid state battery, and actuator
KR102429379B1 (en) * 2020-05-29 2022-08-03 한국항공대학교산학협력단 Apparatus and method for classifying background, and apparatus and method for generating immersive audio-video data
CN113113671B (en) * 2021-04-12 2022-11-22 清华大学深圳国际研究生院 Polyvinylidene fluoride-based solid electrolyte, preparation method thereof and lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050780A (en) 2004-08-04 2006-02-16 Japan Carlit Co Ltd:The Conductive high-polymer actuator
JP2006139942A (en) 2004-11-10 2006-06-01 Ricoh Co Ltd Electrolyte film, its manufacturing method, fuel cell using it, and electronic apparatus
JP2008086185A (en) 2006-08-30 2008-04-10 Eamex Co Polymer actuator element and manufacturing method therefor
JP2008252958A (en) 2007-03-29 2008-10-16 Kuraray Co Ltd Actuator and electrode for use in the actuator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418091A (en) * 1993-03-05 1995-05-23 Bell Communications Research, Inc. Polymeric electrolytic cell separator membrane
CA2316299C (en) * 1997-12-26 2003-04-22 Kureha Kagaku Kogyo Kabushiki Kaisha Polymer electrolyte and nonaqueous battery containing the same
JP2000311711A (en) * 1999-04-26 2000-11-07 Reiko Udagawa High polymer electrolyte and lithium ion secondary battery using it
JP4038685B2 (en) * 2003-12-08 2008-01-30 独立行政法人科学技術振興機構 Actuator element
JP5114826B2 (en) * 2005-02-04 2013-01-09 ダイキン工業株式会社 Crosslinkable composition and laminate comprising the same
JP4997773B2 (en) * 2006-02-03 2012-08-08 ダイキン工業株式会社 Actuator element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050780A (en) 2004-08-04 2006-02-16 Japan Carlit Co Ltd:The Conductive high-polymer actuator
JP2006139942A (en) 2004-11-10 2006-06-01 Ricoh Co Ltd Electrolyte film, its manufacturing method, fuel cell using it, and electronic apparatus
JP2008086185A (en) 2006-08-30 2008-04-10 Eamex Co Polymer actuator element and manufacturing method therefor
JP2008252958A (en) 2007-03-29 2008-10-16 Kuraray Co Ltd Actuator and electrode for use in the actuator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220068708A (en) 2020-11-19 2022-05-26 한국과학기술연구원 Porous polymer actuator and method for fabricating the same
US11767437B2 (en) 2020-11-19 2023-09-26 Korea Institute Of Science And Technology Porous polymer actuator and method for fabricating the same
KR20220097745A (en) 2020-12-31 2022-07-08 중앙대학교 산학협력단 Actuator and supercapacitor fiber using solid polymer electrolyte and thermal drawing

Also Published As

Publication number Publication date
CN101798429A (en) 2010-08-11
KR20100068167A (en) 2010-06-22
CN101798429B (en) 2013-12-11

Similar Documents

Publication Publication Date Title
KR101603772B1 (en) Solid electrolyte polymer, Polymer actuator using cross-linking PVDF polymer and Manufacturing Method of the Same
JP5714814B2 (en) Polymer actuator using solid electrolyte polymer, cross-linked PVDF (polyvinylidene fluoride) polymer, and method for producing the same
Suriyakumar et al. Role of polymers in enhancing the performance of electrochemical supercapacitors: a review
US7671514B2 (en) Electroactive solid-state actuator and method of manufacturing the same
Ding et al. Use of ionic liquids as electrolytes in electromechanical actuator systems based on inherently conducting polymers
US9337514B2 (en) Electropolymerization of a coating onto an electrode material
JPS63135453A (en) Highly electrically conductive polymer composition and production thereof
Karlsson et al. Stable Deep Doping of Vapor‐Phase Polymerized Poly (3, 4‐ethylenedioxythiophene)/Ionic Liquid Supercapacitors
Lu et al. An interfacial polymerization strategy towards high-performance flexible supercapacitors
EP2027588A1 (en) Highly electron conductive polymer and electrochemical energy storage device with high capacity and high power using the same
Shen et al. Precise Network Polymerized Ionic Liquids for Low‐Voltage, Dopant‐Free Soft Actuators
JP2021185227A (en) Improved hydrophilic composition
CN103578773B (en) A kind of capacitor cathode paper tinsel and capacitor and preparation method thereof
Casado et al. Tuning electronic and ionic conductivities in composite materials for electrochemical devices
Song et al. Infilling of highly ion-conducting gel polymer electrolytes into electrodes with high mass loading for high-performance energy storage
Randriamahazaka et al. Semi-interpenetrating polymer networks based on modified cellulose and poly (3, 4-ethylenedioxythiophene)
Ribeiro et al. All-solid state ionic actuators based on polymeric ionic liquids and electronic conducting polymers
WO2010033966A1 (en) Tether-containing conducting polymers
Vijayakumar et al. Investigation on Electrochemical Performance of New Flexible Nanocomposite Poly (Vinylidene Fluoride‐co‐Hexafluoropropylene) Polymer Electrolytes
Plesse et al. Pedot based conducting IPN actuators: Effects of electrolyte on actuation
WO2000046278A1 (en) Composite capable of rapid volume change
Sun et al. Surface conductive films via polymerization on a liquid surface
Barker Conjugated polymer blends for faster organic mixed ionic-electronic conductors
Nazir et al. Conductivity Studies of Epoxidized PMMA Grafted Natural Rubber Doped Lithium Triflate Gel Polymer Electrolytes
Sundaram et al. Alternating‐current impedance and chronoamperometry studies of poly (vinylidene fluoride‐co‐hexafluoropropylene)–polyacrylonitrile‐based microporous polymer blend electrolytes prepared by a phase‐inversion technique

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190220

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200225

Year of fee payment: 5