KR101377390B1 - 나노콤포지트 다이나믹 댐퍼 및 그 조성물 - Google Patents

나노콤포지트 다이나믹 댐퍼 및 그 조성물 Download PDF

Info

Publication number
KR101377390B1
KR101377390B1 KR1020120067147A KR20120067147A KR101377390B1 KR 101377390 B1 KR101377390 B1 KR 101377390B1 KR 1020120067147 A KR1020120067147 A KR 1020120067147A KR 20120067147 A KR20120067147 A KR 20120067147A KR 101377390 B1 KR101377390 B1 KR 101377390B1
Authority
KR
South Korea
Prior art keywords
damper
nanocomposite
polymer
dynamic
rubber
Prior art date
Application number
KR1020120067147A
Other languages
English (en)
Other versions
KR20140000377A (ko
Inventor
조득환
Original Assignee
(주)금강알텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)금강알텍 filed Critical (주)금강알텍
Priority to KR1020120067147A priority Critical patent/KR101377390B1/ko
Publication of KR20140000377A publication Critical patent/KR20140000377A/ko
Application granted granted Critical
Publication of KR101377390B1 publication Critical patent/KR101377390B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 합성고무, 특히 EPDM, EPM으로 제조된 내열성 및 내열동적탄성율이 뛰어난, 특히 고온(60℃ 이상)에서의 동적탄성율의 변화가 적은 즉 안정한 손실계수(loss factor) 가지는 댐퍼 및 이를 위한 나노콤포지트에 관한 것으로, 용융상태에서 나노클레이를 투입하는 용융법으로 제조되는 나노콤포지트 다이나믹 댐퍼로 우수한 열안정성과 고온에서의 높은 손실계수 갖는 고성능의 다이나믹 댐퍼를 제공한다.

