KR101372250B1 - Wind power generation tower with giromill - Google Patents

Wind power generation tower with giromill Download PDF

Info

Publication number
KR101372250B1
KR101372250B1 KR1020130091877A KR20130091877A KR101372250B1 KR 101372250 B1 KR101372250 B1 KR 101372250B1 KR 1020130091877 A KR1020130091877 A KR 1020130091877A KR 20130091877 A KR20130091877 A KR 20130091877A KR 101372250 B1 KR101372250 B1 KR 101372250B1
Authority
KR
South Korea
Prior art keywords
wind
power generation
wind power
tower
energy conversion
Prior art date
Application number
KR1020130091877A
Other languages
Korean (ko)
Inventor
송수윤
Original Assignee
(주)미가람
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020130091877A priority Critical patent/KR101372250B1/en
Application filed by (주)미가람 filed Critical (주)미가람
Priority to BR112016002308A priority patent/BR112016002308A2/en
Priority to US14/908,484 priority patent/US10323621B2/en
Priority to MX2016001487A priority patent/MX2016001487A/en
Priority to CN201380078715.2A priority patent/CN105452648B/en
Priority to RU2016103276A priority patent/RU2654550C2/en
Priority to CA2919986A priority patent/CA2919986A1/en
Priority to EP13890588.0A priority patent/EP3029315A4/en
Priority to AU2013395801A priority patent/AU2013395801B2/en
Priority to JP2016531503A priority patent/JP2016525186A/en
Priority to PCT/KR2013/012378 priority patent/WO2015016444A1/en
Application granted granted Critical
Publication of KR101372250B1 publication Critical patent/KR101372250B1/en
Priority to SA516370521A priority patent/SA516370521B1/en
Priority to CL2016000265A priority patent/CL2016000265A1/en
Priority to PH12016500227A priority patent/PH12016500227B1/en
Priority to JP2018239417A priority patent/JP2019060345A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0409Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

The present invention relates to a wind power generation tower comprising: a wind concentrating unit in which a wind inlet is formed in a plurality of layers to induce the wind and each layer induces the change of intensity and direction of the wind; and an energy converting unit to invert the energy while the wind passes through. The wind concentrating unit includes a plurality of wind guide walls arranged in a radial shape along the center of the wind power generation tower as being inclined at the same angle in order for the wind induced through the wind inlet to flow in a radial direction of the energy converting unit. The energy converting unit is installed at the center of each layer of the wind power generation tower in the inside and includes a gyro mill type wind power blade in which TSR is 1.1-2.4, the solidity is 0.2 or greater, and RPM is 240 or less. The energy converting unit includes a wind flow path formed in a space between the wind guide wall and the gyro mill type wind power blade and an internal flow path formed in a space between the center of the wind power generation tower and the gyro mill type wind power blade.

Description

자이로밀형 풍력 터빈을 구비한 풍력 발전 타워{WIND POWER GENERATION TOWER WITH GIROMILL}Wind Power Tower with Gyro Mill Wind Turbine {WIND POWER GENERATION TOWER WITH GIROMILL}

본 발명은 풍력 발전 타워에 관한 것으로, 보다 상세하게는 자이로밀형 수직축 풍력 터빈을 구비한 풍력 발전 타워에 관한 기술이다.
The present invention relates to a wind power tower, and more particularly to a wind power tower having a gyro mill-type vertical axis wind turbine.

일반적으로, 풍력발전시스템은 바람의 힘을 회전력으로 전환시켜 전력을 생산하는 기술로 바람에너지를 기계에너지로 변환하고 발전기를 구동하여 전력을 생산하는 시스템이다.
In general, the wind power generation system is a technology for producing electric power by converting the wind force into a rotational force is a system for converting the wind energy into mechanical energy and driving the generator to produce power.

이러한, 풍력발전시스템은 일반적으로 수평축 풍력 발전과 수직축 풍력 발전으로 분리되고 있다. 수평축 풍력 발전은 효율이 높은 반면 바람의 방향에 영향을 크게 받는다는 문제가 있고, 수직축 풍력 발전은 바람의 방향에 영향을 크게 받지 않으나, 효율이 수평축에 비해 높지 않다는 문제가 있다. 따라서, 대부분의 풍력 발전과 관련된 주요 업체들은 수평축 풍력 발전에 집중하고 있으며, 수직축 풍력 발전의 경우, 효율을 높일 수 있는 방법에 관하여 상당히 많은 연구를 진행하고 있다. 그러나, 아직까지 수직축 풍력 발전의 효율을 높이기 위한 적절한 방법을 찾지 못하고 있는 실정이다. 한편, 본 발명의 경우, 수직축 풍력 발전에 관한 기술이라는 점에서, 이하에서는 수직축 풍력 발전을 중심으로 설명을 행하도록 한다.
Such a wind power generation system is generally divided into a horizontal axis wind power generation and a vertical axis wind power generation. The horizontal axis wind power generation has a problem that high efficiency is greatly influenced by the direction of the wind, while the vertical axis wind power generation is not significantly affected by the wind direction, but there is a problem that the efficiency is not higher than the horizontal axis. Therefore, most of the major wind power companies are focusing on horizontal wind power generation, and in the case of vertical wind power generation, much research has been conducted on how to increase efficiency. However, there is still no way to find a suitable way to increase the efficiency of vertical wind power generation. On the other hand, in the case of the present invention, from the viewpoint of the vertical axis wind power generation, the following description will focus on the vertical axis wind power generation.

수직축 풍력 발전의 경우, 전 방향으로 불어오는 바람을 활용할 수 있다는 기술적 장점이 있으나, 일반적으로 대기 상에서 부는 바람의 경우 바람의 방향 및 세기가 일정하지 않아 효율적인 풍력 발전이 어렵다는 문제가 있다. 따라서, 이와 같은 문제를 해결하기 위해 바람의 방향을 효과적으로 집중시키도록 하기 위한 다양한 방법이 시도되고 있는 바, 예시적으로, 바람의 방향을 일정하게 흐를 수 있도록 하는 것과 동시에 풍속을 증속시킬 수 있도록 수직축 풍력 터빈 주위에 가이드벽을 갖는 집풍관 구조를 추가적으로 설치하는 방안이 제시되고 있다.
In the case of vertical wind power generation, there is a technical advantage that can use the wind blowing in all directions, but in general, the wind blowing in the atmosphere has a problem that the efficient wind power generation is difficult because the direction and strength of the wind is not constant. Therefore, in order to solve such a problem, various methods have been attempted to effectively concentrate the direction of the wind. For example, the vertical axis to increase the wind speed at the same time while allowing the direction of the wind to flow uniformly. A method of additionally installing a collecting pipe structure having a guide wall around a wind turbine has been proposed.

한국특허공개 제2009-0035884호(가속형 풍력발전기)는 내부에 항력식 풍력 터빈이 설치되고, 그 주변에 바람의 방향을 일정하게 하는 것과 동시에 풍속을 증속할 수 있도록 하는 집풍관 구조가 설치되어, 수직축 풍력 터빈의 효율을 높이도록 한 기술이 개시되어 있다,
Korean Patent Publication No. 2009-0035884 (Acceleration Wind Turbine) has a drag wind turbine installed inside, and a wind collecting structure is installed around the wind turbine to make the wind direction constant and to increase the wind speed. A technique for increasing the efficiency of a vertical axis wind turbine is disclosed.

또한, 일본특허공개 제2010-531594호(수직축을 가지는 풍력 터빈)에는 풍력 타워 내부에 항력식 수직축 풍력 터빈을 구비하고, 상기 항력식 수직축 풍력 터빈 주변에 바람의 방향을 일정하게 하는 것과 동시에 풍속을 증속할 수 있도록 하는 집풍관 구조가 설치된 기술이 개시되어 있다.
In addition, Japanese Patent Application Laid-Open No. 2010-531594 (wind turbine having a vertical axis) includes a drag vertical shaft wind turbine inside the wind tower, and maintains a constant wind direction at the same time around the drag vertical shaft wind turbine. Disclosed is a technology in which a collecting pipe structure for increasing speed is installed.

