KR101593018B1 - 디크티오피론 유도체 또는 디히드로디크티오피론 유도체를 유효 성분으로 하는 오스테오폰틴 생산 저해제 - Google Patents

디크티오피론 유도체 또는 디히드로디크티오피론 유도체를 유효 성분으로 하는 오스테오폰틴 생산 저해제 Download PDF

Info

Publication number
KR101593018B1
KR101593018B1 KR1020157001055A KR20157001055A KR101593018B1 KR 101593018 B1 KR101593018 B1 KR 101593018B1 KR 1020157001055 A KR1020157001055 A KR 1020157001055A KR 20157001055 A KR20157001055 A KR 20157001055A KR 101593018 B1 KR101593018 B1 KR 101593018B1
Authority
KR
South Korea
Prior art keywords
cells
opn
compound
well
derivative
Prior art date
Application number
KR1020157001055A
Other languages
English (en)
Other versions
KR20150023021A (ko
Inventor
하루히사 키쿠치
요시테루 오시마
토시오 하토리
유주루 쿠보하라
오사무 야마다
징 장
요시히사 마츠시타
시니아 키다
Original Assignee
도호쿠 다이가쿠
고쿠리츠다이가쿠호진 군마다이가쿠
후소 야쿠힝 고교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도호쿠 다이가쿠, 고쿠리츠다이가쿠호진 군마다이가쿠, 후소 야쿠힝 고교 가부시끼가이샤 filed Critical 도호쿠 다이가쿠
Publication of KR20150023021A publication Critical patent/KR20150023021A/ko
Application granted granted Critical
Publication of KR101593018B1 publication Critical patent/KR101593018B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4412Non condensed pyridines; Hydrogenated derivatives thereof having oxo groups directly attached to the heterocyclic ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/45Non condensed piperidines, e.g. piperocaine having oxo groups directly attached to the heterocyclic ring, e.g. cycloheximide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oncology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

본 발명은 오스테오폰틴 생산 항진에 기인하는 질환을 예방할 수 있는, 오스테오폰틴 생산 저해제를 제공하는 것을 목적으로 한다. 본 발명의 오스테오폰틴 생산 저해제는, 디크티오피론 유도체 또는 디히드로디크티오피론 유도체를 유효 성분으로 한다. 디크티오피론 유도체는 화학식 1 또는 화학식 2로 표시되는 화합물인 것이 바람직하고, 디히드로디크티오피론 유도체는 화학식 3 또는 화학식 4로 표시되는 화합물인 것이 바람직하다.

