KR101498995B1 - Process for the production of chromium metal nuggets from chromite ores/concentrates - Google Patents

Process for the production of chromium metal nuggets from chromite ores/concentrates Download PDF

Info

Publication number
KR101498995B1
KR101498995B1 KR1020097026723A KR20097026723A KR101498995B1 KR 101498995 B1 KR101498995 B1 KR 101498995B1 KR 1020097026723 A KR1020097026723 A KR 1020097026723A KR 20097026723 A KR20097026723 A KR 20097026723A KR 101498995 B1 KR101498995 B1 KR 101498995B1
Authority
KR
South Korea
Prior art keywords
chromium
chrome
iron
concentrate
nuggets
Prior art date
Application number
KR1020097026723A
Other languages
Korean (ko)
Other versions
KR20100021620A (en
Inventor
가자난 유. 카푸르
빌라스 디. 타사바드카르
사리팔리 엠. 라오
Original Assignee
타타 스틸 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 타타 스틸 리미티드 filed Critical 타타 스틸 리미티드
Publication of KR20100021620A publication Critical patent/KR20100021620A/en
Application granted granted Critical
Publication of KR101498995B1 publication Critical patent/KR101498995B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/10Roasting processes in fluidised form
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 크롬철광 광석/정광으로부터 크롬 너깃을 제조하는 방법에 관한 것이다. 크롬 너깃 제조방법은, 크롬(Cr)과 철(Fe)의 혼합비가 1.0 내지 3.3 범위인 크롬철광 광석/크롬 정광(1)을 900℃의 용광로(2)에서 산화시키는 과정과, 산화된 광석(4)을 혼합기(7)에서 석탄 환원제(5) 및 용제(석회, 실리카)(6)와 혼합하는 과정과, 상기 혼합물을 펠러타이저(pelletizer)(8)에서 알갱이화하는 과정과, 상기 알갱이를 1400 내지 1600℃ 사이 온도의 회전식 용광로(9)에서 환원시키는 과정 및 생성된 크롬 너깃을 분리장치(11)에서 슬래그로부터 분리하는 과정을 포함한다. The present invention relates to a process for producing chrome nuggets from chrome ores / concentrates. A method for producing chrome nuggets comprises the steps of oxidizing a chrome iron ore / chrome concentrate (1) having a mixing ratio of chromium (Cr) and iron (Fe) in the range of 1.0 to 3.3 in a furnace (2) 4) in a mixer (7) with a coal reducing agent (5) and a solvent (lime, silica) (6) and granulating the mixture in a pelletizer (8) In a rotary furnace (9) at a temperature between 1400 and 1600 ° C, and separating the resulting chrome nuggets from the slag in a separator (11).

크롬철광, 크롬너깃, 환원제, 석탄, 슬래그 Chrome iron, chrome nuggets, reducing agent, coal, slag

Description

크롬철광 광석/정광으로부터 크롬 금속 너깃을 제조하는 방법{PROCESS FOR THE PRODUCTION OF CHROMIUM METAL NUGGETS FROM CHROMITE ORES/CONCENTRATES}FIELD OF THE INVENTION [0001] The present invention relates to a process for producing chromium metal nuggets from chromium iron ore / concentrates. ≪ Desc / Clms Page number 1 > PROCESS FOR THE PRODUCTION OF CHROMIUM METAL NUGGETS FROM CHROMITE ORES / CONCENTRATES &

본 발명은 크롬 너깃(chromium nuggets) 제조방법 개발에 관한 것이다. 더 상세하게는, 본 발명은 50 내지 70%로 금속화된, 저온의 예비 산화된 크롬철광 광석/정광으로부터 크롬 너깃을 제조하는 방법을 개발하는 것에 관한 것이다.The present invention relates to the development of a method for manufacturing chromium nuggets. More particularly, the present invention relates to the development of a method for making chrome nuggets from low temperature pre-oxidized chrome ores / concentrates, metallized at 50-70%.