그러나, 상기 특허에 개시되어 있는 집풍관의 경우, 집풍관으로 유도되는 바람이 직접 항력식 풍력 블레이드와 접촉하여 상기 풍력 블레이드의 회전을 유도하도록 설계되어 있는 바, 이와 같은 구성의 경우, 바람의 변화에 따라 상기 항력식 블레이드의 움직임도 동일하게 변화하게 되어 지속적인 풍력 발전이 유지되기 어렵다는 문제가 있다. 또한, 상기 가이드벽을 통과한 바람은 바로 항력식 블레이드에 접촉하도록 되어 있어, 상당한 저항이 발생하도록 구성되어 있는 바, 이러한 구성은 항력식 블레이드의 초기 시동에는 유리한 장점이 있으나, 바람의 속도가 빠른 경우에는 오히려 저항으로 작용하여, 효과적인 풍력 발전을 어렵게 한다는 문제가 있다.
However, in the case of the wind collecting tube disclosed in the patent, the wind induced in the collecting tube is designed to directly contact the drag type wind blade to induce rotation of the wind blade. As a result, the movement of the drag type blade is changed in the same manner, and thus there is a problem that it is difficult to maintain continuous wind power generation. In addition, the wind passing through the guide wall is configured to directly contact the drag blade, so that a considerable resistance is generated, this configuration is advantageous for the initial start of the drag blade, but the wind speed is fast In this case, rather than act as a resistance, there is a problem that makes effective wind power generation difficult.

따라서, 본 발명의 출원인은 상술한 바와 같은 기술적 문제를 해결하도록 한 수직축 풍력 터빈을 구비한 풍력 발전 타워를 강구하게 되었다.
Therefore, the applicant of the present invention has come up with a wind power generation tower having a vertical axis wind turbine to solve the above technical problems.

한국특허공개 제2009-0035884호(가속형 풍력발전기)Korean Patent Publication No. 2009-0035884 (Acceleration Wind Power Generator) 일본특허공개 제2010-531594호(수직축을 가지는 풍력 터빈)Japanese Patent Laid-Open No. 2010-531594 (Wind Turbine with Vertical Shaft)

본 발명의 실시예들은, 저속에서도 풍력 발전이 가능하며, 최대한의 풍력 발전 효율을 가질 수 있도록 형성된 자이로밀형 풍력 터빈을 구비한 풍력 발전 타워에 관한 기술을 제공하도록 한다.
Embodiments of the present invention, the wind power generation is possible at a low speed, to provide a technology for a wind power tower having a gyro mill-type wind turbine is formed to have the maximum wind power generation efficiency.

본 발명의 일 실시예에 따른 자이로밀형 풍력 터빈을 구비하는 풍력 발전 타워는 바람이 유입되는 윈드유입구가 복수층으로 형성되고, 각 층은 바람의 세기 및 방향변화를 가져오도록 하는 집풍부와, 상기 바람이 통과하면서 에너지를 전환하도록 하는 에너지전환부로 구성되는 풍력 발전 타워에 있어서, 상기 집풍부는 상기 윈드유입구를 통과하여 들어온 바람이 상기 에너지전환부의 일 반경방향으로 흐를 수 있도록 동일한 각도로 경사져 상기 풍력 발전 타워의 중심을 따라 방사상으로 배치되는 복수의 윈드가이드벽을 포함하고, 상기 에너지전환부는 그 내부에 상기 풍력 발전 타워의 각 층의 중심에 설치되며, TSR이 1.1 내지 2.4, 솔리디티는 0.2 이상, RPM은 240 이하로 형성되는 자이로밀형 풍력 블레이드를 포함하는 자이로밀형 풍력 터빈이 설치되되, 상기 에너지전환부는 상기 윈드가이드벽과 상기 자이로밀형 풍력 블레이드 사이의 공간에 형성되는 윈드유로와, 상기 풍력 발전 타워의 중심에서 상기 자이로밀형 풍력 블레이드 사이의 공간에 형성되는 내부유로로 구성될 수 있다.
In the wind power generation tower having a gyro mill-type wind turbine according to an embodiment of the present invention, a wind inlet through which wind is introduced is formed in a plurality of layers, and each layer has a wind collecting part to bring a change in strength and direction of the wind; In the wind power generation tower composed of an energy conversion unit for converting energy as the wind passes, the wind collecting portion is inclined at the same angle so that the wind flowing through the wind inlet flows in one radial direction of the wind power inclined And a plurality of wind guide walls disposed radially along the center of the power generation tower, wherein the energy conversion unit is installed at the center of each layer of the wind power generation tower therein, and has a TSR of 1.1 to 2.4 and a solidity of 0.2 or more. , Gyromill wind turbine is installed, including a gyromill wind blade is formed to be less than 240 RPM The energy conversion unit may include a wind flow path formed in a space between the wind guide wall and the gyro mill wind blade, and an internal flow path formed in a space between the gyro mill wind blade at the center of the wind power generation tower. .

상기 에너지전환부는 풍력 발전 타워에 바람이 유입되는 방향에 수직한 방향을 기준으로, 시계반대방향으로 4등분을 행하여 제1영역 내지 제4영역으로 정하고, 상기 복수의 윈드가이드벽은 상기 집풍부를 통과한 바람이 상기 에너지전환부의 제1영역과 제4영역을 통과하여 외부로 흐르도록 각도가 경사져 형성될 수 있으며, 상기 복수의 윈드가이드벽은 5개 이상 9개 이하로 형성될 수 있다.
The energy conversion unit may be divided into four regions in a counterclockwise direction to the first to fourth regions based on a direction perpendicular to a direction in which wind is introduced into the wind power generation tower, and the plurality of wind guide walls may include the wind collecting unit. An angle may be inclined such that the wind passing through the first and fourth regions of the energy conversion unit flows to the outside, and the plurality of wind guide walls may be formed in five to nine.

상기 에너지전환부의 상기 제1영역과 제4영역의 윈드유로를 통과하여 흐르는 바람의 유량이 상기 제1영역과 제4영역의 내부유로를 통과하여 흐르는 바람의 유량과 동일하거나 또는 그 이상이 되도록 윈드유로의 거리를 정할 수 있다.
Wind flows through the wind flow path of the first region and the fourth region of the energy conversion unit is equal to or greater than the flow rate of wind flowing through the internal flow path of the first region and the fourth region. The distance of the flow path can be determined.

또한, 상기 에너지전환부의 윈드유로의 최소거리는 제4영역에서 양의 토크가 처음으로 발생하는 위치이고, 최대거리는 자이로밀형 풍력 터빈의 반경으로 형성할 수 있다.
In addition, the minimum distance of the wind flow path of the energy conversion unit is a position where the positive torque is first generated in the fourth region, the maximum distance may be formed by the radius of the gyro mill wind turbine.

또한, 상기 에너지전환부의 제1영역과 제4영역에서 양의 토크가 발생하도록 상기 자이로밀형 풍력 블레이드의 받음각을 형성하는 것이 가능하다. 또한, 상기 풍력 발전 타워는 원기둥 형상으로 형성할 수 있다.
In addition, it is possible to form the angle of attack of the gyro mill type wind blade such that positive torque is generated in the first region and the fourth region of the energy conversion unit. In addition, the wind power tower may be formed in a cylindrical shape.

본 발명의 일 실시예에 따른 자이로밀형 풍력 터빈을 구비한 풍력 발전 타워는, 저속의 바람이라도 풍속을 가속화하여 풍력발전을 구현할 수 있음과 동시에 블레이드를 회전시키는 바람의 이용효율을 증대시킴으로써 전반적인 발전효율을 향상시킬 수 있다.Wind power generation tower having a gyro mill-type wind turbine according to an embodiment of the present invention, the wind power generation can be achieved by accelerating the wind speed even at low wind speed, while at the same time increasing the utilization efficiency of the wind to rotate the blades overall power generation efficiency Can improve.

도 1은 본 발명의 일 실시예에 따른 풍력 발전 타워를 보여주는 도면이다.
도 2는 도 1에 도시된 풍력 발전 타워의 단면도를 도시한다.
도 3은 본 발명의 일 실시예에 따른 풍력 발전 타워에 설치되는 자이로밀형 풍력 터빈의 일 실시예를 도시한다.
도 4는 자이로밀형 풍력 터빈의 방위에 따라 블레이드에 작용하는 양력과 항력을 도시한다.
도 5는 본 발명의 일 실시예에 따른 풍력 발전 타워의 단면도를 도시한다.
도 6은 도 5에 따른 집풍부와 에너지전환부의 확대도를 도시한다.
1 is a view showing a wind power generation tower according to an embodiment of the present invention.
FIG. 2 shows a sectional view of the wind power tower shown in FIG. 1.
Figure 3 shows an embodiment of a gyro mill-type wind turbine installed in the wind power tower according to an embodiment of the present invention.
4 shows the lift and drag acting on the blade according to the orientation of the gyromill type wind turbine.
Figure 5 shows a cross-sectional view of a wind power tower according to an embodiment of the present invention.
6 is an enlarged view of the wind collecting part and the energy conversion part according to FIG. 5.

본 발명에 따른 자이로밀형 풍력 터빈을 구비하는 풍력 발전 타워와 관련하여, 도면을 참고하여 이하에서 보다 구체적으로 설명하도록 한다.
With reference to the drawings with respect to a wind power tower having a gyro mill-type wind turbine according to the present invention will be described in more detail below.

본 발명의 출원인은 대기 중의 바람의 방향을 보다 효과적으로 집중시키도록 하면서 바람의 세기를 보다 증폭하기 위한 방법으로, 바람의 방향제어를 행하면서, 바람의 세기를 증폭하도록 하는 집풍부가 복수층으로 형성된 풍력 발전 타워를 제안하도록 한다. 이에 대한 도면이 도 1에 도시되어 있는 바, 상기 도면에 도시되어 있는 바와 같이, 본 발명에 따른 풍력 발전 타워(100)는 바람이 유입되는 복수개의 윈드유입구(111)를 포함하는 집풍부(110)가 복수층으로 형성되어 제작될 수 있다. 한편, 상기 풍력 발전 타워(100)로 불어오는 바람은 상기 풍력 발전 타워(100)의 윈드유입구(111)를 통과하거나, 또는 상기 도면에 도시되어 있는 바와 같이, 풍력 발전 타워(100)의 양 측면 및 상부를 타고 흘러가도록 형성될 수 있다. 이를 위해, 상기 풍력 발전 타워(100)는 원기둥 형상으로 형성될 수 있다.
Applicant of the present invention is a method for more amplifying the wind intensity while more effectively focusing the direction of the wind in the atmosphere, while the wind direction control to amplify the wind intensity while controlling the direction of the wind is formed in a plurality of layers Suggest a wind tower. 1 is shown in FIG. 1, as shown in the drawing, the wind power generation tower 100 according to the present invention includes a wind collecting part 110 including a plurality of wind inlets 111 through which wind is introduced. ) Can be produced by forming a plurality of layers. On the other hand, the wind blowing into the wind turbine tower 100 passes through the wind inlet 111 of the wind turbine tower 100, or as shown in the figure, both sides of the wind turbine tower 100 And it may be formed to flow along the top. To this end, the wind power tower 100 may be formed in a cylindrical shape.

도 2에는 본 발명에 따른 풍력 발전 타워(100)의 한 층의 단면을 도시하고 있는 바, 도면을 참조하면, 본 발명에 따른 풍력 발전 타워(100)는 집풍부(110)와 에너지전환부(150)로 형성될 수 있다. 집풍부(110)는 상기 서술한 바와 같이, 외부에서 불어오는 바람의 방향제어 및 세기를 증폭할 수 있도록 윈드유입구(111)와 윈드유출구(112)의 단면적이 일정 수준 이상의 차이를 갖도록 복수개의 윈드가이드벽(120)을 방사상으로 배치하는 것에 의해 형성할 수 있다. 여기서, 상기 윈드유입구(111)와 윈드유출구(112)의 단면적의 차이는 5 m/s 이하의 낮은 풍속에서 벤츄리효과에 의한 풍속의 증가를 가져올 수 있도록 최소 2.5 : 1 이상으로 형성하도록 한다. 또한, 상기 윈드가이드벽(120)은 상기 풍력 발전 타워(100)로 유입되는 바람을 효과적으로 외부로 배출할 수 있도록 적절한 수의 윈드유입구(111)를 갖도록 설계하는 것이 바람직하다. 따라서, 본 발명에 따른 풍력 발전 타워(100)는 적어도 5개 내지 9개 사이의 윈드가이드벽(110)을 설치하도록 하는 것에 의해, 상기 풍력 발전 타워(100)로 유입되는 바람을 외부로 효과적으로 배출할 수 있도록 하고 있다.
2 shows a cross section of a layer of a wind power generation tower 100 according to the present invention. Referring to the drawings, the wind power generation tower 100 according to the present invention includes a wind collecting part 110 and an energy conversion part ( 150). As described above, the wind collecting part 110 includes a plurality of winds such that the cross-sectional area of the wind inlet 111 and the wind outlet 112 has a predetermined level or more so as to amplify the direction control and intensity of the wind blowing from the outside. It can form by arrange | positioning the guide wall 120 radially. Here, the difference between the cross-sectional areas of the wind inlet 111 and the wind outlet 112 is formed to be at least 2.5: 1 to bring an increase in the wind speed due to the Venturi effect at a low wind speed of 5 m / s or less. In addition, the wind guide wall 120 is preferably designed to have an appropriate number of wind inlets 111 to effectively discharge the wind flowing into the wind power tower 100 to the outside. Therefore, the wind power generation tower 100 according to the present invention by installing the wind guide wall 110 between at least five to nine, to effectively discharge the wind flowing into the wind power generation tower 100 to the outside. I can do it.

상기 풍력 발전 타워(100)의 각 층의 중심에 형성되는 에너지전환부(150)에는 수직축 풍력 터빈을 설치하도록 하되, 본 발명은 상기 수직축 풍력 터빈으로 자이로밀형 풍력 터빈(130)을 설치하도록 한 기술을 특징으로 한다. 도 3에는 자이로밀형 풍력 터빈(130)의 일 실시예가 도시되어 있는 바, 상기 자이로밀형 풍력 터빈은 중심축(131)과, 유선형으로 형성되어 양력에 의해 회전하도록 형성되는 자이로밀형 풍력 블레이드(133) 및 상기 중심축(131)과 상기 자이로밀형 풍력 블레이드(133)를 연결하는 지지축(132)으로 구성될 수 있다.
The energy conversion unit 150 formed at the center of each layer of the wind power generation tower 100 to install a vertical axis wind turbine, the present invention is to install a gyro mill type wind turbine 130 as the vertical axis wind turbine technology It is characterized by. 3 shows an embodiment of a gyro mill-type wind turbine 130, the gyro mill-type wind turbine is a central axis 131, a gyro mill-type wind blade 133 is formed in a streamline to rotate by lifting force. And a support shaft 132 connecting the central shaft 131 and the gyro mill type wind blade 133.

상기 에너지전환부(150)는 상기 집풍부(110)를 통과한 바람이 통과하면서 바람에너지를 기계적 에너지로 전환하도록 하는 공간으로, 상기 자이로밀형 풍력 터빈(130)의 자이로밀형 풍력 블레이드(133)를 기준으로, 상기 자이로밀형 풍력 블레이드(133)와 상기 윈드가이드벽(120)의 끝단부 사이의 공간으로 정의되는 윈드유로(151)와, 상기 자이로밀형 풍력 터빈(130)의 중심축(131)에서 상기 자이로밀형 풍력 블레이드(133) 사이의 공간으로 정의되는 내부유로(152)로 구성될 수 있다.
The energy conversion unit 150 is a space for converting the wind energy into mechanical energy while the wind passing through the wind collecting unit 110 passes, and the gyro mill-type wind blade 133 of the gyro mill-type wind turbine 130. As a reference, the wind flow path 151 is defined as a space between the gyro mill-type wind blade 133 and the end of the wind guide wall 120, and in the central axis 131 of the gyro mill-type wind turbine 130 The gyro mill type wind blades 133 may be composed of an internal passage 152 defined as a space between.

한편, 본 발명의 일 실시예에 따른 풍력 발전 타워(100)는 상술한 바와 같이, 각 층의 중심에 기존의 항력식 수직축 풍력 터빈이 아니라, 자이로밀형 풍력 터빈(130)을 설치하도록 한 기술을 특징으로 한다. 기존에 연구 및 실제 운행되고 있는 대부분의 집풍부(110)를 구비한 풍력 발전 타워(100)는 그 중심에 항력식 수직축 풍력 터빈을 설치하고 있는 바, 이와 같은 항력식 수직축 풍력 터빈은 유입되는 바람을 직접적으로 접촉하도록 형성된다는 점에서, 초기 기동에서는 상당히 유리한 점이 있다. 그러나, 상기 서술한 바와 같이, 바람의 변화에 따라 터빈의 회전이 직접적으로 영향을 받게 되어 지속적인 발전이 어렵다는 문제가 있으며, 또한, 유입되는 바람의 속도가 매우 빠른 경우에는 상기 항력식 블레이드와의 큰 마찰로 인하여, 오히려 효과적인 발전이 어렵다는 문제가 있다.
On the other hand, the wind power tower 100 according to an embodiment of the present invention, as described above, instead of the conventional drag type vertical axis wind turbine in the center of each floor, the technique to install the gyro mill type wind turbine 130 It features. The wind power generation tower 100 having most of the wind collecting parts 110 currently being researched and actually installed has a drag vertical axis wind turbine installed at the center thereof. There is a significant advantage in the initial start-up in that it is formed to directly contact. However, as described above, there is a problem in that the rotation of the turbine is directly affected by the change of the wind, so that it is difficult to continuously generate power, and when the speed of the incoming wind is very fast, Due to friction, there is a problem that effective development is rather difficult.

따라서, 본 발명의 출원인은 기존의 항력식 수직축 풍력 터빈 대신, 도 2 및 도 3에 도시된 바와 같이 본 발명에 따른 풍력 발전 타워(100) 중심에 자이로밀형 풍력 터빈(130)을 설치하는 것에 의해 상술한 바와 같은 문제를 해결하도록 하였다. 상기 자이로밀형 풍력 터빈(130)은 자이로밀형 풍력 블레이드(133)가 유선형으로 형성되어 있어 양력을 주로 이용하여 회전을 하도록 형성된다. 또한, 유한길이의 날개가 직선으로 형성된 것을 특징으로 한다.
Therefore, the applicant of the present invention by installing a gyro mill type wind turbine 130 in the center of the wind power generation tower 100 according to the present invention, as shown in Figures 2 and 3, instead of the conventional drag type vertical axis wind turbine The problem as described above was solved. The gyro mill-type wind turbine 130 is a gyro mill-type wind blade 133 is formed in a streamlined form is formed to rotate mainly using the lifting force. In addition, the wings of finite length is characterized in that formed in a straight line.

한편, 자이로밀형 풍력 터빈(130)은 다리우스 풍력 터빈과 같이 양력에 의해 구동된다는 점에서, 기술적 유사성이 있으나, 자이로밀형 풍력 터빈(130)은 자이로밀형 풍력 블레이드(133)가 유선형으로 유한길이를 갖도록 형성된다는 점에서, 솔리디티(solidity)가 다리우스 풍력 터빈에 비해 높게 되고, 또한, TSR(Tip Speed Ratio)은 낮게 형성되고 있다. 여기서, 솔리디티는 블레이드의 임의의 반지름 위치에서 블레이드의 회전반경에 대해 블레이드가 차지하는 길이의 비를 의미하고, TSR은 바람의 속도와 블레이드 끝단 속도의 비를 의미한다. 즉, 바람의 속도와 블레이드 끝단의 속도가 같으면 TSR은 1이 된다.
On the other hand, the gyro mill type wind turbine 130 is technically similar in that it is driven by lift force, like the Darius wind turbine, but the gyro mill type wind turbine 130 is a gyro mill type wind blade 133 is a streamlined finite length. In terms of the formation, solidity is higher than that of the Darius wind turbine, and the TSR (Tip Speed Ratio) is low. Here, solidity means the ratio of the length of the blade to the radius of rotation of the blade at any radial position of the blade, TSR means the ratio of the wind speed and the blade tip speed. In other words, if the wind speed is the same as the blade tip speed, the TSR becomes 1.

한편, 솔리디티가 다리우스 풍력 터빈과 달리 본 발명의 일 실시예에 따른 자이로밀형 풍력 터빈(130)은 솔리디티가 상당히 높기 때문에 TSR이 증가함에 따라 자이로밀형 풍력 블레이드(133) 상호 간의 간섭과 하류에 위치하는 블레이드로 유입되는 유동속도의 감소로 인하여 양력이 상당히 감소하게 되는 문제점이 있다. 따라서, 본 발명에 따른 풍력 발전 타워(100)에 설치되는 자이로밀형 풍력 터빈(130)은 상술한 바와 같은 기술적 문제를 최소화하기 위해, 최소한 0.2 이상의 솔리디티를 갖도록 형성하도록 하되, TSR은 1.1 내지 2.4 사이의 범위에 있는 자이로밀형 풍력 터빈(130)을 사용하도록 한다. 또한, 자이로밀형 풍력 터빈(130)의 경우, TSR이 2.5를 넘어가는 경우 실속이 발생한다는 점에서, TSR은 2.4를 넘지 않도록 한다. 또한, 자이로밀형 풍력 블레이드(133)의 rpm 의 경우, 그 속도가 너무 빠른 경우, 블레이드의 회전속도에 의하여 주변의 공기가 가속되면서 항력의 증가로 상기 자이로밀형 풍력 터빈(130)의 성능이 저하된다는 문제가 있다. 따라서, 이러한 문제를 피하기 위해, 상기 rpm은 최대 240 이하에서 동작할 수 있도록 한다.
On the other hand, the solidity is different from Darius wind turbine gyro mill type wind turbine 130 according to an embodiment of the present invention because the solidity is considerably high, as the TSR increases as the gyro mill type wind blades 133 mutually and downstream There is a problem that the lift force is considerably reduced due to the reduction of the flow rate flowing into the blade located. Therefore, the gyro mill-type wind turbine 130 installed in the wind power generation tower 100 according to the present invention is to be formed to have a solidity of at least 0.2 or more, in order to minimize the technical problems as described above, TSR is 1.1 to 2.4 Use a gyro mill type wind turbine 130 in the range between. In addition, in the case of the gyro mill type wind turbine 130, since the stall occurs when the TSR exceeds 2.5, the TSR does not exceed 2.4. In addition, in the case of the rpm of the gyro mill type wind blade 133, if the speed is too fast, the performance of the gyro mill type wind turbine 130 is degraded by the increase of drag while the surrounding air is accelerated by the rotational speed of the blade. there is a problem. Thus, to avoid this problem, the rpm allows for operation up to 240 max.

본 발명의 일 실시예에 따른 풍력 발전 타워(100)에 적용되는 자이로밀형 풍력 터빈(130)의 블레이드의 움직임과 관련하여, "높은 솔리디티를 갖는 자이로밀의 공기역학적 특성(이주희,유영소, 대한기계학회 논문집 B권, 제35권 제12호, pp. 1273-1283, 2011)" 에 자이로밀형 풍력 터빈(130)의 구동과 관련한 연구가 개시되어 있다. 상기 연구와 관련한 내용이 도 4에 도시되어 있는 바, 상기 도면을 참조하면, 바람이 유입되는 방향을 기준으로 제1영역과 제2영역을 유동의 상류부분으로 정하고, 제3영역과 제4영역을 유동의 하류부분으로 정하는 경우, 유동의 상류부분인 제1영역과 제2영역에서는 자이로밀형 풍력 블레이드(133)에 발생하는 양력이 항력보다 크게 되어 상기 자이로밀형 풍력 블레이드(133)의 회전을 행할 수 있도록 하는 반면, 제3영역과 제4영역에서는 양력에 비해 항력이 크게 되어 상기 자이로밀형 풍력 블레이드(133)의 회전을 방해하는 힘으로 작용하고 있는 것을 알 수 있으며, 이러한 제3영역과 제4영역에서 발생하는 항력으로 인하여, 일반적인 자이로밀 풍력 터빈(130)의 효율이 떨어지는 원인으로 작용하고 있는 것을 알 수 있다.
Regarding the movement of the blades of the gyromill type wind turbine 130 applied to the wind power generation tower 100 according to the embodiment of the present invention, "Aerodynamic characteristics of the gyromill with high solidity (Lee Ju-hee, Yuyoung-so, Daehan Machinery Journal of the Korean Society for Publication B, Vol. 35, No. 12, pp. 1273-1283, 2011) discloses a study relating to the operation of the gyro mill type wind turbine 130. 4, the first and second regions are defined as the upstream portions of the flow, and the third and fourth regions are referred to in the direction in which the wind is introduced. In the first region and the second region, which are upstream portions of the flow, the lift force generated in the gyro mill wind blade 133 is greater than the drag force to rotate the gyro mill wind blade 133. On the other hand, it can be seen that the drag in the third region and the fourth region is greater than the lift force, thereby acting as a force to hinder the rotation of the gyro mill type wind blade 133. Due to the drag generated in the region, it can be seen that it acts as a cause of the decrease in efficiency of the general gyromill wind turbine 130.

