KR101442501B1 - The extracts of the anti-atherosclerotic and vascular diseases-preventive and inhibitive activity prepared from the bone of processing wastes of Japanese eel (Anguilla japonica) by the low temperature vacuum extraction - Google Patents

The extracts of the anti-atherosclerotic and vascular diseases-preventive and inhibitive activity prepared from the bone of processing wastes of Japanese eel (Anguilla japonica) by the low temperature vacuum extraction Download PDF

Info

Publication number
KR101442501B1
KR101442501B1 KR1020140061007A KR20140061007A KR101442501B1 KR 101442501 B1 KR101442501 B1 KR 101442501B1 KR 1020140061007 A KR1020140061007 A KR 1020140061007A KR 20140061007 A KR20140061007 A KR 20140061007A KR 101442501 B1 KR101442501 B1 KR 101442501B1
Authority
KR
South Korea
Prior art keywords
eel
activity
products
extract
temperature vacuum
Prior art date
Application number
KR1020140061007A
Other languages
Korean (ko)
Other versions
KR20140090120A (en
Inventor
김철호
곽충환
정태욱
서석종
장현욱
김동수
오준기
Original Assignee
경성대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경성대학교 산학협력단 filed Critical 경성대학교 산학협력단
Priority to KR1020140061007A priority Critical patent/KR101442501B1/en
Publication of KR20140090120A publication Critical patent/KR20140090120A/en
Application granted granted Critical
Publication of KR101442501B1 publication Critical patent/KR101442501B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L17/00Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
    • A23L17/10Fish meal or powder; Granules, agglomerates or flakes
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C25/00Processing fish ; Curing of fish; Stunning of fish by electric current; Investigating fish by optical means
    • A22C25/14Beheading, eviscerating, or cleaning fish
    • A22C25/142Beheading fish
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C25/00Processing fish ; Curing of fish; Stunning of fish by electric current; Investigating fish by optical means
    • A22C25/14Beheading, eviscerating, or cleaning fish
    • A22C25/145Eviscerating fish

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 저온진공으로 추출한 장어 뼈-가공부산물의 추출물에 관한 것으로, 이를 더욱 상세하게 설명하면, 장어의 가식부분을 제외한 장어 머리, 간, 내장, 쓸개, 표피부분의 장어 가공부산물을 잘 세정하고 정선한 후, 이들 장어 뼈와 가공부산물들을 저온진공에 의하여 분말화 하였으며, 분쇄된 분말을 이용한 추출물이 항동맥경화활성과 혈관질환 예방 및 억제활성을 가짐으로서, 노화방지 및 면역증강활성을 가져, 이에 따른 건강보조식품으로 사용될 수 있는 특징으로 항동맥경화활성과 혈관질환 예방 및 억제활성을 가진 저온진공으로 추출한 장어 뼈-가공부산물의 추출물에 관한 것이다.The present invention relates to an extract of eel bone-processing by-products extracted by a low-temperature vacuum. More specifically, eel-processing by-products of the eel's head, liver, internal organs, After the selection, these eel bones and processing by-products were pulverized by low-temperature vacuum, and the extract using the pulverized powder had anti-arteriosclerosis activity and anti-vascular disease prevention and inhibitory activity, thus having aging prevention and immunity enhancing activity, The present invention relates to an extract of eel bone-processing by-products extracted with a low-temperature vacuum having anti-arteriosclerosis activity and vascular disease prevention and inhibitory activity, which can be used as health supplements.

Description

항동맥경화활성과 혈관질환 예방 및 억제활성을 가진 저온진공으로 추출한 장어 뼈-가공부산물의 추출물 및 그의 제조방법{The extracts of the anti-atherosclerotic and vascular diseases-preventive and inhibitive activity prepared from the bone of processing wastes of Japanese eel (Anguilla japonica) by the low temperature vacuum extraction }TECHNICAL FIELD The present invention relates to an extract of eel bone-processing by-products extracted with a low-temperature vacuum having anti-arteriosclerosis activity and vascular disease prevention and inhibitory activity and a method for producing the same. wastes of Japanese eel (Anguilla japonica) by the low temperature vacuum extraction}

본 발명은 발명특허출원 제 10-2012-0062670호의 분할출원으로, 보다 상세하게는 저온진공으로 추출한 장어 뼈-가공부산물의 추출물에 관한 것으로, 장어의 가식부분을 제외한 장어 머리, 간, 내장, 쓸개, 표피부분의 장어 가공부산물을 잘 세정하고 정선한 후, 이들 장어 뼈와 가공부산물들을 저온진공에 의하여 분말화 하였으며, 분쇄된 분말을 이용한 추출물이 항동맥경화활성과 혈관질환 예방 및 억제활성을 가짐으로서, 노화방지 및 면역증강활성을 가져, 이에 따른 건강보조식품으로 사용될 수 있는 특징으로 항동맥경화활성과 혈관질환 예방 및 억제활성을 가진 저온진공으로 추출한 장어 뼈-가공부산물의 추출물에 관한 것이다.
The present invention relates to an application of a patent application No. 10-2012-0062670, and more particularly to an extract of eel bone-processing by-products extracted by low-temperature vacuum, which includes eel hair, liver, , The eel processing by-products of the epidermis were well cleaned and selected, and these eel bones and processing by-products were pulverized by low-temperature vacuum, and the extract obtained from the pulverized powder had anti-arteriosclerosis activity and vascular disease prevention and inhibitory activity The present invention relates to an extract of eel bone-processing by-products extracted with a low-temperature vacuum having anti-arteriosclerosis activity and vascular disease prevention and inhibitory activity, which can be used as a health supplement food with antioxidant and immunostimulating activity.

일반적으로 장어는 단백질 함량이 높고 칼로리도 높으면서 불포화 지방산이 많아 고혈압 등의 성인병 예방이나 허약 체질, 원기 회복 등에 최고의 식품으로 인정받기 때문에 스태미너 식품으로 특히 여름철 남성들에게 인기가 매우 높다.
In general, eel is high in protein content, high in calories, high in unsaturated fatty acids, so it is recognized as the best food for prevention of adult diseases such as hypertension, frailty and restorative, so it is very popular among men in summer especially for stamina.

이와 같이 건강식품으로 인정받고 있는 장어에는 민물장어, 붕장어, 먹장어, 갯장어와 같은 장어류로 일반 어류에 비해 비타민의 함량이 높아 비타민 E의 경우 함유량이 계란의 약 10배, 비타민 A는 일반 백색어류의 30배에서 100배 이상 함유하고 있으며, 비타민 A는 발육촉진, 시력회복, 피부와 점막의 건강유지, 정력제 등의 효능이 있다. 그리고 불포화지방산의 함량도 매우 많이 함유하고 있으며 특히, DHA 및 EPA와 같은 함량이 타 어종보다 높다. DHA의 효능을 보면 머리가 좋아지고, 치매예방, 암 억제 등에 탁월한 효과를 발휘하기 때문에 옛날부터 생약재 및 천연재료를 사용하고 있다.
Eels, which are considered to be health foods, have a higher content of vitamins than ordinary fish, such as freshwater eel, conger eel, eel, and mackerel. The content of vitamin E is about 10 times that of eggs, vitamin A is a common white fish And vitamin A is effective in promoting growth, restoring visual acuity, maintaining skin and mucous membrane health, and energizing agents. The content of unsaturated fatty acids is also very high. Especially, the contents such as DHA and EPA are higher than other species. The efficacy of DHA shows that it has an excellent effect on hair, prevention of dementia, suppression of cancer, and so on, and it uses herbal medicine and natural materials from ancient times.

한편, 장어의 혈액과 표피(껍질)의 점액질에는 단백독소인 이크티오헤모톡신(ichtyohemotoxin)' 성분이 있는데, 이 독소는 사람의 몸속에 들어가면 구역질이나 중독 증상을 일으키며, 눈에 들어가면 결막염을 일으키고 상처에 묻으면 피부가 약한 사람은 염증을 일으키기도 할 뿐만 아니라 많은 양이 체내에 들어올 경우에는 사망할 수도 있는 위험이 있다. 또한, 이 독소는 완전히 제거하기가 어려우며, 단지 60℃이상으로 열을 가해야 지만 독성이 없어지기 때문에 대부분 장어는 생선회로는 조리하지 않으며, 대신 구이나 국 등의 형태로 조리해서 먹는다.
On the other hand, there is a protein toxin, ichtyohemotoxin, in the mucus of the blood and epidermis of the eel. This toxin causes nausea or poisoning if it enters the human body. If it enters the eye, it causes conjunctivitis, In addition to being inflamed, people with weak skin are at risk of dying if large amounts come into the body. In addition, it is difficult to completely remove this toxin. Most of the eel is not cooked by sashimi, because it is heated only at 60 ℃ or more, but it is not toxic. Instead, it is cooked in the form of a sphere or a soup.

이와 같은 장어를 이용하여 개발한 건강식품들이 특허 출원된 예를 살펴보면, 대한민국 공개특허공보 특 1990-1320호(1990. 2. 27 공개)의 민물장어를 주제로 하는 영양식품의 제조방법, 대한민국 공개특허공보 특 1993-22955호(1993. 12.18 공개)의 민물장어를 이용한 건강식품, 대한민국 공개특허공보 특1996-78호(1996. 1. 25 공개)의 민물장어와 생약재를 이용한 건강식품 제조방법 등이 공지되어 있으나 상기와 같은 식품들은 모두 장어와 생약재를 혼합하여 가열할 때 열에 의한 화학적 변화로 인해 영양성분이 손실될 우려가 있다.
Examples of a patent application for health foods developed using such eel are disclosed in Korean Patent Publication No. 1990-1320 (published on February 27, 1990), a method of producing nutritional food on the theme of freshwater eel, Japanese Patent Application Publication No. 1993-22955 (published on Dec. 18, 1993) discloses a health food using freshwater eel, Korean Patent Laid-Open Publication No. 1996-78 (published on January 25, 1996) It is possible that nutrients may be lost due to chemical changes caused by heat when the eel and the herbal medicine are mixed and heated.

상기의 설명에서와 같이, 영양분이 풍부한 장어는 일반적으로 구이용, 생선회, 장어덮밥, 탕, 농축액 등으로 하여 사용되어지고 있다.As described above, eel-rich eels are generally used for roasting, sashimi, eel rice, hot water, concentrated liquid, and the like.

그러나 이와 같은 경우에는 사용되어지는 목적에 따라 대부분 육질을 가진 가식부 만을 사용하게 되며, 장어의 머리, 내장, 뼈, 표면 껍질 등의 부산물은 버려지거나, 사료용으로 사용되어지나 아주 미비한 문제점을 가지고 있었다.
However, in such a case, only the edible portion having the meat quality is used according to the intended purpose, and the by-products such as the head, the internal organs, the bones, and the surface skin of the eel are discarded or used for the feed.

상기와 같은 종래의 문제점을 해결하기 위하여, 본 발명에서는 상기에서 언급한 바와 같이 우수한 영양성분을 함유한 장어의 가식부를 제외한, 장어 뼈와 장어 부산물을 주원료로 하여 부족한 신체의 기능성을 충족하면서 건강기능 편의식의 일종으로 건강보조식품을 개발하고자 한 것으로, 장어 머리, 간, 내장, 쓸개, 표피부분의 장어 가공부산물을 잘 세정하고 정선한 후, 이들 장어 뼈와 가공부산물들을 저온진공에 의하여 분말화 하였으며, 분쇄된 분말을 이용한 추출물이 항동맥경화활성과 혈관질환 예방 및 억제활성을 가짐으로서, 노화방지 및 면역증강활성을 가져, 이에 따른 건강보조식품으로 사용될 수 있는 특징으로 항동맥경화활성과 혈관질환 예방 및 억제활성을 가진 저온진공으로 추출한 장어 뼈-가공부산물의 추출물을 제공하고자 하였다.
In order to solve the above-mentioned problems, the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a health food The eel bones and processing by-products were pulverized by low-temperature vacuum, after the eel processing by-products of the eel's head, liver, internal organs, gallbladder and epidermis were well cleaned and selected. The extracts from the pulverized powder have anti-arteriosclerosis activity and vascular disease prevention and inhibitory activity, and have antioxidant and immune enhancing activity, and thus can be used as a health supplement food. We tried to provide extracts of eel bone-processing by-products extracted with low-temperature vacuum with disease prevention and inhibitory activity All.

이상의 설명에서와 같이, 본 발명의 저온진공으로 추출한 장어 뼈-가공부산물의 추출물 및 그 분획 추출물들은 항동맥경화활성과 혈관질환 예방 및 억제활성을 가짐으로서, 노화방지 및 면역증강활성을 가지며, 이에 따라 간기능관련치료제 및 면역활성화제용 치료제로 사용될 수 있다. 또한, 독성이 전혀 없으므로 건강보조식품으로도 널리 이용될 수 있는 효과를 나타낼 수도 있다.
As described above, the extract of the eel bone-processing by-products extracted with the low-temperature vacuum of the present invention and the fraction extract thereof have anti-arteriosclerosis activity and vascular disease prevention and inhibitory activity, and thus have antioxidant and immunostimulating activity, Can be used as therapeutic agents for hepatic function-related and immune activators. In addition, there is no toxicity, so it can be widely used as a health supplement.

도 1은 TNF-a로 사람혈관유래 평활근세포의 증식과 혈관협착지표인 기저막 분해효소 MMP-2/9 생성억제 활성을 나타낸 도표
도 2는 장어부산물의 열수추출물(Hx)이 사람동맥혈관평활근세포주(HASMC)에 대한 세포독성을 나타낸 도표
Fig. 1 is a graph showing the inhibitory activity of basement membrane degrading enzyme MMP-2/9, which is an indicator of vascular stenosis and proliferation of human vascular smooth muscle cells by TNF-a
FIG. 2 is a graph showing cytotoxicity of human hot-water extract (Hx) of eel by-products to human arterial smooth muscle cell line (HASMC)

이하, 본 발명의 이해를 돕기 위하여 구체적인 실시예를 통하여 본 발명의 구성 및 효과를 보다 상세히 설명하기로 한다. 그러나 하기 실시예는 본 발명을 보다 명확하기 이해시키기 위한 것일 뿐이며, 본 발명의 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the configuration and effects of the present invention will be described in more detail with reference to specific embodiments in order to facilitate understanding of the present invention. However, it should be understood that the following examples are for illustrative purposes only and are not intended to limit the scope of the present invention.

장어 뼈와 가공부산물을 이용한 장어 추출물의 조제Preparation of eel extract using eel bones and processing by-products

본 발명에서 사용되는 장어 추출물 재료는 장어의 가식부분을 제외한 장어 머리, 간, 내장, 쓸개, 표피부분의 장어 가공부산물을 이용하여, 잘 세정하고 정선한 후, 이들 장어 뼈와 가공부산물들을 저온진공에 의하여 분말화 하였으며, 장어뼈-부산물(이하 장어부산물 이라함) 분말 600 g을 각각 200 g씩 나누어, 아래와 같이 각각의 추출물을 제조하는데 사용하였다.
The eel extract material used in the present invention is well cleaned and selected using eel processing by-products of the eel's head, liver, internal organs, gallbladder, and epidermis except for the edible part of the eel, and the eel bones and processing by- And 600 g of eel bone-by-product (hereinafter referred to as eel by-product) powders were each divided into 200 g portions and used for preparing each of the extracts as follows.

1) 장어부산물 생리식염수 추출물(Px)1) Eel by-product physiological saline solution (Px)

상기 장어부산물 분말 200 g을 생리적 식염수 완충용액에 해당하는 완충액인 pH 7.2의 50 mM PBS(phosphate-buffered saline)용액 300ml으로 분쇄 한 뒤, 4 ℃, 15,000xg에서 20분간 원심분리하였으며, 원심분리하여 100 ml를 활성검정에 사용하였다.
200 g of the eel by-product powder was pulverized with 300 ml of a 50 mM phosphate buffered saline solution (pH 7.2) corresponding to physiological saline buffer solution, centrifuged at 15,000 x g for 20 minutes at 4 ° C, centrifuged 100 ml was used for the activity assay.

상기 장어부산물 분말을 생리적 식염수 완충용액으로 원심분리하여 추출한 생리식염수 추출물 10 ml를 건조하여, 수율을 검정한 결과 13%로서 총 25g을 얻었다.
The eel by-product powder was centrifuged with physiological saline buffer solution to extract 10 ml of physiological saline solution. The yield was 13%, and a total of 25 g was obtained.

2) 장어부산물 메탄올 추출물(Mx)2) Eel by-product methanol extract (Mx)

상기 장어부산물 분말 200g에 1 ℓ의 메탄올(MeOH)을 가하여 70℃에서 3시간 동안 가온 침출하여 여과(동양여지 No. 1)하고 여액을 모아 감압농축 후, 정량하여 실험에 사용하였다. 농축액은 약 50 ㎖가 얻어져, 이를 동결건조하여 동결건조분말 약 12g을 얻었으며, 수율은 약 6%에 해당한다.
To 200 g of the eel by-product powder was added 1 liter of methanol (MeOH), and the mixture was heated at 70 ° C for 3 hours for leaching. The filtrate was collected by filtration (Oriental paper No. 1). The filtrate was collected and concentrated under reduced pressure. About 50 ml of the concentrate was obtained and lyophilized to obtain about 12 g of freeze-dried powder, and the yield was about 6%.

3) 장어부산물 열수 추출물(Hx)3) Hot water extract of eel by-products (Hx)

열수추출액 조제를 위하여, 상기 장어부산물 분말 200g에 1 ℓ 물을 첨가하여 45℃의 가열맨틀에서 2시간동안 보온하여 1 mm 크기의 막필터를 사용하여 여과하였다. To prepare the hot water extract, 1 L of water was added to 200 g of the eel by-product powder, which was then kept in a heating mantle at 45 DEG C for 2 hours and filtered using a membrane filter having a size of 1 mm.

여과된 장어부산물 분말의 추출물에 불용성 물질은 제거하고 상층액은 회전식 감압 농축기(Rotary vaccum Evaporator)로 50% 정도의 부피가 되게 농축하였다.
The insoluble material was removed from the filtered extract of eel by-product powder and the supernatant was concentrated to a volume of about 50% using a rotary vacuum evaporator.

상기 농축액10 ml를 건조하여, 수율을 검정한 결과 12%로서 총 24g을 얻었으며, The concentrate (10 ml) was dried to obtain a total yield of 24% (12%).

상기 1)장어부산물 생리식염수 추출물(Px)과 3)장어부산물 열수 추출물(Hx)의 수율은 유사하였다.
The yields of 1) eel by - product physiological saline (Px) and 3) eel by - product hot water extract (Hx) were similar.

[실험방법] 저온진공으로 추출한 장어부산물의 추출물에 대한 항동맥경화활성과 혈관질환 예방 및 억제활성의 측정
[Experimental method] Measurement of anti-arteriosclerosis activity and vascular disease prevention and inhibitory activity on extracts of eel by-products extracted by low-temperature vacuum

1. 실험동물처치1. Experimental animal treatment

먼저, 체중 3주령 50~70g의 Sprague-Dawley 숫컷쥐(rat)를 온도 25℃, 상대습도 60%의 사육실에 2주일 동안 적응시켜 실험에 사용하였다.
First, Sprague-Dawley male rats weighing 50 to 70 g at 3 weeks of age were used for the experiment for 2 weeks at a temperature of 25 ° C and a relative humidity of 60%.

각 실험군은 정상대조군(normal), 식이 고콜레스테롤 투여로 동맥경화유발군(cholesterol), 식이 고콜레스테롤 투여로 인한 동맥경화유발 후, 장어부산물 열수추출물(Hx) 투여군은 100 mg/day, 200 mg/day 및 500 mg/day 으로 나누었으며, 각 5마리씩 분리 수용하였다. In the experimental group, 100 mg / day and 200 mg / day of hot-water extract (Hx) from the eel by-product were induced after atherosclerosis induced by normal cholesterol, cholesterol and dietary high cholesterol, And 500 mg / day, respectively.

실험기간동안 물과 사료(효창 사이언스, Korea)의 양은 제한없이 공급하였으며, 식이 콜레스테롤은 올리브 기름(olive oil)과 4:1 비율로 혼합액을 만들어 8주간 투여하여 동맥경화증을 유도하였다.
The amount of water and feed (Hyochang Science, Korea) was supplied without restriction during the experimental period. Dietary cholesterol was mixed with olive oil at a ratio of 4: 1 and administered for 8 weeks to induce arteriosclerosis.

장어부산물 열수추출물(Hx) 투여군은 식이 고콜레스테롤 섭취군와 같은 방법으로 식이 고콜레스테롤을 투여하여 동맥경화증을 유도한 후, 장어부산물 열수추출물(Hx)과 물을 3:7 비율로 희석하여 4주간 투여하였다. 모든 실험군은 처치 24시간 전부터 물만 공급하고 금식시켰다.
(Hx) by the same method as that of the dietary high cholesterol diet, and induced cholesterol to induce atherosclerosis. Then, the hot water extract (Hx) of eel by-products and water were diluted in a ratio of 3: 7 for 4 weeks Respectively. All experimental groups were fed only with water and fasted 24 hours before treatment.

동물의 처치는 에테르(ether) 마취하에 개복한 후, 복부 대동맥으로부터 채혈하여 실혈사 시키고 일정량의 복부대동맥 혈관조직을 적출하였으며, 4℃ 상태의 생리식염수로 간문맥을 통하여 간을 관류하고 조직 내의 남아 있는 혈액을 제거한 다음 간을 적출하였다. 적출한 간과 복부대동맥 혈관조직은 생리식염수로 씻은 후, 여과지로 압박하여 장기내에 남아있는 생리식염수를 제거한 다음 무게를 측정하여 항산화 및 산화적 스트레스 관련 실험 측정용 시료로 사용하기 위해 -80℃ 냉동보관 하였다.
The animals were treated under ether anesthesia, and then blood was collected from the abdominal aorta and sera were collected. A certain amount of abdominal aortic vascular tissue was extracted. The liver was perfused through the portal vein with 4 ° C physiological saline, The blood was removed and the liver was then extracted. The extracted liver and abdominal aortic vascular tissues were washed with physiological saline and then pressed with a filter paper to remove the remaining physiological saline solution and then weighed and stored at -80 ° C for use as a test sample for antioxidant and oxidative stress test Respectively.

채취한 혈액은 실온에서 30분간 방치한 다음 3.000 rpm에서 15분간 원심분리하여 혈청을 얻고 혈청내의 지질 함량 측정용 시료로 사용하였다.
The collected blood was allowed to stand at room temperature for 30 minutes and then centrifuged at 3.000 rpm for 15 minutes to obtain serum and used as a serum lipid content measurement sample.

2. 시료의 조제 2. Preparation of sample

간조직의 일정량에 4배량의 pH 7.4, 0.1 M Potassium Phosphate buffer용액을 넣고 균질기(homogenizer)를 이용하여 마쇄 균질액을 제조하였으며, 이 균질액을 600 × g에서 10분간 원심분리하여 핵 및 미마쇄부분을 제거한 상층액을 10.000 × g에서 20분간 원심분리하여 상층액을 얻어 -80℃ 냉동보관 하였다.
A homogenate was prepared by homogenizing four times of pH 7.4 and 0.1 M Potassium Phosphate buffer solution to a certain amount of liver tissue. The homogenate was centrifuged at 600 × g for 10 minutes, The supernatant was removed by centrifugation at 10.000 xg for 20 minutes, and the supernatant was collected and stored at -80 ° C.

복부 대동맥 혈관조직 마쇄 균질액도 위의 방법으로 실행하였으며, 간조직 및 복부 대동맥 혈관조직 마쇄 균질액은 지질과산화 및 xanthine oxdiase, superoxide dismutase(SOD), catalase, glutathione peroxidase 활성도 측정용 시료로 사용하였다.
The homogenate of abdominal aortic aneurysm was also used for the measurement of lipid peroxidation, xanthine oxdiase, superoxide dismutase (SOD), catalase and glutathione peroxidase activity in liver tissue and abdominal aortic vascular tissue homogenate.

3. 동맥경화지수 측정3. Measurement of arteriosclerosis index

동맥경화지수 (Atherosclerotic Index, Al)는 저밀도 콜레스테롤(LDL-cholesterol), 고밀도 콜레스테롤(HDL-cholesterol) 측정치로부터 동맥경화지수를 산출하는 방식을 이용하여 계산하였다.
The atherosclerotic index, Al, was calculated using a method of calculating atherosclerotic index from low-density lipoprotein cholesterol (HDL-cholesterol) and high-density lipoprotein cholesterol (HDL-cholesterol) measurements.

○ Al = △ (LDL-cholesterol - HDL-cholesterol) / HDL-cholesterol
○ Al = Δ (LDL-cholesterol - HDL-cholesterol) / HDL-cholesterol

4. 복부 대동맥 혈관조직내 지질과산화 함량 측정4. Measurement of lipid peroxidation content in abdominal aortic vascular tissue

복부 대동맥 혈관조직내 지질과산화 함량은 thiobarbituric acid (이하 TBA로 표기함)와 반응하여 생성된 TBA-reacting substances의 함량으로 Ohkawa (1979)방법을 응용하여 측정하였으며, 각 실험군의 복부 대동맥 혈관조직 1 g과 pH 7.4의 0.05 M phosphate butter 5 ㎖를 반씩 나누어 넣어 마쇄시킨다. 시험관에 0.5 ㎖의 복부 대동맥 혈관 조직 마쇄 균질액을 넣고 7% Sodium dodecyl sulfate (SDS) 1 ㎖를 넣어 혼합시킨 후, 37℃의 수조( water bath)에서 30분간 반응시킨다. 이 반응물에 0.67% TBA와 acetic acid를 동량으로 혼합한 (1:1) 2 ㎖를 넣고 잘 섞은 후, 98℃의 끊는 물에 50분간 가열한 후, 급냉시켜 n-buthanol 5 ㎖를 넣고 원심분리기를 3.000× rpm에서 10분간 원심분리한다. The lipid peroxidation contents in the abdominal aortic vascular tissues were measured by Ohkawa (1979) method using the content of TBA-reacting substances produced by the reaction with thiobarbituric acid (hereinafter referred to as TBA), and 1 g of the abdominal aortic vascular tissue And 5 ml of 0.05 M phosphate butter at pH 7.4. 0.5 ml of the homogenate of abdominal aortic vascular grafting is added to the test tube, 1 ml of 7% sodium dodecyl sulfate (SDS) is added, and the mixture is reacted in a 37 ° C water bath for 30 minutes. 2 ml of an equal volume of 0.67% TBA and acetic acid (1: 1) was added to the reaction mixture. The reaction mixture was heated to 98 ° C for 50 minutes, quenched, and 5 ml of n-buthanol was added thereto. Is centrifuged at 3.000 x rpm for 10 minutes.

이 후 TBA 반응물이 존재하는 n-butanol층을 취하여 535 nm에서 흡광도를 측정하였으며, MDA 함량은 조직 g당 nmole로 표시하였다.
The n-butanol layer containing the TBA reactant was then measured for absorbance at 535 nm. The MDA content was expressed in nmoles per gram of tissue.

5. 복부 대동맥 혈관조직내 유해 활성산소 생성계 효소인 Xanthine Oxidase 활성의 저해효과5. Inhibitory Effect of Xanthine Oxidase Activity in the Abdominal Aortic Aneurysm

복부 대동맥 혈관조직내 Xanthine Oxidase 활성은 Stirpe and Corte (1969)(Stripe, F. and Corie, E. D. The regulation of rat liver Xanthine Oxidase. Conversion in vitro of the enzyme activity from dehydrogen (Type D) to oxidase (type O), J. Biol. Chem, 244:3855, 1969)의 방법을 수정하여 측정하였다. 0.1 M potassium phosphate buffer에 xanthine 2 mM의 농도로 녹여 micro centrifuge tube에 1 ㎖을 넣고, Xanthine Oxidase 0.1 ㎖와 복부 대동맥 혈관조직 마쇄 균질액 0.1 ㎖을 넣는다. 대조군으로는 시료 대신 증류수를 동량 넣는다. 37℃에서 5분간 반응시킨다. 20% trichloroacetic acid (TCA) 1 ㎖를 가하여 반응을 종료시킨다. 반응액 중에 생성된 uric acid를 파장 292 nm에서 흡광도를 측정한다. XO 활성도 단위는 효소 반응액 중에 함유된 단백질 mg이 1분간 반응하여 기질인 xanthine으로부터 생성된 uric acid의 양을 nmole로 표시하였다.
Xanthine oxidase activity in the abdominal aortic vascular tissues was measured by Stirpe and Corte (1969) (Stripe, F. and Corie, ED The regulation of rat liver xanthine oxidase. Conversion in vitro of enzyme activity from dehydrogenase ), J. Biol. Chem., 244: 3855, 1969). Dissolve xanthine at a concentration of 2 mM in 0.1 M potassium phosphate buffer, add 1 ml to a microcentrifuge tube, add 0.1 ml of Xanthine Oxidase and 0.1 ml of abdominal aortic vascular grafting homogenate. For the control group, add the same amount of distilled water instead of the sample. The reaction is carried out at 37 ° C for 5 minutes. The reaction is terminated by adding 1 ml of 20% trichloroacetic acid (TCA). Absorbance of uric acid produced in the reaction solution is measured at a wavelength of 292 nm. The XO activity unit is expressed in nmole by the amount of uric acid produced from the substrate xanthine by reacting the protein contained in the enzyme reaction solution for 1 minute.

