JP5364091B2 - Method for producing a chromium metal block from chromite or concentrate - Google Patents

Method for producing a chromium metal block from chromite or concentrate Download PDF

Info

Publication number
JP5364091B2
JP5364091B2 JP2010508969A JP2010508969A JP5364091B2 JP 5364091 B2 JP5364091 B2 JP 5364091B2 JP 2010508969 A JP2010508969 A JP 2010508969A JP 2010508969 A JP2010508969 A JP 2010508969A JP 5364091 B2 JP5364091 B2 JP 5364091B2
Authority
JP
Japan
Prior art keywords
chromium
chromite
producing
concentrate
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010508969A
Other languages
Japanese (ja)
Other versions
JP2010528184A (en
Inventor
カプール、ガジャナン、ユー.
タサバドカール、ヴィラス、ディー.
ラオ、サリパッリ、エム.
Original Assignee
タータ スチール リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タータ スチール リミテッド filed Critical タータ スチール リミテッド
Publication of JP2010528184A publication Critical patent/JP2010528184A/en
Application granted granted Critical
Publication of JP5364091B2 publication Critical patent/JP5364091B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/10Roasting processes in fluidised form
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、クロム塊を製造するための方法の開発に係り、具体的には、低温予備酸化されたクロマイト鉱/精鉱によって金属化率50〜70%のクロム塊を製造する方法の開発に関するものである。   The present invention relates to the development of a method for producing a chromium block, and more particularly to the development of a method for producing a chromium block having a metallization rate of 50 to 70% by low-temperature pre-oxidized chromite or concentrate. Is.

あらゆる合金製造総合組織体において、高炭素フェロクロムは、溶解・還元工程によって生産されるのが普通である。これは、高度にエネルギー集約的であり、還元剤として輸入された低灰分コークスを必要とする。低灰分コークスも電気も、共に高価な資源である。故に、フェロクロム形態である金属化率50〜70%のクロマイト鉱を得るために、予備酸化されたクロム鉱石を、還元剤として石炭を用いて還元する新規工程が開発されている。   In all alloy manufacturing integrated structures, high carbon ferrochrome is usually produced by a dissolution / reduction process. This is highly energy intensive and requires low ash coke imported as a reducing agent. Both low ash coke and electricity are expensive resources. Therefore, in order to obtain a chromite ore having a metallization rate of 50 to 70% in the form of ferrochrome, a new process for reducing preoxidized chromium ore using coal as a reducing agent has been developed.

かくして、本発明の目的は、従来技術の欠点を解消すべく、予備酸化されたクロマイト鉱/精鉱を低温還元することによりクロム塊を製造する方法を提案することである。   Thus, the object of the present invention is to propose a method for producing a chromium block by low-temperature reduction of preoxidized chromite / concentrate in order to overcome the drawbacks of the prior art.

本発明の別の目的は、エネルギーを節約すべく、予備酸化されたクロマイト鉱/精鉱を低温還元してクロム塊を製造する方法を提案することである。   Another object of the present invention is to propose a method for producing a chromium mass by low-temperature reduction of pre-oxidized chromite / concentrate to save energy.

本発明の更に別の目的は、フェロクロム製造コストを20%低減化すべく、予備酸化されたクロマイト鉱/精鉱を低温還元してクロム塊を製造する方法を提案することである。   Still another object of the present invention is to propose a method for producing a chromium block by low-temperature reduction of pre-oxidized chromite / concentrate to reduce ferrochrome production costs by 20%.

本発明の更に別の目的は、コークス消費を低減化すべく、予備酸化されたクロマイト鉱/精鉱を低温還元してクロム塊を製造する方法を提案することである。   Yet another object of the present invention is to propose a method for producing chromium agglomerates by low-temperature reduction of preoxidized chromite / concentrate to reduce coke consumption.

本発明の更に別の目的は、更なる鉄鋼溶解の過程中において、より良い反応表面を有する、予備酸化されたクロマイト鉱/精鉱を低温還元してクロム塊を製造する方法を提案することである。   Yet another object of the present invention is to propose a method for producing a chromium block by low-temperature reduction of a pre-oxidized chromite / concentrate having a better reaction surface in the course of further steel melting. is there.