따라서, 본 발명의 출원인은 상기 자이로밀 풍력 터빈(130)의 기술적 장점을 살리면서, 단점을 최대한 극복할 수 있도록 본 발명에 따른 풍력 발전 타워(100)의 구조를 개선하도록 하였는 바, 보다 상세하게는 도 5 및 도 6에 도시되어 있는 바와 같이, 상기 윈드유입구(111)를 통해 유입되는 바람이 상기 에너지전환부(150)의 일 반경방향으로 흐를 수 있도록 복수의 윈드가이드벽(120)을 상기 풍력 발전 타워(100)의 중심으로 따라 동일한 각도로 경사져 설치하도록 한다. 이를 통해, 도면에 도시되어 있는 바와 같이, 집풍부(110)를 통과한 바람은 에너지전환부(150)의 제1영역과 제4영역을 따라 흘러가도록 형성된다. 또한, 본 발명의 일 실시예에 따른 풍력 발전 타워(100)의 에너지전환부(150)는 상기 자이로밀형 풍력 블레이드(133)의 원활한 회전을 위해, 충분한 윈드유로(151)를 갖도록 설계하는 것이 중요하다. 한편, 상기 실시예는 바람이 유입되는 방향을 기준으로 자이로밀형 풍력 블레이드(133)가 반시계방향으로 회전하는 경우를 예시적으로 설명하고 있는 바, 바람이 유입되는 방향을 기준으로 자이로밀형 풍력 블레이드(133)가 시계방향으로 회전하는 경우에는, 상기 집풍부(110)를 통과한 바람은 에너지전환부(150)의 제2영역과 제3영역을 따라 흘러가도록 윈드가이드벽(120)을 형성할 수 있다.
Therefore, the applicant of the present invention was to improve the structure of the wind power generation tower 100 according to the present invention so as to overcome the disadvantages while maximizing the technical advantages of the gyromill wind turbine 130, in more detail, 5 and 6, a plurality of wind guide walls 120 are formed so that the wind flowing through the wind inlet 111 flows in one radial direction of the energy conversion unit 150. Inclined at the same angle along the center of the wind power generation tower 100 to be installed. Through this, as shown in the figure, the wind passing through the wind collecting unit 110 is formed to flow along the first region and the fourth region of the energy conversion unit 150. In addition, it is important that the energy conversion unit 150 of the wind power generation tower 100 according to an embodiment of the present invention is designed to have a sufficient wind flow path 151 for smooth rotation of the gyro mill-type wind blade 133. Do. On the other hand, the embodiment has been described that the gyro mill-type wind blade 133 is rotated counterclockwise based on the direction in which the wind is introduced, bar, the gyro mill-type wind blade based on the direction in which the wind flows When 133 rotates in the clockwise direction, the wind passing through the wind collecting part 110 may form the wind guide wall 120 to flow along the second area and the third area of the energy conversion unit 150. Can be.

자이로밀형 풍력 블레이드(133)는 기존의 항력식 수직축 터빈과 달리 양력에 의해 회전된다는 점에서, 상기 자이로밀형 풍력 블레이드(133)의 전후단을 기해 바람이 충분히 유동되는 공간을 필요로 하게 된다. 따라서, 본 발명의 경우, 상기 에너지전환부(150)를 자이로밀형 풍력 터빈(130)의 중심축(133)과 상기 자이로밀형 풍력 블레이드(133) 사이에 형성되는 공간을 내부유로(152)로 정하고, 상기 자이로밀형 풍력 블레이드(133)와 상기 집풍부(110)의 윈드가이드벽(120) 사이의 공간을 윈드유로(151)로 정하도록 하며, 상기 윈드유로(151)를 통해 충분히 바람이 유동될 수 있는 공간을 갖도록 설계하도록 하는 것을 기술적 특징으로 한다.
Unlike the conventional drag type vertical shaft turbine, the gyro mill type wind blade 133 is rotated by lifting force, and thus requires a space in which wind is sufficiently flowed based on the front and rear ends of the gyro mill type wind blade 133. Therefore, in the case of the present invention, the energy conversion unit 150 is defined as the internal flow path 152 a space formed between the central axis 133 of the gyro mill type wind turbine 130 and the gyro mill type wind blade 133 In addition, the space between the gyro mill-type wind blade 133 and the wind guide wall 120 of the wind collecting part 110 is defined as a wind flow path 151, and wind is sufficiently flowed through the wind flow path 151. It is a technical feature to design so that it may have space.

이에 따른 도면이 도 5 및 도 6에 도시되어 있는 바, 상기 도면에 따르면, 집풍부(110)를 통과한 바람은 에너지전환부(150)의 제1영역과 제4영역에 형성되어 있는 윈드유로(151)와 내부유로(152)를 따라 바람이 유동되도록 형성된다. 따라서, 본 발명에 따라 풍력 발전 타워(100) 내에 설치되는 자이로밀형 풍력 터빈(130)은 기존에 제1영역과 제2영역에서 발생하는 양력에 의해 회전하는 것과는 달리, 제1영역과 제4영역에서 발생하는 양력에 의해 회전력이 발생하게 된다. 또한, 본 발명에 따른 풍력 발전 타워(100)의 에너지전환부(150)는 제2영역과 제3영역에서는 바람의 유동이 거의 발생하지 않는다는 점에서, 기존 자이로밀형 풍력 터빈(130)에서 유동의 하류부분에서 발생하는 항력에 의해 블레이드의 속도가 저감되는 효과를 최소화할 수 있도록 한다. 한편, 상기 자이로밀형 풍력 터빈(130)의 회전방향이 반대로 형성되는 경우에는 집풍부(110)를 통과한 바람은 에너지전환부(150)의 제2영역과 제3영역에 형성되어 있는 윈드유로(151)와 내부유로(152)를 따라 바람이 유동되도록 형성하는 것이 가능하다.
5 and 6, the wind passing through the wind collecting part 110 is a wind flow path formed in the first region and the fourth region of the energy conversion unit 150. Wind is flowed along the 151 and the inner passage 152. Therefore, the gyro mill-type wind turbine 130 installed in the wind power generation tower 100 according to the present invention, unlike the conventional rotation by the lift generated in the first region and the second region, the first region and the fourth region The turning force is generated by the lift force generated in. In addition, the energy conversion unit 150 of the wind power generation tower 100 according to the present invention is that the flow of the wind hardly occurs in the second region and the third region, the flow of the existing gyro mill type wind turbine 130 The drag generated in the downstream part can minimize the effect of reducing the speed of the blade. On the other hand, when the rotation direction of the gyro mill type wind turbine 130 is formed in the opposite direction, the wind passing through the wind collecting part 110 is a wind flow path formed in the second region and the third region of the energy conversion unit 150 ( It is possible to form such that the wind flows along the 151 and the inner passage 152.