6. 유해 활성산소 제거계 효소인 SOD효소 활성화 효과 6. Activation effect of SOD enzyme which is an enzyme of harmful active oxygen scavenging system

복부 대동맥 혈관조직내 슈퍼옥시드 디스무타아제(Superoxide Dismutase, SOD)활성은 McCord와 Fridovich (1969)의 방법을 수정하여 측정하였으며, 0.2 M sodium phosphate buffer (pH 7.4) 672 ㎕, 1 mM xanthine 100 ㎕, 1% Sodium Deoxychlorate (DOC) 30 ㎕, 1.5 mM Potassium Cyanide (KCN) 30 ㎕, 0.2 mM cytochrome C 150 ㎕를 넣은 혼합물에 복부 대동맥 혈관조직 마쇄 균질액 5 ㎕를 넣고 잔틴산화효소(Xanthine Oxidase) 10 ㎕를 넣어 혼합한 후 파장 550 nm에서의 흡광도 변화를 1분 30초동안 측정한다.
Superoxide dismutase (SOD) activity in the abdominal aortic vascular tissues was measured by modifying the method of McCord and Fridovich (1969), and 672 μl of 0.2 M sodium phosphate buffer (pH 7.4), 100 μl of 1 mM xanthine , 30 μl of 1% sodium deoxychlorate (DOC), 30 μl of 1.5 mM Potassium Cyanide (KCN), and 150 μl of 0.2 mM cytochrome C were added to 5 μl of the homogenate for abdominal aortic vascular tissue grinding and Xanthine Oxidase 10 , And the absorbance change at 550 nm is measured for 1 minute and 30 seconds.

잔틴(Xanthine)은 기질로 사용되고 cytocrome C는 O2 생성을 방지하는 역할을 하며, KCN은 발색액, DOC는 xanthine을 hypoxanthine으로 만드는 산화제로 사용된다. Hypoxanthine은 SOD의 활성자리에 초산화음이온 O2-를 반응시킬 수 있도록 유도한다. SOD 활성도 단위는 효소 반응액 중에 함유된 단백질 mg이 1분 30초 동안 반응하여 O2가 한 개의 전자를 받아들여 불완전 산화된 O2 -를 H2O2로 전환된 양을 의미하며, 비활성(specific activity)는 1 mg protein에 해당하는 enzyme unit로 환산하여 나타내었다.
Xanthine is used as a substrate, cytocrome C plays a role to prevent O 2 generation, KCN is a coloring solution, and DOC is an oxidizing agent that makes xanthine hypoxanthine. Hypoxanthine induces the reaction of the superoxide anion O2 - to the active site of SOD. The SOD activity unit refers to the amount of protein O 2 - converted to H 2 O 2 by the reaction of the protein mg in the enzyme reaction solution for 1 minute and 30 seconds so that O 2 accepts one electron and is incompletely oxidized. specific activity) was expressed as an enzyme unit equivalent to 1 mg protein.

7. 유해 활성산소 제거 효소 Catalase 활성에 미치는 효과7. Effect on catalase activity of harmful active oxygen scavenging enzyme

복부 대동맥 혈관조직내 catalase 활성은 Aebi (1974)의 방법에 수정하여 측정하였다. 복부 대동맥 혈관조직 마쇄 균질액 0.01 ㎖를 50 mM potassium phosphate buffer (pH 7.4) 2.89 ㎖와 혼합한 후, 300 mM H2O2 0.1 ㎖을 넣어 반응을 개시한 다음 파장 240 nm에서 5분 동안 감소하는 흡광도의 양을 측정한다. Catalase 활성도 단위는 효소 반응액 중에 함유된 단백질 mg이 5분간 소실되는 H2O2의 양 (nmol)으로 나타내었다. The catalase activity in abdominal aortic vascular tissues was measured by Aebi (1974). After mixing 0.01 ml of homogenate of abdominal aortic vascular tissue homogenate with 2.89 ml of 50 mM potassium phosphate buffer (pH 7.4), 0.1 ml of 300 mM H 2 O 2 was added to initiate the reaction, and then the concentration was decreased at a wavelength of 240 nm for 5 minutes The amount of absorbance is measured. The catalase activity unit is expressed as the amount of H 2 O 2 (nmol) in which the protein contained in the enzyme reaction solution disappears for 5 minutes.

8. 유해 활성산소 제거 효소 Glutathione peroxidase 활성에 미치는 효과8. Effect on the activity of the harmful active oxygen-scavenging enzyme Glutathione peroxidase

복부 대동맥 혈관조직내 glutathione peroxidase 활성은 Lawrence (1976)의 방법을 수정하여 측정하였다. 복부 대동맥 혈관조직 마쇄 균질액 0.1 ㎖을 50 mM potassium phosphate buffer (pH 7.0) 2.6 ㎖에 가하고, 30 mM glutathione 0.1 ㎖, 6 mM NADPH 0.1 ㎖, 그리고 1 unit의 glutathione reductase를 첨가하여 혼합한 후, 25℃에서 5분간 방치한다. 여기에 7.5 mM H2O2 0.1 ㎖를 첨가하여 반응을 개시한 후 파장 340 nm에서 2분간 감소되는 흡광도를 측정한다. GSH-Px 활성도 단위는 효소 반응액 중에 함유된 단백질 mg이 2분간 산화되는 NADPH의 양(nmol)으로 나타내었다.
Glutathione peroxidase activity in abdominal aortic vascular tissues was measured by modifying the method of Lawrence (1976). 0.1 ml of abdominal aortic vascular tissue homogenate was added to 2.6 ml of 50 mM potassium phosphate buffer (pH 7.0), 0.1 ml of 30 mM glutathione, 0.1 ml of 6 mM NADPH and 1 unit of glutathione reductase were added and mixed. Leave at room temperature for 5 minutes. Add 0.1 ml of 7.5 mM H 2 O 2 to initiate the reaction and measure the absorbance at 340 nm for 2 minutes. The GSH-Px activity unit is expressed as the amount (nmol) of NADPH oxidized for 2 minutes in mg of protein contained in the enzyme reaction solution.

9. 평활근세포의 증식 분석 (in vivo, in vitro)9. Proliferation assay of smooth muscle cells (in vivo, in vitro)

In vivo 평활근세포의 증식 실험은 balloon injury model 작제(상기 방법과 동일) 후, 일정기간 생육한 흰쥐로부터 동맥 적출하여 3μm의 절편을 작제 후, 면역염색법으로 평가한다. 동맥적출전, 생리식염수로 perfusion을 실시하고 4% paraformaldehyde solution으 로 환류 및 침적 고정을 하고 paraffin절편을 만든다. 혈관내 평활근세포의 증식정도는 세포 핵내의 proliferating cell nuclear antigen (PCNA)의 항체를 이용한 항원과의 반응을 비색화하는 면역염색법으로 in vivo proliferation을 평가한다. In vivo smooth muscle cell proliferation experiments were performed by balloon injury modeling (same as above), and 3 μm sections were harvested from a rat grown for a period of time and evaluated by immunostaining. Arterial exposures are perfused with saline and refluxed and immersed in 4% paraformaldehyde solution to make paraffin sections. The degree of proliferation of intravascular smooth muscle cells is assessed by in vivo proliferation using immunostaining that colorizes the reaction of the proliferating cell nuclear antigen (PCNA) with the antigen in the cell nucleus.

In vitro에 있어 평활근 세포의 증식은 인체 평활근 세포를 구입하여 배양 계대한 세포를 사용한다 (이 세포는 현재 실험실에서 보유). 평활근세포 1x105 cells/ml에 세포증식인자(PDGF, FGF, thrombin, TGF-β등) 및 시료를 처리하여 24시간 배양한 후, MTT 및 tryphan blue exclusion법으로 세포의 성장정도 및 세포수를 count하여 증식의 정도를 확인하고, flow cytometer를 이용하여 세포주기의 세포합성기의 억제 정도를 평가한다.
In vitro, smooth muscle cell proliferation is obtained by purchasing human smooth muscle cells and using cultured cells (these cells are currently in the laboratory). After culturing for 24 hours, cells were treated with cell proliferation factors (PDGF, FGF, thrombin, TGF-β, etc.) at 1 × 10 5 cells / ml of smooth muscle cells and cultured for 24 hours. MTT and tryphan blue exclusion The degree of proliferation is checked, and the degree of inhibition of the cell cycle of the cell cycle is evaluated using a flow cytometer.

10. MMP-2, MMP-9 zymography 분석10. MMP-2, MMP-9 zymography analysis

MMP(metallo matrix proteinse)의 억제활성(in vivo, in vitro)은 zymography에 의한 방법으로 실시하며, 조직의 경우, 적출한 조직의 무게에 5배량의 homogenate buffer( 250 mM sucrose, 10 mM Hepes-Tris, pH 7.5)로 균질화한 후, 0.1% gelatin함유 10% SDS-polyacryamide gel에서 전기영동(120V, 20mA)에서 전개한다. The inhibitory activity of metalloproteinase (MMP) (in vivo and in vitro) was determined by zymography. In the case of tissues, 5 times the amount of homogenate buffer (250 mM sucrose, 10 mM Hepes-Tris , pH 7.5) and developed on electrophoresis (120V, 20mA) on a 10% SDS-polyacrylamide gel containing 0.1% gelatin.

전개 후 2.5% Triton X-10으로 15분간 3번 세척하고, gel을 incubation buffer(50mM Tris-HCl, 0.2M NaCl, 10mM CaCl2, 각 시료)에서 37℃, 20시간 incubation 한다. 다시 gel을 0.1% coomassie blue(AcOH:MeOH:H2O, 1:3:6)로 염색 후, destaining하고 74KD, 92KD의 band를 확인하여 평가한다.
After development, wash with 2.5% Triton X-10 three times for 15 minutes and incubate gel in incubation buffer (50 mM Tris-HCl, 0.2 M NaCl, 10 mM CaCl 2 , each sample) at 37 ° C for 20 hours. The gel was stained with 0.1% coomassie blue (AcOH: MeOH: H 2 O, 1: 3: 6) and destained. The band of 74 KD and 92 KD was identified and evaluated.

< 실험 결과 >
<Experimental Results>

1. 장어부산물 추출물의 사람 혈관평활근 세포유래 MMP-9생성 저해활성1. Inhibitory activity of eel by-product extract on human vascular smooth muscle cell-derived MMP-9

상기 [실시예 1]에서 장어부산물 열수 추출물(Hx)과 장어부산물 메탄올 추출물(Mx)을 이용하여 혈관평활근세포가 생성하는 MMP-9 저해실험에 사용하였다.
In the above Example 1, the extracts of hot-water extract of eel by-products (Hx) and methanol extract of eel by-products (Mx) were used for the inhibition of MMP-9 produced by vascular smooth muscle cells.

상기의 실험결과에서는, 도 1의 TNF-a로 사람혈관유래 평활근세포의 증식과 혈관협착지표인 기저막 분해효소 MMP-2/9 생성억제 활성을 나타낸 것으로, 장어 부산물의 열수추출물(Hx) 500 ug/ml과 메탄올 추출(Mx) 200~500 ug/ml에서 생성저해활성이 인정됨을 알 수 있었다.
The results of the above experiments show that TNF-a of FIG. 1 inhibits the growth of smooth muscle cells derived from human blood vessels and the production of basement membrane degrading enzyme MMP-2/9, which is an index of vascular stenosis. / ml and methanol extract (Mx) 200 ~ 500 ug / ml.

2. 장어부산물의 추출물 (Px, Mx, Hx)의 농도에 따른 MTT 분석에 의한 사람동맥혈관평활근세포주(HASMC)에 대한 증식억제활성(독성)
2. Proliferation inhibitory activity (toxicity) on human arterial smooth muscle cell line (HASMC) by MTT assay according to concentration of extracts of eel byproducts (Px, Mx, Hx)

사람동맥 혈관평활근 세포주(HASMC) (2.4×103)를 각각 96well microplate에 well당 150 ㎕씩 분주한 후, MTT assay를 실시하였던 바,
The human arterial smooth muscle cell line (HASMC) (2.4 × 10 3 ) was dispensed in a 96-well microplate at a rate of 150 μl per well, and MTT assay was performed.

장어부산물 생리식염수 추출물(Px), 장어부산물 메탄올 추출물(Mx), 장어부산물 열수 추출물(Hx)을 각각 0, 2, 5, 10, 50, 100 ug/ml의 농도별로 세포증식억제 활성을 검토하였다.
The cell proliferation inhibitory activities of eel byproduct saline (Px), eel by-product methanol extract (Mx) and eel by-product hot water extract (Hx) at concentrations of 0, 2, 5, 10, 50 and 100 ug / ml were examined .

그 결과, 100 ug/ml 까지 농도에서 독성이 없으므로, 이 농도 하에서 향후 실험에 사용하는 데에는 독성이 없는 것으로 인정하였다. 즉, 세포 독성이 없거나 낮은 것으로 나타나 건강기능성 식품보조제로서 활용할 수 있을 것으로 사료된다.
As a result, there was no toxicity at the concentration up to 100 ug / ml, and it was recognized that there was no toxicity for use in future experiments under this concentration. In other words, there is no or low cytotoxicity and it can be used as a health functional food supplement.

도 2는 장어부산물의 열수추출물(Hx)이 사람동맥혈관평활근세포주(HASMC)에 대한 세포독성에 대한 결과를 나타낸 것으로, 사람동맥혈관평활근세포주(HASMC) (2.4×103)를 각각 96well microplate에 well당 150㎕씩 분주한 후, 세포독성을 검사한 결과, 사람동맥혈관평활근세포주(HASMC)에 대한 장어부산물의 열수추출물(Hx)의 독성이 관찰되지 않았으며, 나머지 생리식염수 추출물(Px), 메탄올추출물(Mx)의 결과도 동일하였다(표시하지 않음).FIG. 2 shows the results of cytotoxicity against human arterial smooth muscle cell line (HASMC) of hot-water extract (Hx) of eel by-products. Human arterial smooth muscle cell line (HASMC) (2.4 × 10 3 ) (Hx) of the eel by-products were not observed in the human arterial smooth muscle cell line (HASMC), and the remaining physiological saline extract (Px) The results of the methanol extract (Mx) were also the same (not shown).

따라서, 도 2에서는 장어부산물의 열수추출물(Hx)에 대하여 나타낸 것이다.
Therefore, Fig. 2 shows the hot-water extract (Hx) of eel by-products.

3. 장어부산물 열수추출물(Hx) 투여군의 혈청내 콜레스테롤의 동맥경화지수에 대한 효과
3. Effect of serum cholesterol on atherosclerotic index of hot-water extract (Hx)

실험동물의 혈청내 콜레스테롤의 동맥경화지수(AI, Atherosclerotic Index)를The atherosclerotic index (AI) of cholesterol in the serum of experimental animals

AI= △〔(LDL-cholesterol - HDL-cholesterol)/ HDL-cholesterol〕공식에서 각 실험군의 동맥경화지수를 산출한 결과, 혈청 내 콜레스테롤의 동맥경화지수는 정상군 0.7, 고콜레스테롤 식이 섭취군 1.87, 장어 열수추출물(Hx)투여군 0.8, 콜레스테롤+장어 열수추출물군에서는 1.23을 나타내었다(표 1).
The atherogenic index of cholesterol in serum was calculated as 0.7 in normal group, 1.87 in high cholesterol diet group, 1.87 in high cholesterol diet group, AI = △ [(LDL-cholesterol-HDL-cholesterol) / HDL- 0.8 in the hot water extract of eel (Hx) group and 1.23 in the cholesterol + hot water extract group (Table 1).

Figure 112014047823485-pat00001

Figure 112014047823485-pat00001

4. 장어 열수추출물(Hx)의 복부 대동맥 혈관조직내 지질과산화억제효과
4. Suppression of lipid peroxidation in the abdominal aortic vascular tissues of eel hot water extract (Hx)

고지방식이나 고콜레스테롤 식이섭취는 체내 조직 및 혈관조직의 산화적 손상을 초래하며 고콜레스테롤 상태에서 산화적 스트레스가 촉진되고 다양한 항산화 방어기전의 활성 변화가 관찰되어지며. 고콜레스테롤 상태에서는 superoxide dismutase(SOD), glutathione peroxidase (GSH-Px) 및 catalase 등과 같은 항산화계 효소의 양은 감소되고 지질과산화물 함량은 증가되는 반면 항산화제의 보강에 의해 이들 값이 개선되므로, 복부대동맥에서의 이들 억제활성을 검토하였으며. 복부 대동맥 혈관조직내 지질과산화의 분해산물인 지질과산화물 MDA 함량에서, 조직(tissue) 1g당 정상군은 21.5±3.5 nmol/g, 고콜레스테롤 식이 섭취군은 37.3±6.4 nmol/g, 장어부산물 열수추출물(Hx) 투여군은 30.5±2.4nmol/g 을 나타내고 있었으며(표 2).
High - fat diets or high cholesterol diets resulted in oxidative damage of body tissues and vascular tissues, accelerated oxidative stress in hypercholesterolemic conditions, and various changes in antioxidant activity. In the hypercholesterolemic state, the amount of antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase is decreased and the lipid peroxide content is increased while these values are improved by the supplementation of antioxidants. Were investigated. The MDA content of lipid peroxidation, a degradation product of lipid peroxidation in abdominal aortic vascular tissues, was 21.5 ± 3.5 nmol / g in the normal group and 37.3 ± 6.4 nmol / g in the high cholesterol diet group, (Hx) administration group showed 30.5 ± 2.4 nmol / g (Table 2).

복부 대동맥 혈관조직 내 MDA 수준은 장어부산물 열수추출물(Hx)에서는 고콜레스테롤 식이 섭취군보다 15% 가량 유의적인 감소 경향을 보였다.The levels of MDA in abdominal aortic vascular tissues showed a significant decrease by 15% in the hot - water extract (Hx) of eel by - product compared to the group fed with high cholesterol diet.

Figure 112014047823485-pat00002
Figure 112014047823485-pat00002

실험군의 간조직을 균질화시켜 지질과산화 반응을 이용하여 반응산물로 생성되는 지질과산화물 MDA를 추출하고 이를 특정 파장 535 nm에서 흡광도를 측정하였다(n=5). MDA 처리군에서 유의성은 보이지 않으나 저하활성을 보였다.
The lipid peroxidic MDA produced as a reaction product was extracted by using lipid peroxidation reaction and the absorbance was measured at a specific wavelength of 535 nm (n = 5). There was no significant difference in the MDA treatment group, but the activity was decreased.

5. 복부 대동맥 혈관조직내 유해 활성산소 생성계 효소인 Xanthine Oxidase(Xo)활성 저해효과
5. Inhibition of Xanthine Oxidase (Xo) activity, a harmful active oxygen generating enzyme in abdominal aortic vascular tissue

Xanthine oxidase (XO, xanthine oxygen oxidoreductase)는 체내 유리기 생성계의 비특이적인 효소로 주로 purine체의 대사산물인 hypoxanthine을 xanthine으로 xanthine을 다시 산화시켜 uric acid를 생성하는 과정에서 유리기인 superoxide radical을 생성하는 (superoxide radical generation) 효소이다. Xanthine oxidoreductase (XO) is a nonspecific enzyme in the body's free radical generation system. It mainly produces hypoxanthine, which is a metabolite of purine body, and xanthine, which oxidizes xanthine to produce superoxide radicals superoxide radical generation) enzyme.

free radical의 발생은 xanthine oxidase의 대사과정에서 뿐만 아니라 phospholipase A2 활성의 증가, 체내로 유입된 이물질을 산화시키는 소포체의 mixed function oxidase계의 대사과정에서도 free radical을 생성한다고 알려져 있다(Sohal, R.S. and Allen, R.G., Oxidative stress as a cousal factor indifferentiation and aging, A unifying hypothesis, Exper, Gerontol., 25, 499, 1980). 복부 대동맥 혈관조직내 XO의 활성은 고콜레스테롤 식이 섭취군(3.5±0.3 nmol/mg protein)에 비해 장어열수추출 농축액 투여군(2.8±0.2 nmol/mg protein)에서 21% 감소하였다(표 3). XO 활성 반응액 중에 생성된 uric acid를 흡광도 292 nm에서 측정하여 XO 활성을 나타내었다.
Free radicals are known to produce free radicals not only in the metabolic process of xanthine oxidase but also in the metabolic process of the mixed function oxidase system of the endoplasmic reticulum which increases the phospholipase A2 activity and the foreign substances introduced into the body (Sohal, RS and Allen , RG, Oxidative stress as a cousal factor indifferentiation and aging, A unifying hypothesis, Exper, Gerontol., 25, 499, 1980). The activity of XO in the abdominal aortic vascular tissue was 21% lower than in the high cholesterol dietary intake group (3.5 ± 0.3 nmol / mg protein) compared to the control group (2.8 ± 0.2 nmol / mg protein) The uric acid produced in the XO active reaction solution was measured at an absorbance of 292 nm to exhibit XO activity.

Figure 112014047823485-pat00003

Figure 112014047823485-pat00003

6. 복부 대동맥 혈관조직내 Superoxide Dismutase 활성에 대한 열수추출물의 효과
6. Effect of hot water extract on superoxide dismutase activity in abdominal aortic vascular tissues

Superoxide Dismutase (SOD)는 2개의 superoxide radical (superoxide, O2 -)를 제거하여 체내 축적을 막아주는 것으로, SOD 활성 측정은 잔틴(xanthine)은 기질로 사용되고 cytochrome C는 O2 생성을 방지하는 역할을 하며, KCN은 발색액, DOC는 xanthine을 hypoxanthine으로 만드는 산화제로 사용된다. Hypoxanthine은 SOD의 활성자리에 초산화음이온 O2 -를 반응 시킬 수 있도록 유도한다.
Superoxide dismutase (SOD) inhibits accumulation of two superoxide radicals (superoxide, O 2 - ). SOD activity is measured by xanthine as substrate and cytochrome C as O 2 inhibitor KCN is used as a coloring solution, and DOC is used as an oxidizing agent to make xanthine into hypoxanthine. Hypoxanthine induces the reaction of the superoxide anion O 2 - to the active site of SOD.

그 결과, 복부 대동맥 혈관조직 내 SOD 활성은 고콜레스테롤 식이 섭취군(8.2±1.1 unit/mg protein)이 장어부산물 열수추출물(Hx) 투여군(10.7±1.5 unit/mg protein)에서는 21.2% 가량 증가 경향을 나타내었다(표 4). Superoxide를 H2O2로 전환시키는 SOD 작용을 흡광도 550 nm에서 1분 30초간 time scanning하여 SOD 활성을 측정하였다.
As a result, the SOD activity in the abdominal aortic vascular tissues increased by 21.2% in the high cholesterol diet group (8.2 ± 1.1 unit / mg protein) and the eel by-product hot water extract (Hx) group (10.7 ± 1.5 unit / mg protein) (Table 4). The SOD activity, which converts superoxide to H 2 O 2 , was measured by time-scanning at an absorbance of 550 nm for 1 minute and 30 seconds.

Figure 112014047823485-pat00004
Figure 112014047823485-pat00004

7. 복부대동맥 혈관조직내 Catalase 활성화에 대한 열수추출 농축액의 효과
7. Effect of hot water extraction concentrate on catalase activation in abdominal aortic vascular tissue

H2O2를 제거하는 Catalase의 활성은 장어부산물 열수추출물(Hx) 투여군(18.9±2.4 nmol/mg protein/min)에서는 고콜레스테롤 식이 섭취군(14.6±2.6 nmol/mg protein/min)보다 24% 가량 유의적인 증가 경향을 보였다(표 5).The activity of Catalase to remove H 2 O 2 was 24% higher than that of high cholesterol diet group (14.6 ± 2.6 nmol / mg protein / min) in hot water extract (Hx) group (18.9 ± 2.4 nmol / (Table 5).

Figure 112014047823485-pat00005

Figure 112014047823485-pat00005

8. 복부 대동맥 혈관조직내 Glutathione peroxidase 활성에 대한 장어부산물 열수추출물(Hx) 투여군의 효과
8. Effect of Glutathione peroxidase activity in the abdominal aortic vascular tissues in the hot-water extract (Hx) group of eel by-products

Glutathione peroxidase (GSH-Px)는 모든 포유동물의 조직에서 발견되며 Glutathione 을 사용하여 H2O2와 organic hydroperoxides를 제거하며, 이때 생성된 oxidized glutathione (GSSG, 산화형 glutathione)는 glutathione reductase에 의해 다시 glutathione에 의존하는 산화환원반응을 통해 세포막을 보호한다. Glutathione peroxidase (GSH-Px) is found in all mammalian tissues. Glutathione is used to remove H 2 O 2 and organic hydroperoxides. The oxidized glutathione (GSSG) produced by glutathione reductase is replaced by glutathione To protect the cell membrane through a redox reaction that is dependent on the cell membrane.

치료역할까지 하는 환원형 glutathione과 제 3항산화제로 불리는 GSH-Px는 세포질안과 미토콘드리아속에서 세포를 지키는 항산화제이다. GSH-Px의 주요 구성성분인 셀레늄 (selenium)은 식이로 필요량을 반드시 섭취해야 하는 체내에 꼭 필요한 광물질의 일종이다.
Reduced glutathione, which acts as a therapeutic, and GSH-Px, a third antioxidant, are antioxidants that protect cells in the cytoplasm and mitochondria. Selenium, a major constituent of GSH-Px, is a kind of minerals that is essential for the body to ingest the necessary amount by diet.

복부 대동맥 혈관조직내 GSH-Px 활성은 고콜레스테롤 식이 섭취군 3.2±0.3 nmoles/mg protein/min, 장어부산물 열수추출물(Hx) 투여군 4.5±0.3 nmoles/mg protein/min 이다(표 6). 장어부산물 열수추출물(Hx) 투여군에서는 GSH-Px 활성이 35% 가량 유의적인 증가 경향을 보였다.
GSH-Px activity in abdominal aortic vascular tissues was 3.2 ± 0.3 nmoles / mg protein / min in the high cholesterol diet group and 4.5 ± 0.3 nmoles / mg protein / min in the hot-water extract (Hx) GSH-Px activity was significantly increased by 35% in the hot-water extract (Hx) treated by eel by-product.

Figure 112014047823485-pat00006

Figure 112014047823485-pat00006

산화형 glutathione (GSSG)의 형성에 따른 NADPH의 흡광도가 감소되는 속도를 340 nm에서 2분간 측정하였다. 즉, GSH-Px의 존재하에 H2O2를 첨가시키면 GSSG가 생성되고, 반응액내에 존재하는 glutathione reductase와 NADPH에 의해 GSSG가 다시 glutathione으로 환원되는 속도를 관찰함으로써 GSH-Px의 활성을 산출하였다.
The rate at which the absorbance of NADPH decreased with the formation of oxidized glutathione (GSSG) was measured at 340 nm for 2 min. In other words, when H 2 O 2 was added in the presence of GSH-Px, GSSG was produced, and the activity of GSH-Px was calculated by observing the rate of GSSG reduction to glutathione by glutathione reductase and NADPH present in the reaction solution .

상기 실험을 종합하여 설명하면 다음과 같다.The above experiments are summarized as follows.

혈관은 3층으로 구성된 조직으로 내피세포(endothelial cells), 평활근세포(smooth muscle cell) 및 조직세포(advantia cells)등이 조직의 반응, 탄력성을 제공하는 고도의 방어조직이다. 혈관에 세균감염, 콜레스테롤의 산화에 의한 부착등 여러 가지 원인에 의한 혈관벽손상에 의한 염증성 반응이 진행되면 혈관내피세포의 염증반응이 개시된다.The blood vessels are composed of three layers. Endothelial cells, smooth muscle cells and adventitial cells are highly protective tissues that provide the reaction and elasticity of tissues. The inflammatory reaction of vascular endothelial cells is initiated when the inflammatory reaction by damage of the blood vessel wall due to various causes such as bacterial infection in blood vessels and adhesion due to oxidation of cholesterol proceeds.

Atherosclerosis인 동맥경화증은 산화된 저밀도 지단백 (low density lipoprotein, LDL) 입자가 동맥내강을 빠져 나와 혈관내피세포막에 부착체류하여 혈소판등의 추가적인 반응, 대식세포인 macrophage의 탐식반응을 조합한 염증반응을 통하여 발생되는 질환이다. 결국 대식세포는 거품세포로서 동맥내면에 지방을 섭취하거나 누적시켜 평활근세로 구성된 비정상세포 조직이 과잉증식하여 동맥내경의 협착을 일으키는 질병이다.
Atherosclerosis, atherosclerosis, is an inflammatory process in which oxidized low density lipoprotein (LDL) particles leave the lumen of the artery and attach to the vascular endothelial cell membrane, resulting in an additional response such as platelets and a macrophage macrophage inflammatory response It is a disease that occurs. In conclusion, macrophages are bubble cells, which ingest or accumulate fat on the inner surface of the arteries, resulting in excessive cell proliferation of the smooth muscle, resulting in stenosis of the arterial wall.

동맥경화증의 위험인자들는 세포내 산화 스트레스의 주원인인 활성산소 (free radical, oxygen radical)이다. 산소를 이용하는 생체는 반응성이 크므로 조직내 독성을 가지는 superoxide (O2 -, superoxide radical)를 제거하는 제 1 항산화제인 superoxide dismutase (SOD)를 가지고 있어 superoxide에 의한 산소 독성의 손상으로부터 보호되고 있다.
Risk factors for arteriosclerosis are free radicals (oxygen radicals), which are the main causes of intracellular oxidative stress. Oxygen - containing organisms have superoxide dismutase (SOD), a primary antioxidant to remove superoxide (O 2 - , superoxide radical), which is highly reactive.

H2O2를 제거하는 세포방어 제 2 항산화제 catalase는 H2O2를 물과 산소로 분해시켜 oxygen radical 생성을 방지하는 강력한 항산화 효소이다. Catalase가 처리해야 할 H2O2의 농도가 낮을때에는 매우 느리게, 반대로 농도가 높을때에는 매우 빠르게 제거한다. 또한 대사과정 중 발생되는 활성산소종의 유리기를 제거할 뿐만 아니라 이들 활성산소에 비해 비가역적으로 불활성화될 수도 있으며, 지방산화에 의해 생성된 유리기도 제거하는 것으로 보고 되고 있다. Catalase와 함께 H2O2를 제거하는 제 3 항산화제 Glutathione peroxidase (GSH-Px)는 모든 포유동물의 세포질안과 미토콘드리아속에서 발견되며 glutathione을 기질로 사용하여 H2O2와 organic hydroperoxides를 제거시키고 이때 생성된 oxidized glutathione (GSSG)는 glutathione reductase에 의해 다시 glutathione (환원형 glutathione)에 의존하는 산화-환원반응을 통해 세포막을 보호한다. 환원형 glutathione과 GSH-Px는 H2O2의 제거뿐 만 아니라 이미 손상된 세포를 원래 상태로 수리하며 해독작용도 하는 등 다양한 작용을 가진다. 반면에, 생체내 유해 유리기 생성계 Xanthine oxidase (Xanthine oxygen oxidoreductase,XO)는 purine, pyrimidine, pteridine, aldehyde류 및 heterocyclic compound등의 대사에 관여하는 비특이적 효소로서 생체내에서는 주로 purine체의 대사산물인 hypoxanthine을 xanthine을 다시 산화시켜 uric acid를 생성하는 반응의 촉매로 작용하며 이런 과정에서 superoxide radical을 생성하는 효소이다.
Cell Defense to Eliminate H 2 O 2 The second antioxidant catalase is a powerful antioxidant enzyme that breaks down H 2 O 2 into water and oxygen to prevent the production of oxygen radicals. Catalase removes very slowly when the concentration of H 2 O 2 to be treated is low, and very quickly when the concentration is high. It has been reported that not only the free radicals of the active oxygen species generated during the metabolic process are removed, but they are irreversibly inactivated as compared with these active oxygen, and the free air produced by the lipid oxidation is removed. Third antioxidant Glutathione peroxidase (GSH-Px) is found in the cytoplasm inside the mitochondria of all mammals using glutathione as a substrate to remove the H 2 O 2 and organic hydroperoxides and this time to remove H 2 O 2 with Catalase The resulting oxidized glutathione (GSSG) protects the cell membrane through a glutathione reductase-dependent oxidation-reduction reaction that rely on glutathione (reduced glutathione). Reduced glutathione and GSH-Px have various actions such as not only removing H 2 O 2 but also repairing damaged cells in their original state and detoxifying them. Xanthine oxidoreductase (XO) is a nonspecific enzyme involved in the metabolism of purine, pyrimidine, pteridine, aldehyde and heterocyclic compounds. In vivo, Xanthine oxidoreductase (XO) Is an enzyme that catalyzes the reaction of oxidizing xanthine to produce uric acid, which in turn produces superoxide radicals.

본 실험에서는 유해 유리기 생성에 관여하는 효소인 xanthine oxidase 활성과 유해 유리기 제거에 관여하는 효소인 SOD, catalase 및 GSH-Px 활성을 측정하였다.
In this experiment, xanthine oxidase activity, which is involved in the production of harmful free radicals, and SOD, catalase and GSH-Px enzymes involved in the removal of harmful free radicals were measured.

복부 대동맥 혈관조직내 XO 활성을 보면, 고콜레스테롤 식이 섭취군보다 장어부산물 열수추출물(Hx) 투여군의 XO 활성이 유의적으로 감소하는 경향을 나타내었다. XO 활성 연구에서 식물계에 존재하는 플라보노이드 성분 중 분자내 히드록실기의 위치에 따라 그 저해효과가 다르며, gallate기를 함유한 플라보노이드 화합물은 경쟁적으로 저해한다고 보고되어 있다. 또한 팥꽃나무의 꽃과 눈으로부터 분리되어 루테올린 및 차의 폴리페놀화합물에 의한 XO 저해 효과도 보고되어 있다.
XO activity in abdominal aortic vascular tissues was significantly lower than that of high cholesterol diets in the group treated with hot - water extract (Hx) of eel by - product. XO activity studies have shown that the inhibitory effect of the flavonoid components present in the plant system depends on the position of the hydroxyl groups in the molecule, and it is reported that the flavonoid compounds containing the gallate group are competitively inhibited. It has also been reported that XO inhibition by polyphenol compounds of luteolin and tea was separated from flowers and eyes of red beans.

본 실험에서 장어부산물 열수추출물(Hx) 투여군에서 유의적으로 감소한 것은 XO에 대해 강한 저해작용이 가지는 장어부산물 열수추출물(Hx)의 구성성분인 폴리페놀 화합물이 체내 유해 활성산소 생성기인 XO 저해작용을 야기시킨 것으로 사료된다.
In the present experiment, the significant decrease in the hot-water extract (Hx) of the eel by-product was attributed to the fact that the polyphenol compound constituting the hot-water extract (Hx) of the eel by- .

복부 대동맥 혈관조직내의 SOD와 Catalase 활성은 고콜레스테롤 식이 섭취군에 비해 장어부산물 열수추출물(Hx) 투여군의 SOD 활성이 유의적으로 증가하였는데 이는 고콜레스테롤의 과잉 섭취로 인한 동맥경화의 유발로 생성이 증가된 활성산소를 소거하려는 생리적 적응현상으로 활성산소의 제거효소인 SOD가 활성화된 것으로 사료된다. SOD and catalase activities in the abdominal aortic vascular tissues were significantly increased by the addition of high-cholesterol diet (Hx), compared with those of the high-cholesterol diets, which resulted in increased production of atherosclerosis caused by excessive intake of high cholesterol As a physiological adaptation phenomenon to eliminate active oxygen, SOD, which is an enzyme for removing active oxygen, is activated.

또한, 고콜레스테롤 식이 섭취군에 비해 장어부산물 열수추출물(Hx) 투여군의 유의적인 catalase 활성 증가는 지방의 자동산화 및 유기물의 산화로 생긴 H2O2를 분해하기 위하여 catalase 활성이 높아진 것으로 생각된다. 또한, 플라보노이드계 화합물은 항산화 효소의 활성에 영향을 미쳐 유해 유리기에 의한 조직 손상을 감소시킨다는 보고가 있다
In addition, the catalase activity of the hot - water extract (Hx) - treated group was higher than that of the high cholesterol diet group in that the catalase activity was increased in order to decompose H 2 O 2 produced by autoxidation of fat and oxidation of organic matter. In addition, it has been reported that flavonoid compounds affect the activity of antioxidant enzymes and reduce tissue damage caused by harmful free radicals

복부 대동맥 혈관조직내 제 3 항산화제인 Glutathione peroxidase (GSH-Px) 활성은 고콜레스테롤 식이 섭취군에 비해 장어부산물 열수추출물(Hx) 투여군에서 유의적으로 증가하는 경향을 나타내었다. GSH-Px 활성은 식이 지방산의 조성보다 총 식이지방 섭취량에 더 영향을 받는다는 보고가 있다. 또한 조직이 손상을 받을 때 보상작용으로 glutathion 합성능력을 높여 GSH-Px 활성을 증진시키고 glutathione의 turnover rate이 증가되어 혈중으로의 glutathione의 방출이 증가된다
The activity of Glutathione peroxidase (GSH - Px), a third antioxidant in the abdominal aortic vascular tissue, was significantly increased in the hot - water extract (Hx) group of eel by - product compared to the group of high cholesterol diet. It is reported that GSH-Px activity is more affected by total dietary fat intake than dietary fatty acid composition. In addition, when the tissue is damaged, compensatory action increases glutathione synthesis ability, promotes GSH-Px activity, increases the turnover rate of glutathione, and increases the release of glutathione into the blood

본 실험에서 장어부산물 열수추출물(Hx) 투여군의 GSH-Px 활성이 유의적으로 증가한 것은 고콜레스테롤 섭취로 유발된 동맥경화에 의한 복부 대동맥 혈관조직의 산화적 세포 손상의 방어와 과산화수소가 축적되는 것을 예방하기 위하여 GSH-Px 활성이 상대적으로 증가된 것으로 사료된다
The significant increase in GSH-Px activity in the hot-water extract (Hx) group of eel by-products in this experiment was due to the prevention of oxidative cell damage and accumulation of hydrogen peroxide in the abdominal aortic vascular tissue caused by atherosclerosis induced by high cholesterol intake The GSH-Px activity was relatively increased

세포내 지질과산화반응은 동맥경화와 노화의 원인이 되기도 한다. 세포내 산화 스트레스로 인한 free radical 생성 증가 및 항산화적 방어력 약화로 지질과산화물이 축적되는데, GSH 함량이 증가되는 등 방어기구가 강화되면 지질과산화물 함량은 감소한다.
Intracellular lipid peroxidation may also cause atherosclerosis and aging. Lipid peroxidation accumulates due to increased intracellular oxidative stress due to increased free radical formation and weakened antioxidative defense. The lipid peroxide content decreases when the protective mechanism such as increased GSH content is strengthened.

복부 대동맥 혈관조직내 지질과산화물 함량 결과는 고콜레스테롤 식이 섭취군보다 장어부산물 열수추출물(Hx)투여군의 MDA 함량의 유의적인 감소 경향으로 gallic acid, digallic acid, propyl galltate등과 같은 폴리페놀 화합물인 장어부산물 열수추출물(Hx)이 지질과산화를 발생시키는 H2O2의 생성을 억제한 것으로 생각되며 이러한 결과는 Sung 등의 연구와 비슷한 결과를 나타내었다. 즉, 장어부산물 열수추출물(Hx)의 투여가 동맥경화의 유발을 억제시켜 복부 대동맥 혈관조직내 지질과산화를 효과적으로 저해시켜 지질과산화물 (MDA) 수준을 감소시키며, 산화 스트레스의 예방과 개선이 인정된다.
The lipid peroxide content in the abdominal aortic vascular tissues was significantly lower than that in the high cholesterol dietary intake group and the MDA content of the eel by-product hot water extract (Hx) group was significantly lower than that of the high cholesterol dietary group. extract (Hx) and this thought to inhibit the production of H 2 O 2 to generate lipid peroxide the results are shown results similar to studies of Sung, etc.]. In other words, the administration of hot-water extract (Hx) of eel by-products effectively inhibited the induction of atherosclerosis, effectively inhibiting lipid peroxidation in the vascular aortic vascular tissue, reducing the level of lipid peroxidation (MDA), and preventing and improving oxidative stress.

Claims (1)

장어의 가식부분을 제외한 장어 머리, 간, 내장, 쓸개, 표피부분의 장어 가공부산물을 잘 세정하고 정선한 후, 이들 장어 뼈와 가공부산물들을 저온진공에 의하여 분말화 하였으며,

상기 분말화된 장어부산물 분말 200g에 1 ℓ 물을 첨가하여 45℃의 가열맨틀에서 2시간동안 보온하여 1 mm 크기의 막필터를 사용하여 여과 한 후,
여과된 장어부산물 분말의 추출물에 불용성 물질은 제거하고 상층액은 회전식 감압 농축기(Rotary vaccum Evaporator)로 50%의 부피로 농축하여 장어부산물 열수추출물(Hx)로 제조되어짐을 특징으로 하는 장어 뼈-가공부산물의 추출물 제조방법
The eel bones and processing by - products were pulverized by low - temperature vacuum after the eel processing by - products of the eel head, liver, internal organs,

One liter of water was added to 200 g of the pulverized eel by-product powder, which was kept in a heating mantle at 45 ° C for 2 hours and filtered using a membrane filter having a size of 1 mm,
The extract of the filtered eel by-product powder was removed and the supernatant was concentrated to a volume of 50% with a rotary vacuum evaporator to prepare a hot-water extract (Hx) of eel by-products. Method for producing an extract of by-products
KR1020140061007A 2014-05-21 2014-05-21 The extracts of the anti-atherosclerotic and vascular diseases-preventive and inhibitive activity prepared from the bone of processing wastes of Japanese eel (Anguilla japonica) by the low temperature vacuum extraction KR101442501B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140061007A KR101442501B1 (en) 2014-05-21 2014-05-21 The extracts of the anti-atherosclerotic and vascular diseases-preventive and inhibitive activity prepared from the bone of processing wastes of Japanese eel (Anguilla japonica) by the low temperature vacuum extraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140061007A KR101442501B1 (en) 2014-05-21 2014-05-21 The extracts of the anti-atherosclerotic and vascular diseases-preventive and inhibitive activity prepared from the bone of processing wastes of Japanese eel (Anguilla japonica) by the low temperature vacuum extraction

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120062670A Division KR20130139014A (en) 2012-06-12 2012-06-12 The extracts of the anti-atherosclerotic and vascular diseases-preventive and inhibitive activity prepared from the bone of processing wastes of japanese eel (anguilla japonica) by the low temperature vacuum extraction

Publications (2)

Publication Number Publication Date
KR20140090120A KR20140090120A (en) 2014-07-16
KR101442501B1 true KR101442501B1 (en) 2014-09-26

Family

ID=51737933

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140061007A KR101442501B1 (en) 2014-05-21 2014-05-21 The extracts of the anti-atherosclerotic and vascular diseases-preventive and inhibitive activity prepared from the bone of processing wastes of Japanese eel (Anguilla japonica) by the low temperature vacuum extraction

Country Status (1)

Country Link
KR (1) KR101442501B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020075151A (en) * 2001-03-22 2002-10-04 양재덕 mushroom eel boiled food

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020075151A (en) * 2001-03-22 2002-10-04 양재덕 mushroom eel boiled food

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
인터넷 블로그, URL: http://blog.naver.com/bizinfo1/139605452(2011년10월5일 게시) *

Also Published As

Publication number Publication date
KR20140090120A (en) 2014-07-16

Similar Documents

Publication Publication Date Title
AU2009200897B2 (en) Oils enriched with diacylglycerols and phytosterol ester for use in the reduction of cholesterol and triglycerides
JP6462100B2 (en) Rice bran enzyme treatment composition
KR102409377B1 (en) Composition for improving dry eyes and preventing tear pigmentation for pets
JP7424998B2 (en) Fish protein hydrolyzate powder and compositions comprising said powder for use as a medicine
EP1827136B1 (en) Formulation for oral administration having a health-promoting effect on the cardiovascular system
Fürst The role of antioxidants in nutritional support
KR101490657B1 (en) Compositions for preventing or treating cardiovascular disease comprising fermentation products of Maillard reacted milk protein
JP4809785B2 (en) Applications of high-molecular substances contained in soy sauce
JP2006160685A (en) Oral agent for preventing or ameliorating skin aging
KR101442501B1 (en) The extracts of the anti-atherosclerotic and vascular diseases-preventive and inhibitive activity prepared from the bone of processing wastes of Japanese eel (Anguilla japonica) by the low temperature vacuum extraction
KR100265385B1 (en) Extract of rhodiola sp. for prevending and treating circulating diseases
KR20130139014A (en) The extracts of the anti-atherosclerotic and vascular diseases-preventive and inhibitive activity prepared from the bone of processing wastes of japanese eel (anguilla japonica) by the low temperature vacuum extraction
JP2006241108A (en) Cell activator
Hernayanti et al. Antioxidant effect of Chlorella vulgaris on physiological response of rat induced by carbon tetrachloride
JP2005132812A (en) Fraction of extract from mycelium of lentinus edodes and its use
JP2009084194A (en) 15-lipoxygenase inhibitor
JP2005029483A (en) Active oxygen-eliminating agent, and cosmetic and food and drink
JP5085198B2 (en) Antioxidant
JP5080011B2 (en) Composition for increasing glutathione peroxidase activity
Helal et al. Effect of Chia (Saliva Hispanic L.) Seeds on Hypercholesterolemic Rats.
WO2000069453A1 (en) Sod-like composition and blood-pressure controlling agent
JP2007143518A (en) Betalain-containing food and cosmetic
K Mishra et al. Chemistry and Pharmacology of Bioactive Molecule-Coenzyme Q10: A Brief Note
Mahomoodally et al. Protein hydrolysates
Konovalova et al. A complex of antioxidant vitamins effectively inhibits free-radical oxidation of LDL phospholipids in blood plasma and membrane structures of the liver and myocardium

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170825

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180831

Year of fee payment: 5