KR101323418B1 - Method of manufacturing coated electronic parts with high anti-bending and heat resistancy properties and coated electronic parts thereof - Google Patents

Method of manufacturing coated electronic parts with high anti-bending and heat resistancy properties and coated electronic parts thereof Download PDF

Info

Publication number
KR101323418B1
KR101323418B1 KR1020120018415A KR20120018415A KR101323418B1 KR 101323418 B1 KR101323418 B1 KR 101323418B1 KR 1020120018415 A KR1020120018415 A KR 1020120018415A KR 20120018415 A KR20120018415 A KR 20120018415A KR 101323418 B1 KR101323418 B1 KR 101323418B1
Authority
KR
South Korea
Prior art keywords
electronic component
coating
masking
insulating layer
insulating
Prior art date
Application number
KR1020120018415A
Other languages
Korean (ko)
Other versions
KR20130096873A (en
Inventor
황만용
김기린
김종호
Original Assignee
신흥에스이씨주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신흥에스이씨주식회사 filed Critical 신흥에스이씨주식회사
Priority to KR1020120018415A priority Critical patent/KR101323418B1/en
Publication of KR20130096873A publication Critical patent/KR20130096873A/en
Application granted granted Critical
Publication of KR101323418B1 publication Critical patent/KR101323418B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/32Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

본 발명은 전자부품의 절연코팅방법 및 그의 절연코팅체를 개시한다.
본 발명에 따르는 전자부품의 절연코팅방법 및 그 절연코팅체에 의하면, 피착체는 절연체를 도포하는 코팅부과 마스킹이 필요한 비코팅부로 이루어지는데, 상기 비코팅부를 마스킹하는 S1단계, 상기 피착체의 코팅부에 비전도성 폴리머 용해액을 전계방사(electro-spinning)에 의하여 미세섬유체로 방사하여 절연층을 형성하는 S2단계 및 상기 절연층을 건조하는 S3단계를 포함하는 것을 특징으로 하는데,이에 의할 때, 전자부품의 절연체 형성공정에 수반되는 높은 공정비를 개선하고, 적층된 절연체의 내굴곡성, 내열성을 확보할 수 있다.
The present invention discloses an insulation coating method for an electronic component and an insulation coating body thereof.
According to the insulation coating method of the electronic component and the insulation coating body according to the present invention, the adherend is composed of a coating portion for applying the insulator and a non-coating portion that requires masking, S1 masking the non-coating portion, the coating of the adherend S2 step of forming an insulating layer by spinning the non-conductive polymer solution into the microfibrous body by electro-spinning, and S3 step of drying the insulating layer, by In addition, the high process cost associated with the insulator formation process of the electronic component can be improved, and the flex resistance and the heat resistance of the laminated insulator can be ensured.

Description

전자부품의 절연코팅방법 및 그의 절연코팅체{Method of manufacturing coated electronic parts with high anti-bending and heat resistancy properties and coated electronic parts thereof}Insulation coating method of electronic components and insulating coating body thereofMethod of manufacturing coated electronic parts with high anti-bending and heat resistancy properties and coated electronic parts

본 발명은 전자부품의 절연코팅방법 및 그의 절연코팅체에 관한 것으로, 더욱 상세하게는 전자부품의 절연체 형성공정에 수반되는 높은 공정비를 개선하고, 적층된 절연체의 내굴곡성, 내열성을 확보하는 전자부품의 절연코팅방법 및 그의 절연코팅제를 제공하는 것이다.
The present invention relates to an insulating coating method of an electronic component and an insulating coating thereof, and more particularly, to improve the high process cost associated with the insulator forming process of the electronic component and to secure the bending resistance and heat resistance of the laminated insulator. It is to provide an insulation coating method of a component and an insulation coating agent thereof.

일반적으로, 전자부품(電子部品)이라 하면, 기본 전자 구성품을 의미하는 것으로, 2개 이상의 리드나 금속 패드와 연결된 상태로 패키지되며, 부품은 케이스, 셀, 증폭기, 수신기, 진동자 등과 같이 특수한 기능으로 동작하게 인쇄회로기판(Printed circuit board) 납땜하여 서로 전기적으로 연결된다.In general, an electronic component refers to a basic electronic component, and is packaged in connection with two or more leads or metal pads, and the component is a special function such as a case, a cell, an amplifier, a receiver, and a vibrator. It is operatively soldered to a printed circuit board and electrically connected to each other.

이러한 부품은 저항기, 축전기, 트랜지스터, 다이오드 등과 같이 단일소자로 패키지되거나 오피앰프, 어레이 저항기, 논리회로 등과 같이 집적회로로 구성될 수도 있다.Such components may be packaged in a single device such as resistors, capacitors, transistors, diodes, or the like, or may be integrated circuits such as op amps, array resistors, logic circuits, and the like.

이러한 전자부품의 전기적 연결을 위하여, 전기가 통하여 부분과 절연되어야 하는 부분이 명확하게 구별되어야 함은 물론이다.Of course, for the electrical connection of such electronic components, the part to be insulated from the part through the electricity must be clearly distinguished.

종래에는, 전기적으로 연결을 필요로 하는 경우에 금속리드(니켈과 같은)나 패드에 절연체를 프린팅(printing)과 같은 물리적증착이나 증발(evaporation)과 같은 화학적 도포를 활용하여 적층하는 공정을 이용하나, 폴리이미드필름과 같이 용융온도가 200 ~ 400℃ 정도로 높은 소재에 대하여는 제조공정상 사용이 거의 불가능하거나, 따라서, 별도의 접착제를 대체 활용하는 방법을 사용하였다.Conventionally, when an electrical connection is required, a process of laminating an insulator to a metal lead (such as nickel) or a pad using physical deposition such as printing or chemical coating such as evaporation is used. For a material with a high melting temperature of 200 to 400 ° C., such as a polyimide film, it is almost impossible to use it in the manufacturing process, and therefore, a method of using an alternative adhesive is used.

이러한 방법은 절연체의 피착면보다 큰 면적을 재단한 필름을 위치시키고, 열접착하고, 그 말단(edge)를 설계치대로 트리밍(trim)하는 여러단계의 배치공정을 필요로 하여 필연적으로 높은 공정비를 수반하는 문제가 있었다.This method inevitably involves a high process cost by requiring a multi-stage batching process of placing a film cut to a larger area than the surface of the insulator and thermally bonding it, and trimming the edges according to the design value. There was a problem.

아울러, 고공정비에도 불구하고 제조된 전자부품들은 제조공정상 또는 제조후 실제 사용에 있어서 고열이나 굴곡이 발생하는 경우에 절연체나 접착층에 크랙이 생기거나 부스러져 절연이 파괴되는 문제를 수반하기도 하였다.
In addition, despite the high process cost, the manufactured electronic parts have a problem of cracking or crushing the insulator or adhesive layer when the heat or bending occurs in the manufacturing process or in actual use after manufacturing, and thus the insulation is broken.

따라서, 본 발명이 해결하고자 하는 첫번째 기술적 과제는, 전자부품의 절연체 형성공정에 수반되는 높은 공정비를 개선하고, 적층된 절연체의 내굴곡성, 내열성을 확보하는 전자부품의 절연코팅방법을 제공하는 것이다.Accordingly, the first technical problem to be solved by the present invention is to provide an insulation coating method of an electronic component which improves the high process cost associated with the insulator forming process of the electronic component and secures the bending resistance and the heat resistance of the laminated insulator. .

또한, 본 발명이 해결하고자 하는 두번째 기술적 과제는 전자부품의 절연체 형성공정에 수반되는 높은 공정비를 개선하고, 적층된 절연체의 내굴곡성, 내열성을 확보하는 전자부품의 절연코팅체를 제공하는 것이다.
In addition, a second technical problem to be solved by the present invention is to provide an insulation coating body for an electronic component that improves the high process cost associated with the insulator forming process of the electronic component and secures the bending resistance and heat resistance of the laminated insulator.

본 발명은 상술한 첫번째 기술적 과제를 해결하기 위하여, 피착체는 절연체를 도포하는 코팅부과 마스킹이 필요한 비코팅부로 이루어지는데, 상기 비코팅부를 마스킹하는 S1단계, 상기 피착체의 코팅부에 비전도성 폴리머 용해액을 전계방사(electro-spinning)에 의하여 미세섬유체로 방사하여 절연층을 형성하는 S2단계 및 상기 절연층을 건조하는 S3단계를 포함하는 것을 특징으로 하는 전자부품의 절연코팅방법을 제공한다.The present invention, in order to solve the first technical problem described above, the adherend is made of a coating portion for applying an insulator and a non-coating portion that requires masking, S1 masking the non-coating portion, a non-conductive polymer in the coating portion of the adherend Provided is an insulating coating method for an electronic component, comprising the step S2 of forming a dielectric layer by spinning a solution into a fine fiber by electro-spinning and drying the dielectric layer.

본 발명의 일실시예에 의하면, 상기 마스킹은 비코팅부의 상부에 마스킹프레임이나 테이프를 배치시키는 것일 수 있다.According to one embodiment of the invention, the masking may be to place a masking frame or tape on top of the uncoated portion.

본 발명의 다른 실시예에 의하면, 상기 비전도성 폴리머 용해액은 폴리비닐알콜, 폴리에틸렌옥시드, 폴리우레탄, 폴리이미드, 폴리아크릴로니트릴, 폴리올레핀(polyolefine), 폴리이미드(polyimide), 폴리아미드(polyamide), 폴리에스테르(polyester), 아라미드(aramide), 아크릴(acrylic), 폴리에틸렌옥사이드(PEO; polyethylene oxide), 폴리카프로락톤(polycaprolactone), 폴리카보네이트(polycarbonate), 폴리스틸렌(polystyrene), 폴리에틸렌 테레프탈레이트(polyethylene terephtalate), 폴리벤지미다졸(PBI; polybezimidazole), 폴리(2-하이드로에틸 메타크릴레이트(poly(2-hydroxyethyl methacrylate)), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리(에테르 이미드)(poly(ether imide)), 스틸렌-부타디엔-스틸렌 3블록 공중합체(SBS; styrene-butadiene-styrene triblock copolymer) 및 폴리(페로세닐디메틸실레인)(poly(ferrocenyldimethylsilane))로 이루어진 군에서 선택되는 적어도 하나를 포함하는 것일 수 있다.According to another embodiment of the present invention, the non-conductive polymer solution is polyvinyl alcohol, polyethylene oxide, polyurethane, polyimide, polyacrylonitrile, polyolefine, polyimide, polyamide ), Polyester, aramid, acrylic, acrylic, polyethylene oxide (PEO), polycaprolactone, polycarbonate, polystyrene, polyethylene terephthalate terephtalate, polybenzimidazole (PBI), poly (2-hydroxyethyl methacrylate), polyvinylidene fluoride, poly (ether imide) (ether imide)), styrene-butadiene-styrene triblock copolymer (SBS; styrene-butadiene-styrene triblock copolymer) and poly (ferrocenyldimethylsilane) (poly (ferrocenyldimethy lsilane)) may include at least one selected from the group consisting of:

본 발명의 또 다른 실시예에 의하면, 상기 전계방사는 피착제를 그라운드로 하여 0.01 내지 0.1㎹를 인가하여 수행하는 것일 수 있다.According to another embodiment of the present invention, the field emission may be performed by applying 0.01 to 0.1㎹ by using the adherend as the ground.

