KR101597424B1 - 원통 표면에 사선방향 식각단면의 미세패턴을 갖는 금형의 제작 방법, 식각 장치 및 식각 방법 - Google Patents

원통 표면에 사선방향 식각단면의 미세패턴을 갖는 금형의 제작 방법, 식각 장치 및 식각 방법 Download PDF

Info

Publication number
KR101597424B1
KR101597424B1 KR1020140048963A KR20140048963A KR101597424B1 KR 101597424 B1 KR101597424 B1 KR 101597424B1 KR 1020140048963 A KR1020140048963 A KR 1020140048963A KR 20140048963 A KR20140048963 A KR 20140048963A KR 101597424 B1 KR101597424 B1 KR 101597424B1
Authority
KR
South Korea
Prior art keywords
etching
angle
mold
ion
cylindrical
Prior art date
Application number
KR1020140048963A
Other languages
English (en)
Other versions
KR20150122544A (ko
Inventor
신명동
허지원
유지강
김유성
채주현
Original Assignee
(주)뉴옵틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)뉴옵틱스 filed Critical (주)뉴옵틱스
Priority to KR1020140048963A priority Critical patent/KR101597424B1/ko
Publication of KR20150122544A publication Critical patent/KR20150122544A/ko
Application granted granted Critical
Publication of KR101597424B1 publication Critical patent/KR101597424B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components

Abstract

본 발명은 원통 표면에 사선방향 식각단면의 미세패턴을 갖는 금형의 제작 방법, 식각 장치 및 식각 방법에 관한 것으로, 보다 상세하게는 원통 금형의 외주면에 대한 식각 과정에서 이온 빔의 조사 방향을 조정하여 식각 패턴의 측벽을 곡면 형상으로 식각하거나 또는 측벽에 단차가 형성되도록 식각하는 원통 표면에 사선방향 식각단면의 미세패턴을 갖는 금형의 제작 방법, 식각 장치 및 식각 방법에 관한 것이다. 본 발명의 일 양상에 따르면, 포토 레지스트가 도포된 도포면과 상기 포토 레지스트가 도포되지 않은 노출면을 가지는 원통 금형을 수용하는 커버; 상기 원통 금형을 수직 방향으로 지지하는 받침대; 상기 받침대에 회전력을 전달하여 상기 원통 금형을 회전시키는 회전 구동부; 상기 커버에 설치되고, 상기 원통 금형의 길이 방향으로 형성된 바 타입의 개구를 통해 상기 원통 금형의 외주면으로 이온 빔을 조사하여 상기 노출면에 식각 패턴을 형성하는 복수의 이온 건; 및 상기 식각 패턴의 측벽이 곡면으로 식각되거나 또는 단차를 가지고 식각되도록 상기 식각 패턴을 형성하는 과정에서 수직 방향을 축으로 상기 이온 건을 회전시켜 상기 외주면에 대한 상기 빔의 조사 방향을 조정하는 빔 방향 조정부;를 포함하는 식각 장치가 제공될 수 있다.