Description

디크티오피론 유도체 또는 디히드로디크티오피론 유도체를 유효 성분으로 하는 오스테오폰틴 생산 저해제{OSTEOPONTIN PRODUCTION INHIBITOR COMPRISING DICTYOPYRONE DERIVATIVE OR DIHYDRODICTYOPYRONE DERIVATIVE AS ACTIVE INGREDIENT}
본 발명은 오스테오폰틴(OPN)생산 항진이 원인으로서 일어나는 질환(예를 들어, 암의 전이)을 예방 또는 개선할 수 있는, 디크티오피론(Dictyopyrone) 유도체 또는 디히드로디크티오피론(Dihydrodictyopyrone)유도체를 유효 성분으로 하는 OPN 생산 저해제에 관한 것이다.
OPN은 칼슘이 침착된 골조직의 매트릭스를 구성하는 주요한 비콜라겐성 단백질로서 동정된, 분자량 약 41kDa의 분비형 산성 인산화 당단백질이다. 유즙, 오줌, 신뇨세관, 파골 세포, 골아 세포, 마크로파지, 활성화 T세포 및 많은 종양 조직에서 널리 그 발현이 관찰되고 있다. OPN은 골기질 중에서 파골 세포와 하이드록시아파타이트를 연결하는 가교로서 작용한다고 생각되고 있었으나(비특허문헌 1), 그 밖에도 세포 접착, 세포 유주, 일산화질소 생산의 억제, 종양 또는 면역계에 대한 관여라고 하는 다채로운 기능이 보고된 바 있다.
OPN 발현은 종양의 진행도와 상관이 있으며, 암전이와의 관련성을 보이고 있다. 폐암, 간암, 유방암 또는 전립선암 환자의 혈장으로부터 OPN이 검출되고 있고(비특허문헌 2), 정상 부분과 비교하여 암 부분의 OPN mRNA가 상승되고 있음이 보고된 바 있으며(비특허문헌 3), 글리오마(glioma)에 있어서의 OPN 발현도 악성도와 상관하는 경향이 있음이 보고된 바 있다(비특허문헌 4). OPN 발현과 종양 간의 상관은 동물 모델에 있어서도 확인된 바 있다(비특허문헌 5). 이러한 OPN에 관한 최근의 지견으로부터, 종양 세포의 전이 및 침윤을 촉진시키는 OPN의 생산을 억제하는 것은 암의 전이를 방지하는 항암제의 새로운 표적의 하나라고 생각되게 되었다(비특허문헌 6).
Miyauchi A,Alvarez J,Greenfield EM,Teti A,Grano M,Colucci S,Zambonin-Zallone A, Ross FP,Teitelbaum SL,Cheresh D,Hruska KA. (1991) Recognition of osteopontin and related peptides by an alpha v beta 3 integrin stimulates immediate cell signals in osteoclasts. J Biol Chem 266,20369-20374. Senger DR, Perruzzi CA, Gracey CF, Papadopoulos A, Tenen DG. (1988) Secreted phosphoproteins associated with neoplastic transformation : close homology with plasma proteins cleaved during blood coagulation. Cancer Res 48, 5770 - 5774 Brown LF, PapadopoμLos-Seigiou A, Brygida B, Manseau EJ, Tognazzi K, Perruzzi CA, Dvorak HF, Senger DR. (1994) Osteopontin expression in human carcinoma. Am J Pathol. 145, 610 - 623 Saitoh Y, Kuratsu JI, Takeshima H, Yamamoto S, Ushio Y (1995) Expression of osteopontin in human glioma. Lab Invest 72, 55-63. Suzuk M, Mose E, Galloy C, and Tarin T (2007) Osteopontin Gene Expression Determines Spontaneous Metastatic Performance of Orthotopic Human Breast Cancer Xenografts. Am J Pathol 171, 682 - 692 Weber GF (2001) Review: The metastasis gene osteopontin : a candidate target for cancer therapy. Biochim Biophys Acta 1552, 61-85. Kikuchi H, Sasaki K, Sekiya J, Maeda M, Amagai A, Kubohara Y and Oshima Y (2004) Dihydrodictyopyrone A and C: new members of dictyopyrone family isolated from Dictyostelium cellular slime molds Bioorg Med Chem 12, 3203-3214 Matsuura M, Suzuki T, Suzuki M, Tanaka R, Ito E and Saito T (2011) Statin-mediated reduction of osteopontin expression induces apoptosis and cell growth arrest in ovarian clear cell carcinoma. Oncol Rep 25, 41-47 Haruhisa Kikuchi, Koji Nakamura, Yuzuru Kubohara, Naomi Gokan, Kohei Hosaka, Yasuo Maedad and Yoshiteru Oshima, Tetrahedron Letters 48 (2007) 5905-5909.
전술한 바와 같이, OPN의 생산을 억제함으로써 암의 전이를 방지할 수 있을 가능성이 있다. OPN 생산 저해 작용을 갖는 약제로는, PPAR-γ(Peroxysome Proliferator-Activated Receptor-γ) 아고니스트인 인슐린 저항성 개선약(트로글리타존, 피오글리타존, 로시글리타존 및 비스테로이드성 항염증약(예컨대, 인도메타신 또는 이부프로펜)및 HMG-CoA 환원 효소 저해제인 스타틴계 고콜레스테롤 혈증 치료약(예컨대, 로수바스타틴(rosuvastatin), 로바스타틴(lovastatin), 심바스타틴(simvastatin), 프라바스타틴(pravastatin), 플러바스타틴(fluvastain), 아토르바스타틴(atorvastatin), 세리바스타틴(cerivastatin), 피타바스타틴(pitavastatin) 및 메바스타틴(mevastatin))이 알려져 있다.
한편, 세포성 점균은 널리 토양 표층에 분포되어 있는 원생 생물의 한 종류이며, 생활환 중에 동물적과 식물적, 단세포와 다세포라는 크게 다른 성질을 겸비함과 아울러, 세포 운동, 세포질 분열 또는 분화와 같은 다세포 생물의 발생계를 구성하는 주요 과정을 포함하고 있다. 천연 화학에 있어서 종래 자주 이용되고 있는 생물종과 크게 다르기 때문에 다양한 신규 화합물을 생산하고 있는 것이 기대되고 있다.
본 발명은 OPN 생산 항진에 기인하는 질환(예를 들어, 암의 전이)을 예방할 수 있는 OPN 생산 저해제의 제공을 목적으로 한다.
본 발명자들은 OPN의 유전자 발현을 억제하는 화합물을 발견하기 위해, OPN 프로모터 억제 하에서 리포터 유전자의 루시퍼라제를 발현하는 세포주를 이용하여 디.디스코이데움(D. discoideum)과 같은 세포성 점균의 이차 대사 산물을 대상으로 스크리닝을 행하였다.
그 결과, 본 발명자들은 디크티오피론 유도체 및 디히드로디크티오피론 유도체 중에 루시퍼라제 발현을 억제하는 화합물을 발견했다.
또한 본 발명자들은 이러한 OPN 프로모터 억제 하에 있어서의 루시퍼라제 활성을 억제하는 화합물은 인간 비소세포 폐암 유래 세포주 A549 또는 인간 간암 유래 세포주 HepG2가 생산하는 OPN량을 저하시킨다는 사실도 발견했다. 나아가 본 발명자들은 창상 치유(Wound-Healing) 어세이에 의해 디크티오피론 유도체 및 디히드로디크티오피론 유도체가 OPN의 생리적인 기능인 세포의 유주능을 억제함 및 매트릭스 겔 침윤 어세이에 의해 디크티오피론 유도체 및 디히드로디크티오피론 유도체가 세포의 전이 및 침윤능을 억제함을 발견하고 본 발명을 완성하기에 이르렀다.
구체적으로, 본 발명은 디크티오피론 유도체 또는 디히드로디크티오피론 유도체를 유효 성분으로 하는 오스테오폰틴 생산 저해제에 관한 것이다.
디크티오피론 유도체 및 디히드로디크티오피론 유도체 중에는 인간 백혈병 세포 유래 K562 세포의 증식을 억제하는 활성을 가지고 있는 화합물이 존재한다는 사실은 보고된 바 있지만(비특허문헌 7), OPN 생산 저해 작용은 현재까지 보고된 바 없다.
디크티오피론 유도체로서는 화학식 1 또는 화학식 2로 표시되는 화합물이 바람직하다.
[화학식 1]
Figure 112015004280330-pct00001
[화학식 2]
Figure 112015004280330-pct00002
디히드로디크티오피론 유도체로는 화학식 3 또는 화학식 4로 표시되는 화합물이 바람직하다.
[화학식 3]
Figure 112015004280330-pct00003
[화학식 4]
Figure 112015004280330-pct00004
본 발명의 디크티오피론 유도체 및 디히드로디크티오피론 유도체를 유효 성분으로 하는 OPN 생산 저해제는 인슐린 저항성 개선약 또는 스타틴계 고콜레스테롤 혈증 치료약과 다른 작용 기전을 갖는 OPN 생산 저해제이다.
[도 1] 화합물 3(화학식 3으로 표시되는 화합물) 첨가에 의한 A549 세포의 OPN 생산 억제 효과를 나타내는 그래프를 도시한다.
[도 2] 화합물 3(화학식 3으로 표시되는 화합물) 첨가에 의한 HepG2 세포의 OPN 생산 억제 효과를 나타내는 그래프를 도시한다.
[도 3] 화합물 3(화학식 3으로 표시되는 화합물) 첨가에 의한 A549 세포의 창상 회복 억제 효과를 나타내는 그래프를 도시한다.
[도 4] 화합물 3(화학식 3으로 표시되는 화합물) 첨가에 의한 A549 세포의 매트릭스 침윤 억제 효과를 나타내는 그래프를 도시한다.
[도 5] SVS(심바스타틴)에 의한 OPN 생산량 억제 효과에 대한, MVA(메발론산) 첨가에 의한 회복 효과를 나타내는 그래프를 도시한다.
[도 6] 화합물 3에 의한 OPN 생산량 억제 효과에 대한, MVA 첨가에 의한 영향을 나타내는 그래프를 도시한다.
본 발명의 실시 형태에 대하여 적절히 도면을 참조하면서 설명한다. 본 발명은 이하의 기재로 한정되지 않는다.
<A:OPN 프로모터 억제 하에 있어서의 루시퍼라제 발현 저해 효과의 확인 방법>
pGL-3 벡터 베이직(basic) (Promega)의 멀티 클로닝 부위에 인간 OPN 프로모터 서열(-765 내지 23)을 삽입한 리포터 벡터 pOPN1-luc는 동물 세포에 트랜스팩션(transfection)시키면 루시퍼라제를 발현한다. 이 pOPN1-luc를 퓨로마이신 내성 유전자(puromycin-N-acetyl-transferase gene)를 발현하는 pPUR(Clontech)과 함께 인간 비소세포 폐암 유래 세포주 A549에 트랜스팩션시키고, 퓨로마이신 첨가 배지에서 증식 가능한, 루시퍼라제를 발현하는 세포를 선택했다. 선택된 세포를 A549/OPNluc 세포라고 명명하고, 후술하는 OPN 프로모터 억제 하에 있어서의 루시퍼라제 발현 저해 효과의 관찰에 사용하였다.
피험 화합물을 A549/OPNluc세포의 배양액 속에 첨가하고, 세포 내의 루시퍼라제 발현량에 대한 영향을 관찰했다. 여기서, 피험 화합물이 세포 독성 또는 세포 증식 억제 효과를 가지고 있는 경우에는 피험 화합물의 농도에 의존한 생세포 수의 감소로 인해 총 루시퍼라제 발현량이 저하되어, 피험 화합물의 OPN 프로모터 억제 하에 있어서의 루시퍼라제 발현 저해 효과를 정확하게 평가할 수 없다고 생각된다. 이 때문에, 세포 증식 능력 또는 세포 생존 능력을 발색 측정에 의해 정량하는 방법인 WST 어세이를 먼저 실시하여, 피험 화합물의 세포 증식에 대한 IC50(50% 세포 증식 저해 농도)을 구하였다. 그 후, 루시퍼라제 활성 측정을 실시하여, 피험 화합물의 OPN 프로모터 억제 하의 루시퍼라제 발현에 대한 EC50(50% 루시퍼라제 발현 억제 농도)을 구하였다.
A1) WST어세이
A549/OPNluc 세포를 10% 소 태아 혈청(FCS) 및 1% 페니실린스트렙토마이신(P/S)을 첨가한 DMEM 배지에 3×104cells/mL가 되도록 현탁시키고, 이를 96 웰 플레이트의 각 웰에 100μL씩 분주했다. 시험을 트리플리케이트로 실시하기 때문에, 대조군 및 각 농도의 피험 화합물 첨가용으로서 각각 3웰씩 준비했다. 분주 후 96 웰 플레이트를 탄산 가스 배양기(37℃, 5% CO2조건 하)에서 24±4시간 배양하였다.
피험 화합물을 디메틸술폭사이드(DMSO)에 의해 50 mmol/L 용액으로 만들어, -80℃에서 보존하였다. 이 피험 화합물 용액을 DMSO에 의해 2배 희석계열로서 희석하고(통상적으로는 0.31 mmol/L 내지 20 mmol/L의 범위), 2배씩 농도가 서로 다른 피험 화합물 용액을 WST 어세이를 위해 준비하였다.
세포 현탁액을 넣은 각 웰에, DMSO만(대조) 또는 희석한 피험 화합물(검체)의 용액을 0.5 μL씩 분주하였다(200배 희석). 볼텍스 믹서로 혼화한 후, 96 웰 플레이트를 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 48±4시간 배양했다. 그 후, Premix WST-1 Reagent(다카라 바이오)를 10 μL씩 각 웰에 첨가했다. 볼텍스 믹서를 이용하여 혼화한 후, 96 웰 플레이트를 37℃, 5% CO2 조건 하에서 인큐베이션하고, 마이크로 플레이트 리더(Bio-Rad;Benchmark 또는 Thermo Scientific;Varioskan Flash)를 이용하여 60분 후 또는 120분 후의 흡광치(450 nm)를 측정하였다.
대조의 웰 및 각 농도의 검체 웰의 흡광치를 각각 엑셀 파일에 입력하고, 대조의 평균 흡광치에 대한, 각 농도의 검체 웰의 흡광치의 퍼센트를 구했다. 구한 값으로부터 최소 이승법에 의한 근사 곡선식을 구하여, IC50를 계산했다.
A2) 루시퍼라제 어세이
세포 현탁액을 넣은 각 웰에 DMSO만(대조) 또는 희석한 피험 화합물(검체)의 용액을 0.5 μL씩 가하여 200배 희석하고, 볼텍스 믹서로 혼화한 후, 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 48±4시간 배양하는 공정까지, 상술한 WST 어세이와 동일한 조작을 행하였다.
Luciferase Assay Systems(Promega:Cat# E1500)에 포함되는 Luciferase Assay Substrate(이하, LAS라고 표기한다)를 Luciferase Assay Buffer(LAB)로 용해하여, 루시퍼라제 시약을 조제했다. 5×Cell Culture Lysis Reagent(이하, CCLR라고 표기한다)를 물로 5배 희석하여, 1×CCLR를 조제했다.
배양 48±4시간 후, 각 웰의 배양지를 완전히 제거하고, 1×CCLR를 50 μL씩 분주하였다. 실온에서 30분 정치한 후, 각 웰 내의 1×CCLR를 측정용 시료로 하였다. 화학 발광 측정용의 튜브에 루시퍼라제 시약을 100 μL 넣고, 이것에 측정용 시료 20 μL를 첨가하여 혼화하고, Tuner Design Luminometer 20/20 (Promega)을 이용하여, 화학 발광(상대 발광 강도:RLU)을 측정했다.
대조의 RLU 및 각 농도의 검체의 RLU를 각각 엑셀 파일에 입력하고, 대조의 RLU의 평균치에 대한 각 농도의 검체의 RLU의 퍼센트를 구하고, 그 값으로부터 최소 이승법에 의해 근사 곡선식을 구하여, EC50를 계산했다.
표 1은, 피험 화합물인 화학식 1~화학식 16으로 표시되는 디크티오피론 유도체 또는 디히드로디크티오피론 유도체에 대하여, WST 어세이 및 루시퍼라제 어세이에 의해 계산된 IC50 및 EC50를 나타낸다.
[화학식 5]
Figure 112015004280330-pct00005
[화학식 6]
Figure 112015004280330-pct00006
[화학식 7]
Figure 112015004280330-pct00007
[화학식 8]
Figure 112015004280330-pct00008
[화학식 9]
Figure 112015004280330-pct00009
[화학식 10]
Figure 112015004280330-pct00010
[화학식 11]
Figure 112015004280330-pct00011
[화학식 12]
Figure 112015004280330-pct00012
[화학식 13]
Figure 112015004280330-pct00013
[화학식 14]
Figure 112015004280330-pct00014
[화학식 15]
Figure 112015004280330-pct00015
[화학식 16]
Figure 112015004280330-pct00016
여기서, 화학식 1, 2, 5~8로 표시되는 화합물은, 비특허문헌 7에 개시되어 있는 제조 방법에 따라서 제조하였다. 화학식 3, 12, 13, 15~16으로 표시되는 화합물은, 비특허문헌 9에 개시되어 있는 제조 방법에 따라서 제조하였다.
[화학식 4로 표시되는 화합물의 제조 방법]
비특허문헌 7에 기재된 대로 합성된 5 mg의 (S)-3-도데카노일-5,6-디히드로-4,6-디메틸-1H-피리딘-2-온을 1mL의 메탄올에 용해시켰다. 1mg 의 팔라듐 탄소(Pd 5%)를 첨가하고, 수소 분위기 하, 실온에서 2시간 교반했다. 반응액을 여과하여 팔라듐 탄소를 제거하고, 그 여과액을 감압 증류했다. 잔사를 실리카겔 칼럼 크로마토그래피에 의해, 헥산-초산에틸(4:1)로 용출시킨 분획으로부터, 화학식 4로 표시되는 화합물을 4 mg을 얻었다.
얻어진 화합물은, EIMS(전자 충격 질량스펙트럼)법에 의한 질량 분석 및 NMR에 의해 해석되었다. EIMS 및 NMR의 결과는, 이하에 나타내는 바와 같다.
1H-NMR(400 MHz, CDCl3) d 5.76 (1H, br.s), 3.52-3.64 (1H, m), 3.05 (1H, d, J = 11.2 Hz), 2.81 (1H, dt, J = 17.8, 7.5 Hz), 2.52 (1H, dt, J = 17.8, 7.4 Hz), 2.28-2.41 (1H, m), 1.87 (1H, dt, J = 13.0, 2.3 Hz), 1.52-1.68 (3H, m), 1.23-1.36 (16H, s), 1.17 (3H, d, J = 6.4 Hz), 0.94 (3H, d, J= 6.5 Hz), 0.88 (3H, t, J = 6.4 Hz).
EIMS m/z (rel. int) 309[M]+(11), 294(5), 182(10), 169(13), 127(100), 112(55).
[화학식 9로 표시되는 화합물의 제조 방법]
297 mg의 수베르산 모노메틸 에스테르(suberic acid monomethyl ester)를 8 mL의 염화메틸렌에 용해시키고, 250 mg의 멜드럼산, 453 mg 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드염산염, 및 19 mg의 4-(디메틸아미노)피리딘을 가하여, 실온에서 4시간 교반했다. 반응액에 0.5 M 염산 30 mL를 가하여, 30 mL의 초산에틸을 이용하여 3회 추출했다. 추출된 초산에틸층을 모두 합하여, 60 mL의 물 및 60 mL의 포화 식염수에 의해 각각 세정한 후, 무수황산나트륨을 이용하여 건조시키고, 용매를 감압 증류했다. 그 잔사를 5 mL의 톨루엔에 용해시키고, 246 mg의 (2S,4S)-2,4-펜탄디올을 첨가하고, 120 ℃에서 2시간 교반했다. 실온으로 되돌린 후, 반응액을 감압 증류하고, 잔사를 실리카겔 칼럼 크로마토그래피에 의해, 헥산-초산에틸(3:1)로 용출시킨 분획으로부터 200 mg의 1-(1S,3S)-3-히드록시-1-메틸부틸 10-메틸 3-옥소데칸디오에이트를 얻었다.
196 mg의 1-(1S,3S)-3-히드록시-1-메틸부틸 10-메틸 3-옥소데칸디오에이트를 8 mL의 염화메틸렌에 용해시키고, 109 mg의 N-메틸모르폴린 N-옥사이드, 311 mg의 분말상의 모레큐라 시브스 4A, 및 11 mg의 테트라프로필암모늄 과루테늄산염을 순차적으로 첨가하고, 실온에서 5시간 교반했다. 반응액을 여과하고, 그 여과액을 감압 증류했다. 잔사를 실리카겔 칼럼 크로마토그래피에 의해, 헥산-초산에틸(4:1)로 용출시킨 분획으로부터 133 mg의 1-(S)-1-메틸-3-옥소부틸 10-메틸 3-옥소데칸디오에이트를 얻었다.
126 mg의 1-(S)-1-메틸-3-옥소부틸 10-메틸 3-옥소데칸디오에이트를 2 mL의 에탄올에 용해시키고, 41 mg의 나트륨에톡시드를 첨가하고, 실온에서 10시간 교반했다. 반응액을 20 mL의 0.5 M 염산에 붓고, 20 mL의 초산에틸을 이용하여 3회 추출했다. 추출된 초산에틸층을 모두 합하여, 40 mL의 물, 및 40 mL의 포화 식염수에 의해 각각 세정한 후, 무수황산나트륨으로 건조시켜 용매를 감압 증류했다. 잔사를 실리카겔 칼럼 크로마토그래피에 의해, 헥산-초산에틸(4:1)로 용출시킨 분획으로부터 88 mg의 메틸(S)-8-(4,6-디메틸-2-옥소-5,6-디히드로-2H-피란-3-일)-8-옥소옥타노에이트(화학식 9로 표시되는 화합물)를 얻었다.
얻어진 화합물은, EIMS(전자 충격 질량스펙트럼)법에 의한 질량 분석 및 NMR에 의해 해석되었다 .EIMS 및 NMR의 결과는, 이하에 나타내는 바와 같다.
1H-NMR(400 MHz, CDCl3) d 4.50-4.60 (1H, m), 3.67 (3H, s), 2.74 (1H, dt, J = 17.3, 7.4 Hz), 2.73 (1H, dt, J = 17.3, 7.4 Hz), 2.45(1H, ddq, J = 17.9, 11.6, 0.9 Hz), 2.31 (1H, dd, J = 17.9, 3.8 Hz), 2.30 (2H, t, J = 7.4 Hz), 2.01 (3H, d, J = 0.9 Hz), 1.58-1.68 (4H, m), 1.44 (3H, d, J = 6.4 Hz), 1.30-1.38 (4H, m).
EIMS m/z (rel. int) 296[M]+(6), 281(10), 265(11), 246(14), 181(20), 168(83), 153(100), 109(30).
[화학식 10으로 표시되는 화합물의 제조 방법]
비특허문헌 7에 기재된 대로 합성된 300 mg의 (S)-2-[1-메틸-2-(2-메틸-1,3-디옥산-2-yl)에틸]-이소인돌-1,3-디온을 6 mL의 메탄올에 용해시키고, 히드라진 일수화물 1038 mg를 첨가하고, 6시간 가열 환류했다. 실온으로 되돌린 후, 반응액에 1 M 수산화나트륨 수용액 30 mL를 첨가하고, 30 mL의 초산에틸에 의해 3회 추출했다. 추출된 초산에틸층을 모두 합하여, 60 mL의 물, 및 60 mL의 포화 식염수로 각각 세정한 후, 무수황산나트륨으로 건조시키고, 용매를 감압 증류했다. 잔사를 6 mL의 톨루엔에 용해시키고, 565 mg의 5-부타노일-2,2-디메틸-1,3-디옥산-4,6-디온을 첨가하고, 15시간 가열 환류했다. 실온으로 되돌리고, 반응액을 감압 증류했다. 잔사를 실리카겔 칼럼 크로마토그래피에 의해, 헥산-초산에틸(2:1)을 이용하여 용출시킨 분획으로부터, 140 mg의 (S)-N-[l-메틸-2-(2-메틸-1,3-디옥산-2-일)에틸]-3-옥소헥산아미드를 얻었다.
115 mg의 (S)-N-[l-메틸-2-(2-메틸-1,3-디옥산-2-일)에틸]-3-옥소헥산아미드를 80% 초산 수용액 4 mL에 용해시키고, 실온에서 7시간 교반했다. 반응액을 감압 증류하고, 잔사를 실리카겔 칼럼 크로마토그래피에 의해, 헥산-초산에틸(2:1)을 이용하여 용출시킨 분획으로부터, 59 mg의 (S)-N-(1-메틸-3-옥소부틸)-3-옥소데칸아미드를 얻었다.
11 mg의 (S)-N-(1-메틸-3-옥소부틸)-3-옥소데칸아미드를 1 mL의 에탄올에 용해시키고, 5 mg의 나트륨에톡시드를 첨가하고, 실온에서 8시간 교반했다. 반응액을 10 mL의 0.5 M 염산에 붓고, 10 mL의 초산에틸에 의해 3회 추출했다. 추출된 초산에틸층을 모두 합하여, 20 mL의 물, 및 20 mL의 포화 식염수에 의해 각각 세정한 후, 무수황산나트륨으로 건조시키고, 용매를 감압 증류했다. 잔사를 실리카겔 칼럼 크로마토그래피에 의해, 헥산-초산에틸(2:1)로 용출시킨 분획으로부터, 4 mg의 (S)-3-부타노일-5,6-디히드로-4,6-디메틸-1H-피리딘-2-온(화학식 10으로 표시되는 화합물)을 얻었다.
생성물은, EIMS(전자 충격 질량스펙트럼)법에 의한 질량 분석 및 NMR에 의해 해석되었다. EIMS 및 NMR의 결과는, 이하에 나타내는 바와 같다.
1H-NMR(400 MHz, CDCl3) d 5.45 (1H, br.s), 3.66-3.78 (1H, m), 2.71 (2H, t, J = 7.4 Hz), 2.31 (1H, dd, J= 17.6, 7.6 Hz), 2.23 (1H, dd, J = 17.6, 7.2 Hz), 1.93 (3H, s), 1.64 (2H, quint, J = 7.4 Hz), 1.24, (3H, d, J= 6.4 Hz), 0.94 (3H, t, J = 7.4 Hz).
EIMS m/z(rel. int) 195[M]+(19),180(100),152(54),109(22).
[화학식 11로 표시되는 화합물의 제조 방법]
비특허문헌 7에 기재된 대로 합성된 300 mg의 (S)-2-[1-메틸-2-(2-메틸-1,3-디옥산-2-일)에틸]-이소인돌-1,3-디온을 6 mL의 메탄올에 용해시키고, 히드라진 일수화물 1038 mg를 첨가하고, 6시간 가열 환류시켰다. 실온으로 되돌린 후, 반응액에 1 M 수산화 나트륨 수용액 30 mL를 첨가하고, 30 mL의 초산에틸에 의해 3회 추출했다. 추출된 초산에틸층을 모두 합하여, 60 mL의 물, 및 60 mL의 포화 식염수로 각각 세정한 후, 무수 황산 나트륨으로 건조시켜 용매를 감압 증류했다. 잔사를 6 mL의 톨루엔에 용해시키고, 564 mg의 2,2-디메틸-5-옥타노일-1,3-디옥산-4,6-디온을 첨가하고, 15시간 가열 환류시켰다. 실온으로 되돌린 후, 반응액을 감압 증류했다. 잔사를 실리카겔 칼럼 크로마토그래피에 의해, 헥산-초산에틸(2:1)로 용출시킨 분획으로부터, 51 mg의 (S)-N-[l-메틸-2-(2-메틸-1,3-디옥산-2-일)에틸]-3-옥소데칸아미드를 얻었다.
47 mg의 (S)-N-[l-메틸-2-(2-메틸-1,3-디옥산-2-일)에틸]-3-옥소데칸아미드를 80% 초산 수용액 3 mL에 용해시키고, 실온에서 7시간 교반했다. 반응액을 감압 증류하고, 잔사를 실리카겔 칼럼 크로마토그래피에 의해, 헥산-초산에틸(2:1)로 용출시킨 분획으로부터, 38 mg의 (S)-N-(1-메틸-3-옥소부틸)-3-옥소데칸아미드를 얻었다.
23 mg의 (S)-N-(1-메틸-3-옥소부틸)-3-옥소데칸아미드를 2 mL의 N,N-디메틸포름아미드에 용해시키고, 3 mg의 수소화나트륨(60%, 광유 속에 분산)을 첨가하고, 실온에서 10시간 교반했다. 반응액을 10 mL의 0.5 M 염산에 붓고, 10 mL의 초산에틸에 의해 3회 추출했다. 추출된 초산에틸층을 모두 합하여, 20 mL의 물, 및 20 mL의 포화 식염수로 각각 세정한 후, 무수황산나트륨으로 건조하여 용매를 감압 증류했다. 잔사를 실리카겔 칼럼 크로마토그래피에 의해, 헥산-초산에틸(2:1)로 용출시킨 분획으로부터, 9 mg의 (S)-5,6-디히드로-4,6-디메틸-3-옥타노일-1H-피리딘-2-온(화학식 11로 표시되는 화합물)을 얻었다.
생성물은, EIMS(전자 충격 질량스펙트럼)법에 의한 질량 분석 및 NMR에 의해 해석되었다. EIMS 및 NMR의 결과는, 이하에 나타내는 바와 같다.
1H-NMR(400 MHz, CDCl3) d 5.52 (1H, br.s), 3.65-3.78 (1H, m), 2.72 (2H, t, J = 7.6 Hz), 2.31 (1H, dd, J= 17.2, 5.6 Hz), 2.23 (1H, dd, J = 17.2, 7.2 Hz), 1.92 (3H, s), 1.60 (2H, quint, J = 7.6 Hz), 1.23-1.35 (8H, m), 1.24 (3H, d, J = 6.8 Hz), 0.87 (3H, t, J= 7.0 Hz).
EIMS m/z (rel. int) 251 [M]+(33), 236(57), 180(100), 167(69), 152(76), 109(23).
[화학식 14로 표시되는 화합물의 제조 방법]
비특허문헌 7에 기재된 대로 합성된 10 mg의 3-도데카노일-5,6-디히드로-4,6,6-트리메틸-2H-피란-2-온을 1 mL의 초산에틸에 용해시키고, 1 mg의 20% 수산화 팔라듐-탄소를 첨가하고, 수소 분위기 하, 실온에서 20시간 교반했다. 반응액을 여과하여 팔라듐 탄소를 제거하고, 그 여과액을 감압 증류했다. 잔사를 실리카겔 칼럼 크로마토그래피에 의해, 헥산-초산에틸(19:1)로 용출시킨 분획으로부터, 9 mg의 화학식 14로 표시되는 화합물을 얻었다.
생성물은, EIMS(전자 충격 질량스펙트럼)법에 의한 질량 분석 및 NMR에 의해 해석되었다. EIMS 및 NMR의 결과는, 이하에 나타내는 바와 같다.
1H-NMR(400 MHz, CDCl3) d 3.13 (1H, d, J= 10.8 Hz), 2.87 (1H, dt, J = 14.8, 7.2 Hz), 2.59-2.67 (1H, m), 2.55 (1H, dt, J= 14.8, 6.8 Hz), 1.84 (1H, dd, J = 13.4, 4.0 Hz), 1.57-1.66 (2H, m), 1.51 (1H, t, J= 13.4 Hz), 1.43 (3H, s), 1.42 (3H, s), 1.25-1.31 (16H, m), 0.95 (3H, d, J = 6.4 Hz), 0.88 (3H, t, J = 6.6 Hz).
EIMS m/z (rel. int) 324 [M]+(3),309(6),84(100).
Figure 112015004280330-pct00017
화학식 1, 2 및 8로 표시되는 디크티오피론 유도체와 화학식 3, 4, 15 및 16으로 표시되는 디히드로디크티오피론 유도체는, EC50 농도가 IC50 농도의 1/2 이하였다. 특히, 화학식 1~4로 표시되는 화합물(화합물 1~화합물 4)은, EC50 농도가 30 μM 미만이며, 저농도에서 OPN 프로모터 제어 하에 있어서의 루시퍼라제(OPN Luc) 발현을 50% 억제했다.
<B:인간 비소세포 폐암 유래 세포주 A549 및 인간 간암 유래 세포주 HepG2의 OPN 생산에 대한 화합물 3의 억제 효과>
상술한 바와 같이, 디크티오피론 유도체 및 디히드로디크티오피론 유도체 속에, 50% 세포 증식을 억제하는 농도(IC50)의 1/2 이하의 농도에서, OPN 프로모터 제어 하에서의 루시퍼라제 발현을 50% 저해하는 화합물이 존재하는 것이 확인되었다. 그래서, 가장 EC50 농도가 낮고, 또한 IC50 농도가 EC50 농도의 2배 이상을 나타낸 화학식 3으로 표시되는 화합물(화합물 3)에 대하여, 암 세포 유래 세포주로부터 생산되는 OPN량을 실제로 억제할 수 있는지 아닌지의 확인 시험을 행하였다.
화합물 3을, 인간 비소세포 폐암 유래 세포주 A549, 및 인간 간암 유래 세포주 HepG2의 배양액에 가하고, 2일간 배양 후의 배양상청 속의 OPN량을, 인간 오스테오폰틴 면역분석 키트(Human Osteopontin Immunoassay kit)(R&D systems)를 사용하여 측정하고, 화합물 3 무첨가군(대조군)의 OPN량과 비교하는 것에 의해, 확인 시험을 행하였다.
화합물 3은, 세포 증식 억제 효과도 가지고 있기 때문에, OPN 생산량 억제 효과를 올바르게 평가하기 위해서, 배양상청을 제거하고서 웰에 남은 세포에, 루시퍼라제 어세이에서 사용한 1×CCLR액을 첨가하여 세포 용해액을 조제하고, 그 단백량을 BCA 단백질 분석 키트(Protein Assay Kit)(Thermo Scientific)를 사용하여 측정했다. 화합물 3의 첨가에 의한 OPN 생산량에 대한 영향은, 단백 1 mg량당 OPN량으로 비교했다.
B1) 시료 조제 방법
우선, A549 세포 또는 HepG2 세포를, 각각 10% FCS, 1% P/S를 첨가한 DMEM 배양지에 4×104 cells/mL가 되도록 현탁시키고, 24 웰 플레이트의 각 웰에 500 μL씩 분주하였다. 시험은 트리플리케이트(triplicate)로 실시하기 때문에, 대조 및 각 농도의 피험 화합물 첨가군은, 각각 3 웰씩 준비했다. 24 웰 플레이트를 탄산 가스 배양기(37℃, 5% CO2 조건 하) 내에서 24±4시간 배양했다.