本発明の更に別の目的は、予備酸化されたクロマイト鉱/精鉱を低温還元してクロム塊を製造する方法であって、ステンレス鋼製造に直接使用するために転用可能な方法を提案することである。   Yet another object of the present invention is to propose a method for producing a chromium block by low-temperature reduction of preoxidized chromite / concentrate, which can be diverted for direct use in stainless steel production. It is.

Cr:Fe比=1.0〜3.3のクロマイト鉱/精鉱を低温(900℃)で酸化した。酸化された試料は、FeO相からFeへの完全な酸化を示す。酸化されたクロマイト鉱/精鉱の還元は、石炭ガス還元剤を用いて行われた。使用したフラックスは、シリカ源(石英)および石灰から成る。還元試験は、制御された雰囲気の高温炉を使用して行った。そこで共に使用した原料は、組成が下記表で与えられる。 A chromite / concentrate with a Cr: Fe ratio of 1.0 to 3.3 was oxidized at a low temperature (900 ° C.). The oxidized sample shows complete oxidation from the FeO phase to Fe 2 O 3 . The reduction of the oxidized chromite / concentrate was performed using a coal gas reducing agent. The flux used consists of a silica source (quartz) and lime. The reduction test was performed using a controlled atmosphere high temperature furnace. The raw materials used together therewith are given in the table below.

還元に関する試験研究は、1400〜1550℃の低温で行われた。石炭還元剤は、鉱石中の酸化鉄(Fe)および酸化クロム(Cr)の還元のために、化学量論的な炭素必要量の30〜50%過剰量で使用される。設計された特別なスラグに基づき、フラックス添加は、酸化アルミニウムおよび酸化マグネシウムをスラグに溶解させるために必要な0から10%過剰量の範囲で石英添加として行われた。石灰添加は、クロマイト鉱/精鉱の3〜10%の範囲で行われた。還元は、1400〜1550℃の温度範囲で1.5〜3.0時間行われた。クロマイト鉱塊生成物を図1に示す。 Test studies on reduction were performed at a low temperature of 1400-1550 ° C. Coal reducing agents are used in a 30-50% excess of the stoichiometric carbon requirement for the reduction of iron oxide (Fe 2 O 3 ) and chromium oxide (Cr 2 O 3 ) in the ore. . Based on the special slag designed, the flux addition was done as a quartz addition in the 0-10% excess range required to dissolve aluminum oxide and magnesium oxide in the slag. Lime addition was performed in the range of 3-10% of chromite / concentrate. The reduction was performed at a temperature range of 1400 to 1550 ° C. for 1.5 to 3.0 hours. The chromite ore product is shown in FIG.

相組成と合わせて、生成物試料のマイクロ組織を図2に示す。金属が、クロムが多い相および他の成分が多い相の2つの相を示すことが分かる。塊状生成物中のクロムの存在は、クロムカーバイド(Cr)および鉄クロムカーバイドの形態である。 Together with the phase composition, the microstructure of the product sample is shown in FIG. It can be seen that the metal exhibits two phases, a phase rich in chromium and a phase rich in other components. The presence of chromium in the bulk product is in the form of chromium carbide (Cr 7 C 3 ) and iron chromium carbide.

生成した金属クロム塊およびスラグ生成物の成分を表2に示す。金属塊の直径は0.5〜25cmである。金属およびスラグの相分離は明らかであり、水中で急冷した後に物理的分離方法により分離できる。   Table 2 shows the components of the formed metallic chromium block and slag product. The diameter of the metal mass is 0.5 to 25 cm. The phase separation of metal and slag is obvious and can be separated by physical separation methods after quenching in water.

反応機構
FeO、クロマイト鉱/精鉱の酸化は、スピネル構造を広げ、これは、空隙の形成によりクロマイト・スピネルの反応性を向上させる。
Reaction Mechanism The oxidation of FeO, chromite / concentrate expands the spinel structure, which improves the reactivity of chromite spinel by the formation of voids.