Description

나노콤포지트 다이나믹 댐퍼 및 그 조성물 {Nanocomposited danamic damper and compound}
이 발명은 나노콤포지트 다이나믹 댐퍼 및 그 조성물에 관한 것이다. 자세히는 자동차에 적용되는 댐퍼로서 동적탄성율이 안정하고 손실계수가 높은 다이나믹 댐퍼 및 그 조성물에 관한 것이고, 특히 EPDM(EPM)으로 제조되어 넓은 온도범위 내에서 안정한 동적 탄성율과 높은 손실계수를 가지는 다이나믹 댐퍼 및 나노콤포지트 댐퍼 조성물에 관한 것이다.
자동차에 적용되는 다이나믹 등가 댐퍼의 구성 및 그 동작원리를 설명한다. 다이나믹 댐퍼의 구성은 질량체와, 이 질량체의 양측에 고정되어 고무와 같이 동작되는 한 쌍의 탄성체 댐퍼와, 한 쌍의 탄성체 댐퍼를 차체에 고정하는 한 쌍의 브라케트를 포함하고 있다. 이러한 다이나믹 댐퍼의 진동 저감동작을 살펴보면 진동이 발생되는 부품의 고유 진동수에 대응되도록 질량체의 중량 및 탄성체 댐퍼의 탄성 계수와 댐핑계수에 의해 결정되는 진동수가 설정된다. 이에 따라 부품으로부터 진동이 발생되면 다이나믹 댐퍼에서 공진이 발생되고 부품의 진동은 공진에 의해 상쇄되고 저감되는 것이다.
지금까지의 다이나믹 댐퍼의 탄성체 재료로는 부틸고무(IIR), 실리콘고무(SI), 천연고무(NR)와 이들 재료의 보강재인 카본블랙으로 만들어진 댐퍼재료가 자동차 및 산업용으로 사용되어 왔으나, 이러한 댐퍼 재료들은 내열내구성 낮고, 특히 고온(60℃ 이상)에서의 동적탄성율 및 손실계수의 저하가 문제되어 왔다.
고온에서의 동적탄성율 및 손실계수의 변화는 진동 및 소음의 문제를 대두시켜 자동차의 승차감에 지대한 영향을 미친다. 이에 따라 자동차 메이커들은 고온에서의 댐퍼의 특성 보전을 위해 노력해 왔으나 아직까지 미완의 과제로 남게 되었다. 고온에서의 역학적 물성(내구성), 동적탄성율, 손실계수를 증가시키기 위해 사용하는 대표적 보강재로서 카본블랙과 실리카를 들 수 있다.
합성고무(EPDM)인 경우 상기의 보강재는 일정 이상의 양이 혼입되어야 물리적 특성 즉 물성이 증대되는 경향이 있다. 그런데 다이나믹 댐퍼는 매우 경도가 낮으므로(Hs 45 정도, shore A) 다량의 충진재(filler)를 사용할 수 없다. 따라서 제조된 댐퍼 재료가 물성을 유지하기 어려운 것이고, 이러한 여건은 댐퍼의 내구성에 악 영향을 미친다. 이에 비해 나노클레이는 소량의 배합으로도 댐퍼에서 요구되는 높은 수치의 물성을 얻을 수 있는 장점을 가지고있다. 이는 나노클레이와 합성고무가 클러스터를 형성하기 때문이다.
이 발명은 EPDM(EPM)을 기반으로 하는 나노콤포지트 다이나믹 댐퍼 및 그 조성물을 제공하려는 것이다. 이 발명은 합성고무와 나노클레이(nanoclay)가 나노콤포지트(nanocomposite)를 형성함으로써 다이나믹 댐퍼로서 고온에서 댐퍼의 동작 특성을 높게 보존하려는 것이다. 구체적으로 다이나믹 댐퍼 재료로서 동적탄성율과 손실계수를 고온에서도 안정화시킴으로써 고온에서의 진동 차단의 효과를 지속시킬 수 있게 하는 것이고, 이로서 다이나믹 댐퍼의 진동 차단 효과의 안정을 이룰 수 있는 것이다.
탄성체로서 동작되는 댐퍼로서 동적탄성율과 손실계수를 고온에서도 안정화시키기 위하여 안정한 EPDM (ethylene-propylene-diene monomer) 나노콤포지트 (Nanocomposite)를 제조해야 한다.
상기 나노콤포지트를 제조하려면 고무와 나노필러를 용융법으로 혼련하되 Bis(triethoxysilylpropyl)tetrasulfide(테트라설파이드)를 상용화재로 사용하여 고무와 나노필러의 안정한 클러스트를 형성함으로써 가능해 지는 것이다. 이와 같이 얻어지는 클러스트를 포함하는 조성물은 댐퍼 재료로서 고온에서 안정한 뛰어난 물성을 보인다.