피험 화합물인 화합물 3은, DMSO를 이용하여 50 mmol/L용액으로 하고, -80℃로 보존했다. 이 화합물 3 용액을, DMSO를 이용하여 희석하여, 3.75 mmol/L, 7.5 mmol/L 및 15 mmol/L의 농도로 각각 조제했다. A549 세포를 배양하고 있는 각 웰에는, 화합물 3의 7.5 mmol/L 용액 또는 15 mmol/L 용액을 2 μL씩 첨가했다. 대조 웰에는, DMSO만 2 μL씩 첨가했다.
HepG2 세포를 배양하고 있는 각 웰에는, 화합물 3의 3.75 mmol/L 용액 또는 7.5 mmol/L 용액을 2 μL씩 첨가했다. 대조 웰에는, DMSO만 2 μL씩 첨가했다.
24 웰 플레이트를 전후 좌우로 흔들어, 웰 내의 용액을 혼화한 후, 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 48±4시간 배양했다. 그 후, 배양상청 전량을 1.5 mL 튜브에 옮기고, 세포가 남은 웰에는, D-PBS(-)를 500 μL 첨가했다.
24 웰 플레이트를 가볍게 흔들고 나서, D-PBS(-)를 제거하고, 루시퍼라제 어세이에서 사용하는 5×CCLR를 물로 5배 희석하여 조제한 1×CCLR를, 각 웰에 200 μL씩 분주하였다. 그 후, 24 웰 플레이트를 록킹 셰이커에 얹고서 15분간 록킹했다.
15분간 록킹한 후의 24 웰 플레이트의 각 웰로부터, 세포 용해액을 1.5 mL 튜브에 옮기고, 세포 파괴편과 같은 협잡물을 제거하기 위해서 미량 고속 냉각 원심기에 의해 4℃, 15,000 rpm으로 1분간 원심하였다. 얻어진 상청을 단백량 측정용 시료로 하였다.
한편, 1.5 mL 튜브에 옮긴 배양상청을, 세포 파괴편과 같은 협잡물을 제거하기 위해서, 미량 고속 냉각 원심기에 의해 4℃, 15,000 rpm으로 1분간 원심하였다. 얻어진 상청을 ELISA용 시료로 하였다.
B2) OPN 단백량의 측정
ELISA용 시료를 이하와 같이 희석했다.
A549 세포(20배 희석):시료 5 μL+배양 배양지 95 μL
  HepG2 세포(80배 희석):시료 2 μL+배양 배양지 158 μL
ELISA 키트에 포함되어 있는 OPN 스탠다드(Standard)의 바이알에 물 1 mL를 가하고, 부드럽게 혼화하고, 실온에 15분간 정치하여 200 ng/mL OPN 스탠다드(Standard)를 조정하였다. 그리고, 표 2에 나타내는 바와 같이, OPN 스탠다드(Standard)를 키트에 포함되어 있는 희석액 RD5-24에 의해 단계 희석했다.
Figure 112015126850260-pct00042
키트에 포함되는 필요수의 OPN 마이크로플레이트(Microplate)와 RD1-6을 준비하고, RD1-6을 100 μL씩 웰에 분주하였다. 희석한 OPN 스탠다드(Standard)(바이알 A~H) 및 시료를, RD1-6을 첨가한 웰에 추가로 50 μL씩 첨가했다. 그 후, 웰 상부를 시일로 커버하고, 실온에서 2시간 정치했다. 이 동안에, 키트에 포함되어 있는 워시 버퍼 농축물(Wash Buffer Concentrate)를 물로 희석하여, 워시 버퍼를 조정했다.
2시간 정치 후, 각 웰 내의 액을 제거했다. 각 웰에 워시 버퍼를 250 μL 분 주한 후, 워시 버퍼를 제거하고, 웰을 세정했다. 이 세정 조작을 4회 행하였다.
OPN 컨쥬게이트(conjugate)를 각 웰에 200 μL씩 분주하였다. 그리고, 웰 상부를 시일로 커버하고, 실온에서 2시간 정치했다. 이 동안에, 키트에 포함되어 있는 발색 시약(Color Reagent) A와 발색 시약 B를 등량 혼화하여, 기질 용액(Substrate Solution)을 조제했다.
2시간 정치 후, 각 웰 내의 액을 제거했다. 각 웰에 워시 버퍼를 250 μL 분 주한 후, 워시 버퍼를 제거하고, 웰을 세정했다. 이 세정 조작을 4회 행하였다.
기질 용액(Substrate Solution)을 각 웰에 200 μL씩 분주하고, 차광하여 실온에서 30분간 정치했다. 그 후, 키트에 포함되어 있는 정지액(Stop Solution)을 각 웰에 50 μL씩 첨가하고, 웰의 액 전체가 청색에서 황색이 될 때까지, 부드럽게 볼텍스 믹서에 의해 혼화했다. 혼화 후, 마이크로 플레이트 리더(Bio-Rad;Benchmark 또는 Thermo Scientific;Varioskan Flash)를 이용하여, 흡광치(450 nm 및 570 nm)를 측정했다. 모든 측정 데이터의 OD 450 nm 내지 OD 570 nm의 값을 감산하고, 이후의 계산은 이 값을 이용했다.
검량선 샘플의 흡광치로부터 검량선을 작성했다. 검량선의 수식을 이용하여 각 샘플의 흡광치로부터 OPN 단백량을 산출했다.
B3) 세포 내의 총단백량 측정
단백량 측정용 시료 10 μL와 물 90 μL를 혼화하여, 10배 희석했다. 검량선 샘플을, 표 3에 나타내는 바와 같이, BSA 용액을 물로 희석하여 조제했다.
Figure 112015126850260-pct00043
단백 측정용 키트에 포함되어 있는 BCA 시약 A와 BCA 시약 B(50:1)를 혼화하여, 작업 시약(Working Reagent)을 조제했다. 96 웰 플레이트에 검량선 샘플(바이알 A~F) 및 10배 희석한 단백 측정용 시료를 각각 25 μL 분주하였다. 시험은 듀플리케이트로 실시하기 때문에, 대조군 및 각 농도의 피험 화합물 첨가군은, 각각 2 웰씩 준비했다.
작업 시약(Working Reagent)을 각 웰에 200 μL씩 첨가하고, 볼텍스 믹서로 30초간 혼화했다. 60℃에서 30분간 가온한 후, 실온에서 15분간 정치했다. 그 후, 마이크로 플레이트 리더(Bio-Rad;Benchmark 또는 Thermo Scientific;Varioskan Flash)를 이용하여 흡광치(550 nm)를 측정했다.
검량선 샘플의 흡광치로부터, 검량선을 작성하고, 검량선의 수식으로부터 각 웰의 희석한 시료의 총단백 농도를 산출했다. 또한, 총단백 농도에 희석 배율(10배)을 승산하여, 시료의 총단백 농도를 산출했다.
(OPN(단백)량의 표시)
OPN량(배양상청 1 mL당의 양)은, ELISA 측정용의 시료의 전량(0.5 mL)당으로 환산되었다. 이 환산치를, OPN량을 구한 시료와 동일한 웰의 단백 측정용 시료 전량(0.2 mL) 내의 단백량으로 나누어, OPN량을 세포 총단백 1 mg당으로 환산하였다. 이 단백 1 mg당의 OPN량으로, 화합물 3 투여의 영향을 검토하였다.
(통계 처리)
OPN량의 통계 처리에는, 엑셀 통계 Statcel 3을 이용했다. 엑셀 파일상에서, 피험 화합물인 화합물 3이 첨가된 시료의 OPN량을, 대조의 OPN량과의 비교에 의해 던네트(Dunnett) 검정하였다.
도 1은, 화합물 3 첨가에 의한 A549 세포의 OPN 생산 억제 효과를 나타내는 그래프를 도시한다. 화합물 3은, 농도 30 μmol/L의 경우에는 5% 미만의 위험률, 농도 60 μmol/L의 경우에는 1% 미만의 위험률에 있어서, 대조군(컨트롤)과 비교하여 A549 세포의 OPN 생산을 유의하게 억제하는 것이 확인되었다.
도 2는, 화합물 3 첨가에 의한 HepG2 세포의 OPN 생산 억제 효과를 나타내는 그래프를 도시한다. 화합물 3은, 농도 15 μmol/L 및 농도 30 μmol/L의 경우에, 1% 미만의 위험률에 있어서, 대조군과 비교하여 HepG2 세포의 OPN 생산을 유의하게 억제하는 것이 확인되었다. 특히, 농도 30 μmol/L의 경우에는, 대조군과 비교하여 OPN 생산량이 절반 이하로 감소했다.
도 1 및 도 2로부터, 화합물 3은, 인간 비소세포 폐암 유래 세포주 A549 및 인간 간암 유래 세포주 HepG2가 생산하는 OPN량을 유의하게 저하시키는 것이 확인되었다.
<C:인간 비소세포 폐암 유래 세포주 A549의 창상 치유능에 대한 화합물 3의 억제 효과>
OPN 프로모터 제어 하에서의 루시퍼라제 발현을 억제하는 화합물 3은, 실제로 단백으로서의 OPN 생산을 저해하는 것이, 도 1 및 도 2에 도시하는 실험 결과로부터 판명되었다. 다음의 단계로서, OPN이 생산된 것에 의해 세포에 생기는 생리적인 기능이, 피험 화합물인 화합물 3에 의해 억제되는지 아닌지를 확인했다. 확인 방법 중의 하나로서, 세포의 창상 치유 시험(Wound-Healing assay)을 행하였다. 이 시험은, 세포의 유주능을 조사하는 방법으로서 일반적으로 알려져 있는 방법이다. 단층 배양한 세포를 피펫의 끝 등으로 부분적으로 세포를 벗겼을 때에, 상처 둘레의 세포가 이동(유주)함으로써 상처 부분을 메워 가는데, 배양액 내에 피험 화합물을 첨가하는 것에 의해, 이 기능에 영향을 주는지를 관찰했다.
C1) 창상 치유 시험(Wound-Healing assay) 방법
인간 비소세포 폐암 유래 세포주 A549를 10% FCS, 1% P/S를 첨가한 DMEM 배양지에 3.5×105 cells/mL가 되도록 현탁시켰다. 24 웰 플레이트의 각 웰에, 세포 현탁액을 500 μL(1.75×105 cells)씩 분주하였다. 시험은 트리플리케이트로 실시하기 때문에, 대조 및 각 농도의 피험 화합물 첨가용으로서 각각 3 웰씩 준비했다. 분주 후, 24 웰 플레이트를 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 24±4시간 배양했다.
배양 후, 모든 웰로부터 배양지를 제거했다. DMEM에 0.1% 소혈청 알부민(BSA) 및 1% P/S를 첨가한 배양지(무혈청 배양지)를 모든 웰에 500 μL씩 분주하였다. 플레이트를 전후 좌우로 흔든 후, 한번 더, 모든 웰로부터 배양지를 제거했다. 배양지 제거 후, 무혈청 배양지를 모든 웰에 500 μL씩 분주하였다.
피험 화합물인 화합물 3은, DMSO로 50 mmol/L용액으로 하고, -80℃에서 보존했다. 이 화합물 3 용액을 DMSO로 희석하여, 3.125 mmol/L 및 6.25 mmol/L의 농도로 각각 조제했다. A549 세포를 배양하고 있는 각 웰에는, 화합물 3의 3.125 mmol/L,또는 6.25 mmol/L의 용액을 2 μL씩 첨가했다. 대조 웰에는, DMSO만 2 μL씩 첨가했다.
24 웰 플레이트를 전후 좌우로 흔들어, 웰 내의 용액을 혼화한 후, 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 24±4시간 배양했다.
24 웰 플레이트 내의 세포를 현미경하에서 관찰하여, 100% 융합(confluent)인 것을 확인한 후, 20 μL용의 마이크로 피펫 팁의 선단으로, 플레이트 저면의 세포에, 1 웰에 대하여 3군데를 긁어서 상처를 내었다. 현미경으로서, CCD 카메라 시스템의 Retiga-2000 Fast 1394 Color(QImaging)를 부착한 도립(倒立)형 리서치 현미경 IX71(Olympus)을 사용했다.