본 발명의 또 다른 실시예에 의하면, 상기 절연층의 밀도는 시트의 겉보기 부피당 무게가 0.001 내지 1 g/㎝3인 것일 수 있다.According to another embodiment of the present invention, the density of the insulating layer may be that the weight per apparent volume of the sheet is 0.001 to 1 g / cm 3 .

본 발명의 또 다른 실시예에 의하면, 상기 미세섬유체는 그 평균직경이 1 내지 10㎛인 것일 수 있다.According to another embodiment of the present invention, the microfiber may have an average diameter of 1 to 10㎛.

본 발명의 또 다른 실시예에 의하면, 상기 절연층의 평균두께가 10 내지 50㎛인 것일 수 있다.According to another embodiment of the present invention, the average thickness of the insulating layer may be 10 to 50㎛.

본 발명의 또 다른 실시예에 의하면, 상기 건조는 30 내지 150℃의 온도 및 0.1 내지 20 ㎫의 압력으로 수행되는 것일 수 있다.According to another embodiment of the present invention, the drying may be performed at a temperature of 30 to 150 ℃ and a pressure of 0.1 to 20 MPa.

본 발명은 상술한 두번째 기술적 과제를 달성하기 위하여, 상술한 제조방법 중 어느 하나에 의하여 제조되는 전자부품의 절연코팅체를 제공한다.
The present invention provides an insulation coating body for an electronic component manufactured by any one of the above-described manufacturing method in order to achieve the above-described second technical problem.

본 발명에 따르는 전자부품의 절연코팅방법 및 그의 절연코팅체에 의하면, 전자부품의 절연체 형성공정에 수반되는 높은 공정비를 개선하고, 적층된 절연체의 내굴곡성, 내열성을 확보할 수 있다.
According to the insulation coating method of an electronic component and the insulation coating body which concerns on this invention, the high process cost accompanying the insulator formation process of an electronic component can be improved, and the bending resistance and heat resistance of a laminated insulator can be ensured.

도 1은 본 발명에 따르는 전자부품의 절연코팅방법을 그 순서에 따라 보여주는 순서도이고,
도 2는 본 발명의 전계방사를 개략적으로 보여주는 그림이며,
도 3은 본 발명의 일실시예에 따르는 리드프레임의 마스킹, 절연층 형성을 순서대로 보여주는 개략도이다.
1 is a flowchart showing an insulation coating method of an electronic component according to the present invention in order;
2 is a view schematically showing the field radiation of the present invention,
Figure 3 is a schematic diagram showing in order the masking, insulating layer formation of the lead frame according to an embodiment of the present invention.

본 발명의 상기와 같은 목적, 특징 및 다른 장점들은 첨부도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명함으로써 더욱 명백해질 것이다. 이하 첨부된 도면을 참조하여 본 발명의 실시예에 따르는 전자부품의 절연코팅방법을 상세하게 설명하기로 한다.The above objects, features and other advantages of the present invention will become more apparent by describing the preferred embodiments of the present invention in detail with reference to the accompanying drawings. Hereinafter, an insulation coating method of an electronic component according to an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings.

먼저, 본 발명에 따르는 전자부품의 절연코팅방법은 피착체는 절연체를 도포하는 코팅부과 마스킹이 필요한 비코팅부로 이루어지는데, 상기 비코팅부를 마스킹하는 S1단계, 상기 피착체의 코팅부에 비전도성 폴리머 용해액을 전기방사(electro-spinning)에 의하여 미세섬유체로 방사하여 절연층을 형성하는 S2단계 및 상기 절연층을 건조하는 S3단계를 포함하는 특징이 있다.First, the insulation coating method of the electronic component according to the present invention comprises a coating portion for coating the insulator and a non-coating portion that requires masking, S1 masking the non-coating portion, a non-conductive polymer on the coating portion of the adherend It characterized in that it comprises a step S2 to form an insulating layer by spinning the dissolving solution into a fine fiber body by electrospinning (electro-spinning) and the step S3 to dry the insulating layer.

도 1은 본 발명에 따르는 전자부품의 절연코팅방법을 그 순서에 따라 보여주는 순서도인데, 이를 참조한다.1 is a flowchart showing an insulation coating method of an electronic component according to the present invention in order. Referring to FIG.

상기 S1단계는 피착체는 절연체를 도포하는 코팅부과 마스킹이 필요한 비코팅부로 이루어지는데, 상기 비코팅부를 마스킹하는 공정이다.In the step S1, the adherend consists of a coating part for applying an insulator and a non-coating part that requires masking, which is a process of masking the non-coating part.

상기 피착체는 전자부품으로서 절연체 코팅이 필요한 소재를 의미하는 것으로, 니켈과 같은 금속재를 말한다.The adherend refers to a material requiring an insulator coating as an electronic component, and refers to a metal material such as nickel.

상기 피착체는 또한 마스킹전에 별도의 세척(rinsing)공정을 구비할 수 있는데, 도포(coating)전에 이물질에 의한 부착특성 저감이나 도포후에 발생할 수 있는 핀홀(pin-hole)을 방지하기 위하여 필요할 수 있다.The adherend may also have a separate rinsing process before masking, which may be necessary to reduce the adhesion properties by foreign matter before coating or to prevent pin-holes that may occur after application. .

한편, 상기 코팅부와 비코팅부는 피착체에서의 통전(通電)이 필요한지에 따라 결정되는 것으로 전자부품의 사용에 필요한 소정 설계에 의하여 결정된다.On the other hand, the coating portion and the non-coating portion are determined depending on whether electricity is required in the adherend and is determined by a predetermined design required for use of the electronic component.

아울러, 상기 마스킹은 비코팅부의 상부에 마스킹프레임이나 테이프를 배치시키는 것일 수 있는데, 상기 마스킹프레임(masking frame)은 평판디스플레이 제조에서 사용하는 노광(exposure)공정을 예로 설명하면, UV램프와 같은 광조사체에서 방사되는 고에너지 빛을 피사체에 조사하는 공간 사이에 마스크글라스(masking glass)를 배치시키는데, 상기 마스크글라스는 이미 피사체에 형성시키고자 하는 전자회로 패턴(pattern)을 구비하고 있어 상기 조사되는 고에너지 빛을 일부 차단하고 다른 부분만 통과시키게 된다. 여기서 차단되는 빛은 마스크글라스에 형성된 패턴에 의하여 가능한 것이다.In addition, the masking may be to place a masking frame or tape on the upper portion of the uncoated portion, the masking frame (masking frame) is described as an example of the exposure (exposure) process used in the manufacture of flat panel display, such as UV lamp Masking glass is placed between the spaces that irradiate the subject with high-energy light radiated from the dead body, and the mask glass already has an electronic circuit pattern to be formed on the subject, so that the high It blocks some of the energy light and passes only the other parts. Light blocked here is possible by the pattern formed on the mask glass.

이와 마찬가지로, 본 발명의 마스킹프레임은 소정 패턴을 구비하여 차단되는 영역인 비코팅부와 통과되는 영역인 코팅부를 구비하게 되는데, 다만 고에너지 빛을 사용하지 아니하는 관계상, 글라스 소재도 상관이 없으나 물리적으로 천공되는 패턴 형성이 어려워서 금속재나 폴리머재를 이용하는 것이 바람직하다.Similarly, the masking frame of the present invention includes a non-coating portion, which is a region blocked by a predetermined pattern, and a coating portion, which is a region passing therethrough. However, since a high energy light is not used, a glass material may be used. It is preferable to use a metal material or a polymer material because it is difficult to form a physically perforated pattern.

다음으로, S2단계를 보면, 상기 피착체의 코팅부에 비전도성 폴리머 용해액을 전기방사(electro-spinning)에 의하여 미세섬유체로 방사하여 절연층을 형성하는 공정이다.Next, in the step S2, a non-conductive polymer solution is spun into the microfibers by electrospinning to form an insulating layer on the coating part of the adherend.

상기 비전도성 폴리머 용해액은 폴리비닐알콜, 폴리에틸렌옥시드, 폴리우레탄, 폴리이미드, 폴리아크릴로니트릴, 폴리올레핀(polyolefine), 폴리이미드(polyimide), 폴리아미드(polyamide), 폴리에스테르(polyester), 아라미드(aramide), 아크릴(acrylic), 폴리에틸렌옥사이드(PEO; polyethylene oxide), 폴리카프로락톤(polycaprolactone), 폴리카보네이트(polycarbonate), 폴리스틸렌(polystyrene), 폴리에틸렌 테레프탈레이트(polyethylene terephtalate), 폴리벤지미다졸(PBI; polybezimidazole), 폴리(2-하이드로에틸 메타크릴레이트(poly(2-hydroxyethyl methacrylate)), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리(에테르 이미드)(poly(ether imide)), 스틸렌-부타디엔-스틸렌 3블록 공중합체(SBS; styrene-butadiene-styrene triblock copolymer) 및 폴리(페로세닐디메틸실레인)(poly(ferrocenyldimethylsilane))로 이루어진 군에서 선택되는 적어도 하나를 포함하는 것일 수 있는데, 이러한 소재는 상기 절연체를 구성하고 전기방사에 효율적인 재료이다.The non-conductive polymer solution is polyvinyl alcohol, polyethylene oxide, polyurethane, polyimide, polyacrylonitrile, polyolefine, polyimide, polyamide, polyester, aramid (aramide), acrylic, polyethylene oxide (PEO), polycaprolactone, polycarbonate, polystyrene, polyethylene terephtalate, polybenzimidazole (PBI) polybezimidazole, poly (2-hydroxyethyl methacrylate), polyvinylidene fluoride, poly (ether imide), styrene-butadiene -Styrene triblock copolymer (SBS; styrene-butadiene-styrene triblock copolymer) and poly (ferrocenyldimethylsilane) (poly (ferrocenyldimethylsilane)) selected from the group consisting of May comprise at least one, and such a material constitutes the insulator and is an efficient material for electrospinning.

또한, 상기 비전도성 폴리머 용해액은 전기방사에 효과적으로 이용되도록 용매를 더 포함할 수 있는데, 그 점도나 휘발성을 확보할 수 있는 범위내에서 그 종류나 사용량을 한정할 필요는 없다.In addition, the non-conductive polymer solution may further include a solvent so as to be effectively used for electrospinning, it is not necessary to limit the type and the amount used within the range that can ensure the viscosity or volatility.

아울러, 상기 전계방사는 피착제를 그라운드로 하여 0.01 내지 0.1㎹를 인가하여 수행하는 것일 수 있는데, 1795년 Bose가 표면장력에 의해 모세관 끝에 매달려있는 물방울에 고전압을 인가할 때 물방울 표면에서 미세필라멘트가 방출되는 정전 스프레이 현상을 발견한 것에 기원을 둘 수 있으며, 도 2에서 볼 수 있는 바와 같이, 점도를 가진 고분자 용해액이나 용융체(P)에 전기력(V)이 주어질 경우 분사되는 노즐의 끝단(T)에서 섬유가 형성되며 만일 0.01㎹ 미만이면, 후술할 미세섬유체의 균일한 범위의 섬유로 방사하기 어려워 절연층이 제대로 형성될 수 없을 수 있으며, 반대로 0.1㎹를 초과하면 내굴곡성 확보에는 도움이 될 수 있으나, 방사 소재의 물성 변화나 고에너지로 인한 제조원가 상승이 발생할 수 있다.In addition, the field radiation may be carried out by applying 0.01 to 0.1㎹ by using the adherend as the ground, and in 1795, when the Bose applied a high voltage to the water drop hanging at the end of the capillary tube by the surface tension, It can be attributed to the discovery of the electrostatic spray phenomena discharged, and as shown in Figure 2, the end of the nozzle (T) is injected when the electric force (V) is given to the polymer melt or melt P having a viscosity (T) If the fiber is formed in the case of less than 0.01㎹, it may be difficult to form a fiber in a uniform range of microfibers, which will be described later, and thus an insulating layer may not be formed properly. However, due to the change in the physical properties of the radiation material or high energy production costs may occur.

또한, 상기 방사된 미세섬유체는 그 평균직경이 1 내지 10㎛인 것일 수 있는데, 만일 1㎛ 미만이면, 특별하게 절연성이나, 내열성에 유의차를 가지지 아니하며, 고전압을 필요로 하여 에너지손실, 제조원가가 증가될 수 있고, 반대로 10㎛를 초과하면 내굴곡성이 저감될 수 있다.In addition, the spun microfiber body may have an average diameter of 1 to 10㎛, if less than 1㎛, there is no particular difference in insulation or heat resistance, and requires a high voltage, energy loss, manufacturing cost Can be increased, on the contrary, if it exceeds 10 mu m, the flex resistance can be reduced.

아울러, 상기 미세섬유체가 형성하는 절연층의 밀도는 시트 겉보기 부피당 무게가 0.001 내지 1 g/㎝3인 것일 수 있는데, 만일 0.001 g/㎝3 미만이면, 내열성 감소나 절연파괴가 일어날 수 있으며, 반대로, 1 g/㎝3 를 초과하면, 내굴곡성에 악영향을 미칠 수 있어 바람직하지 아니하다.In addition, the density of the insulating layer formed by the microfibrous body may be a weight per sheet apparent volume of 0.001 to 1 g / cm 3 , if less than 0.001 g / cm 3 , heat resistance reduction or insulation breakdown may occur, on the contrary When it exceeds 1 g / cm 3 , it may adversely affect the flex resistance, which is not preferable.

또한, 상기 절연층은 그 평균두께가 10 내지 50㎛인 것일 수 있는데, 만일 10㎛ 미만이면, 절연층의 실제적인 공정상 두께 관리가 매우 어려울 뿐만 아니라, 충분한 절연의 두께가 미확보되어 전기적인 쇼트(short)가 발생할 수 있고, 반대로 50㎛를 초과하면, 제조원가 증가와 내굴곡성에 악영향을 미칠 수 있다.In addition, the insulating layer may have an average thickness of 10 to 50 μm. If the thickness is less than 10 μm, not only the actual process thickness management of the insulating layer is very difficult, but sufficient thickness of the insulation is not secured, and thus the electrical short. (short) may occur, on the contrary, if it exceeds 50 mu m, it may adversely affect the increase in manufacturing cost and the flex resistance.

또한, 상술한 미세섬유체로 방사하여 절연층을 형성한 이후에 상기 절연층에 절연성, 내열성 및 내굴곡성을 부여하기 위하여 건조하는 공정을 수행할 필요가 있다.In addition, after forming the insulating layer by spinning with the above-described fine fiber body, it is necessary to perform a drying process to impart insulation, heat resistance and bending resistance to the insulating layer.

상기 건조 공정은 특별하게 말리는 것(drying)의 의미로만 사용하는 것이 아니라, 열처리(curing)의 역할도 할 수 있는데, 이는 본 발명의 절연층의 소재로 상기 비전도성 폴리머의 특성에 따라 단순 건조하거나 열처리로 인한 필요 물성을 확보할 수하는 범위내에서 동시에 또는 선택적인 관계에 있다 하겠다.The drying process is not only used as a special drying (drying) means, but may also serve as a heat treatment (curing), which is a material of the insulating layer of the present invention by simply drying or depending on the characteristics of the non-conductive polymer At the same time or in a selective relationship within the range to ensure the required physical properties due to the heat treatment.

이러한 건조에는 자외선(Ultraviolet)이나 적외선(Infrared)이 이용될 수 있고, 상기 건조는 이러한 특성을 확보할 수 있는 한 특별하게 그 방법을 한정할 필요가 없으나, 본 발명에 따르는 전자부품의 절연코팅방법은 배치(batch)공정보다는 인라인(inline) 연속 공정이 다품종 소량생산면에서 더 바람직하여, 인프라레드 건조(Infrared curing) 공정이 사용될 수 있고, 30 내지 150℃의 온도 및 0.1 내지 20 ㎫의 압력으로 건조될 수 있는데, 만일, 상기 건조 공정이 하한치 미만이면, 충분한 경화가 충분한 온도가 30℃ 미만이면, 충분한 건조가 되지 아니할 수 있고, 반대로 상한치를 초과하면 제조원가 상승이나 절연층 소재의 물성 변화를 초래할 수 있어 바람직하지 아니하다.Ultraviolet or infrared may be used for such drying, and the drying does not need to be particularly limited as long as it can secure such characteristics, but the insulating coating method of the electronic component according to the present invention. Inline continuous process is more preferable in small quantity production than silver batch process, so Infrared curing process can be used, with temperature of 30-150 ° C. and pressure of 0.1-20 MPa If the drying process is less than the lower limit, if the sufficient curing is sufficient temperature is less than 30 ℃, it may not be sufficient drying, on the contrary, if the upper limit is exceeded, the manufacturing cost rises or the physical properties of the insulating layer material may be increased. It can be undesirable.

이어서, 상기 건조에 자외선을 이용하는 경우에 그 에너지의 에너지 파장은 200 내지 650㎚일 수 있는데, 만일 200㎚ 미만이면, 절연층의 파괴나 그 소재의 물성변화가 초래될 수 있고, 반대로 650㎚를 초과하면, 미건조가 발생할 수 있어 바람직하지 아니하다.Subsequently, when the ultraviolet rays are used for drying, the energy wavelength of the energy may be 200 to 650 nm. If the energy wavelength is less than 200 nm, breakage of the insulating layer or change of physical properties of the material may occur. If exceeded, undrying may occur, which is not preferable.

한편, 상술한 바와 같이, 0.01 내지 0.1㎹가 인가된 전계방사에 의하여 마스킹에 의하여 소정 패턴으로 전자부품 피착체로 평균직경이 1 내지 10㎛인 미세섬유체가 형성되고 건조된 평균두께가 10 내지 50㎛절연층을 구비한 전자부품의 절연코팅체가 제조된다.On the other hand, as described above, a microfiber body having an average diameter of 1 to 10 μm is formed as an electronic component adherend in a predetermined pattern by masking by electric field radiation applied with 0.01 to 0.1 μm, and an average thickness of 10 to 50 μm is dried. An insulating coating body for an electronic component having an insulating layer is manufactured.

이상에서 그리고 다음에 본 발명의 바람직한 실시예에 대하여 설명하나 본 발명은 상술한 특정의 실시예에 한정되지 아니한다. 즉, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 첨부된 특허청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능하며, 그러한 모든 적절한 변경 및 수정의 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.As mentioned above and next, although preferred embodiment of this invention is described, this invention is not limited to the specific embodiment mentioned above. It will be apparent to those skilled in the art that numerous modifications and variations can be made in the present invention without departing from the spirit or scope of the appended claims. And equivalents should also be considered to be within the scope of the present invention.

실시예Example

니켈(Ni) 소재의 리드프레임(도 3, RF)을 프레스가공하여 준비하고, 세척한 다음 리무버블테이프(removable tape)를 사용하여 비코팅부를 마스킹(도 3, RT)하였다. 다음으로 폴리비닐알콜과 폴리에틸렌옥시드 용매에 폴리이미드를 용해한 비전도성 폴리머 용해액을 분사주사기구의 주입하고, 시린지드라이버(syringe driver)에 장착하여 가동하며 0.05 ㎹가 인가된 전계방사를 실시하여 상기 리드프레임의 코팅부로 평균직경 3㎛인 미세섬유체를 방사하여 평균두께 40㎛인 절연층을 형성하였다(도 3, ES). 다음으로, 상기 절연층이 형성된 리드프레임을 내부온도와 압력이 140℃, 0.2㎫이고, 구동속도 2m/min인 인프라레드 건조로를 통과시켜 건조하여 본 발명에 따르는 전자부품의 절연코팅체를 제조하였다.A lead frame (FIG. 3, RF) made of nickel (Ni) was prepared by pressing, washed, and then masked (FIG. 3, RT) by using a removable tape. Next, a non-conductive polymer solution in which polyimide is dissolved in polyvinyl alcohol and polyethylene oxide solvent is injected into a jet injection apparatus, mounted on a syringe driver, operated, and subjected to electric field radiation applied to 0.05 kV. A fine fiber having an average diameter of 3 μm was spun onto the coating part of the lead frame to form an insulating layer having an average thickness of 40 μm (FIG. 3, ES). Next, the lead frame on which the insulating layer was formed was dried by passing through an Infrared drying furnace having an internal temperature and a pressure of 140 ° C. and 0.2 MPa and a driving speed of 2 m / min, thereby manufacturing an insulating coating body of an electronic component according to the present invention. .

실험예Experimental Example

상기 실시예에 의하여 제조된 전자부품의 절연코팅체를 절연성, 내열성 및 내굴곡성을 각각 ANSI/IEEE(std 43-1974), 200 ℃에서 30 분(min)에서 2시간(h)까지 30min 단위로 변색 정도(△E)를 측정, ASTM D522 실험방법에 근거하여 그 결과를 아래 표 1에 나타내었다.
The insulating coating body of the electronic component manufactured according to the above embodiment was insulated from each other in 30 minutes from ANSI / IEEE (std 43-1974), 30 minutes (min) to 2 hours (h) at 200 ° C., respectively. The degree of discoloration (ΔE) was measured and the results are shown in Table 1 below based on the ASTM D522 test method.

구분division 실시예Example 비고Remarks 절연성(V)Insulation (V) >1㎸ 이상 > 1㎸ or more ANSI/IEEE(std 43-1974)ANSI / IEEE (std 43-1974) 내열성Heat resistance △E : < 1.0 이하ΔE: <1.0 or less 200 ℃에서 30 분(min)에서 2시간(h)까지 30min 단위로 변색 정도(△E) 측정Measurement of discoloration degree (△ E) in 30min increments from 200min to 30hr (min) to 2hr (h) 내굴곡성(단위)Flex resistance (unit) < 3㎜ 이하<3 mm ASTM D522 ASTM D522

상기 <표 1>에서 볼 수 있는 바와 같이, 본 발명에 따르는 전자부품의 절연코팅체는 절연성이 우수하게 확보되는 것은 물론, 실제 사용시 필수적으로 필요한 물성인 내열성, 내굴곡성이 매우 우수한 특징을 가짐을 알 수 있다.As can be seen in Table 1, the insulating coating body of the electronic component according to the present invention is not only ensures excellent insulation properties, but also has excellent characteristics of heat resistance and bending resistance, which are essential properties in actual use. Able to know.

Claims (10)

피착체는 절연체를 도포하는 코팅부과 마스킹이 필요한 비코팅부로 이루어지는데, 상기 비코팅부를 마스킹하는 S1단계;
상기 피착체의 코팅부에 비전도성 폴리머 용해액을 전기방사(electro-spinning)에 의하여 미세섬유체로 방사하여 절연층을 형성하는 S2단계; 및
상기 절연층을 건조하는 S3단계;를 포함하되,
상기 절연층의 밀도는 시트의 겉보기 부피당 무게가 0.001 내지 1 g/㎝3인 것을 특징으로 하는 전자부품의 절연코팅방법.
The adherend consists of a coating portion for applying an insulator and an uncoated portion that requires masking, the step S1 of masking the uncoated portion;
S2 step of forming an insulating layer by spinning a non-conductive polymer solution to the microfiber body by electrospinning to the coating portion of the adherend; And
S3 step of drying the insulating layer; including;
The density of the insulating layer is an insulating coating method for an electronic component, characterized in that the weight per apparent volume of the sheet is 0.001 to 1 g / ㎝ 3 .
제 1 항에 있어서,
상기 마스킹은 비코팅부의 상부에 마스킹프레임이나 테이프를 배치시키는 것을 특징으로 하는 전자부품의 절연코팅방법.
The method of claim 1,
The masking is an insulating coating method for an electronic component, characterized in that the masking frame or tape disposed on top of the uncoated portion.
제 1 항에 있어서,
상기 비전도성 폴리머 용해액은 폴리비닐알콜, 폴리에틸렌옥시드, 폴리우레탄, 폴리이미드, 폴리아크릴로니트릴, 폴리올레핀(polyolefine), 폴리이미드(polyimide), 폴리아미드(polyamide), 폴리에스테르(polyester), 아라미드(aramide), 아크릴(acrylic), 폴리에틸렌옥사이드(PEO; polyethylene oxide), 폴리카프로락톤(polycaprolactone), 폴리카보네이트(polycarbonate), 폴리스틸렌(polystyrene), 폴리에틸렌 테레프탈레이트(polyethylene terephtalate), 폴리벤지미다졸(PBI; polybezimidazole), 폴리(2-하이드로에틸 메타크릴레이트(poly(2-hydroxyethyl methacrylate)), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리(에테르 이미드)(poly(ether imide)), 스틸렌-부타디엔-스틸렌 3블록 공중합체(SBS; styrene-butadiene-styrene triblock copolymer) 및 폴리(페로세닐디메틸실레인)(poly(ferrocenyldimethylsilane))로 이루어진 군에서 선택되는 적어도 하나를 포함하는 것을 특징으로 하는 전자부품의 절연코팅방법.
The method of claim 1,
The non-conductive polymer solution is polyvinyl alcohol, polyethylene oxide, polyurethane, polyimide, polyacrylonitrile, polyolefine, polyimide, polyamide, polyester, aramid (aramide), acrylic, polyethylene oxide (PEO), polycaprolactone, polycarbonate, polystyrene, polyethylene terephtalate, polybenzimidazole (PBI) polybezimidazole, poly (2-hydroxyethyl methacrylate), polyvinylidene fluoride, poly (ether imide), styrene-butadiene -Styrene triblock copolymer (SBS; styrene-butadiene-styrene triblock copolymer) and poly (ferrocenyldimethylsilane) (poly (ferrocenyldimethylsilane)) selected from the group consisting of Insulation coating method of an electronic component, characterized in that it comprises at least one.
제 1 항에 있어서,
상기 전기방사는 피착제를 그라운드로 하여 0.01 내지 0.1㎹를 인가하여 수행하는 것을 특징으로 하는 전자부품의 절연코팅방법.
The method of claim 1,
The electrospinning method of insulating an electronic component, characterized in that the coating is carried out by applying 0.01 to 0.1㎹ by ground to the adherend.
삭제delete 제 1 항에 있어서,
상기 미세섬유체는 그 평균직경이 1 내지 10㎛인 것을 특징으로 하는 전자부품의 절연코팅방법.
The method of claim 1,
The microfiber body has an average diameter of 1 to 10㎛ insulated coating method of an electronic component.
제 1 항에 있어서,
상기 절연층의 평균두께가 10 내지 50㎛인 것을 특징으로 하는 전자부품의 절연코팅방법.
The method of claim 1,
The insulating coating method of an electronic component, characterized in that the average thickness of the insulating layer is 10 to 50㎛.
제 1 항에 있어서,
상기 건조는 30 내지 150℃의 온도 및 0.1 내지 20 ㎫의 압력으로 수행되는 것을 특징으로 하는 전자부품의 절연코팅방법.
The method of claim 1,
The drying is an insulating coating method for an electronic component, characterized in that carried out at a temperature of 30 to 150 ℃ and a pressure of 0.1 to 20 MPa.
제 1 항에 있어서,
상기 건조는 고에너지의 자외선을 이용하는 것을 특징으로 하는 전자부품의 절연코팅방법.
The method of claim 1,
The drying is an insulating coating method of an electronic component, characterized in that using a high energy ultraviolet light.
제 1 내지 4 항, 제 6 내지 9 항 중 어느 한 항의 제조방법에 의하여 제조되는 것을 특징으로 하는 전자부품의 절연코팅체.An insulating coating body for an electronic part, which is produced by the manufacturing method of any one of claims 1 to 4 and 6 to 9.
KR1020120018415A 2012-02-23 2012-02-23 Method of manufacturing coated electronic parts with high anti-bending and heat resistancy properties and coated electronic parts thereof KR101323418B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120018415A KR101323418B1 (en) 2012-02-23 2012-02-23 Method of manufacturing coated electronic parts with high anti-bending and heat resistancy properties and coated electronic parts thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120018415A KR101323418B1 (en) 2012-02-23 2012-02-23 Method of manufacturing coated electronic parts with high anti-bending and heat resistancy properties and coated electronic parts thereof

Publications (2)

Publication Number Publication Date
KR20130096873A KR20130096873A (en) 2013-09-02
KR101323418B1 true KR101323418B1 (en) 2013-10-29

Family

ID=49449511

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120018415A KR101323418B1 (en) 2012-02-23 2012-02-23 Method of manufacturing coated electronic parts with high anti-bending and heat resistancy properties and coated electronic parts thereof

Country Status (1)

Country Link
KR (1) KR101323418B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102097744B1 (en) 2018-06-15 2020-04-06 씨제이첨단소재 주식회사 Insulation coating apparatus of electronic parts and insulation coating method of electronic parts using thereof
KR20200085673A (en) 2019-01-07 2020-07-15 씨제이첨단소재 주식회사 Coating apparatus of electronic parts and coating method of electronic parts using thereof
KR102311143B1 (en) * 2021-02-05 2021-10-13 김경태 Heating cover by direct printing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005196130A (en) * 2003-12-12 2005-07-21 Hitachi Cable Ltd Photosensitive polyimide resin composition, insulating film using the same, process for producing insulating film, and electronic component using the insulating film
JP2006331791A (en) 2005-05-25 2006-12-07 Bridgestone Corp Separator for dye-sensitized solar cell, and its utilization
US20110135806A1 (en) 2009-12-03 2011-06-09 David Grewe Manufacturing methods for covering endoluminal prostheses
KR20110081484A (en) * 2010-01-08 2011-07-14 한국과학기술원 Fabrication method of adhesive film for electronic packaging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005196130A (en) * 2003-12-12 2005-07-21 Hitachi Cable Ltd Photosensitive polyimide resin composition, insulating film using the same, process for producing insulating film, and electronic component using the insulating film
JP2006331791A (en) 2005-05-25 2006-12-07 Bridgestone Corp Separator for dye-sensitized solar cell, and its utilization
US20110135806A1 (en) 2009-12-03 2011-06-09 David Grewe Manufacturing methods for covering endoluminal prostheses
KR20110081484A (en) * 2010-01-08 2011-07-14 한국과학기술원 Fabrication method of adhesive film for electronic packaging

Also Published As

Publication number Publication date
KR20130096873A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
JP6198079B2 (en) Electromagnetic wave shielding sheet, method for producing the same, and interior antenna provided with the same
KR101323418B1 (en) Method of manufacturing coated electronic parts with high anti-bending and heat resistancy properties and coated electronic parts thereof
JP6265968B2 (en) Conductive substrate using conductive nanowire network and manufacturing method thereof
KR101526503B1 (en) Flexible substrate and method of manufacturing display substrate and method of manufacturing display panel
KR101948537B1 (en) Flexible EMI shielding materials for electronic device, EMI shielding type circuit module comprising the same and Electronic device comprising the same
US6808670B2 (en) Process for manufacturing inorganic article
KR100578777B1 (en) Heat-resistant fibrous paper
JP5496343B2 (en) Conductive polymer adhesive using nanofiber and method for producing the same
KR101715224B1 (en) Method for manufacturing transparent conductive film and apparatus for the same
KR20190019874A (en) Electro-magnetic interference shield flim
KR20120028583A (en) Conductive polymer adhesive using nano-fiber
WO2015005420A1 (en) Piezoelectric sheet, manufacturing method of said sheet, and piezoelectric laminate
KR101118081B1 (en) Method of manufacturing nanofiber web
JPWO2017163832A1 (en) Transparent conductive film, method for producing transparent conductive film, metal mold, and method for producing metal mold
KR20100019170A (en) Method of manufacturing nanofiber web
KR101947412B1 (en) Conductive complex fiber for flexible EMI shielding materials, method for manufacturing thereof and Electronic device comprising the same
CN113285703A (en) Touch key and preparation method and application thereof
CN110739397B (en) Flexible display substrate, preparation method and application thereof
CN112706531A (en) Preparation method of touch film
KR102311143B1 (en) Heating cover by direct printing method
KR20120077244A (en) Nozzle block for electrospinning
KR20020088908A (en) Surface type heating body by conductive material
KR20180118554A (en) Method of manufacturing printed circuit nano-fiber web, printed circuit nano-fiber web thereby and electronic device comprising the same
KR101191388B1 (en) Nozzle block using nozzles for electrospinning
KR101687992B1 (en) Photomask for manufacturing light transmitting conductor comprising nano-fiber pattern and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161020

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181015

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191125

Year of fee payment: 7