이 발명에 사용된 상기 용융법은 기존의 고무프로세스를 사용할 수 있다. 따라서 일반적인 고무 프로세스를 보유하고 있다면 새로운 프로세스 설비투자가 필요 없다.
EPDM 나노콤포지트 댐퍼의 조성물은 EPDM 100중량부에 대해 나노클레이 1 내지 50중량부가 투입되고, 가교활성재로서 스테아린산 0.2 내지 3중량부를 사용하고, 연화성 충진재로 프로세스 오일을 사용하고, 열노화특성을 개선하기 위해 노화방지재 1 내지 5중량부를 사용하고, 가교성분으로서 유기과산화물 혹은 유황을 0.5내지 10중량부를 사용한다.
이와같이 이 발명은 EPDM(EPM)을 기반으로 하는 다이나믹 댐퍼(탄성체) 및 그 조성물을 제공한다. 이 발명에서 합성고무와 나노클레이로 주어지는 나노콤포지트는 다이나믹 댐퍼로서 요구되는 고온에서 물리적 댐퍼의 동작 특성이 높게 보존된다. 이로서 이 발명은 동적탄성율과 손실계수를 고온에서도 안정화시킴으로써 자동차공업에서 요구하는 10년 10만마일의 내구특성도 달성할 수 있다. 또한 이 발명은 일반적인 고무 프로세스의 용융법을 사용할 수 있어 기존의 설비를 이용할 수 있는 경제적 있점도 있다.
도1은 EPDM 나노콤포지트(Nanocomposite) 전자현미경 사진(대구 나노융합센터)
도2은 DMA data (실시 예 노화 전)
도3은 DMA data (실시 예 노화 후)
도4는 DMA data (비교 예 노화 전)
도5는 DMA data (비교 예 노화 후)
나노클레이는 고분자와 믹싱시 분산이 어려운 단점이 있으나, 이는 유무기와 상용성을 가질 수 있는 유기화재(intercalent)를 개발함으로서 극복할 수 있으며, 나노클레이와 고분자와의 분산은 적절한 상용화재를 사용함으로서 극복할 수 있다.
고분자 나노콤포지트가되면 표면적이 넓어 적은양으로도 우수한 보강성이 알려져 많은 연구가 활발이 진행되고있다. 고분자 나노콤포지트에 사용될 수 있는 필러(충진재)는 층상실리케이터(몬모릴로나이트, 카오리나이트, 세피오라이트등), 실리콘나노입자(POSS), 나노튜브(CNT), 나노금속파우더, 나노무기물입자 또는 염 등 다양한 물질이 사용될 수 있으나, 이 중에서 고분자 나노복합재료로 가장 많이 사용되고 있는 것이 층상실리케이트이다.
고분자 나노콤포지트의 기술핵심은 층상으로 된 클레이(semactite 군)를 어떻게 변화시켜 목표의 고분자가 용이하게 층간에 삽입(intercalation)되게 하느냐 이다.
클레이는 층상실리케이트(layed silicate)로서 기본구조는 알려진 바와 같이 실리카 테트라헤드렐 시트(silica tetrahedral sheet)와 알루미나옥타헤드랄(alumina octahedral)시트로 구성되어 있다. 그 층간에는 Na, Ca, Li 이온으로 채워져 있고 이 시트의 말단에는 OH 그룹이 존재한다. 즉 극성이 높은 친수성 구조로 소수성인 고분자로서는 층간삽입이 이루어지기 어렵다. 이 극성 실리케이트를 고분자의 특성에 맞게 변형시키는 것이 유기화 실리케이트 제조이다.
이전에는 유기화 실리케이트의 제조가 상당이 난해 했으나, 지금은 각종 용도에 맞는 유기화재가 상품화되어있다. 그러나 특수고분자의 용도에 있어서는 실리케이트의 종류나 구조를 선택적으로 변형시켜야 한다.
층상실리케이트를 가지는 클레이의 일종에 속하는 몬모릴로나이트(MMT)에 고분자를 삽입하여 클레이-고분자 나노콤포지트를 제조할 수 있다.
이 발명에서는 MMT-나노클레이를 사용하였다.
층상실리케이트는 친수성이 크므로 소수성인 통상의 고분자와 분산 혼합이 잘 되지 않아 고분자의 삽입(intercalation)을 기대하기 어렵다. 실제로 고분자-층상실리케이트(클레이)를 제조하는 것은 상당히 어렵다.
대개는 알킬암모늄(alkyl ammonium) 등을 이용하여 층상실리케이트를 소수성으로 전환시킨 다음, 고분자를 층간에 삽입시켜 나노복합체를 제조하게 된다. 그 예로서 기체상의 단량체 또는 용매(solvent)에 용해시킨 단량체에 유기화된 실리케이트를 삽입시킨 후 중합하여 나노복합체를 얻는 In-site polymerization 법이 우스키 등에 의해서 개발되고 일본에서 많은 연구 논문이 발표되었다. 또한 루이즈(Ruiz)등은 고분자를 용매에 용해시킨 다음, 층상실리케이트 층간에 고분자를 삽입시키는 용액삽입법을 개발하였다. 그러나 상기의 방법들은 산업현장에서 혼합방법으로 사용되는 폐쇄믹서법 혹은 압출 등의 방법을 사용할 수 없다는 점 이외에도 다수의 제약이 있다. 전자는 단량체를 먼저 층간에 삽입시키는 장점이 있으나, 후 중합과정이 필요로 하는 문제점이 있다. 후자는 경우도 고분자를 용해시킬 수 있는 용매의 선정도 어려우며, 또한 사용한 용매의 회수는 더 큰 어려움이 있어 산업용으로는 문제를 안고 있다.
따라서 고분자의 용융상태에서 실리케이트의 층간에 직접 삽입하는 용융삽입법을 이용하여 고분자-층상실리케이트 나노복합체를 제조하는 방법이 개발되었다.
이러한 용융삽입법은 현재 사용하고 있는 고분자 대량생산법과 동일하여 고무, 플라스틱 산업에 활용할 수 있다.
클레이(층상실리케이트)의 층간에 고분자를 삽입하는 방법은 하기와 같이 3가지로 나눌 수 있다. 이런 기술은 기존의 무기충진재나 보강재의 분산법과는 달리, 나노크기의 분산을 가능하도록 하기 때문에 이렇게 제조된 복합체(composite)를 나노복합체(nanocomposite)라고 한다.
용액법( solution )
용액법이란 고분자를 용제에 녹여 용액을 만들고 이를 유기화 층상물질과 혼합하는 것으로,  용액상태에서 고분자량이 큰 고분자를 층사이로 삽입시키기가 어렵고 최종제품을 얻기 위해서는 고형분을 용제와 분리시켜야하는 단점이있다.  
이 방법은 학술적인 관점에서 많이 시도되고있으나 상업적인 면에서는 그다지 좋은 방법은 아니다.
중합법( polymerization , In site polymerization )
중합법은 유기화된 층상실리케이트와 고분자의 원료인 단량체를 혼합하여  단량체의 일부를 층 사이로 침투시키고 이를 중합시켜 얻는 방법으로 고분자 나노복합체 제조에서 가장 널리 사용되는 방법이다. 이 방법은 저분자량인 단량체를 층간 삽입시키므로 비교적 쉽게 박리(exfoliation)가 일어나 나노스케일로 층상 실리케이트의 분산이 가능한 장점이 있는 반면에 사용 가능한 단량체가 한정되어 있고 제조공정이 다소 복잡한 단점이있다. 이 방법으로 제조되는 고분자 나노복합체로는 나일론계가 대표적이다.
용융법( melt compounding )-컴파운딩법( compounding )
용융법 혹은 컴파운딩법은 유기화 층상물질을 직접 고분자수지와 용융상태에서 혼합하는것으로 기존의 고분자 컴파운드제조법과 동일하게 압출기, 롤밀, 폐쇄(Bunbary, Intensive)믹서 등의 가공설비를 이용할 수 있기때문에 상업적인 면에서 가장 바람직하다고 볼 수 있으나 고분자 물질을 고점도의 용융체 상태로 층간 삽입시키기가 매우 어려운 단점이있다. 그러나 유기화 층상 물질의 선정, 고분자 수지와 층상물질의 친화력을 높여주는 상용화제의 사용, 고분자수지의 개질, 혼합조건 등의 다양한 연구를 통하여 폴리에틸렌, 폴리프로필렌, 폴리스티렌 등의 소수성  고분자들도 용융법으로 나노복합재료화 하는 기술이 개발되고있다. 
 용융법은 제조공정이 단순하고 그레이드의 다양화가 가능하여 앞으로 큰  발전이 기대되는 분야이나 나노스케일로 층상물질을 박리시키기 위해서는 고도의   기술개발이 필요하다. 최근에는 층상실리케이트를 유기화시키는 전처리 공정을   생략하고 고분자와 직접컴파운딩시 특수 상용화제를 사용하여 유기화 및 박리화를  동시에 가능하게 하여 나노복합체를 제조하는 고도의 기술들이 개발되고있다.
이 발명에 채용된 나노클레이의 분산법은 고무의 배합도중에 고무(base polymer)와 나노충진재를 투입하여 나노클레이의 층과 층사이를 믹서(mixer)에 의한 강한 전단력으로 분리하는(delamination) 방법인 용융법을 사용한다.
이 발명의 다이나믹 댐퍼 나노콤포지트는 용융상태의 EPDM에 나노클레이를 투입하여 혼합함으로서 제조된다.
이 발명은 통상의 제법으로 유기화된 나노클레이(Cloist nanoclay, Nanocor nanoclay 동등품)를 용융법으로 나노콤포지트 고무복합체를 제조하고 이를 가교시켜 고무탄성체인 다이나믹 댐퍼로 만든다.
이 발명에 사용되는 용융법은 산업현장에서 사용하고있는 폐쇄믹서 (banbury, Intensive mixer, Kneader) 혹은 압출방식의 kneader, 2축압출기, 1축압출기 혹은 폐쇄믹서-압출기 연속 콤파운딩라인 등을 이용할 수 있다.
이 과정에서 중요한 사항은 고무입자가 유기화된 층상점토의 층간에 삽입되고 팽윤된 고무의 체인사이에 나노클레이가 분산되어야 한다. 용융법에서는 중요한 요소이다. 따라서 이 과정을 완결하는 데는 유기화제의 역할이 중요하다.
이 발명의 합성고무(베이스고무)는 EPDM을 사용한다.
나노크레이는 EPDM 100중량부에 대해 1 내지 50중량부 투입될 수 있다.
카본블랙은 다이나믹 댐퍼의 경도에 따라 증감 될 수 있는데 바람직하게는
5 내지 50중량부가 투입될 수 있다. 이 때 상용화제를 적량 투입해야 한다.
다른 고무 첨가재들은 통상의 예에 따라 첨가한다.
층상점토(실리케이트)는 세멕타이트, 헥토라이트, 일라이트등으로 나눌 수 있다. 세멕타이트에는 몬모릴로나이트(MMT), 카오리나이트 등 다수가 존재하며, 주로 몬모릴로나이트를 유기화시킨 것을 통칭하여 나노클레이라 부른다.
바람직하게는 본 발명에서는 몬모릴로나이트를 수화시킨 후, 이온 교환에 의해 유기화시켜 얻어진 나노클레이를 사용한다.
이렇게 얻어진 나노콤포지트 조성물로부터 가교공정(vulcanization)을 거쳐 동적탄성율과 손실계수가 고온에서 뛰어난 다이나믹 댐퍼 나노콤포지트를 얻을 수 있었다.
고무의 가교를 위해 가교활성화재로서 스테아린산을 사용할 수 있고 나노클레이, 카본블랙등을 보강재로 사용하고, 가교성분으로서 유황, 퍼옥사이드, 레진 등을 사용할 수 있다.
특수목적으로 내열성을 요구하는 곳에는 내열노화방지제, 내구성을 더욱 요하는 곳에는 내구노화방지제를 더 사용하고, 경도가 낮은 고무를 요구하는 곳에는 오일같은 연화재를 사용한다.
본 발명에 따라 용융법에 만들어진 나노콤포지트 조성물에서 층간삽입과 분산(exfoliatio)의 확인은 용융법 나노콤포지트의 성공을 확인하는 것이며, 도 1 사진으로 첨부된 전자현미경에 관찰 의해 정량적, 정성적으로 확인할 수 있다.
전자현미경 관찰을 위해 나노콤포지트의 조성물로부터 시편 혹은 다이마믹댐퍼를 만들고 냉각장치에서 마이크로 돔을 이용하여 시험편을 만든다음 전자현미경으로 관찰하는 것이다.
도 1은 이와같이 관찰된 전자현미경(TEM)의 300nm 사진이며, 깃털모양으로 나타난 나노콤포지트의 박리(exfoliation) 구조를 선명하게 보여주고 있다.
이 발명의 실시 예에 따른 나노콤포지트 조성물의 배합과 배합물의 조성에 따른 물리적시험 결과, 동적탄성율과 손실계수를 확인할 수 있는 DMA data의 결과를 아래에 인용하였다.
배합물의 조성표(compound recipe
배합물 비교 예 실시 예 비고
KEP 570 100 100 base polymer
ZnO 5 5 활성제
Bis(triethoxy silyl propyl) tetrasulfide 2 2 상용화제
HAF 5 5 카본블랙
DKS 20 무기충진재
Nanoclay 20
Paraffin oil 45 55 연화제
MBI 2 2 노화방지제
RD 노화방지제
DCP -40 7 7 가교제
TMPTMA 2 2 가교조제
Total 188 198
물리적특성-배합물 조성에 의한 물리적시험결과
시험항목 비교 예 실시 예

기본물성
경도(Hs) 46 47 Shore A
인장강도(Kg/㎠) 30 96
신율(%) 502 860
비 중

내열성
경도변화율 3 2 70℃X96Hrs
인장강도변화율 -1 +18
신율변화율 -7 127
압축영구 줄음율
(70℃ X 22hrs X 25%)

27

22
손실계수(tanσ )
노화전 0.1209 0.1572 100℃ 손실계수
노화후 0.1116 0.1582 100℃ 손실계수
상기의 표2 및 도2 내지 도5에서 알 수 있듯이 실시 예 및 비교 예의 data에서 물성의 측면에서 동일한 경도의 고무에서도 인장강도 및 영구변형은 상당한 물성의 차이를 보이고있다.
이는 동일한 고무(EPDM)에서도 나노콤포지트(나노복합체, nanonanocomp)가 됨으로서 일반고무 대비 물성을 크게 앞서고 있음을 알수있다.
특히 다이나믹 댐퍼의 요구특성의 측면에서 보면, 도2 내지 도5의 DMA data에서 고온의 시험결과(100℃, 손실계수)가 일반 EPDM보다 큰 차이를 보이고 있다.
이는 EPDM 나노콤포지트가 됨으로서 분자간의 강성(stiffness)과 모빌리티의 바란스로 인하여 고온(상온 이상의 온도 특히 다이나믹 댐퍼의 요구 온도인 60℃이상 온도)에서 손실계수가 높아서 자동차 및 산업용 다이나믹 댐퍼로서 사용될 수 있음을 보여주는 것이다.

Claims (6)

  1. 기반 재료인 EPDM(EPM)과 나노클레이를 혼합하여 제조되는 나노콤포지트에 있어서,
    상기 EPDM 100중량부에 대해서 1 내지 50중량부의 나노클레이를 혼합하되,
    카본블랙 및 상용화제로서 bis(triethoxysilylpropyl) tetrasulfided를더 포함하고,
    상기 혼합재료를,
    열과 압력을 조절 할 수 있는 믹서에 투입하고 혼합하여 제조된 것이 특징인 나노콤포지트 다이나믹 댐퍼.
  2. 삭제
  3. 청구항 제1항에 있어서,
    나노콤포지트의 혼합 믹서는 밴버리, 니더, 인텐시브믹서류의 패쇄믹서 혹은 1축압출기 및 2축압출기를 중에서 선택된 어느 하나의 믹서인 것이 특징인 다이나믹 댐퍼.
  4. 삭제
  5. 삭제
  6. 삭제
KR1020120067147A 2012-06-22 2012-06-22 나노콤포지트 다이나믹 댐퍼 및 그 조성물 KR101377390B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120067147A KR101377390B1 (ko) 2012-06-22 2012-06-22 나노콤포지트 다이나믹 댐퍼 및 그 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120067147A KR101377390B1 (ko) 2012-06-22 2012-06-22 나노콤포지트 다이나믹 댐퍼 및 그 조성물

Publications (2)

Publication Number Publication Date
KR20140000377A KR20140000377A (ko) 2014-01-03
KR101377390B1 true KR101377390B1 (ko) 2014-03-21

Family

ID=50138257

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120067147A KR101377390B1 (ko) 2012-06-22 2012-06-22 나노콤포지트 다이나믹 댐퍼 및 그 조성물

Country Status (1)

Country Link
KR (1) KR101377390B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190123468A (ko) 2018-04-24 2019-11-01 현대자동차주식회사 다이나믹 댐퍼용 고무 조성물 및 이를 포함하는 다이나믹 댐퍼

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833825B1 (ko) * 2006-08-28 2008-06-02 국방과학연구소 테트라 설파이드기를 도입한 점토화합물을 함유하는 고무/점토 나노복합체 및 이들의 제조방법
WO2009080091A1 (en) 2007-12-19 2009-07-02 Pirelli Tyre S.P.A. Tire and crosslinkable elastomeric composition comprising diatomite particles
KR101042894B1 (ko) * 2010-11-10 2011-06-20 (주)금강알텍 내열성과 내유성이 우수한 방진 고무 및 이를 위한 나노 콤포지트 조성물
US20120012793A1 (en) 2009-06-15 2012-01-19 Beijing University Of Chemical Technology lead-free x-ray shielding rubber composite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833825B1 (ko) * 2006-08-28 2008-06-02 국방과학연구소 테트라 설파이드기를 도입한 점토화합물을 함유하는 고무/점토 나노복합체 및 이들의 제조방법
WO2009080091A1 (en) 2007-12-19 2009-07-02 Pirelli Tyre S.P.A. Tire and crosslinkable elastomeric composition comprising diatomite particles
US20120012793A1 (en) 2009-06-15 2012-01-19 Beijing University Of Chemical Technology lead-free x-ray shielding rubber composite
KR101042894B1 (ko) * 2010-11-10 2011-06-20 (주)금강알텍 내열성과 내유성이 우수한 방진 고무 및 이를 위한 나노 콤포지트 조성물

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190123468A (ko) 2018-04-24 2019-11-01 현대자동차주식회사 다이나믹 댐퍼용 고무 조성물 및 이를 포함하는 다이나믹 댐퍼

Also Published As

Publication number Publication date
KR20140000377A (ko) 2014-01-03

Similar Documents

Publication Publication Date Title
Kato et al. Development and applications of polyolefin–and rubber–clay nanocomposites
Ismail et al. Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites
Bhowmick et al. Morphology–property relationship in rubber-based nanocomposites: some recent developments
JP2012509385A (ja) ゴム/ナノクレイマスターバッチの製造方法及びこれを用いた高剛性、高衝撃強度のポリプロピレン/ナノクレイ/ゴム複合材の製造方法
Kusmono et al. Effect of clay modification on the morphological, mechanical, and thermal properties of polyamide 6/polypropylene/montmorillonite nanocomposites
Anjana et al. Reinforcing effect of nano kaolin clay on PP/HDPE blends
JP2008525536A (ja) ポリマー粘土ナノコンポジットの相溶化
JP2021519835A (ja) 強化ポリオレフィン複合材料
Huang et al. Halloysite polymer nanocomposites
Galimberti et al. Reduction of filler networking in silica based elastomeric nanocomposites with exfoliated organo-montmorillonite
KR20190090017A (ko) 중합체 조성물
KR101042894B1 (ko) 내열성과 내유성이 우수한 방진 고무 및 이를 위한 나노 콤포지트 조성물
Kim et al. Styrene butadiene rubber-clay nanocomposites using a latex method: morphology and mechanical properties
KR101377390B1 (ko) 나노콤포지트 다이나믹 댐퍼 및 그 조성물
RAZAGHI et al. Improvement in physical and mechanical properties of butyl rubber with montmorillonite organo-clay
Hedayatnasab et al. Mechanical characterization of clay reinforced polypropylene nanocomposites at high temperature
Sharma et al. Study of morphological and mechanical properties of PBT/PTT blends and their nanocomposites and their correlation
Ma et al. Manufacturing techniques of rubber nanocomposites
KR100808842B1 (ko) 저투과성 연료호스용 나노클레이 복합체 및 상기나노클레이 복합체를 포함하는 자동차용의 저투과성연료호스
Wang et al. Toughening polypropylene by tiny amounts of fillers
KR101673599B1 (ko) 탄소나노튜브와 나노클레이를 함유하는 고분자 나노복합재의 제조방법
KR100529365B1 (ko) 폴리프로필렌-층상구조점토 나노복합체 조성물 및 그의제조방법
Sahami et al. Physical and mechanical properties of chlorosulfonated pe (CSPE)/Organoclay nanocomposites compatibilized with epoxidized natural rubber
KR101504940B1 (ko) 내열성과 내구성이 우수한 자동차 라디에이터호스고무 및 이를 위한 나노 콤포지트 조성물
Pal et al. Rubber blend nanocomposites

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180319

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190318

Year of fee payment: 6