현미경으로 창상부를 관찰하고, 창상부가 화상(image) 내에 들어오도록 조정하여 촬영했다. 배율은 40배(접안:×10, 대물:×4)로 설정했다. 촬영 후, 24 웰 플레이트를 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 48±4시간 배양했다.
배양 후, 현미경으로 창상부를 관찰하고, 창상부가 화상 내에 들어오도록 조정하여 촬영했다. 배율은 40배(접안:×10, 대물:×4)로 설정했다.
Image-Pro Plus 7.0 J(MediaCybernetics사)를 이용하여, 촬영한 화상에 기초하여, 창상부의 면적을 확인했다. 그리고,
창상 회복율(%) =100 - [창상 2일 후의 창상 면적/창상 직후의 창상부 면적]×100
이라고 하는 계산식에 기초하여, 창상 회복율(%)을 계산했다. 대조군 및 2 종류의 농도의 화합물 3 투여군 각각의 창상 회복율(%)의 평균치를 산출했다. 또한, 대조군의 창상 회복율에 대한 화합물 처리군의 창상 회복율(%)도 산출했다.
C2) 통계 처리
창상 회복율의 산출치의 통계 처리는, 엑셀 통계 Statcel 3을 이용하고, 엑셀 파일상에서 모든 화합물 3 투여 처리군의 창상 회복율을, 대조와의 비교에 의해 던네트(Dunnett) 검정을 행하는 것에 의해 실시되었다.
도 3은, 화합물 3 첨가에 의한 A549 세포의 창상 회복 억제 효과를 나타내는 그래프를 도시한다. 화합물 3은, 농도 12.5 μmol/L의 경우에는 대조군과의 창상 회복율에 있어서 차이가 인정되지 않았지만, 농도 25 μmol/L의 경우에는, 1% 미만의 위험률에 있어서, 대조군과의 창상 회복율에 있어서 유의한 차가 인정되었다. 즉, 화합물 3은, 농도 25 μmol/L의 경우에, A549 세포의 창상 회복을 유의하게 억제하는 것이 확인되었다.
<D:인간 비소세포 폐암 유래 세포주 A549의 전이 침윤능에 대한 화합물 3의 억제 효과>
OPN이 생산된 것에 의해 세포에 생기는 생리적인 기능이, 피험 화합물에 의해 억제되는지 아닌지를 조사하는 2번째의 시험으로서 매트릭스(matrices) 침윤 시험(Matrix-Invasion assay)을 행하였다. 이 시험에서는, 세포외 매트릭스 성분인 콜라겐 또는 라미닌(마트리겔, BD Bioscience사)를 코팅한, φ8 μm의 세공(포어)을 갖는 막이 저부에 붙여져 있는 컵(인서트)과, 그 인서트를 삽입하는 24 웰 플레이트를 준비했다. 무혈청 배양지에 현탁한 세포를 내측의 인서트에 넣고, 외측의 24 웰 플레이트의 각 웰에 세포의 전이 및 침윤을 유인하는 물질(여기에서는 소태아 혈청)을 가한 배양지를 주입하고, 인서트의 마트리겔을 코팅한 막을 통과하여 외측의 웰로 나오는 세포수를 관찰했다.
마트리겔은, 세포 배양용의 인공 기저막 매트릭스이며, 세포외 매트릭스 단백질을 풍부하게 포함하는 Engelbreth-Holm-Swarm(EHS) 마우스 육종으로부터 추출된 가용성 기저막 조제품이다. 마트리겔의 주성분은, 라미닌, 콜라겐 IV, 헤파란 황산 프로테오글리칸, 및 엔탁틴/니도겐이다. 마트리겔에는, TGF-β, 표피 세포 증식 인자, 인슐린상 성장 인자, 섬유아 세포 증식 인자, 조직 플러스미노겐 활성화 인자, 및 EHS 종양에 자연스럽게 산생되는 다른 증식 인자도 포함된다.
구체적으로는 막의 외측에 침윤하여 온 A549 세포에 형광 색소를 도입시킨 후, 막으로부터 벗기고, 그 형광 강도를 측정했다. 동시에, 갯수가 이미 알려진 검량선 작성용의 세포에도 형광 색소를 도입하여, 그 형광 강도로부터 검량선을 작성했다. 그리고, 근사 곡선식으로부터 세포수가 미지(未知)인 피험 샘플의 침윤 세포수를 구하였다.
암 세포는, 외측의 배양지에 가한 소태아 혈청의 자극에 의해 OPN을 생산한다. 그러나, 배양액에 OPN이 존재하면, 세포는 MMP(Matrix Metalloproteinase)라고 하는 콜라겐을 분해하는 효소를 생산하여 마트리겔을 용해시키고, 또한 유주능이 높아지기 때문에 외측의 웰로 이동하여 온다. OPN 프로모터 제어 하에서의 루시퍼라제 발현을 억제하는 디크티오피론 유도체 및 디히드로디크티오피론 유도체의 대표로서, 화합물 3의 A549 세포의 매트릭스 침윤 기능에 대한 억제 효과를 관찰했다.
D1) 매트릭스 침윤 시험(Matrix-Invasion assay) 방법
인간 비소세포 폐암 유래 세포주 A549를, 10% FCS, 1% P/S를 첨가한 DMEM 배양지에 1.8×105 cells/mL가 되도록 현탁시켰다. 그 현탁액을 75 cm2 플라스크에 10 mL분주하고, 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 24±4시간 배양했다. 마찬가지로, 검량선 작성용으로 A549 세포의 6×104 cells/mL의 현탁액을 조제하고, 그 현탁액을 25 cm2 플라스크에 5 mL 분주하고, 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 24±4시간 배양했다. 이 날을 작업 0일째로 하였다.
[다음날:작업 1일째]
세포를 시드한 75 cm2 플라스크로부터 배양지를 제거했다. 배양지를 제거한 플라스크에 0.1% BSA 및 1% P/S첨가 DMEM 배양지(무혈청 배양지)를 10 mL 분주하고, 세포 표면에 균일하게 배양지가 덮이도록 플라스크를 전후 좌우로 기울였다. 그 후, 플라스크로부터 배양지를 제거했다.
배양지를 제거한 플라스크에 무혈청 배양지를 10 mL 분주하였다. 그 후, 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 24±4시간 배양했다.
[작업 2일째]
마트리겔(10 mg/mL:BD Biosciences)을 얼름 위에서 융해시켰다. 셀 컬쳐 인서트(24 웰용, 8.0 μm포어:BD Biosciences) 및 무혈청 배양지를 빙냉(氷冷)시켜 두었다. 마트리겔을 빙냉시킨 무혈청 배양지에서 25배 희석하여, 마트리겔 용액을 조제했다.
24 웰 플레이트에 필요수의 셀 컬쳐 인서트를 세팅하고, 마트리겔 용액을 50 μL씩 셀 컬쳐 인서트에 분주하고, 팁의 끝으로 멤브레인 전체에 마트리겔 용액을 널리 퍼지게 했다. 그 후, 24 웰 플레이트를 탄산 가스 배양기(37℃, 5% CO2 조건 하)에 1~2시간 넣었다.
전날에 무혈청 배양지로 교환한 75 cm2 플라스크의 세포의 배양상청을 제거했다. 칼슘·마그네슘 무첨가 인산 완충 생리 식염액(D-PBS(-)) 10 mL를 분주하고, 세포 표면에 균일하게 D-PBS(-)가 덮이도록 플라스크를 전후 좌우로 기울인 후, D-PBS(-)를 제거하였다(이 조작을 D-PBS(-)에 의한 세정 조작이라고 한다). 그 후, 세포박리용액(Cell Dissociation Solution, CDS:시그마)을 3~5 mL 플라스크에 분주하였다. CDS를 분주한 플라스크를 탄산 가스 배양기(37℃, 5% CO2 조건 하)에 넣고, 20분간 정도 가온(5분 마다 록킹)하고, 세포를 플라스크 저부로부터 박리시키는 작업을 행하였다(이 작업을 CDS에 의한 세포 박리라고 한다).
300×g에 의한 원심 분리 후에, 상청을 제거하고, 5 mL의 무혈청 배양지를 이용하여 세포를 현탁시켰다. 현탁액의 일부(10 μL)를 분취하고, 0.4% 트리판 블루 용액을 10 μL 첨가하여 가볍게 피펫팅한 후, 뷰르케르-투르크(Burker-Turk) 혈구 계산판을 이용하여 세포수를 계수하여, 세포 농도를 구하였다(이 작업을 세포수 카운트라고 한다).
무혈청 배양지를 이용하여, 2×105 cells/mL의 세포 농도의 현탁액을 8 mL 조제했다. 마트리겔 용액에 의해 표면을 코팅한 후, 탄산 가스 배양기에서 1~2시간 인큐베이션한 컬쳐 인서트에, 조제한 세포 현탁액을 0.5 mL(1×105 cells)씩 부드럽게 분주하였다. 시험은, 트리플리케이트로 행하였다.
15 mL 튜브에 10% FCS, 1% P/S 첨가를 첨가한 DMEM 배양지를 5 mL 분주하였다. 이 튜브에 화합물 3의 50 mmol/L DMSO 용액을 2.5 μL(최종 농도 25 μmol/L) 또는 5 μL(최종 농도 50 μmol/L)를 분주하여, 화합물 3 첨가 배양지를 조제했다. 전이 및 침윤의 억제 효과를 갖는 독시사이클린(DOXY;DMSO를 이용하여 100 mmol/L로 조제하고,-30℃에서 보존하여 두었다)을 양성 대조로서 이용했다. DMEM 의 10% FBS, 1% P/S첨가 배양지의 5 mL에 독시사이클린 100 mmol/L를 3.75 μL(최종적으로 75 μmol/L) 첨가하여, 양성 대조 첨가 배양지를 조정했다. 10% FCS, 1% P/S를 첨가한 DMEM 배양지의 5 mL에 DMSO를 5 μL첨가하여, 음성 대조 첨가 배양지를 조제했다.
컬쳐 인서트와 플레이트의 간극을 통해, 24 웰 플레이트의 웰에 화합물 3 첨가 배양지, 양성 대조 첨가 배양지 또는 음성 대조 첨가 배양지를 0.75 mL씩 분주하였다. 그 후, 24 웰 플레이트를 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 48±4시간 배양했다.
[작업 3일째]
25 cm2 플라스크로 배양하고 있던 A549 세포의 배양지를 제거하고, 무혈청 배양지 5 mL로 교환했다. 그 후, 25 cm2 플라스크를 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 24±4시간 배양했다.
[작업 4일째]
칼세인 AM(50 μg/바이알:BD Biosciences)의 바이알을 실온으로 되돌리고, DMSO를 30 μL첨가하여 혼화하여, 칼세인 AM 용액을 조제했다. 15 mL 튜브에 CDS를 5 mL 분주하고, 이것에 칼세인 AM 용액을 6 μL 첨가하여 혼화하여, 1×칼세인 AM 용액(피험 인서트용 칼세인 AM 용액)을 조제했다. 한편, 15 mL 튜브에 CDS를 1.5 mL 분주하고, 칼세인 AM 용액을 3.6 μL 첨가하여 혼화하여, 2×칼세인 AM 용액(검량선용 칼세인 AM 용액)을 조제했다.
D2) 검량선용 세포의 준비
전날에 배양지 교환한 25 cm2 플라스크의 세포의 배양상청을 제거하고, D-PBS(-) 5 mL를 이용하여, 전술한 세정 조작을 행하였다. 또한, CDS 3 mL를 이용하여 전술한 세포 박리를 행하였다. 그 후, 전술한 세포수 카운트를 행하고, CDS를 이용하여 5×105 cells/mL의 세포 현탁액을 조제했다. 그리고, 표 4에 나타내는 바와 같이, 세포 현탁액을 CDS를 이용하여 희석했다. 96 웰 블랙 플레이트(코닝)의 각 웰에, 바이알 A~H 내의 세포 현탁액을 50 μL씩 분주하였다. 시험은, 트리플리케이트로 행하였다.
Figure 112015004280330-pct00020
D3) 칼세인 AM 염색
새로운 24 웰 플레이트의 각 웰에 D-PBS(-)를 0.75 mL씩 분주하였다. 각 인서트를 핀셋으로 들어 올리면서 인서트 내의 배양지를 피펫에 의해 제거하고, D-PBS(-) 0.75 mL를 분주한 웰에 삽입했다. 각 인서트에 D-PBS(-)를 0.5 mL 분주하고, 인서트를 D-PBS(-)에 의해 세정했다.
새로운 24 웰 플레이트를 준비하고, 그 각 웰에 1×칼세인 AM 용액을 각각 0.35 mL 분주하였다. D-PBS(-)에 의해 세정한 인서트를 핀셋으로 들어 올리면서, 인서트 내의 D-PBS(-)를, 피펫을 이용하여 제거하고, 1×칼세인 AM 용액을 분주한 웰에 옮겼다(피험 인서트의 세포의 형광 염색). 인서트를 옮긴 24 웰 플레이트를, 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 1시간 인큐베이션했다. 30분 간격으로 플레이트 측면을 가볍게 두드렸다.
인큐베이션 동안에, 세포 현탁액을 분주한 96 웰 블랙 플레이트의 각 웰에, 2×칼세인 AM 용액을 50 μL씩 분주하고, 알루미늄 호일로 싼 다음에 실온에 정치했다(검량선용의 세포의 염색).
D4) 형광 측정
1시간의 인큐베이션이 끝난 후에, 인서트가 들어간 24 웰 플레이트를, 내부의 액이 넘치지 않도록 주의하면서 흔들어, 액을 혼화했다. 그 후, 24 웰 플레이트의 각 웰로부터 핀셋을 이용하여 각 인서트를 제거하였다. 인서트를 제거한 각 웰의 액을, 새로운 96 웰 블랙 플레이트의 각 웰에 100 μL씩 3 웰에 옮겼다(피험 인서트의 세포용 플레이트).
마이크로 플레이트 리더(Molecular Device;SpectraMax M5 또는 Thermo Scientific; Varioskan Flash)를 이용하여, 검량선용 세포 및 피험 인서트의 세포용, 각각의 96 웰 블랙 플레이트의 각 웰의 형광을 측정(excitation:485nm, emission:520 nm)했다.
D5) 총침윤 세포수의 산출
검량선용 세포의 형광 강도(RLU)를 엑셀에 입력하고, 최소 이승법에 의해 근사 곡선(검량선)의 수식을 구하였다. 검량선의 수식을 이용하여, 96 웰 플레이트의 1 웰당의 형광 강도로부터 침윤 세포수를 산출했다. 그 침윤 세포수에 3.5를 곱하여 24 웰 플레이트의 1 웰당의 총침윤 세포수를 산출하고, 또한 트리플리케이트로 행하고 있기 때문에 3 웰의 총침윤 세포수의 평균치를 산출했다.
D6) 통계 처리
통계 처리는, 엑셀 통계 Statcel 3을 이용하여, 엑셀 파일상에서, 양성 대조 및 화합물 3 처리군의 총침윤 세포수를, 음성 대조(Control)치와의 비교에 의해 ㄷ던네트(Dunnett) 검정을 행하는 것에 의해 실시되었다.
도 4는, 화합물 3 첨가에 의한 A549 세포의 matrices 침윤 억제 효과를 나타내는 그래프를 도시한다. 양성 대조군(독시사이클린 투여군)의 총침윤 세포수는, 대조군의 1/3 이하였다. 한편, 화합물 3은, 농도 25 μmol/L의 경우에는 대조군보다 총침윤 세포수가 감소했지만, 유의한 차는 인정되지 않았다. 그러나, 화합물 3은, 농도 50 μmol/L의 경우에는, 총침윤 세포수가 대조군의 약 절반으로 되어, 1% 미만의 위험률에 있어서, 대조군과의 총침윤 세포수에 있어서 유의한 차가 인정되었다. 즉, 화합물 3은, 농도 50 μmol/L의 경우에, A549 세포의 매트릭스 침윤을 유의하게 억제하는 것이 확인되었다.
<E. OPN 생산 저해 작용에 대한 메발론산의 영향>
스타틴계 고콜레스테롤혈증치료약(구체적인 예는, 로수바스타틴, 로바스타틴, 심바스타틴, 프라바스타틴, 플러바스타틴, 아토르바스타틴, 세리바스타틴, 피타바스타틴 또는 메바스타틴)은 HMG-CoA 환원효소 저해제이며, 이 효소의 저해에 의해 메발론산의 저하를 유도하며, 그에 동반한 메발론산 유래의 이소프레노이드량의 저하에 기인하는 Ras와 같은 G단백에 영향을 가져와, OPN 생산 억제 효과를 나타낸다고 생각되고 있다(비특허문헌 8).
본 발명의 OPN 생산 저해제가 유효 성분으로 하는 디크티오피론 유도체 또는 디히드로디크티오피론 유도체가 나타내는 OPN 생산 저해 효과가, 공지인 스타틴계 고콜레스테롤혈증치료약과 동일한 작용 기전인지를 확인하기 위해, 심바스타틴 또는 화합물 3을 A549/OPNluc 세포의 배양액에 첨가하고, OPN 프로모터 제어 하의 유전자 발현에 대한 효과를 조사하여, 메발론산의 공존하에서도 그 효과를 유지하는지 아닌지를 관찰했다.
E1) WST 어세이
A549/OPNluc 세포를 10% FCS 및 1% P/S를 첨가한 DMEM 배양지에 3×104 cells/mL가 되도록 현탁시켰다. 이 현탁액을 96 웰 플레이트의 각 웰에 100 μL씩 분주하고, 96 웰 플레이트를 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 24±4시간 배양했다.
-80℃에서 보존하고 있던 화합물 3의 50 mmol/L DMSO 용액을 실온에 정치하여 융해시킨 후, DMSO를 이용하여 희석하여, 5.0 mmol/L의 용액을 조제했다. 한편, DMSO를 이용하여 심바스타틴(SVS:시그마)의 50 mmol/L 용액을 조제하고, -80℃에서 보존했다. 이 용액을 용시(用時) 실온에 정치하여 융해시키고, DMSO를 이용하여 더욱 희석하여, 1 mmol/L의 SVS 용액을 조제했다.
에탄올을 이용하여 메발론산(MVA:시그마)의 0.5 mol/L 용액을 조제하고, -80℃에서 보존했다. 이 용액을 용시 실온에 정치하여 융해시킨 후, 37℃에서 30분 정치하고, 그 후 D-PBS(-)를 이용하여 희석하여, 20 mmol/L 및 200 mmol/L의 용액을 조제했다. 조제한 용액을 탄산 가스 배양기(37℃, 5% CO2 조건 하) 내에 20분간 정치했다(그 동안에, 가끔 혼화하였다).
세포 현탁액을 분주한 웰에, 2 종류의 농도(20 mmol/L 및 200 mmol/L)의 MVA 용액을, 각각 0.5 μL씩 첨가했다(MVA 100 μmol/L:4 웰, MVA 1 mmol/L:4 웰). 볼텍스 믹서를 이용하여 혼화한 후, 96 웰 플레이트를 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 4시간 배양했다.
미리 MVA를 100 μmol/L 또는 1 mmol/L가 되도록 첨가한 4 웰에, 화합물 3의 5.0 mmol/L 용액을 각각 0.5 μL씩 첨가했다. 마찬가지로, MVA를 첨가하지 않았던 2 웰에도, 화합물 3의 5.0 mmol/L 용액을 각각 0.5 μL씩 첨가했다. 또한 MVA를 100 μmol/L 또는 1 mmol/L가 되도록 첨가한 4 웰에, 1 mmol/L의 SVS 용액을 각각 0.5 μL씩 첨가했다. 마찬가지로 MVA를 첨가하지 않았던 2 웰에, 1 mmol/L의 SVS 용액을 각각 0.5 μL씩 첨가했다. 대조 약물인 MVA, 화합물 3 및 SVS의 어느 것도 첨가하지 않는 2 웰에는, DMSO를 각각 0.5 μL 첨가했다(컨트롤(Control)). 표 5는, 각 시험군에 있어서의 첨가 약물 및 첨가량을 나타낸다.
Figure 112015004280330-pct00021
볼텍스 믹서로 혼화한 후, 96 웰 플레이트를 탄산 가스 배양기(37℃, 5% CO2 조건 하)에서 48±4시간 배양했다. 그 후, Premix WST-1 Reagent(다카라 바이오)를 10 μL씩 각 웰에 첨가했다. 볼텍스 믹서를 이용하여 혼화한 후, 37℃, 5% CO2 조건하에서 인큐베이션하고, 마이크로 플레이트 리더(Bio-Rad;Benchmark 또는 Thermo Scientific;Varioskan Flash)를 이용하여, 30분, 90분 및 120분 후의 흡광치(450 nm)를 측정했다.
흡광치는, 엑셀 파일에 입력하고, 각 시험군의 모든 샘플의 흡광치를, 대조군(Control)의 흡광치의 평균치로 나누어, 각각의 흡광치의 대조군(Control)의 흡광치에 대한 비(Ratio to Control)를 구하였다.
각 샘플의 흡광치 ÷ 대조군(Control)의 흡광치 = 대조군에 대한 비(Ratio to Control)
E2) 루시퍼라제 어세이
WST 어세이가 끝난 각 웰 상청을 제거하고, D-PBS(-)를 100 μL씩 각각의 웰에 분주하였다. 루시퍼라제 분석 시스템(Luciferase Assay Systems)(Promega)에 포함되는 루시퍼라제 분석 기질(Luciferase Assay Substrate)(LAS)을, 루시퍼라제 분석 버퍼(Luciferase Assay Buffer)(LAB)를 이용하여 용해하여, 루시퍼라제 시약을 조제했다. 또한 5×CCLR를, 물을 이용하여 5배 희석하여, 1×CCLR를 조제했다.
각 웰의 D-PBS(-)를 완전히 제거하고, 1×CCLR를 50 μL씩 분주하였다. 그 후, 실온에서 96 웰 플레이트를 30분 정치했다. 정치 후의 각 웰 내의 1×CCLR를, 측정용 시료로 하였다. 화학 발광 측정용의 튜브에 루시퍼라제 시약을 100 μL 분주하고, 이 튜브에 측정용 시료를 20 μL 첨가하여 혼화하고, GloMax 20/20 Luminometer (Promega)를 이용하여, 화학 발광(상대 발광 강도:RLU)을 측정했다.
대조군(Control)의 RLU 및 각 측정용 시료의 RLU를, 각각 엑셀 파일에 입력했다. 각 군의 RLU를 WST 어세이에서 구한 대조군에 대한 비(Ratio to Control)치로 나누어, 화합물 3 또는 SVS 첨가에 의해 영향을 받은 세포 증식 속도의 차에 의해, 발생한 RLU의 차를 보정했다.
도 5는, SVS에 의한 루시퍼라제 활성 억제 효과에 대한, MVA 첨가에 의한 회복 효과를 나타내는 그래프를 도시한다. SVS를 첨가하는 것에 의해, OPN 프로모터가 제어된 A549 세포의 루시퍼라제 활성은 저하되였다. 그러나, MVA를 100 μmol/L 또는 1 mmol/L의 농도로 첨가하는 것에 의해, SVS의 루시퍼라제 활성 억제 효과는 소실되고, A549 세포의 루시퍼라제 활성은, 대조군과 동일한 정도까지 회복하는 것이 확인되었다.
도 6은, 화합물 3에 의한 루시퍼라제 활성 억제 효과에 대한, MVA 첨가에 의한 영향을 나타내는 그래프를 도시한다. 화합물 3 첨가에 의한 루시퍼라제 활성 억제는, MVA 첨가에 의해서는 회복되지 않았다.
도 5 및 도 6으로부터, SVS의 루시퍼라제 활성 억제와 화합물 3의 루시퍼라제 활성 억제는, 작용 기전이 서로 다르다는 것이 시사되었다.
본 발명의 디크티오피론 유도체 또는 디히드로디크티오피론 유도체를 유효 성분으로 하는 OPN 생산 저해제는, 암의 전이와 같은 OPN 생산 항진에 기인하는 질환을 예방하는 것이 기대된다. 본 발명의 디크티오피론 유도체 또는 디히드로디크티오피론 유도체를 유효 성분으로 하는 OPN 생산 저해제는, 종래의 OPN 생산 저해제와는 다른 작용 기전을 갖는 OPN 생산 저해제로서, 의약품, 생화학 또는 바이오 테크놀러지 분야에 있어서 유용하다.

Claims (4)

  1. 화학식 1 또는 화학식 2로 표시되는 디크티오피론 유도체를 유효 성분으로 하는 오스테오폰틴 생산 저해에 의한 암 전이 억제용 약학 조성물.
    [화학식 1]
    Figure 112015126850260-pct00032

    [화학식 2]
    Figure 112015126850260-pct00033
  2. 화학식 3 또는 화학식 4로 표시되는 디히드로디크티오피론 유도체를 유효 성분으로 하는 오스테오폰틴 생산 저해에 의한 암 전이 억제용 약학 조성물.
    [화학식 3]
    Figure 112015126850260-pct00034

    [화학식 4]
    Figure 112015126850260-pct00035
  3. 화학식 5, 화학식 8 또는 화학식 10으로 표시되는 디크티오피론 유도체를 유효 성분으로 하는 오스테오폰틴 생산 저해에 의한 암 전이 억제용 약학 조성물.
    [화학식 5]
    Figure 112015126850260-pct00036

    [화학식 8]
    Figure 112015126850260-pct00037

    [화학식 10]
    Figure 112015126850260-pct00038
  4. 화학식 14, 화학식 15 또는 화학식 16으로 표시되는 디히드로디크티오피론 유도체를 유효 성분으로 하는 오스테오폰틴 생산 저해에 의한 암 전이 억제용 약학 조성물.
    [화학식 14]
    Figure 112015126850260-pct00039

    [화학식 15]
    Figure 112015126850260-pct00040

    [화학식 16]
    Figure 112015126850260-pct00041
KR1020157001055A 2013-03-08 2013-11-26 디크티오피론 유도체 또는 디히드로디크티오피론 유도체를 유효 성분으로 하는 오스테오폰틴 생산 저해제 KR101593018B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013046197 2013-03-08
JPJP-P-2013-046197 2013-03-08
PCT/JP2013/006943 WO2014136161A1 (ja) 2013-03-08 2013-11-26 ジクチオピロン誘導体又はジヒドロジクチオピロン誘導体を有効成分とするオステオポンチン産生阻害剤

Publications (2)

Publication Number Publication Date
KR20150023021A KR20150023021A (ko) 2015-03-04
KR101593018B1 true KR101593018B1 (ko) 2016-02-22

Family

ID=51490730

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157001055A KR101593018B1 (ko) 2013-03-08 2013-11-26 디크티오피론 유도체 또는 디히드로디크티오피론 유도체를 유효 성분으로 하는 오스테오폰틴 생산 저해제

Country Status (8)

Country Link
US (1) US9463188B2 (ko)
EP (1) EP2965758B1 (ko)
JP (1) JP5716140B2 (ko)
KR (1) KR101593018B1 (ko)
CN (1) CN105209038B (ko)
AU (1) AU2013380489B2 (ko)
CA (1) CA2896446C (ko)
WO (1) WO2014136161A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11040937B2 (en) 2014-02-28 2021-06-22 Tohoku University Amide derivative

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102475701B (zh) * 2010-11-30 2014-07-23 上海来益生物药物研究开发中心有限责任公司 一种吡喃酮类化合物的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Bioorgani c & Medi cinal Chemi stry, 12(12), 3203-3214(2004.)
Tetrahedron Letters 48 (2007) 5905-5909*

Also Published As

Publication number Publication date
CA2896446A1 (en) 2014-09-12
EP2965758A4 (en) 2016-05-11
CN105209038B (zh) 2017-06-09
EP2965758A1 (en) 2016-01-13
AU2013380489A1 (en) 2015-08-06
CN105209038A (zh) 2015-12-30
WO2014136161A1 (ja) 2014-09-12
AU2013380489B2 (en) 2015-10-01
US20150366851A1 (en) 2015-12-24
KR20150023021A (ko) 2015-03-04
EP2965758B1 (en) 2018-01-03
JP5716140B2 (ja) 2015-05-13
JPWO2014136161A1 (ja) 2017-02-09
US9463188B2 (en) 2016-10-11
CA2896446C (en) 2016-06-28

Similar Documents

Publication Publication Date Title
EP3184519B1 (en) Acid-addition salt of trk-inhibiting compound
Guo et al. Substituted benzothiophene or benzofuran derivatives as a novel class of bone morphogenetic protein-2 up-regulators: synthesis, structure− activity relationships, and preventive bone loss efficacies in senescence accelerated mice (SAMP6) and ovariectomized rats
EP2306836B1 (en) Bmi-1 protein expression modulators
Zhang et al. Design and syntheses of permethyl ningalin B analogues: Potent multidrug resistance (MDR) reversal agents of cancer cells
He et al. Surface modification of titanium with curcumin: a promising strategy to combat fibrous encapsulation
CN104271557A (zh) 去泛素化活性的抑制方法
WO2010033581A1 (en) Molecular modulators of the wnt/beta-catenin pathway
EP3271333B1 (en) Usp7 inhibitor compounds and methods of use
Guggilapu et al. Synthesis of C5-tethered indolyl-3-glyoxylamide derivatives as tubulin polymerization inhibitors
KR101593018B1 (ko) 디크티오피론 유도체 또는 디히드로디크티오피론 유도체를 유효 성분으로 하는 오스테오폰틴 생산 저해제
Shang et al. Design, synthesis of novel celastrol derivatives and study on their antitumor growth through HIF-1α pathway
Duan et al. Effects of connective tissue growth factor on human periodontal ligament fibroblasts
WO2010108058A2 (en) Small molecule inhibitors of dusp6 and uses therefor
Pativada et al. Benzylideneacetone derivatives inhibit osteoclastogenesis and activate osteoblastogenesis independently based on specific structure–activity relationship
Yang et al. Discovery of novel chloropyramine-cinnamic acid hybrids as potential FAK inhibitors for intervention of metastatic triple-negative breast cancer
WO2013032960A2 (en) Vitamin d receptor - coregulator inhibitors
Wang et al. Anthraquinone-bridged diruthenium (II) complexes inhibit migration and invasion of human hepatocarcinoma MHCC97-H cells
EP3112343B1 (en) Amide derivatives
Zhu et al. Design, synthesis and antitumor activity evaluation of Chrysamide B derivatives
Chen et al. Synergistic effect of Wnt modulatory small molecules and an osteoinductive ceramic on C2C12 cell osteogenic differentiation
Domracheva et al. 4‐Pyridinio‐1, 4‐Dihydropyridines as Calcium Ion Transport Modulators: Antagonist, Agonist, and Dual Action
Yan et al. Kartogenin improves osteogenesis of bone marrow mesenchymal stem cells via autophagy
KR20200110338A (ko) 디하이드로인돌리지논 유도체
Xie et al. Design and synthesis of 1, 3-diphenylpyrimidine-2, 4 (1 H, 3 H)-dione derivatives as antitumor agents via elevating ROS production to induce apoptosis
WO2023223519A1 (ja) 活性化星細胞を脱活性化する方法

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190103

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191231

Year of fee payment: 5