JPS58193330A - Preliminary reducing method and apparatus for reducing chromium ore by melting - Google Patents

Preliminary reducing method and apparatus for reducing chromium ore by melting

Info

Publication number
JPS58193330A
JPS58193330A JP7341382A JP7341382A JPS58193330A JP S58193330 A JPS58193330 A JP S58193330A JP 7341382 A JP7341382 A JP 7341382A JP 7341382 A JP7341382 A JP 7341382A JP S58193330 A JPS58193330 A JP S58193330A
Authority
JP
Japan
Prior art keywords
ore
furnace
reduction
preliminary
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7341382A
Other languages
Japanese (ja)
Other versions
JPS6136573B2 (en
Inventor
Hisamitsu Koitabashi
小板橋 寿光
Hisao Hamada
浜田 尚夫
Toshihiro Inatani
稲谷 稔宏
Nobuo Tsuchitani
槌谷 暢男
Shiko Takada
高田 至康
Eiji Katayama
英司 片山
Mitsuo Kadoto
角戸 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7341382A priority Critical patent/JPS58193330A/en
Publication of JPS58193330A publication Critical patent/JPS58193330A/en
Publication of JPS6136573B2 publication Critical patent/JPS6136573B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To enhance the preliminary reducing efficiency of a Cr ore, in the solid phase preliminary reduction of the Cr ore, by breaking a spinel type structure by preliminary oxidation treatment of said Cr ore. CONSTITUTION:In preparing ferrochromium in a melting and reducing furnace after a Cr ore is preliminarily reduced, the preliminary reduction of the Cr ore is enhanced to reduce refining cost of ferrochromium. For obtaining this effect, the Cr ore is crushed to be charged into an oxidation treatment furnace 1 from the inlet 3 thereof and the fluidized layer 2 of the powdery Cr ore is formed therein. Oxygen or air is introduced into the oxidation treating furnace 1 from the lower inlet 5 thereof and the high temp. exhaust gas from a ferrochromium melting and reducing furnace from an inlet 8 while the high temp. of a preliminary reducing furnace 10 provided to the lower part is further introduced through a conduit and a dispersing plate 9 to heat the Cr ore and the spinel structure of the Cr ore is broken to separate FeO from Cr2O3. This Cr ore made easily reducible is charged into the lower preliminary reducing furnace 10 by a transfer pipe 4 while a reductive gas 18 such as a coke oven gas is introduced to preliminarily reduce the Cr ore in a solid phase in an excellent reducing ratio and the reduced ore is supplied to the melting and reducing furnace to prepare molten ferrochromium.

Description

【発明の詳細な説明】 この発明は、7エロクロムの製造を目的として、クロム
鉱石を溶融還元するに当って、クロム鉱石をまづ予備還
元する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preliminarily reducing chromium ore when smelting and reducing chromium ore for the purpose of producing 7-erochrome.

クロム鉱石の資源は低品位化、粉鉱化の傾向にある。ク
ロム鉱石の製錬による7エロクロムの製造は通常、電気
炉によるが、電力原単位は数千KW H/ tにも達し
て電力料金の高いところでは、極めてコスト高となる。
Chromium ore resources are trending toward lower grade and fine mineralization. The production of chromium 7 by smelting chromium ore is usually done using an electric furnace, but the electricity consumption rate reaches several thousand kilowatts per ton, making it extremely costly in areas where electricity rates are high.

そこで最近は電力によらない7エロクロムやその他の合
金鉄製造技術としての溶融還元法が注目されている。
Therefore, recently, the smelting reduction method has been attracting attention as a technology for producing 7-erochrome and other ferroalloys that does not rely on electric power.

この溶融還元法に関して、本発明者らは先に粉粒状鉱石
からの溶融金属製造方法を発明した(特願昭!4−AJ
コデダ号)。その発明の骨子は、予備還元炉において粉
粒状鉱石を溶融還元炉から排出される還元性ガスによっ
て流動層形式で予備的に還元し、得られた粉粒状予備還
元鉱石を、上下一段にそれぞれ設けられた複数の羽口を
備えた縦型の溶融還元炉に移送し、これを前記羽口のう
ち少なくとも上段の羽目から高温空気と共に溶融還元炉
内に吹込み、この予備還元鉱石を溶融還元する、という
金属酸化物を含有する粉粒状鉱石からの溶融金属製造方
法である。
Regarding this smelting reduction method, the present inventors previously invented a method for producing molten metal from powdery ore (Patent Application Sho! 4-AJ
Kodeda). The gist of the invention is that granular ore is preliminarily reduced in a fluidized bed format using reducing gas discharged from the smelting reduction furnace in a pre-reducing furnace, and the resulting granular pre-reduced ore is placed in upper and lower stages, respectively. The pre-reduced ore is transferred to a vertical smelting reduction furnace equipped with a plurality of tuyeres, and is blown into the smelting reduction furnace together with high-temperature air through at least the upper tuyeres of the tuyere to melt and reduce the pre-reduced ore. This is a method for producing molten metal from powder ore containing metal oxides.

この方法は、各種鉱石に応用可能であって当然クロム鉱
石からの7ニロクロムの製造に適用することができる。
This method is applicable to various ores, and can naturally be applied to the production of 7-nirochromium from chromium ore.

しかしクロム鉱石のように難還元性の鉱石は、溶融還元
炉からの高温の排ガスを還元ガスとして使用する場合に
非常に高温の還元温度を必要とする。
However, ores that are difficult to reduce, such as chromium ore, require a very high reduction temperature when using high-temperature exhaust gas from a smelting reduction furnace as reducing gas.

本発明者らは、流動層によるクロム鉱石の予備還元方法
として重油1石炭などの還元剤を用いる方法(特願昭!
!r−1047/7号)を提案し、更に低い還元温度で
還元する場合には、還元剤としてOH2が有効であ−る
ことを知見して、OH4源とコークス炉ガスを併用する
方法(特願昭!A−/97コデ6号)を提案した。
The present inventors have proposed a method using a reducing agent such as heavy oil or coal as a preliminary reduction method for chromium ore using a fluidized bed (Special Application of Akio!).
! r-1047/7), and discovered that OH2 is effective as a reducing agent when reducing at a lower reduction temperature. Gansho! A-/97 Code No. 6) was proposed.

上記提案の二つの方法から、クロム鉱石の還元速度を早
くするためには、還元剤を選択すること及び同一還元剤
であれば、還元温度を上げることが有効であることが分
った。
From the two methods proposed above, it has been found that in order to speed up the reduction rate of chromium ore, it is effective to select a reducing agent and, if the reducing agent is the same, to increase the reduction temperature.

一方、クロム鉱石自体の性質を変えることによって、そ
の還元速度を向上させる方法も考えられる。クロム鉱石
は、スピネル型結晶構造(Fe2Mg)0・(Or +
 kl )203として知られている。スピネル型結晶
の中でF@酸化物(Fed)とOr酸化物(0rzO3
)が還元される訳であるが、スピネル型構造になってい
るために、FeO及びGr203が混合11物となって
いる場合に還元されるときよりも還元速度は遅くなる。
On the other hand, it is also possible to improve the reduction rate by changing the properties of the chromium ore itself. Chromium ore has a spinel crystal structure (Fe2Mg)0.(Or +
kl ) 203. In the spinel crystal, F@oxide (Fed) and Or oxide (0rzO3
) is reduced, but because it has a spinel structure, the reduction rate is slower than when FeO and Gr203 are reduced as a mixture.

したがってスピネル型#I造を壊してyIOや0rz0
5が分離するような処理を行えば、還元速度の上昇が期
待できる。
Therefore, by breaking the spinel type #I structure, yIO and 0rz0
If treatment is performed such that 5 is separated, an increase in the reduction rate can be expected.

また、クロム鉱石はち密なために、還元ガスが鉱石粒子
の内部まで浸透し纏いことも還元速度を遅くしている。
Furthermore, since chromium ore is dense, the reducing gas penetrates into the interior of the ore particles and becomes entangled, which also slows down the reduction rate.

多孔質な組織あるいは多数のタラツクを発生させて粒子
内の比褒面棟を大きくすれば還元速度は増加する。
The reduction rate can be increased by generating a porous structure or a large number of tartars to increase the size of the pores within the particles.

そこで、上記目的の達成手段としてクロム鉱石を事前に
高温の酸化性雰8!気にさらして酸化処理を行うことを
考えて本発明を劇作するに至った。
Therefore, as a means to achieve the above objective, chromium ore is added to a high temperature oxidizing atmosphere in advance! The present invention was developed based on the idea of performing oxidation treatment by exposing the material to air.

本発明は、7エワク田ム製造のための難還元性のクロム
鉱石の溶融還元法において、クロム鉱石の予備1元率を
向上することができるクロム鉱石の予備還元方法と、そ
の方法の実施に使用するための装置を提供することを目
的とするものである。
The present invention provides a method for pre-reducing chromium ore that can improve the pre-unity ratio of chromium ore in a smelting-reduction method for difficult-to-reducible chromium ore for producing 7 Ewak Tam, and an implementation of the method. The purpose is to provide an apparatus for use.

すなわち本発明の要旨とするところは、次のとおりであ
る。
That is, the gist of the present invention is as follows.

(1)予備還元炉と溶融還元炉とを使用してクロム鉱石
を溶融還元する方法において、粉粒状のクロム鉱石を’
toθ〜/300℃の温度で空気又は酸素によって酸化
処理し、次いで酸化処理されたクロム鉱石を予備還元炉
に供給して予備還元を行うことを特徴とする、クロム鉱
石の予備還元方法。
(1) In a method of melting and reducing chromium ore using a preliminary reduction furnace and a smelting reduction furnace, powdery chromium ore is
A method for pre-reducing chromium ore, which comprises oxidizing the chromium ore with air or oxygen at a temperature of toθ to /300°C, and then supplying the oxidized chromium ore to a pre-reduction furnace for pre-reduction.

(2)縦型の予備還元炉の上方に縦型の酸化処理炉を配
設し、酸化処理炉には、クロム鉱石の供給口、空気又は
酸素の供給口、予備還元炉排ガスの供給口、酸化処理さ
れたクロム鉱石の移送管及及酸化処理の排ガスの排出口
と、必要に応じて7ラツクスの供給口と還元性ガスの供
給口とを設け、予備還元炉には、還元性ガスの供給口、
予備還元排ガスの排出口及び予備還元されたクロム鉱石
の排出口を設け、かつ酸化処理炉と予備還元炉とを、前
記クロム鉱石の移送管及び予備還元排ガスの導管で連絡
させたことを特徴とする、クロム鉱石の予備還元装置。
(2) A vertical oxidation treatment furnace is installed above the vertical pre-reduction furnace, and the oxidation treatment furnace includes a chrome ore supply port, an air or oxygen supply port, a pre-reduction furnace exhaust gas supply port, A transfer pipe for the oxidized chromium ore, a discharge port for the exhaust gas from the oxidation process, a 7-lux supply port and a reducing gas supply port are provided as necessary, and the preliminary reduction furnace is equipped with a reducing gas supply port. supply port,
It is characterized by providing an outlet for the pre-reduced exhaust gas and an outlet for the pre-reduced chromium ore, and communicating the oxidation treatment furnace and the pre-reduction furnace through a transfer pipe for the chromium ore and a conduit for the pre-reduced exhaust gas. A preliminary reduction device for chrome ore.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

第1図は、環状電気炉を用いてクロム鉱石(−g)を酸
素気流(300CO/win )中で7時間酸化処理し
た後、これをxm回折したときの0r203のビーり強
度と酸化処理の温度との関係を示したものである。これ
によれば、酸化処理温度が高くなるに従って0r203
のピーク強度が大になる傾向を示し/100’Cで最高
となるが、更に昇温して1300℃を超えると逆に低下
する傾向を示している。
Figure 1 shows the bead strength of 0r203 and the effect of oxidation treatment on xm diffraction of chromium ore (-g) which was oxidized for 7 hours in an oxygen stream (300CO/win) using an annular electric furnace. This shows the relationship with temperature. According to this, as the oxidation treatment temperature increases, 0r203
The peak intensity tends to increase at /100'C, but when the temperature is further increased to exceed 1300°C, it tends to decrease.

また、元のクロム鉱石と酸化処理後、のクロム鉱石を顕
微鏡観察すると、酸化処理温度が高くなるほど、微細な
りラックが網目状に発生していた。
In addition, when observing the original chromium ore and the chromium ore after oxidation treatment under a microscope, it was found that the higher the oxidation treatment temperature, the more fine racks were generated in a network shape.

次に、流動層還元装置を使用して酸化処理したクロム鉱
石の還元実験を行った。実験は一つの反応管を用いて、
まず所定の温度で酸化処理した後NN2でパージを行い
、次に所定の温度まで昇温して還元を行った。
Next, we conducted a reduction experiment on oxidized chromium ore using a fluidized bed reduction device. The experiment used one reaction tube,
First, oxidation treatment was performed at a predetermined temperature, followed by purging with NN2, and then the temperature was raised to a predetermined temperature to perform reduction.

この結果を第一図に示す。The results are shown in Figure 1.

第一図によれば、酸化処理温度が高いほど、クロム鉱石
の還元率は高くなっている。しかし7100℃を超える
と低下していく傾向は第1図と同様である。還元率が向
上する理由としては、酸化処理を行うことによってクロ
ム鉱石中のスピネル型構造が壊されて0r203が生成
したこと及び微細なタラツクが発生したことによって、
クロム鉱石粒子の中心部まで還元ガスが浸透し、粒子の
外側や内側から並行して還元が進行したものと考えられ
る。なお、第2図の還元条件は、還元温度/100℃、
還元ガスとしてOE[4j 47m1n 、流動化ガス
としてN2コj/mi:ei を還元時間/コ0分、#
化りマム鉱石−欅である。
According to Figure 1, the higher the oxidation treatment temperature, the higher the reduction rate of chromium ore. However, when the temperature exceeds 7100°C, the tendency to decrease is similar to that shown in FIG. The reason why the reduction rate improves is that the spinel structure in the chromium ore is destroyed by the oxidation treatment and 0r203 is generated, and fine tartars are generated.
It is thought that the reducing gas penetrated to the center of the chromium ore particles, and reduction proceeded in parallel from the outside and inside of the particles. The reduction conditions in Figure 2 are: reduction temperature/100°C;
OE [4j 47m1n as a reducing gas, N2 as a fluidizing gas, reduction time/ko 0 min, #
It is the mamu ore - Keyaki.

酸化処理を行う場合に、(1)反応管に昇温前から鉱石
を装入しておく場合、(2)反応管が所定の温度に昇温
してから後、鉱石を装入する場合がある。
When performing oxidation treatment, (1) the ore is charged into the reaction tube before the temperature rises, and (2) the ore is charged after the reaction tube has been heated to a predetermined temperature. be.

第2図に示すように、(2)の方法が還元率の向上に効
果がある。このことは、鉱石が常温から急激に高温下に
さらされたため、急速加熱によって鉱石の内部に発生す
るクラックが(1)の方法よりも多くなって鉱石粒の比
表面積が増し、還元ガスの鉱石粒への浸透がより活発に
なったためと思われる。    ′しかして第1図と第
a9によれば、クロム鉱石の酸化処理の温度を100〜
/ 300℃とした場合に1次の還元工程において還元
効果が向上することが分かる。
As shown in FIG. 2, method (2) is effective in improving the reduction rate. This means that because the ore was rapidly exposed to high temperatures from room temperature, the rapid heating caused more cracks to occur inside the ore than in method (1), increasing the specific surface area of the ore grains, and reducing the amount of reducing gas. This seems to be due to more active penetration into the grains. 'However, according to Figure 1 and Figure a9, the temperature of the oxidation treatment of chromium ore is
/ It can be seen that the reduction effect is improved in the first reduction step when the temperature is 300°C.

本発明の方法は、上記の各種の実験から嘴らかになった
成果を奏するクロム鉱石の事前酸化処理を、クロム鉱石
の溶融還元法におけるその予備還元法の前処理に適用し
たものである。
The method of the present invention applies the pre-oxidation treatment of chromium ore, which has produced clear results from the various experiments described above, to the pre-treatment of the preliminary reduction method in the smelting reduction method of chromium ore.

第3図は、本発明の方法を実施するのに使用する予備還
元装置の70−シートであり、これによって本発明方法
及び装置の実施態様を説明する。
FIG. 3 is a 70-sheet of a pre-reduction apparatus used to carry out the method of the invention, thereby illustrating an embodiment of the method and apparatus of the invention.

酸化処理炉として流動層反応器/を使用する。A fluidized bed reactor is used as the oxidation treatment furnace.

その形状は通常、vi型の円筒形である。粉状のクロム
鉱石は供給口3より供給され、反応器/内に流動層コを
形成し、酸化処理されてから移送管ダによって排出され
、予備還元炉IOに送られる。
Its shape is usually a vi-shaped cylinder. Powdered chromium ore is supplied from the supply port 3, forms a fluidized bed in the reactor, is oxidized, is discharged through a transfer pipe, and is sent to the preliminary reduction furnace IO.

必要に応じてブランクスが供給ロアより供給される。Blanks are supplied from the supply lower as needed.

予備還元炉10において高温の排ガスはその排出口/3
.同73′から炉外に排出されるが、13からの排ガス
は導管6を通り分散板デを経て様化処理炉/内に供給さ
れる。
In the preliminary reduction furnace 10, high-temperature exhaust gas is discharged from its outlet/3
.. Exhaust gas from the furnace 73' is discharged from the furnace, while the exhaust gas from the furnace 13 passes through the conduit 6 and is supplied into the modification furnace via the distribution plate D.

―素又は空気はその供給口jから供給される。-Element or air is supplied from its supply port j.

その使途としては、クロム鉱石を酸化してそのスピネル
型構造を壊して0r203を生成させ、また鉱石に微細
なりラックを発生させ、これによりクロム鉱石の予備還
元を容易にすることであり、かつ予備還元炉の排ガス(
00v H2t OH4を含む)を燃煉して酸化処理に
必要な熱を補給することである。炉内でクロム鉱石の酸
化反応が活発に行われるようにするため、空気又は酸素
は過剰である方が好ましいので、酸素又は空気は供給口
5/  からも供給する場合もある。予備還元炉10か
らの排ガスを酸化処理炉lに供給する量の割合、すなわ
ち予備還元炉IOの排出口13から導入管乙に入る量は
同排ガス全排出量の5〜30%である。なお必要により
、溶融還元炉(図示していない)からの排ガス、その他
の還元性ガスを酸化処理炉/内にその供給口にから供給
することも可能である。
Its use is to oxidize chromium ore to break its spinel structure and produce 0r203, and also to generate fine lacs in the ore, thereby facilitating the preliminary reduction of chromium ore, and Reduction furnace exhaust gas (
00v H2t OH4) is burned to supply the heat necessary for oxidation treatment. In order to actively carry out the oxidation reaction of the chromium ore in the furnace, it is preferable that air or oxygen be in excess, so oxygen or air may also be supplied from the supply port 5/. The ratio of the amount of exhaust gas supplied from the preliminary reduction furnace 10 to the oxidation treatment furnace I, that is, the amount that enters the inlet pipe B from the discharge port 13 of the preliminary reduction furnace IO is 5 to 30% of the total amount of exhaust gas discharged. If necessary, it is also possible to supply exhaust gas from a melting reduction furnace (not shown) and other reducing gases into the oxidation treatment furnace through its supply port.

酸化処理炉lから移送管弘により予備還元炉10に供給
された酸化処理鉱石は、供給口//および//′から供
給される溶融還元炉からの排ガス又は/rからのコーク
ス炉ガス等の還元性ガスによって流動層形式で予備還元
される。予備還元された鉱石は排出口lコから排出され
て溶融還元炉に送られる。
The oxidized ore supplied from the oxidation treatment furnace 1 to the pre-reduction furnace 10 through the transfer pipe Hiroshi is mixed with exhaust gas from the smelting reduction furnace supplied from the supply ports // and //' or coke oven gas from /r. Pre-reduction is carried out in a fluidized bed format with a reducing gas. The pre-reduced ore is discharged from the discharge port 1 and sent to the smelting reduction furnace.

予備還元炉には操業の必要に応じてlデからクロム鉱石
、χから7ラツクスを装入し、また、予備還元炉の熱量
補給のためにコlから02又は空気の吹込みも可能であ
る。
The preliminary reduction furnace is charged with chromium ore from LDE and 7 lux from χ according to the operational needs, and it is also possible to blow 02 or air from COI to replenish the heat of the preliminary reduction furnace. .

ところで高温の排ガスを使用して原料を予熱する方法と
して、サスペンション・プレヒータ一方式がセメント製
造用キルン等で用いられている。
By the way, as a method of preheating raw materials using high-temperature exhaust gas, a one-type suspension preheater is used in cement manufacturing kilns and the like.

この方式を本発明における酸化処理炉に適用した例を第
参図の70−シートで示す。
An example in which this method is applied to the oxidation treatment furnace of the present invention is shown in sheet 70 of FIG.

クロム鉱石は第1段のサスペンション・プレヒーター/
4I′に供給管路/jから装入され、次いで第一段のす
スづンジョン・プレヒーターl参′を経て第3段のナス
ペンション・プレヒーター/’Iに供給される。−力士
+1還元炉10からの排ガスは112段のサスペンショ
ン・プレヒータ一方式に供給されて管%/Aからの過剰
の空気又は酸素により燃焼され1、その排ガスは第一段
のサスペンション・プレヒーター/l’を経て第1段の
サスペンション・プレヒーターl参′に供給される。
Chrome ore is the first stage suspension preheater/
4I' from the supply pipe /j, and then supplied to the third stage eggplant preheater /'I via the first stage soot pump preheater /'I'. - The exhaust gas from the sumo wrestler +1 reduction furnace 10 is fed to a 112-stage suspension preheater and combusted with excess air or oxygen from the tube %/A, and the exhaust gas is fed to the first stage suspension preheater/ It is supplied to the first stage suspension preheater l' via l'.

り田ム鉱石は、第1段プレヒーター/ダ′及び第2段プ
レヒーター/4”において前段のプレヒーターからの排
ガスによって懸濁される間に予備的に酸化処理され、第
3段プレヒーターlダにおいて予備還元炉排ガスの過剰
空気又は酸素による燃焼ガスによって懸濁される間に限
定された範囲の温度で酸化処理を受ける。酸化処理され
た鉱石は移送管路17から予備還元炉10に供給される
Ritam ore is preliminarily oxidized while being suspended in the exhaust gas from the previous preheater in the first stage preheater/da' and the second stage preheater/4", and is then oxidized in the third stage preheater l. The ore undergoes oxidation treatment at a limited temperature range while being suspended by excess air or oxygen combustion gases in the pre-reduction furnace exhaust gas.The oxidized ore is fed from the transfer line 17 to the pre-reduction furnace 10. Ru.

上記のようにサスペンション・プレヒーターは多段形式
の方が熱効率は良いが、単段形式でも可能である。
As mentioned above, a multistage suspension preheater has better thermal efficiency, but a single stage type is also possible.

本発明の実施例を以下に示す。Examples of the present invention are shown below.

1)クロム鉱石 フィリピン産りワムE石組成 0r2
03 ; Qデ、−%、Fed:コJ、t%粒径 M 
〜Ill me sh : 7 、9%、1it−10
0rnos’nr g4.7%、]1/θOm@sh以
下:よ、ダ弧 2)酸化処理炉操業データ 炉の形式1流動層 クロム1石供給量s  /?jbB/hr予備還元炉か
らの排ガス吹込み量: 410 Nm3/hr空  気
 量 : コク!r M !I13//h r炉内温度
: 1ooo℃ 3)予備還元炉操業データ 炉の形式 :流動層 酸化処理クロム鉱石の供給量:  / ? ! J9/
hrコークス炉ガス供給量 g/JOM鳳’/ hr炉
内温麿: 1oso℃ 予備還元s:y% 上記実施例による予備還元効果を比較するため、上記実
施例に対して、酸化処理を行わないはかTオ同一の操業
条件で予備還元を行ったところ、チー還元率は416%
に低下した。
1) Chromium ore Wamu E stone composition from the Philippines 0r2
03; Q de, -%, Fed: Ko J, t% particle size M
~Ill mesh: 7, 9%, 1it-10
0rnos'nr g4.7%, ]1/θOm@sh or less: yo, da arc 2) Oxidation treatment furnace operation data Furnace type 1 Fluidized bed chromium 1 stone supply amount s /? jbB/hr Amount of exhaust gas blown from the preliminary reduction furnace: 410 Nm3/hr Air amount: Rich! rM! I13//hr Furnace temperature: 1ooo℃ 3) Pre-reduction furnace operation data Furnace type: Supply amount of fluidized bed oxidized chromium ore: / ? ! J9/
hr Coke oven gas supply amount g/JOM'/ hr Furnace temperature: 1 oso℃ Pre-reduction s: y% In order to compare the preliminary reduction effect of the above example, oxidation treatment is not performed on the above example When preliminary reduction was performed under the same operating conditions as HakaT, the return rate was 416%.
It declined to .

以上説明してきたとおり、本発明の装置を使用して本発
明の方法を行えば、難還元性であるクロム鉱石の溶融還
元法の事前工程としての予備還元法において、還元率を
向上させるとともに、予備還元炉に供給するクロム鉱石
の温度を高めることが可能である。
As explained above, if the method of the present invention is carried out using the apparatus of the present invention, the reduction rate can be improved in the preliminary reduction method as a preliminary step of the smelting reduction method of chromium ore, which is difficult to reduce. It is possible to increase the temperature of the chromium ore fed to the pre-reduction furnace.

本発明方法及び装置による効果をまとめると次のように
なる。
The effects of the method and apparatus of the present invention are summarized as follows.

1)クロム鉱石を酸化処理することによって、予備還元
炉においてその還元効率を上昇させることができる。
1) By oxidizing chromium ore, its reduction efficiency can be increased in a preliminary reduction furnace.

2)クロム鉱石は酸化処理炉で加熱され、そのまま予備
還元炉に装入されるので、予備還元炉における必要熱量
を軽減することができる。
2) Since the chromium ore is heated in the oxidation treatment furnace and charged directly into the pre-reduction furnace, the amount of heat required in the pre-reduction furnace can be reduced.

3)酸化処理炉の処理用ガスには、予備還元炉又は溶融
還元炉の排ガスを利用できる。
3) Exhaust gas from a preliminary reduction furnace or a smelting reduction furnace can be used as the processing gas for the oxidation treatment furnace.

4)石灰石のような7ラツクスを使用する場合に、酸化
処理炉で予めこれからCaOを生成させれば、千m還元
炉で消費される熱量を軽減することができる。
4) When using 7 lux such as limestone, if CaO is generated from it in advance in an oxidation treatment furnace, the amount of heat consumed in the 1,000m reduction furnace can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化処理温間と、酸化処理されたクロム鉱石に
ついて行ったX線回折におけるCr2O3ビーク強度と
の関係を示す図表、第一図は酸化処理温度と、酸化処理
した後、予備還元した際のクロム鉱石の還元率との関係
を示す図表、第3図は本発明に係る予備還元装置の70
−シート、第ダ図は同じく他の予備還元装置の70−シ
ートである。 l・・・酸化処理炉、3・・・クロム鉱石の供給口、ダ
・・・酸化処理された鉱石の移送管、!、!’ +1・
・空気又は酸素の供給口、6・・・予備還元排ガスの導
管、10・・・予備還元炉、/ハ・・還元性ガスの供給
口、/U −予備還元された鉱石の排出口、lj * 
/J’・・・予備還元排カスの排出口、lダー/ダ’*
/4t’・・・サスベンジ冒ン・プレヒーター、lj・
・・クラム鉱石の供給管路、16・・・空気又は酸素の
供給管路、/7−・酸化処理された鉱石の移送管路。 特許出願人 川崎製鉄株式会社 代理人弁理士 村  1) 政  治 jII図 0  500 700 900 1100 1300會
L4ヒ匙ズ!5X友  (0C) フ4ルター  Fe Crz03 edit  (L、+、Q)=(o+2)
人、86−−14七免工買−4屓 (・C)
Figure 1 is a chart showing the relationship between warm oxidation treatment and Cr2O3 peak intensity in X-ray diffraction performed on oxidized chromium ore. Figure 3 is a diagram showing the relationship between the reduction rate of chromium ore and the reduction rate of chromium ore.
- Sheet, Figure D is the 70-sheet of another preliminary reduction device. l... Oxidation treatment furnace, 3... Chromium ore supply port, D... Oxidation treated ore transfer pipe,! ,! '+1・
- Air or oxygen supply port, 6... Pre-reduction exhaust gas conduit, 10... Pre-reduction furnace, /c... Reducing gas supply port, /U - Pre-reduced ore discharge port, lj *
/J'...Exhaust port for preliminary reduction waste, ldar/da'*
/4t'...Susvenge adventure preheater, lj.
... Crumb ore supply pipe, 16... Air or oxygen supply pipe, /7-- Oxidized ore transfer pipe. Patent applicant Kawasaki Steel Co., Ltd. Representative Patent Attorney Mura 1) Politics JII Diagram 0 500 700 900 1100 1300 Meeting L4 Hiss! 5X friend (0C) Fulter Fe Crz03 edit (L, +, Q) = (o+2)
Person, 86--14 seven-year-old labor purchase-4 屓 (・C)

Claims (1)

【特許請求の範囲】 1、予備還元炉と溶融還元炉とを使用して2クロム鉱石
を溶融還元する方法において、粉粒状のりqム鉱石を9
00−1300℃の温度で空気又は酸素によって酸化処
理し、次いで酸化処理されたり四ム鉱石を予備還元炉に
供給して予備還元を行うことを特徴とする、り四ム鉱石
の予備還元方法。 2、縦型の予[1元炉の上方に縦型の酸化処理炉を配設
し、酸化処理炉には、クロム鉱石の供給口、空気又は酸
素の供給口、予備還元炉排ガスの供給口、酸化処理され
たクロム鉱石の移送管及び酸化処理の排ガスの排出口と
、必要に応じて7ラツクスの供給口と還元性ガスの供給
口とを設け、予備還元炉には、還元性ガスの供給口、予
備還元排ガスの排出口及び予備還元されたクロム鉱石の
排出口を設け、かつ醸化処理炉と予備還元炉とを、前記
クロム鉱石の移送管及び予備還元炉排ガスの導管で連絡
させたことを特徴とする、クロム鉱石の予備還元装置。 S、  @化処還炉が流動層反応器である特許請求の範
囲第2項記載のクロム鉱石の予備還元装置。 番、!I化処理炉がサスペンション・プレヒーターであ
る特許請求の範囲第2項記載のクロム鉱石の予備還元装
置。
[Claims] 1. A method for melting and reducing chromium ore using a pre-reduction furnace and a smelting reduction furnace.
A method for pre-reducing Rishimu ore, which comprises oxidizing it with air or oxygen at a temperature of 00 to 1300°C, and then supplying the oxidized Simu ore to a pre-reduction furnace for preliminary reduction. 2. A vertical oxidation treatment furnace is installed above the main furnace, and the oxidation treatment furnace has a chrome ore supply port, an air or oxygen supply port, and a preliminary reduction furnace exhaust gas supply port , a transfer pipe for the oxidized chromium ore, a discharge port for the exhaust gas from the oxidation treatment, a 7-lux supply port and a reducing gas supply port as necessary, and the pre-reduction furnace is provided with a reducing gas supply port. A supply port, a discharge port for pre-reduced exhaust gas, and a discharge port for pre-reduced chromium ore are provided, and the fermentation treatment furnace and the pre-reduction furnace are connected by a transfer pipe for the chromium ore and a conduit for the pre-reduction furnace exhaust gas. A preliminary reduction device for chromium ore, which is characterized by: S. The chromium ore preliminary reduction apparatus according to claim 2, wherein the treatment furnace is a fluidized bed reactor. Number! 3. The chromium ore preliminary reduction apparatus according to claim 2, wherein the I-forming treatment furnace is a suspension preheater.
JP7341382A 1982-05-04 1982-05-04 Preliminary reducing method and apparatus for reducing chromium ore by melting Granted JPS58193330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7341382A JPS58193330A (en) 1982-05-04 1982-05-04 Preliminary reducing method and apparatus for reducing chromium ore by melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7341382A JPS58193330A (en) 1982-05-04 1982-05-04 Preliminary reducing method and apparatus for reducing chromium ore by melting

Publications (2)

Publication Number Publication Date
JPS58193330A true JPS58193330A (en) 1983-11-11
JPS6136573B2 JPS6136573B2 (en) 1986-08-19

Family

ID=13517481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7341382A Granted JPS58193330A (en) 1982-05-04 1982-05-04 Preliminary reducing method and apparatus for reducing chromium ore by melting

Country Status (1)

Country Link
JP (1) JPS58193330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142704A1 (en) * 2007-05-24 2008-11-27 Tata Steel Limited Process for the production of chromium metal nuggets from chromite ores/concentrates.
CN101638730A (en) * 2008-07-31 2010-02-03 塔塔钢铁有限公司 Method for preparing sponge chromium from metallurgical-grade chromite concentrate fine powder
CN112063860A (en) * 2020-08-31 2020-12-11 中国科学院过程工程研究所 Method for extracting chromium from chromium-containing material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142704A1 (en) * 2007-05-24 2008-11-27 Tata Steel Limited Process for the production of chromium metal nuggets from chromite ores/concentrates.
JP2010528184A (en) * 2007-05-24 2010-08-19 タータ スチール リミテッド Method for producing a chromium metal block from chromite or concentrate
KR101498995B1 (en) * 2007-05-24 2015-03-06 타타 스틸 리미티드 Process for the production of chromium metal nuggets from chromite ores/concentrates
EP2152925A4 (en) * 2007-05-24 2016-11-09 Tata Steel Ltd Process for the production of chromium metal nuggets from chromite ores/concentrates.
CN101638730A (en) * 2008-07-31 2010-02-03 塔塔钢铁有限公司 Method for preparing sponge chromium from metallurgical-grade chromite concentrate fine powder
CN112063860A (en) * 2020-08-31 2020-12-11 中国科学院过程工程研究所 Method for extracting chromium from chromium-containing material
CN112063860B (en) * 2020-08-31 2022-08-05 中国科学院过程工程研究所 Method for extracting chromium from chromium-containing material

Also Published As

Publication number Publication date
JPS6136573B2 (en) 1986-08-19

Similar Documents

Publication Publication Date Title
JP4060034B2 (en) Method for producing molten iron in dual furnace
KR100272489B1 (en) Process for the production of hydarulic and/or alloys, like ferrochromium, ferrovanadium
RU2120476C1 (en) Method for increasing efficiency of reduction melting of oxide metal-bearing materials
JP5538433B2 (en) Method for producing nickel-containing alloy iron
JPH0362768B2 (en)
US2750277A (en) Process and apparatus for reducing and smelting iron
KR850001211B1 (en) Method of manufacturing chromium steel
CN1148409A (en) A. Edlinger (CH)
JPH11172312A (en) Operation of movable hearth type furnace and movable hearth type furnace
GB1460852A (en) Method of producing metal from metal oxides
KR890010216A (en) Reduction method and apparatus for iron ore
JP2004518020A (en) Method and apparatus for producing pig iron or fluid primary iron from a charge containing iron ore
US2873183A (en) Continuous iron ore reduction process
JPS58193330A (en) Preliminary reducing method and apparatus for reducing chromium ore by melting
US5069716A (en) Process for the production of liquid steel from iron containing metal oxides
JP5720497B2 (en) Method for recovering iron and phosphorus from steelmaking slag
US3947267A (en) Process for making stainless steel
US2107980A (en) Method for preparing iron and steel
US4434001A (en) Method for manufacturing metal from fine-grain metal-oxide material
JP2002522642A (en) Heat treatment method of residue material containing heavy metal and iron oxide
EP3220083A1 (en) Treatment of particulate waste
US3832158A (en) Process for producing metal from metal oxide pellets in a cupola type vessel
JPH11106813A (en) Operation of moving type furnace hearth furnace
KR101189183B1 (en) Recovery method of valuable metals from spent petroleum catalysts
US1567934A (en) Process and apparatus for reducing ores and producing cement