일관 생산의 금속 합금(integrated metal alloy) 제조 구조에 있어서, 고탄소(high carbon) 페로크롬(Ferro chromium)은 대개 용융-환원 방법(smelting-reduction route)에 의해 생성된다. 용융-환원 방법은 많은 에너지를 소비하며(highly energy intensive), 또한 환원제로 재함량이 낮은 코크스(imported low-ash coke)를 필요로 한다. 재함량이 낮은 코크스 및 전기(electricity)는 모두 값비싼 원자재이다. 따라서, 환원제로 석탄을 사용하여 예비-산화된 크롬 광석을 환원시킴으로써 50 내지 70%로 금속화된 크롬철광 광석을 페로크롬 형태로 제조하는 새로운 공정방법의 개발이 절실히 요구된다. In an integrated metal alloy manufacturing structure, high carbon ferro chromium is usually produced by a smelting-reduction route. The melt-reduction process is highly energy intensive and requires imported low-ash coke as a reducing agent. Low ash coke and electricity are all expensive raw materials. Therefore, there is a desperate need to develop a new process for producing chromium iron ore in the form of ferrochromium, which is reduced to pre-oxidized chrome ores by using coal as a reducing agent and by 50 to 70% metallization.

따라서, 본 발명은 종래기술의 문제점을 해결할 수 있는 예비-산화된 크롬철광 광석/정광의 저온 환원에 의한 크롬 너깃 제조방법을 제공하고자 한다. Accordingly, it is an object of the present invention to provide a method for producing chrome nuggets by low-temperature reduction of pre-oxidized chrome iron ore / concentrate which can solve the problems of the prior art.

또한, 본 발명은 에너지를 절약할 수 있는 예비-산화된 크롬철광 광석/정광의 저온 환원에 의한 크롬 너깃 제조방법을 제공하고자 한다. The present invention also provides a method for producing chrome nuggets by low-temperature reduction of pre-oxidized chrome iron ore / concentrate which can save energy.

또한, 본 발명은 페로크롬 제조비용을 20% 정도 절감할 수 있는 예비-산화된 크롬철광 광석/정광의 저온 환원에 의한 크롬 너깃 제조방법을 제공하고자 한다. The present invention also provides a method for producing chrome nuggets by low-temperature reduction of pre-oxidized chrome iron ore / concentrate which can reduce the production cost of ferrochrome by about 20%.

또한, 본 발명은 코크스(coke) 소비를 감소시킬 수 있는 예비-산화된 크롬철광 광석/정광의 저온 환원에 의한 크롬 너깃 제조방법을 제공하고자 한다. The present invention also provides a method for producing chrome nuggets by low-temperature reduction of pre-oxidized chrome ore / concentrate which can reduce coke consumption.

또한, 본 발명은 강철이 용융되는 동안 표면반응이 개선된 예비-산화된 크롬철광 광석/정광의 저온 환원에 의한 크롬 너깃 제조방법을 제공하고자 한다. The present invention also provides a method for producing chrome nuggets by low-temperature reduction of pre-oxidized chromium iron ore / concentrate whose surface reaction is improved while steel is being melted.

더욱이 본 발명은 스테인레스 강철 제품 제조에 즉시 이용 가능한 예비-산화된 크롬철광 광석/정광의 저온 환원에 의한 크롬 너깃 제조방법을 제공하고자 한다. The present invention further provides a process for producing chrome nuggets by low-temperature reduction of pre-oxidized chromium iron ores / concentrates which are readily available in the manufacture of stainless steel products.

도 1은 산화된 크롬철광 광석/정광의 환원 후 생성된 크롬 너깃을 사진촬영한 도면이다. FIG. 1 is a photographic view of chromium nitride produced after reduction of oxidized chrome ore / concentrate. FIG.

도 2는 크롬 금속 너깃의 미세 구조(micro-structure)를 나타낸 도면이다. FIG. 2 is a view showing a micro-structure of a chromium metal nugget. FIG.

도 3은 크롬 너깃 생성을 위한 공정흐름도이다.3 is a process flow chart for generating chrome nuggets.

Cr : Fe의 비가 1.0 내지 3.3 범위인 크롬철광 광석/정광을 저온(900℃)에서 산화시킨다. 산화된 시료(samples)는 일산화철(FeO)에서 삼산화이철(Fe2O3)로 완전 히 산화됨을 나타낸다. 산화된 크롬철광 광석/정광을 환원제로서 석탄을 사용하여 환원시킨다. 용제(flux)로는 실리카 원료(silica source) 및 석회(lime)가 사용된다. 환원실험은 분위기 제어(controlled atmosphere) 고온 용광로(furnace)에서 수행된다. 사용된 원료물질 및 그 조성은 다음 표와 같다.The chromium iron ore / concentrate having a Cr: Fe ratio in the range of 1.0 to 3.3 is oxidized at low temperature (900 캜). Oxidized samples indicate complete oxidation to ferric trioxide (Fe 2 O 3 ) in mono iron oxide (FeO). Oxidized chrome iron ore / concentrate is reduced using coal as a reducing agent. As the flux, silica source and lime are used. Reduction experiments are performed in a controlled atmosphere high temperature furnace. The raw materials used and their composition are shown in the following table.

표 1. 원료물질 및 조성(wt%)Table 1. Raw materials and composition (wt%)

Cr/Fe의 비율Cr / Fe ratio Cr2O3 Cr 2 O 3 Fe(t)Fe (t) SiO2 SiO 2 Al2O3 Al 2 O 3 MgOMgO CaOCaO VMVM AshAsh 크롬철광
광석/정광
Chrome iron
Ore / Concentrate
1.0-3.31.0-3.3 30-5630-56 11-2011-20 1.0-9.01.0-9.0 9-169-16 6-136-13 0.01-0.040.01-0.04 -- --
석탄Coal -- -- -- -- -- -- -- 10-10- 10-10- 석영quartz -- -- -- -- 85-9885-98 -- -- -- -- 석회lime -- -- -- -- -- -- 60-7060-70 -- --

환원에 대한 실험연구는 1400 내지 1550℃ 정도의 저온에서 수행된다. 석탄은 광석 내의 삼산화이철(Fe2O3) 및 산화크롬(Cr2O3)의 환원에 필요한 탄소 화학량론의 30-50%를 초과하여 과잉 사용된다. 특별한 슬래그 설계에 근거하여, 용제로서 석영이 산화알루미늄 및 산화마그네슘을 슬래그로 분리하는데 필요한 양의 0 내지 10% 초과 범위로 첨가된다. 석회는 크롬철광 광석/정광의 3 내지 10% 범위로 첨가된다. 환원과정은 1400 내지 1550℃의 온도범위에서 1.5 내지 3.0 시간동안 수행된다. 도 1은 생성된 크롬철광(chromite) 너깃을 도시한 것이다. Experimental studies on reduction are carried out at low temperatures of about 1400 to 1550 ° C. Coal is used in excess of 30-50% of the carbon stoichiometry required for the reduction of iron ( III ) oxide (Fe 2 O 3 ) and chromium oxide (Cr 2 O 3 ) in ore. Based on a special slag design, quartz as a solvent is added in an amount in excess of 0 to 10% of the amount required to separate aluminum oxide and magnesium oxide into slag. The lime is added in the range of 3 to 10% of the chromium iron ore / concentrate. The reduction process is carried out at a temperature range of 1400 to 1550 캜 for 1.5 to 3.0 hours. Figure 1 shows the chromite nugget produced.

상 조성(phase composition)에 따른 생성물의 미세 구조 시료(sample)는 도 2에 도시된 바와 같다. 금속에서 2개의 상(phase)을 나타내며, 하나는 크롬이 우세한 상이고 다른 하나는 다른 원소가 우세한 상을 나타낸다. 크롬은 너깃 생성물 내에서 탄화크롬(chromium carbides) 및 철탄화크롬(iron chromium carbides)의 형태 로 존재한다. The microstructure sample of the product according to the phase composition is as shown in FIG. It represents two phases in the metal, one representing the predominant phase of chromium and the other representing the predominant phase of the other element. Chromium exists in the form of chromium carbides and iron chromium carbides in the nuggets.

생성된 크롬 금속, 너깃 및 슬래그 생성물의 화학적 조성은 표 2와 같다. 금속 너깃의 직경은 0.5 내지 25cm 범위이다. 물에 담금질(quenching) 후 물리적 분리(physical separation) 방법에 의해 금속과 슬래그로 상분리 가능함은 명백하다. The chemical composition of the resulting chromium metal, nugget and slag product is shown in Table 2. The diameter of the metal nugget ranges from 0.5 to 25 cm. It is evident that metal and slag can be phase separated by quenching in water followed by physical separation.

표 2. 크롬 금속 너깃 및 슬래그의 화학적 조성Table 2. Chemical composition of chromium metal nuggets and slag

금속metal CrCr CC SiSi SS PP 50-64%50-64% 3.0-6.03.0-6.0 0.7-1.0%0.7-1.0% 0.01-0.03%0.01-0.03% 0.003-0.04%0.003-0.04% 슬래그Slag Al2O3 Al 2 O 3 MgOMgO SiO2 SiO 2 Cr2O3 Cr 2 O 3 CaOCaO 18-40%18-40% 15-24%15-24% 10-34%10-34% 14-3014-30 1-7.5%1-7.5%

반응 메커니즘(reaction mechanisms):Reaction mechanisms:

크롬철광(FeO) 광석/정광의 산화는 공극(vacancies) 형성으로 인해 크롬 스피넬의 반응성을 증가시키는 스피넬 구조(spinel structure)가 가능하도록 한다. Oxidation of chromium iron (FeO) ore / concentrate enables the spinel structure to increase the reactivity of chromium spinel due to the formation of vacancies.

크롬철광 광석의 산화는 또한 환원 시간 감소에 기여한다. 용제로서 석회를 사용하지 않는 크롬철광 광석/정광의 환원 메커니즘은 일반적으로 다음 과정과 같이 진행된다. 산화 크롬(chromium oxide)은 1200 내지 1600℃의 온도에서 탄소와 반응하여 Cr3Cr2, Cr7C3 중 하나를 생성한다. Oxidation of chrome ore also contributes to reduction of the reduction time. The mechanism of reduction of chromium iron ore / concentrate without using lime as a solvent generally proceeds as follows. Chromium oxide reacts with carbon at temperatures between 1200 and 1600 ° C to produce one of Cr 3 Cr 2 and Cr 7 C 3 .

3Cr2O3, + 13C → 2Cr3C2 + 9CO(1150-1200℃) 3Cr 2 O 3, + 13C → 2Cr 3 C 2 + 9CO (1150-1200 ℃)

27CR3C + 5CrO → 13CrC + 15CO(1200-1600℃) 27CR3C + 5CrO - > 13CrC + 15CO (1200-1600 < 0 > C)

Cr7C3은 상당히(still) 높은 온도에서 Cr23C6 과 반응하여 1820℃ 이상의 온도 에서 최종적으로 양질의 크롬 금속을 생성한다. 그러나, 전술한 조성에서 용제로서 석회를 사용함으로 인해 슬래그 형성반응은 저온에서 산화크롬을 환원시키는 데 중요한 역할을 한다. 용제로서 석회가 첨가되는 경우, 슬래그 형성 작용은 저온에서 일어나며, 슬래그 내에서 용해되어 환원을 촉진한다.Cr 7 C 3 reacts with Cr 23 C 6 at still high temperatures and finally produces high quality chromium metal at temperatures above 1820 ° C. However, by using lime as a solvent in the above-mentioned composition, the slag forming reaction plays an important role in reducing chromium oxide at a low temperature. When lime is added as a solvent, the slag forming action takes place at a low temperature and dissolves in the slag to promote reduction.

도 3은 크롬 너깃을 생성하기 위한 공정흐름도이다. 크롬 광석/정광(1)의 산화는 유동식(fluidized bed)(2) 회전식 용광로(rotary furnace)(2) 내에서 이루어지며, 용광로에는 열기(hot air)(3)가 주입된다. 산화된 광석/정광은 저장소(4)에 공급되며, 산화장치(oxidation unit) 근처에는 환원제 저장소(5) 및 용제 저장소(6)가 제공된다. 3 is a process flow chart for producing chrome nuggets. The oxidation of the chrome ore / concentrate 1 takes place in a fluidized bed 2 rotary furnace 2 and a hot air 3 is injected into the furnace. The oxidized ore / concentrate is supplied to the reservoir 4, and a reducing agent reservoir 5 and a solvent reservoir 6 are provided near the oxidation unit.

다음으로, 산화된 광석은 혼합기(mixer)(7)에서 석탄 환원제 및 용제(실리카, 석회)와 혼합된 후 펠러타이저(pelletizer)(8)로 운반된다. 알갱이들은 회전식 용광로(9)로 공급되며, 용광로 내에서 환원반응이 일어난다. 회전식 용광로(9)에서 생성된 금속 및 슬래그 생성물은 물리적 분리장치(physical separation unit)(11)에 공급되어 크롬 금속 너깃(12) 및 슬래그(13)로 분리된다. Next, the oxidized ore is mixed with a coal reducing agent and a solvent (silica, lime) in a mixer 7 and then conveyed to a pelletizer 8. The granules are fed into a rotary furnace (9), where a reduction reaction takes place in the furnace. The metal and slag products produced in the rotary kiln 9 are fed to a physical separation unit 11 and separated into a chromium metal nugget 12 and a slag 13.

주요 특징(주요 구성요소)(key features)Key features (key features)

참조부호Reference symbol 주요 특징(주요 구성요소)Main features (main components) 도면drawing 1One 크롬철광 광석/크롬철광 정광Chrome Ore / Chrome Ore Concentrate 도33 22 유동식(fluidized bed)/다층식(multiple hearth) 용광로Fluidized bed / multiple hearth furnaces 도33 33 열기(hot air)로서 산소공급Oxygen supply as hot air 도33 44 환원제인 석탄이 저장되는 저장소Store where coal as a reducing agent is stored 도33 55 용제인 석회 및 석영이 저장되는 저장소Store the solvent lime and quartz 도33 66 혼합장치Mixing device 도33 77 펠러타이저Feller Thyristor 도33 88 환원장치로서 회전식 용광로As a reduction device, 도33 99 고온 환원 가스High-temperature reducing gas 도33 1010 크롬 너깃 및 슬래그Chrome Nugget and Slag 도33 1111 분리장치Separating device 도33 1212 크롬 너깃Chrome nugget 도33 1313 슬래그Slag 도33

Claims (5)

크롬철광 또는 크롬 정광을 900℃의 용광로에서 산화시키는 과정과;Oxidizing chromium iron or chromium concentrate in a furnace at 900 캜; 산화된 크롬철광 또는 크롬 정광을 혼합기(7)에서 석탄 환원제 및 용제인 석회 및 실리카와 혼합하여 혼합물을 형성하는 과정과;Mixing oxidized chromium iron or chromium concentrate with coal reducing agent and solvent lime and silica in a mixer (7) to form a mixture; 상기 혼합물을 펠러타이저(pelletizer)(8)에서 알갱이화하는 과정과;Granulating the mixture in a pelletizer (8); 수득된 알갱이를 1400 내지 1550℃ 온도의 회전식 용광로(9)에서 환원시키는 과정; 및Reducing the obtained granules in a rotary kiln (9) at a temperature of 1400 to 1550 占 폚; And 상기 회전식 용광로(9)에서 생성된 환원된 크롬 금속 너깃 및 슬래그를 분리장치(11)로 공급하여, 환원된 크롬 금속 너깃과 슬래그를 분리하는 과정을 포함하되,Supplying the reduced chromium metal nugget and slag generated in the rotary furnace 9 to the separation device 11 to separate the reduced chromium metal nugget and the slag, 상기 크롬 금속 너깃은The chromium metal nugget 크롬(Cr) 50 내지 64 중량%, 50 to 64% by weight of chromium (Cr) 탄소(C) 3.0 내지 6.0 중량%, 3.0 to 6.0% by weight of carbon (C) 규소(Si) 0.7 내지 1.0 중량%, 0.7 to 1.0% by weight of silicon (Si) 황(S) 0.01 내지 0.03 중량%, 0.01 to 0.03% by weight of sulfur (S) 인(P) 0.003 내지 0.04 중량%, 및 0.003 to 0.04% by weight of phosphorus (P), and 잔부가 철(Fe)인 화학조성을 가지는 것인 크롬 금속 너깃의 제조방법. Wherein the remainder is iron (Fe). 제1항에 있어서,The method according to claim 1, 상기 크롬철광 또는 크롬 정광의 Cr:Fe 중량비가 1.0 내지 3.3 범위인 크롬 금속 너깃의 제조방법.Wherein the chromium iron or chromium concentrate has a Cr: Fe weight ratio in the range of 1.0 to 3.3. 제1항에 있어서, The method according to claim 1, 상기 산화 과정에서, 크롬 스피넬에 존재하는 FeO를 크롬철광 또는 크롬 정광의 표면에서 Fe2O3로 산화시키며, 또한 상기 Fe2O3로의 산화는 공극 형성으로 인해 크롬 스피넬의 반응성을 증가시키는 것인, 크롬 금속 너깃의 제조방법.In the oxidation process, the FeO present in the chromium spinel is oxidized to Fe 2 O 3 on the surface of chromium iron or chromium concentrate, and the oxidation to Fe 2 O 3 increases the reactivity of chromium spinel due to pore formation , A method for manufacturing a chromium metal nugget. 삭제delete 삭제delete
KR1020097026723A 2007-05-24 2008-02-12 Process for the production of chromium metal nuggets from chromite ores/concentrates KR101498995B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN802/KOL/07 2007-05-24
IN802KO2007 2007-05-24
PCT/IN2008/000087 WO2008142704A1 (en) 2007-05-24 2008-02-12 Process for the production of chromium metal nuggets from chromite ores/concentrates.

Publications (2)

Publication Number Publication Date
KR20100021620A KR20100021620A (en) 2010-02-25
KR101498995B1 true KR101498995B1 (en) 2015-03-06

Family

ID=40031451

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097026723A KR101498995B1 (en) 2007-05-24 2008-02-12 Process for the production of chromium metal nuggets from chromite ores/concentrates

Country Status (7)

Country Link
EP (1) EP2152925A4 (en)
JP (1) JP5364091B2 (en)
KR (1) KR101498995B1 (en)
CN (1) CN101765670B (en)
TR (1) TR200908848T1 (en)
WO (1) WO2008142704A1 (en)
ZA (1) ZA200908067B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469679B1 (en) * 2009-03-02 2014-12-05 신화메탈 주식회사 Low carbon-ferrochromium manufacturing method by using continuous thermit reaction
RU2551729C2 (en) * 2009-09-14 2015-05-27 Чонгкинг Рюифан Реньювэбл Ресорсес Девелопмент Ко., Лтд. Method of chromium slag neutralisation using annealing method and blast-furnace process
WO2013011521A1 (en) * 2011-07-18 2013-01-24 Tata Steel Limited A method for direct reduction of oxidized chromite ore fines composite agglomerates in a tunnel kiln using carbonaceous reductant for production of reduced chromite product/ agglomerates applicable in ferrochrome or charge chrome production.
CN102432068B (en) * 2011-09-28 2013-10-16 北京科技大学 Process for producing sodium chromate
CN102994850A (en) * 2012-10-29 2013-03-27 海门市金易焊接材料有限公司 Low-carbon chromium metal
CN105612264A (en) * 2013-08-01 2016-05-25 西北大学 Process for enhanced pre-reduction of chromite
WO2016115593A1 (en) * 2015-01-20 2016-07-28 Pelleton Ip Holdings Limited Method for producing a chromite agglomerate
EA201992240A1 (en) * 2017-03-21 2020-03-23 Ланксесс Дойчланд Гмбх METHOD FOR OBTAINING IRON AND CHROME CONTAINING PARTICLES
US10982300B2 (en) * 2017-05-02 2021-04-20 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Carbothermic direct reduction of chromite using a catalyst for the production of ferrochrome alloy
CN107699685A (en) * 2017-08-09 2018-02-16 江苏省冶金设计院有限公司 A kind of production method of silicochromium
US10508319B1 (en) * 2019-06-27 2019-12-17 MM Metals USA, LLC Method and system for producing low carbon ferrochrome from chromite ore and low carbon ferrochrome produced thereby
CN112251600A (en) * 2019-07-22 2021-01-22 孙凌玉 Preparation method and application of chromium metallization ball
CN110306058B (en) * 2019-07-23 2021-03-12 中南大学 Process for efficiently treating zinc-iron-containing metallurgical dust and sludge by rotary hearth furnace
CN112226615B (en) * 2020-10-15 2021-11-12 中南大学 Comprehensive utilization method of stainless steel solid waste
GB202108524D0 (en) 2021-06-15 2021-07-28 Eestech Inc Improved smelting system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193330A (en) * 1982-05-04 1983-11-11 Kawasaki Steel Corp Preliminary reducing method and apparatus for reducing chromium ore by melting
JPH0936848A (en) * 1995-07-21 1997-02-07 Fujitsu Ltd Clock distributing device
JP2004211179A (en) * 2003-01-07 2004-07-29 Kobe Steel Ltd Method of reducing chromium-containing raw material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137246B1 (en) * 1970-05-11 1976-10-14
JPS4936848B1 (en) * 1970-12-30 1974-10-03
JPS50136211A (en) * 1974-04-18 1975-10-29
US4414026A (en) * 1981-07-30 1983-11-08 Nippon Kokan Kabushiki Kaisha Method for the production of ferrochromium
PH22151A (en) * 1983-12-31 1988-06-01 Krupp Gmbh Process for the production of ferrochromium
JPS6169944A (en) * 1984-09-13 1986-04-10 Nippon Steel Corp Manufacture by melting and reducing of ferrochrome
DE3518555C1 (en) * 1985-05-23 1986-01-09 Fried. Krupp Gmbh, 4300 Essen Process for the reduction of iron-containing chrome ores
DE3713883A1 (en) * 1987-04-25 1988-11-17 Metallgesellschaft Ag Process for producing ferrochromium
CN1172010C (en) * 2001-11-15 2004-10-20 湖南铁合金集团有限公司 process for producing low-Ti High-C ferrochronium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193330A (en) * 1982-05-04 1983-11-11 Kawasaki Steel Corp Preliminary reducing method and apparatus for reducing chromium ore by melting
JPH0936848A (en) * 1995-07-21 1997-02-07 Fujitsu Ltd Clock distributing device
JP2004211179A (en) * 2003-01-07 2004-07-29 Kobe Steel Ltd Method of reducing chromium-containing raw material

Also Published As

Publication number Publication date
CN101765670A (en) 2010-06-30
WO2008142704A1 (en) 2008-11-27
CN101765670B (en) 2013-07-17
EP2152925A4 (en) 2016-11-09
TR200908848T1 (en) 2012-02-21
KR20100021620A (en) 2010-02-25
JP5364091B2 (en) 2013-12-11
EP2152925A1 (en) 2010-02-17
ZA200908067B (en) 2010-07-28
JP2010528184A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
KR101498995B1 (en) Process for the production of chromium metal nuggets from chromite ores/concentrates
JP2966106B2 (en) Method for producing hydraulic binder and / or alloys such as ferrochrome or ferrovanadium
Itoh et al. Equilibrium between dissolved chromium and oxygen in liquid high chromium alloyed steel saturated with pure Cr2O3
CN102206729A (en) Method for recycling steel slag of LF (Low Frequency) furnace
CN102212736B (en) Method for preparing niobium microalloy steel by using low-niobium molten iron
McEwan et al. Chromite—A cost-effective refractory raw material for refractories in various metallurgical applications
US20160107930A1 (en) Method for processing steel slag and hydraulic mineral binder
CN101638730B (en) Method for preparing sponge chromium from metallurgical-grade chromite concentrate fine powder
CN103981335B (en) A kind of vanadium-bearing hot metal vanadium extraction and dephosphorization agent
US20140060251A1 (en) Process of the production and refining of low-carbon dri (direct reduced iron)
Bobkova et al. Prospects of technologies for the direct alloying of steel from oxide melts
RU2639396C1 (en) Method for pyrometallurgical processing of oxidized nickel ore
CN111961803A (en) Production process and method of industrial pure iron
KR101189183B1 (en) Recovery method of valuable metals from spent petroleum catalysts
FI64648C (en) FOERFARANDE FOER UTNYTTJANDE AV FATTIGA OXIDISKA OCH JAERNHALTIGA KOMPLEXMALMER ELLER -KONCENTRAT
US2227287A (en) Chromium metallurgy
CN103667833A (en) Method for producing low-carbon ferromanganese by utilizing high-carbon ferromanganese
FI69647C (en) FOERFARANDE FOER FRAMSTAELLNING OCH BEHANDLING AV FERROKROM
CN104060022B (en) A kind of remained converter slag adds the method that limestone carries out making steel
CN115786739B (en) Method for improving alloying rate of chromium ore
KR20140004281A (en) Method for manufacturing pig iron for cast iron from copper slag
Yur’ev et al. Research of Iron-Rich Pellet Oxide Reduction by Carbon
JP2023080996A (en) metal manufacturing method
KR100887859B1 (en) The method of manufacturing stainless steel through reduction of chromium ore
KR20150064957A (en) Agent for dephosphorization and treatment method of molten metal using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180103

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190130

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200214

Year of fee payment: 6