KR101487344B1 - 광소자 및 그러한 광소자를 포함하는 복사 방출 장치 - Google Patents

광소자 및 그러한 광소자를 포함하는 복사 방출 장치 Download PDF

Info

Publication number
KR101487344B1
KR101487344B1 KR1020137022576A KR20137022576A KR101487344B1 KR 101487344 B1 KR101487344 B1 KR 101487344B1 KR 1020137022576 A KR1020137022576 A KR 1020137022576A KR 20137022576 A KR20137022576 A KR 20137022576A KR 101487344 B1 KR101487344 B1 KR 101487344B1
Authority
KR
South Korea
Prior art keywords
microstructures
optical element
optical
radiation
microstructure
Prior art date
Application number
KR1020137022576A
Other languages
English (en)
Other versions
KR20130120527A (ko
Inventor
울리히 스트레펠
알레스 마르키탄
크리스티안 게르트너
Original Assignee
오스람 옵토 세미컨덕터스 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오스람 옵토 세미컨덕터스 게엠베하 filed Critical 오스람 옵토 세미컨덕터스 게엠베하
Publication of KR20130120527A publication Critical patent/KR20130120527A/ko
Application granted granted Critical
Publication of KR101487344B1 publication Critical patent/KR101487344B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • F21V5/005Refractors for light sources using microoptical elements for redirecting or diffusing light using microprisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/045Refractors for light sources of lens shape the lens having discontinuous faces, e.g. Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 광학체(1)와 복수의 마이크로 구조들(2, 2a)을 포함하는 광소자(10)를 개시한다. 광학체(1)는 하프 쉘로서 형성되고, 내면(1a)과 외면(1b)을 구비한다. 마이크로 구조들(2, 2a)은 적어도 국부적으로 광학체(1)의 내면 및/또는 외면(1a, 1b)을 형성하고, 광을 산란하는 굴절 구조들이다. 본 발명은 적어도 하나의 반도체 소자(3)와 그러한 광소자(10)를 포함하는 복사 방출 소자도 또한 개시한다.