クロマイト鉱の酸化は、また還元時間の低減化を促進する。フラックスとしての石灰が存在しないクロマイト鉱/精鉱の還元機構は、一般に、以下の順に進行する。酸化クロムは、1200〜1600℃で炭素と反応して、Cr、Crから成るカーバイドのいずれかを形成する。
3Cr+13C→2Cr+9CO(1150〜1200℃)
27CrC+5CrO→13CrC+15CO(1200〜1600℃)
The oxidation of chromite ore also helps reduce the reduction time. The reduction mechanism of chromite / concentrate without lime as a flux generally proceeds in the following order. Chromium oxide reacts with carbon at 1200 to 1600 ° C. to form one of carbides composed of Cr 3 C 2 and Cr 7 C 3 .
3Cr 2 O 3 + 13C → 2Cr 3 C 2 + 9CO (1150 to 1200 ° C.)
27Cr 3 C + 5CrO → 13CrC + 15CO (1200 to 1600 ° C.)

更に高い温度では、CrがCr23と反応して、最終的に1820℃超で金属Crが優位である生成物となる。しかしながら、前記成分でフラックスとして石灰を用いることにより、スラグ生成反応は、低温で酸化クロムの還元が行われる際に重要な役割を果たす。フラックス成分としての石灰が存在すると、スラグ生成反応は低温で起こり、これによりスラグ中の溶解による還元が促進される。 At higher temperatures, Cr 7 C 3 reacts with Cr 23 C 6 , eventually resulting in a product with a predominance of metallic Cr above 1820 ° C. However, by using lime as a flux in the above components, the slag generation reaction plays an important role when chromium oxide is reduced at low temperatures. When lime as a flux component is present, the slag generation reaction occurs at a low temperature, thereby promoting reduction by dissolution in the slag.

酸化されたクロマイト鉱/精鉱の他の還元により生成するクロム塊の写真。A picture of the chromium mass produced by other reductions of oxidized chromite / concentrate. 金属クロム塊の微小構造を示す図。The figure which shows the microstructure of a metal chromium block. クロム塊製造工程図。Chrome block manufacturing process diagram.

図3に、クロム塊を商業生産するための工程図を示す。クロマイト鉱/精鉱(1)の酸化は、流動床(2)回転炉(2)で行われ、加熱された空気(3)吹きつけ手段もそこに設けられる。酸化された鉱石/精鉱は貯蔵所(4)に供給され、還元剤用貯蔵所(5)およびフラックス用貯蔵所(6)が酸化装置の近くに設けられる。   FIG. 3 shows a process diagram for commercial production of a chromium block. Oxidation of the chromite / concentrate (1) takes place in the fluidized bed (2) rotary furnace (2), where heated air (3) blowing means are also provided. Oxidized ore / concentrate is supplied to a reservoir (4), and a reducing agent reservoir (5) and a flux reservoir (6) are provided near the oxidizer.

次に、酸化された鉱石は、ミキサー(7)で混合され、混合後、還元剤である石炭およびフラックス(シリカ、石灰)と共に供給されてペレット化される。ペレットは、還元のために回転炉床炉(9)に供給される。回転炉床炉(9)から得られた金属およびスラグ生成物は、金属クロム塊(12)とスラグ(13)を分離するために物理的分離装置(11)に供給される。   Next, the oxidized ore is mixed by a mixer (7), and after mixing, is supplied together with coal as a reducing agent and flux (silica, lime) and pelletized. The pellets are fed to a rotary hearth furnace (9) for reduction. The metal and slag product obtained from the rotary hearth furnace (9) is fed to a physical separator (11) to separate the metallic chromium block (12) and slag (13).