또한, 본 발명에 따른 풍력 발전 타워(100)는 에너지전환부(150)에 설치되는 자이로밀형 풍력 터빈(130)의 회전 효율을 효과적으로 높이도록 하기 위해, 적절한 윈드유로(151)의 거리를 설정하는 것이 무엇보다 중요하다. 특히, 본 발명에 따른 풍력 발전 타워(100)는 바람이 유입되는 방향을 기준으로 시계반대방향으로 제1영역 내지 제4영역으로 구분하는 경우, 제1영역과 제4영역에서 양력이 발생하도록 윈드유로(151)의 거리를 설정하는 것이 필요하다. 이와 같은 기술적 목적을 달성하기 위해, 본 발명에 따른 풍력 발전 타워(100)는 제1영역과 제4영역의 윈드유로(151)와 내부유로(152)를 따라 흐르는 바람의 유량을 최소한 동일하거나 또는 윈드유로(151)를 따라 흐르는 바람의 유량이 내부유로(152)를 따라 흐르는 바람의 유량보다 크게 형성하도록 하는 것에 의해 상술한 바와 같은 기술적 목적을 달성할 수 있다. 한편, 상술한 바와 같은 방법 외에도, 상기 윈드가이드벽(120)의 경사를 조정하여 상기 윈드유로(151)에 흐르는 유량을 조절하는 방법 및 상기 에너지전환부(150)를 따라 흐르는 바람이 상기 자이로밀형 풍력 블레이드(133)와 접하는 받음각을 조정하여 양력을 발생하게 하는 것에 의해서도, 상술한 바와 같은 기술적 목적을 어느정도 달성할 수 있으나, 이는 세부적인 변화에 기인한 것으로 본 발명의 주된 기술적 특징은 상기 윈드유로(151)의 거리를 적절히 조정하는 것에 의해 상기 윈드유로(151)에 흐르는 바람의 유량을 증가시키도록 하여, 상기 에너지전환부(150)의 제1영역과 제4영역에서 상기 자이로밀형 풍력 블레이드(133)에 양력이 발생하게 하는 것에 의해 달성될 수 있다.
In addition, the wind power generation tower 100 according to the present invention, in order to effectively increase the rotational efficiency of the gyro mill-type wind turbine 130 is installed in the energy conversion unit 150, to set the distance of the appropriate wind flow path 151 It is more important than anything. In particular, when the wind tower 100 according to the present invention is divided into the first region to the fourth region in the counterclockwise direction on the basis of the direction in which the wind is introduced, the wind power to generate a lift in the first region and the fourth region It is necessary to set the distance of the flow path 151. In order to achieve such a technical object, the wind power generation tower 100 according to the present invention is at least equal to the flow rate of the wind flowing along the wind passage 151 and the inner passage 152 of the first region and the fourth region, or The technical purpose as described above may be achieved by allowing the flow rate of the wind flowing along the wind flow path 151 to be greater than the flow rate of the wind flowing along the inner flow path 152. On the other hand, in addition to the above-described method, a method of controlling the flow rate of the wind flow path 151 by adjusting the inclination of the wind guide wall 120 and the wind flowing along the energy conversion unit 150 is the gyro mill type By adjusting the angle of attack in contact with the wind blade 133 to generate a lift, it is possible to achieve the above-described technical purpose to some extent, but this is due to a detailed change, the main technical features of the present invention is the wind flow path By adjusting the distance of the 151 appropriately, the flow rate of the wind flowing in the wind flow path 151 is increased, so that the gyro mill type wind blades in the first region and the fourth region of the energy conversion unit 150 ( 133 may be achieved by causing lift to occur.

또한, 본 발명에 따른 풍력 발전 타워(100)의 에너지전환부(150)에 형성되는 윈드유로(151)의 최소거리는 상기 에너지전환부(150)의 제4영역에서 상기 자이로밀형 풍력 블레이드(133)에 양의 토크가 처음으로 발생하는 위치를 최소로 하고, 최대거리는 상기 자이로밀형 풍력 터빈(130)의 반경을 넘지 않도록 한다. 즉, 본 발명에 따른 풍력 발전 타워(100)는 상기 에너지전환부(150)의 제4영역에서 양의 토크가 어느 정도 발생하는 가에 따라 그 효율이 증가된다는 점에서, 상기 윈드유로(151)의 최소거리는 상기 에너지전환부(150)의 제4영역에서 처음으로 양의 토크가 발생하는 지점을 최소거리로 정할 수 있다.
In addition, the minimum distance of the wind flow path 151 formed in the energy conversion unit 150 of the wind power generation tower 100 according to the present invention is the gyro mill type wind blade 133 in the fourth region of the energy conversion unit 150. To minimize the position where the positive torque is first generated, the maximum distance so as not to exceed the radius of the gyro mill type wind turbine 130. That is, in the wind power generation tower 100 according to the present invention, the efficiency of the wind turbine 151 increases in accordance with the amount of positive torque generated in the fourth region of the energy conversion unit 150. The minimum distance of may be defined as the minimum distance at which the positive torque occurs for the first time in the fourth region of the energy conversion unit 150.

상술한 바와 같이, 본 발명에 따른 자이로밀형 풍력 터빈을 구비하는 풍력 발전 타워(100)는 그 내부에 자이로밀형 풍력 터빈(130)을 설치하도록 하면서, 집풍부(110) 및 에너지전환부(150)의 구조적인 개선을 통해, 보다 효율이 높은 수직축 풍력 발전을 가능하게 한다.
As described above, the wind power generation tower 100 having the gyro mill-type wind turbine according to the present invention, while installing the gyro mill-type wind turbine 130 therein, the wind collecting unit 110 and the energy conversion unit 150 Structural improvements to enable more efficient vertical axis wind power generation.

한편, 본 발명에 따른 풍력 발전 타워(100)의 에너지전환부(150) 내에 형성되는 윈드유로(151)는 상기 서술한 바와 같이, 자이로밀형 풍력 터빈(130)의 풍력 블레이드(133)에 원활한 양력을 발생시키는 바람의 유동을 형성하기 위한 목적 외에도, 풍력 발전 타워(100)에서 발생하는 바람의 유동을 통해 풍력 발전 타워(100)의 에너지전환부(150) 내에서 추가적인 바람의 증속을 행하기 위해서도 반드시 필요하다. 예시적으로, 도 1에는 본 발명에 따른 풍력 발전 타워(100)에 흐르는 바람의 유동이 도시되어 있는 바, 상기 풍력 발전 타워(100)를 흐르는 바람은 윈드유입구(111)를 통한 집풍부(110)를 통해 상기 풍력 발전 타워(100)의 내부를 통해 흐르는 바람 외에도 상기 풍력 발전 타워(100)의 양 측면 및 상부면을 통해 흐르는 바람이 존재하게 된다. 이 경우, 도 2에 도시되어 있는 바와 같이, 풍력 발전 타워(100)의 바람이 유입되는 방향과 반대방향에는 압력이 상당히 낮게 되는 와류가 발생하게 된다. 따라서, 상기 풍력 발전 타워(100)의 내부를 통과하여 외부로 배출되는 바람은 상기 와류에 의한 압력차에 의해 그 속도가 증속되게 된다.
On the other hand, the wind flow path 151 formed in the energy conversion unit 150 of the wind power generation tower 100 according to the present invention, as described above, smooth lifting force to the wind blade 133 of the gyro mill type wind turbine 130. In addition to the purpose of forming a flow of wind to generate a, in order to increase the additional wind in the energy conversion unit 150 of the wind power generation tower 100 through the flow of wind generated in the wind power generation tower (100) It is necessary. For example, FIG. 1 shows a flow of wind flowing in the wind power generation tower 100 according to the present invention, and the wind flowing through the wind power generation tower 100 is the wind collecting part 110 through the wind inlet 111. In addition to the wind flowing through the inside of the wind power tower 100 through) there is a wind flowing through both sides and the upper surface of the wind power tower 100. In this case, as shown in FIG. 2, in the direction opposite to the inflow direction of the wind of the wind power generation tower 100, a vortex is generated in which the pressure is considerably low. Therefore, the wind passing through the interior of the wind power tower 100 is discharged to the outside speed is increased by the pressure difference caused by the vortex.

보다 상세하게는, 상기 에너지전환부(150) 내의 윈드유로(151)를 통과하여 상기 풍력 발전 타워(100)의 반대방향으로 배출되는 바람은 상기 풍력 발전 타워(100)의 반대방향의 바람배출공간에 형성되는 와류에 의해, 상기 에너지전환부(150)와 상기 와류가 형성되는 바람배출공간의 압력차가 상당히 크게 발생하게 되고, 이는 상기 에너지전환부(150)의 윈드유로(151)를 통과하는 바람의 세기를 보다 증속할 수 있는 효과를 가져오게 된다. 따라서, 상기 에너지전환부(150)의 윈드유로(151)를 따라 흐르는 바람은 상술한 바와 같은 압력차에 의해 증속됨으로, 이와 같은 효과는 상기 에너지전환부(150)에 형성되는 자이로밀형 풍력 블레이드(133)의 회전력에도 상당한 영향을 주게 된다.
More specifically, the wind discharged in the opposite direction of the wind power tower 100 through the wind flow path 151 in the energy conversion unit 150 is the wind discharge space in the opposite direction of the wind power tower 100 Due to the vortex formed in the air, the pressure difference between the energy conversion unit 150 and the wind discharge space in which the vortex is formed is generated significantly, which is the wind passing through the wind flow path 151 of the energy conversion unit 150. The effect of increasing the intensity of the will be brought. Thus, the wind flowing along the wind flow path 151 of the energy conversion unit 150 is increased by the pressure difference as described above, such an effect is a gyro mill-type wind blade formed in the energy conversion unit 150 ( 133) also has a significant effect on the rotational force.

따라서, 상술한 바와 같이 풍력 발전 타워(100)에서 발생하는 바람의 유동에 따라 발생하는 와류에 의한 에너지전환부(150) 내에 설치되는 수직축 풍력 터빈의 효율 향상 효과를 가져오기 위해서는, 에너지전환부(150) 내에 윈드유로(151)가 반드시 설치되어야 한다. 만일, 상기 에너지전환부(150) 내에 적절한 윈드유로(151)가 설치되지 않는다면, 상술한 바와 같은 풍력 발전 타워(100)에서 발생하는 바람의 유동에 의한 압력차에 의해 발생하는 에너지전환부(150) 내에 흐르는 바람의 세기의 증속효과는 상기 에너지전환부(150) 내에 설치되는 수직축 풍력 터빈의 회전력에 직접적인 영향을 미치지 않게 된다.
Therefore, as described above, in order to obtain the efficiency improvement effect of the vertical axis wind turbine installed in the energy conversion unit 150 due to the vortex generated by the flow of wind generated in the wind power generation tower 100, the energy conversion unit ( Wind flow path 151 must be installed in 150. If the appropriate wind flow path 151 is not installed in the energy conversion unit 150, the energy conversion unit 150 generated by the pressure difference due to the flow of wind generated in the wind power generation tower 100 as described above. The speed increase effect of the wind strength flowing in the) does not directly affect the rotational force of the vertical axis wind turbine installed in the energy conversion unit 150.

따라서, 상술한 바와 같이, 본 발명에 따른 풍력 발전 타워(100)의 에너지전환부(150) 내에 형성되는 윈드유로(151)는 자이로밀형 풍력 터빈(130)의 원활한 회전력을 가져오도록 하는 것과 동시에, 풍력 발전 타워(100)를 타고 흐르는 바람의 유동에 의해 발생하는 와류에 의한 바람의 증속효과를 가져오는 효과를 갖는다.Therefore, as described above, the wind flow path 151 formed in the energy conversion unit 150 of the wind power generation tower 100 according to the present invention to bring a smooth rotational force of the gyro mill type wind turbine 130, The wind power generation tower 100 has the effect of bringing up the effect of increasing the wind caused by the vortex generated by the flow of the wind flowing.

본 발명에 따른 자이로밀형 풍력 터빈을 구비하는 풍력 발전 타워(100)는 그 내부에 수직축 풍력 터빈인 자이로밀형 풍력 터빈(130)을 설치하고 있는 바, 본 발명에 따르면, 기존의 수직축 풍력 터빈을 대기상태에서 회전하는 것보다 약 50% 이상 효율이 증대되는 것을 확인할 수 있다. 이는, 집풍부(110)에서 벤츄리 효과에 의한 바람의 세기의 증속과 함께, 상기 집풍부(110)와 에너지전환부(150)의 구성을 통해, 상기 에너지전환부(150)를 흐르는 바람의 유량과 세기를 일정한 방향으로 증속하도록 형성하여 상기 자이로밀형 풍력 터빈(130)에 가하는 에너지를 크게 할 수 있게 하는 것에 의해 달성될 수 있으며, 또한, 풍력 발전 타워(100) 자체에서 발생하는 바람의 유동에 의해 발생하는 와류에 의한 압력차에 의해 상기 에너지전환부(150) 내에서의 바람의 2단 증속을 가능하게 하도록 함으로써, 상술한 바와 같은 효과를 달성할 수 있도록 한다.
The wind power generation tower 100 having the gyro mill type wind turbine according to the present invention is installed therein the gyro mill type wind turbine 130 which is a vertical axis wind turbine, according to the present invention, the existing vertical axis wind turbine atmosphere It can be seen that the efficiency is increased by about 50% or more than the rotation in the state. This, along with the increase in the strength of the wind due to the Venturi effect in the wind collecting unit 110, through the configuration of the wind collecting unit 110 and the energy conversion unit 150, the flow rate of the wind flowing through the energy conversion unit 150 It can be achieved by forming the over-intensity in a constant direction to increase the energy applied to the gyro mill type wind turbine 130, and also to the flow of wind generated in the wind tower 100 itself By enabling the two-speed increase of the wind in the energy conversion unit 150 by the pressure difference caused by the vortex generated by the, it is possible to achieve the effects as described above.

이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit of the invention as set forth in the appended claims. The present invention can be variously modified and changed by those skilled in the art, and it is also within the scope of the present invention.

100 : 풍력 발전 타워 110 : 집풍부
111 : 윈드유입구 112 : 윈드유출구
120 : 윈드가이드벽 130 : 자이로밀형 풍력 터빈
150 : 에너지전환부 151 : 윈드유로
152 : 내부유로
100: wind power generation tower 110: collector
111: wind inlet 112: wind outlet
120: wind guide wall 130: gyro mill type wind turbine
150: energy conversion unit 151: wind euro
152: internal euro

Claims (8)

바람이 유입되는 윈드유입구가 복수층으로 형성되고, 각 층은 바람의 세기 및 방향변화를 가져오도록 하는 집풍부와, 상기 바람이 통과하면서 에너지를 전환하도록 하는 에너지전환부로 구성되는 풍력 발전 타워에 있어서,
상기 집풍부는 상기 윈드유입구를 통과하여 들어온 바람이 상기 에너지전환부의 일 반경방향으로 흐를 수 있도록 동일한 각도로 경사져 상기 풍력 발전 타워의 중심을 따라 방사상으로 배치되는 복수의 윈드가이드벽을 포함하고,
상기 에너지전환부는 그 내부에 상기 풍력 발전 타워의 각 층의 중심에 설치되며, TSR이 1.1 내지 2.4, 솔리디티는 0.2 이상, RPM은 240 이하로 형성되는 자이로밀형 풍력 블레이드를 포함하는 자이로밀형 풍력 터빈이 설치되되,
상기 에너지전환부는 상기 윈드가이드벽과 상기 자이로밀형 풍력 블레이드 사이의 공간에 형성되는 윈드유로와, 상기 풍력 발전 타워의 중심에서 상기 자이로밀형 풍력 블레이드 사이의 공간에 형성되는 내부유로로 구성되며,
상기 에너지전환부는 풍력 발전 타워에 바람이 유입되는 방향에 수직한 방향을 기준으로, 시계반대방향으로 4등분을 행하여 제1영역 내지 제4영역으로 정하고,
상기 복수의 윈드가이드벽은 상기 집풍부를 통과한 바람이 상기 에너지전환부의 제1영역과 제4영역을 통과하여 외부로 흐르도록 각도가 경사져 형성되는 것을 특징으로 하는 자이로밀형 풍력 터빈을 구비하는 풍력 발전 타워.
In the wind power generation tower is formed of a plurality of wind inlet inlet wind is formed, each layer comprises a wind blowing unit for bringing a change in the strength and direction of the wind, and an energy conversion unit for converting energy as the wind passes through ,
The wind collecting part includes a plurality of wind guide walls that are radially disposed along the center of the wind power tower so as to be inclined at the same angle so that the wind flowing through the wind inlet flows in one radial direction of the energy conversion unit.
The energy conversion unit is installed in the center of each layer of the wind power tower therein, a gyro mill type wind turbine including a gyro mill type wind blade is formed in the TSR is 1.1 to 2.4, solidity is 0.2 or more, RPM is 240 or less Is installed,
The energy conversion unit is composed of a wind flow path formed in the space between the wind guide wall and the gyro mill wind blades, and an internal flow path formed in the space between the gyro mill wind blades at the center of the wind power generation tower,
The energy conversion unit is determined as the first region to the fourth region by performing an equal division in the counterclockwise direction on the basis of the direction perpendicular to the direction in which the wind is introduced into the wind power generation tower,
The plurality of wind guide walls are wind turbines having a gyro-mill type wind turbine, characterized in that the angle is inclined so that the wind passing through the wind collecting portion flows to the outside through the first region and the fourth region of the energy conversion unit. Power generation tower.
삭제delete 청구항 1에 있어서,
상기 복수의 윈드가이드벽은 5개 이상 9개 이하인 것을 특징으로 하는 자이로밀형 풍력 터빈을 구비하는 풍력 발전 타워.
The method according to claim 1,
The plurality of wind guide wall is a wind power generation tower having a gyro mill-type wind turbine, characterized in that more than five or less than nine.
청구항 1에 있어서,
상기 집풍부의 윈드유입구와 윈드유출구의 단면적의 차이는 2.5 : 1 이상으로 형성되는 것을 특징으로 하는 풍력 터빈을 구비하는 풍력 발전 타워.
The method according to claim 1,
The wind power generation tower having a wind turbine, characterized in that the difference between the cross-sectional area of the wind inlet and the wind outlet of the wind collecting unit is formed in 2.5: 1 or more.
삭제delete 삭제delete 삭제delete 청구항 1에 있어서,
상기 풍력 발전 타워는 원기둥 형상으로 형성되는 것을 특징으로 하는 자이로밀형 풍력 터빈을 구비하는 풍력 발전 타워.
The method according to claim 1,
The wind power tower is a wind power tower having a gyro mill-type wind turbine, characterized in that formed in a cylindrical shape.
KR1020130091877A 2013-08-02 2013-08-02 Wind power generation tower with giromill KR101372250B1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
KR1020130091877A KR101372250B1 (en) 2013-08-02 2013-08-02 Wind power generation tower with giromill
AU2013395801A AU2013395801B2 (en) 2013-08-02 2013-12-30 Wind power generation tower provided with gyromill type wind turbine
MX2016001487A MX2016001487A (en) 2013-08-02 2013-12-30 Wind power generation tower provided with gyromill type wind turbine.
CN201380078715.2A CN105452648B (en) 2013-08-02 2013-12-30 With the wind power generation stepped of vertical axis lift-type wind turbine
RU2016103276A RU2654550C2 (en) 2013-08-02 2013-12-30 Wind power generation tower provided with gyromill type wind turbine (versions)
CA2919986A CA2919986A1 (en) 2013-08-02 2013-12-30 Wind power generation tower provided with gyromill type wind turbine
BR112016002308A BR112016002308A2 (en) 2013-08-02 2013-12-30 wind power generation tower supplied with giromill type wind turbine
US14/908,484 US10323621B2 (en) 2013-08-02 2013-12-30 Wind power generation tower provided with gyromill type wind turbine
JP2016531503A JP2016525186A (en) 2013-08-02 2013-12-30 Wind power generation tower with gyromill type wind turbine
PCT/KR2013/012378 WO2015016444A1 (en) 2013-08-02 2013-12-30 Wind power generation tower provided with gyromill type wind turbine
EP13890588.0A EP3029315A4 (en) 2013-08-02 2013-12-30 Wind power generation tower provided with gyromill type wind turbine
SA516370521A SA516370521B1 (en) 2013-08-02 2016-02-01 Wind Power Generation Tower Provided with GYROMILL type Wind Turbine
CL2016000265A CL2016000265A1 (en) 2013-08-02 2016-02-02 Wind power generation tower provided with windmill type windmill (giromill).
PH12016500227A PH12016500227B1 (en) 2013-08-02 2016-02-02 Wind power generation tower provided with gyromill type wind turbine
JP2018239417A JP2019060345A (en) 2013-08-02 2018-12-21 Wind power generation tower comprising gyro-mill type wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130091877A KR101372250B1 (en) 2013-08-02 2013-08-02 Wind power generation tower with giromill

Related Child Applications (3)

Application Number Title Priority Date Filing Date
KR1020130157070A Division KR101372251B1 (en) 2013-08-02 2013-12-17 Wind power generation tower with giromill
KR1020130157075A Division KR101372253B1 (en) 2013-08-02 2013-12-17 Wind power generation tower with giromill
KR1020130157071A Division KR101374050B1 (en) 2013-08-02 2013-12-17 Wind power generation tower with giromill

Publications (1)

Publication Number Publication Date
KR101372250B1 true KR101372250B1 (en) 2014-03-10

Family

ID=50648097

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130091877A KR101372250B1 (en) 2013-08-02 2013-08-02 Wind power generation tower with giromill

Country Status (1)

Country Link
KR (1) KR101372250B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566648B2 (en) * 1984-10-19 1993-09-22 Matsushita Electric Ind Co Ltd
KR101059160B1 (en) * 2010-10-06 2011-08-25 제이케이이엔지(주) Tower for wind power generatior
WO2012176048A2 (en) 2011-06-20 2012-12-27 En-Eco S.P.A. Improved vertical-axis aerogenerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566648B2 (en) * 1984-10-19 1993-09-22 Matsushita Electric Ind Co Ltd
KR101059160B1 (en) * 2010-10-06 2011-08-25 제이케이이엔지(주) Tower for wind power generatior
WO2012176048A2 (en) 2011-06-20 2012-12-27 En-Eco S.P.A. Improved vertical-axis aerogenerator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
이주희, 유영소. 높은 솔리디티를 갖는 자이로밀의 공기역학적 특성. 대한기계학회논문집B권, 2011, 제35권, 제12호, pp.1273-1283. *
이주희, 유영소. 높은 솔리디티를 갖는 자이로밀의 공기역학적 특성. 대한기계학회논문집B권, 2011, 제35권, 제12호, pp.1273-1283.*

Similar Documents

Publication Publication Date Title
JP2019060345A (en) Wind power generation tower comprising gyro-mill type wind turbine
JP6128575B2 (en) Fluid power generation method and fluid power generation apparatus
JP4736003B2 (en) Fluid machine, windmill, and internal flow speed increasing method of fluid machine using unsteady flow
US9989033B2 (en) Horizontal axis wind or water turbine with forked or multi-blade upper segments
WO2009143846A1 (en) Blade for a rotor of a wind or water turbine
US20120009068A1 (en) Low-head orthogonal turbine
KR101817229B1 (en) Apparatus for generating by wind power
JPWO2010087178A1 (en) Wind power generator
CN109441691B (en) Mixed-flow water turbine with tail water pipe and rectifying plate
JP6954739B2 (en) Rotor for generator
AU2019284010A1 (en) Wind power generation tower
WO2017110298A1 (en) Windmill system and wind farm
US20100135809A1 (en) Wind wheel
KR101372250B1 (en) Wind power generation tower with giromill
KR101374050B1 (en) Wind power generation tower with giromill
KR101372253B1 (en) Wind power generation tower with giromill
KR101372251B1 (en) Wind power generation tower with giromill
CN101798988A (en) Method and device for improving performance of resistance-type vertical axis wind turbine
KR20150069066A (en) Lift-Drag Blade and Rotor for Vertical Axis Wind-Turbine
JP6054189B2 (en) Axial turbine generator
JP2020186697A (en) Wind mill blade and wind power generation device

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
A107 Divisional application of patent
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170306

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180305

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190304

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200303

Year of fee payment: 7