Description

광소자 및 그러한 광소자를 포함하는 복사 방출 장치{OPTICAL ELEMENT AND RADIATION-EMITTING DEVICE COMPRISING SUCH AN OPTICAL ELEMENT}
본 발명은 광학체(optical body)와 복수의 마이크로 구조들(microstructures)을 포함하는 광소자 및 반도체 소자와 그러한 광소자를 포함하는 복사 방출 장치에 관한 것이다.
큰 휘도의 복사 방출 장치들을 제조함에 있어서는, 요구되는 휘도를 얻기 위해 1개보다는 많은 복사 방출 소자들을 사용하는 것이 필요하다. 따라서 그러한 적용들에서는 서로 나란히 장착된 복수의 LED들의 어레이가 존재한다. LED들로부터 복사되는 광을 형성하는데 광학 기구를 사용하면, 특히 공간상으로 서로 분리된 복수의 LED들로 인해 광학 기구로부터 복사되는 클러스터 빔들의 갈라짐이 발생하고, LED들의 각각의 위치에 따라 복사되는 광선을 상이한 공간 영역들에 한정하는 광학 기구의 구경으로 인해 코로나 형태의 음영들이 발생한다. 그 결과, 조명이 불균일한 단점이 있다.
그러한 문제점에 대처하기 위해, LED들의 배후에 산란 소자들, 예컨대 디퓨저(diffusor)를 포함하는 소자들 또는 큰 표면 거칠기를 갖는 소자들을 장착하는 것이 공지되어 있다. 그러나 그것은 큰 손실을 일으키는 단점이 있는데, 왜냐하면 LED로부터 복사되는 광의 대부분이 다시 후방 방향으로 산란되어 대부분 사용에는 소용없게 되기 때문이다.
가변 투과를 갖는 소자들을 광학 기구의 배후에 장착하는 것이 또한 공지되어 있다. 그러나 그것도 역시 단점이 있는데, 왜냐하면 그 방법은 쉐도윙(shadowing) 효과를 기반으로 하는데, 그로 인해 효율 감소가 일어나기 때문이다. 또한, 그 방법은 단지 음영들의 문제점만을 해결한다. 추가로, 그 방법에서는 조립 비용의 증가가 있다.
본원의 과제는 전술한 단점들을 회피하는 광소자를 제공하고, 그럼으로써 그 결과로 바람직하게는 균일한 조명을 가능하게 하는 광소자가 생기게 하는 것이다. 본원의 또 다른 과제는 그러한 광소자를 포함하는 복사 방출 장치로서, 복사 각도에 걸친 매우 균일한 복사 효율을 특징으로 하는 복사 방출 장치를 제공하는 것이다.
그러한 과제들은 특히 청구항 1의 특징들을 갖는 광소자에 의해 그리고 청구항 13의 특징들을 갖는 복사 방출 장치에 의해 해결된다. 그러한 광소자 및 복사 방출 장치의 바람직한 부가의 구성들이 종속 청구항들의 주제를 이루고 있다.
일 실시 형태에 있어서, 광소자는 광학체(optical body)와 복수의 마이크로 구조들을 포함하는데, 광학체는 하프 쉘(half shell)로서 형성되고, 내면과 외면을 구비한다. 마이크로 구조들은 적어도 국부적으로 광학체의 내면 및/또는 외면을 형성한다. 마이크로 구조들은 광을 산란하는 굴절 구조들이다.
적어도 하나의 실시 형태에 따르면, 광소자는 투과되도록 구성된다. 환언하면, 광소자는 투과로만 작용하고 반사로는 작용하지 않는다. 즉, 광소자는 렌즈 형태로 형성되고, 거울 형태로 형성되지 않는다.
따라서 광소자는 바람직하게는 단지 프레넬 손실(Fresnel loss)만을 갖고 종래의 산란 소자들의 불리한 후방 산란(backscatter)을 회피시키는 굴절 구조들을 특징으로 한다. 그러한 굴절 구조들은 하프 쉘 상에 장착되거나 하프 쉘의 면을 이룬다. 이때, 그러한 마이크로 구조들은 하프 쉘의 내면과 외면 상에 또는 그 면들 중의 하나 상에만 장착될 수 있다. 마이크로 구조들에 의해, 굴절 구조들의 곡률의 방향으로 복사 특성의 균일화가 이뤄진다.
그러한 광소자에 의해, 매우 높은 복사 효율이 얻어질 수 있는데, 왜냐하면 근본적으로 단지 프레넬 손실만이 발생하기 때문이다. 또한, 바람직하게도 혼합과 음영의 문제점이 동시에 해결된다. 아울러, 경우에 따라 하류에 배치되는 또 다른 광학 기구들이 훨씬 더 간단하게 구성될 수 있다. 또한, 마이크로 구조들은 그들이 이미 복사 형성에 적합하도록 형성될 수 있다.
광소자는 복사를 투과하는 것이 바람직하다. 특히, 광소자는 UV 파장 영역에서 및/또는 가시 광선 파장 영역에서 적어도 부분 투명하다.
하프 쉘은 본원의 취지에서는 하프 쉘 형태로 형성되는 3차원 몸체이다. 예컨대, 하프 쉘은 중공 반구(hemisphere)이다.
광소자, 특히 광학체와 마이크로 구조들은 일체로 형성되는 것이, 즉 하나의 낱개 부품으로 제조되는 것이 바람직하다. 예컨대, 광소자는 캐스팅 방법, 예컨대 다이 캐스팅 방법 또는 사출 성형 방법에 의해 제조된다. 따라서 마이크로 구조들은 하프 쉘의 내면 및/또는 외면에 부착되는 것이 아니라, 그 면들 자체를 형성한다.
마이크로 구조들은 바람직하게는 거칠기(roughness) 또는 디퓨저(diffusor)들에 의해 작용하는 것이 아닌 굴절 구조들이다. 굴절 구조들은 광이 그 굴절 구조들에서 굴절 법칙에 따라 굴절되는 것을 특징으로 한다. 이때, 바람직하게도 후방 산란들이 회피되어 전체적으로 디커플링 효율이 증가하는 이점이 있다.
부가의 구성에 있어서, 마이크로 구조들은 링 형태로 형성된다. 링 형태란 특히 광학체의 내면 및/또는 외면이 홈들을 구비하고, 그럼으로써 그 면들에 굽어진 돌기들이 형성된다는 것을 의미한다. 이때, 홈들은 그 면들 상에 수평으로 또는 수직으로 형성될 수 있다. 그러한 광학체를 지구와 비교한다면, 홈들은 경도선을 따라 또는 위도선을 따라 형성될 수 있다.
링 형태의 마이크로 구조들에서는, 각각의 링 형태의 접선에 대해 수직인 방향으로 복사 특성의 균일화가 이뤄진다.
링 형태에 대한 대안으로, 마이크로 구조들은 개별 렌즈들의 어레이로서 형성될 수 있다. 예컨대, 광학체의 외면은 예컨대 매트릭스 형태로 배치되고 직접 서로 접경하는 복수의 렌즈 구조들에 의해 형성된다. 그 경우에도 역시, 개별 렌즈들은 광학체의 각각의 내면 및/또는 외면을 형성한다.
마이크로 구조들은 복사 특성의 균일화가 이뤄지는 기준이 되는 곡률을 각각 갖는 것이 바람직하다.
부가의 구성에 있어서, 마이크로 구조들은 적어도 부분적으로 상이한 곡률을 갖는다. 예컨대, 마이크로 구조들은 링 형태로서 형성되되, 개별 링 형태들이 그 곡률에 있어 상이하게 된다. 이때, 링 형태들은 반드시 모두 상이한 곡률을 가져야 하는 것이 아니라, 적어도 부분적으로 동일한 곡률을 가질 수 있다.
대안적으로, 마이크로 구조들은 각각 동일하거나 동등한 곡률을 가질 수도 있다.
마이크로 구조들의 각각의 형태 및 마이크로 구조들의 서로에 대한 각각의 곡률은 원하는 빔 형태 및 광소자의 각각의 적용에 의존하여 달라진다. 특히, 마이크로 구조들의 구성은 광소자가 어떤 복사 방출 소자와 커플링되는지 그리고 그 복사 방출 소자가 어떻게 배치되는지에 의존하여 달라진다.
부가의 구성에 있어서, 마이크로 구조들은 구면으로 형성된다. 그 경우, 마이크로 구조들은 볼 형태를 갖는다. 대안적으로, 마이크로 구조들은 비구면으로(aspheric) 형성될 수도 있다. 즉, 볼 형태와는 다른 광학 형태를 가질 수도 있다. 여기서도 역시, 각각의 구성은 광소자의 각각의 적용에 의존하여 달라진다.
부가의 구성에 있어서, 광소자에서는 다음의 관계가 성립한다.
1/R광학체 ≤ 1/(2 * r마이크로구조), 및
0.01 ≤ D마이크로구조/(4 * r마이크로구조) ≤ 0.5
여기서, R광학체는 광학체의 하프 쉘의 반지름이고, r마이크로구조는 마이크로 구조들의 각각의 곡률이며, D마이크로구조는 마이크로 구조들의 폭 또는 자유 구경이다. 여기서, 마이크로 구조들의 기하 형태의 크기는 수치 구경에 의해 제한된다. 이때, 전술한 이점들을 보장하기 위해서는, 입사하는 광선이 발산하지 않아야 한다. 전술한 마이크로 구조들의 크기 설정 규칙에 의해, 복사 특성의 최적의 균일화가 달성될 수 있다.
부가의 구성에 있어서, 마이크로 구조들은 적어도 국부적으로 내면은 물론 외면도 형성한다. 그것은 광학체의 양면에 마이크로 구조들이 배치된다는 것을 의미한다. 예컨대, 내면과 외면 상에 링 형태의 마이크로 구조들이 형성된다.
부가의 구성에 있어서, 내면의 마이크로 구조들은 외면의 마이크로 구조들과는 상이한 곡률을 갖는다, 예컨대, 마이크로 구조들이 링 형태로 형성되되, 하프 쉘의 내면에서의 곡률과 외면에서의 곡률이 상이하게 된다. 이때, 마이크로 구조들의 방향 설정은 내면과 외면에서 동일하거나 상이할 수 있다.
부가의 구성에 있어서, 내면과 외면의 마이크로 구조들은 동일하게 방향을 잡고 직접 마주하여 배치된다. 예컨대, 마이크로 구조들이 양면에서 링 형태로 형성되되, 내면과 외면의 그러한 링 형태의 형성이 합동으로 형성된다. 즉, 내면과 외면의 마이크로 구조들의 곡률이 상이하지 않고, 내면과 외면의 링 구조들이 동일하게 방향을 잡는다.
대안적으로, 내면과 외면의 마이크로 구조들은 극 방향(polar direction)으로 측방 오프셋(lateral offset)을 두고 배치될 수도 있다.
여기서, 내면과 외면의 마이크로 구조들의 상호 배치는 광소자의 각각의 적용, 광소자와 복사 방출 반도체 소자들의 원하는 조합, 및 복사 방출 반도체 소자들의 상호 배치에 의존하여 달라진다.
부가의 구성에 있어서, 외면과 내면의 마이크로 구조들은 다음의 관계가 성립하는 곡률을 갖는다.
dmax/(2 * r마이크로구조) ≤ 1.2
여기서, dmax는 마이크로 구조들이 최대 높이이고, r마이크로구조는 마이크로 구조들의 곡률이다. 그와 관련하여, 마이크로 구조들의 곡률은 광소자의 내면에 입사하는 광선이 광소자의 외면으로부터의 최대 거리 dmax를 넘어서는 초점을 생성하도록 선택된다.
부가의 구성에 있어서, 내면의 마이크로 구조들은 외면의 마이크로 구조들에 대해 90°만큼 회전하여 있다. 예컨대, 마이크로 구조들이 각각 링 형태로 형성되되, 예컨대 내면의 링 형태의 마이크로 구조들이 경도선들로서 형성되고, 외면의 마이크로 구조들이 위도선들로서 형성된다. 그와 같이 하여, 바람직하게도 모든 공간 방향들에서의 복사 혼합이 가능하게 되고, 그럼으로써 광소자의 매우 균일한 복사 특성이 제공된다.
부가의 구성에 있어서, 광학체는 반구 쉘, 반원통 쉘, 또는 원환체 하프 쉘로서 구성된다. 여기서, 광학체의 구성도 역시 복사 방출 소자들의 원하는 배치와 관련된 광소자의 적용에 의존하여 달라진다.
일 실시 형태에 있어서, 복사 방출 장치는 복사를 생성하는데 적합한 활성층을 구비한 적어도 하나의 복사 방출 반도체 소자를 포함한다. 복사 방향으로 반도체 소자의 하류에는 광소자가 배치된다.
그러한 광소자를 포함하는 장치는 특히 방출되는 복사의 균일한 복사 특성을 특징으로 한다. 그럼으로써, 매우 높은 복사 효율이 주어지는데, 왜냐하면 근본적으로 단지 프레넬 손실만이 발생하기 때문이다. 그와 동시에, 복사 방출 반도체 소자로부터 방출되는 복사의 최적의 혼합이 가능하게 되고, 음영이 회피된다. 여기서, 굴절 마이크로 구조들은 그들이 복사 방출 반도체 소자로부터 방출되는 복사를 형성하는데 기여하도록 설계될 수 있다.
광소자와 관련지어 언급한 특징들은 복사 방출 장치에도 적용되고, 또한 그 반대이기도 하다.
부가의 구성에 있어서, 복사 방출 장치는 단색의 광을 또는 적어도 부분적으로 여러 색의 광을 방출하는 복수의 반도체 소자들을 포함한다. 복사 방출 장치는 예컨대 단색 LED들의 어레이를 포함한다. 그러한 LED들은 예컨대 백색의 색도 좌표 영역의 색을 방출한다. 대안적으로, 복사 방출 장치는 적어도 2개의 상이한 색들을 갖는 LED들의 어레이를 포함하고, 예컨대 복사 방출 장치는 적색과 백색의 LED들을 포함한다.
복사 방출 장치의 광소자는 개별 반도체 소자들의 공간적 분리를 상쇄시키는 이점이 있고, 그럼으로써 복사 특성의 균일화가 보장될 수 있다.
반도체 소자들은 예컨대 복사 생성에 적합한 반도체 칩들이다, 예컨대, 반도체 칩들은 LED들, 바람직하게는 박막 LED들이다.
반도체 소자들을 의도적으로 선택함으로써, 정해진 색도 좌표 영역의 복사를 방출하는 장치, 예컨대 백색 방출 장치가 생성될 수 있다.
부가의 구성에 있어서, 복사 방향으로 광소자의 하류에 이차 광학 기구가 배치된다. 따라서 광소자는 원하는 복사 형성을 보장하는데 완전히 적합한 것이어야 하는 것은 아니다. 그 대신에, 이차 광학 기구가 하류에 배치되는 것으로, 그 이차 광학 기구는 광소자에 의한 복사 균일화에 의거하여 광소자가 없는 경우보다 훨씬 더 간단하게 구성될 수 있다. 이때, 광소자는 반도체 소자 또는 반도체 소자들과 이차 광학 기구 사이에 배치된다.
이차 광학 기구는 예컨대 하류에 배치되는 렌즈 또는 렌즈 어셈블리이다.
적어도 하나의 실시 형태에 따르면, 광소자는 중심점을 갖는다. 광소자가 예컨대 구면 쉘로서 형성되면, 광소자의 중심점은 해당 구의 중심점이다. 광소자의 중심점을 기준으로 하여, 개별 마이크로 구조들은 외면 및 /또는 내면에서 그리고 하나의 공간 방향을 따라 또는 2개의 공간 방향들, 본 경우에는 바람직하게는 구면 좌표들에서와 유사한 2개의 직교 공간 방향들을 따라 적어도 5°의 또는 적어도 8°의 또는 적어도 11°의 연장을 갖는다. 마이크로 구조들은 최대 20°의 또는 최대 16°의 또는 최대 14°의 연장을 가질 수 있다.
적어도 하나의 실시 형태에 따르면, 마이크로 구조들은 하나의 공간 방향을 따라 또는 2개의 직교 공간 방향들을 따라 적어도 0.25 ㎜의 또는 적어도 0.75 ㎜의 평균 연장을 갖는다. 대안적으로 또는 부가적으로, 평균 연장은 최대 5 ㎜ 또는 최대 2.5 ㎜에 달하기도 한다.
도 1 내지 도 6과 연계하여 이하에서 설명하는 실시예들로부터 본 발명의 또 다른 이점들 및 바람직한 부가의 구성들이 명확히 드러날 것이다. 첨부 도면들 중에서,
도 1A, 도 2, 도 3A, 및 도 4A는 본 발명에 따른 광소자의 일 실시예를 각각 개략적인 사시도로 나타낸 도면들이고,
도 1B, 도 3B, 및 도 4B는 도 1A, 도 3A, 및 도 4A에 따른 광소자의 복사 특성을 각각 개략적인 다이어그램으로 나타낸 도면들이며,
도 5A 및 도 5B는 본 발명에 따른 복사 방출 장치의 일 실시예를 각각 개략적인 횡단면도로 나타낸 도면들이고,
도 6A는 종래의 장치의 일 실시예를 개략적인 횡단면도로 나타낸 도면이며,
도 6B는 도 6A의 실시예에 따른 장치의 복사 특성을 다이어그램으로 나타낸 도면이다.
첨부 도면들에서, 동일하거나 동일하게 작용하는 구성 요소들은 각각 동일한 도면 부호들을 갖는다. 도시된 구성 요소들 및 그들의 상호 크기 비율은 축척에 맞는 것으로 보아서는 안 된다. 오히려 보다 나은 표현성 및/또는 보다 나은 이해를 위해, 예컨대 층들, 구조들, 부품들, 및 영역들과 같은 개개의 구성 요소들이 과장되게 두껍거나 큰 치수로 도시되어 있을 수 있다.
도 6A에는, 반사판(4) 내에 배치된 반도체 소자들(3)을 포함하는 선행 기술에 따른 복사 방출 장치의 횡단면도가 도시되어 있다. 반도체 소자들(3)은 동작 시에 복사를 방출하고, 방출된 복사는 반사판(4)에서 적어도 부분적으로 반사된다. 이때, 반사판(4)의 개구에서의 광 복사의 쉐도윙 효과로 인해 음영들이 발생하는 단점이 있다. 또한, 소자 어셈블리의 대칭성에 따라 광선의 쪼개짐이 일어날 수 있다.
선행 기술로부터, 예컨대 소자들에 걸쳐 배치되는 디퓨저들(도시되지 않음)에 의해 그러한 문제점을 해결하는 것이 공지되어 있다. 그러나 그 경우에는, 그러한 어셈블리들이 매우 손실이 많다는 단점이 있다. 대안적으로, 반사판의 하류에 배치되는 이차 광학 기구의 구경을 3차원 구조들, 예컨대 투과 구배들을 갖는 스파이크들 또는 포일들의 조립에 의해 개선하는 것도(도시되지 않음) 공지되어 있다. 그러나 그 경우에도, 그러한 스파이크들 또는 포일들의 조립 비용이 높은 단점이 있다.
도 6B에는, 도 6A의 실시예에 따른 복사 특성을 나타내는 3가지 다이어그램들이 도시되어 있다. 다이어그램 I은 복사 특성, 특히 장치(10)의 평면도에서의 복사 강도를 나타내고 있다. 본 다이어그램에서, 복사 특성은 다이어그램에 더 밝게 도시된 광도 최대치들을 갖는다. 그러한 광도 최대치들에 인접하여서는, 낮은 복사 효율들이 장치로부터 방출되고, 그에 따라 복사 특성이 전체적으로 불균일한 인상을 주고 있다.
도 6B에는, 복사 특성의 횡단면도를 나타내는 또 다른 다이어그램들이 도시되어 있다. 측정 곡선 AY는 Y 평면에서의 복사 특성의 횡단면도를 나타내고 있고, AX는 X 평면에서의 복사 특성의 횡단면도를 나타내고 있다. 복사 특성은 광도 최대치들뿐만 아니라 인접한 광도 최소치들도 갖고, 그에 따라 전체적으로 불균일한 복사 특성이 생성된다.
그러한 불균일한 복사 특성을 회피하고 균일한 복사 특성을 얻기 위해, 본 발명에 따라 반도체 소자들의 하류에 광소자가 배치된다. 이하, 그러한 광소자를 도 1 내지 도 5와 관련하여 더욱 상세히 설명하기로 한다.
도 1A에는, 광학체(1)와 복수의 마이크로 구조들(2)을 포함하는 광소자(10)의 개략적인 사시도가 도시되어 있다. 광학체(1)는 내면(1a)과 외면(1b)을 갖고, 반구 쉘로서 형성된다. 그것은 광학체(1)가 중공 반구 형태를 갖는다는 것을 의미한다. 그러한 반구 쉘은 본 발명에 따른 복사 방출 장치에서 예컨대 복수의 복사 방출 반도체 소자들 상에 씌워지고, 그에 따라 복사 방출 반도체 소자들이 반구 수레의 내부에 배치되어 복사가 내면(1a) 쪽으로 방출되게 된다.
광소자(10)의 마이크로 구조들(2)은 광소자(1)의 외면(1b) 상에 배치된다. 특히, 마이크로 구조들(2)은 적어도 국부적으로 외면(1b)을 형성한다. 그것은 마이크로 구조들(2)과 광학체(1)가 일체로 형성된다는 것을 의미한다. 예컨대, 광소자(10)는 다이 캐스팅으로 제조된다.
마이크로 구조들(2)은 도 1A의 실시예에서는 링 형태로 형성된다. 즉, 링 모양을 갖는다. 그것은 광소자(10)의 외면에 반지름 방향으로 형성된 홈들이 배치된다는 것을 의미한다. 여기서, 마이크로 구조들(2)은 2개씩의 홈들과 접경하는 둥근 돌기들을 외면(1b)에 형성한다.
광학체(1)는 광소자의 중심점을 관통하는 대칭축에 대한 대칭성을 갖는다. 그와 관련하여, 마이크로 구조들은 대칭축을 중심으로 하여 링 형태로 형성된다. 이때, 마이크로 구조들(2)의 링 형태는 중심점 쪽으로, 즉 대칭축 쪽으로 가면서 작아진다. 특히, 링 형태의 지름과 폭이 중심점 쪽으로 가면서 작아진다.
외면의 마이크로 구조들(2)은 곡률이 있는 링 형태를 갖는다. 여기서, 개별 링 형태들은 동일한 곡률을 갖거나 상이한 곡률을 가질 수 있다. 그러한 곡률에 의해, 복사 균일화가 이뤄진다.
내면(1a)은 도 1의 실시예에서는 평탄하게 형성된다. 즉, 마이크로 구조들을 갖지 않는다. 따라서 내면(1a)은 구조화되지 않은(unstructured) 반구 층으로서 형성된다.
광소자(10)는 바람직하게도 거칠기 또는 디퓨저들에 의해 작용하는 것이 아닌 마이크로 구조들(2)에 의해 광산란을 생성하는 것을 허용한다. 특히, 마이크로 구조들(2)은 광을 산란하는 굴절 구조들이다. 따라서 광소자(10)의 상류에 반도체 소자가 배치되면, 광소자에 의해 매우 높은 효율을 갖는 균일한 복사 특성이 이뤄지는데, 왜냐하면 바람직하게도 근본적으로 단지 프레넬 손실만이 발생하기 때문이다. 바람직하게도, 소자로부터 방출되는 복사의 혼합과 음영의 문제점이 동시에 해결된다.
도 1B에는, 반도체 소자들 및 그 하류에 배치된 소자로서 도 1A의 실시예에 따른 광소자를 포함하는 장치의 복사 특성이 도시되어 있다. 반도체 소자들은 3 × 3 어레이 어셈블리로 광소자의 상류에 배치된다. 예컨대, 반도체 소자들은 백색 LED들이다. 그러한 장치는 단순한 집속 반사판에 배치된다. 즉, LED들과 광소자가 반사판의 베이스 면에 고정된다.
도 1B의 다이어그램 I에서는, 광소자의 평면도에서의 복사 강도가 도시되어 있다. 단지 광소자의 대칭축이 통과하는 중심점에서만 증가한 광도를 볼 수 있다. 대칭축에 대해 인접한 영역들은 비슷한 광도를 갖고, 그에 따라 광소자(10)에 의해 거의 균일한 복사 특성이 생성되게 된다.
도 1B에도 역시, 대칭축을 통한 X 평면 또는 Y 평면에서의 복사 특성의 횡단면도를 나타내는 측정 곡선들 AY, AX가 도시되어 있다. 그러한 측정 곡선들 AX, AY는 중심점에서 최대치를 갖는 거의 균일한 복사 효율을 명백하게 보이고 있다.
도 2의 실시예에서는, 도 1A에 도시된 실시예와는 달리 링 형태로서의 마이크로 구조들을 갖지 않는 본 발명에 따른 광소자의 평면 사시도가 도시되어 있다. 도 2의 광소자(10)에서는, 광학체(1)의 외면(1b) 상에 개별 렌즈들의 어레이가 형성된다. 본 실시예에서도 역시, 광학체(1)와 마이크로 구조들(2), 즉 개별 렌즈들은 일체로 형성된다. 개별 렌즈들은 매트릭스 형태로 외면(1b) 상에 배열된다. 그러한 매트릭스 형태의 배열은 예컨대 광소자(10)의 대칭축에 대해 회전 대칭으로 형성될 수 있는데, 렌즈 크기가 대칭축 쪽으로 가면서 감소한다. 그 반면에, 개별 렌즈들은 회전 대칭으로 형성되지 않을 수 있다. 최적의 복사 균일화는 예컨대 교차하는 개별 렌즈들, 예컨대 원통형 렌즈들에 의해 달성된다. 즉, 균일화는 회전 대칭으로부터의 대칭 굴절을 기반으로 하고 있다.
그 이외의 점에 있어서, 도 2의 실시예는 도 1A의 실시예와 근본적으로 일치한다.
도 2에 따르면, 마이크로 구조들(2)은 외면(1b)의 평면도에서 보았을 때에 사다리꼴을 갖고, 광축과의 교차점에서는 바람직하게는 삼각형 밑면을 갖는다. 교차점 쪽으로 가면서 마이크로 구조들(2)의 밑면이 계속 감소한다. 마이크로 구조들(2)은 반구 쉘 형태의 외면(1b)의 위도선들과 경도선들을 따른 홈들에 의해 형성된다.
도 3A에는, 도 1A에 도시된 실시예와는 달리 광학체(1)의 내면(1a)에도 마이크로 구조들(2a)을 갖는 광소자(10)의 또 다른 실시예가 도시되어 있다. 광학체(1)의 외면(1b)의 구성은 도 1A의 실시예의 광소자의 구성과 근본적으로 일치한다.
내면(1a)의 마이크로 구조들(2a)도 역시 링 형태로 형성되는데, 그 링 형태의 구성은 외면(1b)의 마이크로 구조들(2)의 링 형태에 대해 90°만큼 회전하여 있다. 따라서 내면(1a)의 링 형태의 마이크로 구조들(2a)은 대칭축을 따라 안내된다. 도 3A에 의한 광소자(10)를 예컨대 반쪽의 중공 지구와 비교한다면, 외면의 링 형태의 마이크로 구조들(2)은 위도선들로서 구성되고, 내면(1a)의 마이크로 구조들(2a)은 경도선들로서 구성된다.
따라서 내면(1a)도 외면(1b)과 마찬가지로 둥근 궁륭형들에 의해 연결되는 홈들을 구비한다. 여기서, 궁륭형들은 크게 상이하게 또는 동일하게 형성될 수 있는 곡률을 각각 갖는다. 외면(1b)의 마이크로 구조들이 내면(1a)의 마이크로 구조들(2a)의 곡률에 대해 상이하게 형성되는 것도 가능하다.
내면과 외면의 90°만큼 회전하여 있는 마이크로 구조들은 모든 공간 방향들에서의 광 혼합을 제공하고, 그에 따라 바람직하게도 그러한 광소자(10)가 반도체 소자들과 조합하여 복수의 소자들로부터 방출되는 복사의 최적의 완전 혼합을 보장하게 된다.
즉, 도 3A에 따르면, 마이크로 구조들(2, 2a)의 주 연장 방향을 기준으로 하여, 내면(1a)의 마이크로 구조들(2a)은 외면(1b)의 마이크로 구조들(2)에 대해 90°만큼 회전하여 배치된다. 외면(1b)의 마이크로 구조들(2)은 반구형 광소자(10)의 위도선들을 따라, 즉 광축에 대해 각각 수직으로 연장된다. 내면(1a)의 마이크로 구조들(2a)은 경도선들을 따라, 즉 측면도에서 보았을 때에 광축과 평행하게 연장된다. 또한, 마이크로 구조들(2a)은 매년(1a)과 광축의 교차점 쪽으로 가면서 뾰족해진다.
마이크로 구조들(2, 2a)은 도 3A에 도시된 것과는 정반대의 방식으로 둘레를 둘러 방향을 잡을 수도 있다. 즉, 그 경우, 내부 마이크로 구조들(2a)은 위도선들을 따라 연장되고, 외부 마이크로 구조들(2)은 경도선들을 따라 연장된다.
도 3B에는, 복사 각도에 걸친 복사 강도에 관한 다이어그램이 도시되어 있다. 다이어그램 I은 도 3A의 광소자(10)의 복사 강도의 평면도를 도시하고 있다. 도시된 바와 같이, 그러한 장치는 외부 영역에서보다 중심 영역에서 더 높은 광 방출을 갖는다. 그것은 중심점을 통한 X 평면 또는 Y 평면에서의 복사 프로파일의 횡단면도를 나타내고 있는 측정 곡선들 AX 및 AY도 입증하고 있다. 따라서 복사 프로파일은 근사적으로 가우스 복사 프로파일을 따르고 있는데, 그것은 복수의 적용들에서 유리하다.
복사 프로파일은 바람직하게도 복수의 강도 최소치들과 인접하는 복수의 강도 최대치들을 갖는 것이 아니라, 단지 중심 최대치만을 갖는 균일한 조명이 보장된다.
도 4A의 실시예에서는, 도 3A의 실시예와 비교할 때에 내면(1a)의 마이크로 구조들(2a)이 외면(1b)의 마이크로 구조들(2)과 동일하게 방향을 잡고 있다. 즉, 그 경우에는, 내면(1a)의 마이크로 구조들(2a)도 역시 위도선들을 따르고 있다. 본 실시예에서는, 외면(1b)의 마이크로 구조들(2)이 내면(1a)의 마이크로 구조들(2a)과 직접 마주하여 배치된다. 대안적으로, 마이크로 구조들(2,2a)의 배열이 극 방향(polar direction)으로 서로 측방 오프셋(lateral offset)을 두고 배치될 수도 있다(도시되지 않음).
그 이외의 점에 있어서, 도 4A의 실시예는 도 3A의 실시예와 근본적으로 일치한다.
도 4B에는, 도 4A의 실시예에 따른 광소자를 포함하는 장치의 복사 프로파일이 도시되어 있다. 다이어그램 I은 광소자의 복사 프로파일의 평면도를 나타낸 것으로, 단지 중심점에서만 증가한 복사 방출이 측정된다. 중심점의 인접 영역들은 균일한 복사 특성을 보인다. 그것은 측정 곡선들 AX, AY에서도 명백히 설명되고 있는데, 그 측정 곡선들은 균일한 복사 특성을 갖되, 광 방출 최대치가 중심점에서 존재한다.
원하는 적용 및 그에 따른 원하는 복사 프로파일에 따라, 복사 방출 반도체 소자들과 도 1A, 도 2, 도 3A, 또는 도 4A의 실시예에 따른 광소자를 포함하는 복사 방출 장치가 제공될 수 있다. 여기서, 광학체(1)는 반드시 반구 쉘에 한정되는 것은 아니다. 광학체는 대안적으로 반원통 쉘 또는 원환체 하프 쉘로서 구성될 수도 있다(도시되지 않음).
도 5A 및 도 5B에는, 복사 방출 반도체 소자들(3)과 복사 방향으로 그 하류에 배치된 광소자를 포함하는 복사 방출 장치의 횡단면도들이 일부들이 각각 도시되어 있다. 그를 위해, 복사 방출 소자들은 단색의 또는 상이한 색들의 광을 방출하도록 정렬될 수 있다. 복사 방출 장치의 하류에는 이차 광학 기구가 각각 배치될 수 있다. 그러한 이차 광학 기구는 복사되는 광선을 원하는 복사 특성에 따라 형성하는데 기여할 수 있다.
도 5A의 실시예에서는, 도 1A의 실시예에 따른 광소자가 사용되고 있다. 광학체(1)는 평활한 내면(1a)을 구비한다. 외면(1b) 상에는 반지름 방향으로 링 형태로 연장되는 마이크로 구조들(2)이 형성된다. 이때, 마이크로 구조들(2)은 곡률 rMikro 및 폭 또는 자유 구경 DMikro를 갖는다. 광학체(1)의 마이크로 구조들(2)은 LED들에 대해 거리 ROptik을 두고 배치된다.
반도체 소자들(3)은 마이크로 구조들(2)에서 형성되는 광선을 방출한다. 입사하는 광선이 마이크로 구조들에 의해 발산하지 않도록 하기 위해서는, 다음의 조건이 충족되어야 한다.
1/ROptik ≤ 1/(2 * rMikro), 및
0.01 ≤ DMikro/(4 * rMikro) ≤ 0.5
그러한 조건에 의해, 가능한 한 작은 프레넬 손실을 갖는 광소자가 제공되고, 그럼으로써 균일한 복사 특성이 얻어지게 된다.
도 5B의 실시예는 도 4A의 실시예에 따른 광소자, 즉 광학체(1)의 내면(1a)에도 동일하게 방향을 잡은 마이크로 구조들(2)을 갖는 광소자가 사용되고 있다는 점에서 도 5A의 실시예와 구별된다.
본 실시예에서, 내면과 외면의 마이크로 구조들(2, 2a)의 곡률은 반도체 소자들로부터 방출되는 입사 광선이 광학체의 외면(1b)으로부터의 최대 거리 dmax를 넘어서지 않는 초점을 생성하도록 선택된다. 그를 위해서는, 다음의 관계가 성립한다.
dmax/(2 * rMikro) ≤ 1.2
여기서, 거리 dmax는 외면(1b)의 마이크로 구조들(2)의 가장 높은 점들의 연결선으로부터 주어지는 반지름(22)과 외면(1b)의 마이크로 구조들(2)의 가장 낮은 점들, 즉 홈들의 연결선에 의해 주어지는 반지름(21)에서 측정된다.
도 1B, 도 3B, 및 도 4B에서는, 백색 LED들의 3 × 3 어레이가 각각 사용되고 있다. 대안적으로, LED들은 상이한 색들의 광을 방출할 수도 있다. 예컨대, 그러한 장치는 5개의 백색 LED들과 4개의 적색 LED들의 3 × 3 어레이를 포함한다.
본 발명은 실시예들에 의거한 설명에 의해 한정되는 것이 아니다. 오히려, 본 발명은 임의의 새로운 특징 및 특징들의 임의의 조합을 설혹 그 특징 또는 조합 자체가 특허 청구 범위 또는 실시예들에 명시적으로 기재되어 있지 않더라도 포함하는 것으로, 특히 그것은 특허 청구 범위의 특징들의 임의의 조합을 포함한다.
본 특허 출원은 독일 특허 출원 10 2011 015 405.1의 우선권을 주장하는바, 이로써 그 개시 내용이 본원에 참조로 포함된다.

Claims (15)

  1. 광학체(1)와 복수의 마이크로 구조들(2, 2a)을 포함하는 광소자(10)로서,
    - 광학체(1)는 하프 쉘로서 형성되고, 내면(1a)과 외면(1b)을 구비하며,
    - 마이크로 구조들(2, 2a)은 광학체(1)의 내면(1a)과 외면(1b)을 형성하고,
    - 마이크로 구조들(2, 2a)은 광을 산란하는 굴절 구조들이며,
    - 외면(1b)의 마이크로 구조들(2)은 대칭축을 중심으로 한 링 형태로 형성되고, 상기 마이크로 구조들(2)의 지름이 광학체(1)와 상기 대칭축의 교차점 쪽으로 가면서 작아지며,
    - 내면(1a)의 마이크로 구조들(2a)은 링 형태로 형성되고, 외면(1b)의 마이크로 구조들(2)의 링 형태에 대해 90°만큼 회전하여 배치되어 내면(1a)의 링 형태의 마이크로 구조들(2a)이 상기 대칭축을 따라 안내되며,
    - 외면(1b)의 마이크로 구조들(2)은 위도선들로서 구성되고, 내면(1a)의 마이크로 구조들(2a)은 경도선들로서 구성되는 것을 특징으로 하는 광소자.
  2. 제 1 항에 있어서, 내면(1a)의 마이크로 구조들(2a)의 폭은 광축과 외면(1b)의 교차점 쪽으로 가면서 계속 좁아지는 것을 특징으로 하는 광소자.
  3. 제 1 항 또는 제 2 항에 있어서, 내면(1a)과 외면(1b)의 마이크로 구조들(2, 2a)은 상이한 곡률들(rMikro)을 갖는 것을 특징으로 하는 광소자.
  4. 제 1 항 또는 제 2 항에 있어서, 내면(1a)과 외면(1b)의 마이크로 구조들(2, 2a)은 동일한 곡률(rMikro)을 갖는 것을 특징으로 하는 광소자.
  5. 제 1 항 또는 제 2 항에 있어서, 마이크로 구조들(2, 2a)은 구면으로 형성되는 것을 특징으로 하는 광소자.
  6. 제 1 항 또는 제 2 항에 있어서, 다음의 관계가 성립하되,
    1/R광학체 ≤ 1/(2 * r마이크로구조), 및
    0.01 ≤ D마이크로구조/(4 * r마이크로구조) ≤ 0.5
    여기서, R광학체는 광학체의 하프 쉘의 반지름이고, r마이크로구조는 마이크로 구조들의 곡률이며, D마이크로구조는 마이크로 구조들의 폭인 것을 특징으로 하는 광소자.
  7. 제 1 항 또는 제 2 항에 있어서, 마이크로 구조들(2, 2a)은 비구면으로 형성되는 것을 특징으로 하는 광소자.
  8. 제 1 항 또는 제 2 항에 있어서, 마이크로 구조들은 하나의 공간 방향을 따라 적어도 0.25 ㎜의 그리고 최대 2.5 ㎜의 평균 연장을 갖는 것을 특징으로 하는 광소자.
  9. 제 1 항 또는 제 2 항에 있어서, 광소자의 중심점을 기준으로 하여, 마이크로 구조들(2, 2a)은 내면(1a)과 외면(1b)에서 그리고 하나의 공간 방향으로 적어도 5°의 그리고 최대 14°의 연장을 갖는 것을 특징으로 하는 광소자.
  10. 제 1 항 또는 제 2 항에 있어서, 마이크로 구조들(2, 2a)은 그에 대해 다음의 관계가 성립하는 곡률(rMikro)을 갖되,
    dmax/(2 * r마이크로구조) ≤ 1.2
    여기서, dmax는 마이크로 구조들의 최대 높이이고, r마이크로구조는 마이크로 구조들의 곡률인 것을 특징으로 하는 광소자.
  11. 제 1 항 또는 제 2 항에 있어서, 내면(1a)의 마이크로 구조들(2a)은 광축과 내면(1a)의 교차점 쪽으로 가면서 뾰족해지는 것을 특징으로 하는 광소자.
  12. 제 1 항 또는 제 2 항에 있어서, 광학체(1)는 반구 쉘로서 구성되는 것을 특징으로 하는 광소자.
  13. 광을 생성하는 활성층을 갖는 적어도 하나의 복사 방출 반도체 소자(3)와 복사 방향으로 반도체 소자(3)의 하류에 배치되는 제 1 항 또는 제 2 항에 따른 광소자(10)를 포함하는 복사 방출 장치.
  14. 제 13 항에 있어서, 복사 방출 장치는 단색의 또는 적어도 부분적으로 상이한 색들의 광을 방출하는 복수의 반도체 소자들을 포함하는 것을 특징으로 하는 복사 방출 장치.
  15. 제 13 항에 있어서, 복사 방향으로 광소자(10)의 하류에 이차 광학 기구가 배치되는 것을 특징으로 하는 복사 방출 장치.
KR1020137022576A 2011-03-29 2012-01-27 광소자 및 그러한 광소자를 포함하는 복사 방출 장치 KR101487344B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011015405A DE102011015405A1 (de) 2011-03-29 2011-03-29 Optisches Element und strahlungsemittierende Vorrichtung mit einem derartigen optischen Element
DE102011015405.1 2011-03-29
PCT/EP2012/051378 WO2012130495A1 (de) 2011-03-29 2012-01-27 Optisches element und strahlungsemittierende vorrichtung mit einem derartigen optischen element

Publications (2)

Publication Number Publication Date
KR20130120527A KR20130120527A (ko) 2013-11-04
KR101487344B1 true KR101487344B1 (ko) 2015-02-04

Family

ID=45607202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137022576A KR101487344B1 (ko) 2011-03-29 2012-01-27 광소자 및 그러한 광소자를 포함하는 복사 방출 장치

Country Status (6)

Country Link
US (1) US9632214B2 (ko)
EP (1) EP2691691B1 (ko)
KR (1) KR101487344B1 (ko)
CN (1) CN103429952B (ko)
DE (1) DE102011015405A1 (ko)
WO (1) WO2012130495A1 (ko)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011114196A1 (de) * 2011-09-22 2013-03-28 Osram Opto Semiconductors Gmbh Optisches Element und Leuchte mit einem optischen Element
EP2823346B1 (en) * 2012-03-06 2017-06-14 Fraen Corporation Oscillating interface for light mixing lenses
DE102013204868A1 (de) * 2013-03-20 2014-09-25 Osram Gmbh Optische Vorrichtung zur Lichtmischung
CN104344344A (zh) * 2013-08-06 2015-02-11 鸿富锦精密工业(深圳)有限公司 透镜及使用该透镜的光源装置
US9068726B2 (en) * 2013-11-13 2015-06-30 Gemmy Industries Corp. Spotlight
US9310059B2 (en) 2013-12-06 2016-04-12 Gemmy Industries Corp. Rotary projector light
US9504101B2 (en) 2013-12-06 2016-11-22 Gemmy Industries Corp. Kaleidoscopic light string
DE102013226970B4 (de) * 2013-12-20 2023-05-25 Zumtobel Lighting Gmbh Anordnung zur Lichtabgabe
US10400966B2 (en) 2013-12-31 2019-09-03 Gemmy Industries Corp. Decorative lights and related methods
US9890938B2 (en) 2016-02-08 2018-02-13 Gemmy Industries Corp. Decorative light
US9664373B2 (en) 2013-12-31 2017-05-30 Gemmy Industries Corp. Inflatable display with dynamic lighting effect
US9046637B1 (en) * 2014-02-25 2015-06-02 3M Innovative Properties Company Tubular lighting systems with inner and outer structured surfaces
US10935211B2 (en) * 2014-05-30 2021-03-02 Ideal Industries Lighting Llc LED luminaire with a smooth outer dome and a cavity with a ridged inner surface
CN106291896B (zh) * 2015-06-05 2019-12-20 瑞仪光电(苏州)有限公司 光学透镜、背光模块
CN106568068A (zh) * 2015-10-09 2017-04-19 瑞仪光电(苏州)有限公司 导光透镜和光源模块
USD791381S1 (en) 2016-02-08 2017-07-04 Gemmy Industries Corp. Decorative light
US10234118B2 (en) 2016-02-08 2019-03-19 Gemmy Industries Corp. Decorative light
US10436393B2 (en) * 2016-04-22 2019-10-08 Signify Holding B.V. Lighting device and luminaire comprising the same
TW201741592A (zh) * 2016-05-28 2017-12-01 鴻海精密工業股份有限公司 透鏡及車燈結構
DE102016114694A1 (de) * 2016-08-09 2018-02-15 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Scheinwerfer sowie Lichtquellenanordnung für einen Scheinwerfer
USD814090S1 (en) 2017-07-19 2018-03-27 E. Mishan & Sons, Inc. Decorative lights projector
US9857061B1 (en) 2017-08-11 2018-01-02 E. Mishan & Sons, Inc. Projector of decorative lights
CN107830426A (zh) * 2017-11-28 2018-03-23 欧普照明股份有限公司 灯具及灯具的配光元件
WO2020001327A1 (zh) * 2018-06-26 2020-01-02 苏州欧普照明有限公司 灯泡及水晶灯
CN108591897A (zh) * 2018-06-26 2018-09-28 苏州欧普照明有限公司 灯泡及水晶灯
US11662071B1 (en) * 2022-11-03 2023-05-30 Zhengyu Wang 3D-pattern waving projecting lamp

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071805Y2 (ja) * 1990-09-25 1995-01-18 東電設計株式会社 Led球カバーレンズの内面形状
JP2005243456A (ja) * 2004-02-26 2005-09-08 Koito Mfg Co Ltd 車両用灯具
KR20070070291A (ko) * 2004-03-29 2007-07-04 발레오 실바니아 엘.엘.씨. Led 광원을 갖는 하이 마운티드 스톱 램프용 광학 소자
KR100998017B1 (ko) * 2009-02-23 2010-12-03 삼성엘이디 주식회사 발광소자 패키지용 렌즈 및 이를 구비하는 발광소자 패키지

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2246098A (en) 1936-03-20 1941-06-17 Firm Sendlinger Optische Glasw Lens and the manufacture thereof
GB778438A (en) * 1955-07-15 1957-07-10 Lo Hung Hing Improvements in and relating to electric torches and like lamps
US3425056A (en) * 1964-11-27 1969-01-28 Dietz Co R E Warning lens having concentric lenticular elements
FR2622864B1 (fr) * 1987-11-09 1992-03-13 Nicolas Rene Bouee lumineuse
US5103383A (en) * 1990-08-23 1992-04-07 Mayhew Donald M Emergency flasher
GB2295274A (en) * 1994-11-17 1996-05-22 Teledyne Ind Optical lens system for light emitting diodes
DE19757836C1 (de) 1997-12-24 1999-10-07 Merten Gmbh & Co Kg Geb Verfahren zur Herstellung eines doppelt-konvexen Linsenschirmes und Formkern zur Herstellung dieses Linsenschirmes
FR2782370B1 (fr) * 1998-08-14 2000-11-10 Valeo Vision Feu de signalisation d'eclairement homogene comprenant des plages lisses
US6328456B1 (en) * 2000-03-24 2001-12-11 Ledcorp Illuminating apparatus and light emitting diode
US6469241B1 (en) * 2001-06-21 2002-10-22 The Aerospace Corporation High concentration spectrum splitting solar collector
US7123419B1 (en) 2001-11-21 2006-10-17 Simon Jerome H Collimating and optical elements with reduced mass
FR2836208B1 (fr) * 2002-02-21 2004-09-03 Valeo Vision Feu de signalisation comportant une piece optique realisant une fonction de signalisation de maniere autonome
JP4293857B2 (ja) 2003-07-29 2009-07-08 シチズン電子株式会社 フレネルレンズを用いた照明装置
JP4442216B2 (ja) * 2003-12-19 2010-03-31 豊田合成株式会社 Ledランプ装置
CA2589053C (en) * 2004-12-03 2010-08-24 Acuity Brands, Inc. Luminaire reflector having improved prism transition
CN101499507B (zh) * 2008-02-01 2011-11-09 富准精密工业(深圳)有限公司 发光二极管
TW200944696A (en) 2008-04-18 2009-11-01 Taiwan Network Comp & Electronic Co Ltd Light distributing plate having multiple-focus grating
US8033691B2 (en) * 2009-05-12 2011-10-11 Koninklijke Philips Electronics N.V. LED lamp producing sparkle
JP5626754B2 (ja) * 2010-01-10 2014-11-19 シチズン電子株式会社 光学ユニット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071805Y2 (ja) * 1990-09-25 1995-01-18 東電設計株式会社 Led球カバーレンズの内面形状
JP2005243456A (ja) * 2004-02-26 2005-09-08 Koito Mfg Co Ltd 車両用灯具
KR20070070291A (ko) * 2004-03-29 2007-07-04 발레오 실바니아 엘.엘.씨. Led 광원을 갖는 하이 마운티드 스톱 램프용 광학 소자
KR100998017B1 (ko) * 2009-02-23 2010-12-03 삼성엘이디 주식회사 발광소자 패키지용 렌즈 및 이를 구비하는 발광소자 패키지

Also Published As

Publication number Publication date
WO2012130495A1 (de) 2012-10-04
CN103429952B (zh) 2016-01-20
KR20130120527A (ko) 2013-11-04
DE102011015405A1 (de) 2012-10-04
US20140001507A1 (en) 2014-01-02
US9632214B2 (en) 2017-04-25
EP2691691B1 (de) 2016-05-25
EP2691691A1 (de) 2014-02-05
CN103429952A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
KR101487344B1 (ko) 광소자 및 그러한 광소자를 포함하는 복사 방출 장치
US9046241B2 (en) High efficiency directional light source using lens optics
TWI444568B (zh) 光學透鏡與光源模組,及具有該光學透鏡與光學模組之街燈
US20160195243A1 (en) Optical system for producing uniform illumination
ES2758681T3 (es) Fuente de luz LED
JP2009542017A5 (ko)
TWI479107B (zh) 發光二極體光分配透鏡及其光源裝置
US20160202409A1 (en) Double-sided optical film with lenslets and clusters of prisms
US9976707B2 (en) Color mixing output for high brightness LED sources
US9494295B2 (en) Ring light module
US8403538B2 (en) Color homogenizing optical assembly
US10955111B2 (en) Lens and lamp having a lens
JP2010186142A (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
CN105182546A (zh) 匀光元件及光源系统
US9465143B2 (en) Lens optical element and display apparatus
JP2016162512A (ja) 照明器具およびレンズ
US10451247B2 (en) Optic and apparatus for making an optic
WO2015082575A1 (en) Optical device, lighting device and lighting system
JP2019219438A (ja) 車両用灯具構成レンズ及び車両用灯具
WO2015011105A1 (en) A lens for a light source
WO2018109978A1 (ja) 面光源装置および表示装置
CN217902088U (zh) 光扩散器
EP3588147A1 (en) A lens and a lighting unit using the lens
CN115185023A (zh) 微透镜结构

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180111

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190110

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200109

Year of fee payment: 6