1 クロマイト鉱/クロマイト精鉱(図3)
2 流動床/複式炉床炉(図3)
3 酸素供給(加熱された空気)(図3)
4 還元剤である石炭の貯蔵所(図3)
5 フラックス用石灰および石英の貯蔵所(図3)
6 ミキサー(図3)
7 ペレット製造装置(図3)
8 還元装置である回転炉床炉(図3)
9 加熱された還元ガス(図3)
10 クロム塊およびスラグ(図3)
11 分離装置(図3)
12 クロム塊(図3)
13 スラグ(図3)
1 Chromite / chromite concentrate (Fig. 3)
2 Fluidized bed / double hearth furnace (Figure 3)
3 Oxygen supply (heated air) (Figure 3)
4 Reservoir coal storage (Fig. 3)
5 Flux lime and quartz storage (Figure 3)
6 Mixer (Figure 3)
7 Pellet production equipment (Figure 3)
8 Rotary hearth furnace as a reduction device (Figure 3)
9 Heated reducing gas (Figure 3)
10 Chromium blocks and slag (Figure 3)
11 Separation device (Fig. 3)
12 Chrome block (Fig. 3)
13 Slag (Figure 3)

Claims (6)

クロム塊を製造する方法であって、該方法が、
クロマイト鉱又はクロマイト精鉱を900℃の低温で予備酸化する段階と、
予備酸化されたクロマイト鉱又はクロマイト精鉱を、還元剤石炭、並びにフラックスである石灰およびシリカと混合して混合物とする段階と、
前記混合物をペレットに固め、次に、該ペレットを温度1400〜1550℃で還元する段階と、
還元されたクロム塊とスラグの混合体を冷却し、前記クロム塊と前記スラグとを分離する段階とを含み、
記クロム塊の化学組成が、質量%で、
Cr: 50〜64%、
C: 3.0〜6.0%、
Si: 0.7〜1.0%、
S: 0.01〜0.03%、
P: 0.003〜0.04%
残部が鉄
であり、
前記クロム塊の直径が0.5〜2.5cmであるクロム塊の製造方法。
A method for producing a chromium mass comprising:
Pre-oxidizing chromite or chromite concentrate at a low temperature of 900 ° C . ;
Mixing the pre-oxidized chromite or chromite concentrate with the reducing agent coal and the fluxes lime and silica into a mixture;
Solidifying the mixture into pellets and then reducing the pellets at a temperature of 1400-1550 ° C .;
Cooling the reduced chromium mass and slag mixture, and separating the chromium mass and the slag.
The chemical composition of the previous chrysanthemums ROM mass, in mass%,
Cr: 50 to 64 %,
C: 3.0-6.0%,
Si: 0.7 to 1.0%,
S: 0.01-0.03%,
P: 0.003~0.04%,
The balance is iron <br/>
A method for producing a chromium block , wherein the diameter of the chromium block is 0.5 to 2.5 cm.
前記クロマイト鉱又はクロマイト精鉱のCr:Fe比が1.0〜3.3であり、
前記予備酸化する段階を、酸素を含む大気中で行う、請求項1に記載されたクロム塊の製造方法。
The Cr: Fe ratio of the chromite or chromite concentrate is 1.0 to 3.3,
The method for producing a chromium block according to claim 1, wherein the preliminary oxidation is performed in an atmosphere containing oxygen .
前記混合して混合物とする段階をミキサー内で行う、請求項に記載されたクロム塊の製造方法。 The method for producing a chromium block according to claim 1 , wherein the step of mixing to form a mixture is performed in a mixer . 前記混合物をペレットに固めることをペレット製造装置で行う、請求項1に記載されたクロム塊を製造する方法。 The method for producing a chromium block according to claim 1, wherein the mixture is hardened into pellets by a pellet production apparatus . 前記還元する段階を回転炉床炉内で行う、請求項1に記載されたクロム塊を製造する方法。The method for producing a chromium block according to claim 1, wherein the reducing step is performed in a rotary hearth furnace. 前記分離する段階を物理的分離装置により行う、請求項1に記載されたクロム塊を製造する方法。The method for producing a chromium block according to claim 1, wherein the separating is performed by a physical separation device.
JP2010508969A 2007-05-24 2008-02-12 Method for producing a chromium metal block from chromite or concentrate Expired - Fee Related JP5364091B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN802/KOL/2007 2007-05-24
IN802KO2007 2007-05-24
PCT/IN2008/000087 WO2008142704A1 (en) 2007-05-24 2008-02-12 Process for the production of chromium metal nuggets from chromite ores/concentrates.

Publications (2)

Publication Number Publication Date
JP2010528184A JP2010528184A (en) 2010-08-19
JP5364091B2 true JP5364091B2 (en) 2013-12-11

Family

ID=40031451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010508969A Expired - Fee Related JP5364091B2 (en) 2007-05-24 2008-02-12 Method for producing a chromium metal block from chromite or concentrate

Country Status (7)

Country Link
EP (1) EP2152925A4 (en)
JP (1) JP5364091B2 (en)
KR (1) KR101498995B1 (en)
CN (1) CN101765670B (en)
TR (1) TR200908848T1 (en)
WO (1) WO2008142704A1 (en)
ZA (1) ZA200908067B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107699685A (en) * 2017-08-09 2018-02-16 江苏省冶金设计院有限公司 A kind of production method of silicochromium
CN112226615A (en) * 2020-10-15 2021-01-15 中南大学 Comprehensive utilization method of stainless steel solid waste

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469679B1 (en) * 2009-03-02 2014-12-05 신화메탈 주식회사 Low carbon-ferrochromium manufacturing method by using continuous thermit reaction
RU2551729C2 (en) * 2009-09-14 2015-05-27 Чонгкинг Рюифан Реньювэбл Ресорсес Девелопмент Ко., Лтд. Method of chromium slag neutralisation using annealing method and blast-furnace process
WO2013011521A1 (en) * 2011-07-18 2013-01-24 Tata Steel Limited A method for direct reduction of oxidized chromite ore fines composite agglomerates in a tunnel kiln using carbonaceous reductant for production of reduced chromite product/ agglomerates applicable in ferrochrome or charge chrome production.
CN102432068B (en) * 2011-09-28 2013-10-16 北京科技大学 Process for producing sodium chromate
CN102994850A (en) * 2012-10-29 2013-03-27 海门市金易焊接材料有限公司 Low-carbon chromium metal
CN105612264A (en) * 2013-08-01 2016-05-25 西北大学 Process for enhanced pre-reduction of chromite
WO2016115593A1 (en) * 2015-01-20 2016-07-28 Pelleton Ip Holdings Limited Method for producing a chromite agglomerate
EA201992240A1 (en) * 2017-03-21 2020-03-23 Ланксесс Дойчланд Гмбх METHOD FOR OBTAINING IRON AND CHROME CONTAINING PARTICLES
CA3056280C (en) * 2017-05-02 2020-07-14 Dawei Yu Carbothermic direct reduction of chromite using a catalyst for the production of ferrochrome alloy
US10508319B1 (en) * 2019-06-27 2019-12-17 MM Metals USA, LLC Method and system for producing low carbon ferrochrome from chromite ore and low carbon ferrochrome produced thereby
CN112251600A (en) * 2019-07-22 2021-01-22 孙凌玉 Preparation method and application of chromium metallization ball
CN110306058B (en) * 2019-07-23 2021-03-12 中南大学 Process for efficiently treating zinc-iron-containing metallurgical dust and sludge by rotary hearth furnace
GB202108524D0 (en) 2021-06-15 2021-07-28 Eestech Inc Improved smelting system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137246B1 (en) * 1970-05-11 1976-10-14
JPS4936848B1 (en) * 1970-12-30 1974-10-03
JPS50136211A (en) * 1974-04-18 1975-10-29
US4414026A (en) * 1981-07-30 1983-11-08 Nippon Kokan Kabushiki Kaisha Method for the production of ferrochromium
JPS58193330A (en) * 1982-05-04 1983-11-11 Kawasaki Steel Corp Preliminary reducing method and apparatus for reducing chromium ore by melting
PH22151A (en) * 1983-12-31 1988-06-01 Krupp Gmbh Process for the production of ferrochromium
JPS6169944A (en) * 1984-09-13 1986-04-10 Nippon Steel Corp Manufacture by melting and reducing of ferrochrome
DE3518555C1 (en) * 1985-05-23 1986-01-09 Fried. Krupp Gmbh, 4300 Essen Process for the reduction of iron-containing chrome ores
DE3713883A1 (en) * 1987-04-25 1988-11-17 Metallgesellschaft Ag Process for producing ferrochromium
JP3335504B2 (en) * 1995-07-21 2002-10-21 富士通株式会社 Clock distribution device
CN1172010C (en) * 2001-11-15 2004-10-20 湖南铁合金集团有限公司 process for producing low-Ti High-C ferrochronium
JP4307849B2 (en) * 2003-01-07 2009-08-05 株式会社神戸製鋼所 Method for reducing chromium-containing raw materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107699685A (en) * 2017-08-09 2018-02-16 江苏省冶金设计院有限公司 A kind of production method of silicochromium
CN112226615A (en) * 2020-10-15 2021-01-15 中南大学 Comprehensive utilization method of stainless steel solid waste
CN112226615B (en) * 2020-10-15 2021-11-12 中南大学 Comprehensive utilization method of stainless steel solid waste

Also Published As

Publication number Publication date
JP2010528184A (en) 2010-08-19
EP2152925A1 (en) 2010-02-17
ZA200908067B (en) 2010-07-28
EP2152925A4 (en) 2016-11-09
CN101765670B (en) 2013-07-17
KR20100021620A (en) 2010-02-25
KR101498995B1 (en) 2015-03-06
WO2008142704A1 (en) 2008-11-27
TR200908848T1 (en) 2012-02-21
CN101765670A (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP5364091B2 (en) Method for producing a chromium metal block from chromite or concentrate
AU2009341533B2 (en) Method and equipment of producing iron by smelting-reduction
CN102086487B (en) Vanadium slag treatment method capable of saving energy and reducing emission
CN104120209B (en) A kind of liquid nickel slag melting and reducing produces the method for nickel-containing molten iron
US10703675B2 (en) Method for processing steel slag and hydraulic mineral binder
CN102212736A (en) Method for preparing niobium microalloy steel by using low-niobium molten iron
KR101189182B1 (en) Method for separating vanadium from vanadium-containing melt
CN106636540B (en) A kind of electric steelmaking process of manganese oxide and molybdenum oxide while DIRECT ALLOYING
CN103014237B (en) Dephosphorization slag forming constituent and production method thereof
CN101638730B (en) Method for preparing sponge chromium from metallurgical-grade chromite concentrate fine powder
US3947267A (en) Process for making stainless steel
CA2323412C (en) Method for transforming slag derived from non-iron metallurgy
US20140060251A1 (en) Process of the production and refining of low-carbon dri (direct reduced iron)
JP2007191736A (en) Method for producing metallic iron
KR101189183B1 (en) Recovery method of valuable metals from spent petroleum catalysts
CN103436765B (en) The preparation method of niobium micro-alloy steel
RU2511419C2 (en) Method for liquid-phase obtaining of direct-reduced iron
RU2639396C1 (en) Method for pyrometallurgical processing of oxidized nickel ore
CN101260455A (en) Preparation of calcium-iron alloy by using calcium carbide as raw material and calcium-containing composite desoxidant
CN103667833A (en) Method for producing low-carbon ferromanganese by utilizing high-carbon ferromanganese
CN115786739B (en) Method for improving alloying rate of chromium ore
KR101552142B1 (en) Agent for dephosphorization and treatment method of molten metal using the same
JPH06115984A (en) Method for hot modification of steel-manufacturing slag
KR20110010484A (en) A method of processing ferro manganese slag using an electric furnace
JP2006316318A (en) Method for desulfurizing molten pig iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130329

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130701

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130906

R150 Certificate of patent or registration of utility model

Ref document number: 5364091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees