JP2006331791A - Separator for dye-sensitized solar cell, and its utilization - Google Patents

Separator for dye-sensitized solar cell, and its utilization Download PDF

Info

Publication number
JP2006331791A
JP2006331791A JP2005152623A JP2005152623A JP2006331791A JP 2006331791 A JP2006331791 A JP 2006331791A JP 2005152623 A JP2005152623 A JP 2005152623A JP 2005152623 A JP2005152623 A JP 2005152623A JP 2006331791 A JP2006331791 A JP 2006331791A
Authority
JP
Japan
Prior art keywords
dye
separator
solar cell
electrode
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005152623A
Other languages
Japanese (ja)
Inventor
Shingo Ono
信吾 大野
Shinichiro Sugi
信一郎 杉
Masahito Yoshikawa
雅人 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005152623A priority Critical patent/JP2006331791A/en
Publication of JP2006331791A publication Critical patent/JP2006331791A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator composed of a thin insulating porous film optimum as the separator of a film made dye-sensitized solar cell in particular, and to provide a counter-electrode and a semiconductor electrode for a dye-sensitized solar cell in which this separator is integrated. <P>SOLUTION: This is the separator for the dye-sensitized solar cell composed of the insulating porous film formed by an electro-spinning method. The counter electrode 10A and the semiconductor electrode 10B for a separator integrated dye-sensitized solar cell in which these separators 13A, 13B are formed on the surface. By depositing insulating polymer compounds in a fiber state by the electro-spinning method, the thin insulating porous film which is porous enough for an electrolytic solution to pass freely, which has sufficient insulation property to prevent short-circuit between the electrodes effectively, and which does not damage thin-wall forming property of a film-type solar cell can be formed easily. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、色素増感型半導体電極と、この色素増感型半導体電極に対面して設けられた対向電極と、該色素増感型半導体電極と対向電極との間に配置された電解質とを有する色素増感型太陽電池において、半導体電極と対向電極との間に、両電極間の電気的な短絡を防止するために配置されるセパレータと、このセパレータを一体的に設けたセパレータ用対向電極及び半導体電極と、このようなセパレータ、対向電極又は半導体電極を備える色素増感型太陽電池に関する。   The present invention comprises a dye-sensitized semiconductor electrode, a counter electrode provided facing the dye-sensitized semiconductor electrode, and an electrolyte disposed between the dye-sensitized semiconductor electrode and the counter electrode. In a dye-sensitized solar cell having a separator, a separator disposed between a semiconductor electrode and a counter electrode to prevent an electrical short circuit between the two electrodes, and a counter electrode for a separator provided with this separator integrally And a semiconductor electrode and a dye-sensitized solar cell including such a separator, a counter electrode, or a semiconductor electrode.

増感色素を吸着させた酸化物半導体を電極に用いて太陽電池を構成することは既に知られている。図3は、このような色素増感型太陽電池の一般的な構造を示す断面図である。図3に示す如く、ガラス基板等の基板1上にFTO(フッ素ドープ酸化スズ)、ITO(インジウムスズ酸化物)等の透明導電膜2が設けられ、この透明導電膜2上に分光増感色素を吸着させた金属酸化物半導体膜3が形成されることにより色素増感型半導体電極4が形成される。この色素吸着半導体膜3と対向して間隔をあけて対向電極5が配置されており、封止材6により色素増感型半導体電極と対向電極5との間に電解質7が封入されている。   It is already known that a solar cell is configured using an oxide semiconductor adsorbed with a sensitizing dye as an electrode. FIG. 3 is a sectional view showing a general structure of such a dye-sensitized solar cell. As shown in FIG. 3, a transparent conductive film 2 such as FTO (fluorine-doped tin oxide) or ITO (indium tin oxide) is provided on a substrate 1 such as a glass substrate, and a spectral sensitizing dye is formed on the transparent conductive film 2. As a result, the dye-sensitized semiconductor electrode 4 is formed. A counter electrode 5 is disposed opposite to the dye-adsorbing semiconductor film 3 with a space therebetween, and an electrolyte 7 is sealed between the dye-sensitized semiconductor electrode and the counter electrode 5 by a sealing material 6.

色素吸着半導体膜3は、通常、色素を吸着させた酸化チタン薄膜よりなり、この酸化チタン膜はゾルゲル法により成膜される。この酸化チタン薄膜に吸着されている色素が可視光によって励起され、発生した電子を酸化チタン微粒子に渡すことによって発電が行われる。   The dye-adsorbing semiconductor film 3 is usually composed of a titanium oxide thin film to which a dye is adsorbed, and this titanium oxide film is formed by a sol-gel method. The dye adsorbed on the titanium oxide thin film is excited by visible light, and power is generated by passing the generated electrons to the titanium oxide fine particles.

対向電極5は、ガラス又はプラスチック等の基板上にITOやFTO等の透明導電膜が形成され、この透明導電膜上に、透明導電膜と増感色素との間の電子の授受を促進させるための触媒としての白金膜が、透過率を低下させない程度の膜厚に形成されたものである。   The counter electrode 5 has a transparent conductive film such as ITO or FTO formed on a substrate such as glass or plastic, and promotes the transfer of electrons between the transparent conductive film and the sensitizing dye on the transparent conductive film. The platinum film as the catalyst is formed to a thickness that does not decrease the transmittance.

また、電解質7としては、酸化還元性物質、例えば、LiI、NaI、KI、CaIなどの金属ヨウ化物とヨウ素の組み合わせ、LiBr、NaBr、KBr、CaBrなどの金属臭化物と臭素の組み合わせ、好ましくは、金属ヨウ化物とヨウ素の組み合わせよりなる酸化還元性物質をプロピレンカーボネートなどのカーボネート化合物、アセトニトリルなどのニトリル化合物等の溶媒に溶解してなる電解液が用いられている。 As the electrolyte 7, redox substances, for example, LiI, NaI, KI, combinations of metal iodides and iodine, such as CaI 2, LiBr, NaBr, KBr, the metal bromide and bromine, such as CaBr 2 combination, preferably Uses an electrolytic solution obtained by dissolving a redox substance composed of a combination of metal iodide and iodine in a solvent such as a carbonate compound such as propylene carbonate and a nitrile compound such as acetonitrile.

このような色素増感型太陽電池においては、半導体電極と対向電極とが電気的に接触すると、内部で短絡(ショート)してしまい、太陽電池として機能しなくなる。特に、近年、太陽電池の薄肉、小型、軽量化を目的として、色素増感型太陽電池の半導体電極や対向電極の基板として、樹脂フィルムを用いたフィルム型太陽電池が開発されているが、このようなフィルム型太陽電池の場合には、フィルムの変形により、電極間の短絡を生じやすい。そのため、半導体電極と対向電極との間には電気的な導通を阻止するための、セパレータが必要になる。このセパレータには十分な絶縁性と、電解液が自由に通り抜けられる多孔性が必要とされ、更にはフィルム型太陽電池の薄肉性を損なうことのない十分な薄さが必要とされる。   In such a dye-sensitized solar cell, when the semiconductor electrode and the counter electrode are in electrical contact with each other, they are short-circuited inside and do not function as a solar cell. In particular, in recent years, for the purpose of reducing the thickness, size, and weight of solar cells, film-type solar cells using resin films have been developed as substrates for semiconductor electrodes and counter electrodes of dye-sensitized solar cells. In the case of such a film type solar cell, a short circuit between the electrodes tends to occur due to deformation of the film. Therefore, a separator for preventing electrical conduction is required between the semiconductor electrode and the counter electrode. This separator is required to have sufficient insulating properties and porosity that allows the electrolytic solution to pass through freely. Further, the separator is required to be thin enough not to impair the thinness of the film type solar cell.

しかし、従来の技術では、十分な多孔性を維持したままで、絶縁性の薄肉フィルムを形成することは非常に困難であった。また、セパレータとして独立したフィルムでは、太陽電池の組み立て時に、半導体電極、対向電極、及びセパレータの少なくとも3つの部材を組み合わせる必要が生じ、組み立て作業が煩雑になるという問題もある。   However, with the conventional technology, it has been extremely difficult to form an insulating thin film while maintaining sufficient porosity. In addition, in a film independent as a separator, it is necessary to combine at least three members of a semiconductor electrode, a counter electrode, and a separator at the time of assembling a solar cell, and there is a problem that the assembling work becomes complicated.

本発明は上記従来の問題点を解決し、特にフィルム型色素増感型太陽電池のセパレータとして好適な薄肉の絶縁性多孔質膜よりなるセパレータと、このセパレータを一体化した色素増感型太陽電池用セパレータ用対向電極及び半導体電極と、これらのセパレータ、対向電極又は半導体電極を用いた色素増感型太陽電池を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and in particular, a separator comprising a thin insulating porous film suitable as a separator for a film-type dye-sensitized solar cell, and a dye-sensitized solar cell in which this separator is integrated It is an object to provide a counter electrode for a separator and a semiconductor electrode, and a dye-sensitized solar cell using the separator, the counter electrode, or the semiconductor electrode.

本発明(請求項1)の色素増感型太陽電池用セパレータは、エレクトロスピニング法により形成された絶縁性多孔質膜を有することを特徴とする。   The separator for a dye-sensitized solar cell of the present invention (invention 1) is characterized by having an insulating porous film formed by an electrospinning method.

請求項2の色素増感型太陽電池用セパレータは、請求項1において、該絶縁性多孔質膜を構成する絶縁性材料がポリオレフィン系高分子化合物、ポリエステル系高分子化合物、アクリル系高分子化合物、ナイロン系高分子化合物及びフッ素系高分子化合物よりなる群から選ばれる1種又は2種以上の透明高分子材料であることを特徴とする。   The separator for a dye-sensitized solar cell according to claim 2 is the separator according to claim 1, wherein the insulating material constituting the insulating porous film is a polyolefin polymer compound, a polyester polymer compound, an acrylic polymer compound, It is characterized by being one or more transparent polymer materials selected from the group consisting of nylon polymer compounds and fluorine polymer compounds.

請求項3の色素増感型太陽電池用セパレータは、請求項1又は2において、目付量が0.5〜50mg/cmであることを特徴とする。 The separator for a dye-sensitized solar cell according to claim 3 is characterized in that the basis weight is 0.5 to 50 mg / cm 2 in claim 1 or 2.

本発明(請求項4)のセパレータ一体型色素増感型太陽電池用対向電極は、色素増感型太陽電池において、電解質を介して色素増感型半導体電極と対面配置される対向電極であって、該半導体電極と対向する面に、請求項1ないし3のいずれか1項に記載のセパレータが設けられていることを特徴とする。   The counter electrode for a separator-integrated dye-sensitized solar cell of the present invention (Claim 4) is a counter electrode disposed facing the dye-sensitized semiconductor electrode via an electrolyte in the dye-sensitized solar cell. The separator according to any one of claims 1 to 3 is provided on a surface facing the semiconductor electrode.

請求項5のセパレータ一体型色素増感型太陽電池用半導体電極は、色素増感型太陽電池の半導体電極であって、該半導体電極の半導体膜面に、請求項1ないし3のいずれか1項に記載のセパレータが設けられていることを特徴とする。   The separator-integrated dye-sensitized solar cell semiconductor electrode according to claim 5 is a semiconductor electrode of a dye-sensitized solar cell, and the semiconductor film surface of the semiconductor electrode is any one of claims 1 to 3. It is characterized by providing the separator of description.

本発明(請求項6)の色素増感型太陽電池は、色素増感型半導体電極と、この色素増感型半導体電極に対面して設けられた対向電極と、該色素増感型半導体電極と対向電極との間に配置された電解質とを有する色素増感型太陽電池において、該対向電極と半導体電極との間に上記本発明の色素増感型太陽電池用セパレータが配設されていることを特徴とする。   The dye-sensitized solar cell of the present invention (invention 6) includes a dye-sensitized semiconductor electrode, a counter electrode provided facing the dye-sensitized semiconductor electrode, and the dye-sensitized semiconductor electrode. In the dye-sensitized solar cell having an electrolyte disposed between the counter electrode and the counter electrode, the separator for the dye-sensitized solar cell of the present invention is disposed between the counter electrode and the semiconductor electrode. It is characterized by.

本発明(請求項7)の色素増感型太陽電池は、色素増感型半導体電極と、この色素増感型半導体電極に対面して設けられた対向電極と、該色素増感型半導体電極と対向電極との間に配置された電解質とを有する色素増感型太陽電池において、該対向電極が上記本発明のセパレータ一体型色素増感型太陽電池用対向電極であることを特徴とする。   The dye-sensitized solar cell of the present invention (invention 7) includes a dye-sensitized semiconductor electrode, a counter electrode provided facing the dye-sensitized semiconductor electrode, the dye-sensitized semiconductor electrode, A dye-sensitized solar cell having an electrolyte disposed between the counter electrode and the counter electrode is characterized in that the counter electrode is the counter electrode for a separator-integrated dye-sensitized solar cell of the present invention.

本発明(請求項8)の色素増感型太陽電池は、色素増感型半導体電極と、この色素増感型半導体電極に対面して設けられた対向電極と、該色素増感型半導体電極と対向電極との間に配置された電解質とを有する色素増感型太陽電池において、該半導体電極が上記本発明のセパレータ一体型色素増感型太陽電池用半導体電極であることを特徴とする。   The dye-sensitized solar cell of the present invention (invention 8) includes a dye-sensitized semiconductor electrode, a counter electrode provided facing the dye-sensitized semiconductor electrode, and the dye-sensitized semiconductor electrode. A dye-sensitized solar cell having an electrolyte disposed between the counter electrode and the counter electrode, wherein the semiconductor electrode is the semiconductor electrode for a separator-integrated dye-sensitized solar cell according to the present invention.

本発明によれば、特にフィルム型色素増感型太陽電池のセパレータとして好適な薄肉の絶縁性多孔質膜よりなるセパレータと、このセパレータを一体化した色素増感型太陽電池用セパレータ用対向電極及び半導体電極と、これらのセパレータ、対向電極又は半導体電極を用いた色素増感型太陽電池が提供される。   According to the present invention, a separator made of a thin insulating porous film particularly suitable as a separator for a film-type dye-sensitized solar cell, a counter electrode for a dye-sensitized solar cell separator integrated with the separator, and A dye-sensitized solar cell using a semiconductor electrode and these separators, a counter electrode, or a semiconductor electrode is provided.

即ち、エレクトロスピニング法により、絶縁性の高分子化合物を繊維状に堆積させることにより、電解液が自由に通過することができるだけの十分な多孔質で、かつ電極間の短絡を有効に防止し得るに十分な絶縁性を有し、しかも、フィルム型太陽電池の薄肉性を損なうことのない薄肉の絶縁性多孔質膜を容易に形成することができる。しかして、このようにしてエレクトロスピニング法により繊維状に高分子化合物を堆積させる際の条件を適宜設計することにより、繊維径、膜厚、多孔度(目付)等を自由に制御することができ、電解液の粘度や電極構成等に適応した最適なセパレータを容易に作製することができる。   That is, by depositing an insulating polymer compound in a fibrous form by electrospinning, it is porous enough to allow the electrolyte to pass freely, and can effectively prevent a short circuit between the electrodes. Therefore, it is possible to easily form a thin insulating porous film that has sufficient insulation and does not impair the thinness of the film-type solar cell. Thus, the fiber diameter, film thickness, porosity (weight per unit area), etc. can be freely controlled by appropriately designing the conditions for depositing the polymer compound in the fibrous form by electrospinning. In addition, it is possible to easily produce an optimum separator adapted to the viscosity of the electrolytic solution and the electrode configuration.

また、このような繊維状絶縁性高分子化合物の堆積層を対向電極又は半導体電極表面に直接形成することも容易であり、この場合にはセパレータ一体型対向電極又はセパレータ一体型半導体電極として、太陽電池組み立て時の組み立て部材数を削減して、太陽電池組み立て工程の簡略化を図ることが可能となる。   It is also easy to directly form such a fibrous insulating polymer compound deposition layer on the surface of the counter electrode or the semiconductor electrode. In this case, as the separator integrated counter electrode or the separator integrated semiconductor electrode, It is possible to reduce the number of assembly members during battery assembly and simplify the solar cell assembly process.

従って、本発明によれば、従来にない薄肉絶縁性多孔質膜のセパレータにより、色素増感型太陽電池、特にフィルム型太陽電池における電極間の短絡を有効に防止して、信頼性の高い色素増感型太陽電池を提供すると共に、このようなセパレータを用いた場合の太陽電池作製工程の簡略化により生産性を高めることが可能となる。   Therefore, according to the present invention, an unprecedented thin insulating porous membrane separator effectively prevents a short circuit between electrodes in a dye-sensitized solar cell, particularly a film-type solar cell, and provides a highly reliable dye. In addition to providing a sensitized solar cell, it is possible to increase productivity by simplifying the solar cell manufacturing process when such a separator is used.

以下に図面を参照して本発明の実施の形態を詳細に説明する。
図1(a)は本発明のセパレータ一体型色素増感型太陽電池用対向電極の実施の形態を示す模式的な断面図であり、図1(b)は本発明のセパレータ一体型色素増感型太陽電池用半導体電極の実施の形態を示す模式的な断面図である。図2は、一般的なエレクトロスピニング装置を示す構成図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1A is a schematic cross-sectional view showing an embodiment of a counter electrode for a separator-integrated dye-sensitized solar cell of the present invention, and FIG. 1B is a separator-integrated dye-sensitized method of the present invention. It is typical sectional drawing which shows embodiment of the semiconductor electrode for type | mold solar cells. FIG. 2 is a configuration diagram illustrating a general electrospinning apparatus.

図1(a)のセパレータ一体型対向電極10Aは、基材11A上に透明導電膜12Aが形成され、この透明導電膜12Aの上に白金薄膜等の触媒膜(図示せず)が形成され、更にこの上に、繊維状の絶縁性透明高分子材料の堆積層よりなるセパレータ層13Aが形成されたものである。   In the separator-integrated counter electrode 10A of FIG. 1A, a transparent conductive film 12A is formed on a substrate 11A, and a catalyst film (not shown) such as a platinum thin film is formed on the transparent conductive film 12A. Further thereon, a separator layer 13A made of a deposited layer of fibrous insulating transparent polymer material is formed.

図1(b)のセパレータ一体型半導体電極10Bは、基材11B上に透明導電膜12Bが形成され、この透明導電膜12Bの上に分光増感色素を吸着させた半導体膜14が形成され、この色素吸着半導体膜14上に、繊維状の絶縁性透明高分子材料の堆積層よりなるセパレータ層13Bが形成されたものである。   In the separator-integrated semiconductor electrode 10B of FIG. 1B, a transparent conductive film 12B is formed on a base material 11B, and a semiconductor film 14 on which a spectral sensitizing dye is adsorbed is formed on the transparent conductive film 12B. A separator layer 13B made of a deposited layer of a fibrous insulating transparent polymer material is formed on the dye-adsorbing semiconductor film 14.

セパレータ一体型対向電極10A、セパレータ一体型半導体電極Bの基材11A,11Bとしては、通常、ガラス、又はPET、PEN、PES、ポリイミド、フッ素樹脂等のプラスチックが用いられ、その厚さは20μm〜5mm程度であるが、本発明は特に前述の理由から、厚さ50〜200μm程度のプラスチックフィルムを電極の基材とするフィルム型太陽電池に有効である。   As the base materials 11A and 11B of the separator-integrated counter electrode 10A and the separator-integrated semiconductor electrode B, glass or plastic such as PET, PEN, PES, polyimide, fluororesin is usually used, and the thickness is 20 μm to Although it is about 5 mm, the present invention is particularly effective for a film-type solar cell in which a plastic film having a thickness of about 50 to 200 μm is used as an electrode base material for the reasons described above.

透明導電膜12A,12Bとしては、InやSnOの導電性金属酸化物薄膜や金属等の導電性薄膜が用いられる。導電性金属酸化物の好ましい例としては、In:Sn(ITO)、SnO:Sb、SnO:F(FTO)、ZnO:Al、ZnO:F、CdSnO等を挙げることができる。なお、透明導電膜としては、これらの2種以上の透明導電膜を積層しても良く、また、2種以上の材料を混合して用いても良い。 As the transparent conductive films 12A and 12B, conductive metal oxide thin films of In 2 O 3 or SnO 2 or conductive thin films such as metals are used. Preferable examples of the conductive metal oxide include In 2 O 3 : Sn (ITO), SnO 2 : Sb, SnO 2 : F (FTO), ZnO: Al, ZnO: F, CdSnO 4 and the like. . In addition, as a transparent conductive film, you may laminate | stack these 2 or more types of transparent conductive films, and may mix and use 2 or more types of materials.

透明導電膜12A,12Bの形成方法には特に制限はなく、スパッタリング法、レーザー蒸着法、CVD法等が採用される。透明導電膜12A,12Bは通常100〜1000nm程度の厚さに形成される。   There is no restriction | limiting in particular in the formation method of transparent conductive film 12A, 12B, Sputtering method, a laser vapor deposition method, CVD method etc. are employ | adopted. The transparent conductive films 12A and 12B are usually formed to a thickness of about 100 to 1000 nm.

セパレータ一体型対向電極10Aの透明導電膜12A上に形成される図示しない白金薄膜は、透明性を損なうことがないように、通常0.2〜10nm程度の厚さに形成される。なお、この白金薄膜の代りに炭素薄膜を形成しても良い。   A platinum thin film (not shown) formed on the transparent conductive film 12A of the separator-integrated counter electrode 10A is usually formed to a thickness of about 0.2 to 10 nm so as not to impair the transparency. A carbon thin film may be formed instead of the platinum thin film.

セパレータ一体型半導体電極10Bにおいて、色素吸着半導体膜14の半導体膜としては、通常、金属酸化物半導体膜が用いられ、その金属酸化物としては、酸化チタン、酸化亜鉛、酸化タングステン、酸化アンチモン、酸化ニオブ、酸化タングステン、酸化インジウムなどの公知の金属酸化物半導体の1種又は2種以上を用いることができるが、特に、安定性、安全性の点から酸化チタンが好ましい。   In the separator-integrated semiconductor electrode 10B, a metal oxide semiconductor film is usually used as the semiconductor film of the dye-adsorbing semiconductor film 14, and the metal oxide includes titanium oxide, zinc oxide, tungsten oxide, antimony oxide, and oxide. One or more known metal oxide semiconductors such as niobium, tungsten oxide, and indium oxide can be used. In particular, titanium oxide is preferable from the viewpoint of stability and safety.

このような金属半導体膜の形成方法には特に制限はなく、スパッタリング法、レーザー蒸着法、CVD法等が採用される。半導体膜は通常0.1〜10μm程度の厚さに形成される。   There is no restriction | limiting in particular in the formation method of such a metal semiconductor film, Sputtering method, laser vapor deposition method, CVD method etc. are employ | adopted. The semiconductor film is usually formed to a thickness of about 0.1 to 10 μm.

この金属酸化物半導体膜に吸着させる有機色素(分光増感色素)としては、可視光領域及び/又は赤外光領域に吸収を持つものであり、種々の金属錯体や有機色素の1種又は2種以上を用いることができる。分光増感色素の分子中にカルボキシル基、ヒドロキシアルキル基、ヒドロキシル基、スルホン基、カルボキシアルキル基の官能基を有するものが半導体への吸着が速いため、好ましい。また、分光増感の効果や耐久性に優れているため、金属錯体が好ましい。金属錯体としては、銅フタロシアニン、チタニルフタロシアニンなどの金属フタロシアニン、クロロフィル、ヘミン、特開平1−220380号公報、特表平5−504023号公報に記載のルテニウム、オスミウム、鉄、亜鉛の錯体を用いることができる。有機色素としては、メタルフリーフタロシアニン、シアニン系色素、メロシアニン系色素、キサンテン系色素、トリフェニルメタン色素を用いることができる。シアニン系色素としては、具体的には、NK1194、NK3422(いずれも日本感光色素研究所(株)製)が挙げられる。メロシアニン系色素としては、具体的には、NK2426、NK2501(いずれも日本感光色素研究所(株)製)が挙げられる。キサンテン系色素としては、具体的には、ウラニン、エオシン、ローズベンガル、ローダミンB、ジブロムフルオレセインが挙げられる。トリフェニルメタン色素としては、具体的には、マラカイトグリーン、クリスタルバイオレットが挙げられる。   The organic dye (spectral sensitizing dye) adsorbed on the metal oxide semiconductor film has absorption in the visible light region and / or infrared light region, and one or two of various metal complexes and organic dyes. More than seeds can be used. Those having a functional group such as a carboxyl group, a hydroxyalkyl group, a hydroxyl group, a sulfone group, and a carboxyalkyl group in the molecule of the spectral sensitizing dye are preferable because adsorption onto a semiconductor is fast. Moreover, since it is excellent in the effect of spectral sensitization and durability, a metal complex is preferable. As a metal complex, a metal phthalocyanine such as copper phthalocyanine or titanyl phthalocyanine, a complex of chlorophyll, hemin, ruthenium, osmium, iron or zinc described in JP-A-1-220380 and JP-A-5-504023 Can do. As the organic dye, metal-free phthalocyanine, cyanine dye, merocyanine dye, xanthene dye, and triphenylmethane dye can be used. Specific examples of cyanine dyes include NK1194 and NK3422 (both manufactured by Nippon Sensitive Dye Research Co., Ltd.). Specific examples of merocyanine dyes include NK2426 and NK2501 (both manufactured by Nippon Sensitive Dye Research Laboratories). Specific examples of xanthene dyes include uranin, eosin, rose bengal, rhodamine B, and dibromofluorescein. Specific examples of the triphenylmethane dye include malachite green and crystal violet.

有機色素(分光増感色素)を半導体膜に吸着させるこのためには、有機色素を有機溶媒に溶解させて調製した有機色素溶液中に、常温又は加熱下に金属酸化物半導体膜を基板ととも浸漬すれば良い。前記の溶液の溶媒としては、使用する分光増感色素を溶解するものであれば良く、具体的には、水、アルコール、トルエン、ジメチルホルムアミドを用いることができる。   In order to adsorb the organic dye (spectral sensitizing dye) to the semiconductor film, the metal oxide semiconductor film is attached to the substrate at room temperature or under heating in an organic dye solution prepared by dissolving the organic dye in an organic solvent. What is necessary is just to immerse. The solvent of the solution is not particularly limited as long as it can dissolve the spectral sensitizing dye to be used. Specifically, water, alcohol, toluene, and dimethylformamide can be used.

本発明において、セパレータ層13A,13Bは、エレクトロスピニング法により形成される。
エレクトロスピニング法は、電気の力を利用した繊維化方法として公知の方法であり、図2に示す如く、被処理基材(セパレータ一体型対向電極10Aにあっては、基材11A上に透明導電膜12Aと図示しない白金膜を形成したもの。セパレータ一体型半導体電極10Bにあっては、基材11B上に透明導電膜12Bと色素吸着半導体膜14とを形成したもの。)を取り付けた回転ドラム21と、噴霧原料を保持する、キャピラリー(ニードル)22A付きの容器22との間に、電源20から直流電圧を印加すると、回転ドラム21上の基材に向けて噴霧原料が放出される。噴霧原料はその表面張力によりキャピラリー22Aから液滴として放出されるが、液滴の表面に電荷が集まり、互いに反発し合う。そして、この電荷の反発力が表面張力を超えると、液滴は分裂し、ジェットとなる。そして、この間に噴霧原料中の溶媒が揮発することで電荷の反発力は更に増し、ジェットは更に分裂して細かいジェット23となる。このジェット23中で噴霧原料中の高分子化合物鎖が配向し、細長い繊維状となって、基材に到達し、この状態で凝集することにより、基材上に高分子化合物のナノファイバーの堆積層が形成される。
In the present invention, the separator layers 13A and 13B are formed by an electrospinning method.
The electrospinning method is a well-known method for forming fibers using electric force. As shown in FIG. 2, the substrate to be treated (in the case of the separator-integrated counter electrode 10A, a transparent conductive material is formed on the substrate 11A. A rotating drum in which a film 12A and a platinum film (not shown) are formed, or in the case of the separator-integrated semiconductor electrode 10B, a transparent conductive film 12B and a dye-adsorbing semiconductor film 14 are formed on a base material 11B. When a DC voltage is applied from the power source 20 between the container 21 and the container 22 with a capillary (needle) 22 </ b> A that holds the spray raw material, the spray raw material is released toward the substrate on the rotating drum 21. Although the spray raw material is discharged as a droplet from the capillary 22A due to its surface tension, electric charges collect on the surface of the droplet and repel each other. When the repulsive force of this charge exceeds the surface tension, the droplet breaks up and becomes a jet. During this time, the solvent in the sprayed raw material is volatilized, so that the repulsive force of the charge is further increased, and the jet is further split into a fine jet 23. In this jet 23, the polymer compound chains in the spraying raw material are oriented, become elongated fibers, reach the substrate, and aggregate in this state, thereby depositing the polymer compound nanofibers on the substrate. A layer is formed.

このエレクトロスピニング法において、印加電圧、キャピラリーと基材との距離、キャピラリーの吐出口径、噴霧原料組成等を適宜調整することにより、所望の平均直径及び平均長さの高分子化合物のナノファイバーの堆積層を形成することができる。   In this electrospinning method, by appropriately adjusting the applied voltage, the distance between the capillary and the base material, the discharge port diameter of the capillary, the spray raw material composition, etc., the nanofibers of the polymer compound having a desired average diameter and average length are deposited. A layer can be formed.

本発明において、エレクトロスピニング法における印加電圧は10〜30kV程度とするのが好ましい。印加電圧がこの範囲よりも低いと、十分な繊維化を図ることができず、高いとナノファイバーの形成に問題はないが、機器や人体に危険である。   In the present invention, the applied voltage in the electrospinning method is preferably about 10 to 30 kV. If the applied voltage is lower than this range, sufficient fiberization cannot be achieved. If the applied voltage is high, there is no problem in the formation of nanofibers, but it is dangerous for the device and the human body.

また、キャピラリー先端と基材との距離は、印加電圧や噴霧原料の粘性、導電率等によっても異なるが、5〜15cm程度とすることが好ましい。この距離が近すぎても遠すぎても、良好なナノファイバーを形成し得ない。また、キャピラリーの吐出口径は、通常300〜500μm程度である。このキャピラリーの吐出口径についても、大き過ぎても小さ過ぎても良好なナノファイバーを形成し得ない。   Further, the distance between the capillary tip and the substrate is preferably about 5 to 15 cm, although it varies depending on the applied voltage, the viscosity of the spraying raw material, the conductivity, and the like. If this distance is too close or too far away, good nanofibers cannot be formed. Moreover, the discharge port diameter of a capillary is about 300-500 micrometers normally. If the discharge port diameter of this capillary is too large or too small, good nanofibers cannot be formed.

また、噴霧原料としては、上記高分子化合物鎖形成のための高分子化合物を溶媒に溶解させてなる溶液が好ましい。   Further, the spray raw material is preferably a solution obtained by dissolving the polymer compound for forming the polymer compound chain in a solvent.

ここで、高分子化合物としては、ポリオレフィン系高分子化合物、ポリエステル系高分子化合物、アクリル系高分子化合物、ナイロン系高分子化合物及びフッ素系高分子化合物よりなる群から選ばれる1種又は2種以上の透明絶縁性高分子化合物が好ましく、その分子量は100000〜500000程度であることが好ましい。   Here, the polymer compound is one or more selected from the group consisting of polyolefin polymer compounds, polyester polymer compounds, acrylic polymer compounds, nylon polymer compounds, and fluorine polymer compounds. The transparent insulating polymer compound is preferable, and its molecular weight is preferably about 100,000 to 500,000.

また、溶媒としては、上記高分子化合物を溶解し、また、これらと反応しないものであれば良く、特に制限はないが、N,N−ジメチルホルムアミド(DMF)、ホルムアミド、ジオキサンや、メタノール、エタノール等のアルコール類、ベンゼン、テトラヒドロフラン(THF)等の1種又は2種以上が挙げられる。   The solvent is not particularly limited as long as it dissolves the above-described polymer compound and does not react with them, and is not particularly limited, but N, N-dimethylformamide (DMF), formamide, dioxane, methanol, ethanol 1 type, or 2 or more types, such as alcohols, such as benzene, tetrahydrofuran (THF), etc. are mentioned.

噴霧原料中の前記高分子化合物濃度は、低過ぎても高過ぎても良好なナノファイバーを形成し得ず、用いる高分子化合物の種類にもよるが、10〜30重量%程度であることが好ましい。   If the concentration of the polymer compound in the spray raw material is too low or too high, good nanofibers cannot be formed, and depending on the type of polymer compound used, it is about 10 to 30% by weight. preferable.

このような噴霧原料を用いてエレクトロスピニング法により基材上に形成された高分子化合物のナノファイバーは平均直径50〜500nm程度で、平均長さ1mm以上程度であることが、セパレータとしての十分な機械的強度と電解液の流通に十分な多孔質を確保する上で好ましい。   It is sufficient as a separator that the nanofibers of the polymer compound formed on the base material by the electrospinning method using such spray raw materials have an average diameter of about 50 to 500 nm and an average length of about 1 mm or more. It is preferable for securing sufficient porosity for mechanical strength and circulation of the electrolyte.

このようにして形成された高分子化合物のナノファイバーの堆積層よりなるセパレータ層13A,13Bの高分子化合物ナノファイバー量は、少な過ぎるとセパレータとしての十分な短絡防止性能を得ることができず、多過ぎても製造コストが嵩み、また、薄膜性が損なわれ、また電解液の流通性が損なわれる可能性があるため、電極の投影面積に対して、高分子化合物ナノファイバーの形成量(目付量)は0.5〜50mg/cm、好ましくは1〜10mg/cm程度であることが好ましい。 If the amount of the polymer compound nanofibers in the separator layers 13A and 13B formed of the polymer compound nanofiber deposition layer thus formed is too small, sufficient short-circuit prevention performance as a separator cannot be obtained. If the amount is too large, the production cost is increased, the thin film property is impaired, and the flowability of the electrolyte solution may be impaired. weight per unit area) is 0.5 to 50 mg / cm 2, it is preferable preferably 1-10 mg / cm 2 or so.

なお、本発明のセパレータは、このように対向電極又は半導体電極と一体的に形成されるものに何ら限定されず、例えば、基材として厚さ3〜30μm程度のアルミ箔を用い、この基材上に、上述の方法と同様にして高分子化合物ナノファイバーの堆積層よりなるセパレータ層を形成し、このセパレータ層を機械的な変形を与えることにより、基材から剥離させることにより、電極とは別体の独立したセパレータとすることもできる。   The separator of the present invention is not limited to the one formed integrally with the counter electrode or the semiconductor electrode in this way. For example, an aluminum foil having a thickness of about 3 to 30 μm is used as the base material, and this base material is used. On the top, a separator layer made of a polymer compound nanofiber deposition layer is formed in the same manner as described above, and the separator layer is mechanically deformed to be peeled off from the base material, whereby an electrode is formed. It can also be a separate separate separator.

いずれの場合においても、高分子化合物ナノファイバーの堆積層よりなるセパレータ層は、前述の繊維径、繊維長さで前述の目付量の範囲のものであることが好ましい。   In any case, it is preferable that the separator layer formed of the polymer compound nanofiber deposition layer has the above-described fiber diameter and fiber length in the range of the above-mentioned basis weight.

また、セパレータ一体型対向電極及びセパレータ一体型半導体電極において、セパレータを一体的に形成する基体となる対向電極又は半導体電極についても、何ら上述の構成のものに限定されるものではなく、例えば、対向電極については白金、その他の金属電極であっても良い。   In addition, in the separator-integrated counter electrode and the separator-integrated semiconductor electrode, the counter electrode or the semiconductor electrode serving as a substrate on which the separator is integrally formed is not limited to the above-described configuration. The electrode may be platinum or other metal electrode.

本発明の色素増感型太陽電池は、このような本発明のセパレータ、セパレータ一体型対向電極又はセパレータ一体型半導体電極を用いて、常法に従って、半導体電極と対向電極との間にセパレータを介在させて図3に示す色素増感型太陽電池と同様の構成で製造される。   The dye-sensitized solar cell of the present invention uses such a separator of the present invention, a separator-integrated counter electrode or a separator-integrated semiconductor electrode, and a separator is interposed between the semiconductor electrode and the counter electrode according to a conventional method. Thus, the same structure as that of the dye-sensitized solar cell shown in FIG. 3 is manufactured.

この場合において、特に本発明のセパレータ一体型対向電極又はセパレータ一体型半導体電極を用いた場合には、対向電極及び半導体電極とは別にセパレータをこれらの電極間に介装する工程が不要となり、工業的に有利である。なお、本発明のセパレータ一体型対向電極を用いた場合、これと組み合わせる半導体電極については、本発明のセパレータ一体型半導体電極である必要はないが、本発明のセパレータ一体型対向電極とセパレータ一体型半導体電極とを組み合わせても良いことは言うまでもない。   In this case, particularly when the separator-integrated counter electrode or the separator-integrated semiconductor electrode of the present invention is used, a step of interposing a separator between these electrodes separately from the counter electrode and the semiconductor electrode is not required. Is advantageous. When the separator-integrated counter electrode of the present invention is used, the semiconductor electrode combined with this does not need to be the separator-integrated semiconductor electrode of the present invention, but the separator-integrated counter electrode of the present invention and the separator-integrated type Needless to say, a semiconductor electrode may be combined.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1
下記組成の噴霧原料を調製した。
[噴霧原料組成]
6ナイロン:20g
ギ酸:80g
Example 1
A spray raw material having the following composition was prepared.
[Spray raw material composition]
6 nylon: 20g
Formic acid: 80 g

この噴霧原料を用いて、図1(a)に示すエレクトロスピニング法により、下記条件で、FTO膜(厚さ300nm)とこのFTO膜上に白金膜(厚さ30nm)が形成されたガラス基材(厚さ1.1mm)の白金膜上に、ナイロンのナノファイバーの堆積層を形成した。
[エレクトロスピニング条件]
印加電圧:15kV
キャピラリー先端と基材との距離:15cm
A glass substrate in which an FTO film (thickness 300 nm) and a platinum film (thickness 30 nm) are formed on the FTO film by the electrospinning method shown in FIG. A deposited layer of nylon nanofibers was formed on a platinum film having a thickness of 1.1 mm.
[Electrospinning conditions]
Applied voltage: 15 kV
Distance between capillary tip and substrate: 15 cm

SEM観察したところ、直径が80〜300nmで長さが1mm以上のナイロンナノファイバーが、5mg/cmの割合で白金膜上に生成していることを確認した。 As a result of SEM observation, it was confirmed that nylon nanofibers having a diameter of 80 to 300 nm and a length of 1 mm or more were formed on the platinum film at a rate of 5 mg / cm 2 .

このようにして製造されたセパレータ一体型対向電極を用いて色素増感型太陽電池を組み立てた。   A dye-sensitized solar cell was assembled using the separator-integrated counter electrode thus manufactured.

ガラス基板(厚さ:2mm)上に、ドクターブレード法により、酸化チタンの付着量として1.2mg/cm、厚さ10μm程度の酸化チタン層を形成した。 On a glass substrate (thickness: 2 mm), a titanium oxide layer having a titanium oxide deposition amount of 1.2 mg / cm 2 and a thickness of about 10 μm was formed by a doctor blade method.

分光増感色素として、シス−ジ(チオシアナト)−N,N’−ビス(2,2’−ビピリジル−4,4’−ジカルボキシレートルテニウム(II)ジハイドレートをエタノール液に3×10−4モル/Lで溶解した液に上記酸化チタン層を形成した基板を入れ、室温で18時間浸漬して、色素増感型半導体電極を得た。分光増感色素の吸着量は、酸化チタン層の比表面積1cmあたり10μgであった。 As a spectral sensitizing dye, cis-di (thiocyanato) -N, N′-bis (2,2′-bipyridyl-4,4′-dicarboxylate ruthenium (II) dihydrate in ethanol solution is 3 × 10 −4 mol. The substrate on which the titanium oxide layer was formed was placed in the solution dissolved at / L, and immersed for 18 hours at room temperature to obtain a dye-sensitized semiconductor electrode. The surface area was 10 μg per 1 cm 2 .

別に、アセトニトリル:3−メチル−2−オキサゾリジノン=50:50(重量比)の混合溶媒に、ヨウ化リチウムを0.3モル/L、ヨウ素を0.03モル/L配合して液状電解質を調製した。   Separately, a liquid electrolyte is prepared by mixing 0.3 mol / L of lithium iodide and 0.03 mol / L of iodine in a mixed solvent of acetonitrile: 3-methyl-2-oxazolidinone = 50: 50 (weight ratio). did.

色素増感型半導体電極上に、液流れ防止テープを取り付けて堰を設け、液状電解質を塗布した。この電解質膜面に、前記セパレータ一体型対向電極を積層し、側面を樹脂で封止した後、リード線を取り付けて、色素増感型太陽電池を作製した。   On the dye-sensitized semiconductor electrode, a liquid flow prevention tape was attached to provide a weir, and a liquid electrolyte was applied. The separator-integrated counter electrode was laminated on the electrolyte membrane surface, and the side surfaces were sealed with resin, and then lead wires were attached to fabricate a dye-sensitized solar cell.

この色素増感型太陽電池は、電極の短絡の問題もなく、安定に発電可能であった。   This dye-sensitized solar cell was able to generate power stably without a problem of short circuit of electrodes.

実施例2
実施例1において、エレクトロスピニング法によるセパレータ層を、対向電極ではなく、半導体電極の色素吸着半導体膜上に形成したこと以外は同様にして色素増感型太陽電池を組み立てた。この色素増感型太陽電池も、電極の短絡の問題もなく、安定に発電可能であった。
Example 2
In Example 1, a dye-sensitized solar cell was assembled in the same manner except that the separator layer formed by the electrospinning method was formed on the dye-adsorbing semiconductor film of the semiconductor electrode instead of the counter electrode. This dye-sensitized solar cell was also able to generate power stably without the problem of electrode short-circuiting.

図1(a)は本発明のセパレータ一体型色素増感型太陽電池用対向電極の実施の形態を示す模式的な断面図であり、図1(b)は本発明のセパレータ一体型色素増感型太陽電池用半導体電極の実施の形態を示す模式的な断面図である。FIG. 1A is a schematic cross-sectional view showing an embodiment of a counter electrode for a separator-integrated dye-sensitized solar cell of the present invention, and FIG. 1B is a separator-integrated dye-sensitized method of the present invention. It is typical sectional drawing which shows embodiment of the semiconductor electrode for type | mold solar cells. 一般的なエレクトロスピニング装置を示す構成図である。It is a block diagram which shows a general electrospinning apparatus. 色素増感型太陽電池の構成を示す断面図である。It is sectional drawing which shows the structure of a dye-sensitized solar cell.

符号の説明Explanation of symbols

1 基板
2 透明導電膜
3 色素吸着半導体膜
4 色素増感型半導体電極
5 対向電極
6 封止材
7 電解質
10A セパレータ一体型対向電極
10B セパレータ一体型半導体電極
11A,11B 基材
12A,12B 透明導電膜
13A,13B セパレータ層
14 色素吸着半導体膜
14 白金
DESCRIPTION OF SYMBOLS 1 Substrate 2 Transparent conductive film 3 Dye adsorption semiconductor film 4 Dye sensitized semiconductor electrode 5 Counter electrode 6 Sealing material 7 Electrolyte 10A Separator integrated counter electrode 10B Separator integrated semiconductor electrode 11A, 11B Base material 12A, 12B Transparent conductive film 13A, 13B Separator layer 14 Dye adsorption semiconductor film 14 Platinum

Claims (8)

エレクトロスピニング法により形成された絶縁性多孔質膜を有することを特徴とする色素増感型太陽電池用セパレータ。   A separator for a dye-sensitized solar cell, comprising an insulating porous film formed by an electrospinning method. 請求項1において、該絶縁性多孔質膜を構成する絶縁性材料がポリオレフィン系高分子化合物、ポリエステル系高分子化合物、アクリル系高分子化合物、ナイロン系高分子化合物及びフッ素系高分子化合物よりなる群から選ばれる1種又は2種以上の透明高分子材料であることを特徴とする色素増感型太陽電池用セパレータ。   2. The group according to claim 1, wherein the insulating material constituting the insulating porous film is a polyolefin polymer compound, a polyester polymer compound, an acrylic polymer compound, a nylon polymer compound, and a fluorine polymer compound. A dye-sensitized solar cell separator, characterized by being one or more transparent polymer materials selected from: 請求項1又は2において、目付量が0.5〜50mg/cmであることを特徴とする色素増感型太陽電池用セパレータ。 According to claim 1 or 2, dye-sensitized solar cell separator, wherein the basis weight is 0.5 to 50 mg / cm 2. 色素増感型太陽電池において、電解質を介して色素増感型半導体電極と対面配置される対向電極であって、該半導体電極と対向する面に、請求項1ないし3のいずれか1項に記載のセパレータが設けられていることを特徴とするセパレータ一体型色素増感型太陽電池用対向電極。   4. The dye-sensitized solar cell according to claim 1, wherein the counter electrode is disposed to face the dye-sensitized semiconductor electrode via an electrolyte, and is disposed on a surface facing the semiconductor electrode. 5. A separator-integrated dye-sensitized solar cell counter electrode, wherein a separator is provided. 色素増感型太陽電池の半導体電極であって、該半導体電極の半導体膜面に、請求項1ないし3のいずれか1項に記載のセパレータが設けられていることを特徴とするセパレータ一体型色素増感型太陽電池用半導体電極。   A semiconductor electrode of a dye-sensitized solar cell, wherein the separator according to any one of claims 1 to 3 is provided on a semiconductor film surface of the semiconductor electrode. Semiconductor electrode for sensitized solar cell. 色素増感型半導体電極と、この色素増感型半導体電極に対面して設けられた対向電極と、該色素増感型半導体電極と対向電極との間に配置された電解質とを有する色素増感型太陽電池において、該対向電極と半導体電極との間に請求項1ないし3のいずれか1項に記載の色素増感型太陽電池用セパレータが配設されていることを特徴とする色素増感型太陽電池。   Dye sensitizing comprising a dye sensitized semiconductor electrode, a counter electrode provided facing the dye sensitized semiconductor electrode, and an electrolyte disposed between the dye sensitized semiconductor electrode and the counter electrode A dye-sensitized solar cell according to any one of claims 1 to 3, wherein the dye-sensitized solar cell separator is disposed between the counter electrode and the semiconductor electrode. Type solar cell. 色素増感型半導体電極と、この色素増感型半導体電極に対面して設けられた対向電極と、該色素増感型半導体電極と対向電極との間に配置された電解質とを有する色素増感型太陽電池において、該対向電極が請求項4に記載のセパレータ一体型色素増感型太陽電池用対向電極であることを特徴とする色素増感型太陽電池。   Dye sensitizing comprising a dye sensitized semiconductor electrode, a counter electrode provided facing the dye sensitized semiconductor electrode, and an electrolyte disposed between the dye sensitized semiconductor electrode and the counter electrode A dye-sensitized solar cell, wherein the counter electrode is the counter electrode for a separator-integrated dye-sensitized solar cell according to claim 4. 色素増感型半導体電極と、この色素増感型半導体電極に対面して設けられた対向電極と、該色素増感型半導体電極と対向電極との間に配置された電解質とを有する色素増感型太陽電池において、該半導体電極が請求項5に記載のセパレータ一体型色素増感型太陽電池用半導体電極であることを特徴とする色素増感型太陽電池。   Dye sensitizing comprising a dye sensitized semiconductor electrode, a counter electrode provided facing the dye sensitized semiconductor electrode, and an electrolyte disposed between the dye sensitized semiconductor electrode and the counter electrode A dye-sensitized solar cell, wherein the semiconductor electrode is the separator-integrated dye-sensitized solar cell semiconductor electrode according to claim 5.
JP2005152623A 2005-05-25 2005-05-25 Separator for dye-sensitized solar cell, and its utilization Pending JP2006331791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152623A JP2006331791A (en) 2005-05-25 2005-05-25 Separator for dye-sensitized solar cell, and its utilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152623A JP2006331791A (en) 2005-05-25 2005-05-25 Separator for dye-sensitized solar cell, and its utilization

Publications (1)

Publication Number Publication Date
JP2006331791A true JP2006331791A (en) 2006-12-07

Family

ID=37553273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152623A Pending JP2006331791A (en) 2005-05-25 2005-05-25 Separator for dye-sensitized solar cell, and its utilization

Country Status (1)

Country Link
JP (1) JP2006331791A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501518A (en) * 2008-08-29 2012-01-19 ソルヴェイ(ソシエテ アノニム) Electrolyte-containing polymer produced by electrospinning process and highly efficient dye-sensitized solar cell using the electrolyte-containing polymer
JP2013196948A (en) * 2012-03-21 2013-09-30 Osaka Gas Co Ltd Cathode separator integrated electrode and photoelectric conversion element
KR101323418B1 (en) 2012-02-23 2013-10-29 신흥에스이씨주식회사 Method of manufacturing coated electronic parts with high anti-bending and heat resistancy properties and coated electronic parts thereof
WO2014017567A1 (en) * 2012-07-24 2014-01-30 株式会社 東芝 Secondary battery
JP2014519709A (en) * 2012-02-13 2014-08-14 コリア エレクトロテクノロジー リサーチ インスティチュート Flexible dye-sensitized solar cell using fiber
US9064637B2 (en) 2009-11-16 2015-06-23 Dai Nippon Printing Co., Ltd. Dye-sensitized solar cell
JP2017228537A (en) * 2017-08-02 2017-12-28 株式会社東芝 Method for manufacturing organic fiber layer-attached secondary battery electrode, and method for manufacturing secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357544A (en) * 1999-04-16 2000-12-26 Idemitsu Kosan Co Ltd Coloring matter sensitizing type solar battery
JP2001273938A (en) * 2000-03-28 2001-10-05 Hitachi Maxell Ltd Photoelectric transducer
JP2001345126A (en) * 2000-03-28 2001-12-14 Hitachi Maxell Ltd Photoelectric conversion device
JP2001345125A (en) * 1999-11-04 2001-12-14 Hitachi Maxell Ltd Photoelectric conversion element
JP2005079031A (en) * 2003-09-02 2005-03-24 Toin Gakuen Secondary cell capable of optical charging and electrochemical capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357544A (en) * 1999-04-16 2000-12-26 Idemitsu Kosan Co Ltd Coloring matter sensitizing type solar battery
JP2001345125A (en) * 1999-11-04 2001-12-14 Hitachi Maxell Ltd Photoelectric conversion element
JP2001273938A (en) * 2000-03-28 2001-10-05 Hitachi Maxell Ltd Photoelectric transducer
JP2001345126A (en) * 2000-03-28 2001-12-14 Hitachi Maxell Ltd Photoelectric conversion device
JP2005079031A (en) * 2003-09-02 2005-03-24 Toin Gakuen Secondary cell capable of optical charging and electrochemical capacitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501518A (en) * 2008-08-29 2012-01-19 ソルヴェイ(ソシエテ アノニム) Electrolyte-containing polymer produced by electrospinning process and highly efficient dye-sensitized solar cell using the electrolyte-containing polymer
TWI476937B (en) * 2008-08-29 2015-03-11 Solchem Co Ltd Electrolyte comprising polymer nanofibers fabricated by electrospinning method and high performance dye-sensitized solar cell device using same
US9281131B2 (en) 2008-08-29 2016-03-08 Solvay Sa Electrolyte-comprising polymer nanofibers fabricated by electrospinning method and high performance dye-sensitized solar cells device using same
US9064637B2 (en) 2009-11-16 2015-06-23 Dai Nippon Printing Co., Ltd. Dye-sensitized solar cell
JP2014519709A (en) * 2012-02-13 2014-08-14 コリア エレクトロテクノロジー リサーチ インスティチュート Flexible dye-sensitized solar cell using fiber
KR101323418B1 (en) 2012-02-23 2013-10-29 신흥에스이씨주식회사 Method of manufacturing coated electronic parts with high anti-bending and heat resistancy properties and coated electronic parts thereof
JP2013196948A (en) * 2012-03-21 2013-09-30 Osaka Gas Co Ltd Cathode separator integrated electrode and photoelectric conversion element
WO2014017567A1 (en) * 2012-07-24 2014-01-30 株式会社 東芝 Secondary battery
US10135050B2 (en) 2012-07-24 2018-11-20 Kabushiki Kaisha Toshiba Secondary battery
US10700327B2 (en) 2012-07-24 2020-06-30 Kabushiki Kaisha Toshiba Secondary battery
JP2017228537A (en) * 2017-08-02 2017-12-28 株式会社東芝 Method for manufacturing organic fiber layer-attached secondary battery electrode, and method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
JP5029015B2 (en) Dye-sensitized metal oxide semiconductor electrode, method for producing the same, and dye-sensitized solar cell
JP5140588B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
US20070095390A1 (en) Solar cell and manufacturing method thereof
JP5237664B2 (en) Photoelectric conversion element
US20110220205A1 (en) Electrolyte-comprising polymer nanofibers Febricated by electrospinning Method and high Performance dye-sensitized solar cells Device using same
JP2007134328A (en) Solar cell and its manufacturing method
US20110132461A1 (en) Dye-sensitized photoelectric conversion element and method for manufacturing the same and electronic apparatus
JP2006331791A (en) Separator for dye-sensitized solar cell, and its utilization
CN102150322A (en) Photoelectric conversion element, method of manufacturing therefor, and electronic device
JPWO2005078853A1 (en) Dye-sensitized solar cell
US20070119499A1 (en) Solar cell
KR20180083823A (en) Perovskite based solar cell and method of manufacturing the same
JP6010549B2 (en) Photoelectric device and manufacturing method thereof
KR101381705B1 (en) Dye-sensitized solar cell comprising hybrid nano fibers by electrospinning and sprayng as a polymer electrolyte, and the fabrication method thereof
JP4777592B2 (en) Counter electrode and dye-sensitized solar cell having the same
JP2006331790A (en) Counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP2003257506A (en) Electrolyte composition, photoelectric transducer and photoelectric cell
JP2007311243A (en) Action electrode and photoelectric conversion element
JP2006236807A (en) Dye-sensitized solar cell
JP5584447B2 (en) Photoelectric element
KR101448923B1 (en) Dye-sensitized solar cell comprising hybrid nano fibers by electrospinning as a polymer electrolyte, and the fabrication method thereof
JP4050535B2 (en) Method for producing dye-sensitized solar cell
JP2004238213A (en) Method of manufacturing titanium oxide particle and photoelectric conversion device using the same
JP6721686B2 (en) Dye-sensitized solar cell and manufacturing method thereof
JP2009187844A (en) Method of manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731