Description

원통 표면에 사선방향 식각단면의 미세패턴을 갖는 금형의 제작 방법, 식각 장치 및 식각 방법{METHOD FOR MANUFACTURING CYLINDER MOLD HAVING MICRO PATTERN WITH SLOPE CUTTING FACE, ETCHING APPARATUS AND ETCHING METHOD}
본 발명은 원통 표면에 사선방향 식각단면의 미세패턴을 갖는 금형의 제작 방법, 식각 장치 및 식각 방법에 관한 것으로, 보다 상세하게는 원통 금형의 외주면에 대한 식각 과정에서 이온 빔의 조사 방향을 조정하여 식각 패턴의 측벽을 곡면 형상으로 식각하거나 또는 측벽에 단차가 형성되도록 식각하는 원통 표면에 사선방향 식각단면의 미세패턴을 갖는 금형의 제작 방법, 식각 장치 및 식각 방법에 관한 것이다.
일반적으로 에너지를 가지고 있는 이온을 이용한 표면 처리는 반도체 공정, MEMS 및 NEMS 양산, 패턴 전사 기술, 경질 코팅 등의 분야에 필수적이다. 이온 충돌은 세정, 기판 표면의 활성화, 젖음성의 변화, 경도 향상, 다양한 필름의 증착, 이온 주입에 의한 반도체 도핑 공정 등 다양한 분야에 사용되고 있다.
통상적으로 모든 이온 가공은 다음과 같은 두 종류로 나뉠 수 있다. 첫째, 이온 소스로부터 이온빔을 추출하여 진공 챔버 내부에 일정한 거리를 두고 놓여져 있는 기판 쪽으로 보내는 방식이 있다. 이 방식은 원하는 결과를 얻기 위해서 이온빔과 기판을 따로 또는 동시에 이송시키며, 이때 이온 전하(Charge)는 보조 전자 전극(Emitter)에 의해 중화될 수 있다. 이러한 기술의 예로, 이온 빔 응용 증착, 이온 빔 식각 또는 가공(Milling), 이온 빔 주입 등을 들 수 있다. 둘째, 가공물이 플라즈마 분위기 내에 놓여지고, 일정한 값의 음전위(negative potential)에 전기적으로 편의(bias)시킨 장치가 있다. 여기서, 이온은 가공물 앞에 형성된 쉬스 내부로 가속되며 이러한 가속을 유발하기 위하여 DC, RF, 그리고, 펄스로 공급되는 바이어스 (bias) 등이 사용된다. PVD, PECVD, PI3D, RIE 등이 이러한 기술 범주에 속한다.
이러한 이온 가공의 한 분야인 이온 에칭(etching), 즉 이온 식각은 주로 에너지를 갖는 이온을 빔 형태로 가공물의 표면에 조사, 그 표면을 스퍼터링하여 식각하는 방식이다. 이온 가공의 많은 적용 사례에는 반도체 공정, 나노 구조의 형성, 표면 구조물 형성, 표면 조도의 개선 등이 포함된다.
종래에는 이러한 이온 빔을 이용한 가공물의 식각이 주로 평판 기판에 적용되어 왔는데, 최근에는 나노미터 급의 패터닝에 원통 금형을 이용한 직접 인쇄(direct imprinting)가 연구되기 시작하면서 이온 빔을 이용한 식각 공정이 원통 금형에도 적용되고 있다.
본 발명의 일 과제는, 원통 금형에 그 측벽이 곡면이거나 단차를 가지는 식각 패턴을 형성하는 원통 표면에 사선방향 식각단면의 미세패턴을 갖는 금형의 제작 방법, 식각 장치 및 식각 방법을 제공하는 것이다.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상에 따르면, 포토 레지스트가 도포된 도포면과 상기 포토 레지스트가 도포되지 않은 노출면을 가지는 원통 금형을 수용하는 커버; 상기 원통 금형을 수직 방향으로 지지하는 받침대; 상기 받침대에 회전력을 전달하여 상기 원통 금형을 회전시키는 회전 구동부; 상기 커버에 설치되고, 상기 원통 금형의 길이 방향으로 형성된 바 타입의 개구를 통해 상기 원통 금형의 외주면으로 이온 빔을 조사하여 상기 노출면에 식각 패턴을 형성하는 복수의 이온 건; 및 상기 식각 패턴의 측벽이 곡면으로 식각되거나 또는 단차를 가지고 식각되도록 상기 식각 패턴을 형성하는 과정에서 수직 방향을 축으로 상기 이온 건을 회전시켜 상기 외주면에 대한 상기 빔의 조사 방향을 조정하는 빔 방향 조정부;를 포함하는 식각 장치가 제공될 수 있다.
본 발명의 다른 양상에 따르면, 포토 레지스트가 도포된 도포면과 상기 포토 레지스트가 도포되지 않은 노출면을 가지는 원통 금형을 지지하는 금형 지지부; 상기 금형 지지부에 회전력을 전달하여 상기 원통 금형을 회전시키는 회전 구동부; 상기 노출면에 식각 패턴이 형성되도록 상기 원통 금형에 빔을 조사하는 빔 조사부; 및 상기 식각 패턴의 측벽의 식각되는 각도를 조정하기 위하여 상기 빔 조사부의 조사 방향을 조정하는 빔 방향 조정부;를 포함하는 식각 장치가 제공될 수 있다.
본 발명의 또 다른 양상에 따르면, 포토 레지스트가 도포된 도포면과 상기 포토 레지스트가 도포되지 않은 노출면을 가지는 원통 금형을 회전시키는 단계; 상기 노출면에 식각 패턴이 형성되도록 상기 원통 금형에 빔을 조사하는 단계; 및 상기 식각 패턴의 측벽의 식각되는 각도를 조정하기 위하여 상기 빔의 조사 방향을 조정하는 단계;를 포함하는 식각 방법이 제공될 수 있다.
본 발명의 과제의 해결 수단이 상술한 해결 수단들로 제한되는 것은 아니며, 언급되지 아니한 해결 수단들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 의하면, 플라즈마 식각에서 원통 금형의 외주면에 대한 이온 빔의 조사 방향을 조정하여 원통 금형의 외주면에 형성되는 식각 패턴의 측벽이 곡면으로 식각되거나 또는 단차를 가지고 식각되도록 할 수 있다.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 실시예에 따른 식각 장치의 구성도이다.
도 2는 본 발명의 실시예에 따른 식각 장치의 측면도이다.
도 3은 본 발명의 실시예에 원통 금형의 사시도이다.
도 4는 본 발명의 실시예에 따른 이온 건의 구성도이다.
도 5 및 도 6은 본 발명의 실시예에 따른 이온 건의 배치에 관한 평면도이다.
도 7 내지 도 9는 본 발명의 실시에에 따른 빔 방향 조정부의 예에 관한 평면도이다.
도 10 및 도 11은 본 발명의 실시예에 따른 빔 방향 조정부의 에에 관한 측면도이다.
도 12는 본 발명의 실시예에 따른 식각 패턴의 측벽을 곡면으로 식각하는 과정을 도시한 도면이다.
도 13은 본 발명의 실시예에 따른 식각 패턴의 측벽에 단차를 식각하는 과정을 도시한 도면이다.
도 14는 본 발명의 실시예에 따른 식각 방법의 순서도이다.
본 명세서에 기재된 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 명확히 설명하기 위한 것이므로, 본 발명이 본 명세서에 기재된 실시예에 의해 한정되는 것은 아니며, 본 발명의 범위는 본 발명의 사상을 벗어나지 아니하는 수정예 또는 변형예를 포함하는 것으로 해석되어야 한다.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하여 가능한 현재 널리 사용되고 있는 일반적인 용어를 선택하였으나 이는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자의 의도, 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 다만, 이와 달리 특정한 용어를 임의의 의미로 정의하여 사용하는 경우에는 그 용어의 의미에 관하여 별도로 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는 단순한 용어의 명칭이 아닌 그 용어가 가진 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 한다.
본 명세서에 첨부된 도면은 본 발명을 용이하게 설명하기 위한 것으로 도면에 도시된 형상은 본 발명의 이해를 돕기 위하여 필요에 따라 과장되어 표시된 것일 수 있으므로 본 발명이 도면에 의해 한정되는 것은 아니다.
본 명세서에서 본 발명에 관련된 공지의 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에 이에 관한 자세한 설명은 필요에 따라 생략하기로 한다.
본 발명의 일 양상에 따르면, 포토 레지스트가 도포된 도포면과 상기 포토 레지스트가 도포되지 않은 노출면을 가지는 원통 금형을 수용하는 커버; 상기 원통 금형을 수직 방향으로 지지하는 받침대; 상기 받침대에 회전력을 전달하여 상기 원통 금형을 회전시키는 회전 구동부; 상기 커버에 설치되고, 상기 원통 금형의 길이 방향으로 형성된 바 타입의 개구를 통해 상기 원통 금형의 외주면으로 이온 빔을 조사하여 상기 노출면에 식각 패턴을 형성하는 복수의 이온 건; 및 상기 식각 패턴의 측벽이 곡면으로 식각되거나 또는 단차를 가지고 식각되도록 상기 식각 패턴을 형성하는 과정에서 수직 방향을 축으로 상기 이온 건을 회전시켜 상기 외주면에 대한 상기 빔의 조사 방향을 조정하는 빔 방향 조정부;를 포함하는 식각 장치가 제공될 수 있다.
본 발명의 다른 양상에 따르면, 포토 레지스트가 도포된 도포면과 상기 포토 레지스트가 도포되지 않은 노출면을 가지는 원통 금형을 지지하는 금형 지지부; 상기 금형 지지부에 회전력을 전달하여 상기 원통 금형을 회전시키는 회전 구동부; 상기 노출면에 식각 패턴이 형성되도록 상기 원통 금형에 빔을 조사하는 빔 조사부; 및 상기 식각 패턴의 측벽의 식각되는 각도를 조정하기 위하여 상기 빔 조사부의 조사 방향을 조정하는 빔 방향 조정부;를 포함하는 식각 장치가 제공될 수 있다.
또 상기 빔 방향 조정부는, 상기 식각 패턴의 식각 깊이, 상기 빔의 조사 시간 및 상기 빔에 의해 소진되는 상기 포토 레지스트의 소진 두께 중 어느 하나에 따라 상기 빔 조사부의 조사 방향을 조정할 수 있다.
또 상기 빔 방향 조정부는, 상기 측벽에 단차가 형성되도록 상기 어느 하나가 미리 정해진 기준값 이하인 경우에는 제1 각도로 상기 조사 방향을 조정하고, 상기 미리 정해진 기준값 이상인 경우에는 제2 각도로 상기 조사 방향을 조정할 수 있다.
또 상기 빔 방향 조정부는, 상기 측벽이 곡면으로 형성되도록 상기 어느 하나에 따라 상기 조사 방향을 제1 각도로부터 제2 각도까지 연속적으로 조정할 수 있다.
또 상기 제1 각도 및 상기 제2 각도는, 상기 외주면에 대하여 사선 방향이고, 상기 제2 각도가 상기 제1 각도보다 클 수 있다.
또 상기 빔 조사부는, 상기 원통 금형을 둘러쌓도록 배치되는 복수의 빔 건을 포함하고, 상기 복수의 빔 건은, 상기 원통 금형의 길이 방향과 동일한 방향으로 상기 빔을 출사하는 개구가 형성되어 각각 상기 원통 금형의 외주면에 동일한 각도로 상기 빔을 조사할 수 있다.
또 상기 원통 금형이 수용하고, 그 벽면에 상기 복수의 빔 건이 설치되는 커버;를 더 포함하고, 상기 빔 방향 조정부는, 상기 커버의 상부 또는 하부에 설치되고, 상기 복수의 빔 건과 연동하여 회전되도록 설치되는 연결부 및 상기 연결부를 회전시키는 회전 입력부를 포함할 수 있다.
또 상기 연결부는, 상기 회전 입력부로부터 회전력을 입력받아 상기 원통 금형의 회전축과 동일한 회전축을 가지고 회전하는 제1 부재 및 상기 제1 부재와 상기 복수의 빔 건을 연결하여 상기 제1 부재의 회전과 상기 복수의 빔 건의 회전을 연동시키는 제2 부재를 포함할 수 있다.
또 상기 제1 부재 및 상기 제2 부재는, 스텝 기어 형태로 체결되어 상기 복수의 빔 건의 방향을 스텝 단위로 조정하거나 또는 링크 형태로 체결되어 상기 복수의 빔 건의 방향을 연속적으로 조정할 수 있다.
또 상기 원통 금형을 수용하는 진공 챔버; 상기 빔 조사부에 플라즈마를 공급하는 플라즈마 소스부; 및 상기 원통 금형에 바이어스 전압을 인가하는 전원부;를 더 포함하고, 상기 빔 조사부는, 상기 플라즈마 소스부에 연결되어 상기 플라즈마로부터 이온을 추출하여 이온 빔을 생성하는 플라즈마 쉬스부, 절연체로 이루어져 상기 이온 빔을 포커싱하는 그리드부 및 전도성 물질로 이루어지고 상기 전원부로부터 상기 바이어스 전압을 인가받아 상기 이온 빔을 일정한 방향으로 출사하는 이온 가이드부를 포함할 수 있다.
본 발명의 또 다른 양상에 따르면, 포토 레지스트가 도포된 도포면과 상기 포토 레지스트가 도포되지 않은 노출면을 가지는 원통 금형을 회전시키는 단계; 상기 노출면에 식각 패턴이 형성되도록 상기 원통 금형에 빔을 조사하는 단계; 및 상기 식각 패턴의 측벽의 식각되는 각도를 조정하기 위하여 상기 빔의 조사 방향을 조정하는 단계;를 포함하는 식각 방법이 제공될 수 있다.
또 상기 조정하는 단계에서, 상기 식각 패턴의 식각 깊이, 상기 빔의 조사 시간 및 상기 빔에 의해 소진되는 상기 포토 레지스트의 소진 두께 중 어느 하나에 따라 상기 빔의 조사 방향을 조정할 수 있다.
또 상기 조정하는 단계에서, 상기 측벽에 단차가 형성되도록 상기 어느 하나가 미리 정해진 기준값 이하인 경우에는 제1 각도로 상기 조사 방향을 조정하고, 상기 미리 정해진 기준값 이상인 경우에는 제2 각도로 상기 조사 방향을 조정할 수 있다.
또 상기 조정하는 단계에서, 상기 조사 방향을 조정하는 동안 상기 빔의 조사를 중단할 수 있다.
또 상기 조정하는 단계에서, 상기 측벽이 곡면으로 형성되도록 상기 어느 하나에 따라 상기 조사 방향을 제1 각도로부터 제2 각도까지 연속적으로 조정할 수 있다.
또 상기 조정하는 단계에서, 상기 조사 방향을 조정하는 동안 상기 빔의 조사를 유지할 수 있다.
또 상기 제1 각도 및 상기 제2 각도는, 상기 외주면에 대하여 사선 방향이고, 상기 제2 각도가 상기 제1 각도보다 클 수 있다.
또 상기 조사하는 단계는, 플라즈마로부터 이온을 추출하여 이온 빔을 생성하는 단계, 상기 이온 빔을 포커싱하는 단계 및 상기 이온 빔을 일정한 방향으로 출사하는 단계를 포함할 수 있다.
이하에서는 본 발명의 실시예에 따른 식각 장치(1000)에 관하여 설명한다.
도 1은 본 발명의 실시예에 따른 식각 장치(1000)의 구성도이고, 도 2는 본 발명의 실시예에 따른 식각 장치(1000)의 측면도이고, 도 3은 본 발명의 실시예에 따른 원통 금형(100)의 사시도이다.
도 1 및 도 2를 참조하면, 식각 장치(1000)는 진공 챔버(1100), 진공 펌프(1120), 플라즈마 소스부(1140), 내부 커버(1200), 금형 지지부(1300), 금형 회전 구동부(1400), 빔 조사부(1500), 빔 방향 조정부(1600) 및 전원부(1700)를 포함할 수 있다.
진공 챔버(1100)는 플라즈마 분위기가 조성되는 공간을 제공한다. 이를 위해 진공 챔버(1100)의 내부 공간은 실질적인 진공 상태로 유지될 수 있다. 예를 들어, 진공 펌프(1120)가 진공 챔버(1100)의 일측으로 연결되어 진공 챔버(1100)의 내부에 음압을 인가함에 따라 진공 챔버(1100)의 내부 공간이 진공 상태가 될 수 있다. 진공 챔버(1100)의 내부가 고진공이 되면 소스 가스로부터 플라즈마를 발생시키거나 또는 식각 공정이 진행되는 동안 플라즈마 분위기를 유지하기가 용이해진다.
또 진공 챔버(1100)는 내부에 조성된 플라즈마 분위기를 유지하기 위하여 전기적으로 절연된 상태일 수 있다.
플라즈마 소스부(1140)는 진공 챔버(1100)의 내부에 플라즈마 분위기를 조성할 수 있다. 이를 위해 플라즈마 소스부(1140)는 가스 유입구(1142)와 플라즈마 발생기(1144)를 포함할 수 있다.
가스 유입구(1142)는 진공 챔버(1100)의 일측으로부터 소스 가스가 저장된 가스 공급원(R)로 연결되는 유로와 유로를 개폐하는 밸브로 구성될 수 있다. 밸브가 열리면 가스 공급원(R)으로부터 진공 챔버(1100)의 내부 공간으로 소스 가스가 유입될 수 있다. 여기서, 소스 가스로는 불활성 기체가 주로 이용될 수 있으며, 그 대표적인 예로는 아르곤(Ar)이나 질소(N2)가 있다. 다만, 소스 가스는 필요에 따라 적절하게 선택될 수 있는 것이므로, 소스 가스의 종류가 상술한 예로 제한되거나 불활성 기체로 한정되는 것은 아니다.
플라즈마 발생기(1144)는 진공 챔버(1100)의 내부에 공급된 소스 가스에 에너지를 가하여 이를 플라즈마 상태로 천이시킬 수 있다. 특히, 진공 챔버(1100)의 내부는 고진공 상태이므로 소스 가스에 고전압의 전기 에너지를 가하면 전자가 쉽게 가속되기 때문에 플라즈마를 만들기가 용이하다. 플라즈마 발생기(1144)의 대표적인 예에는 유도 결합 플라즈마(ICP: Inductively Coupled Plasma) 발생기가 있다. ICP 발생기는 코일 타입의 안테나와 안테나에 고주파(RF: Radio Frequency) 전력을 인가하는 RF 전원으로 구성될 수 있다. RF 전원에 의해 안테나에 고주파 전력이 인가되면 이에 따라 소스 가스에 전기적 에너지가 가해져 플라즈마가 발생하게 된다. 이외에도 플라즈마 발생기(1144)로는 전극 타입의 안테나와 여기에 RF 전원을 인가하는 RF 전원으로 구성되는 용량 결합 플라즈마(CCP: Capacitor Coupled Plasma) 발생기일 수 있다.
내부 커버(1200)는 진공 챔버(1100)의 내부 공간에 위치하며, 원통 금형(100)에 대한 식각 공정이 수행될 공간을 제공할 수 있다. 일반적으로 내부 커버(1200)는 원통 금형(100)이 그 내부에 수용되도록 다각형 또는 원형의 단면을 가지는 통 형상의 구조물로 제공될 수 있다. 여기서, 내부 커버(1200)는 원통 금형(100)이 수용되는 내부 공간을 진공 챔버(1100)의 플라즈마 분위기로부터 격리시킬 수 있다. 후술하겠지만 이에 따라 빔 조사부(1500)가 내부 커버(1200)의 외부 플라즈마 분위기로부터 이온을 추출하여 빔 형태로 내부 커버(1200) 내부로 조사하여 원통 금형(100)의 표면을 식각할 수 있다. 또한 내부 커버(1200)는 진공 챔버(1100)와 마찬가지로 전기적으로 절연될 수 있다. 이에 따라 내부 커버(1200)와 진공 챔버(1100)의 사이 공간에 조성되는 플라즈마가 특정한 방향성으로 가지고 이동하지 않게 될 수 있다.
한편, 식각 공정의 대상물인 원통 금형(100)에 대하여 간단하게 설명하면, 원통 금형(100)은 중공(160)이 형성된 원통 형태로 제공될 수 있으며, 그 외주면(120)이 식각됨에 따라 패턴을 가질 수 있다. 경우에 따라서는 원통 금형(100)에 중공(160)이 형성되지 않을 수도 있음은 물론이다. 이러한 원통 금형(100)의 소재로는 알루미늄(Al)이 주로 사용될 수 있다. 알루미늄 소재는 금속 중 비교적 밀도가 작아 경량화에 유리하며 또한 밀도에 비하여 충분한 강도를 제공할 수 있는 장점이 있다.
이러한 원통 금형(100)은 금형 지지부(1300)에 의해 지지될 수 있다. 금형 지지부(1300)는 내부 커버(1200)의 내부에 원통 금형(100)을 받쳐 지지할 수 있다. 금형 지지부(1300)는 주로 내부 커버(1200)의 중앙부에 돌기를 가지는 스테이지의 형태로 제공될 수 있으며, 돌기가 원통 금형(100)의 중공(160)에 삽입되어 원통 금형(100)과 가체결되어 원통 금형(100)을 지지할 수 있다.
한편, 금형 지지부(1300)는 금형 회전 구동부(1400)로부터 회전력을 받아 원통 금형(100)을 회전시킬 수 있다. 금형 지지부(1300)는 볼 베어링과 같은 수단에 의해 회전 가능한 구조를 가지며, 모터 등의 회전 수단 형태로 제공되는 금형 회전 구동부(1400)로부터 회전력을 입력받아 원통 금형(100)과 함께 회전하게 된다. 원통 금형(100)이 식각 공정에서 회전하면 원통 금형(100)의 외주면(120) 전체가 균일하게 식각될 수 있다.
빔 조사부(1500)는 단일한 이온 건(1520) 또는 복수의 이온 건(1520)으로 구성될 수 있다. 각각의 이온 건(1520)은 내부 커버(1200)의 내부 공간 또는 벽면에 설치될 수 있다. 복수의 이온 건(1520)이 있는 경우에는 각각의 이온 건(1520)은 원통 금형(100)의 회전축을 중심으로 소정을 각도를 가지고 원통 금형(100)을 둘러쌓도록 배치될 수 있다.
이온 건(1520)은 원통 금형(100)을 향해 플라즈마로부터 추출되는 이온을 빔 형태로 조사할 수 있다. 이를 위해 이온 건(1520)의 일측은 플라즈마가 있는 내부 커버(1200)의 외부 공간과 연결되며, 타측은 원통 금형(100)이 놓여진 내부 커버(1200)의 내부 공간과 연결될 수 있다.
또 이온 건(1520)은 원통 금형(100)의 길이 방향과 동일한 방향으로 연장되는 바 타입으로 제공될 수 있다. 이러한 바 타입의 이온 건(1520)에는 원통 금형(100)을 향해 이온 빔을 출사하는 개구(1522b)가 원통 금형(100)과 실질적으로 동일한 길이를 가지고 형성되어 있을 수 있다. 이는 원통 금형(100)의 외주면(120) 전체에 걸쳐 이온 빔이 조사되도록 하기 위함이다.
이온 건(1520)이 이온 빔을 조사하는 원리에 대하여 간단히 설명하면 다음과 같다. 먼저 상술한 바와 같이 진공 챔버(1100)의 내부에는 플라즈마 분위기가 조성되되 진공 챔버(1100)의 내부에 위치하는 내부 커버(1200)의 내부는 플라즈마 분위기로부터 격리된다. 여기서, 이온 건(1520)은 일측은 내부 커버(1200)의 외부와 연결되고 타측은 내부 커버(1200)의 내부와 연결되도록 설치될 수 있다. 이때 이온 건(1520) 중 내부 커버(1200)의 내부와 연결되는 부위에 플라즈마 상태의 소스 가스 중 양이온을 유도하도록 바이어스 전원을 인가하게 된다. 이온 건(1520)은 유도되는 양이온을 이온 건(1520)을 통과하는 도중 원통 금형(100) 방향으로 가속시켜 쏘아냄으로써 이온 빔을 조사하게 된다.
전원부(1700)는 상술한 바이어스 전원을 인가하는 역할을 한다. 전원부(1700)는 위에서 설명한 것과 같이 이온 건(1520)에 바이어스 전원을 인가하기도 하지만, 원통 금형(100)에도 바이어스 전원을 인가할 수 있다. 원통 금형(100)에도 이온 건(1520)과 같은 바이어스 전원이 인가되면 이온 건(1520)에서 쏘아낸 이온이 동일한 전위를 가지는 공간을 비행하게 되므로 이온 빔의 방향을 직선으로 제어할 수 있다. 한편, 바이어스 전원으로는 DC 전원이나 단극, 또는 이극 펄스 전원, RF 전원 등을 이용한 RF 셀프 바이어스, 단극 반복 펄스 바이어스, 이극 반복 펄스 바이어스 등이 사용될 수 있다.
빔 방향 조정부(1600)는 이온 빔의 조사 방향을 조정하기 위하여 이온 건(1520)이 향하는 방향을 제어할 수 있다. 위에서 간단하게 언급했지만, 이온 건(1520)은 원통 금형(100)을 향해 빔을 조사하도록 배치되는데 빔 방향 조정부(1600)는 그 이온 건(1520)의 방향을 조정하여 이온 빔이 원통 금형(100)의 외주면(120)에 입사되는 각도를 조정할 수 있다. 예를 들면, 빔 방향 조정부(1600)는 이온 건(1520)을 회전축과 동일한 방향에 대하여 특정 각도로 회전시켜 이온 빔의 방향을 조정할 수 있을 것이다.
이하에서는 본 발명의 실시예에 따른 이온 건(1520)에 관하여 구체적으로 설명한다.
도 4는 본 발명의 실시예에 따른 이온 건(1520)의 구성도이다.
도 4를 참조하면, 이온 건(1520)은 이온 가이드부(1522), 그리드부(1524) 및 쉬스(sheath)부(1526)를 포함하여 구성될 수 있다. 이때, 상술한 바와 같이 이온 건(1520)은 내부 커버(1200)의 벽면에 설치되거나 또는 이온 건(1520)의 일측은 내부 커버(1200) 내부에 위치하고, 이온 건(1520)의 타측은 내부 커버(1200)의 외부로 연결될 수 있는데, 이온 가이드부(1522)는 내부 커버(1200)의 내측을 향해 위치하고, 쉬스부(1526)는 내부 커버(1200)의 외부와 연결되도록 위치할 수 있다. 그리드부(1524)는 이온 가이드부(1522)와 쉬스부(1526)의 사이에 배치된다.
쉬스부(1526)는 내부 커버(1200)의 외부, 즉 플라즈마 분위기인 진공 챔버(1100)의 내부 공간로 연결될 수 있다. 예를 들어, 쉬스부(1526)는 내부 커버(1200)의 외벽의 외측면에 설치될 수 있다. 쉬스부(1526)는 이러한 내부 커버(1200)의 외부에 존재하는 플라즈마로부터 이온이 유입받을 수 있다. 후술하겠지만 이온 가이드부(1522)와 원통 금형(100)에는 바이어스 전원이 인가되어 플라즈마로부터 양이온을 유도하게 되는데, 쉬스부(1526)는 이와 같이 유도되는 양이온이 이온 건(1520)으로 유입되도록 하는 역할을 수행할 수 있다.
이온 가이드부(1522)는 서스 재질이나 알루미늄 재질 등의 전도성 물질로 제공되며 전원부(1700)로부터 바이어스 전원을 인가받아 플라즈마로부터 이온을 유도해낸다. 이온 가이드부(1522)는 내부 커버(1200)의 내측을 향해 형성된 개구(1522b)와 개구(1522b)로부터 연결되는 관로(1522a)를 포함하여 구성될 수 있다. 관로(1522a)에서는 쉬스부(1526)를 통해 유입된 양이온을 가속하며, 개구(1522b)는 그리드부(1524)와 함께 가속된 이온들을 포커싱하여 원통 금형(100)을 향해 빔 형태로 출사할 수 있다.
그리드부(1524)는 이온 가이드부(1522)와 쉬스부(1526) 사이에 쉬스부(1526)에 비하여 작은 폭으로 관통된 격벽 형태로 제공될 수 있다. 이러한 그리드부(1524)는 쉬스부(1526)로부터 유입되는 이온의 경로를 제한하여 이온을 빔으로써 포커싱하는 기능을 수행할 수 있다.
도 5 및 도 6은 본 발명의 실시예에 따른 이온 건(1520)의 배치에 관한 평면도이다.
도 5 및 도 6을 참고하면, 이온 건(1520)은 복수 개가 원통 금형(100)을 둘러쌓도록 제공될 수 있다. 이들 복수의 이온 건(1520)은 인접한 이온 건(1520) 사이에 원통 금형(100)의 회전축을 중심으로 동일한 각도로 분산 배치될 수 있다. 일 예로 도 5를 살펴보면 4개의 이온 건(1520)의 서로 90도의 각도를 가지고 원통 금형(100)을 둘러쌓도록 배치될 수 있으며, 다른 예로 도 6을 살펴보면 8개의 이온 건(1520)의 서로 45도의 각도를 가지고 원통 금형(100)을 둘러쌓도록 배치될 수 있다. 물론 이온 건(1520)의 개수는 필요에 따라 적절히 가감될 수 있음이 자명하다.
이와 같이 원통 금형(100)을 둘러쌓고 배치되는 이온 건(1520)들은 모두 동일한 입사각을 가지고 원통 금형(100)의 표면, 즉 외주면(120)에 빔을 조사할 수 있다. 일반적으로 이온 빔을 이용한 식각에서는 이온 빔의 가공물의 표면에 대한 입사각이 수직인 것이 바람직하겠지만, 본 발명에서는 입사각이 수직 방향이 아닌 사선 방향일 수 있다. 예를 들어, 입사각은 0도 이상 90도 이하일 수 있다. 이와 같이 사선 방향으로 이온 빔을 조사하게 되면 원통 금형(100)에 식각되어 형성되는 식각 패턴(140)의 단면이 기존의 수직 측벽(142)을 가지는 대신 사선 방향으로 식각되는 측벽(142)을 가질 수 있게 된다. 이러한 사선 방향의 측벽(142)을 가지는 식각 패턴(140)은 기존의 수직 방향의 단면을 가지는 식각 패턴(140)에 대비하여 광학적, 물리적, 화학적으로 상이한 특성을 가지게 된다.
이하에서는 본 발명의 실시예에 따른 빔 방향 조정부(1600)에 관하여 구체적으로 설명한다.
도 7 내지 도 9는 본 발명의 실시에에 따른 빔 방향 조정부(1600)의 예에 관한 평면도이다.
빔 방향 조정부(1600)는 빔 조사부(1500)의 빔 조사 방향을 조정할 수 있다. 구체적으로 빔 방향 조정부(1600)는 이온 건(1520)을 회전축과 동일한 방향의 축으로 회전시킬 수 있고, 이에 따라 이온 건(1520)의 개구(1522b)와 관로(1522a)가 향하는 방향이 변경됨에 따라 이온 건(1520)의 빔 조사 방향을 조정할 수 있다. 이와 같이 이온 빔의 조사 방향이 조정되면 결과적으로 이온 빔이 원통 금형(100)의 표면에 입사되는 입사각이 조정될 수 있다.
도 7 내지 도 9를 참조하면, 빔 방향 조정부(1600)는 연결부(1620)와 이온건 회전 구동부(1640)로 구성될 수 있다. 여기서 빔 방향 조정부(1600)는 이온건 회전 구동부(1640)로부터 동력을 발생시키고, 연결부(1620)가 이를 전달받아 이온 건(1520)을 회전시킴으로써 이온 빔의 조사 방향을 조정할 수 있다.
도 7을 참조하면, 연결부(1620)는 제1 부재(1622)와 제2 부재(1624)를 포함할 수 있다. 제2 부재(1624)는 이온건 회전 구동부(1640)로부터 외력을 입력받아 회전 가능한 구조로 제공된다. 예를 들어, 제2 부재(1624)는 원통 금형(100)의 상부에 원형 회전판의 형태로 배치될 수 있다. 제1 부재(1622)는 제2 부재(1624)와 이온 건(1520)을 연결하여 제2 부재(1624)의 회전에 따라 이온 건(1520)의 방향을 조정할 수 있다. 예를 들어, 제1 부재(1622)는 일측은 원형 회전판의 가장 자리에 체결되고 타측은 이온 건(1520)에 체결되는 링크 타입의 부재로 제공될 수 있다. 원형 회전판이 회전하면 제1 부재(1622)의 일측이 이동하며 타측에 체결된 이온 건(1520)을 회전시킬 수 있다. 여기서, 제1 부재(1622)는 이온 건(1520)마다 대응되도록 제공되며 대칭 구조로 배치되어 모든 이온 건(1520)이 동일 각도로 회전하도록 하여 이온 건(1520)들의 이온 빔의 입사각을 모두 동일하게 조정할 수 있다.
한편, 도 7에서는 4개의 이온 건(1520)에 각각 4개의 제1 부재(1622)가 연결되어 있는 것으로 도시되어 있는데, 이와 달리 이온 건(1520)의 개수가 변경되면 제1 부재(1622)의 개수도 변경될 수 있다. 도 8은 이온 건(1520)이 8개인 경우의 연결부(1620)의 구조를 보여주고 있다.
한편, 빔 방향 조사부는 이온 건(1520)의 방향을 미리 정해진 각도 단위로 스텝 조정하거나 또는 연속적으로 조정할 수 있다. 예를 들면 상술한 도 7 및 도 8에서는 제2 부재(1624)가 이온건 회전 구동부(1640)에 의해 연속적으로 회전하며 이에 따라 링크 구조의 제1 부재(1622)가 이온 건(1520)의 각도 조정을 연속적으로 할 수 있다.
그러나, 이와 달리 도 9를 참조하면, 제2 부재(1624)는 기어를 가지는 회전판 구조로 제공되고, 제1 부재(1622)는 링크(1622a)와 기어(1622b)로 구성될 수 있다. 여기서 기어(1622b)는 제2 부재(1624)의 기어에 맞물려 기어의 스텝 단위로 회전하게 되며, 이에 따라 링크 역시 기어의 스텝 단위로 이온 건(1520)의 각도를 조정하게 되므로 결과적으로 이온 건(1520)의 방향이 연속적으로 조정되는 대신 미리 정해진 각도 단위에 따라 불연속적으로 조정될 수 있다.
도 10 및 도 11은 본 발명의 실시예에 따른 빔 방향 조정부(1600)의 에에 관한 측면도이다.
도 10을 참조하면, 이온건 회전 구동부(1640)는 헤드(1642a), 로드(1642b), 보디(1642c)로 구성되는 회전력 전달부(1642), 회전력 전달부(1642)가 거치되는 스크류(1644), 피스톤(1646) 및 고정틀(1648)을 포함할 수 있다.
고정틀(1648)은 진공 챔버(1100)의 외벽에 설치되며, 스크류(1644)와 피스톤(1646)이 설치되는 공간을 제공할 수 있다. 피스톤(1646)은 고정틀(1648)에 진공 챔버(1100)의 외벽을 향하도록 설치되고, 스크류(1644)는 피스톤(1646)의 끝단으로부터 진공 챔버(1100)의 외벽을 향하여 연장되도록 설치될 수 있다.
피스톤(1646)은 스크류(1644)를 이동 또는 회전시킬 수 있다. 스크류(1644)가 이동하거나 회전하면 스크류(1644)에 체결된 회전력 전달부(1642)에 힘이 전달될 수 있다. 회전력 전달부(1642)는 스크류(1644c)에 설치되는 보디(1642c)와 보디(1642c)로부터 연장되는 로드(1642b), 로드(1642a)의 끝단에서 연장되어 제2 부재(1624)와 연결되는 헤드(1642a)로 구성된다. 스크류(1644)로부터 보디(1642c)에 전달된 힘은 로드(1642b)와 헤드(1642a)를 거쳐 제2 부재(1624)를 회전시킬 수 있다.
또는 도 11을 참조하면, 이온건 회전 구동부(1640)는 실린더 형태의 연결부(1620)(1642)와 모터 형태의 이온건 회전 구동부(1640)(1644)로 구성될 수 있다. 모터가 회전력을 발생시키면 그 회전력이 실린더를 통해 제2 부재(1624)로 전달되며, 제2 부재(1624)가 회전하면 이에 따라 제1 부재(1622)가 이온 건(1520)의 빔 조사 방향을 조정할 수 있다.
이상에서 설명한 식각 장치(1000)를 이용하면 원통 금형(100)의 외주면(120)에 그 측벽(142)에 단차가 있거나 측벽(142)이 곡면 형태인 패턴을 식각할 수 있다. 이하에셔는 원통 금형(100)의 외주면(120)에 이러한 입체 식각 패턴(140)을 형성하는 과정에 대하여 설명하기로 한다.
도 12는 본 발명의 실시예에 따른 식각 패턴(140)의 측벽(142)을 곡면으로 식각하는 과정을 도시한 도면이고, 도 13은 본 발명의 실시예에 따른 식각 패턴(140)의 측벽(142)에 단차를 식각하는 과정을 도시한 도면이다.
원통 금형(100)의 외주면(120)에는 식각하고자 하는 패턴에 대응되도록 포토 레지스트가 도포될 수 있다. 이에 따라 원통 금형(100)의 외주면(120)은 포토 레지스트가 도포된 도포면(122)과 포토 레지스트가 도포되지 않은 노출면(124)으로 구별될 수 있다. 이온 빔이 원통 금형(100)의 외주면(120)으로 조사될 때 도포면(122)은 포토 레지스트에 의해 보호되어 식각되지 않고 노출면(124)은 식각된다. 일반적으로 이온 빔의 표면에 수직 방향으로 입사되면 식각 패턴(140)이 수직 단면을 가지도록 식각되지만 이온 빔이 사선 방향으로 입사되면 식각 패턴(140)은 사선 방향으로 식각되는 측벽(142)을 가지는 형태로 식각될 수 있다.
도 12를 참조하면, 먼저 표면에 대한 입사각이 90도 이하의 사선 방향의 제1 각도로 이온 빔을 조사할 수 있다. 이온 건(1520)이 원통 금형(100)의 회전축을 향하지 않고 회전축에 비스듬한 방향으로 이온 빔을 조사하면 입사각이 제1 각도로 조정될 수 있다. 이때 이온 빔은 원통 금형(100)의 노출면(124) 중 포토 레지스트가 도포된 두께에 의해 형성되는 그림자 영역에는 미치지 않아 이 부분은 식각을 할 수 없다. 반면, 이온 빔이 사선으로 입사되므로 도포면(122)의 하면으로 식각이 될 수 있다. 이에 따라 결과적으로 제1 각도로 이온 빔을 받은 원통 금형(100)의 외주면(120)에는 제1 각도로 식각되는 식각 패턴(140)이 형성된다.
이 상태에서 빔 방향 조정부(1600)는 이온 빔의 입사 각도이 커지도록 이온 건(1520)의 조사 방향을 조정할 수 있다. 이때의 입사각은 제1 각도보다 크고 수직 방향보다는 작은 제2 각도일 수 있다. 여기서, 제1 각도로 식각된 패턴에서 포토 레지스트의 하부로 식각된 부위는 입사각이 제1 각도에서 제2 각도로 높아졌으므로 기존에 제1 각도로 식각된 부위 중 일부는 그대로 남겨진 상태에서 바닥면으로부터 제2 각도로 파여지는 부위가 발생한다(도 12의 두번째 도면에 도시된 식각 패턴(140)의 왼쪽 벽면). 즉 이에 따라 식각 패턴(140)의 측벽(142)에 단차가 발생하게 된다.
한편, 제1 각도로 식각된 패턴에서 이온 빔의 입사각이 제1 각도에서 제2 각도로 높아졌고 또 포토 레지스트가 이온 빔에 의해 소진됨에 따라 포토 레지스트의 잔존 두께가 낮아졌기 때문에 포토 레지스트의 의해 노출면(124)에 생기는 그림자 영역이 감소되어 노출면(124) 중 기존에 식각이 이루어지지 않은 영역이 제2 각도로 식각되는 부위가 생기고, 또 기존에 식각되던 곳은 더 깊이 식각되어 식각 패턴(140)의 측벽(142)에 단차를 이루게 된다(도 12의 두번째 도면에 도시된 식각 패턴(140)의 오른쪽 벽면).
이 상태에서 이온 빔의 입사각이 다시 수직 방향 보다는 작고 제2 각도보다는 큰 제3 각도로 조정되면 기존의 제1 각도로 식각한 뒤 제2 각도로 식각할 때 단차가 생긴 것과 유사한 방식으로 식각 패턴(140)의 양 측벽(142)에 단차가 한 층 더 발생하게 된다.
종합하면, 이온 빔의 조사 각도를 불연속적으로 높여가면서 식각할 경우에는 원통 금형(100)의 외주면(120)에 양 측벽(142)에 단차를 가지는 식각 패턴(140)이 형성될 수 있다.
이와 달리 식각 시 이온 빔의 입사각을 점차 줄여가면서 식각을 수행하는 것도 가능하다. 도 13을 참조하면, 이온 빔을 이용하여 식각 시 이온 빔의 입사각을 제3 각도, 제2 각도, 제1 각도로 줄여나가면서 식각하는 경우에 형성되는 식각 패턴(140)의 형태를 보여주고 있다. 이때에는 식각 패턴(140)에서 포토 레지스트의 하부에 형성되는 측벽(142)은 단차 없이 서로 상이한 각도를 가지고 연결되는 3면을 가지도록 형성되며, 반대쪽 측벽(142)은 단차를 가지는 측벽(142)이 형성되도록 식각될 수 있다.
한편, 이상에서 도 12 및 도 13에서는 식각 시 특정 각도로 식각을 어느 정도 진행한 뒤 이온 빔의 조사를 멈추고, 입사각을 조정한 뒤 식각을 진행하는 과정을 반복하는 것으로, 즉 이온 빔의 입사각을 불연속적으로 제어한 것이다. 그런데, 이와 달리 이온 빔을 지속적으로 조사하면서 이온 빔의 입사각을 연속적으로 조정하면 식각 패턴(140)의 측벽(142)에 단차 대신 곡면이 형성될 수 있다. 예를 들면, 도 12에서는 제1 각도로 이온 빔을 조사하면서 원통 금형(100)의 회전시키다가, 이온 빔의 조사를 멈추고, 입사각을 제2 각도로 변경한 뒤, 이온 빔을 일정 시간 조사하고, 다시 이온 빔의 조사를 멈추고, 입사각을 제3 각도로 변경한 뒤, 이온 빔의 재조사를 통해 식각을 진행한 것인데, 이와 달리 이온 빔을 조사하면서 제1 각도로부터 제3 각도까지 연속적으로 각도를 변경할 수도 있으며, 이렇게 하면 식각 패턴(140)이 곡면 측벽(142)을 가지도록 형성될 수 있다.
이하에서는 본 발명의 실시예에 따른 식각 방법에 관하여 구체적으로 설명한다. 여기서, 식각 방법은 원통 표면에 사선방향 식각단면의 미세패턴을 갖는 금형의 제작 방법을 수행하기 위한 것일 수 있다.
도 14는 본 발명의 실시에에 따른 식각 방법의 순서도이다.
도 14를 참조하면, 식각 방법은 금형 지지부(1300)가 원통 금형(100)을 거치시키고, 회전시키는 단계(S110), 이온 빔을 조사하는 단계(S120), 식각 패턴(140)을 형성하기 위하여 이온 빔을 조사하는 단계(S130), 이온 빔의 조사 각도를 조정하는 단계(S140) 및 이를 통해 식각 패턴(140)의 측벽(142) 형상을 제어하며 식각하는 단계(S150)를 포함할 수 있다. 이하에서는 각 단계에 관하여 보다 구체적으로 설명한다.
먼저, 원통 금형(100)이 금형 지지부(1300)에 의해 거치되고, 회전될 수 있다(S110). 금형 지지부(1300)는 내부 커버(1200)의 내부에서 원통 금형(100)을 지지할 수 있다. 금형 지지부(1300)에 의해 원통 금형(100)이 체결 지지되면, 금형 회전 구동부(1400)가 금형 지지부(1300)를 회전시킴으로써 원통 금형(100)을 회전시킬 수 있다.
금형이 회전하면 빔 조사부(1500)가 이온 빔을 조사할 수 있다(S120). 이온 빔의 조사되기까지의 과정은 다음과 같다. 먼저 진공 펌프(1120)가 진공 챔버(1100)의 내부에 음압을 인가하여 내부 공간을 고진공 상태로 형성시킨다. 이 상태에서 가스 유입구(1142)를 통해 진공 챔버(1100) 내부로 소스 가스가 유입된다. 충분한 양의 소그 가스가 유입되면, 플라즈마 발생기(1144)가 소스 가스에 전기 에너지를 가하여 플라즈마를 발생시키게 된다. 이때, 진공 챔버(1100)와 내부 커버(1200)의 벽면은 각각 전기적으로 절연된 상태가 되어 플라즈마는 진공 챔버(1100)와 내부 커버(1200)의 사이 공간에 잔류하게 된다. 이 상태에서 전원부(1700)가 원통 금형(100)과 이온 건(1520)에 바이어스 전원을 인가할 수 있다. 이러한 바이어스 전원은 플라즈마로부터 이온을 유도할 수 있다. 유도되는 이온은 이온 건(1520)을 통과하며 가속되면서 빔 형태로 원통 금형(100)에 조사될 수 있다. 이때 이온 빔의 조사 방향은 이온 건(1520)의 개구(1522b)와 관로(1522a)가 향하는 방향에 따라 조정될 수 있다. 원통 금형(100)의 외주면(120)에 이온 빔이 입사되면 외주면(120) 중 포토 레지스트가 코팅되지 않은 노출면(124)이 식각된다(S130).
이때 이온 빔의 조사 각도는 수직 방향이 아닌 사선 방향으로 조정될 수 있다. 사선 방향으로 입사되는 이온 빔은 원통 금형(100)의 표면에 사선 방향의 식각 패턴(140)을 식각할 수 있다. 또 이온 빔의 조사 동안 빔 방향 조정부(1600)는 이온 건(1520)의 방향을 회전시켜 이온 빔이 원통 금형(100)에 입사되는 각도를 제어할 수 있다(S140). 식각 도중 이온 빔의 입사각이 변경되면 도 12 및 도 13에서 상술한 내용처럼 식각 패턴(140)의 측면에 단차가 형성되거나 또는 곡면인 측면을 가지는 식각 패턴(140)이 형성될 수 있다(S150).
여기서, 이온 빔의 방향 조정은, 연속적으로 이루어지거나 불연속적으로 이루어질 수 있는데, 이온 빔 방향 조정부(1600)는 이온 빔을 조사한 시간, 식각 패턴(140)의 깊이, 포토 레지스트가 남아있는 두께 등을 고려하여 이온 빔의 방향을 제어할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 이상에서 설명한 본 발명의 실시예들은 서로 별개로 또는 조합되어 구현되는 것도 가능하다.
따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
100: 원통 금형
1000: 식각 장치
1100: 진공 챔버
1200: 내부 커버
1300: 금형 지지부
1400: 회전 구동부
1500: 빔 조사부
1520: 이온 건
1600: 조사 방향 조정부
1700: 전원부

Claims (19)

  1. 포토 레지스트가 도포된 도포면과 상기 포토 레지스트가 도포되지 않은 노출면을 가지는 원통 금형을 수용하는 커버;
    상기 원통 금형을 수직 방향으로 지지하는 받침대;
    상기 받침대에 회전력을 전달하여 상기 원통 금형을 회전시키는 회전 구동부;
    상기 커버에 설치되고, 상기 원통 금형의 길이 방향으로 형성된 바 타입의 개구를 통해 상기 원통 금형의 외주면으로 이온 빔을 조사하여 상기 노출면에 식각 패턴을 형성하는 복수의 이온 건; 및
    상기 식각 패턴의 측벽이 곡면으로 식각되거나 또는 단차를 가지고 식각되도록 상기 식각 패턴을 형성하는 과정에서 수직 방향을 축으로 상기 이온 건을 회전시켜 상기 외주면에 대한 상기 빔의 조사 방향을 조정하는 빔 방향 조정부;를 포함하는
    식각 장치.
  2. 포토 레지스트가 도포된 도포면과 상기 포토 레지스트가 도포되지 않은 노출면을 가지는 원통 금형을 지지하는 금형 지지부;
    상기 금형 지지부에 회전력을 전달하여 상기 원통 금형을 회전시키는 회전 구동부;
    상기 노출면에 식각 패턴이 형성되도록 상기 원통 금형에 빔을 조사하는 빔 조사부; 및
    상기 식각 패턴의 측벽의 식각되는 각도를 조정하기 위하여 상기 빔 조사부의 조사 방향을 조정하는 빔 방향 조정부;를 포함하되,
    상기 원통 금형을 수용하는 진공 챔버;
    상기 빔 조사부에 플라즈마를 공급하는 플라즈마 소스부; 및
    상기 원통 금형에 바이어스 전압을 인가하는 전원부;를 더 포함하고,
    상기 빔 조사부는, 상기 플라즈마 소스부에 연결되어 상기 플라즈마로부터 이온을 추출하여 이온 빔을 생성하는 플라즈마 쉬스부, 절연체로 이루어져 상기 이온 빔을 포커싱하는 그리드부 및 전도성 물질로 이루어지고 상기 전원부로부터 상기 바이어스 전압을 인가받아 상기 이온 빔을 일정한 방향으로 출사하는 이온 가이드부를 포함하는
    식각 장치.
  3. 제2 항에 있어서,
    상기 빔 방향 조정부는, 상기 식각 패턴의 식각 깊이, 상기 빔의 조사 시간 및 상기 빔에 의해 소진되는 상기 포토 레지스트의 소진 두께 중 어느 하나에 따라 상기 빔 조사부의 조사 방향을 조정하는
    식각 장치.
  4. 제3 항에 있어서,
    상기 빔 방향 조정부는, 상기 측벽에 단차가 형성되도록 상기 어느 하나가 미리 정해진 기준값 이하인 경우에는 제1 각도로 상기 조사 방향을 조정하고, 상기 미리 정해진 기준값 이상인 경우에는 제2 각도로 상기 조사 방향을 조정하는
    식각 장치.
  5. 제3 항에 있어서,
    상기 빔 방향 조정부는, 상기 측벽이 곡면으로 형성되도록 상기 어느 하나에 따라 상기 조사 방향을 제1 각도로부터 제2 각도까지 연속적으로 조정하는
    식각 장치.
  6. 제4 항 및 제5 항 중 어느 한 항에 있어서,
    상기 제1 각도 및 상기 제2 각도는, 상기 원통 금형의 외주면에 대하여 사선 방향이고,
    상기 제2 각도가 상기 제1 각도보다 큰
    식각 장치.
  7. 제2 항에 있어서,
    상기 빔 조사부는, 상기 원통 금형을 둘러쌓도록 배치되는 복수의 빔 건을 포함하고,
    상기 복수의 빔 건은, 상기 원통 금형의 길이 방향과 동일한 방향으로 상기 빔을 출사하는 개구가 형성되어 각각 상기 원통 금형의 외주면에 동일한 각도로 상기 빔을 조사하는
    식각 장치.
  8. 제7 항에 있어서,
    상기 원통 금형이 수용하고, 그 벽면에 상기 복수의 빔 건이 설치되는 커버;를 더 포함하고,
    상기 빔 방향 조정부는, 상기 커버의 상부 또는 하부에 설치되고, 상기 복수의 빔 건과 연동하여 회전되도록 설치되는 연결부 및 상기 연결부를 회전시키는 회전 입력부를 포함하는
    식각 장치.
  9. 제8 항에 있어서,
    상기 연결부는, 상기 회전 입력부로부터 회전력을 입력받아 상기 원통 금형의 회전축과 동일한 회전축을 가지고 회전하는 제1 부재 및 상기 제1 부재와 상기 복수의 빔 건을 연결하여 상기 제1 부재의 회전과 상기 복수의 빔 건의 회전을 연동시키는 제2 부재를 포함하는
    식각 장치.
  10. 제9 항에 있어서,
    상기 제1 부재 및 상기 제2 부재는, 스텝 기어 형태로 체결되어 상기 복수의 빔 건의 방향을 스텝 단위로 조정하거나 또는 링크 형태로 체결되어 상기 복수의 빔 건의 방향을 연속적으로 조정하는
    식각 장치.
  11. 삭제
  12. 포토 레지스트가 도포된 도포면과 상기 포토 레지스트가 도포되지 않은 노출면을 가지며 진공 챔버에 수용되는 원통 금형을 회전시키는 단계;
    상기 노출면에 식각 패턴이 형성되도록 상기 원통 금형에 빔을 조사하는 단계; 및
    상기 식각 패턴의 측벽의 식각되는 각도를 조정하기 위하여 상기 빔의 조사 방향을 조정하는 단계;를 포함하되,
    상기 조사하는 단계는, 상기 원통 금형에 바이어스 전압을 인가하는 단계, 플라즈마를 공급받는 단계, 플라즈마 쉬스부를 이용하여 상기 공급되는 플라즈마로부터 이온을 추출하여 이온 빔을 생성하는 단계, 절연체로 이루어진 그리드부를 이용하여 상기 이온 빔을 포커싱하는 단계 및 전도성 물질로 이루어지고 상기 바이어스 전압을 인가받는 이온 가이드부를 이용하여 상기 이온 빔을 일정한 방향으로 출사하는 단계를 포함하는
    식각 방법.
  13. 제12 항에 있어서,
    상기 조정하는 단계에서, 상기 식각 패턴의 식각 깊이, 상기 빔의 조사 시간 및 상기 빔에 의해 소진되는 상기 포토 레지스트의 소진 두께 중 어느 하나에 따라 상기 빔의 조사 방향을 조정하는
    식각 방법.
  14. 제13 항에 있어서,
    상기 조정하는 단계에서, 상기 측벽에 단차가 형성되도록 상기 어느 하나가 미리 정해진 기준값 이하인 경우에는 제1 각도로 상기 조사 방향을 조정하고, 상기 미리 정해진 기준값 이상인 경우에는 제2 각도로 상기 조사 방향을 조정하는
    식각 방법.
  15. 제14 항에 있어서,
    상기 조정하는 단계에서, 상기 조사 방향을 조정하는 동안 상기 빔의 조사를 중단하는
    식각 방법.
  16. 제13 항에 있어서,
    상기 조정하는 단계에서, 상기 측벽이 곡면으로 형성되도록 상기 어느 하나에 따라 상기 조사 방향을 제1 각도로부터 제2 각도까지 연속적으로 조정하는
    식각 방법.
  17. 제16 항에 있어서,
    상기 조정하는 단계에서, 상기 조사 방향을 조정하는 동안 상기 빔의 조사를 유지하는
    식각 방법.
  18. 제14 항 및 제16 항 중 어느 한 항에 있어서,
    상기 제1 각도 및 상기 제2 각도는, 상기 원통 금형의 외주면에 대하여 사선 방향이고,
    상기 제2 각도가 상기 제1 각도보다 큰
    식각 방법.

  19. 삭제
KR1020140048963A 2014-04-23 2014-04-23 원통 표면에 사선방향 식각단면의 미세패턴을 갖는 금형의 제작 방법, 식각 장치 및 식각 방법 KR101597424B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140048963A KR101597424B1 (ko) 2014-04-23 2014-04-23 원통 표면에 사선방향 식각단면의 미세패턴을 갖는 금형의 제작 방법, 식각 장치 및 식각 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140048963A KR101597424B1 (ko) 2014-04-23 2014-04-23 원통 표면에 사선방향 식각단면의 미세패턴을 갖는 금형의 제작 방법, 식각 장치 및 식각 방법

Publications (2)

Publication Number Publication Date
KR20150122544A KR20150122544A (ko) 2015-11-02
KR101597424B1 true KR101597424B1 (ko) 2016-03-07

Family

ID=54599675

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140048963A KR101597424B1 (ko) 2014-04-23 2014-04-23 원통 표면에 사선방향 식각단면의 미세패턴을 갖는 금형의 제작 방법, 식각 장치 및 식각 방법

Country Status (1)

Country Link
KR (1) KR101597424B1 (ko)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101366042B1 (ko) * 2012-04-24 2014-02-24 (주)뉴옵틱스 폴 타입 안테나가 포함된 이온빔 소스의 위치제어를 이용한 이온 처리 장치

Also Published As

Publication number Publication date
KR20150122544A (ko) 2015-11-02

Similar Documents

Publication Publication Date Title
US10522332B2 (en) Plasma processing system, electron beam generator, and method of fabricating semiconductor device
TWI648763B (zh) 控制提供至基板的離子束的處理裝置與方法
JP2012523120A (ja) プラズマ処理装置
KR100754370B1 (ko) 향상된 중성입자 플럭스를 갖는 중성입자빔 생성장치
JP2012523122A (ja) プラズマ処理装置
JP6668376B2 (ja) プラズマ処理装置
WO2009131693A1 (en) Ion source with adjustable aperture
JP2001028244A (ja) ビーム源
US20080179186A1 (en) Thin film forming apparatus
JP5903864B2 (ja) イオンミリング装置
JP2021533572A (ja) 中性原子ビームを使用した被加工物処理のためのシステムおよび方法
TW202220006A (zh) 用於離子束系統的提取板、離子束處理裝置及方法
KR20110103950A (ko) 스퍼터링 장치 및 스퍼터링 방법
JP2002170516A (ja) イオンビーム照射装置
KR101597424B1 (ko) 원통 표면에 사선방향 식각단면의 미세패턴을 갖는 금형의 제작 방법, 식각 장치 및 식각 방법
JP5246474B2 (ja) ミリング装置及びミリング方法
TWI795794B (zh) 處理系統、包括高角度提取光學元件之提取總成
JP2006253190A (ja) 中性粒子ビーム処理装置および帯電電荷の中和方法
JP4818977B2 (ja) 高速原子線源および高速原子線放出方法ならびに表面改質装置
KR20050089516A (ko) 전자석이 구비된 반도체 식각용 중성빔 소오스
RU2504860C2 (ru) Способ производства заготовок с травленной ионами поверхностью
JP4810497B2 (ja) 原子線源および表面改質装置
JP2007317650A5 (ko)
JP4683036B2 (ja) イオン源
JPH09106969A (ja) 多重陰極電子ビームプラズマ食刻装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee